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 Product miniaturization for applications in fields such as biotechnology, medical 

devices, aerospace, optics and communications using a variety of materials has made the 

advancement of micromachining techniques essential. Machining of hard and brittle 

materials such as engineering ceramics, glass and silicon is a formidable task. Rotary 

ultrasonic machining (RUM) is one process capable of machining these materials. It is a 

hybrid machining process which combines the mechanism of material removal of 

conventional grinding and ultrasonic machining. Downscaling of RUM for micro scale 

machining is essential to generate miniature features or parts from hard and brittle 

materials.  

The goal of this thesis is to conduct a feasibility study and to develop a 

knowledge base for micro rotary ultrasonic machining (MRUM). Positive outcome of the 

feasibility study led to a comprehensive investigation on the effect of process parameters 

on the MRUM process performance. The effect of spindle speed, grit size, vibration 

amplitude, tool tip geometry, static load and coolant on the material removal rate (MRR) 

of MRUM was studied. In general, MRR was found to increase with increase in spindle 



 
 

speed, vibration amplitude and static load. The machining rate was also noted to depend 

upon the abrasive grit size, tool tip geometry. During the constant force mode of 

operation, it was difficult to maintain the force at a constant value. Therefore, a constant 

feedrate mode of operation was used for machining. The behavior of the cutting forces 

was modeled using time series analysis.  It was found that the variance associated with 

the cutting force was least at the highest spindle speed. Capability of MRUM process for 

machining bone tissue was investigated. Critical issue in bone machining is the thermal 

damage caused to the tissue because of excessive rise in the machining temperature. 

Being a vibration assisted machining process, heat generation in MRUM is low and 

therefore it is a potential option for bone machining. Finally, to estimate the MRR a 

predictive model was proposed. The experimental and the theoretical results exhibited a 

matching trend. 
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CHAPTER 1 

INTRODUCTION 

                                                            

1.1. Needs in Micromachining  

 Innovations in the fields of biomedical devices, aerospace, automobile, energy, 

optics, semiconductors, electronics and communications have led to miniaturization of 

the parts and devices. Small sized devices and their component parts are desirable to keep 

things compact and portable. Therefore, material and energy required for manufacturing 

reduces drastically. As a result the cost of production and environmental pollution is 

reduced. Small parts have lower inertia because of which production process needs lesser 

time. Consequently, the productivity increases. 

 Production of small parts requires different processes and systems capable of 

machining at micro scale [1]. To manufacture functional micro parts and devices, tighter 

tolerances, higher accuracy and precision, superior surface integrity, improved 

repeatability and reliability are desirable constantly. These capabilities are limited by the 

existing technology. Consequently, constant advancement of the micro machining 

techniques is essential for fabrication of the micro parts and devices.  

Micro machining is defined as the ability to produce features with the dimensions 

between 1 µm to 999 µm [2] or when the volume of the material removed is at the micro 

level (e.g. micro grinding). 

Research in micro-manufacturing focuses on developing techniques for machining 

materials including electrical discharge machining (EDM), electrochemical machining 
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(ECM), laser, ultrasonic machining. The machinability of the materials used for making 

the devices and parts depend on their characteristic properties. Some materials such as 

ceramics, titanium alloys are difficult to machine by the traditional machining techniques 

because of their high hardness and toughness. Nontraditional machining techniques 

including ultrasonic machining and rotary ultrasonic machining can be used to machine 

such hard and brittle materials. Some of the applications of typically used hard and brittle 

materials are listed in the Table 1.1. 

Table 1.1.  Applications of hard and brittle materials [3] 

Materials Applications 

Glass Micro-fluidic systems ; accelerometer ;  monolithic grid structure ; 

lab-on-chip; micro device for blood analysis ; membrane in fuel cell 

Quartz Crystal Accelerometer;  optical chopper ; pressure sensor ; acoustic wave 

resonator, filter, and sensor 

Lead Zirconate 

Titanate (PZT) 

Actuators and transducers ; medical imaging transducers  

Silicon 

Carbide 

High temperature pressure sensor ; vibration sensor ; micro-gas 

turbine engine ; micromotors operating up to 500
o
C  

Silicon Nitride  Biaxial pointing mirrors; solid immersion lens  

Alumina  Micro gimbal ; bilayer lipid membranes sensor ; vacuum windows  

  

 

1.2. Rotary Ultrasonic Machining 

 Rotary Ultrasonic Machining is a nontraditional manufacturing technique for 

machining hard and brittle materials such as titanium alloys [4] and ceramics [5]. These 

materials are hard to machine by conventional techniques such as drilling, milling, 
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turning and expensive to machine by other non conventional techniques such as laser and 

EDM. RUM offers a convenient and inexpensive way of machining these hard and brittle 

materials. The RUM process involves material removal by hybrid action of ultrasonic 

machining (USM) and conventional grinding.  

 The setup for RUM consists of an ultrasonic spindle kit, feeding device and a 

coolant system. A rotating and ultrasonically vibrating abrasive bonded tool is fed 

towards the workpiece. The tool removes material from the workpiece because of the 

ultrasonic impacts and the grinding action of the abrasives. RUM has been used to 

machine materials such as alumina [5, 6], beryllium oxide [7], canasite [8], composites 

[8, 9], ferrite [10], glass [11], polycrystalline diamond compact [12], silicon carbide [13], 

silicon nitride [14], zirconia [15, 16], titanium alloys [4], and stainless steel [17]. 

 RUM was developed as an improvement over ultrasonic machining (USM). USM 

uses abrasive slurry (essentially a mixture of abrasive and coolant) which is fed between 

an ultrasonically vibrating tool and the workpiece during machining. In RUM, the loose 

abrasives are abandoned and are bonded to the tool itself.  As a result, some of the 

disadvantages of the ultrasonic machining were overcome in RUM. For example, in the 

presence of the abrasive slurry, the escaping debris and the suspended abrasive particles 

tend to erode the walls of the machined hole during flushing thus making it hard to hold 

close tolerances. The use of diamond impregnated tool was reported to improve the hole 

accuracy and it was easier to drill deeper holes. It is not always desirable to expose the 

workpiece to the abrasive slurry; consequently, with the abandoning of the abrasive 

slurry, RUM could be extended to a wider range of applications. RUM was reported to be 
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capable of machining ten times faster than USM under similar conditions. A superior 

surface finish and a low tool pressure could be achieved compared to USM [18]. 

 

1.3. Micro Rotary Ultrasonic Machining 

 The advantage of rotary ultrasonic machining for machining hard and brittle 

materials is clearly evident from the discussion in the previous section. Till date RUM 

has been developed and well researched only at the macro level. Downscaling of RUM is 

essential for machining micro parts and micro features in hard and brittle materials. 

Hence, in the present research feasibility of MRUM has been explored. Major issues 

involved in the downscaling of RUM are discussed below. Two major requirements for 

MRUM are the micro sized abrasive bonded tool and a machining system capable of 

applying very small load on the micro tool with necessary feedback and control 

mechanisms.  

 

1.4. Research Objectives 

 Rotary Ultrasonic Machining has been extensively researched at the macro level 

with regard to the effect of machining parameters. However, downscaling of RUM to 

micro level is essential to produce miniature features or parts of hard and brittle 

materials.  
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           The goal of this thesis is to conduct a feasibility study and develop a knowledge 

base for micro rotary ultrasonic machining (MRUM). For achieving this goal the 

following research objectives were set.  

 The first objective of this thesis is to downscale rotary ultrasonic machining for 

micro scale machining.  

The second objective is to perform parametric studies to evaluate the effect of 

process parameters on MRUM performance by experimentation.  

  The third objective is to understand the mechanism of material removal and tool 

wear.  

 The fifth objective is to develop and verify a predictive model for MRR of 

MRUM.  

 

1.5.     Thesis Organization 

 Chapter 2 presents a literature review of the rotary ultrasonic machining 

describing the process mechanism, equipment evolution, and previous research 

conducted on the parametric studies. Micro ultrasonic machining (MUSM) process, its 

advantages and limitations are also described. This is followed by an introduction to 

micro rotary ultrasonic machining (MRUM).   

Chapter 3 includes the details of the in-house designed and built equipment, 

tooling, machining parameters selected and the experiments performed.    
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Chapter 4 explains the results and presents a discussion for the experiments 

conducted using the PCD tool and electroplated abrasive bonded tool. The effect of 

process parameters on the machining performance is discussed. SEM images were used 

to understand the material removal mechanism and tool wear. 

Chapter 5 presents a literature review on the need for machining bones and 

investigates the possibility of using MRUM for drilling holes in a section of bone.     

Chapter 6 presents the development of a predictive model for material removal 

rate in MRUM, followed by the verification of the model. 

Chapter 7 presents the analysis of the cutting force using time series analysis in an 

attempt to control the process and understand the process mechanism.        

           Chapter 8 presents a summary of the major contributions from this study and 

recommendations for future research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1. Introduction 

This chapter describes the rotary ultrasonic machining (RUM) process and 

evolution of the process in sections 2.2 and 2.3. It reports the current research on the 

mechanism of material removal and machining parameters in sections 2.4 and 2.5. The 

evolution of the machining system used for RUM is described in section 2.6. The 

theoretical models developed for RUM process are summarized in section 2.7. Section 

2.8 elaborates on development of micro USM and discusses the challenges faced in 

downscaling the process. Section 2.9 discusses the MRUM process. 

 

2.2. Rotary Ultrasonic Machining (RUM) Process 

Rotary Ultrasonic Machining (RUM), by definition, is a hybrid machining process 

where the ultrasonic machining and conventional grinding occur simultaneously to 

remove material from the workpiece by micro chipping and grinding action of the 

abrasives. The setup for RUM consists of a rotating and ultrasonically vibrating diamond 

abrasive studded tool which is fed towards the workpiece such that a constant pressure or 

a constant feedrate is maintained during machining. A coolant injected between the tool 

and the workpiece through a hollow tool flushes away the debris. RUM has also been 

referred to as Ultrasonic Impact Drilling [19] and Ultrasonic Vibration Assisted Grinding 

[20]. 
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A workpiece for RUM is usually characterized by properties of high hardness and 

brittleness. Thus, machinability of a material is independent of its other material 

properties such as electrical conductivity and chemical reactivity. RUM is a non-thermal, 

non-chemical and non-electrical process. As a result the metallurgical, chemical or 

physical properties of the workpiece do not change post machining [21]. Virtually a stress 

free surface is generated after machining, thus, the fatigue strength of the machined 

material does not deteriorate. RUM has been used for drilling and coring [22]. It has also 

been extended to milling [14, 23], disk grinding [24] and contour machining [25].  

 

2.3. Evolution of RUM 

Literature reports that RUM was developed as an improvement over ultrasonic 

machining (USM) [18]. Unlike USM, instead of using the loose abrasive slurry, the 

diamond abrasives were impregnated into the rotating tool. Typically RUM was used for 

drilling holes through hard and brittle materials. The development of RUM as a successor 

of ultrasonic machining (USM) is discussed in this section. USM was patented in 1927 

and has been used in the industry since 1940 for machining materials with high hardness 

and brittleness. This process uses abrasive slurry (essentially a mixture of diamond 

abrasives and a cooling fluid) which is fed between an ultrasonically vibrating tool and 

the workpiece during machining. P. Legge developed RUM for the first time in 1964. The 

schematic diagram in Figure 2.1 illustrates the principle of ultrasonic machining as the 

abrasive slurry is injected in between the tool and the workpiece. Figure 2.2 illustrates the 

schematic diagram of RUM. 
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Advantages of RUM over USM: Some of the disadvantages of the ultrasonic 

machining were overcome in RUM. In the presence of the abrasive slurry, the escaping 

debris and the suspended abrasive particles tend to erode the walls of the machined hole 

during flushing thus making it hard to hold close tolerances. The use of diamond 

impregnated tool was reported to improve the hole accuracy and it was easier to drill 

deeper holes. It is not always desirable to expose the workpiece to the abrasive slurry. 

Consequently, on abandoning of the abrasive slurry, RUM could be extended to a wider 

range of applications. RUM was reported to be capable of machining ten times faster than 

USM under similar conditions. A superior surface finish and a low tool pressure could be 

achieved compared to USM [18]. 

 

 

Figure 2.1. Illustration of ultrasonic machining [26] 
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Figure 2.2. Illustration of rotary ultrasonic machining [26] 

  

2.4. Mechanisms of Material Removal 

The mechanism of material removal has been investigated by studying the surface 

topography of the machined surface and mechanisms involved in the single grit 

scratching experiments [27, 28]. Dominant mode of material removal was due to brittle 

fracture. The impact, grinding and erosion generated by tool rotation and vibration were 

responsible for the brittle fracture [28, 11]. The impact was found to be a major factor for 

material removal towards the tool tip, while grinding was dominant near the walls of the 

hole. The debris produced due to impact and grinding mixed with the pressurized coolant 

were responsible for erosion at the hole walls during machining. Ductile mode of material 

removal also contributed towards machining [16]. 
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Figure 2.3. Material removal modes in RUM [29]  

In recent studies, the advantages of ductile regime machining of brittle materials 

were emphasized [30]. Minimal subsurface damage and better surface finish are the 

results of ductile regime machining. Ductile machining is based on the fact that all 

materials deform plastically if the degree of deformation is small enough. There exists a 

critical depth of indentation for the abrasive grits involved. If the applied force on the 

abrasive grain exceeds this critical value, cracks are developed in the workpiece. 

However, if this depth of indentation is below the critical depth, material is removed by 

plastic flow [30]. During ultraprecision diamond turning, as the tool traversed across the 

workpiece, zones of machining were formed as the tool traverses across the workpiece: 
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(i) a ductile zone where continuous chips are formed and the surface defects such as 

micro-cracks and craters are absent (ii) a ductile-brittle-transition zone where the surface 

is semi-brittle fractured and (iii) a brittle fractured surface where holes, cracks and severe 

surface damage can be observed [31]. Figure 2.4 illustrates the three zones of machining.   

 

Figure 2.4 Schematic diagram of ductile-regime machining [31] 

 

Experiments with single point diamond tool reveal that the use of ultrasonic 

vibrations increased the critical depth of cut to a higher value allowing ductile (plastic 

flow) machining to occur up to a higher value. The reduction in the cutting forces and 

frictional forces as a result of using the ultrasonic vibrations was proposed to be a reason 

for this increased value of the critical depth of indentation [32]. This phenomenon has 

also been observed for ultrasonic assisted grinding of nano ZrO2 ceramics [33].  The 
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critical chip thickness has been defined as a function of material properties. The process 

parameters and tool geometry are also important factors in ductile-regime machining 

[31].  

 

2.5. Machining Parameters 

The machinability of materials such as titanium alloy [4, 34], advanced ceramics 

[5, 18, 26], ceramic matrix composites [9], silicon carbide [13], stainless steel [17], dental 

ceramics [35], potassium dihydrogen phosphate [36], glass [11] is investigated under 

different machining conditions in the recent years. 

A summary of literature regarding the effect of different machining parameters on 

material removal rate (MRR), average surface roughness, tool wear and edge chipping is 

presented in the following sections. 

2.5.1. Material removal rate 

  MRR was found to increase with an increase in the machining pressure [18], 

increase in the feedrate, at a higher spindle speed [18, 4] and with increase in ultrasonic 

frequency [19]. Vibration amplitude was found to have a significant effect on the MRR 

[18]. With increase in abrasive grit size and abrasive concentration, MRR was found to 

increase upto a certain optimal value and then a decreasing trend was observed [18, 37]. 

During RUM of ceramics, MRR reduced as the strength of the bond increased [18]. The 

type of coolant (oil or water) did not affect the MRR [38]. 
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2.5.2. Cutting force 

The cutting force was observed to reduce as the spindle speed was increased [4, 5, 

13, 17, 18] and feedrate was decreased [5, 9, 13, 18] during RUM of different materials. 

Ultrasonic vibration power had significant effect on the cutting force [4, 17]. Lower 

cutting forces were produced when a larger abrasive grit size, a higher abrasive 

concentration [34] and water-based coolants were used compared with synthetic coolants 

or tap water. [39]. 

2.5.3. Surface roughness 

Surface roughness was found to reduce with decrease in machining pressure, 

decrease in feedrate [18], decrease in ultrasonic vibration frequency [19] and at a higher 

spindle speed [4, 9]. A nonlinear dependence of ultrasonic power on the surface 

roughness was observed while machining ceramics. A reduction in average surface 

roughness was found with increase in ultrasonic power while machining two metals 

including stainless steel and titanium alloy [4, 13]. With increase in abrasive grit size the 

surface roughness increases upto a certain value and then decreases [18, 34]. Natural 

diamond was observed to reduce the surface roughness compared to the synthetic 

diamond abrasive [18]. A high abrasive density led to a decreased surface roughness. 

However, if the abrasive density is very high, the strength of the abrasive layer is 

reduced, leading to an increased tool wear and thus higher surface roughness [37]. 

Coolant pressure affected the surface roughness significantly [39]. 

2.5.4. Tool wear 

Accuracy and surface finish of the machined feature are affected as the tool wears 

out. It is therefore important to understand the mechanism and the influence of machining 
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parameters on tool wear. In RUM, the wear of tool was calculated as specific tool wear 

which was defined as the ratio of the volume of the material removed to the volume of 

the tool wear. Specific tool wear provides no information on the mechanism of tool wear 

[19].  In an investigation of the tool wear mechanism in silicon carbide, attritious tool 

wear and bond failure, similar to those in grinding,  were observed. Tool wear at the end 

face was more severe than the tool wear at the lateral face. Correlation of the tool wear 

with cutting forces was proposed to be used for online monitoring of the tool wear [40]. 

In another study, acoustic emission signals were used to assess the wearing patterns of the 

tool for monitoring purposes [41]. The influence of different tool variables including grit 

size, metal bond type, and diamond concentration on the tool wear during machining of 

titanium alloy were studied [34]. 

2.5.5. Edge chipping 

Finite element models were developed to study the edge chipping and cutting 

forces during machining of ceramics. The results were compared with the experimental 

data. A higher spindle speed and lower feedrate resulted in a lower chipping thickness 

because of the reduced cutting forces [42]. Efforts were made to reduce the edge chipping 

in a further study [43]. It was found that on increasing the support length (the radial 

length of contact area between workpiece and the fixture) and decreasing the cutting 

force the edge chipping thickness decreased [44]. 

2.5.6. Machining temperature 

 The grinding temperatures were found to reduce significantly when grinding with 

the aid of ultrasonic vibrations. In a study of tool wear, it was found that the surface color 

of the diamond grains changed after machining. This implied that the surface temperature 
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of the diamond grains was high [40]. However, study focusing on the temperature 

changes during machining has not been conducted yet. 

 

2.6. System Evolution 

A typical RUM setup consists of a machine and a tool. The main components of a 

RUM machine are a feeding device, ultrasonic spindle kit, and a coolant system. Studies 

discussing variations/ developments of these components are summarized. 

2.6.1. Tools 

Most of the studies make use of a cylindrical tool with a through hole in its centre 

for supplying the coolant to the working gap. A slotted diamond tool was used in one of 

the studies. Surface roughness improved compared to conventional RUM with cylindrical 

tool. No significant difference in cutting force was observed [45]. Electroplated tools and 

diamond impregnated tools have been used for RUM, however, electroplated tools wore 

out faster even if material removed by them is at a greater rate [37, 44]. 

2.6.2. Feed mechanism 

Two types of feed mechanisms, either a tool-down feeding or workpiece-up 

feeding have been used [44, 45]. Either constant feedrate or constant force/pressure 

control are usually employed for controlling the feed mechanism in the process. A step-

back feed mechanism, involving forward-stepping the tool followed by a small back-

stepping helped in efficient debris removal [46]. 

2.6.3. Ultrasonic vibrations  

 A method was developed for designing a horn for transmission of ultrasonic 

vibrations using the finite element method [47]. The ultrasonic vibrations are applied 
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along the axis of the tool and perpendicular to the plane of the tool rotation so that the 

abrasive grains bonded to the tool impact the workpiece. The ultrasonic vibrations can be 

applied either to the tool or the workpiece. While drilling using a diamond impregnated 

tool, ultrasonic vibrations were applied to the tool and low-frequency vibrations were 

applied to the workpiece. When vibrations were applied to both, the tool and the 

workpiece, the cylindricity error and edge chipping were reduced [48]. 

In another experimental study, a recently developed very high frequency 

ultrasonic transducer (400 kHz) was used for micro ultrasonic grinding.   The spindle 

rotating the tool was vibrated at the ultrasonic frequency during boring of glass, ferrite 

and alumina. This transducer provided longitudinal, torsional, and complex (longitudinal 

and torsional) modes of vibration. Use of complex modes of vibration (longitudinal and 

torsional) resulted in the best performance due to reduced chipping and stabilized 

grinding force. The amplitude of vibration was kept constant by a feedback control 

mechanism so that the depth of cut was maintained constant at a submicron level [46]. 

2.6.4. Coolant system 

  In an innovative coolant system developed, the effect of coolant flow (continuous 

or intermittent) was investigated. The intermittent flow removed the debris efficiently 

resulting in a better performance [49]. 

 

2.7. Theoretical Work 

Theoretical models were developed for predicting MRR in RUM based on brittle 

fracture [6, 50, 51] and ductile flow [16]. A physics based model was developed for 

predicting the cutting force while machining at a constant feedrate [20].  
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2.8. Micro Ultrasonic Machining (MUSM) 

Ultrasonic machining (USM), the precursor of Rotary Ultrasonic Machining, was 

scaled down from macro level to micro level in mid 1990’s. Figure 2.5 illustrates the 

principle of USM. 

 

Figure 2.5. Principle of micro USM based on “vibration of workpiece”  

(Type-I) [41] 

Since then a lot of research has been done with regard to parametric studies.  It is 

shown to be capable of machining intriguing micro features on materials such as glass, 

quartz, diamond, ceramics, and semi-conducting materials [52]. There are two modes of 

operation of MUSM Type 1 and Type 2. Examples of features machined by the two 

modes are illustrated in Figure 2.6. Figure 2.6 (a) illustrates complex micro feature 

machined in a silicon wafer. This feature was created by using CAD/CAM method and 

the motion of the micro tool was controlled along the three axes to follow a designed tool 

path. Complex shaped features can be machined by Type 1 MUSM. Figure 2.6 (b) 
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illustrates micro feature machined by die sinking MUSM. In die sinking micro USM, the 

mirror image of the micro features desired to be machined are fabricated at the tool 

bottom. The tool approaches the workpiece as a die and imprints the micro feature on the 

workpiece. Fabrication of complex features on the micro tool face is difficult and 

cumbersome. However, batch production of simple features with low aspect ratio is 

possible with die sinking micro USM.   

 

Figure 2.6. Features machined using micro ultrasonic machining: 3-D cavity [52] 

(a), die-sinking micro USMed feature in alumina [53] (b) 

For evaluating the process performance under different machining conditions 

extensive parametric studies were conducted [52]. Effect of parameters such as static 

load, vibration amplitude, and slurry concentration were conducted [52, 54]. Theoretical 

models are also developed for predicting the material removal in micro USM [52, 54].  

Micro Ultrasonic Machining has numerous advantages for machining hard and 

brittle materials. It is capable of die-sinking and contouring to fabricate complex 3D 

features, low cost, simple machine structure, no significant change of physical and 

chemical properties such as heat-affected zone (thermal damage).  
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However, it has some limitations which include the following 

- relative low machining speed compared to the cutting processes,  

- machining gap impairs dimensional accuracy,  

- slurry has to be fed to and removed from the gap between the tool and the workpiece. 

As a result, the rate of material removal reduces  and even stops as the feedrate 

increases,  

- considerable tool wear occurs in machining and difficult tool wear compensation 

[52]. 

 As reported in section 2.2 some of these limitations were also prevalent in USM at 

macro level. The limitations such as feeding abrasive slurry and low machining speed 

were overcome when an abrasive bonded tool was used in RUM. Similarly, it is 

hypothesized that MRUM might overcome the limitations of micro USM.  Thus, to 

satisfy the need for an efficient low cost method for machining hard and brittle materials, 

the industrial need of higher precision, tighter tolerances and superior surface finish has 

lead to the feasibility study of MRUM.   

 

2.9. Micro RUM 

 Attempts have been made to scale down RUM to a micro level. A micro USM 

setup was employed for machining. In the experimental study conducted, MRR was 

found to increase with an increase in the static load and spindle speed like macro RUM. 

An increase in MRR was observed with a decrease in the abrasive grit size. At larger 

amplitude the MRR was almost the same for all grit sizes. Chipping at the hole edges was 

greater when a bigger abrasive size was used. Although silicon workpiece was used 
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which is brittle, there was evidence of ductile machining in the form of circular 

concentric grooves on the drilled surface in all the experiments. The number of these 

grooves was different for different experimental conditions, indicating the dependence of 

material removal by plastic flow on machining parameters. Stick-slip marks were 

observed on walls and the bottom of the machined holes and on the binding metal on the 

tool. Tool wear was observed in the form of grain pull-out and grain fracture. Figure 2.7 

shows the cause – and - effects diagram for the MRUM process. The process parameters 

which affect the quality of machining and tool wear are illustrated. 

 

1  Bond type  12   Tool rotation speed 

2  Strength of binder  13  Young’s modulus 

3  Porosity  14  Hardness 

4  Abrasive concentration  15  Fracture strength 

5  Size of abrasives  16  Toughness 

6  Type of abrasives  17  Amplitude 

7  Slurry concentration  18  Frequency 

8  Size distribution  19  Specific heat 

9  Shape  20  Viscosity 

10  Tool shape  21  Static load 

11  Tool size  22  Temperature 

 

Figure 2.7.  Ishikawa cause-and-effects diagram for MRUM 
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CHAPTER 3 

EXPERIMENTS 

3.1. Introduction 

 In this chapter the in-house designed and built experimental setup is explained in 

section 3.2.1. The different types of tools used are explained in section 3.2.2. Section 

3.3.1 describes the experimental conditions and the experiments conducted using the 

polycrystalline diamond (PCD) tool. Sections 3.3.2 describes the experiments conducted 

using the electroplated abrasive diamond tools.   

 

3.2.  Experimental Setup 

3.2.1.  Micro ultrasonic machine description 

An in-house designed and built micro USM machine was used for performing 

experiments for MRUM. The system is an assembly of a piezoelectric ultrasonic 

transducer, a spindle for rotating the tool (Cannon LN 22, 5W, coreless DC motor) and 

the position of the tool was controlled in the X, Y and Z axes by a precision motion 

controller (Newport PM500C) with a 25 nm resolution. The workpiece was vibrated 

ultrasonically by mounting it on the free end of the transducer.  A double sided duct tape 

was used to fix the workpiece on the transducer. The coolant was injected between the 

tool and the workpiece. To control or monitor the forces developed during machining an 

electronic balance was used. The response from the balance was given as a feedback to 

the motion controller through a RS-232 interface to control the position of the tool on the 

workpiece. Figure 3.1 illustrates the schematic diagram of the system. Figure 3.2 explains 
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the principle of operation of MRUM. Figure 3.3 shows an image of the experimental 

system used. 

 

Figure 3.1.   Schematic diagram of the experimental setup [52] 

 

 

Figure 3.2.  Micro rotary ultrasonic machining principle 
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Figure 3.3. Experimental setup [52] 

 

3.2.2.  Tooling 

 The micro ultrasonic machining (MUSM) setup was modified to conduct the 

experiments. To change the MUSM setup to perform as MRUM, abrasive bonded 

diamond tools were used.  

 Initial attempts were made to fabricate the abrasive bonded tool in-house. 

Abrasive particles were bonded to a cylindrical micro tool with quick fix rubber adhesive. 

The abrasive bonded tool was dried overnight before performing the experiments. When 

this tool was used for machining, only few scratch marks were observed on the work 

surface. Figure 3.4 illustrates the images of the tool before and after machining. From the 

image it can be seen that the abrasive coated layer was also not perfectly cylindrical. 

Moreover, the abrasive coating wore off with the coolant oil. Therefore, this method of 
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fabricating the tool was not successful. A stronger and adherent bonding material would 

be able to hold the abrasive grains more effectively. Sintering or electroplating abrasives 

on the tool were thought to be better techniques.   

   

                                        (a)                                                         (b) 

Figure 3.4. Images of in-house made abrasive bonded tools before (a) and 

after machining (b) 

Secondly, a PCD tool (manufactured by Sumitomo Electric) was used as the tool 

for MRUM. Initial attempt of machining using the PCD tool (2 mm diameter) without the 

abrasive slurry was unsuccessful. Machining was possible when a very high static load of 

the order of 80-100 g was applied on the same tool along with the usage of abrasive 

slurry. However, extensive heat was generated and the machining was unstable under 

such high static loads. Hence, for the stable machining, it was necessary to decrease the 

overall static load, but provide sufficient contact pressure on individual abrasive grains. 

Reducing the tool diameter was the best option to achieve this goal. Machining of PCD 

tool by conventional methods is tedious if not impossible.  Wire electro discharge 

grinding (WEDG) from Panasonic micro EDM (MG-ED72W) was used to reduce the 

diameter of the PCD tool.  The micro tool machined by WEDG is shown in Figure 3.5  

200 µm 200 µm 
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Figure 3.5. PCD micro tool made by WEDG (manufactured by Sumitomo Electric) 

 

Thirdly, abrasive bonded tools were used for MRUM. Electroplated diamond tools 

(manufactured by Strauss Diamond) with different grit sizes (30~120 µm) and tool tip 

shapes (cylindrical and conical) were used for machining. The diamonds are plated on the 

tool using the HBN plating such that both the matrix and the grit are equally distributed 

on the tool [55].  An illustration of the tool tips with different grit sizes of 30 µm = 

Superfine (SF), 50 µm = Fine (F) and 107~120 µm = Medium (M) is given in Figure 3.6. 

The diameter of the holder available for the tool was much larger than the shaft diameter 

of the tool. Thus, tool after fixing directly into the holder was almost always eccentric 

because four screws were used to fix the tool. To ensure that the tool was centered and 

clamped properly into the holder, a sleeve was used. The tool was press fit into the 

sleeve. This assembly was inserted into the holder and the four screws were merely used 

to hold the tool in the appropriate position.   
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Figure 3.6.  SEM images of the cylindrical tool (a) and cone shaped tools with 

medium (b), fine (c) and superfine grits (d) (manufactured by Strauss Diamond) 

  

 Single crystal silicon <111> wafer pieces, each weighing 0.1 g and 1 mm thick, 

were used as workpieces for experiments.  

 

 

 

 

100 µm 

100 µm 

100 µm 
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3.3. Plan of Experiments 

 The experiments conducted using the PCD tool and the electroplated abrasive 

tools are described in detail in this section. 

3.3.1.  Experiments using the PCD tool 

 Experiments were conducted using the PCD tool under the experimental 

conditions presented in Table 3.1. The experiments were conducted to investigate the 

preliminary effect of tool diameter, abrasive size, spindle speed and static load on MRR. 

 

Table 3.1. Experimental conditions for MRUM using PCD tool 

Tool Material Sintered PCD 

Tool Diameter  2000, 700, 500 (µm) 

Work Material Silicon wafer <1 1 1> 

Abrasive Material PCD 

Abrasive Size  1-3, 3-5 (µm) 

Slurry Medium Water 

Tool Rotational Speed  1000, 3000 (RPM) 

Vibration Frequency  39.5 (kHz) 

Vibration Amplitude  1 (µm) 

Static Load  5,10,15,20 (g) 

 

 

3.3.2.  Experiments using the electroplated abrasive tools 

 

3.3.2.1. Preliminary experiments 

Table 3.2. Test cases 

Factors Conditions 

Ultrasonic vibrations on / off 

Tool rotation on / off 

Dry or wet water present or dry  
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   To understand the individual effect of ultrasonic vibrations, tool rotation and 

coolant on the material removal rate, experiments were conducted in the presence and 

absence of each of those factors (as mentioned in Table 3.2), while the other factors were 

maintained at the normal machining conditions (as mentioned in Table 3.3).  The results 

obtained for each were plotted in Figures 3.7 and 3.8.  

 

Figure 3.7.  Effect of presence and absence of ultrasonic vibrations on MRR (A = 1 

µm, C = oil, G = M, t = 200 seconds) 

Ultrasonic vibrations were found to increase the drilled depth (essentially MRR) 

under different machining conditions as illustrated in Figure 3.7. This observation is 

consistent with that observed for other vibration assisted machining techniques such as 

vibration assisted grinding [56]. The vibrations provide an intermittent contact between 

the tool and the workpiece. This enables better flushing of the debris from the machining 

gap.   
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Figure 3.8.  Effect of presence and absence of coolant on drill depth during 

machining (A = 1 µm, G = SF, S = 3000 RPM, t = 200 seconds) 

   

 The drilled depth was found to increase with the use of a coolant as shown in 

Figure 3.8. The experiments were repeated six times using one single tool under the same 

conditions in the presence and absence of oil. Because of the tool wear, the number of 

trials was limited to six. The depth of the hole achieved was same for all the trials in the 

presence of oil. In contrast, during dry machining, the drilled depth varied under the same 

machining conditions.  Therefore, the process had a higher drilling speed and better 

repeatability of the machining rate in the presence of a coolant.  

 Presence of a coolant helped in removing the machined debris efficiently, even if 

no flushing system was used. Presence of ultrasonic vibrations aided the debris removal 
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from the machining gap. This provided ultrasonic cleaning as the workpiece vibrates 

ultrasonically. In case of dry machining the debris was removed, though not as efficiently, 

only because of the centrifugal force of the rotating tool and the intermittent non-contact 

time provided because of the ultrasonic vibrations.  

The effect of the use of tool rotation in MRUM was also investigated. No 

machining occurred when the tool was not rotating.  The presence of each of the three 

above mentioned factors contribute towards improving the material removal process. 

Therefore, all the experiments for this study were conducted in the presence of ultrasonic 

vibrations, coolant and tool rotation. 

Table 3.3 lists all the possible parameters which were changed and the possible 

levels chosen during machining. Different combinations of these parameters were chosen 

as different sets and the experiments were conducted using the specified parameters as 

described below. 

From the literature review, vibration amplitude, spindle speed, grit size were 

identified as the main parameters for study. The effect of other parameters such as coolant 

and static load is not known for MRUM. For MUSM static load and type of coolant used 

were found to have an effect on the machining process [52, 57]. To identify a suitable 

operating value of these parameters, experiments were conducted which are described 

below. 
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Table 3.3. Experimental conditions for MRUM using electroplated abrasive tools 

Parameters Levels 

Abrasive Grit Size  (G) 30,  50, 107~120 (µm)   

Ultrasonic Vibration 

Amplitude  (A) 
1, 2.5, 4 (µm) 

Spindle Speed (S)  
0, 500, 1000, 3000, 5000 

(RPM) 

Static Load (SL)  5, 8 (g) 

Coolant (C) oil, water  

Tool Tip Shape 
conical (SF, F, M), cylindrical 

(M) 

Tool Feed Mode  
feedrate controlled mode, force 

controlled mode 

Machining Time (t)  200, 400 (seconds) 

 

The experiments were performed with cylindrical tools (diameter 800 µm, grit 

size M). Two different levels of static load (5 and 8 g), spindle speed (1000 and 3000 

RPM) and coolant (water and oil) were chosen. Silicon wafer pieces were used as 

workpieces, each weighing 0.1 g and 1 mm thick, in the experiments conducted. Each 

experiment was conducted twice and average value of the MRR obtained was recorded. 

The radial dimension of the machined hole was measured from the SEM images. Hole 

enlargement (radius of the tool was subtracted from the radius of the machined hole) was 

recorded.  

MRR by cylindrical and conical tool tip shapes experiments were done under the 

same machining conditions, with tools having the same grit size. Each experiment was 

conducted three times and the average value was recorded.  

All the previous experiments were done using a constant force mode of operation. 

Prior research done on macro level RUM is mainly using the constant feedrate mode [4, 
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5]. To understand the trend in the machining forces developed during MRUM, the 

machine was operated in the feedrate controlled mode. The tool was fed towards the 

workpiece at a constant feedrate value. Experiments were performed at four different 

values of feedrates (0.04, 0.08, 0.13, 0.5 µm/s) and three values of spindle speeds (500, 

3000, 5000 RPM) and the average force was recorded during machining for each 

experiment. Each experiment was repeated thrice and the average value of the forces thus 

obtained was recorded. 

3.3.2.2. Main experiments 

From the results and observations of the test cases and preliminary experiments, 

the values of the machining parameters and tool feed mode for the main experiments 

were selected.     

The main experiments were focused on understanding the influence of grit size, 

tool rotation and vibration amplitude on MRR. Cone shaped tools were used for these 

experiments. The machine was operated in the constant force mode. The static load was 

kept fixed at 5 g. Five levels of spindle speeds (0, 500, 1000, 3000, 5000 RPM), three 

levels of abrasive grit sizes (SF, F, M) and vibration amplitudes (1, 2.5, 4 μm) were used 

for conducting the experiments. The effect on the MRR was measured and recorded. 

Material removal rate for the conical tool was calculated by assuming the tip to be made 

up of a hemispherical end fixed over a truncated cone of the same diameter. Volume of 

material removed was calculated from the geometry and hole depth for cylindrical and 

conical tools.  Top surface of the workpiece was taken as the reference surface. The 

difference in Z-axis coordinate between the position of the tool tip at the bottom of the 

machined hole and the reference surface is measured as hole depth.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1. Introduction 

This chapter discusses the results of the experiments conducted using the PCD 

tool in section 4.2. The results obtained for preliminary and main experiments using 

electroplated abrasive tools are discussed in sections 4.3 and 4.4 respectively. Section 4.5 

discusses the mechanism of the material removal from the surface topography of the 

machined surface as seen in SEM images. Section 4.6 elaborates on the tool wear as a 

result of machining. 

 

4.2.  Results for Experiments with the PCD Tool 

The effect of tool diameter, static load, abrasive size and spindle speed on the 

drilling speed are discussed in the following sections.  

 

4.2.1. Effect of tool diameter 

Figure 4.1 shows that a larger tool diameter leads to a higher material removal 

rate (MRR). Greater number of abrasive particles are available for material removal 

under the larger tool. Thus more cutting action takes place and results in higher MRR.  
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Figure 4.1. Effect of tool diameter on MRR (machining time – 100 s, abrasive size – 

3~5 µm) 

 

4.2.2. Effect of static load 

 

For the given abrasive size and tool diameter, higher static load provides more 

contact pressure on the abrasive-workpiece interface and as a result more material is 

removed and deeper machining is achieved as shown in Figure 4.2. 
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Figure 4.2. Effect of static load on drill depth 

 

4.2.3. Effect of abrasive size 

In general, for the given tool diameter, and abrasive particle size, larger abrasives 

provide greater machining. Depth achieved after 100 s of machining with a PCD tool 

(Diameter 700 μm) at static load of 20 g, abrasive particle size of 1~3 μm, 3~5 μm is 

shown in Figure 4.3.   
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Figure 4.3.  Effect of abrasive size on drill depth 

 

4.2.4. Effect of spindle speed 

The speed of tool rotation does not appear to have significant effect on the 

machining as shown in Figure 4.4.  A tachometer was used in the experiments to check 

the speed of the spindle while machining.  It was noticed that the spindle speed was not 

constant during the machining process. Along with the abrasive tool, abrasive slurry was 

also used for machining to achieve substantial machining.  
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Figure 4.4.  Effect of spindle speed on drill depth achieved by the PCD tool (tool 

diameter 500 μm, static load – 40 g, abrasive particle size – 1~3 μm)  

 

 

The contribution of the material removal due to the abrasive tool was dominated by the 

material removal due to the abrasive slurry. To facilitate machining by completely 

abandoning the abrasive slurry, electroplated abrasive tools with larger abrasives were 

used for the following experiments.  
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4.3. Results for Experiments using Electroplated Abrasive Tools 

The effect of the static load, coolant, tool geometry on the material removal rate 

(MRR) is evaluated with the preliminary experiments to decide the appropriate levels of 

the parameters for the main experiments. The effect of spindle speed, grit size and 

vibration amplitude on the material removal rate is studied in the main experiments.   

 

4.3.1.  Effect of static load and coolant 

 

Figure 4.5.  Effect of coolant, spindle speed, static load on MRR (A = 1 µm, G = 

M, t = 200 seconds) 

     

 

MRR increased with the use of a higher static load at different spindle speeds as 

shown in Figure 4.5. The depth of indentation of each abrasive grit increased with 

increase in the static load. As a result the material removal rate was higher for the higher 

static load MRR was slightly higher when water was used as a coolant rather than oil. 

This difference was not obvious at the lower load and lower spindle speed. Even if the 

0

5

10

15

20

25

30

water  - 1000 

rpm 

oil  - 1000 

rpm 

water  - 3000 

rpm

oil  - 3000 

rpm

M
R

R
 (

x
 1

0
5

µ
m

3
/s

)

Coolant - spindle speed

5g

8g



40 
 

use of different coolants did have an influence on the MRR, it was very small to draw any 

meaningful conclusions based on these experiments.  

 

 
Figure 4.6.  Effect of coolant, spindle speed and static load on hole enlargement (A = 

1 µm, G = M, t = 200 seconds) 

   

The static load and spindle speed were found to have an effect on the dimensional 

accuracy of the process as shown in Figure 4.6. Larger spindle speed and the higher static 

load applied resulted in a greater hole enlargement compared to a lower spindle speed 

and a lower static load. The hole enlargement was maximum when both spindle speed 

and static load were at the highest levels. On the other hand, hole enlargement was the 

lowest when both were at lower levels. At higher static load and spindle speeds the forces 

acting on the tool during machining are higher, thus leading to an increased swiveling of 

the tool on the workpiece.  

0

50

100

150

200

250

300

350

400

water - 1000 

rpm

oil - 1000 rpm water - 3000 

rpm

oil - 3000 rpm

H
o
le

 e
n

la
rg

em
en

t 
(µ

m
)

Coolant - spindle speed

5 g

8 g



41 
 

With the help of the above discussion, a low static load of 5 g was chosen and oil 

was used as the coolant for all the experiments conducted for studying the effect of 

spindle speed, grit size, and vibration amplitude and tool shape.    

 

4.3.2. Effect of tool shape on drill depth 

 

 

 

Figure 4.7.  Effect of tool shape on drill depth (A = 1 µm, C = oil, G = M, SL = 5 g, t = 

200 seconds) 

 

    

A comparison was made between the machining capability of a cylindrical tool 

and a conical tool as illustrated in Figure 4.7. 

For different spindle speeds, the drilling depth achieved by the cylindrical tool 

was always higher than that for the conical tool. Since the tip of the cylindrical tool is 

larger than the conical tip, more number of abrasive grains could be bonded on the 

cylindrical tool tip.  Thus the machining process was expedited when a cylindrical tool 

was used.  
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4.3.3.  Effect of feedrate on the machining force 

 

Machining experiments are usually performed by either keeping the feedrate 

constant or by keeping the force constant by controlling either parameter. Most of the 

reported literature on macro RUM uses constant feedrate mode of operation while for 

micro USM uses constant force (static load) mode. To decide the best choice for MRUM, 

MUSM setup was operated at constant feedrate mode.   

All the previous experiments were conducted at constant force mode. To study the 

forces developed in MRUM, the tool was fed towards the workpiece at a constant 

feedrate. The force generated increased with increase in feedrate as shown in Figure 4.8. 

The highest average force was recorded for the highest feedrate. At the highest feedrate, 

the average force recorded was lowest for the highest speed of tool rotation used.  

 
 

Figure 4.8.  Effect of feedrate on the average machining force (A = 1 µm, C = oil, G = 

F, t = 400 seconds) 
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 The trend was not very clear for the lower feedrate values. While the force shows an 

increasing trend with increasing feedrate, the force value shoots up suddenly. This is 

because other factors such as stiffness of the machine also contribute to the recorded 

average force. Therefore, the average force does not give an accurate indication of the 

actual machining force developed at the contact interface of the tool and the workpiece. 

Inspite of this, the results do indicate that the machining forces developed are highest at 

lowest spindle speed and lowest at highest spindle speed. Also the machining force 

increases with increase in feedrate.  

   

4.3.4.   Effect of spindle speed and grit size on MRR 

 

MRR increases with increase in spindle speed for all grit sizes and vibration 

amplitudes as illustrated in Figures 4.9 - 4.10. At a higher spindle speed, the contact 

length of an abrasive particle while sliding over the work surface is larger for the same 

period of time. Thus, the effective number of cutting edges of the abrasives coming in 

contact with the workpiece increases. Therefore, the material removal process is 

accelerated [58].  
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Figure 4.9.  Effect of speed of tool rotation and grit size on MRR (A = 1 µm, C = oil, 

SL = 5 g, t = 200 seconds) 

      

Another reason for the increase in MRR with spindle speed is the improved debris 

removal. At higher spindle speed, a higher centrifugal force facilitates the debris removal 

from the machining gap. The contribution of centrifugal force in removing the debris was 

evident when the machining was done without any coolant. The debris was found on the 

work surface surrounding the machined hole lying in a radial pattern.    

  For vibration amplitude of 1 µm, as shown in Figure 4.9, the grit size had an 

influence on the rate of the material removal. MRR was always the highest for the 
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spindle speed increased this difference in the MRR also increased and became clearer. 

Material removal process was enhanced the most by superfine grit size followed by fine 

and medium grit sizes, with increase in spindle speed.  

For the vibration amplitude of 2.5 µm, the effect of grit size on MRR is 

insignificant, as shown in Figure 4.10. At a given spindle speed, MRR was almost the 

same for all grit sizes. The small variation could be attributed to the stochastic nature of 

the process arising due to several factors such as debris removal and nature (geometry 

and orientation) of the abrasive grits involved. 

The use of larger abrasive size did not always lead to a higher MRR. This 

observation is consistent with that reported for machining using dental tool with different 

grit sizes [59]. In contrast, the MRR is observed to increase with increase in grit size for 

macro RUM [58]. In the experiments conducted, the size of the abrasive was almost 

comparable to the size of the tool tip. Thus, the tool essentially acted like a multipoint 

cutting tool. The increase of material removal rate was higher for the smaller grit size 

compared to the larger grit size when the spindle speed was increased from 0 to 5000 

RPM.  

 Finally, the grit size was found to affect the MRR at the vibration amplitude of 1 

µm but not at the amplitude of 2.5 µm. The material removal in RUM takes place 

because of the scratching action of the abrasive grains and microcracking caused due to 

the impact of the abrasive grains.  At the lower vibration amplitude, MRR mainly takes 

place because of the abrasive grits scratching the work surface. Thus the size of the grain 

affects the MRR. At the higher vibration amplitude, the material removal due to 
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microcracking becomes more dominant. The size of the abrasive grain did not play a role 

in the material removal process.     

 

 
Figure 4.10.  Effect of effect of speed of tool rotation and grit size on MRR (A = 2.5 

µm, C = oil, SL = 5 g, t = 200 seconds) 

 

 

4.3.5.   Effect of vibration amplitude on MRR 

 

 By increasing the drive voltage applied to the transducer, the vibration amplitude 

of the workpiece was increased. With increase in vibration amplitude the MRR also 

increased as shown in Figure 4.11.  
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Figure 4.11.  Effect of vibration amplitude on MRR (C = oil, G = SF, S = 3000 RPM, 

SL = 5 g, t = 200 seconds) 

 

The impact, during machining with higher amplitude, was higher. Material 

removed by micro cracking was found to increase. The chipped material was removed 

during scratching by the abrasive grains due to tool rotation. For higher vibration 

amplitude, microcracking of the workpiece due to the repeated impact was a dominant 

mode of material removal, while for a lower amplitude, scratching of the workpiece was 

dominant.  

With increase in the vibration amplitude, the gap distance present between the 

tool and the workpiece oscillated more. This led to an improved debris removal, thus 

aiding the MRR.   

 

 

0

5

10

15

20

25

30

35

40

45

1 2.5 4

M
R

R
 (

x
 1

0
3

 µ
m

3
/s

)

Vibration amplitude (μm)



48 
 

4.4. Mechanism of Material Removal  

SEM images of the holes machined revealed evidence of both brittle fracture 

(brittle mode) and plastic flow (ductile mode) of material removal during machining. The 

scratch tracks of the abrasive grains on the machined surface could be seen clearly. 

Plowing was also observed along the sides of the track as illustrated in Figure 4.12. 

Although silicon workpiece was used which is brittle, there was evidence of ductile 

machining in the form of circular concentric grooves on the drilled surface in all the 

experiments. The number of these grooves was different for different experimental 

conditions, indicating the dependence of material removal by plastic flow on machining 

parameters. Figures 4.13 (a) illustrates machining with higher brittle machining while 

Figure 4.13 (b) illustrates a higher ductile machining contribution. 

 

 
 

Figure 4.12. Scratch track of an abrasive grain on the silicon workpiece surface 
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                                 (a)                                                                     (b) 

Figure 4.13. Different contributions of brittle and ductile machining: (a) 

ductile machining is less evident (b) ductile machining is more evident because of 

the scratches present 

 

 

 Stick slip marks were noticed on the machined surface of silicon as shown in 

Figure 4.14. These marks were mostly present along the periphery of the hole in a 

concentric fashion. However, at few locations on the machined surface these marks were 

short and perpendicular to each other, indicating the participation of a number of grits as 

illustrated in Figure 4.15. These marks were also present on the diamond grain and 

surrounding metal matrix binding the abrasive grain as shown in Figures 4.16 - 4.17. 

Stick slip marks provide further evidence to the presence of ductile machining, however, 

it does not result in improved surface finish. Stiffness of the machine tool, tool 

eccentricity, and chattering might be the reasons for the stick slip phenomenon.   Figure 

4.18 illustrates small subsurface cracks beneath the machined surface. These cracks seem 

to be less than 2 µm deep. 
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Figure 4.14. Stick slip marks on the machined surface of Si wafer 

 
 

Figure 4.15. Perpendicular stick slip marks   
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Figure 4.16. Wavy machining marks on the metal matrix of the tool 

                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 µm 

Figure 4.17. Wavy machining marks on the abrasive grain 
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Figure 4.18. SEM image of silicon wafer showing subsurface damage after MRUM 

4.5. Tool Wear 

Tool wear was observed in the form of grain pullout as illustrated in Figure 4.19 

and grain fracture as illustrated in Figure 4.20. Grain pullout was observed to occur often 

on the medium grit sized tool compared to the superfine and fine grits. The height of the 

protruding part of the grain was more for the medium grits, so the moment of force acting 

on the grit was more, thus making the medium grit more prone to pull out. In case of 

medium grit tool, fewer numbers of grits participate in the machining process. As a result 

the wear of medium grit tool was faster. Even though no abrasive slurry was present wear 

marks were observed on the tool. Figure 4.21 illustrates the wear marks on the metal 

matrix of the tool. The presence of the debris or pulled out abrasive grains in the 

machining gap could be a possible reason. Such an impact on the metal matrix might 

further increase the degree of tool wear.     

Subsurface 

cracks 
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Figure 4.19. Cavity showing missing abrasive grain on the tool 

 

Figure 4.20. Fractured abrasive grain 
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Figure 4.21.  Wear marks on the metal matrix of the tool 
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CHAPTER 5 

 

BONE MACHINING 

 

 

5.1. Introduction  

 This chapter investigates machinability of bovine rib by using MRUM technique 

discussed in the previous chapters. Drilling micro holes into flat pieces of bovine rib was 

attempted. Experiments were performed under different spindle speeds and using 

different abrasive grit sizes. The material removal rate as a result was calculated from the 

drill depth achieved. The machined surface was studied under the scanning electron 

microscope (SEM) in an attempt to understand the mechanism of material removal. The 

edges of the drilled hole after machining were observed. Section 5.2 discusses the 

necessity for bone machining, the techniques used for bone machining and performance 

measures used for evaluating the techniques. Section 5.3 describes the experimental 

conditions and the workpiece preparation. Section 5.4 discusses the results obtained. The 

results are summarized in Section 5.5. 

 

5.2. Literature Review for Bone Machining 

5.2.1. The need and the issues in bone machining 

 Machining, cutting, drilling or finishing of bone - a hard tissue present in an 

animal body, is necessary for orthopedic and dental surgeries.  Meso and micro scale 

machining of bone is necessary in applications such as stapedectomy (surgery of the ear 

bone (stapes)) [60, 61, 62], oral and maxillofacial surgeries [63], implantology [64], 

spinal surgery [65] and other minimally invasive surgeries. Accurate and precise 

machining is important in the above mentioned examples to avoid damage to the 
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neighboring tissues [63]. 

 A critical issue during machining bone is the rise in temperature. High 

temperature (~50 
0
C) causes thermal damage to the bone cells (thermal necrosis) [66]. 

Since thermal conductivity of bone is low the heat generated in the working area is not 

dissipated easily. Therefore, increase in temperature during machining should be within 

the critical limit to avoid thermal necrosis. Exposure to high temperature also deteriorates 

the bone regeneration and healing. The occurrence of thermal necrosis also depends on 

the time for which the bone is exposed to the high temperature.  If the duration of 

exposure to high temperature is small then even if the temperature is greater than the 

critical temperature, chances of thermal necrosis are reduced [67-72]. Machining by 

plastic deformation, though preferred for better accuracy, usually leads to increase in 

cutting temperature which increases the risk of thermal damage to the bone [73]. 

However ductile regime machining of brittle materials is desirable to minimize the 

subsurface damage [74]. It has been reported that in vibration assisted machining the use 

of ultrasonic vibrations reduces the stresses and the subsurface damage developed in the 

workpiece. As a result the strength of the workpiece after machining is maintained. The 

cutting forces developed are lower during vibration assisted machining compared to 

conventional grinding [56, 75]. In ultrasonic machining, the heat generated in the 

machining zone is not very high [76]. Evidence of ductile machining was observed 

during machining of silicon wafer using MRUM. Therefore it was hypothesized that it 

would be useful to explore the possibility of machining bone. 
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5.2.2.  Techniques for bone machining 

 The reasons for machining bone during surgeries have been classified into the 

following three categories:  

- ablating a pathological piece of bone whether or not followed by prosthetic 

replacement 

- anatomical correction,  

- removing a portion of bone that obstructs the main operation site and returning it 

to its original position at the end of the operation [67].  

 Depending on the operation, different techniques have been used for machining 

bone. Many clinical and non-clinical studies have been carried out for evaluating the 

performance of the machining techniques under different machining conditions. Table 5.1 

presents the reported traditional and nontraditional machining techniques and their 

purpose. 
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Table 5.1. Techniques for machining bone 

 

Traditional 

Techniques 

Purpose 

Drilling Investigate the biocompatibility with implants [77], perforation [67] 

Milling, HSM Minimally invasive orthopedic surgery [78, 79], cortical bone 

reconstruction [80], surface preparation of bone [81] 

Sawing For cutting thick bones [67] 

Coated cutting tools Preparation of bone for biomedical implants, preparation of  

nanostructured surfaces [80] 

Cutting method based 

on  crack propagation 

Machinining process for biomaterials, analysis of crack propagation 

in bone was used for cutting bone from the crack propagation 

characteristics [73] 

Nontraditional 

Techniques 

  

Water jet cutting Endoprosthesis revision surgery - removing prostheses rapidly with 

little damage to the surrounding tissue [83] 

Abrasive water jet 

cutting 

 Endoprosthesis revision surgery [83] ; machining cancellous bone 

[84], cutting meat with bone [85] 

Laser machining Rotational Acetabular Osteotomy (RAO), to understand changes 

induced in bone in terms of temperature rise and thermal damage, 

feasibility of performing complete oesteotomy, examine bone healing 

under functional loading [86-89]  

Ultrasonic osteotomy To correct conditions of the jaw and face , to achieve a correct bite, 

an aesthetic face and an enlarged airway [90], sinus lift, alveolar 

ridge expansion, exposure of impacted canines, lateralization of the 

inferior alveolar nerve removal of osseous tissue close to the IAN, 

orthognathic surgery, autologous bone graft, harvesting, periodontal 

surgery, IAN transposition, alveolar distraction osteogenesis, and the 

removal of osseointegrated implants [64] 

Non-invasive 

osteotomy 

Use of focused ultrasound without incising the skin for ablating bone, 

for prospective surgical reconstruction of bone such as in RAO [91] 

 

Typical performance measures of bone machining have been surface texture, 

surface integrity, and cutting force [92], temperature rise [93], bone healing after 

machining [77], efficiency, mechanical stresses developed, precision [73] and accuracy of 

machining. 

 The cortical bone is a one-direction, continuous fiber, reinforced-type of material 
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[73]. The structure of bone is very different from the other materials such as silicon 

machined by MRUM. So the influence of machining parameters was expected to be 

different.   

For selecting an appropriate process for machining bone, it is important to 

understand its mechanical properties. Bone consists of a dense and hard outer tissue 

called cortical bone. Core of the bone is a porous and spongy tissue called cancellous 

bone.  Cortical bone is anisotropic and is characterized by three different young’s moduli, 

three different shear moduli and six Poisson’s ratios. Depending on the species, age, 

anatomical site, liquid content etc, of the bone, the mechanical properties vary greatly 

[47]. Therefore, it is very difficult to specify accurate values of the material properties 

which play a role during machining. Moreover, bone is reported to have a hierarchical 

structure which means that it has different behavioral mechanics at macro, micro and 

nano levels [48].  Since the machining performance depends on the material properties of 

the tool and workpiece, knowledge of material properties of bone is important. The 

material properties for bovine cortical bone typically are the following: elastic modulus 

(GPa) 10–30, tensile strength (MPa) 70–150, elongation at fracture (%) 0–8, fracture 

toughness (MPa m
1/2

) 2–8 [49]. 

 

5.3.  Experimental Work 

5.4.1. Workpiece preparation 

 A preserved bovine rib (1976) was cut into small flat pieces weighing 0.1g. The 

flat piece of cortical bone was obtained by grinding away cancellous bone and the curved 

portion of the cortical bone. Figure 5.1 shows a section of the bone exhibiting the spongy 
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cancellous inside and the hard cortical outside. The workpiece was mounted on the free 

end of the ultrasonic transducer and thus was vibrated ultrasonically. 

 

                               (a)                                                           (b) 

Figure 5.1. Pictures of the bovine rib (a) and its crossection (b) used as workpiece 

 

 

5.4.2. Experiments 

 Experiments were performed under the machining conditions mentioned in Table 

5.2.  

Table 5.2. Experimental conditions for MRUM of bone 

Parameters Levels 

Abrasive Grit Size   30, 50, 107~120 (µm) 

Ultrasonic Vibration Amplitude   1 (µm) 

Ultrasonic Vibration Frequency 39.5 (kHz) 

Spindle Speed  0, 500, 1000, 3000, 5000 (RPM) 

Static Load  5 (g) 

Coolant  water 

Tool Tip Shape conical 

Tool Feed Mode force controlled mode 

Machining Time  200 (seconds) 

 

 

 

 

 Five levels of spindle speeds (0, 500, 1000, 3000, 5000 RPM) and three levels of 

abrasive grit sizes (30 μm = Superfine (SF), 50 μm = Fine (F), 107~120 μm = Medium 
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(M)) were used for conducting the experiments. Each experiment was repeated three 

times and average material removal rate was recorded.  

 

5.4. Results and Discussion 

5.4.1. Effect of abrasive grit size and spindle speed on MRR 

 The material removal rate was found to increase with increase in the spindle speed 

and abrasive grit size as shown in Figure 5.2. As the speed of tool rotation increases the 

contact length of the abrasive grains sliding over the workpiece material during the same 

time increases. As a result more material is removed from the workpiece at a higher 

spindle speed [58]. This increasing trend in the result is similar to that reported for macro 

RUM of other materials [4, 5, 13] and MRUM of silicon as discussed in the Chapter 4.  

 At a given speed of tool rotation the MRR was found to be the highest for the 

medium sized grit and minimum for the superfine sized grit. While MRR for fine and 

superfine grit was close to each other for all the spindle speeds, it was much larger for 

medium grit. During machining of silicon wafer the material removal rate for superfine 

grit tool was found to be the highest followed by the fine and medium grit tools 

respectively as discussed in Chapter 5. This trend is opposite to that obtained during 

machining of bone. Because of the difference in the structural orientation and other 

mechanical properties such a change in trend was observed. Difference in the elastic 

properties of the bone and silicon might be responsible for this trend. 

  The bone is an anisotropic material. So the ease of machining depends on the 

direction in which the bone is machined. However, in the experiments conducted only 

circular holes were drilled. Therefore, direction of the fibers of the bone was immaterial.  
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Figure 5.2: Effect of spindle speed and abrasive grit size on MRR 

 

 

Under the same machining conditions when bone and silicon are machined, the 

MRR for bone is found to be much higher than silicon. Table 5.3 presents the material 

properties and MRR for bone and silicon. Evidently the material properties can be 

considered to be responsible for this difference in machining rate.     

Table 5.3. Comparison of MRR for silicon and bone under same machining 

conditions 

Workpiece Hardness 

Fracture 

toughness 

Modulous of 

elasticity (E) MRR 

 

GPa MPa.m
1/2

 GPa (x 10
3
 µm

3
/s) 

Silicon 11.28 0.9 186 24.05 

Bone 0.6-0.8 2–8 10–30 56.38 

 

 

 

5.4.2.  Quality of edge and hole circularity 
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The machined holes were circular and the edges of the holes were smooth. No 

prominent chipping was observed at the edges. Figure 5.3 illustrates a drilled hole. Figure 

5.4 illustrates the surface topography of the drilled hole. Concentric scratch marks were 

observed on the surface.  

 
 

Figure 5.3: Circular machined hole with smooth edges 

 

 
 

Figure 5.4. Surface topography of the drilled hole 

 

Surface finish of the machined hole was not as smooth as the unmachined part of 



64 
 

the bone. Figures 5.5 and 5.6 illustrate the wavy machined wall of the hole and the 

smooth unmachined part of the bone. Use of smaller grit sizes might result in a better 

surface finish.   

 
 

Figure 5.5. Wall of the machined hole 
 

 
 

Figure 5.6. Unmachined surface of the bone 
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Therefore, to obtain an optimum machining performance, the mechanical 

properties of the workpiece must be considered. For preparing the bone surface for 

holding the implants, it is not always desirable to have a very smooth surface. A textured 

or a wrinkled surface offers more surface area for the cells to grow and attach to the 

implant. This enables better osseointegration (direct structural and functional connection 

between living bone and the surface of a load-bearing artificial implant, typically made of 

titanium). It is reported that the bone tissue can adapt to surface irregularities of 1-100 

µm and that the surface stability can be greatly improved by introducing irregularities on 

the surface [50].  Instead of texturing the implant, texturing the bone is also proposed for 

enabling better osseointegration [51]. 

 

5.5. Summary 

 The study showed that Micro Rotary Ultrasonic Machining (MRUM) can be used 

for drilling holes in bone. The effect of change in abrasive grit sizes and spindle speed on 

the material removal rate was studied. Increase in spindle speed and grit size was found 

to increase the material removal rate (MRR). Quality of the edge of the machined hole, 

surface finish observed from the SEM images seemed reasonable.  
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CHAPTER 6 

PREDICTIVE MODEL FOR MATERIAL REMOVAL RATE 

6.1.  Introduction 

 A literature review for various attempts made towards modeling of RUM is 

presented in Section 6.2. The physical description of the developed model for material 

removal by a single abrasive grain scratching and its extension to predict MRR in 

MRUM are presented in section 6.3. Section 6.4 describes the theoretical model for 

material removal by a single abrasive grain scratching and its modification for MRUM. 

Section 6.5 enlists the assumptions made during the development of the model. Section 

6.6 presents the verification of the model and discussion.   

6.2. Problem Description and Literature Review 

    Experimentation conducted in the previous chapters of this thesis yield 

information about the trends and parametric relationships for the material removal rate of 

MRUM. A mathematical model based on the process mechanism can predict the material 

removal rate without the need of actually performing the experiments.  Rotary 

Ultrasonic Machining is a stochastic process because of the uncertainty arising due to 

factors such as the size, shape and the number of the abrasive grains participating in the 

material removal process, interference of the debris and tool wear. As a result it is 

difficult to incorporate the effect of all the parameters in the model for predicting the 

material removal rate.  The actual problem can be simplified by making certain 

assumptions. Mathematical models developed for predicting the material removal rate 

rotary ultrasonic machining is presented in Table 6.1.   
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Table 6.1. Theoretical models for rotary ultrasonic machining 

Models Assumptions Comments 

Prabhakar, 

1993 

[50] 

-  Model for MRR                                                                           

-  Workpiece material: Zirconia                          

-  Abrasive: Vickers indenter (modeled 

as spheres)                                                           

-  Working particles are of the same 

height                                                       

-  All working particles take part in 

cutting during each ultrasonic cycle                                                

-  Volume of the material removed by 

one particle in one vibration cycle is 

equal to the intersection volume of the 

abrasive swept envelope and the 

workpiece. 

-  Crack formation by hammering action 

of  ultrasonically vibrating tool 

considered to be major mode of MRR, 

plastic flow and scratching action was 

not considered                                                

-  Modulus of Elasticity (E) and 

Poisson’s ratio (ν) for abrasive along 

with workpiece are also accounted for 

Pei, 1998 

[16] 

-  Model for MRR                                            

-  Workpiece material: Magnesia 

stabilized zirconia                                                           

-  Abrasive: Rigid spheres                                 

-  Rest assumptions are same as those 

mentioned for Prabhakar (1993) model 

- Numerical calculation of the volume of 

material removed by one particle within 

one vibration cycle was used, it was not 

calculated analytically  

- Model for material removal by plastic 

flow 

Zhang, 

2000 

[6] 

-  Model for MRR                                            

-  Workpiece material: Ceramics                    

-  Abrasive: Vickers indenter                                    

-  Individual abrasive grain follows a 

linear path with constant depth of cut                                                   

-  Volume of the material removed is 

proportional to the dimensions of lateral 

crack and the length travelled by the 

abrasive under a constant normal load  

-  Model describes the effect of rotational 

speed in a limited way.   Inefficient 

debris removal causes a decrease in MRR 

as the experiments suggest. This effect 

has not been modeled.                                                

-  Higher loads result in the abrasive 

grain being in contact with the workpiece 

for a longer time. These effects are also 

not accounted for in the model. 

Ya, 2002 

[51] 

-  Model for MRR                                             

-  Workpiece material: Glass                               

-  Workpiece modeled as Semi infinite 

solid                                                            

-  Abrasive: Rigid spheres                                    

-  Maximum impacting depth in each 

vibration cycle is derived from Hertz 

theory                                                             

-  Pressure distribution under each 

abrasive grain is considered                                     

-  Distance of abrasive from the axis of 

the tool rotation is considered                           

-  Experimental verification of the model 

was not presented 

Qin, 2009 

[20] 

-  Model for cutting force                                      

-  Workpiece material: Titanium alloy                   

-  Workpiece modeled as Rigid plastic                                                  

-  Abrasive: Rigid spheres                               

-  Rest assumptions are same as those 

mentioned for Prabhakar (1993) model 

-  Model for cutting force in a constant 

feedrate mode of operation                                   

-  MRR is estimated from the feedrate                                              

-  It is a physics-based models for RUM 

of metals  
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6.3. Physical Description of the Model 

 The mechanism of material removal due to the scratching action of the abrasive 

grain is reported to be mainly because of the lateral cracks in brittle material materials 

such as ceramics [94].  The mechanism of the material removal is illustrated in Figure 

6.1. As the normal force Pn increases, the workpiece surface deforms plastically. When 

the normal force exceeds a threshold force lateral cracking occurs. The extent of lateral 

cracking is responsible for the material removal rate.  The plastic flow during surface 

penetration increases the thermal stresses thus aiding the extension of lateral cracks [94].  

 

Figure 6.1. Material removal by lateral fracture mechanism [94] 
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 The volume of the material removed by an abrasive grain is reported to depend on 

the material hardness (Hv), toughness (Kc), the normal force (Pn) and the length (l) for 

which the abrasive grain travels on the workpiece with a constant depth of cut [94]. 

However, RUM is a hybrid process between grinding and ultrasonic machining. 

Therefore, along with the grinding action of the abrasive, material is also removed 

because of the impact action of the abrasive. As a result, the normal force on the abrasive 

grain oscillates ultrasonically with the frequency of the ultrasonic vibrations applied to 

the workpiece. Consequently, the force is more than the normal force alone which is 

assumed in grinding. Moreover, because of the vibrations, the contact between the 

abrasive grains and the workpiece are not continuous. Therefore, the length of travel of 

the abrasive grain on the workpiece is not continuous as illustrated in Figure 6.2. 

 

 

 

 

                                            (a)                                                                 (b) 

Figure 6.2. Contact path of a single abrasive on the tool without ultrasonic 

vibrations (a) and with ultrasonic vibrations (b) 
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 To befit the model of grinding action of the abrasive to RUM, the effect of 

ultrasonically oscillating force and the actual length of contact between the abrasive and 

the tool are considered.  

6.4. Basic Assumptions for the Model 

1. The workpiece is a brittle material. 

2. The tool tip is cylindrical in shape. Since the radius of the tool is very small, the 

abrasive grains are assumed to be situated at the distance equal to the radius from 

the axis of the tool rotation. The abrasive grains are rigid sharp indenters as 

shown in the Figure 6.1.  

3. The protruding height of the abrasive grains is assumed to be uniform.  

4. The tool (abrasive grains) and the workpiece are in contact with each other only 

during certain portion of the ultrasonic vibration cycle. Therefore, machining is 

assumed to take place by grinding action during this contact time while machining 

due to abrasive impact occurs when the abrasive grain is indented onto the 

workpiece during each vibration cycle. For the purpose of verification the contact 

time between the abrasive grain and the workpiece is assumed to be 30% of the 

vibration cycle. 

5. The frequency of the oscillations of the ultrasonic transducer is very high 

compared to the response time of the feedback system controlling the tool 

position. Therefore, the tool is assumed to be stationary and only the workpiece is 

assumed to vibrate ultrasonically.  
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6. The equivalent mass of the tool-ultrasonic transducer assembly is assumed to be 

equal to the mass of the ultrasonic transducer because it is the only vibrating part 

in the system. 

7.  Lateral cracking of the workpiece under the effect of an abrasive indenter is 

assumed to be the main reason for the material removal.      

8. Material properties of the workpiece are assumed to remain unchanged during the 

machining process thus ignoring other effects such as the strain hardening effect 

and thermal effects. 

9. Tool wear is not significant to affect the material removal rate. 

10. The equivalent mass of the vibrating system is assumed to be 1/3
rd

 of the mass of 

the transducer [95]. 

 

6.5.  Development of the Model 

 It is proposed that in MRUM, fracture occurs during impact and fragmentation is 

completed due to plowing action during the contact period of abrasive particle and the 

work surface.   Lateral Fracture Model [94] is used for predicting material removed by 

single abrasive grain when it slides over a brittle material for a distance l.  Theoretically, 

(6.1) 

where c is the extent and h is the depth of the lateral crack.  

The volume of the material removed by single abrasive grain can be expressed as 

Equation 6.2 as given in the wear of ceramics [94]. 
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                       (6.2) 

where 

= material-independent constant 

P  = peak normal force 

H = Vickers hardness  

Kc = toughness  

E = modulus of elasticity  

To modify this model to predict the MRR for MRUM, the impact action of the 

abrasive grains and the intermittent contact length are considered. 

To account for the impact action of the abrasive grains as they penetrate the 

workpiece during each vibration cycle, the normal force must be assumed to be dynamic. 

The state of vibration of the workpiece can be expressed as  

                                                       (6.3) 

where  

y(t) is the displacement of the workpiece, A and f are the amplitude and frequency of 

ultrasonic vibrations applied to the workpiece.  

The dynamic impacting force is given by   

                                              (6.4) 
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where M is the equivalent mass of the vibrating system including the tool and the 

transducer, is the time for which the tool is in contact with the workpiece during each 

vibration cycle.  

Thus during machining, the effective force acting on the workpiece is due to both the 

dynamic force (Ft) and the static force (W) [6].  

                                         (6.5) 

The maximum impact force acting on a single abrasive grain can be given by Equation 

6.6. [6] 

)                                                      (6.6) 

where N is the number of effective abrasive grains participating in the machining process 

at a given time. Theoretically, N can be calculated by Equation 6.7. [6]  

                                                            (6.7) 

where 

= concentration of abrasive grains 

 = mean diameter of the grains 

The abrasive grain concentration  is assumed to be 100% for verification purposes. 
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The abrasive grain comes in contact with the workpiece intermittently because of 

the ultrasonic vibrations. Therefore, the length of travel of the abrasive grain over the 

workpiece needs to be calculated.  

The number of impacts in one rotation of the spindle speed can be given by  

                        (6.8) 

In each vibration cycle the abrasive grain is in contact with the workpiece for only a 

fraction of time which is less than 50% of the cycle time.  Figure 6.3 illustrates one 

vibration cycle. During the cycle, the abrasive grain is in contact with the workpiece for 

time ∆T (t1-t0).    

 

Figure 6.3. Contact time of the abrasive grain in one vibration cycle 

Thus, the actual contact length of an abrasive grain during a single impact is given by 

Equation 6.9. 

                                                              (6.9) 
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where tc is the percentage of time period of the contact cycle for which the abrasive grain 

is in contact with the workpiece. 

Therefore, after substituting the expressions for the ultrasonic impact force 

(Equation 6.6) and the length of travel of the abrasive grain (Equation 6.9) in Equation 

6.2, the volume of the material removed by one abrasive grain in one contact cycle is 

given by Equation 6.10. 

                                                    (6.10) 

 

Finally the volume of material removed can be given by the expression in 

Equation 6.11. 

 

                            (6.11) 

 

 

6.6. Model Verification and Discussion 

 In this section the results of the model were compared with the experimental data. 

Table 6.2 presents the machining conditions and the material properties. The model was 

verified for different spindle speeds and grit sizes.  
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The value of  was calculated from a set of experiments performed under 

vibration amplitude of 1 µm and spindle speed of 3000 RPM. The rest of the machining 

conditions are mentioned in Table 6.2. The value of  was found to be 9.179 × 10
-9

. 

Figure 6.4 shows the comparison of results of the model with the experimental results.  

Table 6.2. Machining conditions and material properties 

Vibration Frequency  39.5 (kHz) 

Vibration Amplitude  2.5 (µm) 

Abrasive Particle Material Polycrystalline diamond 

Abrasive Particle Diameter, d0 30, 50, 107~120 (µm) 

Workpiece Material  Silicon  <1 1 1> 

Toughness, Kc  0.9 (MPa.m
1/2

) 

Vickers Hardness, Hv 1015 (kgf/mm
2
) 

Elastic Modulus, E 186 (GPa) 

Equivalent Vibrating Mass, M  30 (g) 

Spindle Speed, S 500, 1000, 3000, 5000 (RPM) 

Tool Diameter  200 (µm) 

Static Load, W 5 (g) 
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(b) 

 

(c) 

Figure 6.4. Plot showing experimental and predicted MRR for grit sizes 30 µm (a),                    

50 µm (b) and 107~120  µm (c) 
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The model overestimates the MRR for all the experimental conditions considered. 

The prediction is closer to the experimental value at lower spindle speeds. However, this 

difference becomes larger as the spindle speed increases. The model assumes that 

material is removed by each abrasive grain in every contact cycle. However, during 

actual experimentation this is not possible. The tool wears during machining leading to 

loss of abrasives grains. Therefore, MRR does not increase as fast as predicted with the 

increase in spindle speed.  

The model assumes that the indentation forces are sufficiently in excess of the 

threshold force responsible for generating cracks. Only when the indentation forces are 

sufficiently large, the estimation of the length of the lateral crack (c) holds [94]. However, 

during experiments, this cannot be guaranteed because of the non-uniform height of the 

protruding abrasive grains and the hemispherical shape of the tool tip. Intermediate forces 

present may produce lesser and shorter cracks. Thus, the model provides an upper bound 

for the material removal.  

In an attempt to maintain a constant static force, the tool moves up and down 

depending on the feedback. However, the response of the tool is not fast enough to 

change instantly with the changing forces. This may result in undesirable noncontact 

time. The model does not consider this possibility.  

 

6.7. Limitations of the Model 

The model is generally limited because of the assumptions made. This model does 

not consider the effect of tool wear, interference of the debris, probability of the abrasive 
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grains participating in machining process. The value of the material independent constant 

  depends on the experiments previously conducted on the same system.  The material 

removal by plastic flow is not considered. Ultrasonic vibrations applied to the workpiece 

may help in dispersing the debris from the machining zone. But this effect has not been 

considered in the model.  

However, finally, the model depicts the trend of machining with increase in 

spindle speed fairly well.  
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CHAPTER 7 

TIME SERIES ANALYSIS OF THE CUTTING FORCE 

 

7.1. Objective  

To gain understanding of the material removal mechanism under different machining 

conditions, behavior of the cutting forces was analyzed using data dependent systems 

approach. The causes for the variations in the force profiles were analyzed. The 

information thus obtained could be used for online monitoring and control of the process.  

 

7.2. Description of the data 

The force signals under different machining conditions are used for the analysis. A 

constant feedrate of 0.13 µm/s was used for machining at spindle speeds of 500 RPM, 

1000 RPM and 3000 RPM. A tool with abrasive grit size 50 µm was used for machining. 

A silicon wafer (Si <1 1 1>, 0.1g) was used as a workpiece. 250 data points were used 

each with an interval of 200 milliseconds for the analysis as shown in Figure 7.1.  
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Figure 7.1. Profiles of the normal force at different spindle speeds 

 

As the tool approaches the workpiece with a constant feedrate, the material is removed 

from the workpiece. The normal force is recorded after every 200 milliseconds. The 

variations in force signal are caused due to disturbances arising from the experimental 

system and the process itself. The experimental system causes variations due to the lateral 

vibrations induced along with the longitudinal ultrasonic vibrations. The variations 

because of the process are due to the impact, grinding and other modes of material 

removal.   
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7.3. Modeling 

ARMA (2, 1) model was found to be adequate to fit the force data using Data 

Dependent Systems. Characteristic roots (λi), coefficients of green’s function (gi), 

variance component (di) of the ARMA (2, 1) model for the force profiles under different 

experimental conditions are presented in Table 7.1. The natural frequency (ωn) and 

damping ratio (ζ) for the system were determined which were used to calculate the 

coefficients (a0 and a1) for the differential equations.  

Table 7.1.  Characteristics of ARMA (2, 1) model 

Experimental 

Conditions 

Si  (λi) gi di A(2) 

   ζ ωn(rad/s) a0 a1 

3000 RPM 

0.7107 -39.4273 -285.702 0.6277 1.5361 2.359603 1.92842 

0.7525 40.4273 342.2403     

1000 RPM 

0.4421 -2.5559 -7.7471 2.1623 0.824 0.678976 3.56347 

0.9663 3.5559 174.9611     

500 RPM 

0.4386 -2.5058 -7.5033 2.2726 0.7935 0.629642 3.606616 

0.969 3.5058 186.1172     

 

 The differential equations for the system under different spindle speeds can be 

expressed as in Equations 7.1 - 7.3.     

For 3000 RPM 

                                                               (7.1) 

For 1000 RPM 

                                                                (7.2) 
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For 500 RPM 

                                                                   (7.3) 

The Green’s functions for the three spindle speeds are plotted in Figure 7.2.  

 

Figure 7.2. Plot of Green’s functions for force at spindle speeds of 500 RPM,       

1000 RPM and 3000 RPM 

 

The plots show that the effect of the disturbances induced in the system when the spindle 

speed is 500 RPM lasts longer followed by the spindle speed of 1000 RPM. At a spindle 

speed of 3000 RPM the disturbances die out the fastest. This implies that the dependence 

of the force on its previous values is the least in case of highest spindle speed followed by 

the lower spindle speeds.  
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The variance calculated for the system under the three conditions is plotted in Figure 7.3 

The variance is the highest for the lowest spindle speed and the lowest for the highest 

spindle speed. 

 

 

Figure 7.3. Variance of the normal machining force at different spindle speeds 

 

7.4. Conclusion  

The Green’s function plot and the variance plot suggest that inspite of the occasional 

sharp peaks in the force at higher speed, the stability of the system is better at the higher 

speed.  
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

 

8.1. Summary and Conclusions 

8.1.1. Summary 

 The thesis presents a feasibility study of micro rotary ultrasonic machining 

(MRUM) followed by an extensive experimental investigation. Rotary Ultrasonic 

Machining (RUM) was successfully scaled down to micro RUM. Experiments were 

conducted to explore the feasibility of micro rotary ultrasonic machining.  Three different 

tools including in-house made tool, Polycrystalline diamond (PCD) tool and abrasive 

bonded tools were successively tried for MRUM. The feasibility study was conducted 

using the PCD tool. Electroplated abrasive tools could be successfully used to generate 

the micro holes in silicon wafers. Machinability of bone using MRUM technique was 

investigated. Time series analysis was used to model the behavior of the cutting force. 

Finally, a predictive model for estimating the material removal rate in MRUM was 

presented.  

8.1.2. Conclusions 

 The effect of tool diameter, static load, abrasive size and spindle speed on 

drilling speed was studied in the feasibility study conducted using the PCD tool. 

A larger tool diameter, higher static load, and larger abrasive size led to a higher 

drilling speed. Spindle speed did not affect the drilling speed significantly. 

 No measureable tool wear was noticed except localized pitting. Causes for this 

pitting and quantification of the same need further investigation. 
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 The surface roughness (Rt) of the machined surface was found to be in the range 

of 0.3 - 0.8 µm for a sampling length of 0.08 mm. 

 Even though very high quality surface finish was obtained with minimum tool 

wear, abrasive slurry was along with the abrasive tool for machining. Therefore, 

experiments were conducted using tools with larger abrasives.   

 The MRR was found to increase with spindle speed, vibration amplitude and 

decrease in abrasive grit size when electroplated abrasive tools were used. 

Preliminary experiments conducted showed that MRR was higher for the 

cylindrical tool than for the conical tool. A higher static load and spindle speed 

resulted in higher MRR but also a greater hole enlargement. Therefore an 

optimal operating value needs to be found. The use of different coolants did not 

affect the MRR.  

 A medium grit tool wore out faster compared to a super fine grit tool. Tool wear 

in the form of grain pull out and grain fracture was observed.  

 The machined surface was rougher compared to the surface roughness obtained 

during machining using PCD tool. High wear resistance and high hardness of the 

PCD tool was responsible for the negligible tool wear and hence a good surface 

finish compared to the abrasive tools used for machining. 

 Both constant feedrate and constant pressure modes were used for machining 

with abrasive bonded tools. Feed control is beneficial as it can be used to control 

the depth of indentation of the abrasives by limiting the feedrate to a small value. 

Consequently, machining in ductile regime can be achieved by monitoring the 

cutting force signal. However, employing constant feedrate mode to achieve this 
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objective was not possible with the existing MRUM setup because of the low 

sampling frequency (5 Hz) of the force sensor as well as the low torsional and 

longitudinal stiffness of the transducer and the force sensor respectively.  

 It was concluded that as the feedrate was increased the axial forces developed 

also increased. The cutting forces were lowered at higher spindle speeds.  

 A predictive model was developed for estimating the material removal rate. The 

experimental and theoretical results seemed to correlate fairly well.  

 

 Finally, a summary of the trends observed in material removal rate based on the 

experiments conducted in this thesis is given in Table 8.1. The shaded elements of this 

table give the individual effects of each of the parameters. The other elements give the 

combined effects of the parameters mentioned.  The cross (x) indicates that the combined 

effects of these parameters were not evaluated experimentally during this project.  
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 Table 8.1. Summary of the effect of parameters on the material removal rate 

 Abrasive grit 

size 

Spindle 

speed 

Vibration 

amplitude 

Static 

load 

Tool 

diameter 

Tool 

shape 

Workpiece Coolant 

Abrasive 

grit size 

↓abrasive size 

↑MRR 

              

Spindle 

speed 

act 

independently 

↑spindle 

speed ↑MRR 

            

Vibration 

amplitude 

significant 

interaction 

effect 

significant 

interaction 

effect 

↑vibration 

amp 

↑MRR 

          

Static load x act 

independently 

x ↑static 

load 

↑MRR 

        

Tool 

diameter 

x x x significant 

interaction 

effect 

↑tool 

diameter 

↑MRR 

      

Tool shape x act 

independently 

x x x       

Workpiece significant 

interaction 

effect 

act 

independently 

x x x x     

Coolant x x x x x x x no  

significant 

effect 

 

8.2.     Recommendations for Future Work 

1) System design 

 Simple cylindrical and conical tools were used for this research. Depending on 

the application, different shapes and lengths of the tools can be designed to 

obtain optimal performance in terms of material removal rate, tool wear and 

surface roughness. 

 On one hand a very low stiffness of the machine tool deteriorates the accuracy 

of machining and on the other a very high stiffness might lead to excessive 

tool wear and induce deeper cracks in the workpiece. Therefore, designing the 

torsional and longitudinal stiffness of the machine tool is important.  
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2) Ductile brittle transition 

 Machining under ductile regime leads to a superior surface finish and low 

subsurface damage. Brittle machining provides a high machining speed as 

opposed to ductile machining. By experimentation machining conditions that 

favor ductile machining and those that favor brittle machining can be 

identified.  

 By providing online control of these parameters, transition from brittle to 

ductile mode of machining can be controlled as desired. For example, during 

deep hole drilling high speed brittle machining is more useful at the beginning 

and the surface finish of the hole becomes important only towards the end of 

machining. Therefore, brittle machining could be employed at the beginning. 

Using ductile machining towards the end of machining can provide better 

surface finish, thus eliminating the need of some finishing process steps.  

3) Tool wear monitoring and control  

 Micro tools suffer from severe tool wear problem. Therefore, for maintaining 

machining quality and efficiency, development of effective tool wear 

compensation strategies is crucial. The process signals such as grinding force, 

acoustic emission signals, system vibrations and spindle load individually or 

as combinations can be utilized for monitoring and control.  

4) Machining temperature 

 A formal investigation on the thermal aspect of RUM has not been conducted. 

Such an analysis can help determine if MRUM can be used for machining 

materials like bone which damage on exposure to high temperature.  
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 The temperature distribution in the machining zone might give some 

information on the mechanism of the material removal mechanism. For 

example, higher temperature might be an indication of material removal by 

plastic flow. 

5) Parametric studies 

 Exhaustive experimental studies involving more process parameters, 

particularly those which were not considered in this study, need to be 

conducted. Influence of process parameters on other performance measures of 

MRUM such as surface roughness, dimensional accuracy, tool wear should be 

studied. Such studies can enrich the existing knowledge base about the 

MRUM characteristics.  

6) Flushing system 

 Machining efficiency and repeatability can be improved by designing and 

employing an effective flushing system for debris removal.    

7) Spindle speed control 

 Spindle speed was found to influence the MRR significantly. A feedback 

control could be employed to ensure a constant spindle speed.    
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