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1 Chapter 1: Groups

1.1 Free Groups and Presentations

Definition 1.1. Let S be a set. Then a free group on S is a group F' together with a map i : S — F, usually referred
to as (F,i), with the following “universal” property: If G is any group and j : S — G is any map, then 3! group

homomorphism f : F — G such that fi = j, i.e., the following diagram commutes:

Theorem 1.2. Let S be any set. Then a free group on S exists.
Proof. See Lang. O

Proposition 1.3. Let S and T be sets of the same cardinality. Then any free group on S is isomorphic to any free group
onT.

Proof. Let £ : S — T be a bijection. Let (F,7) and (G, j) be free groups on S and T, respectively.
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Then, by the universal property 3!f : F — G and dlg : G — F. Compacting the above commutative diagram, we see
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by the uniqueness of the universal property, as we have the homomorphism gf : F' — F and the identity homomorphism
lp : F — F, that gf = 1p. Similarly, by swapping the S and T in the diagrams above, we see fg = 1. Thus f and g

are bijective homomorphisms and thus f is an isomorphism. O

Corollary 1.4. Let S be a set and (Fy,i1) and (Fs,is) free groups on S. Then 3! isomorphism f : Fy — Fy such that

fiy =ia.
Thus we can now talk about the unique (up to isomorphism) free group on a set.
Proposition 1.5. Let S be a set and (F,i) the free group on S. Then i is injective.

Proof. Suppose not, that is, i(x) = i(y) for z # y € S. Consider the homomorphism j : S — Zs defined by s +— 0 for

s # x and x — 1. Then we have the commutative diagram



where f is the unique homomorphism given by the universal property of free groups. Now

0=jy) = fily) = fi(x) = j(z) =1,
which is clearly a contradiction. O

Thus, we can now identify S with its image i(S) C F. For simplicity we will simply say S C F. Also, we will now
simply say F'(S) is the free group for S.
Proposition 1.6. The set S generates F(S).
Proof. Let F’ be the subgroup of F' = F(S) generated by S.
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By the uniqueness of the universal property, jf = 1p. Thus jf is a surjection, which implies j is surjective. Thus
F'=F. O

If |S| = n, call F(S) the free group on n generators. So F(S) = {s7*---s;*|s; € S,e; = £1}. Note that since
homomorphisms preserve order and commutativity we can not have any conditions like s™ = 1 or s;s5 = s351 as these
conditions do not hold in all groups. Thus there are no relations on the elements of S, which is why we say F(S) is
the free group. [For example, say s = 1 and consider j : S — Z where j(s) = 2. Then, there exists a homomorphism
f:F(S)— Z. Then 2 = j(s) = f(i(s)) = f(s). If s =1, then 2™ = 1, a contradiction)].

Example. What is the free group on one element, i.e., S = {z}?

Since S generates F'(S), we know F(S) =< x > . By above, x does not have finite order. Thus F(S) is infinite cyclic,

which says F(S) = Z. Note: This is the only abelian free group.

Definition 1.7. Let F be the free group on a set S and R any subset of F. Let N be the intersection of all normal
subgroups of F containing R (i.e., N is the smallest normal subgroup containing R). Then F/N is called the group
generated by S with relations R = 1. Write F/N =< S|R =1 > and call it a presentation for F'/N.

Definition 1.8. Say a group G has the presentation < S|R =1 > if G =2 F(S)/N where N is the smallest normal
subgroup of F'(S) containing R. Here G is defined by the generators S and relations R.

Example. What group G is defined by the presentation < z,y|z? = 1,9% = 1, 2yzy = 1 >?

Here, G =< x,y > where 22 = 1,9® = 1,yz = 2. Thus G = {2'y’/|i = 0,1, j = 0,1,2}. Clearly, G could be the
trivial group, but let’s see if there is a nontrivial group for this presentation.

Define j : {z,y} — S3 by « — (12) and y — (123). By the universal property of the free group, 3! group homomor-
phism f : F({z,y}) — Ss such that f(z) = (12) and f(y) = (123). Note that since (12) and (123) generate Sz, f is
surjective.

With a little work, we see 22,y zyxy € ker f and since ker f < F({z,y}) and N is the smallest normal subgroup

containing 2, y3, zyzry, we have N C ker f. Thus we have
G = F(S)/N — F(S)/ker f - S3

by the First Isomorphism Theorem. Therefore we have the surjective homomorphism 3 : G — S3. Of course, as |G| < 6

we see GG =2 S3.



Here, we saw that the trivial group could be presented by any given presentation. However, in practice we want to

find the largest group that satisfies the relations.

Claim: Let Dy, be the group of symmetries of a regular n — gon. Let f be any reflection and r a rotation by 27 /n

radians. Then Ds,, has the presentation G =< z,y|z? = 1,y = L, zyzy =1 > .

Proof. By the same argument as above, |G| < 2n. Now, define a homomorphism f : F({z,y}) — Da, by z — f and
y +— 1. As above, 22, y", xyry € ker f which gives us the surjective mapping F/N — F/ker f — Da,. Thus we find
F/N = D,,. O

1.2 Automorphisms

Definition 1.9. Let G be a group. An automorphism of G is an isomorphism f : G — G. Let Aut(G) denote the
group of all automorphisms of G. Let g € G. An inner automorphism of G is an isomorphism of the form ¢4 : G — G
such that x — grg=t. Clearly (1,)~ = Yg—1 and Ygbn = Pgn. Thus the set of inner automorphisms forms a group,
which we will denote Inn(G). In fact, Inn(G) < Aut(G). Thus, we can define Aut(G)/Inn(G) as the group of outer

automorphisms.
Notation. Let R be a ring with 1. Let R* = {u € RJu is a unit in R}. This is a group under multiplication.

Theorem 1.10. Let C,, =< a > denote the cyclic group of order n. Then Aut(C,) = Z

n*

Proof. Define ¢ : Z;, — Aut(C,) by k — ¢ where ¢z : C, — C, is such that a — aF. Since if ged(k,n) = 1, then
|a¥| = n, we know < a* >=< a >= C,,. Thus ¥ is surjective and therefore injective (as the image has the same order).
Therefore v is an isomorphism and ¢ is well-defined. Clearly, ¢ defines a homomorphism. Thus it remains to show it
is injective and surjective. Notice if k € ker ¢, then 1z = 1¢, which implies ¢z = a* = a. Thus n|k — 1, that is, k = 1
which implies ker ¢ = {1} and ¢ is injective. Also 1) € Aut(G) if and only if < aF >=< a > which happens if and only

if ged(k,n) = 1. Thus ¢ is surjective and therefore an isomorphism. O

Example. Aut(Ci5) & Z35 = {1,2,4,7,8,11,13,14}. As none of those elements have order 8, the group is not cyclic.
Thus Aut(G) is not always cyclic. In general, let n = pq where p, ¢ are odd primes. By the Chinese Remainder Theorem,
Ly = Ly X Lg. Thus Zy, = (Zp X Lg)* = Ly X Ly = Lp—1 X Lg—1. Since p—1,q — 1 are not relatively prime (they are both

even), this is not cyclic.
Theorem 1.11. Let F be a field and H a finite subgroup of F*. Then H is cyclic.

Proof. Since a field is commutative, H is a finite abelian group. Thus all subgroups of H are normal and, in particular,
the Sylow subgroups are unique by the Second Sylow Theorem. Therefore H is the internal direct product of its Sylow
subgroups, that is, H & P; X --- X P, where P; are the Sylow subgroups. If we show all of the P; are cyclic, we will be
done. WLOG, assume |H| = p™, that is, there is only one Sylow subgroup. By the Fundamental Structure Theorem for
p™t for all 4, h?"' = 1 for all
h € H. Since F is a field, every element of H is therefore a root of #?"" — 1. This polynomial has < p™ roots, which
implies |H| < p™. Then H = Cpn and thus H is cyclic. O

finitely generated groups, H = Cpni X -+ X Cpnyy where nqy > ng > -+ > ny. Since p™

Corollary 1.12. For a prime p, Z,, is cyclic, as Zy is a field.

Corollary 1.13. Aut(Cp) = Zy = C), ;.

Example. Find an automorphism of Ci3 of order 6.
By above, Aut(Ci3) = C42, which has an element of order 6. By brute force, we see 0(4) = 6. Thus, if Ci3 =< a >,

then the automorphism a — a* has degree 6.

Example. Find an automorphism of Css5 of order 20.



By the Chinese Remainder Thm, Aut(Css) = Zf; = ZF x Z7, = Cy x C19. We know 2 is an element of Cy of order 4
and 4 is an element of Cjg of order 5. Thus we want x € Z%; such that + =2 mod 5 and x = 4 mod 11. Brute force

tells us = 37 works. Thus ¢ : Cs5 — Css defined by a — a37 is an automorphism of order 20.
Theorem 1.14. Let p be an odd prime, n > 1. Then Aut(Cpn) is cyclic of order p"™ — p" L.
Proof. We know [Aut(Cyn)| = |Z5.| = p™ —p" "
Claim: Let p be prime, n > 1. Let 1 < i < p". Write i = p’2 where p{z. Then p"~ J\( ) but p" It ¢ ( )

Claim: Let p be prime. Then (1 —|—p)pn71 =1 mod p".

pm

n—1
Proof: By the Binomial Theorem, (1 + p)?" = Z (p . )pl. Let 1 < i < p",i = pz as above. Note that
2
0
>p > + 1. Thus p?*1{p’. Also p"~7 _1‘(1{;—1). Multiplying these together gives us p”|(p"i_1)pi, which implies

i
(1+pP" =1 mod p".
Claim: Let p > 2. Then (1 +p)?" ~ #1 mod p".

Proof: Let 1 < i < p",i = piz as above. If j = 0, then p”_2|(pni_2). Since, for i > 2, we have p?|p’ we know
p”|(pn;2)pi. Ifj>1,i>p’ >j+2and so p?*2[pt. Also p"_j_2|(pn;2). Combining these, we see p"| (pn;z)pi. Thus
the only nonzero terms are ¢ = 0, 1. Thus (1 +p)pn_2 =1+p" t#1 mod p".

Thus 1 + p is an element of order p”~! in Loy As Zy, is abelian, all its subgroups are normal, which implies the Sylow
subgroups are unique and Z. is the internal direct product of its Sylow subgroups. Thus it is enough to show every
=D
is a generator for the Sylow subgroup and thus the Sylow p—subgroup is cyclic. Let ¢ be any other prime such that
qlp"1(p —1). Let @ be the Sylow g—subgroup of Zyn. Define the homomorphism 1 : Zy,. — Zy by [a]pn + [a],, that

is, send an element to its corresponding residue class. Since ged(a,p™) = 1 if and only if ged(a,p) = 1, the map is well-

nfl(

Sylow subgroup is cyclic. Note |Zj. p — 1). Consider the Sylow p—subgroup. Since 1+ p has order p"~!, it

defined. Clearly the map is surjective and |kert| = p"~1. Thus @ (\kery = 1 and 1|¢ is injective. So Q is isomorphic
to a subgroup of Zj, a cyclic group. Since subgroups of cyclic groups are cyclic, @ is cyclic. Thus all Sylow subgroups

are cyclic and therefore Zy, is cyclic. O

Note. If p = 2, then Z3. is not cyclic for n > 2. For example, in Z§ = {1, 3,5, 7}, all nontrivial elements have order 2.

Example. If F is a field, then GL,,(F) = {¢ : F™ — F™|¢ is a vector space isomorphism}.
Remark 1.15. Suppose |F| = q. Then |GL,(F)| = (¢" — 1)(¢" —q)--- (¢" — ¢"1).

Proof. Fix a basis e, ..., e, for F™. Then ¢ is determined by the values ¢(eq), ..., d(e,), which must be a basis for F™.
Then |GL,(F)| = the number of distinct ordered bases for F™. There are ¢" — 1 choices for e1, ¢" — ¢ for e, etc. O
Proposition 1.16. Let G = Cp x -+ x Cp,. Then Aut(G) = GL,Z,. Thus |Aut(G)| = (p™ — 1)(p" —p) -+~ (p™ — p"~1).

————
n times

Proof. Using additive notation, G =2 Z,, @ - - - © Z,, . This is a Z,, vector space. Thus any group homomorphism ¢ : G — G
—_———

n times
is actually a Z, linear transformation as ¢(a(hy, ..., hyn)) = @(ha, ..., hy). So every bijective linear transformation of G is

a group homomorphism and vice versa. Thus Aut(G) = GL,,(Z,). O



1.3 Semi Direct Products

Let H, K be groups and ¢ : K — Aut(H), a group homomorphism. Define
H xy K ={(h,k)|lhe H ke K}

and
(h1, k1) (he, k2) = (h1¢(k1)(h2), k1ks2).

Claim. H x4 K is a group.
Proof: Clearly, (1,1) is the identity. Also (h,k)~! = (¢p(k~1)(h™1),k71) as

(h, k) (@(k~1)(R1), k7Y = (ha(k)(o(k™ 1) (A1), kk™)
= (h(¢(k)o(k~1))(h1),1)
= (h¢(kk=1)(h™1),1)
= (hh711)
= (17 1)

and

(@~ (h™1), k=) (hk) = (o(k=")(hN)o(k~")h, k™ k)
= (¢(k~1)(h"h),1)
= (p(k71)(1),1)
= (1,1).

Lastly, associativity holds. O

Definition 1.17. Say H x4 K is the (external) semidirect product of H and K (and ¢). (Note: If (k) =1 for all
k € K, then the semidirect product is the usual direct product.

Example. Find a nonabelian group of order 21.
Take K = C3 =< a > and H = C7 =< b > . To find ¢ we want to send a to an element of order o(a) in Aut(C7). So
let ¢ : C5 — Aut(C7) be defined by a — 1) where ¢ : C7 — C7 is such that b — b%. Thus we can now define G = C7 x4 Cs.

We know G is nonabelian as

(b, 1)(1,a) = (bp(1)(1),a) = (b, a)

and

(1, a)(b,1) = (¢(a)(b), a) = (*,a).

For simplicity, let’s say @ = (1,a) and b = (b, 1). Notice (b?,a?) = (b,1)(1,a’) = (b,1)*(1,a) = '@, Then we see that
@ =15 =1, and ab = b%a.
What’s a presentation for G? Let H =< z,y|z3 = 1,y” = 1,2y = y?x > . As before, we can show |H| < 21 and map

it onto GG, so the map is bijective and thus G is isomorphic to H.

Let G = H x4 K. There are the natural injective homomorphisms ¢; : H — G such that h — (h,1) and i3 : K — G
such that & +— (1,k). Let H = i1 (H) and K’ = iy(K).

Remarks.
1. G=H'K' as (h,k) = (h,1)(1,k) € HK'
2. HNnK ={(1,1)}

3. H' G since (W, k)(h, 1)(K, k)" = (W, k)(h, 1)(6(k~ ) (B'~1), k™) = (x,1) € H'.



Proposition 1.18. K’ < H x4 K if and only if ¢ is trivial. In this case, the semidirect product is exactly the direct
product.

Proof. (<) : Easy
(=) : Let h € H k € K. Want to show ¢(k)(h) = h. Since H', K’ <G and H' N K’ = {(1,1)}, we know that h'k’ = k'h’

)

forall W € H' k' € K'. Thus (h,k) = (h,1)(1,k) = (1,k)(h,1) = (¢(k)h, k). Thus ¢(k)h = h. O
Corollary 1.19. H x4 K is abelian if and only if ¢ is trivial and H, K are abelian.

Definition 1.20. Let G be an abelian group. Then f : G — G such that g — g~ is an automorphism of the group,

called the inversion map. Note o(f) = 2, except when every element is its own inverse.

Example. Let n > 2. Define ¢ : Co — Aut(C,,) where Cy =< = > and C,, =< y > such that  — the inversion map.
Then C,, x4 Cs is a nonabelian group of order 2n. (In fact, its the dihedral group.) Notice

(1,2)(y, 1)(L2) 7" = (6(2)y,2)(L,27") = (¢(a)ye(2)(1),1) = (¢(x)y, 1) = (y" 1, 1).

Thus we get the presentation

<mzyle?=1,y"=Layz ' =y" '}

Theorem 1.21. Let G be a group and H, K subgroups such that
(1) G=HK (2) HN K = {1} (8) HaG
Then ¢ : K — Aut(H) defined by k — ¢y (h) = khk™' is a group homomorphism and G = H x4 K. In this case, we say

G 1is the internal semidirect product of H and K.

Proof. Define f : H x4 K — G by (h, k) — hk. Then f is a group homomorphism as

F((h1, k1) (ha, k2)) = F((hid(k1)ha, kika)) = F((hikihaky* kika)) = hikihoks = f((h1, k1)) f((ha, ka)).

Also, f is surjective as G = HK implies that for g € G there exists h, k such that g = hk and thus (h, k) — g. Finally,
f is injective as if (h,k) — 1 then hk = 1 which implies k = h™! € HN K = {1} and so k = 1 and similarly » = 1 and
thus ker f = {(1,1)}. O

Theorem 1.22. Let G be a group of order 2p where p is an odd prime. Then G = Cop or G = Doy,

Proof. Let P be the Sylow p—subgroup (By 3ST, there exists only one and it is normal). Let @ be the Sylow 2—subgroup.
Then, since |P N Q| =1, we know G = PQ. Thus there exists ¢ : Q — Aut(P) such that G = P x4 Q. Since |Q| = 2, we
know Q = Cy =< z > . Similarly, P = C), =<y > . Now, Aut(Cp) = Z; and so we have two cases.

Case 1: If ¢(z) = 1p, then G = P x Q = Cy).

Case 2: If |¢| = 2, there exists a unique element of order 2, as Zj, is cyclic. Clearly, its —1. Then ¢(z)(y) = y~ 1, that

is, ¢ is the inversion map. By our previous example, this says G = Dy,. O

Theorem 1.23. Let K be a cyclic group of order n and H be any group. Suppose ¢1,¢2 : K — Aut(H) are group
homomorphisms. If ¢1(K) and ¢2(K) are conjugate in Aut(H) (that is, ¢1(k) = Ypo(K)Y~! for o € Aut(H)), then
H>4¢1K§H><I¢2K.

Special Cases.
1. If |61 (K)| = |¢2(K)| and Aut(H) is cyclic, since there is only one subgroup of each order, they are equal.

2. If ¢1(K), ¢p2(K) are Sylow p—subgroups for some p, they are conjugate by 2ST.



Example. Classify all groups of order 75 = 3 - 52.
Let P € Syl;(G) and @ € Syl;(G). By 3ST, Q < G. So G = Q x4 P for some ¢. Now P = C5 =< x > and since @
has order 52 it is abelian and thus either Q =2 Cs5 or Q =2 C5 x Cs.

Case 1: Q = Cy5. Then |Aut(Q)| = |Z35] = 25 — 5 = 20. Since 3120, ¢ is trivial. Thus we have G = C3 x Co5 =2 Crs.

Case 2: Q = C5 x C5 =< y,z > . Then Aut(Q) = GLy(Zs), which has order (52 — 5)(5% — 1) = 20 - 24. Now if we
have ¢ = 1, then G = Cy5 x C5. Otherwise, |¢| = 3 which implies it is a Sylow 3-subgroup and thus all ¢ of

this order yield an isomorphic semidirect product. Now, lets try to find a presentation for this group. We know

5 11
2% =1,y° = 2% = 1,yz = zy, however we need to know what zyx~! and zzz~! are. One can see that [2 31 has

1 0
order 3 in GLy(Zs). This corresponds to v : Q — @ such that y — y2z? and z — yz3 (take y = [01 and z = L] ).

Thus we see that G is presented by < z,y, 2|73 = y® = 2° = 1,yz = 2y, 2y = y22x, 02 = y232 > .

Example. Classify all groups of order 20 = 22 - 5.
Let @ € Syl;(G) and P € Syly(G). Then, by the 3ST, @ < G and also we know Q = C5 =< y > . Now P has order
22 which implies it is abelian and thus P 2 Cy or P 2 Cy x Cs. Define G = Q x4 P where ¢ : P — Aut(Q) = Zz.

Case 1: P=Cy=<x>.

Case la: ¢ is trivial. Then G = C5 x Cy = Coqy.

Case 1b: |¢(P)| = 2. There is only one subgroup of Z} of order 2, since its cyclic. Since y — y* works, we're done.

So zyx~! = y* and this group is presented by < x,ylz* = 1,95 = L,ayz~ L =y~ > .

Case 1c: |p(P)| = 4. Then ¢(P) is a Sylow subgroup, which says all possible ¢ here will be isomorphic- so we

1

can choose any one. We see y — y? works, so xyz~! = y2. This group is presented by < z,y|z* = 1,° =

Lzyrt =942 >.

We just need to check that these are different. In case 1b, we see 72 € Z(G). We will show that Z(G) = 1 in case
lc. Let Z be the center of G and suppose Z # {1}. First note that Z N Q@ = {1}. If not, then (as the order of Q
is prime) @ C Z. But this means @ commutes with every element of P, implying that ¢ = {1}. Thus, if Z # {1},
it must contain an element, say z, of order 2. But as z is in some Sylow 2-subgroup and every Sylow 2-subgroup
is conjugate to P, we must have z € P (a conjugate of z is still z!). But then ¢(z) = identity map, contradicting

that ¢ is an isomorphism . Hence, Z = 1. Thus the groups really are different.
Case 2: P =C5 x (9

Case 2a: ¢ is trivial. Then G = Cy x Cy.
Case 2b: |¢p(P)| = 4. This would say ¢ was an isomorphism, contradiction since P is not cyclic but Z? is.

Case 2¢: |¢(P)| = 2. Then | ker ¢p|=2. Let « € ker ¢\ {1} and z € P\ {ker ¢}. Then P =< x,z > . (P is generated
by any 2 nonidentity elements.) Since x € ker¢, z € Z(G). Let Q' = Z(G)Q =< z,y >= Cjp =< zy >
and P =< z > (5. Note G = P'Q’ (since G is generated by z,y,z), P’ N Q" = {1},Q" < G. Therefore
G = Cyp x¢ Co which implies Dyg. This is clearly not isomorphic to the other 2 as the Sylow 2 subgroup is
Cy x Cs.

Example. Classify all groups of order 30.

Let G be a group, |G| = 30. Let P € Syl,(G),Q € Syl3(G), R € Syl;(G). By Sylows Theorems, ng € {1,10},n5 €
{1,6}. If n3 = 10, there exists 20 elements of order 3 and if ns = 6, there exists 24 elements of order 5, but there are
only 30 elements total. So either ng = 1 or ny = 1. Thus either @ or R is normal. So QR is indeed a subgroup (since
one of @ and R are normal). But [G : QR] = 2 implies QR < G and further QR is cyclic (since it is of the form pg
where p f ¢ — 1.) [Note: This shows @@ and R are normal: Let Q' € Syly(G). Then Q' = zQz~! for some z € G. As



QCQR<G,Q =2Qx~ ! C2QRx~! = QR. Since QR is cyclic, it has only 1 subgroup of order 3 which implies Q' = Q.
Hence n3 = 1 and @ < G. Similarly, R << G.] Let QR =< b > and P =< a > . Since G = P(QR),QRN P = {1} and
QR <G, we get G = QR x4 P for ¢ : P — Aut(QR). Now, |¢(P)||2 and |¢(P)|||Aut(QR)|. Since Aut(QR) = Z;5 which

has 3 elements of order 2: 4, 11, 14, there are 3 possibilities for a nontrivial ¢.
Case 1: ¢1(a) =91 : QR — QR defined by b — b~!. Then G; = D3o.
Case 2: ¢o(a) = by : QR — QR defined by b+ b*. Then G5 is presented by < z,y|z? = y'% = 1, ayz~! = y* > .
Case 3: ¢3(a) = 93 : QR — QR defined by b — b'l. Then G35 is presented by < z,y|z? = y'® = 1, zyx~! =yt > .
Case 4: ¢ is trivial and G4 = Cy.

How do we know G, G2, G5 are different? Since G;/Z(G;) cyclic implies G is abelian, |Z(G;)| € {1,2,3,5}. If | Z(G;)| = 2,
some Sylow 2 subgroup is in the center which implies all Sylow 2 subgroups are in the center (since the Sylow 2 sub-
groups are conjugate), which implies no = 1, that is P << G. Thus G is abelian, a contradiction. So |Z(G;)| € {1,3,5}.
If |Z(G;)] = 3, then Z(G;) = Q =< b° > (since there is only one Sylow 3 subgroup) and if |Z(G;)| = 5, then
Z(G;) = R=<b®>.In Gy, ab®>a™! = b3 = b'? which implies b*> ¢ Z(G1). Similarly v°> ¢ Z(G;). Thus Z(G1) = 1. In
G2, we see ab’at = b?° = b°. Thus Z(G2) =< b> > . Similarly, Z(G3) =< b3 > . Thus they are all different. Now, we
know Z(S3 x C5) > 5, so G = S3 x C5. Similarly, G3 = Do x Cs.

Suppose m|n. Then f : Z, — Z,, defined by [a],, — [a]., is a surjective ring homomorphism.
Lemma 1.24. Suppose m|n. Then the group homomorphism f* : 7 — 7, is surjective.

Proof. Suppose n = p*® for some prime p. Then m = p” where r < s. If [a],» € Zj,, then [a],s € Zy.. So f* is surjective.

In general, let n = pi'---p;* for pi,...,pi distinct primes. Then m = pi*---p;* where r; < s;. Using the Chinese
Remainder Theorem, we see

/s — Zy,

| =

Lrsy X oo XLFsy — LFey X oo XL vy
Dy Dy Py Py

By the previous case, the bottom map is surjective. Since the bottom three maps are surjective, the top is as well. I
Corollary 1.25. Suppose m|n and ged(a,m) = 1. Then there exists t € 7 such that ged(a + tm,n) = 1.

Proof. Let [a]m, € Z7,. As f*: Z¥ — Z7, is onto, there exists [c],, € Z such that f([c],) = [a]m. Thus ged(c,n) =1 and

¢ =a mod m which implies ¢ = a + tm. L]

Corollary 1.26. Let ¢ : C,, — C,, be a surjective group homomorphism (thus m|n). Let C,, =< a > and Cp, =< b > .
Then b = ¢(a)" where ged(r,n) = 1.

Proof. Since < ¢(a) >= C,, =< b >, b = ¢(a)® where ged(s,m) = 1. By the previous corollary, there exists ¢ € Z such
that ged(s +tm,n) = 1. Let r = s + tm. Then ¢(a)” = ¢(a)*T™ = ¢(a)d(a)'™ = ¢(a)® = b. O

Theorem 1.27. Let K be a cyclic group of order n and ¢1,¢ps : K — Aut(H) be group homomorphisms, where H is
some group. Suppose $1(K) and ¢2(K) are conjugate. Then H x4, K = H x4, K.

Proof. Let 0 € Aut(H) be such that ¢o(K) = o¢1(K)o™!. Let K =< a > . Then ¢2(K) = 0 < ¢1(a) > 071 =<
op1(a)o™r > . Then ¢9 : K —< 0¢1(a)o~! > is a surjective group homomorphism. By the corollary, there exists r € Z
with ged(r,n) = 1 such that o¢q(a)o™ = ¢2(a)”. Let € K. Then x = a® for some s. Then

opr(x)o™! = (0¢1(a)o™")* = (¢2(a)")® = (¢2(a)®)" = ¢2(x)".



Thus o¢1(z) = ¢o(x) 0. Define f : H x4, K — H x4, K by (h, k) — (o(h),k"). Then

f((ha k1) (ho, k) = f
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Thus f is a homomorphism. Also, we know it is 1-1 and onto as h — o(h) and k +— k" are automorphisms (since

ged(r,n) = 1). Thus f is an isomorphism. O

1.4 Characteristic Groups

Definition 1.28. Let G be a group. A subgroup H of G is called characteristic if c(H) = H for all 0 € Aut(G). We
denote this as Hchar G.

Example. Z(G)char G. To see this, let 0 € Aut(G),z € Z(G) and y € G. Then y = o(z) for some z € G and
o(x)y =o(z)o(z) = o(xz) = o(zz) = o(z)o(x) = yo(x).

So o(z) € Z(G). So 0(Z(G)) C Z(G) for all ¢ € Aut(H) which implies 0~(Z(G)) C Z(G) for all o and applying o, we
see Z(G) Co(Z(@)). Thus Z(G) = o(Z(G)).

Remarks.

1. If H is a unique subgroup of G of order |H|, then Hchar G. Therefore, every subgroup of a cyclic group is
characteristic.
Example. Let G = Zy & Zs. Then ¢ : G — G defined by (a,b) — (b, a) is an automorphism but ¢(< (1,0) >) =<
(0,1) > . So < (1,0) > is not characteristic in G.

2. Characteristic subgroups are always normal.
Proof: Let g € G. Then ¢, : G — G defined by z — gzg~! is an automorphism. If Hchar G, then gHg ! =
Yye(H) = H. Thus H < G.

Note: The converse is not true (see previous example).

3. Let P € Syl,(G). Then P char G if and only if P < G.
Proof: (<) : If P <G, then P is the only Sylow p—subgroup. Done by Remark 1.

Note. If K < H and H <1 G does NOT imply K < G.

Example. Dg =< z,yl2? = y* = 1,2y = vz > . We see < 2y > <{1, 2y, zy>, y?} < Dg (the first because a group of

order 4 is abelian and the second because its index 2). However, < xy >< Ds.

Remarks.

1. K char H and H char G implies K char G.
Proof: Let ¢ € Aut(G). As H char G, ¢(H) = H which implies ¢|y € Aut(H) and thus ¢(K) = ¢|g(K) = K as
K char H. So K char G.

2. K char H and H < G implies K < G.
Proof: Let g € G and consider ¢, € Aut(G) where ¢,(z) = gzg~'. As H < G, ¢4(H) = H. In particular,
tg|m € Aut(H). Since K char H, ¢4(K) = 94| (K) = K. Thus K < G.



Example. (Old Comp Problem) Let P € Syl,(G). Then Ng(Na(P)) = Na(P), where No(H) = {g € GlgHg™" = H}.

Proof. Clearly, P < Ng(P) implies P char Ng(P) (since Sylow p—subgroups are normal if and only if they are charac-
teristic). But Ng(P) < Ng(Ng(P)). By Remarks 2, P < Ng(Ng(P)). Thus Ng(Ng(P)) € Ng(P) and since the other

containment is obvious, they are equal.

1.5 Solvable Groups

Definition 1.29. Let G be a group and x,y € G. Define the commutator of x and y by

[z, y] = ayz~ 'y~

The commutator subgroup of G, denoted |G, G] or G', is the subgroup of G generated by all its commutators.
Remarks.

1. z,y commute if and only if [z, y] = 1.

2. G is abelian if and only if G’ = {1}.

3. G’ char G

Proof: Let ¢ € Aut(G), z,y € G. Then ¢([z,y]) = dlayz™'y™") = ¢(x)d(y)o(z) " d(y) ™" = [8(x),¢(y)]- So
d(G') C G If [z,y] is a generator of G’, then there exists a,b € G such that ¢(a) = z,¢(b) = y which implies
¢([a,b]) = [x,y]. Thus G’ C ¢(G’) and so they are equal.

Lemma 1.30. Let G be a group. Then
1. G'< G and G/G' is abelian.
2. If H D G, then H<1G and G/H is abelian.
3. If H< G and G/H is abelian, then H D G'.

Proof. 1. As G’ char G, G' < G. Let 7,5 € G/G'. Then Tgz 7! = T which implies T = 7 which implies G/G" is

abelian.

!
2. If H DG, H/G' < G/G’ which is abelian. Thus H/G’ <G /G’ which implies H <<G. Note G/H = [erég/ is abelian
as G/G' was.

3. Let [z,y] be a commutator. Then, as G/H is abelian, [z,y] = [Z,7y] = Zyz 'y ! = 1. Thus [z,y] € H and therefore
HDG. m

Definition 1.31. A sequence of subgroups --- G; <{G;_1 <---Go = G is called a normal series. The derived normal
series is ---G"' QG 1 G’ < G. For simplicity, we will take G = G, GV = &', and GO = (GE=VY fori > 2.
Example. Let G = S3. Then, G' =< (123) > .

Proof. As < (123) > <1S3 (index 2) and G/ < (123) > is abelian (its cyclic), the above lemma says < (123) >2 S5. As
S% is nonabelian, S5 # {1}. So S5 =< (123) > .
Now < (123) > is abelian, so (S3)” = {1}. Thus

{1}« < (123) > <53

is the derived normal series for Ss.

Definition 1.32. A group is solvable if G™ = {1} for some n.



Remark. Suppose ¢ : A — B is a surjective group homomorphism. Then qﬁ(A(i)) = BW for all .

Proof. ITnduct on i. If i = 0, clear. Suppose true for i — 1. Want to show ¢((A¢~1)) = (BG—Y)’. For simplicity, we can
take i = 1. Know ¢([a,b]) = [¢(a), ¢(b)]. Thus ¢(A’) C B’. On the other hand, as ¢ is surjective, any commutator of B

is the image of a commutator of A.
Special Case. Suppose H <<G and ¢ : G — G/H is the natural homomorphism. Then GO = é(i).
Proposition 1.33. Let G be a group and H < G.

1. If G is solvable, then so is H. Furthermore, if H < G, the G/H is solvable.

2. If H< G and H and G/H are solvable, then so is G.

Proof. 1. For some n, G™ = {1}. But H® C G® for all 4. Thus H™ = {1}. Also, if H < G, then (G/H)™ =
G = {1}.

2. Since G//H is solvable, there exists n such that G(") = (G/H)™ = {1}. Thus G") C H. Since H is solvable, there
exists m such that H(™) = {1}. Then G™*™ C H(™ = {1}. Thus G is solvable. 0

Proposition 1.34. Let G be a group of order p™, p prime. Then G is solvable.

Proof. Induct on n. If n = 0,1,2, then G is abelian and thus G’ = {1}. So suppose n > 3. Recall that p—groups have
nontrivial center. Since Z(G) is abelian, it is solvable. Now |G/Z(G)| = p" for some r < n. Thus G/Z(G) is solvable by
induction and by Proposition 1.33, G is solvable. O

Fact. A, is not solvable for n > 5. We know A,, is simple and nonabelian for n > 5. Since the commutator is a normal
subgroup, (An)(i) = A, for all i > 1. Thus A,, is not solvable. By Prop 1.33, we see S,, is therefore not solvable for n > 5

as then its subgroup A,, would be. Note: Ay is solvable (see later)

Note. Since G’ char G and G® char G/, we know that G(® char G and by induction, G™ char G. In particular, this
says G < G.

Definition 1.35. A solvable series for a group G is a normal series

{1} =G, <Gp1<---<29Gy =G
such that G;/G;—1 is abelian for all i.
Proposition 1.36. G is solvable if and only if G has a solvable series.

Proof. (=:) The derived normal series is a solvable series for G.

(«:) Let {1} = G, <--- <Gy = G be a solvable series for G. Induct on n. If n = 0, then G = {1} and we are done. Let
n > 0. Then G; has a solvable series of length n — 1. So G} is solvable by induction. Also G/G1 is abelian, which
implies it is solvable. Then, since G; and G/G; is solvable, G is solvable by Prop 1.33. ]

Fact. A, is solvable. We see it has the solvable series
{1} <{(1), (12)(34), (13)(24), (14)(23)} < A4 < Sy.
Thus A4 and S, are solvable.

Lemma 1.37. If |G| = pq for primes p,q, then G is solvable.

Proof. If p = q, then G is abelian and thus solvable. Say p < ¢. By ST, the Sylow g—subgroup is normal and solvable
(since abelian). Of course |G/Q| = p implies G/Q is abelian and thus solvable. Thus by Prop 1.33, G is solvable. O



Proposition 1.38. FEvery group of order pqr for primes p,q,r is solvable.
Proof. Case 1: p=¢q =r. Then done by Prop 1.36.

Case 2: p < g < r. By counting arguments, at least one of the Sylow subgroups is normal and hence solvable, say H.

Then |G/H| = p'q’ for primes p'q’ and is thus solvable by the lemma. Thus by Prop 1.33, G is solvable.
Case 3: |G| = p?q,p < q. Similar.

Case 4: |G| = pg?,p < q. Similar. O

2 Fields

Definition 2.1. A field is a commutative ring with identity such that every nonzero element has a multiplicative
inverse. Let R be a ring with identity. Consider the ring homomorphism ¢ : Z — R defined by n — n - 1g. Say R has
characteristic 0 if ¢ is injective. Otherwise, if ker ¢ = (n), then R has characteristic n. In this case Z/(n) — R. If
R is a domain, then so is Z/(n) which says (n) is prime. In particular, if R is a field, then char R =0 or (p) for some
prime p. Let R be a commutative domain. Then the fraction field or quotient field of R is Q(R) = {$]a,b € R,b # 0}.

Note. Instead of saying a field F' has characteristic 0, it is often said that F' contains the rationals. This is because if
Z — F defined by n — n -1 is injective, then Z C F which implies its quotient field Q(F) = Q C F.

Remark. If R is a domain, then R[z] is a domain. In this case, Q(R[z]) = Q(R)(z) = {§|f,g € Q(R)[z], g # 0} .

Notation. Let F' C E be fields. Usually, we will say E/F is a field extension.

2.1 Algebraic Extensions

Definition 2.2. Let E/F be a field extension, o € E. Then « is algebraic over F' if there exists f(z) € Flz]\ {0} such
that f(a) = 0. If « is not algebraic, we say it is transcendental. The degree of E/F, denoted [E : F], is the dimension
of E as an F—wvector space. We say [E : F] is finite if [E : F] < oo.

Examples.

1. If  is an indeterminant, then F(x)/F is a field extension and [F(x) : F] = oo as {1,z,22,...} is an F—basis for

2. [Q(v2) : Q] =2 as {1,V/2} is a Q—basis.
Lemma 2.3. Let L C F C E be fields. Then [E: L] =[E: F|[F : L].
Proposition 2.4. Let o € E, E/F a field extension. TFAE

1. « is algebraic over F.

Proof. (1) = (2) : Define ¢ : Flz] — Fla] by f(z) — f(«). Then ¢ is a surjective ring homomorphism. Thus Fa] &
F[z]/(ker ¢). Since F[z] is a PID, we know ker ¢ = (h(x)) for some h(z) € F[z]. Since « is algebraic over f, we
know ker ¢ # 0. So h(z) # 0. Since Fa] C F(a), its an integral domain. Thus ker ¢ is prime and h(x) is irreducible
over F' (as if it factored, the factors would be zero divisors). So (h(z)) is a maximal ideal which implies F[z]/(h(z))
is a field. Thus Fla] = F(«).



(2) = (3): If a =0, trivial. Solet a # 0. Then 1 € F(a) = Fla]. So 2 = ¢+ cra+ ...+ cpa™ for ¢, # 0. Multiplying

(6%
by 2, we see a™l € Spanp{1,q,...,a™} which implies o’ € Spang{1,«,...,a"} for all i. Then dimp F[a] <n+1

which implies [F(a) : F] <n+ 1.
(3)=(1): Say [F(«) : F] = n. Then {1,q,...,a"} is a linearly dependent set over F. Thus there exists cg,...,¢, € F
(not all zero) such that co-1+...+¢,a™ = 0 which implies « is a root of f(x) = co+...+¢,2™. Thus a is algebraig;
Corollary 2.5. Let {a1,....,an} € E, E/F a field extension. TFAE
1. aq,...,an is algebraic over F.
2. Flog,...,an]) = F(ag, ..., aq).
3. [F(ag,....on) : F] < oo,
Proposition 2.6. If [E: F] < oo, then E/F is algebraic.
Proof. Let o € E. Then [F(«) : F] < [E : F] < co. By Prop 2.4, « is algebraic. O

Note. The converse is not true. Consider Q C C and let Q = {a € C|a is algebraic over Q}. Clearly, [Q : Q] = oo and

[Q(¥/2) : Q] = n.
Proposition 2.7. Suppose E/F and F/L are algebraic. Then E/L is also algebraic.

Proof. Let o € E. Then « is algebraic over F' which implies [F(«) : F| < oo. Say f(a) = 0 where f(z) = cp,z™ + ..o €
F[z]\{0}. Let K = L(co, ..., ¢n). Then K/L is finite and « is algebraic over K. Then [K(«) : L] = [K(«) : K][K : L] < cc.

Thus « is algebraic over L. O
Proposition 2.8. Let E/F be a field extension, a € E algebraic over F. Say h € F[z]\ {0} such that h(a) = 0. TFAE
1. h(zx) is irreducible over F.
2. h|f for all f(x) € Flx] such that f(a) = 0.
3. h(xz) =ker¢ for ¢ : Flax] — Fla].

If h is monic and satisfies the above, say h is the minimal polynomial for o over F and denote it by Irred(a, F') or
Min(a, F.)

Proposition 2.9. Suppose « is algebraic over F. Then [F(«) : F] = deg Irred(a, F).

Definition 2.10. Let F be a field and f(z) € Flx] \ F. Then a splitting field for f(z) over F is a field L O F such
that f(x) factors into linear factors in L[x] and f(x) does not split in E[x] for all F C E C L.

Remark. Let f(x) € F[z] and E D F such that f(z) = ¢(x — a1) -+ (x — o) in Elx]. Then a splitting field for f(x)

over F is Flay, ..., ap).
Examples.

1. Find the splitting field of 24 — 2 over Q.
The roots of 4 — 2 are ++v/2, +iv/2. So Q(v/2,1) is the splitting field.

Q(V2,1)

| 2 since 2 + 1 is irreducible as i & (v/2).
Q(v2)

| 4 since 2% — 2 is irreducible (by Eisenstein).

Q

Thus [Q(v/2,4) : Q] = 8.



2. Find the splitting field for 25 4 3 over Q.

First, lets find the roots. In polar coordinates, 26 = —3 = 3¢’™ = r%¢%?, Thus r% = 3 and 60 = 7 + 27k which
implies 6 = & + %’“ Thus the roots are {s/ge%(e%i)k for k=0,...,5.

| m <2 since the cyclotomic polynomial works.

| 6 since z° + 3 is irreducible (by Eisenstein).

In fact, m = 1 as (V/3e% )3 = /3i implies %‘/& € Q(+/3e'¢") which is the roots of the cyclotomic polynomial.

3. Find the splitting field of 2° — 2 and its degree.

27mi

We see the roots are w*v/2 for i = 0, ..., 4 where w = ™5 . So the splitting field is Q(v/2,w).

sty AN
Q(V?2) Q(w) since 2° — 2 and the cyclotomic
5\ /4 < polynomials are irreducible
Q over Q by Eisenstein.

Then D = [Q(V/2,w) : Q] < 20. Of course 4|D and 5|D implies 20|D. Thus D = 20.
Note. This says * + 2% + 22 + x + 1 is irreducible over Q(v/2,w).

Lemma 2.11. Let K be a field and f(x) € K[x] a nonconstant polynomial. Then there exists a field extension E O K
such that [E : K] < deg f and f(x) has a root in E.

Proof. Let p(x) be an irreducible factor of f(x). It is enough to show true for p(x). Let ¢ be an indeterminant over K
and E = K[t]/(p(t)), a field as p(t) is irreducible in K[t]. Let a = t + (p(t)) = . Then {1, q,...,a” 1} is a K—basis
for E where n = degp(t). Define 0 : K — E by a — a + (p(t)). Since there does not exist constants in (p(t)) we see
ker ¢ = {0} and o is an injective field map. So by identifying K with o(K), we can assume K C E = K(«a). Note
p(a) =p(t) + (p(t)) =0. So a € E is a root of p(z) and [E : K| =n. O

Lemma 2.12. Let K be a field. Then there exists a field E O K such that every nonconstant polynomial f € K[z] has

a root in E.

Proof. For each nonconstant f € K[z], let t; be an indeterminant. Let R = K[{t;}sck[z)\x] and I an ideal of R
generated by {f(ts)} rexia)\ k-

Claim. I # R.

Proof: Suppose I = R. Then 1 € I which implies

L= filtn) + ..+ rofulty) (1)

for fi,....fs € K[z]\ K and 7,...,7s € R. For ease of notation, let ¢; := tj,. Let ¢1,...,ts,...,t, be all the
indeterminants involved in 71, ...,7s along with ¢1,...,ts. Now, define F; O K such that fi(¢1) has a root in Fj.
Tteratively define F; D F;_; such that f;(¢;) has a root in F;. Then Fs D K is such that f;(¢;) has a root «; in Fj
foralli=1,...,s. Plug in @ = («y, .., as) into Equation (1) to get 1 = 0, a contradiction. Thus I # R.



Let M be a maximal ideal of R containing I (this exists by Zorn’s Lemma) and let E = R/M, a field. Define 0 : K —
R — R/M by a — a— a+ M. Here, we see kero = {0} as if a + M = 0 then a € M which implies M contains a unit.
Thus o is injective and so we can identify K with its image o(K) and conclude K C E. Let f(z) € K[x] be a nonconstant
polynomial and ay =ty + M. Then f(ay) = f(ty) + M =0 since f(t5) € I C M. So ay is a root of f in E. O

Definition 2.13. A field F is algebraically closed if every nonconstant polynomial f(x) € Flx] has a root in F.
Equivalently, f(x) splits completely in F[z]. An algebraic closure of a field F is a field F O F such that F is algebraically
closed and F/F is algebraic.

Proposition 2.14. If F C L and L is algebraically closed, then F = {a € L|a is algebraic over F} is an algebraic

closure of F.

Proof. First, we want to show that this is a field. Given «a, 3 € F, we want to show a3, a + £, % are algebraic over F.
Since «, 3 are algebraic, [F(«, ) : F] < oo by the Corollary. But a3, a+ 3, % € F(a, ) where every element is algebraic
over F' (since the degree is finite). Thus they are algebraic over F' and thus in F'. Now, we show F' is algebraically closed.
Let f(z) € F[z] \ F. Then f(x) has aroot a € L. So F(a)/F is algebraic and F/F is algebraic which implies F(«)/F is

algebraic. Thus « is algebraic over F' which implies o € F. O
Theorem 2.15. Let F be a field. Then there exists an algebraic closure of F.

Proof. Let Ey = F. For n > 1, define E,, D F,,_; to be a field such that every nonconstant polynomial in E,_;[z] has a
root in F,. Let L = U2, F;. This is a field as the E;’s are nested. L is also algebraically closed as for f(x) € L[z]\ L,
there exists n such that f(z) € E,[z]. Then f(x) has a root in E,1 C L. Now, let F = {a € L|« is algebraic over F'}.

Then by the above proposition, F is an algebraic closure for F. O
Corollary 2.16. Let f(x) € F[z]\ F. Then there exists a splitting field for f(x).

Proof. Let F be an algebraic closure of F. Then f(z) = ¢(z — 1)+ (¢ — o) in F[z]. Then F(a,...,ay) is a splitting
field for f(zx) over F. O

Definition 2.17. Let E/F and E’/F’ be field extensions. Let o : F — F' and 7 : E — E’ be field homomorphisms. Say

T extends o if T|p = 0. As a special case, if F = F' and o = 1, then T extends o if and only if T fizes F.

Remarks. Suppose 7 extends o.

1. o extends to a ring homomorphism ¢ : Flzx] — F'[z] by ap + a12 + ... + apz™ — o(ag) + o(ar)z + ... + o(a,)z™.
Write this as p(z) — p?(x). Check: (fg)? = f7¢° and (f +9)° = f7 +¢°.

2. Suppose « € E is a root of p(x) in F[z]. Then 7(«) is a root of p7(x) :
P (1()) = o(ag) + o(ar)T(@) + ...0(an)T(a)"” = 7(ag) + (1) + ... 7(ana™) = 7(p(ar)) = 7(0) = 0.

Note that in general p?(7(«)) = 7(p(a)) for all a(i.e., not just roots).
3. U F=F 0=1p.If « € F is aroot of p(x), then 7(a) is also a root of p(z).

Proposition 2.18. Let E/F be an algebraic extension and 7 : E — E a field homomorphism fixing F. Then T is an

isomorphism.

Proof. Clearly 7 is 1-1. So its enough to show 7 is surjective. Let a € E. As « is algebraic over F, there exists some
p(z) € Flz] \ F such that p(a) = 0. Let R = {a = a1, aa,...,ay} be all the roots of p(z) in E. Then 7(a;) € R for all 4.

We know 7|g is 1-1 and since finite it is also onto. Thus 7(a;) = « for some j. O

Theorem 2.19. Let o : F — K be a nonzero field homomorphism where K = K. Suppose E/F is an algebraic extension.

Then there exists T : E — K extending o.



Proof. Let A = {(T,¢)|F CT C E, T is afield,¢ : T — K extends o}. Note that A # 0 as (F,c) € A. Define a partial
order on A by (T1,¢1) C (T, ¢2) if and only if T4 C T and ¢2|, = ¢1. Let C be a totally ordered subset of A (i.e., a
chain). Let Ty = UT such that (T,¢) € C, a field (since the T’s are nested), and F C Ty C E. Define ¢ : Ty — K by
t— ¢(t) if t € T for some (T, ¢) € C. Check this is well-defined and v is a field homomorphism. Clearly ¢|r = ¢ for all
(T, ¢) € C. Then (Tp,v) € A is an upper bound for C. By Zorn’s Lemma, there exists a maximal element (M,d) € A.
Want to show M = E. Let N = §(M) C K. We can extend & to § : M[z] — N[z] by p(z) — p°(z). This is an isomorphism
as ¢ is. Suppose there exists « € E\ M. Let f(x) = Irred(a, M). Then f?(x) is irreducible in N[z] C K[z]. As K is
algebraically closed, f°(z) has a root 3 € K. Of course Irred(3, N) = f°(z). Then

0" M(a) — M[z]/(f) — N[2]/(f°) = N(B) € K

defined by g(a) — g(x) — ¢(z) — ¢%(B). So &' : M(a) — K. We can see &'|py = 6. So (M,8) < (M(«),d"), a
contradiction. Thus M = F.

Corollary 2.20. Using the notation of the above theorem, suppose E is algebraically closed and K 1is algebraic over

o(F). Then T is an isomorphism.

Proof. Since ker 7 is an ideal, it is either (0) or E. Since o is nonzero, ker 7 # E. Thus 7 is injective. So it is enough
to show 7 is surjective. Note 7(F) = E and since E is algebraically closed, 7(F) is. Since K/o(F') is algebraic, so is
K/7(FE) since o(F) C 7(F) C K. But 7(F) is algebraically closed, so K = 7(E). O

Corollary 2.21. Let F be a field. Then any two algebraic closures of F' are isomorphic via an isomorphism fixing F.

Proof. Let Lq, Lo be algebraic closures of F. Consider o : F — Ly. We can extend o to 7 : L1 — Ls. By previous

corollary, 7 is an isomorphism fixing F. O

Definition 2.22. Let F' be a field and S C Flx] \ F. A splitting field for S over F is a field L O F such that every
f €8 splits in Llz] and L is minimal with respect to this property.

Remark. Let F, S be as above and fix an algebraic closure F of F. Then there exists a unique splitting field L C F of
S over F. Namely L = F(T) where T = {a € F|f(a) = 0 for some f € S}.

Proposition 2.23. Let F be a field and S C Flz] \ F. Any two splitting fields for S over F are isomorphic via an

isomorphism fixing F.

Proof. Let Ly, Ly be splitting fields for S over F and L1, Ly their algebraic closures. Since L1, Lo are algebraic over F,
Ly, Ly are also algebraic closures for F. Define T; = {a € L;|f(«) = 0 for some f € S}. Then L; = F(T;). Extend 15 to
7: Ly — La. By the corollary, T is an isomorphism. Since 7 fixes F, 7(T}) = Ty. Thus 7(L;) = 7(F(T1)) = F(r(Ty)) =

F(Ty) = L. So 7|1, : L1 — Lo is an isomorphism. O
Remark. With the above notation, p: L; — L, which fixes F is an isomorphism from L; to L.

Proposition 2.24. Let F be a field, S C Flz] \ F and F an algebraic closure of F. Let L C F be a splitting field for S
over F. Then any field map o : L — F which fizes F is an automorphism of L.

Proof. Apply previous proposition with Ly = Ly = L. O



2.2 Normality

Theorem 2.25. Let F be a field and F an algebraic closure of F. Let F C E C F be a field. Then TFAE
1. E is a splitting field for some S € F[z] \ F.
2. Any embedding o : E — F which fizes F is an automorphism of E.
3. Any irreducible polynomial in F|x] with a root in E splits in E.

If E/F satisfies the above, we say E/F is normal.

Proof. (1)=(2) Previous Proposition

(2)=(3) Let f(z) € F[z] \ F be irreducible and have a root o € E. Let 8 be another root of f(x) in F. Consider
F(a) — F(B) — F defined by p(a) — p(3). Extend o to 7 : E — F. Then 7 fixes F and by (2), 7(E) = E. So
B = 7(a) € E. Thus all the roots of f are in E which implies f(x) splits.

(8)=(1) Let S = {f(x) € F|f(x) is irreducible and has a root in E}. Let L be the splitting field in F' for S over F.
Want to show E = L. By (3), every polynomial in S splits in £ so L C E. Let « € E C F. Let f(x) = Irred(a, F).
Then f(x) € S implies @ € L. Thus L = E. O

Remarks.
1. If [E : F] = 2, then E/F is normal as (3) is true.

2. Q(¥/2)/Q is not normal since z* — 2 is irreducible in Q[x] and has a root in Q(+/2) but the other two roots are not
in Q(4/2) as they are complex.

3. f K CF CF and F/K is normal, sois E/F. If E is a splitting field for S over K then it is also the splitting field
for S over F. Note that F//K need not be normal. For example Q C Q(v/2) C Q(3/2,w).

4. If F/K and E/F are normal, then /K need not be normal. For example Q C Q(v/2) C Q(v/2) as z* — 2 does
not split in Q(v/2).

Note. If we say normal, we imply algebraic.

Proposition 2.26. Let F be a field, F an algebraic closure of F, and {E\} a family of subfields of F' containing F. If
each Ex/F is normal, then NEy/F is normal.

Proof. Let f(x) be an irreducible polynomial in F[z] with a root in NE). Then it has a root in each E) which implies it
splits in each E as they are normal. Thus f splits in NE). O

Definition 2.27. Let E/F be an algebraic extension. The normal closure of E/F in F is

n =

ECLCF,L/F normal
the smallest normal extension of F containing E.
Remark. Suppose E = F(ayq, ..., ay) is algebraic over F. Let L be the splitting field for

{Irred(ay, F), ..., Irred(ay,,, F)}

over F. Then L is the normal closure of FE/F.

Example. Let E = Q(+/2). The normal closure of E/Q is Q(¥/2,w).



Definition 2.28. Let E1, Ey be subfields of a field L. The compositum (or join) of E1 and Es is

E\B, = N F,
E1UE>CFCL,F a field

the smallest subfield of L containing E1 and Fs.

Remarks. Let Fq, Fs C L.

P
1. E\Ey = E(Ey) = Eo(Ey) = {F%

@i, € Ev,Bi,05 € Ea}.

2. If Ey, E5 are algebraic over F' then F1FEy = {>  a;f8;|o; € E1,5; € E2} since if « is algebraic over F' then the

smallest field containing it is the smallest ring containing it.
3. By = K(ai,...,an), By = K(B1, ..., 8n). Then E1Fy = K(au,...an, B1, s Bn)-
Proposition 2.29. Suppose E1/F and E3/F are normal. Then E1Es/F is normal.

Proof. Suppose o : E1Ey — F is an embedding which fixes F. Now 0|, , o|g, are embeddings of F;, Fy into F which fix
F. Thus o(Ey) = Ey and o(Es) = Es. Now o(E1Ey) = 0(E1)o(Es) = E1Es. So E1E2/F is normal.

this requires work
The work: Let o € E1E,. Then a = e1ly + ... + eply. Then o) = o(er)o(ly) + ... + o(en)o(lyn) € o(Er)(0(ER)).

Similarly, o(E1)o(Es) C o(E1 E3). O

2.3 Separability

Definition 2.30. Let f(z) € F[z]\ F. A root a € F of f(z) is called a multiple root of f(x) if (x — a)?|f(z) in F[z].

Otherwise, « is a stmple root.

Definition 2.31. Let f(z) € Flz| and say f(x) = anz™ + ... + a1z + ag. The derivative f' of f(z) is f'(z) =
na,x™ '+ ...+ a; where kay = ap + ... + ax .
—_—

k times

Note. One can check (f +9) = f"+4¢', (cf) =cf',(f9)" = f9'+ ['9,(f(9)) = ['(9)d’
Example. Consider f(z) = 2° + 225 + 2% + 2 € Z3[x]. Then f’ = 62° + 102* + 322 = 10z*.
Proposition 2.32. Let f(z) € Fl[z] \ F and o € F. Then « is a multiple root in f(z) if and only if f(a) = f'(a) = 0.
Proof. = Say f(z) = (x —a)?g(x) for g(z) € F[z]. Then f'(z) = 2(z — a)g(x) + (x — a)?¢'(z). Clearly f'(a) = f(a) = 0.
< As f(a) =0, we can say f = (z—a)g(z) for some g(x) € F|x]. Taking the derivative, we see f'(z) = g(z)+(x—a)g'(x)

and plugging in a we see 0 = g(a). Thus g(z) = (z — a)h(z) for some h(z) € F[z]. Then f(z) = (z — a)?h(z). 0
Proposition 2.33. Let f € Flx]. Then f(x) has no multiple roots in F if and only if ged(f, f') = 1.

Proof. Suppose ged(f, f') = h # 1. Let a be a root of h in F. Then « is a root of f and f’ which implies « is a multiple
root. Now suppose f has a multiple root a € F. Let h = Irred(a, F). Since f(a) = f'(a) = 0, we see h|f and h|f’. Thus
h|ged g (f, f') which implies ged(f, ) > 1. O

Proposition 2.34. Let F be a field and f(x) an irreducible polynomial in F|x].
1. If char F =0, then f has no multiple roots.
2. If char F = p > 0, then f(x) has a multiple root if and only if f(x) = g(aP) for some g(x) € F[z].

Proof. 1. Let f =an2™ +---+ajx+ag. Then f' = na,z" ' 4+---+a; # 0. Since f is irreducible and deg f’ < deg f,
we see ged(f, f/) = 1. Thus f has no multiple roots by the previous proposition.



2. By the same argument, f has multiple roots if and only if f/ = 0. Of course, f/ = 0 if and only if ia; = 0 for all 7
which occurs if and only if i =0 mod p or a; =0 mod p for all ¢ as F' is an integral domain. This is if and only
i £(2) = Gpm®™ + pn_ 1)@ + -+ ag = g(a?) for some g(x) € Fla]. .

Theorem 2.35. Let E/F be an algebraic extension and let o : F — Ly and 7 : F — Lo be embeddings of F into
algebraically closed fields Ly and Ly. Let S, = {m: E — Ly|n|p =0} and S; = {w : E — Lao|w|p = 7}. Then |S,| = |S:].

Proof. Consider the isomorphism 76~ ! : ¢(F) — F — 7(F) — L. Then there exists an extension A : ¢(F) — Lo such

that A|,(p) = 70! where o(F) is the algebraic closure of o(F) in Ly. In fact, if 7(F) is the algebraic closure of 7(F)

in Ly, then A : o(F) — 7(F) is an isomorphism. Let m € S,. Since E/F is algebraic and 7 extends o, we see w(E)
is algebraic over o(F). So n(E) C o(F). Then Ar : E — o(F) — Ly and Aw|p = Ao = 7. Thus Ar € S;. Thus we
have a map X Sy, — S, defined by m — Aw. This is injective as A is. Similarly, we can define AL S; — S, which
is again injective. Clearly X)\A;l(w) = X "Yn) = AA"Y(n) = 7 and A1 () = m. Thus A is bijective which implies

|S7-‘ = |Sa|- O

Definition 2.36. Let E/F be an algebraic extension. The separable degree of E/F, denoted [E : Flg, is |Sy| = [{7 :
E—>F|7T‘F = 1F}|

Proposition 2.37. Let E = F(«) where « is algebraic over F. Then [E : F|g = the number of distinct roots of Irred(a, F')
in F < deg Irred(a, F) = [E : F).

Proof. Let f(x) = Irred(a, F) € F[z]. Let 7 : F(a) — F such that 7 fixes F. Clearly 7 is determined by (). Also m()
is a root of f(x) as 7 fixes F. So [F(a) : F]s < the number of distinct roots of f(x) in F. Let 3 be any root of f(z).
Then 7 : F(a) — Flz]/(f(z)) — F(B) C F is an embedding of f(a) into F taking a + (3. So [F(a) : F]s > the number
of distinct roots of f(z) in F. O

Theorem 2.38. Let K C F C E be fields and E/K algebraic. Then [E : K|g = [E : F|s[F : K|s. Moreover, if E/K is
finite, then [E : K|g < [E : K].

Proof. Let E be a fixed algebraic closure of E. Let S = {7 : F — E|r fixes K}. Then |S| = [F : K]s. Let T, = {7 :
E — E|r|p = 7} for all 7 € S. By the Theorem, |T| = [E : F|g. If m; # m € S, then Ty, N Ty, = (). If 7 € T}, then
7|k = 1g. Therefore UresTy C {0 : E — Elo fixes K}. On the other hand, if 0 : E — E fixes K, then o|p : F — E
fixes K which implies o|r € S. Say o|r = 7. Then o € Ty. So UresTy = {0 : E — E|o fixes K}. Now

[E:K]s=|{oc:E— El|o fixes K}| = | Ures Tr| = Ures|Tx| = |S||Tx| = [F : K]s[E : Fls.

Moreover, suppose [E : K] < co. Then E = K(ay, ..., a,) for some n. If n = 1, done by previous proposition. If n > 1,
let L = K(a,...,n—1). By induction on n, [L : K]s < [L : K]. Now E = L(«) implies [E : L]g < [E : L] by proposition.
Thus, by the multiplicative property, [E : K]s < [E : K]. O

Definition 2.39. A polynomial f(x) € F[z] is called separable if f(x) has no multiple roots in an algebraic closure.
Let « be algebraic over F. Then « is separable over F if Irred(«, F) is separable. Let E/F be an algebraic extension.

Then E/F is separable if and only if o € E is separable over F for all a.

Remarks.
1. Suppose « is algebraic over F. Then « is separable over F' if and only if [F(«) : Flg = [F(«) : F].

2. Let K C F C E be algebraic extensions. If F/K is separable, then E/F and F/K are separable.

Proof. Let a € E. Know Irred(a, F')|Irred(c, K) in F[z]. If « is separable over K, then Irred(a, K) has no multiple

roots which implies Irred(c, F') has no multiple roots. Thus « is separable over F. O



Theorem 2.40. Suppose E/F is finite. Then E/F is separable if and only if [E : F|s = [E : F).

Proof. (<) Let a € E. Consider F C F(a) C E. We know
[E:F(a)|g|F(a): Fls=[E:Flg=[E:F]=[E: F(a)][F(a): F].

Since [F(«) : Fls < [F(«) : F], they are equal and thus « is separable by remark 1.

(=) Assume E = F(ay,...,a,). Induct on n. If n = 1, done by remark. Let L = F(ay,...,n—1). Then L/F is separable
by remark 2 and by the induction hypothesis [L : F|g = [L : F]. Note E = L(a,). Since E/F is separable, so is
E/L.So [E: Lls = [E : L] by the n =1 case. Thus

[E:Fls=[F:F|g[L:Fls=[E:F][L:F]=[E:F].

Corollary 2.41. Suppose E = F(a,...,ay,). Then E/F is separable if and only if each «; is separable over F.
Proof. (=) Clear

(<) Induct on n. If n = 1, done by remark and theorem. Let L = F(ai,...,an—1). Then L/F is separable and thus
[L: Flg =[L:F]. Also E/L is separable by the n = 1 case which implies [F : L|s = [E : L]. Multiplying, we see
[E: F|g = [E : F] which implies E/F is separable. 0

Definition 2.42. Let E be an arbitrary algebraic extension of F. Then E is separable over F' is every finitely generated
subextension is separable.
Corollary 2.43. Suppose E = F(S). Then E/F is separable if and only if « is separable over F for all a € S.

Proof. (=) Clear

(«<) Note that F(S) = {3, @isila; € F,si € S}. Thus, for all o € E, there exists a finitely generated subfield
such that o € F(s1,...,s,). By the finite case, each of these finitely generated subfields are separable. Thus, by
definition, F is separable. ]

Proposition 2.44. Suppose K C F C E are fields. Then E/K is separable if and only if E/F and F/K are separable.
Proof. (=) Done (Remark 2 above)

(«) Let a € E and f(z) = Irred(a, F) = 2™ + ¢,,—12" ! + ... + c12 + ¢p. Since « is separable over F, f is a separable
polynomial. Let L = K(cg,...,cp—1). Then f(z) € L[z] and f(z) = Irred(«, L). So f is separable, which implies
« is separable over L. Thus [L(a) : L]s = [L(«) : L]. Since F/K is separable, each ¢; is separable over K. So
L = K(co,...,cn—1) is separable over K. Thus [L(a) : K|g = [L(«) : K]. Thus L(a)/K is separable, which implies

« is separable over K. ]

Proposition 2.45. Suppose E/F is separable and let L be the normal closure of E/F. Then L/F is separable.

Proof. Let S = {Irred(a, F)|aw € E} C F[z]. Then L is the splitting field for S over F. Let
R = {a € Flais a oot of f(x) for some f € S}.

Then L = F(R). Since S is a set of separable polynomial, for all » € R we see Irred(r, F') € S which implies r is separable.
Thus L is separable. O



Definition 2.46. A field F is called separably closed if whenever oo € F is separable over F we have o € F. Equivalently,
every separable irreducible polynomial in F[x] is degree 1. A separable closure of a field F is a field E O F such that
E is separably closed and E/F is separable.

Proposition 2.47. Separable closures exist.

Proof. Let F be a field, F an algebraic closure of F, and E = {a € F|a is separable over F'}. This is a field as for
a,B € E, F(a,f3) is separable over F which implies v & ﬁ,aﬁ,% € F(a,3) which implies they are separable and thus
in E. Clearly E/F is separable, so we need only to show it is separably closed. Suppose @ € F = F is separable over
E. Then F(«a)/E is separable and E/F' is separable which implies E(«)/F is separable. Thus « is separable over F' and
therefore a € F. O

Notation. F5®P denotes a separable closure of F.
Definition 2.48. A field F is called perfect if every algebraic extension of F is separable. Equivalently, F/F is separable.

Proposition 2.49. FEvery field of characteristic 0 is perfect.

Proof. Let « be algebraic over F' where char F' = 0 and f(z) = Irred(«, F'). Then f has no multiple roots which implies

« is separable. O

Suppose char F' = p. Then (a 4 b)?" = a?” 4 b". Thus there exists a field homomorphism ¢ : F — F defined by
a — aP. This is called the Frobenius map. Then ¢(F) = FP = {a”|a € F} is a subfield of F.

Proposition 2.50. Suppose char F' = p. Then F is perfect if and only if F = FP.

Proof. (=) Let a € F. Consider f(z) =P —a € F[z]. Let @ be a root of f(x) in some splitting field of f(z) over F. Let
g(z) = Irred(c, F). Then g(z)|f(x). Note a? = a implies 2P —a = 2P — o = (x — «)P. Then g(z) = (x — a)™ for
m < p in the splitting field. But « is separable over F as F' is perfect. So m = 1. Then g(z) = z — a € F[x] which
implies a € F. So a = oP € FP. So F = FP.

<) Let a be an algebraic element over F. Let j(x) = Irred(«, ). Suppose « is not separable, 1.e., as multiple roots.
Let ab lgebraic el F. Let f Irred(a, F'). S i ble, i.e., f h ltipl
This means f(z) = g(«P) for some g(z) € F[z]. Say g(x) = 2™+ xp_12™ '+ ...+ co. As F = F?, let ¢; = d’. Then
fx)=g(a?) = (@™ +d8,_ (2™ VP + ...+ dfaP + df = (2™ + dp_12™ + ..+ dyz + dp)P.
This contradicts the fact that f is irreducible. So « is separable. ]

Corollary 2.51. FEwvery finite field is perfect.

Proof. First note a finite field F' has characteristic p < 0 where p is prime [Since ¢ : Z — F defined by n — n -1 is
not injective (as F' is finite), say ker ¢ = (p) # 0. Then Z/(p) — F and since F is a domain, p is prime.] Consider the
Frobenius map ¢ : F' — F defined by a +— aP. This is an injective homomorphism and since |F| < oo it is surjective as
well. Thus F' = FP which implies F' is perfect. O

Examples.

e Let F' be any field of characteristic p > 0. Let ¢ be an indeterminant and E = F(t). Then 2? — ¢ € E[z] is an
irreducible nonseparable polynomial. Thus E is not perfect.

Proof: Eisenstein: Let R be a UFD, K its fraction field and f(x) = apz™ + ... + ap € R[z]. Suppose there ex-

ists a prime element p € R such that p { a,,,pla; for 0 <i < n—1, and p® { ag. Then f(z) is irreducible over K [z].

Apply Eisenstein with R = F[t], a PID. Note ¢ is a prime. Then f(z) = a? — ¢ € R[z] is irreducible in
E[z], a quotient field. Note f'(x) =0, so f(x) has multiple roots, which implies nonseparable.



e By the same proof, F'(t)/F(tP) is not separable as P — t? = Irred(¢, F'(¢?)) has multiple roots.

Definition 2.52. Let E/F be a field extension. A primitive element for E/F is an element a € E such that E = F(«).

Theorem 2.53 (Primitive Element Theorem). Let [E : F| < co. Then there exists a primitive element for E/F
if and only if there are finitely many intermediate fields of E/F. Furthermore, if E/F is separable, then there exists a

primitive element.

Proof. (=) Suppose E = F(«). Let f(z) = Irred(a, F). Let L be a splitting field of f(z) = (x — 1) -+ (x — avp,). Define
a map
A @ {Intermediate fields of E/F} — {monic factors of f(z) in L},

such that K — Irred(a, K). Clearly, there are only finitely many factors of f(z) in L.

Claim: A is injective.

Proof: 1t is enough to show K is determined by Irred(o, K) = 2™ + ¢,_12™ ' + ... + ¢¢ = g(z). Note [E :
K] = [K(a) : K] = n. Let L' = F(cg,...,cn—1) € K. Then g(x) € L'[z] and is irreducible over L'. So
g(x) = Irred(ar, L'). Since E = L'(a), [E: L' = [L'(«) : L') = n. So [K : L'] =1, that is K = L’. Thus X is

injective.

(<) Suppose |F| < co. Since [E : F] < oo we have |E| < oo. Note that E* is cyclic, so E* =< a > for some « € E. Of
course, F is a field, so everything but 0 is a unit. Thus E = F(«). Now suppose |F| = co. Let E = F(aq,...,ap).
We will induct on n. If n = 1, obvious. So let L = F(a,...,a,—1). By induction, L = F(v) for some v € L.
Then E = F(aq,7). So it is enough to prove the result for E = F(a, §)/F. Let A = {F(a + ¢f)|c € F}. This is
a subset of the set of all intermediate fields of E/F. Thus A is finite. Since |F| = oo, there exists ¢; # ¢ € F
such that F(a + ¢13) = F(a + ¢c28) =: L. Then a + ¢16,a + o3 € L. Subtracting, we get (¢; — ¢2)3 € L. But
0# ¢ —ca € FCL. Thus § € L which implies o € L. So F(a+ ¢18) = F(«, ). Thus we have found a primitive

root.

Finally, let E/F be finite and separable. As above, the finite case has a primitive element equal to the cyclic generator
and we can reduce the infinite case to E = F(«,3)/F. Let [E : F]=n = [E : F|g. Let {01, ...,0,} be the distinct
embeddings of E — F which fix F. Let P(z) = [Licj(oi(a) —oj(a))x+(0:(8) —0;(B)) € F[x]. Note that P(z) # 0
as 0; # 0; and o; are determined by o;(a) and ¢;(8). So P(z) has finitely many roots in F. Since |F'| = oo, there
exists ¢ € F such that P(c) # 0. Thus, rearranging the terms of each factor of P(z) we see o;(ca+ ) # oj(ca+ 3)
for all i < j. Now ca + 8 € E and 0| p(catp) are distinct for i = 1,...,n. Thus [F(ca + 3) : F|s > n. Of course,
[F(ca+ ) : Flg <[E: F]s =n. So [F(ca+ () : F] = n which implies E = F(ca + ().

O

Example. Let F' be a field of characteristic p (e.g. F' = Z,). Let t,u be algebraically independent elements over F'

(that is, ¢ and u are indeterminants with no relations like u = t?). Consider

F(t,u) = L(t)
Ip since P — tP is irreducible over L.
F(tP,u) =L = K(u)
Ip since 2P — u? is irreducible over K.
F(tP,u?) = K

Then [F(t,u) : F(t?,uP)] = p?>. We will show there does not exist a primitive element for this extension. Let g(t,u) €
F(t,u) and note that g(¢,u)? € F(t?,uP). So [F(t,uP, g(t,u)) : F(t?,uP)] < p. So F(t,u) # F(tP,uP, g(t,u)). Thus there
is no primitive element. Note that this also implies there are infinitely many intermediate fields between the two fields.



2.4 Finite Fields

Often, if char F' = p, we say that Z, C F. We can do this by considering the embedding Z, — F' defined by 1 — 1 and
identifying Z, with its image.

Proposition 2.54. Let F be a finite field of characteristic p. Then |F| = p™.

Proof. Note that F'is a Z, vector space with dimension n, for some n. Then F' = Z; as vector spaces. This says
[F| = p". O

Proposition 2.55. Let p be a prime and n > 0 an integer. Then there exists a field F' such that |F| = p™. In fact, any
field of order p™ is a splitting field for xP" — x over Zy,. Therefore, any two fields of order p" are isomorphic and any

algebraically closed field of characteristic p contains a unique field of order p™.

Proof. First we show existence. Let E be the splitting field for f(z) = 2?" — z over Z,. Let F = {a € E|a?" — a = 0}.
Since (a4 B)P" = a?" + 7" = a+ B and (af)?" = aP" BP" = af for all a, B € F, we see that F is a subfield of E. Now
|F| < p™ as 2P" — 2 has at most p" roots. Of course, ged(f, f') = 1 as f/ = —1, so 2" — x has distinct roots, which
implies |F| = p™. Thus, we have found a field of order p™. To show uniqueness, let F' be a field of order p™ and note that
F* is a group of order p™ — 1. So for all & € F'\ {0}, o?" ! = 1, which implies o®" = a. Thus every element of F is a
root of 2P —z = 0. As |F| = p", all the roots of z?" — z are in F. So F is a splitting field. O

Proposition 2.56. Let F be a field of order p™. Then F is a splitting field for an irreducible polynomial f(x) € Z,[x] of
degree n. Moreover, any irreducible polynomial of degree n in Zy[x| splits in F. Finally F = Zy[z]/(f(z)) where f(z) is

irreducible and deg f = n.

Proof. Recall (HW Exercise) that F is normal over Z,. Let F = Z,(«). (We can do this by the Primitive Element
Theorem as every finite field is separable). Let f(z) = Irred(e, Z,). Since F/Z,, is normal and f(x) has a root in F, f(x)
splits over F. Note that Z,[x]/(f(x)) is a field of order p™ as f is irreducible of degree n. Let E be a splitting field for
g(x) contained in F where deg g = n. Then E = Z,(3) where 3 is a root of g(z) and |E| = p™. But, there exists a unique
field of order p" in F. Thus E = F. O

2.5 Inseparability

Theorem 2.57. Let F be a field of characteristic p > 0 and o € F.
1. « is separable over F if and only if F(a) = F(aP).
2. If « is inseparable over F, then [F(«) : F(a?)] = p and Irred(a, F(aP)) = xP — oP.
3. Foralln > 1, [F(a?"): Fls = [F(a) : Fls.
4. " is separable over F for all n >> 0.
5. Let n be the smallest n >> 0 such that o®" is separable over F. Then [F(a): F] = p"[F(a) : Fls.

Proof. 1. (=) Suppose « is separable over F. Then « is separable over F(a?). Certainly, « is a root of 2P — aP. So
Irred (o, F(a?))|z? — of = (z — a)P. Since « is separable, there are no multiple roots. Thus Irred(«, F(a?)) =
x —a. So o € F(aP). Thus F(a) = F(aP).
(<) Suppose F(a) = F(aP). Let f(x) = Irred(a, F'). Suppose f(z) has a multiple root. Then f(z) = g(z?) for
some g(x) € Flz]. Then g(a?) = f(a) = 0 which implies Irred(o®, F')|g(x). Then [F(aP) : F] < degg <
deg f = [F(«a) : F], a contradiction. Thus f has no multiple roots, which implies « is separable.



2. Suppose « is inseparable over F. Consider Irred(ca, F'(aP))|(x — a)?. This says Irred(a, F'(a?)) = (x — a)™ =
2™ — maz™ ! — ... € F(aP)[z] where 1 < m < p. If m < p, then m is a unit. But —ma € F(aP)[z]. Thus
a € F(aP). This says F(a) = F(aP), a contradiction to (1) as « is inseparable. Thus m = p which implies
[F(a) : F(a?)] = p.

3. Consider [F(a) : F(aP)]s. This is the number of distinct roots of Irred(«, F'(a?)). By (1) and (2), [F(«) : F(aP)]s =
1. By induction (and the n = 1 case), [F(a?") : F|g = [F(a?" ) : Flg = [F(a) : Fls.

4. Consider the descending chain of fields: F(a) 2 F(aP) 2 F(OLPQ) D ... D F. This can be viewed as a descending
chain of F—vector spaces, all of which are subspaces of the finite dimensional vector space F(a). Thus there exists

n such that F(a?") = F(a?""") and by (1), o?" is separable over F.

5. Let n be the least element such that " is separable over F. Then

n

[Fla) - F] = [F(a): F(a? NE(?") : F)

)

"[F(aP ") : F] by iterative applications of (2)
(
(

Il
SRS
L

=

n

o) : Flg as aP" is separable

Corollary 2.58. Suppose E/F is finite and char F' = p. Then [E : F| = p"[E : Flg for some n.

Proof. Say E = F(ay,...,ar). Induct on k. For k = 1, done by Theorem. Let L = F(ay,...,an—1). By induction,
[L: F)=p™[L: Fls and by k = 1 case [F : L] = p™[FE : L]s. By the multiplicative property of separable degrees,

letting n = n1 + no, done. O

Definition 2.59. Let E/F be a finite extension. Define the inseparable degree of E/F to be

[E: F]; = (E:F] _ )1 if characteristic 0,
[E . F]S

T

p" if characteristic p.

Remark. If F C L C E where E/F is finite, [E : F|; = [E : L|;[L : F);.

Definition 2.60. Let F be a field of characteristic p > 0 and o € F. Then « is purely inseparably (p.i.) over F is
o?" € F for some n >> 1. An algebraic extension E/F is p.i. if a € E is p.i. over F for all a € E.

Lemma 2.61. Let « € F. Then TFAE
1. « is p.i. over F

2. [F(a): Fls =1

Proof. We know (2)<(3) by the definition of inseparable degree. So we have

aispi. over F < of" € F forn>>0
& [F(a?"): F]=1forn>>0
& [F(a?"): Flg =1 by (4) of Thm
< [F(a): Fls =1 by (3) of Thm

Proposition 2.62. Let E = F(ay,...,ay) be algebraic over F. TFAE



1. E/F is p.i.

2. Fach «; is p.i. over F

3. [E:Flg=1

4. [E:Fl; =[E: F]
Proof. (3)<(4): By definition of inseparable degree.
(1)=(2): Clear

(2)=(3): Use induction on n. If n = 1, done by Lemma. Let n > 1 and L = F(ay,...,an—1). Then E = L(a,). By
induction [L : F]s = 1 and by the n = 1 case (since o, p.i. over F' implies o, is p.i. over L) [E : L]g = 1. By

multiplicative property, done.
(3)=(1): Let § € E. By the Lemma, it is enough to show [F(8) : F|g = 1. But [F(8) : Fls < [E : F]s = 1. Thus
[F(B): Fls =1and 3 is p.. 0
Example. Let F be a field of characteristic p and ¢t an indeterminate over F. Then F(t)/F(t¥) is p.i. Note that
F(t)/F(tP) is inseparable, but not p.i.
2.6 Cyclotomic Field Extensions

Let U,, = {z € C|z" = 1}. Note that U,, =< €2™"/™ >=< ¢>™/" > for all k such that gcd(k,n) = 1. Any cyclic generator

of U, is called a primitive nth root of unity. There are ¢(n) primitive nth roots of unity.

Definition 2.63. The nth cyclotomic polynomial is

D, (z) = H (x —w')

1<i<n, gecd(i,n)=1
where w is any primitive root of unity.

Examples.
e Oi(zx)=x—-1
o Oy(zx)=a+1

o Dy(x)=(r—i)(x+i)=a2+1

Facts.
n—1
12" —-1= H(x—wi)
i=0
2. 2" —-1= H @d(m)sincex”—lzn( H (x—wi)>.
d|n, d>0 dln \w has order d

3. deg @, (x) = ¢(n).
Lemma 2.64. ®,(z) € Z[z].
Proof. Induct on n. The n = 1 case is trivial. Let n > 1 and assume ®4(x) € Z[z] for all d < n. By Fact 2, 2" — 1 =
T4, aso Pa(@) = f(2)Pn(x) where f(z) € Z[z] by induction. Note that f(z) is monic, so by the Division Algorithm,
2" — 1= f(x)q(z) + r(x) where q(x),r(z) € Z|z]. Thus it is also true in C[z], where we know =™ — 1 = f(z)®,(z). By

the uniqueness of quotients and remainders, r(z) = 0 and @, (x) = q(z) € Z[z]. O



Theorem 2.65. ®,,(z) is irreducible over Q.

Proof. Suppose not. Then by Gauss’s Lemma, since ®,,(z) € Z[x], there exists f,g € Z[z] such that ®,,(x) = fg where
f,g are monic and f is irreducible over Q (if not, take an irreducible factor of f and group the other factors into g).
Let w be a root of f (and therefore of ®,,(x)) and p any prime such that p { n. Since ged(p,n) = 1 we see wP is also a

primitive nth root of unity and thus is a root of ®,,.

Claim: wP is a root of f.

Proof: If not, then g(w?) = 0 which says w is a root of g(zP). Since f is monic and irreducible, f = Irred(w, Q).
Thus f|g(zP) in Q[z] (and thus in Z[z] as it is monic). So g(aP) = fh for some h € Z[z]. In Z,[z] we see

(g(x))? = g(aP) = fh. Let 8 be any root of f(z) in Z,. Then G(3) = 0 as we are in an ID. Then ®,,(z) has multiple
roots, which says ™ — 1 = 2™ — 1 has multiple roots in Z,[z]. But ged(z™ — 1,nz"~!) = 1, a contradiction. Thus

wP is a root of f.

Thus every primitive nth root of unity is a root of f which is enough to say f = ®,, and since f is irreducible, ®,,(z) is
irreducible. O

Corollary 2.66. If w € C is a primitive nth root of unity, then [Q(w) : Q] = ¢(n) and Irred(w,Q) = ®,,.
Note. The above extension is normal as it is the splitting field for ®,,(z).

Example. Let w be a primitive 9th root of unity. Then [Q(w) : Q] = ¢(9) = 6. To find the minimal polynomial, note
that 29 — 1 = ®1P3P9 = (23 — 1)®g. Thus Irred(w, Q) = Pg(z) = 25 + 2% + 1.

Definition 2.67. An extension Q(w)/Q where w is a root of unity is called a cyclotomic extension.

2.7 Inseparable Closure

Definition 2.68. Say the inseparable closure of E/F is F'"? = {a € E|a?" € F for n >> 0}. Note that F'"**? /F
is p.i. and F™°P is q field by the Frobenius property.

Proposition 2.69. Let E/F be normal and inseparable. Then there exists « € E'\ F such that v is p.i. over F.

Proof. By assumption, there exists 3 € E which is inseparable over F. Let f(z) = Irred(8, F'). Then, as F/F is normal,
f(z) splitsin E. Let E' C E be the splitting field of f over F. Then [E’ : F| < oo, E'/F is normal, and E’/F is inseparable
as 3 € E' is inseparable. So it is enough to show there exists a p.i. element in E’. So, since inseparable, we may suppose
the characteristic of F' is p > 0. Then f(x) = g(«P) for some g(x) € F[xz]. Since f is irreducible, g is. If ¢ is inseparable,
then g(z) = h(z?). So g(z) = h(z?"). Continue until f(z) = g(z?") where g(z) is irreducible and separable (we must stop
as deg f < o). Say degg = r and let ay, ..., € F be the roots of g. Then g(z) = (z — a1) -+ (z — ;) (note that it is
monic as f is). So f(z) = (27" —aq)--- (2?" —a,.). Let B; be aroot of 27" — ;. Then f(z) = (x—31) -+ (x—05,))?". Thus
f(x) = £(z)?" where £(z) € E'[z]. Say {(x) = 2" +dy—12" ' +...+do € E'[z] and g(x) = 2" +c,_12" " +...+co € Fla].
Then £(z)P" = 2P"" +dP" 2P" (=D 4 dg” = f(x) = g(x"). Thus df" = ¢;. Note that if £(z) € F[z], then f would be
reducible. So there exists some i such that d; € E’ \ F. Then d; is p.i. over F. O

Theorem 2.70. Let E/F be normal with K = F*°P and L = F™°P. Then
1. K, L are fields
2. E/K is p.i. and E/L is separable
3. E=KL.

Proof. 1. Easy



2. E/K pd. is a HW exercise. So we will only show E/L is separable. Know E/L is normal as E/F is. If it were
inseparable, then the previous proposition says there exists o € E\ L which is p.i. over L, that is " € L for some
n >> 0. But L/F is p.i. so there exists r >> 0 such that (ozi"")pr € F which says « is p.i. over F| that is, « € L, a
contradiction. Thus E/L is separable.

3. Certainly KL C E. We see that E/KL is p.i. as E/K was and E/KL is separable as E/L was. Thus E/KL is
both p.i. and separable which says [E : KL] = 1. Thus £ = K L. 0

Example. Let F = Zy(s,t) where s,t are indeterminants. Let f(z) = 2* + s2? +t and 3 be a root of f in F. Then
F(p3)/F is inseparable,but there are no p.i. elements in F(f3) \ F.

Proof. First, we need to show f is irreducible. Let D = Zs[s,t]. Then f(z) € D[z] and, by Gauss’ Lemma, if f is
reducible over F[z], then f = gh for some g, h € D|x].

Case 1: degg = 1. Then g = 2 —u for u € D. Then f(u) = 0, which implies u* + su? +t = 0. If u is not constant, say
p is an irreducible factor of u, then p?|t by the 2 out of 3 lemma, a contradiction. So w is constant, that is, u = 0

or 1. But f(0), f(1) #0. So degg # 1.

Case 2: degg = 2. Then

f(x) = (22 +uz +v)(2? + ax +b)
= 2+ (u+a)z® + (ua + v+ b)z? + (ub + va)z + bu.

So we have
(1) v+a=0
(2) wa+v+b=s
(3) ub+wva=0
(4) bv=t

From (4) we can say WLOG b =t and v = 1. From (2) we can say u = a. Plugging these into (3) we get ut = u,

which implies u = 0 = a. Plugging this into (2) gives s = ¢ + 1, a contradiction as they are indeterminants.

Thus f is irreducible. This tells us that [F'(8) : F] = 4. We also know that § is inseparable as f' = 0. So [F(3) : F|s =
1 or 2. On the other hand, g(z) = Irred(8?%, F) = 22 + sx + t (which is irreducible as g(z?) = f(z), which is irreducible)
and g(z) is separable (as f’ # 0.) So F((?) is separable. [Note that by HW4 #1, this says F(3?) = F*P.] This gives
[F(B) : Fl; =2=[F(8) : Fls.

Claim: 2 — ¢ has no roots in F(f3).

Proof: Suppose v € F(3) satisfies ¥2 = t. Then v = ¢o + 18 + c28% + ¢34%, ¢; € F which implies t = 7? =

2+ 2p% + c3B* + 335 For simplicity, define d; = ¢? € F? = Zy(s?,t%). Then t = dg + d1 3% + do8* + d335. Of
course, since f(3) = 0, we know

Bt =sp%+1t
B = B%(sf? +t) = sB* + 1% = s23% + st + 152
So

t = do+dif? 4 da(sp” + 1) + dz(s°5% + st +13°)
(do + dat + dsst) + (di + das + d3s? + dst) 5>,

Since t € F' and the §’s form a basis for F(3), we get

(1) t = do + daot + dsst
(2) 0=d; +dos + dss® + dst.



Then (1) implies (1 + d3 + d3s)t = dy. So dy = 0, and dy = 1 + d3s. Plugging this into (2), we see
0:d1 —|—(1+d35)$+d352+d3t:d1—|—8+d3t

as we are in Zy. But this says s = d; + dst € Zso(t, s%), a contradiction.
O
Suppose § € F(B3) \ F is p.i over F. Then 2 < [F(6) : F] = [F(d) : F|; < [F(B) : F]; = 2. So we see 62 € F. So
[F(B) : F()] = 2. Consider 2% + sz +t = (v — a1)(z — az) in F[z]. Suppose 32 = a3 and let p be a root of 22 — a. Then
f(z) = (z—B)%(z—p)?. Since 3 is separable over F(§), we see h(x) = Irred(3, F(8)) = (z—B)(x—p) = 22+ (B+p)z+ Bp.
Thus we see Bp € F(§) C F(B). Also g(x)? = f(z), which implies (3p)? = t, a contradiction to the above claim.

2.8 Galois Groups
Definition 2.71. Let E/F be a field extension. Then Aut(E/F) = {¢ € Aut(E) : ¢ fizes F'}.

Remark. Let E/F be a finite extension.

1. |[Aut(E/F)| < [E : F|g with equality if and only if E/F is normal.

2. |[Awt(E/F)| = [E : F] if and only if the extension is normal and separable.
Proof. 1. By definition of the separable degree and normal.

2. We know |Aut(E/F)| < [E : F|]s < [E : F]. Then we get equality if and only if the extension is normal and

separable by definition of normal and separable. 0

Definition 2.72. Say E/F is Galois if E/F is normal and separable. In this case, we say Aut(E/F) is the Galois
Group and denote it Gal(E/F).

Example. Let E be the splitting field of 22 — 2 over Q. Find Gal(E/Q).
First note that this is a Galois extension as we are in characteristic 0 (thus every extension is separable) and F is
a splitting field (thus normal). Further, since [Q(4/2) : Q] = 3 and [Q(w) : Q] = 2, which are relatively prime, we see
[E: Q] =6. So |Aut(E/Q)| = 6. Further, we know that any automorphism of E sends roots of 2® — 2 to other roots and
V2 w2 V232 }

W= w wr—>w2

similarly for 2 +z + 1. So let 0 : E — E be defined by { } and 7 : E — FE be defined by {

Then 03 = 15,72 = 1g and o7 # 70. Thus (since there is only nonabelian group of order 6),
Gal(E/F) =< o,7|0® =71* = 1,707 = 0% > .

Example. Let E be the splitting field of 2° + 3 over Q. Recall (a test problem) that the splitting field is F = Q(w+v/3)
where w = €™/6 and [E : Q] = 6. Define 0; : E — E by wV/3 — w?t1{/3. Then G = Gal(E/Q) = {041, ...,06}. We
just need to decide whether G is Cg or S3. First note that w? = % + 2(wv/3)? and thus o1 (w?) = § + (01 (wV/3))® =
1 — 13 = w'% Thus we see 0 (wV/3) = 01(w?V/3) = 01(w?)o1 (wV/3) = w%W3V3 = wV/3. Thus 07 = 1. Similarly, we
can show o3 = 1 and 0109 # 0201. Thus G = Ss.

Proposition 2.73. Let w € C be a primitive nth root of unity. Then Gal(Q(w)/Q) = Z%.

Proof. By previous study, we know [Q(w) : Q] = ¢(n). Thus Gal(Q(w)/Q) = {¢; : Q(w) — Q(w)|¢;(w) = w, where ged(i,n) =
1,1 <i < n}. Define p : Gal(Q(w)/Q) — Z, by ¢; +— [i]n. Clearly, p is an isomorphism. O

Remarks. Let E/F be Galois and L an intermediate field.

1. Then E/L is Galois and Gal(E/L) < Gal(E/F).



Proof. If E/F is separable and normal, then so is E/L. Also, any automorphism of E which fixes L also fixes F. [

2. Let H < Gal(E/F). Then Ey = {u € E|o(u) = u for all 0 € H} is an intermediate field of E/F. Call it the fixed
field of H.

Theorem 2.74. Let E/F be Galois and G = Gal(E/F). Then Eg = F.

Proof. Clearly, F C Eg. Let a € Eg and o : F(a) — F be an embedding which fixes F. Then we can extend o to
7:FE — F. Since E/F is normal, 7 is an automorphism, which implies 7 € G. Then a € Eg implies 7(«) = a and thus
o(a) = a. So 0 = 1p(q). Then 1 = [F(a) : F|s = [F(«) : F], since separable. Thus o € F' and Eg = F. O

Lemma 2.75. Let E/F be a separable extension such that [F(«) : F] <n for all « € E. Then [E : F] < n.

Proof. Choose o € F such that [F(«) : F] = m is as large as possible (can do this as it is bounded above by n.) If
E # F(a), let p € E\ F(a). Then, by the Primitive Element Theorem, there exists v € E such that F(v) = F(a, ().
Then [F(y) : F] > [F(«) : F] = m, a contradiction. So F = F'(«) which says [E : F] = [F(a) : F] <n. O

Theorem 2.76 (Artin’s Theorem). Let E be a field and G a finite subgroup of Aut(F). Let F = Eg. Then
1. E/F is finite, Galois, and [E : F] = |G|
2. G =Ga(E/F).

Proof. Let a € E and {o1(«),...,0.-(a)} C {¢p(a)|¢ € G} be maximal with respect to the property o;(a),...,o() are
distinct. Let 7 € G. Since 7 is injective, 701 (@), ..., 7o, () are also distinct. Thus 7o; (@), ..., 7o (a) is a permutation of
o1(a),...,o0(a). Let fo(x) = [I'_;(z — 0;()). Then for 7 € G, f7(z) = fa(z). So fo(z) € F[z]. Thus Irred(a, F)|fo ()
and f,(z) has distinct roots. Thus « is separable over F. Since a was arbitrary, F/F is separable. Also for all « € E,
fa(x) splits in E so Irred(a, F') splits in E which says E/F is normal. Thus E/F is Galois. Now [F(a) : F] <
deg fo(x) = r < |G|. Since E/F is separable, the lemma tells us [E : F| < |G|. Now G < Gal(E/F) thus we have
|G| < |Gal(E/F)| = [E: F] <|G|. So |G| = |Gal(E/F)| = [E : F] which implies G = Gal(E/F). O

Theorem 2.77 (Fundamental Thm of Galois Theory). Let E/F be a finite Galois Extension. Then there is a
bijective correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F') defined by L — Gal(E/L)
and H — Eg for an intermediate field L and a subgroup H.

Proof. By the previous lemma, Eqqyg/r) = L. By Artin’s Theorem, for H < Gal(E/F), E/Ey is Galois and Gal(E/Ep) =
H. O

Note. The correspondence is inclusion reversing. That is, for intermediate fields
L1 g L2 we see Gal(E/Ll) 2 Gal(E/L2)

and for subgroups
H, D Hy we see Ey, C Ey,.

Recall that Artin’s Theorem says |Gal(E/L)| = [E : L] and for H < G = Gal(E/F), |H| = [E : Eg], which implies
[G: H] = [Ey : F]. Thus we can construct the following diagram:

E 1} E

[E:L]

|H|

L<—> H=Gd(E/L) <—> Egy

[L:F)

|G:H]

F<——> G=Gau(E/F) <— Eg



Example. Let E = Q(v/2,v/3). Find primitive elements for all intermediate fields of E/Q.

1. Compute G = Gal(E/Q). We know [E : Q] = 4 and there are 4 obvious automorphisms: /2 + +4/2 and
V3 — £4/3. So that must be all of them. It is easy to check that G =< U7T|O'2 =712 =1,07r =70 >= Cy x Oy
where 0 : E — E sends V2 +— —v/2 and 7: E — E sends V3 — —+/3.

2. Create a subgroup lattice:

{1}

<og> <oT > <T>
\ /
2
G

This tells us our Intermediate fields are E-ys, E<yrs, E<rs, all of which have degree 2 over Q. Now, v/3 is fixed
by o, V2 by 7, and v/6 by o7. So

Eo s = Q(\/§)>E<UT> = Q(\/é)v Eors = Q(\@)

and of course E = Q(v/2 + v/3) (this element is not fixed by any of the above automorphisms.)

Example. Let E = Q(wv/3), w = ¢*™/12, Then E is the splitting for % 4 3. Recall from before that Gal(E/Q) = S3
and was generated by o : E — E defined by wv/3 — w3¥/3 and 7 : E — E defined by w+v/3 — w®v/3. Now, we can again

make our subgroup lattice:

{1}

<og> <oT > <or?> <T>

We see 7 fixes w? = ¢™/3 an element of degree 2 over Q (the irreducible polynomial is 22 +z+1.) So E<,~ = Q(w?).

Since 02 = 1, we see wv/30(wv/3) = wV/3w3V/3 = wW*V/3 is fixed by ¢ and not in Q. Thus F.,~ = Q(w*V/3).

We expect the other roots of 2 — 3 to be fixed by our other two intermediate fields.
e Since (07)% = 1, we see wv/307(wv/3) = V/3 is fixed by 07. So Eyr» = Q(V/3).
e Similarly, we see F g, 25 = Q(w8 \3/5)

Definition 2.78. Let F be a field and o € F. Let 04, ...,04 be the distinct embeddings of F(a) — F fiving F. Then

o1(a),...,o5(c) are called the F—conjugates of a, that is, the F—conjugates of a are the distinct roots of Irred(c, F).

Remark. Suppose a is separable over F and Irred (o, F) = [[;_,(z—0i(a)) = 2" +cp—12" 1 +...+¢o. Then [[oi(a) = ¢o
and > o;(@)) = ¢y—1. Thus they are in F.

Proposition 2.79. Let E/F be a finite Galois extension. Say E = F(«). Then
1. Irred(a, Egr) = [Iey (@ — h(a)) = 2™ — izt + ...+ cp.

2. Ey = F(c1,...,¢n).



Proof. 1. Let f(x) = [[(z — h(c)). If ' € H, then f" (z) = [[(x — I'h(a)) = f(z) as h' € H. Thus f(z) € Eglz].
Note that deg f = |H| and deglrred(o, Eyy) = [Eg(«) : Eg] = [E : H] = |H| = deg f. Since f(a) =0 (1 € H) and
f is monic, f = Irred(a, Epr).

2. Let L = F(cy,...,cn) C Eg (as the ¢;’s are fixed by H). Then f(z) € L[z], f is irreducible, and f(«) = 0. Thus
f=TIrred(cr, L). So [E : L] = [E : Ey] which implies L = Ey. 0

Example. Let w be a primitive 11th root of unity and F = Q(w). We've proved Gal(E/Q) = Z7, = Cip. Say
Gal(E/Q) =< o > where 0 : E — E is such that w > w?.

{1} E
b/ N2 / AN
<o?> <o® > — Qw + w3 + wt + Wb +w?) Qw + w'?)
2\ /5 AN /
G Q

e w+o’(w) =w+w!® ¢ Q as otherwise w would be a root of both 2% 4+ — ¢ for some ¢ € Q and 2 + 2% + ... + 1,

a contradiction as the minimal polynomial is unique.

o w+oi(w)+ot(w)+0o%w)+0¥(w) =w+w + w5 +w? +w € Q as then [Q(w) : Q] <9, a contradiction.
Theorem 2.80. Let E/F be a finite Galois extension and G = Gal(E/F). Let L be an intermediate field and H =
Gal(E/L). Then

1. L/F is normal if and only if H is normal

2. If H< G, then Gal(L/F) = G/H.

Proof. =: Define ¢ : G — Gal(L/F) by o — o|r. This is well-defined as L/F is normal. Furthermore, ¢ is surjective
as for m € Gal(L/F), we can extend 7 to an element o € G. Thus o|;, = 7 and thus Gal(L/F) = G/ker ¢. Now
o € ker ¢ if and only if |y, = 1 if and only if o fixes L if and only if 0 € H. Thus H < G and Gal(L/F) = G/H.

<: Suppose o : L — F fixes F. Need to show o(L) C L. Let « € L. Extend 0 to 7 : E — F. Then 7 € G as E/F is
normal. It is enough to show 7(a) € L = Ey. Let h € H. As H <G, 77 'hr € H. Therefore 7~ 'h1(a) = «, which
implies h7(a) = 7(a). Thus h fixes 7(a). Since h is arbitrary, 7(«) € Eg = L. Thus o is an automorphism of L

and L/F is normal. 0

Definition 2.81. Let E/F be a Galois extension. Say E/F is abelian/cyclic/solvable if Gal(E/F) is abelian/cyclic/solvable.
Example. Cyclotomic Extensions are abelian.

Example. Let F be the splitting field of 2% + 5 over Q. Recall [E: Q] = 12 and E = Q(w?,wv/5) for w = ¢2™/12,

E
2, NG
QwiB) Q)
6\ /2
Q
As Trred(wv/5, Q(w?)) = 28 +5, we can define o : E — E such that {wii:afz%} . Similarly, we can define7: E — E

w2 — wlO

{wf/g — w%
by

}. Note that o : wV/5 — wW?*1V/5 as o fixes w?. So || = 6 and clearly |7| = 2. Since 7 ¢< o >,



G =< 0,7 > . Note o7(wv/5) = w?V/5 but 7o(wV/5) = 7(W3V/5) = T7(W?)T(WV5) = WO V/5 = W' /5. Thus 70 # o7

Note 70T €< ¢ > and by order arguments, 707 = 0~ ! = 0°. So G = D;5. Now we want to find the subgroups of D1,.

e 7 subgroups of order 2: < 0% > <71 > <70 >, <70 > < 70 >, < T0* >, < 70° >(All the subgroups generated
by the elements of order 2.)

e 1 subgroup of order 3: < 02 > (since either the Sylow 3 or Sylow 4 subgroup is normal by Sylows Theorems but
the Sylow 4 subgroup can not be normal as then we’d only have 3 order 2 elements, not 7)

e 3 subgroups of order 4: P, =< 03,7 >, P, =< 0,70 >, P3 =< 0,702 > (by Sylow’s Theorems)

e 2 subgroups order 6: < o >, < o2, >.

{1}

<T> <70 > < 70% > <TO <TU> <70° >
<02,T> <o >

G

To translate this into field extensions, note:
e Degree 6 extensions: Roots of 2% 4+ 5 correspond to E.,,is and E_gss = Q(w?, V/5).
e Degree 4 extension: We've seen this is Q(iv/3,iv/5) = Q(w?, (wV/5)?).

e Degree 2 extensions: We know one is F,~ = Q(w?). We expect the other to be F_,z2 ,~ = Q((wv/5)?). In fact it

is as 0% ((wV/5)?) = (0°V5)? = w5 = (V5) and 7((wV/5)*) = (wV/5)*.

e Degree 3 extensions: Roots of 2% + 5.

\
Q(w?, (wV5)




Theorem 2.82. Let F' be a finite field and E/F a finite extension. Then E/F is cyclic.

Proof. Say char F' = p. Then Z, C F. Since Gal(E/F) C Gal(E/Z,), it is enough to show Gal(E/Z,) is cyclic. Say
[E :Zy) =n. Then |E| = p™. Let 0 : E — E be the Frobenious map. The o € Gal(E/Z,).

Claim: Gal(E/Z,) =< o > .

Proof: We want to show |o| = n. Suppose ¢¢ = 1 for some 1 < i < n. Then a = o'(a) = a?" for all a € E. Then
xP" — z has |E| = p” roots, contradiction as p™ > p’. Thus |o| = n.

O

Corollary 2.83. Let E be a field with p™ elements. Then E contains a subfield with p™ elements if and only if m|n.

Equivalently, zP" — x splits in E if and only if m|n.

Proof. Let G = Gal(E/Zp). Then n = |G| = [E : Z,]. So E contains a subfield F' with order p™ if and only if there
exists ' C F with [F' : Zy] = m if and only if there exists ' C F with [E : F] = * if and only if there exists a subgroup
H C G such that |H| = - if and only m|n as G is cyclic. O

Remark. Let F be the splitting field of a degree n separable irreducible polynomial f € F[z]. Then E/F is Galois and
Gal(E/F) = a subgroup of S,,.

Proof. Let E = F(ay,...,a,) where ai, ..., a,, are the roots of f(z). Define ¢ : Gal(E/F) — Perm(T") such that o — or

where I' = {a1, ..., ., }. Then ¢ is injective as o is determined by o(aq), ..., 0(ay). O

Example. Consider 2° — 2 € Q(w)[x] where w = ¢?™/3. This is irreducible as [Q/2 : Q] = 3 and [Q(w) : Q] = 2 and
ged(2,3) = 1. Then |Gal(E/Q(w))| = 3.

Let z1,...,x, be independent indeterminants over a field F. Let E = F(x1,...,z,). Let 0 € S,,. Then there exists an

f@1@n) . f(0(@1)s00(@n))
9@1m@n)  go(@1),o (@)

automorphism of F induced by o, say o : E — E defined by
Example. Let n = 3 and o = (123). Then

5 (:v% + 3z173 —&—m%) a3 4 3waxy + a8

_
1T — 223 Toxg — 2135

For simplification, we will identify & with o.

Let L = Eg, . By Artin’s Theorem, E/L is Galois and Gal(E/L) = S,,. We call L the field of symmetric rational
functions. Now, any finite group is a subgroup of a group of permutations. So H < S,, will correspond to an intermediate
field of E/L.

Example. Let n = 3,F C L. Let ¢ be an indeterminant over E and consider f(t) = [[}(t — z;) € E[t]. For all o € S,,,
we see f7(t) = f(t). Thus f(t) € L[t]. Then, if f =" — s1#" 1 + s59t" "2 — ... + (=1)sp, we see s; € L for all i. Call {s;}

the elementary symmetric functions in x4, ..., x,.

Theorem 2.84. With the above notation, L = Eg, = F(s1, ..., Sn).

Proof. Note f(t) € F(s1,...,8n)[t]. Then E = F(sq1,...,8,)(x1, ..., 2,) is the splitting field of f(t) over F(sy,..,s,). But
deg f =n,s0 [E: F(s1,...,8,)] <nl. But [E: F(s1,...,8,)] > [E: L] =nl. Thus E = L. O

Inverse Galois Problem: Is every finite group the Galois group of a Galois extension of Q7

Fact. For all n € Z such that n > 0, there exist infinitely many primes p such that p =1 mod n.

Theorem 2.85. Let G be a finite abelian group. Then there exists a primitive mth root of unity w and a field E C Q(w)
such that Gal(E/Q) = G.



Proof. Let G = C,,, X Cpy X -+ x Cp,.. Let py, ..., pr be distinct primes such that p; =1 mod n;. (Note we use the claim
here in the case of n; = n;.) Let m = p; -- - pg. Let w be a primitive mth root of unity. Then Gal(Q(w)/Q) = Z}, =
Ly X oo XLy = Cp 1 % - x Cp, 1. Since n|p; — 1, let H; < Cp, 1 such that |H;| = % Then Hy X -+ x Hy i
a normal subgroup of Gal(Q(w)/Q). Let E be the fixed field for Hy x - -+ x Hy. Then E/Q is normal and Gal(E/Q)
Ly X -+ xZ;;k/Hl XX Hy 2 Cpy X -+ X Cp, 2G.

»n

Il

O

2.9 Norm and Trace

Definition 2.86. Let E/F be a finite extension. Let 01, ...,0, be the distinct embeddings of E — F which fir F. For
a € B, define NE(a) = (01() -+~ 0,.())EFli as the norm of o and TrE(a) = (o1(a) + -+ + 0,(a))[E : F); as the

trace of a.

Examples.

1. If £ = Q(\/i) Then 1 : E — F and 0 : E — E defined by v2 — —/2 are the only 2 embeddings. So
N(a+bv2) = (a +bv2)(a — by/2) = a? — 2b% and Tr(a + bv/2) = (a + bv/2) + (a — bV/2) = 2a.

2. Let F = Q(\“’/ﬁ) Then there are three embeddings: 1 : V2 — /2,0 : /2 — w¥/2,7 : V2 — w?¥/2, where
w = €2™/3 Then N(g(a + b2+ 6\3/11) = a3 + 2b% + 4¢3 — 6abe and Trg(a +bY2+ 0\3’/11) = 3a.

3. Let F =Z,(t) and E the splitting field of f(z) = 2P — ¢t over F. Then E = F(«a where o = t. Clearly, « is p.i. over
F which implies E/F is p.i. and [E: F]=p. So [E: F|g =1 and [E : F]; = p. Then we have only one embedding-
the identity. So NE(3) = 8?7 and NE(B) = pB = 0 (since charF = p.)

Lemma 2.87. If E/F is finite and separable, then NE (o), TrE(a) € F for alla € E.

Proof. Let L be the normal closure of E/F. Then L/F is finite and Galois. Let oy, ..., 0, be the distinct embeddings of
E — F which fix F. Let ¢ € G = Gal(L/f). Then ¢o; : E — L for all i. Further, ¢o; are distinct as ¢ is injective. So
{¢o1,...,¢0.} = {o1,...;0,} for all ¢ € F. Thus ¢(NE (a)) = ¢(o1(a) - 0p(a)) = ¢po1(a) - - - po, (o) = NE (). Since this
holds for all ¢ € G, we see NE(a) C Lg = F. Similarly for TrE(a). O

Proposition 2.88. If E/F is finite, then NE(a), TrE(a) € F for alla € E.

Proof. 1f E/F is inseparable, then [E : F]; = p™. So TrE(a) = p"(---) = 0 as char F' = p. Let L be the separable closure of
Fin E. Then E/Lis p.i. and L/F is separable (by HW4#1). Therefore, [E: Fls = [E : L|g[L: Flgs =[L: F|s = [L : F].
Let o1, ...,0, be the distinct embeddings of L — F fixing F. Then r = [L : Fg. Extend o1, ...,0, to 71,...,;7 : E — F.
Then {7y, ..., 7.} is the set of distinct embeddings of E — F fixing F. Let o € E. Then p™ = [L(«a) : L]; < [E : L]; = p™.
So a?” € L since all(®:li ¢ [ By the lemma, for all 3 € L, Nk(8) € F as L/F is separable. Now NF(a) =
(ti(a) - - (@) FL=ELL — 7 (B o (olB L) = g (alPE) .. g (alPHi) € F by the previous sentence (take
B = alf:Ll), O

Proposition 2.89. Let E/F be a finite extension. Let a, 3 € E. Then

1. NE(aB) = NE(a)NE(8) and TrE(a + §) = TrE(a) + TrE(A).

2. If a € F, then NE(a) = olPF] and TrE(a) = o[F : F).

3. If K is an intermediate field, then NE = NE o NE and TrE = Tr¥ o TrE.
Proof. 1. Follows from the definition as o; are homomorphisms.

2. Let a € F. Then NE(a) = (01(a) - 0,.())FFl = (a")FFl = olBF] ag p = [E: Flg.



3. Let 01,...,0, be the distinct embeddings of K — F fixing F. Extend these to 71,...,7, : E — F. Let ¢1, ..., ¢; be
the distinct embeddings of E — F fixing K. Then {r;¢;}; ; are the distinct embeddings of E — F fixing F. Then

[E:K]; (E:K];\ K [E:F);

NENE(@) = NE | T] 6560 = | = ([Tos@ = (o] =nF@.

Similarly for the trace. 0

Remarks.

1. NE: E* — F* is a group homomorphism and T7E : (E,+) — (F,+) is an additive group homomorphism. In fact,

TrE : E — F is a linear functional of E as an F—VS.

Proof. Let ¢ € F,a € E. Then

Tr&(ca) = [E : F); (Z Ji(ca)> =[E:F); (cZJZ—(a)> = cTrE(a)
as o; fixes ¢ € F. We have already seen the trace is additive. O

2. If char F = 0, then TrE(c) = [E : Fle # 0. If char F = p and [E : F]; > 1, we have already seen TrE(a) = [E :
Fli(—=) = p'(=—) = 0. So TrE degenerates. It’s a little harder to see, but if char F' = p and [E : F]; = 1, then

the trace is non-degenerate. We will prove this.

Lemma 2.90. Let E/F be a field extension, L a field such that F C L, and o1, ...,0, the distinct field embeddings of

E — L which fiz F. Then o1, ...,0, are linearly independent over F.

Proof. We will induct on n. Let n = 1. Suppose aoy = 0, where o1 # 0. Let a € E \ {0}. Then o;1(a) # 0. Since
we are in a field, aoj(«) = 0 implies @ = 0. Let n > 1. Suppose (*)ajo1 + - + ano, = 0 for some oy, ...,0, not
all zero. If any of these terms are 0, we are done by induction. So assume a; # 0 for all i. Let 8 € E such that
01(8) # 02(8). For a € E, we see a101(af) + - - + anop(af) = 0 which implies ay01(8)o1(a) + - - 4+ anon(B)on(a) =0
for all & € E. This implies ay01(8)o1 + -+ + anon(B)o, = 0. Now divide by o1(5) and subtract from (). Then

as (1 — ngg;) oo+ +ap (1 — Z’I‘((g))) oy, = 0. By induction, since a; # 0, we see 1 = Zl((gg which implies o1(8) = 0;(8),

contradiction. O

Corollary 2.91. If E/F is a finite separable extension, then TrE # 0. So TrE is nondegenerate for separable extensions.

Theorem 2.92 (Hilbert’s Satz 90). Let E/F be a finite cyclic extension. Let < 0 >= Gal(E/F) and § € E. Then
NE(B) =1 if and only if B = ﬁ for some a € E.

Proof. Let |o| = n.

(«:) Then NE(B) = [[* " o'(8) = [V " o (ﬁ) =TI S5 =1as0m = 1.

(=:) Suppose N(B) = 1. By the lemma, {1,0,...,06" '} are linearly independent over F. Let

g=1+ B0+ (Bo(B8)0>+ ...+ (Bo(B)-- " 2(8))0™ " £ 0.



Then there exists u € E such that g(u) # 0. Let o = g(u). Then

Bo(a) = po(g(u))
Bo(u+ Bo(u) + (Bo(8))o*(w) + ...+ (Bo(B8) ---a"2(8))o"  (u))
= Bo(u) + Bo(B)o?(u) + Bo(B)o?(B)o3(u) + ...+ (Ba(B)--- 0"~

=N(B)=1 u

=
Q

3
&

= g(u) =a

Thus 3 = 2.
O

Remark. Let F be a field, n > 1. Then the roots of 2™ — 1 form a finite subgroup U,, of (F)*. Thus U, is a cyclic
group, say U, =< w > . If char F' tn, then 2™ — 1 has n distinct roots. Thus |U,| = n. Any generator for U, is called a

t

primitive n** root of unity.

Theorem 2.93. Let F be a field, n > 1 such that char F { n. Assume F contains a primitive n'" root of unity. Then
E/F is cyclic of deg|n if and only if E = F(«) where o™ € F.

Proof. (=:) Let [E : F] = d. Then, since d|n, there is a primitive d'* root of unity, call it £ € F. Then ¢~ € F and
NE@E™) = (¢ HIEF] = 1. So there exists a € E such that £~ = (> Where < 0 >= Gal(E/F). Then o(a) = {a
which implies o%(a) = &'a as € € F implies o fixes £. Since o(a), ...,0%(a) are distinct, we see [F(a) : Flg > d.
Since [E : F] = d this says [E : F(a)] = 1 and thus E = F(a). Now notice o(a?) = o(a)? = (¢a)? = a?. So

a’ € E_,~ = F and since d|n, o™ € F.

h

(<:) Let a=a" € F. Then « is a root of 2" — a € F[z]. Let w € F be a primitive n'" root of unity. Then

n—1

" —a= H(x—wia) € Elx].

=0

So E is the splitting field of ™ —a which implies E/F is normal. Since char F { n, the w® are distinct and thus 2" —a is
separable. So E/F is Galois. Let d = [E : F). Let f(z) = Irred(av, F'). Then f(x)|z™ —a. So f(z) = ;l;é (x —wa)
where 0 < i; < n — 1. Therefore, the d elements of Gal(E/F) are 0;, : E — E defined by o — w®a. Define
¢ : Gal(E/F) —-< w > by 0;, — w'. This is a homomorphisms as 0;,0;,(0) = w0y, (a) = Wt (a) and so
#(0i,0i,) = ¢(03,)p(04,). This is injective as the w® are distinct. So Gal(E/F) is isomorphic to a subgroup H of
< w >. Clearly, H is cyclic and has order d. 0

2.10 Can we find polynomials whose Galois Group is 5,7

Theorem 2.94. Let f(z) € Z[z] be monic of degree n, with n distinct roots. Let p be prime and f(x) € Z,[x] where f(z)
is obtained by reducing the coefficients of f(x) modulo p. Let oy, ..., o, be the roots of f(x) and uy, ..., u, the roots of f(x)
(assume uq, ..., u, are also distinct.) After possibly reordering ui, ..., u,, there exists an injective group homomorphism
Galz, (f) — Galg(f) defined by 7(u;) = u; if and only if o(ov;) = aj.

Definition 2.95. A subgroup H < S, is called transitive if for all i # j € [n], there exists o € H such that o(i) = j.
Proposition 2.96. Suppose f(x) is irreducible in Z,[x]. Then

1. Galg, (f) is transitive and hence Galg(f) is transitive.

2. Galg(f) contains an n—cycle.

Proof. 1. As f(z) is irreducible, there exists a map ¢ : Z,(a;) — Zp(;) sending a; — «;. Extend ¢ to the splitting

field. Then ¢ : Galz, (f) — Galz, (f).



2. As Zj, is a finite field, Galg, (f) is cyclic of order n. Let < 0 >= Galg,(f). Say 0 = 7 - - - ), where 7; are disjoint.

Of course, < ¢ > is transitive so we must have ¢ = 7. Thus 7 is an n—cycle. O

Theorem 2.97. Let n >4 and f1, fa, f3 € Z[x] be monic polynomials of degree n such that
1. f| € Zy|x] is irreducible.
2. fo € Zs|x] is such that fo = G h1 where g, is irreducible of degree n — 1.

3. f3 = Goha € Zs[z] where g is irreducible of degree 2 and h is a product of irreducible factors of odd degree. [Note:

we may need that the roots are distinct here...J
Let f = —=15f1 + 10f2 + 6f5. Then f is monic of degree n and Galg(f) =2 S,,.

Proof. The key here is to note that S, is generated by an n—1 cycle and a transposition. By 2, we see Galg(f) contains an
n—1 cycle. Now, we will show that the construction in 3 gives us a transposition. Let f(z) = g(z)h1(z) - - - hi(x), where
g, h; are irreducible, deg g = 2 and deg h; is odd for all i. Consider G' = Galz,(f) as a subgroup of S,,. Let a1, a2 € Zy
be the roots of g(z) and as, ..., a, the roots of hy, ..., hy. Let F = Z,(aq,a2) and L = Zy(as, ...,a). Then E = FL is
the splitting field of f. If we show [E : L] = 2, then any nontrivial element of Gal(E/L) corresponds to a transposition
(we swap a; and s and leave all the other roots fixed). To do this, we need only show [L : Z,] is odd. Induct on k. If
k = 1, since every finite extension of a finite field is cyclic, L = Z, () where « is a root of hy. So [L : Z,] = deg hy which
is odd. So suppose k > 1. Let T be the splitting field for hq, ..., hx—1 and a be a root of hy. By the same reasoning as
above, hy, splits in Z,(a). So [Zy(«a) : Zy) is odd. By induction, [T : Z,] is odd. Note that L/T and Z,(«)/Z, are Galois
(they are both splitting fields for hi. Recall Gal(L/T) < Gal(Zy(ct) /Zy). So [L : T]| [Zy(a) : Zy). So [L : T] odd implies
[L:Zp)is odd. Thus 2 = [E : L] which says G contains a transposition. Now, by the previous theorem, since there exists

an injection G — Galg(f), we see that Galg(f) contains a transposition. O
Example. Find a polynomial f(x) € Q[z] such that Galg(f) = S4.
fi=at+z+1
fo= (23422 +2)(2) = 2* + 222 + 22
fa= (22 +2)(x)(x+1) =2 + 23 + 222 + 22
Then f = —15f; + 10fy + 6f3 = 2* 4+ 62 + 3222 + 172 — 15 has Galois group S4 over Q by the theorem. Note that

f is irreducible as it is modulo 2.

2.11 Solvability by Radicals
Motivation:

o Let f(z) = az® + ba + ¢ € Flz],a # 0. Then, if char F # 2, the roots of f(z) = =% where « is a root of

2?2 — (b2 — 4ac). Less specifically, we know the roots of f(z) lie in F(a) for some a € F such that o € F.

o Let f(z) = az® + ba? + cx + d € F[z]. Then, if char F # 2,3, we can reduce f to f(x) = 2 + pz + q € F|[z].
Cardano (1500s) found that the roots of f(x) lie in F(w,d,y1,y2) where w is a primitive 3" root of unity, J is a



root of #2 — (12p® — 81¢?), y1 is a root of 2% + (%q + %5), and y, a root of 2 + (2—27q — %5)

F(waéa y17y2)
|
y% € F(w767y1)
|
yi € F(w,0)

|
5% € F(w)

wdeF

Definition 2.98. A finite extension E/F is called radical if E = F(aq,...,ap) such that for all i = 1,..,n there exists
m; such that ;"' € F(o,...,05-1). A polynomial f(x) € F[z] is solvable by radicals over F if f(x) splits in some

radical extension of F.

Theorem 2.99. Let f(z) € F[z] be a separable polynomial. Let E be the splitting field for f(x) over F. Suppose
char F{[E : F]. If Gal(E/F) is solvable, then f(x) is solvable by radicals over F.

Proof. Let n = [E : F] and w be a primitive n'® root of unity. Let L = F(w). By HW3#1, EL/L is Galois and
Gal(EL/L) is isomorphic to a subgroup of Gal(E/F). Since subgroups of solvable groups are solvable, Gal(EL/L) is
solvable. Now EL is the splitting field of f(z) over L. Note that

FEL lives in a radical extension of L

EL lives in a radical extension of F'(since L = F(w) and w™ € F))

f(z) is solvable by radicals over L

4
4
< F lives in a radical extension of F
=4

f(x) is solvable by radicals over F.

So WLOG, we may assume w € F. Let G = Gal(E/F). Since G is solvable, there exists a normal series {1} = G; <
Gi_1<4-+-<1Gy = G such that G;/G;11 = C,, (we know the factor groups are abelian, if not cyclic then just take smaller
subgroups so that they are), where n;|n = |G|. Let E; be the corresponding intermediate field of G; with E = E; and
Ey = F. Note that E;1/E; is Galois for all i and Gal(E;+1/E;) = G;/Gi+1 = C,,, and since F contains a primitive nl"
root of unity (it contains a primitive n** root of unity and n;|n). Then by the previous theorem, E;1 = E;(a;) where

a;t € E;. Therefore, F is a radical extension of F" and so f is solvable by radicals over F. O
Lemma 2.100. Suppose E/F is a radical extension. Let L be the normal closure of E/F. Then L/F is radical.

Proof. Let E = F(uq,...,u,) where u;"" € F(uy,...,u;—1) for i = 1,...,n. Let 01, ...,0, be the distinct embeddings of
E — F which fix F. Then L = F({0;(u;)};;) (as this gives all of the roots of {Irred(u;, F)};). Note that o;(u;)™ =

Ul(U;n]) € Ui(F(Ul, -~~7Uj—1)) = F(O’i(ul), ...,O’i(uj'_l)). O

Lemma 2.101. Let L/K be a Galois, radical extension. Then Gal(L/K) is solvable.
Proof. Say K = Ky C K; C--- C K,, = L where K; = K;_1(u;) and «}"" € K;_1.

Claim: char K { m; for all 4.
Proof: Suppose m; = p'¢ where p = char K and p { £. Then (uf)P* = u[" € K;_;. This says u! is p.i. over K;_;.
But L/K Galois says L/K;_; is separable. Thus we must have u! € K;_;. So we can simply replace m; with ¢ and

since p 1 ¢, done.



Let m =my ---my,. Then v € K;_; and char K { m. Let w be a primitive m*" root of unity.

L(w)
/ AN Galois, Radical
L K(w)
AN / Galois, Radical
K

By the picture, L(w)/K is radical and Galois (as L(w) = LK (w) where L, K(w) are Galois). Now, since L/K is normal,
Gadl(L/K) = Gal(L(w)/K)/Gal(L(w)/L).
Since quotient groups of solvable groups are solvable, it is enough to show Gal(L(w)/K) is solvable. Also
Zy, = Gal(K(w)/K) = Gal(L(w)/K)/Gal(L(w)/ K (w)).

Recall that Gal(L(w)/K) is solvable if and only if Gal(K(w)/K) and Gal(L(w)/K (w)) are solvable. Since Gal(K (w)/K)
is abelian, it is solvable. So we need only show Gal(L(w)/K(w)) is solvable. Note that we have shown that Gal(L/K)

is solvable if Gal(L(w)/K(w)) is solvable. Thus, we may assume K contains a primitive m!"

root of unity. By the
theorem on cyclic extensions, K;/K,_; is cyclic. Let H;_y = Gal(L/K;_1) and H; = Gal(L/K;). As K;/K;_; is normal,
H;<H;—y and H;_1/H; & Gal(K;/K;_1) is cyclic. So {1} = H, < H,_1 <---<1Hy = Gal(L/K) is a solvable series.

Thus G is solvable. 0

Theorem 2.102. Let F be a field and f(z) € F[z] a separable polynomial. If f(x) is solvable by radicals over F, then
Galp(f(x)) is solvable.

Proof. Let E be the splitting field for f(z) over F. Then E C L for some radical extension L over F. WLOG, assume
L/F is normal (can do by the first lemma). Define ¢ : Aut(L/F) — Gal(E/F) by ¢ — o|g. Since E/F is normal, ¢
is well-defined. Also ¢ is surjective as L/F is normal (given p € Gal(E/F), we can extend it to L and it will be an
automorphism of L). Hence

Gal(E/F) =2 Aut(L/F)/ ker ¢.
Since quotients of solvable groups are solvable, it is enough to prove Aut(L/F') is solvable. Note |Aut(L/F)| = [L: F]s <

[L: F] < oo (as radical extensions are by definition finite). Let G = Aut(L/F) and K = E¢. By Artin’s Theorem, L/K
is Galois and G = Gal(L/K). Note that F C K and L/K is radical. Thus by the second lemma, we're done. O

Definition 2.103. Let F' be a field and tq, ..,t, indeterminants over F. Then the general equation of degree n over
Fis f(x) = 2" — 12"t +tox™ 2 4 ...+ (1), € F(t1,....t,)[x].

Theorem 2.104. Let L = F(t1,..,t,) and f(z) as above. Then Galp(f) =2 S,.

Proof. Let E be the splitting field for f(z) over L. Say f(z) = [\, (z—v;) € E[z]. Then E = L(y1,...,yn) = F(y1, ..., Yn).
Thus t; = 8;(yY1, ..., Yn), Where s; € L[z1, ..., x,] is the i*" elementary symmetric function. Define a field homomorphism
o:L— F(s1,..,8,) C F(x1,...,2,) by t; — s; and fixes F. Then o is clearly surjective.

Claim: o is an isomorphism
Proof: Define 7 : F(z1,....,2,) — E = F(y1,..,yn) by @; — y;. Then 7(s;) = t; as t; = s;(y1,...,yn) and

F
TO (H) =T (5522:;) = 281?:; So ¢ is injective and thus an isomorphism.




Note that fo(x) = 2" — sy2" ! + ... + (=1)"s,, and has splitting field F(x1,...,x,) (where the z;’s are such that
fo(z) =T1—,(z — 2;)— from our definition of the elementary symmetric functions).

splitting field of f(z) — | | — splitting field of f7(x)

By the theorem on the uniqueness of splitting fields, there exists an isomorphism ¢ : F(y1, ..., yn) — F(x1, ..., x,) where
#lr = o. Hence Galr(f) = Galp,,..,
Theorem. O

s)(f7) = Sy, as we saw earlier with the symmetric functions, using Artin’s

Recall: S, is solvable if and only if n < 4.

Corollary 2.105. If n < 4 and char F {|S,| = nl, then the general equation of degree n over F is solvable by radicals.
Corollary 2.106 (Abel’s Theorem). Ifn > 5, then the general equation of degree n over F is not solvable by radicals.
Fact. If p is prime, then S, is generated by any transposition and any p—cycle.

Lemma 2.107. Let f(z) € Q[z] be irreducible of prime degree p and suppose f has exactly p — 2 real roots. Then
Galg(f) = S,.

Proof. Let E = Q(a4, ..., ap) where oy, ..., «, are roots of f(x) with aq,as € R. Let G = Gal(E/Q) C S,. Since f(x) is
irreducible, p||G|. Since p is prime, the only elements of S), of order p are the p—cycles. Thus G contains a p—cycle. Let
o be complex conjugation restricted to E. Then ¢ transposes a; and ay and fixes asg, ..., a,. So 0 € G is a transposition.
Done by fact. O

Example. Let f(z) = 2% — 223 — 8z — 2 € Q[z]. This is irreducible by Eisenstein. Using Calculus to find the critical
numbers and looking at the end behavior, we see f(x) crosses the z— axis 3 times. Thus f(x) has 3 real roots. By the
lemma, Galg(f) = Ss. Thus f is not solvable by radicals.

2.12 Transcendental Extension

Definition 2.108. Let E/F be a field extension and S C E. Then S is algebraically dependent over F if there exists
S1yeey8n € S and f(x1,...,2pn) € Flay,...;x,] \ {0} such that f(s1,...,8,) = 0. Otherwise, we say S is algebraically

independent over F.

Remarks.
1. 0 is algebraically independent over any field.
2. {u} is algebraically independent if and only if u is transcendental over F.

3. {s1,..., 8} is algebraically independent over F' if and only if F[s1,...,8,] & Flx1,...,2,], where z1,...,z, are

variables.

Lemma 2.109. Let E/F be a field extension and S C E an algebraically independent set over F. Let uw € E. Then
S U{u} is algebraically independent if and only if u is transcendental over F(S).

Proof. (<) It is enough to show {si, ..., s,,u} is algebraically independent for si, ..., s, € S. Suppose f(z1,...,Zn+1) €
Flzy,...,xpe1] and f(s1,...,8n,u) = 0. Let g(zne1) = f(S1, -, Sn, Tnr1) € F(S)[xnt1]. Note g(u) = 0. Since w is
transcendental over F(S), we must have g(z,4+1) = 0. Write

f(x1, o @pgr) = he(@r, o xn)ay, o + .o+ ho(21, -, ).



Then 0 = g(x,+1) says hi(s1,...,8,) = 0 for all 7. Since {s1,...,s,} are algebraically independent, we must have
hi(x1,...,x,) =0 for all i. Thus f(z1, ..., Tpt1) = 0.

(=) Suppose u is algebraic over F'(S). Then u is algebraic over a finite subset of S. So WLOG, S is finite. Then there
exists f(z) € F(S)[x] \ {0} such that f(u) =0. Say

(81500 S0) 81y .ees Sp
) = o ) o4 o1 )

Bo(stsmnsn) T hg(s1, e sn)

where ¢;(21,...,xpn), hi(x1, ..., Tpn) € Fla1,...,2,]. Multiply f by hg---h, to clear denominators and still get a
polynomial that u satisfies. So WLOG, h; = 1. Let £(z1, .., Tn, ) = gr(21, ..., xp)z" + ...+ go(x1, ..., Zn). Note that
£(81, .., Sn,u) = 0. Since SU{u} is algebraically independent, ¢(x1, ..., z,,x) = 0, a contradiction as f(x) # 0. Thus

u is transcendental over F'(S). O

Definition 2.110. Let E/F be a field extension. A set S C FE is called a transcendence base for E/F if S is
algebraically independent over F and E/F(S) is algebraic.

Theorem 2.111. Let E/F be a field extension and L C E an algebraically independent set over F. Then there exists a
transcendence base S for EJF such that L C S.

Proof. Let ' = {T|L C T C E and T is algebraically independent over F'}. Note L € T so " # (. Let C be any totally
ordered subset of I'. Then Ty = UgeeT € T' is an upper bound. By Zorn’s Lemma, there exists a maximal set S € T.
Then S is algebraically independent by definition of T' and E/F(S) is algebraic by the lemma and maximality of S. O

Example. Let X,Y be indeterminants over F. Then {X,Y} is a transcendence base for F(X,Y)/F. Also {X?2,Y?} is

a transcendence base.

Theorem 2.112. Let E/F be a field extension. Then any two transcendence bases for E/F have the same cardinality.

Proof. We’'ll prove this in the case that E/F has a finite transcendence base S = {s1,...,8,}. Let T be a transcendence
base for E/F.

Claim: There exists t; € T such that {¢;, sa, ..., s, } is algebraically independent over E/F.

Proof: Suppose not. Therefore F(T) is algebraic over F(sg,...,s,). But E/F(T) is algebraic, which implies

E/F(sa,...,8,) 18, so 81 € E is algebraic over F(sa, ..., s, ), a contradiction.

Claim: The set {t1, $2,..., 8, } is a transcendence base of E/F.

Proof: Suppose s; is transcendental over F({t1, sa, ..., sn}). Then {t1,s1,...,8,} is algebraically independent, but
t; is algebraic over F({si,...,sn}), a contradiction. Thus s; is algebraic over F({t1,sa,...,8,}) which implies
F({t1,s1,..,8n}) is algebraic over F({t1,$2,...,8,}). But E is algebraic over F({t1,s1,...,8,}) (as it is over
F({s1,...,8,})) and thus FE is algebraic over F'({t1, s2,..., 8, }).

Repeating this process, replace sa, ..., S, by ta,...,t, € T to obtain a transcendence base {t1,...,t,} for E/F. Since T is
algebraically independent, T' = {t1, ..., tn }. O

Definition 2.113. The transcendence degree of E/F is the cardinality of any transcendence base for E/F.
Note. The transcendence degree of E/F is 0 if and only if E/F is algebraic.
Theorem 2.114. Suppose K C F C E are fields. The tr deg E/K =tr deg E/F +tr deg F/K.

Proof. Let S, T be transcendence bases for F/F and F/K respectively. Since T C F and S C E\ F, we see SNT = (.
Then it is enough to show S UT is a transcendence base for F/K.

Claim 1: E is algebraic over K(SUT).



Proof: We know that F is algebraic over K(T'). So F'(S) is algebraic over K(T')(S) = K(SUT). As E is algebraic
over F(S), FE is algebraic over K(SUT).

Claim 2: SUT is algebraically independent over K.

Proof: Let f(Z1,..csTm, Y1,y Yn) € K[T1, ooy T, Y1, .-y Yn) such that f(s1,..., Sm,t1,...,tn) = 0. We want to show
f=0.Say f => 9i(y1,--syn)hi(x1, ..., xy,) where g; € Klyi,...,yn] and the h; are distinct monomials in the
x's. Let £(x1, ..., @m) = f(Z1,000y Ty b1,y tn) € K(T)[z] C Flz1,...,Zm]. That that £(s1,....,8m) = 0. As S is
algebraically independence over F, we know ¢ = 0. So f(z1,...,Zm,t1,...,tn) = 0. Since the h;(z1,...,2,,) are
linearly independent over F'[z] (as they are distinct monomials), we must have that g;(t1, ...,t,) = 0 for all ¢. Since

T is algebraically independent over K, ¢;(y1,...,4n) = 0. Thus f = 0.
O

3 Rings and Modules

We will take all rings to have identity, but not necessarily be commutative.

Definition 3.1. Let G be a group, k a field. Let B be a k—vector space with basis {eg}qcq. Then V is a group
ring with elements of the form >

(D cgeq)(D_dgeg) =3 cqdgregy

Remarks. Under this definition, V' is a ring with identity element e;. For convenience, we will write g for e, and K[G]

geG Cg€g where all but finitely many terms are zero. Define multiplication in V' by

for the ring V. Note that K[G] is commutative if and only if G is abelian.

Example. Let G = C,, =< g > and K be any field. Then K[C,] = {Z;:Ol cig'|ci € K}. Define a ring homomorphism
K[z] — K|[C,] such that k — k and « — g. Clearly, this is surjective. As g" =1, we see " — 1 € ker ¢. So we have an

induced map K[z]/(z™ — 1) — K|[C,]. Since both of these have dimension n, we see that they are isomorphic.
Definition 3.2. A division ring is a ring in which every nonzero element is a unit.
Examples.

1. Any field is a division ring.

2. Consider the ring homomorphism R — M5(C) defined by r — rI. In this way, we can consider R as a subring
0 0 1 0 1

J= k=

—1 -1 0 i 0
H =TR-1+Ri+ Rj+ Rk C My(C). Then H has dimension 4. Note that i? = j2 = k? = —1,ij = j = —ji,jk =

i = —kj,ki = j = —ik. Thus H is closed under multiplication and has identity. Since H is a vector space, its

of M5(C). Let i = . Then {1,1,j,k} are linearly independent over R. Let

an additive group. Thus H is a noncommutative subring of My(C), called the ring of (real) quaternions. Let
a =19+ 71+ rej+rsk and @ = 79 — r1i — roj — r3k. One can check aa@ = @a = 73 + 1?2 + 13 + r3 =: |a|?. Note
a =0 if and only if |a| = 0. So if a # 0, a~t = % Thus H is a division ring (but not a field!).
Definition 3.3. Let R be a ring. A left (respectively, right) R-module is an abelian group (M,+) together with a map
R x M — M defined by (r,m) — rm such that

1. r(m+n)=rm+rn
2. (r+s)ym=rm+sm
3. r(sm) = (rs)m

4. Im=m

Notes. Not everyone requires (4). In this case, R is called a unital module. Also, we will assume 1 +— 1 in a ring

homomorphism.



Definition 3.4. Let f : R — S be a ring homomorphism such that f(R) C Z(S). Then S is called an R—algebra.

Note. The ker f is a two-sided ideal. Thus f : R/ker f — S is injective. Thus R/ker f is commutative and R/ ker f C
Z(9).

Examples. Assume R is a commutative ring.

1. Let R[x1,...,x,] be the polynomial ring in x1,...,z, and I an ideal of R[z1,...,z,]. Then f : R — Rlxy,...,zn]/I
defined by r — 7 = r + I is a ring homomorphism. Thus R[z1,...,x,]/I is an R—algebra.

2. Define f: R — M, (R) by r +— rI. This is a ring homomorphism, so M,,(R) is an R—algebra.
3. Let G be a group. Define f : R — R[G] by r — re;j. This is a ring homomorphism, so R[G] is an R—algebra.

4. Let C(R) = {f : R — R|f is continuous}. Then f : R — C(R) defined by r — f.(x) = r is a ring homomorphism.
Thus C(R) is an R—algebra.

Definition 3.5. Let S be a ring, A C Z(S) a subring, T a subset of S. Say S is generated over A by T if every element
of S is a finite sum of elements of the form ati* ---t}*, where a € A, t; € T,n; > 0. We write S = A[T]. If S = A[T] for
some finite subset T of S, then S is finitely generated over A as a ring. If f: R — S is a ring homomorphism with
f(R) C Z(95), then S is a finitely generated R—algebra if S is finitely generated over f(R) as a ring.

Notes.

e If F/K is a finitely generated field extension and F' is an intermediate field, then F//K is a finitely generated field
extension (HW).

e This is NOT true for algebras. For example, K|[z,y] is finitely generated as a K—algebra, but K|z, zy, xy?,...] is

not finitely generated as a K —algebra.
Examples. Let R be a commutative ring.

1. S = R[z1,...,x,]/I is a finitely generated R—algebra where T' = {Z7, ..., T, }. Using the above notation, we can say
S = R[T1, ..., Tn)

Claim. Let S be a finitely generated A—algebra which is commutative. Say S = A[T]| where T = {t1, ..., t, }. Define
¢ Alx1,...,xn) — S by f(x1,....,zn) — f(t1,...,t,). Because the tis commute, ¢ is an onto ring homomorphism.
So S Alxy,...,x,]/1.

2. S = M,(R). Let E;; be the n x n matrix with a 1 in the i,j" entry and zeros everywhere else. Then for
A= (ai;) € S, wesee A=Y a;;E;;. Thus S is generated by E;;. So S = R[{E;;}].

3. R[G] is a finitely generated R—algebra if and only if G is a finitely generated group. For one direction, we see if
G =< g1,...,gn >, then R[G] = Rlg1, ..., gn]-
4. C(R) is not a finitely generated R—algebra.

Let A be a ring. By an A—module, we mean a left A—module, unless when explicitly stated otherwise.

Remark. Let f: R — S be a ring homomorphism. Any S—module M is an R—module via the action r - m := f(r)m.

In particular, S is an R—module.

Definition 3.6. Let M be an R—module and T C M. Say T generates M as an R—module if every element of M can
be expressed as Y | riti, fort; € T,r; € T, that is, M = RT = R—submodule of M generated by T. We say M is finitely
generated as an R—module if M = RT for some finite subset T of M. In practice, if T = {t1,...,tn}, we will write
M = Rty + ... + Rt,,. Sometimes, this is stated as “M is a finite R—module” even though M is not necessarily finite.

Examples. Let R be a commutative ring.



1. R[z1,...,x,]/I need not be a finitely generated R—module. For example k[z,y]/(xy) is not a finitely generated

k—module.
2. M,(R) is a finitely generated R—module (M, (R) =) RE;;).

3. R[G] is a finitely generated R—module if and only if |G| < oco.

3.1 Free Modules and Bases

Definition 3.7. Let M be an A—module, T C M. Say T is linearly independent over A if whenever Y a;it; = 0

where t1,....,t, € T are distinct, then a; =0 for all 3.

Example. Let R = Zg and I = (2). Then 2 is a minimal generating set of I but 3 -2 = 0. So {2} is not linearly

independent over R.
Definition 3.8. A basis T for an A—module M is a generating set for M which is linearly independent over A.

Proposition 3.9. Let M be an A—module, S C M. TFAFE
1. S is an A—basis for M

2. For any A—module N and any set map j : S — N, there exists a unique A—module homomorphism } M — N

such that the following diagram commutes

S——M
Ve
. 7/
ji 27 38
N

Proof. (1) = (2) Given j : S — N, define j : M — N by j : (D segs8) = D cgasj(s) (where all but finitely many as
are 0). Since S is a basis for M, every element of M can be written uniquely in the form ) _gass. Thus 3 is a

well-defined homomorphism. Also, 3 is clearly unique.

(2) = (1) S is linearly independent: Suppose ) g ass = 0. For each ¢ € S, define j; : S — A by t + 1 and s + 0 for
s #t. Then 0 = j;(0) = j; (Y ass) = 3 asji(s) = aq. Since t was arbitrary, done.

S generates M: Let M’ be the A—submodule of M generated by S, that is M’ = {> _gass|as € A,s € S}. Define

j: 8 — M/M by s— 0=s+ M. Consider j : M — M/M’ defined by m — m + M’. By the uniqueness of j,

since the 0 map also make the diagram commute, }: 0, which implies m + M’ = 0 for all m € M. Thus M = M~
Definition 3.10. An A—module is called free if M has a basis.

Remarks.

1. M is a free A—module if and only if M = ®;c1A.
Proof. (<) : Forall j €1, let e; € ®;crA where (e;); =0if i # j and 1 if i = j. Then {e;},c; forms a basis.
(=) : Let S be a basis for M. Define ¢ : ®;c5A — M by es — s. Then > ases — > ass. Since S generates M, its

onto. Since S is linearly independent, its injective. 0

2. Every A—module is the homomorphic image of a free A—module.

Proof. Let M be an A—module. Define ®,,epr A — M by e, — m. Then extend it to > amem — > amm. Then

¢ is a surjective homomorphism. O



Examples.
1. The O—module is always free.
2. Let R be a commutative ring, I # (0) an ideal. TFAE
(a) I is free
(b)y I®R
(¢) I = Ra = (a) for some non-zero-divisor a € R.

Proof. (a)=(b): Let S be a basis for I. Suppose |S| > 1. Let s # ¢t € S. Since R is commutative, st + (—t)s = 0.
Since s and ¢ are linearly independent, the coefficients are 0. Thus s = ¢ = 0. So |S| = 1 which implies ] 2 R. O

3. Let R =Z[x] and I = (2,z). Then I can be shown to be not principal, thus I is not free.

4. Let R = Z[v/=5] and I = (2,1 + +/=5). Then I is not principal, so I is not free. However, I ® J = R? for some
ideal J.

5. Let R be commutative. Then M, (R) is a free R—module with basis {F;;}.
6. R[G] is a free R—module with basis {g}4eq-

Remark. Let A be a ring, I a two-sided ideal. Let M be an A—module. Then M/IM is an A/I—module via
(a+)(m+IM)=am+IM.

Lemma 3.11. Let M be an A—module and I a two-sided ideal. If S is a basis for M, then S = {s + IM|s € S} is an
A/T basis for M/IM.

Proof. Let m € M/IM. Then if m = m + IM, we know m = Y ays, which says m = Y. @,;5. So S generates M/IM.
Suppose Y @55 = 0. Then ) ays = 0 which implies - ass € IM. Then Y ags = >0 iym; for iy € I,m; € M. Now
mj; = ZsGS bjss. So, ZCLSS = Zj,s ijbjss = ZS(Zj ijbjs)s which implies a; = Zijbjs € I. Thus a; = 0. O

Lemma 3.12. Let R be a division ring. Any R—module M has a basis and any two bases for M have the same cardinality.

Proposition 3.13. Let R be a commutative ring and M an R—module. Then any two bases have the same cardinality.

Proof. Let m be a maximal ideal of R (it exists by Zorn’s Lemma). Then R/m is a field. Let S1,S> be two R—bases
for M. By the above two lemmas, Sy, S; are R/m—bases for M/mM and S;, Sy have the same cardinality (as R/m is a
field).

Claim: For any basis S of M, S and S have the same cardinality.
Proof: We know the map S — S defined by s — 5 is onto. Suppose 5 = ¢ for s,t € S. Then s —t € mM. So

s—t=> igs for iy € m by the proof of the first lemma. Comparing coefficients, this says 1 € m, a contradiction
as m # R.

Thus 57 and S have the same cardinality. O

Definition 3.14. If R is commutative and F is a free R—module, then the rank of F is defined to be the cardinality of
any basis for F. (Note: When R is a field, this is just the dimension).

Definition 3.15. Let M be an A—module. Define EndaM = {f : M — M|f is an A—module homomorphism}.

Remarks.

1. EndaM is a ring under addition and composition. We call it the endomorphism ring of M.



2. If A is commutative, then ¢ : A — Enda (M) defined by a +— al is a ring homomorphism.
[Note: If A is not commutative, then for r ¢ Z(A), we have rI & Enda(M) as f(r'm) # ' f(m).]

Thus if A is commutative, then End4 (M) is an A—algebra, and in particular an A—module.

3. If A is commutative and F is a free A—module of rank n, then Ends(F) = M,(A) (as a homomorphism is

determined by where it sends the basis elements).

Example. Let A be a commutative ring, F a free A—module with basis N, that is FF =2 @22, A. Let {e;[i = 0,1,...} be
a basis for F' and R = Enda(F). Then R = R™ for all n > 1.

PT’OOf. Deﬁne fl,fg F— F by fl(GQi) = ei,fl(egi_,_l) = 0 and f2(621j) = 0, f2(€27;+1) = €; fOI‘ 7 Z 0 Then fl,fg S
EndA(F) = R.
Claim: {fi, fo} is an R—Dbasis for R.

Proof: Let g1,92 € R. Note that (g1f1 + g2f2)(e2i) = gi1(e;) and (g1f1 + gaf2)(e2it1) = g2(ei). Now, suppose
g1f1 + g2f2 = 0. Then, by the note, g1(e;) = g2(e;) = 0 which implies g3 = g2 = 0 as the set {e;} is a basis. Thus
{f1, f2} is a linearly independent set. To show it is a generating set, let g € R. Define g1, g2 € R by g1(e;) = g(ea;)
and ga(e;) = g(ezit1) for all i > 0. Then (g1f1 + g2f2)(e2i) = gi(ei) = gleai) and (g1f1 + g2 f2)(e2i41) = ga(ei) =
g(ezit1).

This shows R = R2. Now, applying this inductively, we see R* RGR>2RGR>* =2 R3 >~ ... = R", O

3.2 Exact Sequences

Definition 3.16. Let L, M, N be A—modules and f : L — M,g : M — N A—module homomorphisms. We say the

sequence L I M 2 N is exact at M ifimf = ker g. More generally, if the sequence My Jo, M, ELN Mo fa, I M,

is exact at each M; for 1 < i < n — 1, then we say the sequence is exact. A short exact sequence is an exact

sequence of the form 0 — L L% N o Equivalently,
1. f is injective
2. g is surjective
3. imf = kerg
Examples.
1. Suppose L is a submodule of M. Then the sequence 0 — L — M — M/L — 0 is exact.

2. Let My, M> be A—modules. Then the sequence 0 — M; — My + My — My — 0 is exact. This is called a split

short exact sequence.

Definition 3.17. Let A be a ring and (x)0 — L LM % N = 0 a short ezact sequence of A—modules. We say (x)

splits (or is split exact) if there exists an A—module homomorphism ¢ : M — L @® N such that the diagram commutes:

0 L L M 9, N 0
o
0 L —— LN —L - N 0

where i : £ — (¢,0) and j: ({,n) — n.
Proposition 3.18. Let ()0 — L LM L N — 0 be a short exact sequence. TFAE

1. (%) splits



2. There exists an A—linear map o : N — M such that go = 1y
3. There exists an A—linear map w: M — L such that mf = 1.
If any of these hold, then ¢ : M — L & N is an isomorphism.

Proof. First, we prove ¢ is an isomorphism. Suppose ¢(m) = 0. Then g - 1y(m) = jo(m) = 0 implies m € ker g = imf.
So there exists £ € L such that m = f(£). Then i - 15(¢) = ¢f(¢) = ¢(m) = 0 and since 7 is injective, we have £ = 0
and thus m = 0. So ¢ is injective. Now, let (¢,n) € L & N. Since g is surjective, find m € M such that g(m) = n.
Then ¢(m) = (¢',n) for some ¢’ € L. Consider ¢(f(¢ — ') +m). We see ¢p(f(f — ') +m) = ¢of(l — ') + ¢p(m) =
i1y =2)+¢p(m)=(—-2¢,0)+ (¢,n) = ({,n). Thus ¢ is an isomorphism.

(1) = (2): Define 0 : N — M by n — ¢~((0,n)). Then go(n) = g¢—1((0,n)) = j(0,n) = n. Thus go = 1.

(2) = (3): Let m € M. Note that g(m —og(m)) = g(m) —gog(m) =0 as go = 1y. Thus m —og(m) € kerg = imf. As f
is injective, there exists a unique £ € L such that f(f) = m — og(m). Define 7 : M — L by m +— f~1(m — ag(m)).
Then ¢ is a homomorphism and wf(¢) = f=*(f({) —o gf (£)) = f~L(f(0)) = 1r.

jnry

(3) = (1): Define ¢ : M — L& N by m — (w(m), g(m)). Then, for £ € L, we see ¢(f(£)) = (xf(£),gf(£)) = (£,0) =i(¢)
and for m € M, we see j¢p(m) = j(mw(m), g(m)) = g(m). Thus the diagram commutes. O

Example. Let A = R[z,y, 2]/(2? + y*> + 22 — 1). Consider g : A> — A by (a,b,c) — aT + by + ¢z. Note g is a surjective

homomorphism as ¢(%,7,%) = 7> + §> + 22 = 1 € img and since img is an ideal, this says img = A. Consider the short

exact sequence 0 — kerg < A3 % A — 0. Define 0 : A — A3 by 1 — (Z,9,%). Note go(1) = 1, which implies go is the

identity on the basis for A. Thus go = 14. By the proposition, the sequence splits and A3 =2 A @ ker g.

Proposition 3.19. Let F' be a free A—module and suppose 0 — L EING YRRy N 0 is exact. Then the sequence splits.

Proof. Let S be a basis for F. As g is onto, for all s € S there exists m, € M such that g(m,) = s. Define 0 : I — M
by s — mg. This gives a well defined map as S is a basis for F. Then by definition, go = 1g and thus go = 1r. Thus by

the proposition, the sequence splits. O
Examples.

1. 0= (2) = Z — Z/(2) — 0 is a short exact sequence which does not split. Suppose that o : Z/(2) — Z defined by
1+ m and 0 +— 0 for some m € Z. Then 0 = 0(0) = 0(2-1) = 20(1) = 2m € Z. Thus m = 0 and so ¢ = 0. But
then, go =0 # 1.

2. Let G be a finite group, k a field such that char k¥ # |G|. Let A = k[G] and V any A—module. Let W = {u €
Vigu = u for all g € G}. Then W # 0 as 0 € W. So W is an A—submodule of V. So consider the short exact
sequence 0 — W — V — V/W — 0. This splits! Define p : V.— W by v — ﬁzgeG gv. Then for w € W,

plw) = ‘1@|G|w =w. So pi = 1y

3. Let R be a PID and M a finitely generated R—module. Recall the torsion submodule of M is T(M) = {m €
M|rm = 0 for some r € R\ {0}}. Also, M is called torsion free if T'(M) = 0.
Remark. M/T(M) is torsion free.

Fact. Over a PID, finitely generated torsion free modules are free. (If A is a finitely generated abelian group, we
know AXZ" B Z/(a1) ® -+ B Z/(a,) and if torsion free, then it would just be A = Z").

Example. If R = Z[z],I = (2,z), then T is torsion free but not free (as I is not principal).
Thus 0 — T(M) — M — M/T(M) — 0 splits as M /T (M) is free. Hence T'(M) is a direct summand of M.

1

4. Let R = k[z,y] for a field k (thus not a PID, but it is a UFD). Let M = R?/R(2% xy). Then T(M) = R(z,y)
R/(x), but T(M) is not a direct summand of M.



Proof. Clearly, z(z,y) = (22,2y) = 0. Thus (z,y) € T(M). Suppose (a,b) € T(M). Then there exists f €
E[z,y] \ {0} such that f(a,b) =0 which implies f(a,b) = g(z2, zy) for some g € k[x,y]. WLOG, assume g # 0 and
ged(f,g) = 1. Then fa = 2%g and fb = xyg which implies f|z? and f|ry. Thus f = u or f = ux for u € k*. If
f =u, then (a,b) € R(x?, xy) which says (a,b) = 0. If f = ux, then (a,b) € R(z,y) (as a = u~ zy and b = u~'yg).
Thus T(M) = R(z,y).

Now suppose f(z,y) = 0. Then f(z,y) = g(z?, 2y) which implies f = gx. So f € (). Define ¢ : R — R(z,y) b
i+ 7(z,y). Then ¢ is onto and ker ¢ = (x). Thus R/(z) = R(x,y) = T(M). O

Now, we show the short exact sequence 0 — R/(x) ERNg VAN M/T(M) — 0 where f : T +— r(z,y) does not split.
Suppose it did. Let p : M — R/(x) be a splitting map so that pf = 1. Let ¥ = p(0,1) and 5 = p(0,1). Then

1= p((z,9)) = p(x,0) + p(0,y) = xp(1,0) + yp(0,1) = 27 + y5 = z7 + ys.

Thus 1 —zr —ys € (z). So 1 — xr — ys = pz for some p, a contradiction (just plug in x = 0 and y = 0 to get 0 = 1).
Thus it doesn’t split.

5. Let R C S be commutative rings and suppose S is an integral domain (thus R is as well), R is a UFD, char R =0
and S is a finitely generated R—module (thus S = Rzy + ... + Rx,). Then R is a direct summand of S as an
R—module, that is, 0 = R — S — S/R — 0 splits.

Proof. Let E = Q(S) and F = Q(R). Then F is a finite vector space over F' (generated by x1, .. xn) and so
[E : F] < oo. Since char R = 0, we see char F' = 0 and thus E/F is separable. Define p : S — R by s — [E &l TrE(s).

There is more work from here, but its beyond the scope of this course. O

6. Theorem (Miyata): If R is a commutative, Noetherian ring and (x)0 - L — M — N — 0 is a short exact
sequence of finitely generated R—modules, then (x) splits if and only if M & L & N.

This is not true in general. For example let R = Z F =@ ,2,T = &2 ,Z/27Z. Note that F//2F = T. Consider
the short exact sequence 0 — F & T L FeT % T — 0 defined by ¢ : (f,t) — (2f,t) and ¢ : (f,t) — f. This
does not split.

Proof. Let e; denote the standard basis for F. Let p: F& T — F @ T be a splitting map. Then p¢ = 1. Now

¢(e1) = 2e; implies e; = po(er) = 2p(e1) = 2> aze;. Setting basis elements equal, we see e; = 0 for ¢ # 1 and

1

= 35, contradiction. O

ai

Note, however, that F&T = (F@T)®T as T ® T =T (its a countable sum).

Definition 3.20. Let P be an A—module. Then P is called projective if whenever one has a diagram of the form

M*f>N*>O exact

S

N .

a N |°
N

P

then there exists h : P — M such that i = fh (the diagram commutes). Note that this implies f and i are surjective.

Remark. Free modules are projective. Let F' = P above, let S be a basis for F. For each s € S, there exists ms € M
such that f(ms) = i(s). Define h: ' — M by h(s) = ms. Then the diagram commutes.

Example. Let R =Z[v-5],I = (2,14 +/—5). Then I is projective, but not free (as it is not principal).

Proposition 3.21. Let A be a ring and P an A—module. TFAE



1. P is projective
2. there exists an A—module @ such that P ® Q is free
3. Every short exact sequence 0 — L — M — P — 0 splits.

Proof. (1) = (3): Let 0 — L I M % P — 0 be a short exact sequence. Since P is projective and we have 1p : P — P,

there exists p : P — M such that the diagram below commutes:

f g

-

0 exact

But then gp = 1p and thus the SES splits.

(3) = (2): Let ¢ : F — P be a surjection, where F is free. Let @ = ker¢. Then 0 —» Q@ — F — P — 0 is exact and
splits by (3). Thus F =2 Q & P.

(2) = (1):] Consider the diagram

M ! N 0 exact
»

\ i

\ T

\
R\ P
\

\ T

\
PoQ

Since free modules are projective, there exists h : P & @ — M such that fh = iw. Let j: P — P & @ be defined

by p — (p,0). Then hj : P — M. Also, f(hj) = fhj = imj = i. Thus the diagram commutes. 0

Examples/Remarks.
1. Every free module is projective.
2. Every projective module over k[z1,...,x,] (for a field k) is free. (Quillen-Suslin, 1975).

3. If R is a commutative Noetherian domain, then every non-finitely generated projective R—module is free (Bass,
1963).

4. 7Z/2Z is not a projective Z—module. Since the only map from Z/2Z — Z is the 0-map, the diagram below, with

f:1+— 1, would never commute:

A 727 0 exact

N

7.)2Z.

5. Z/(6) =2 Z/(2) ® Z/(3). Since Z/(6) is free (as an Z/(6)—module), we see that Z/(2) and Z/(3) are projective
Z/(6)—modules. However, they are not free (just count elements...there are too few elements to be a direct sum of
copies of Z/(6).)

6. Let R =Z[v—5],I = (2,1 + +/—5). Then I is not free (it’s not principal), but it is projective.



Proof. Define ¢ : R?> — I by (a,b) — 2a + (1 + v/=5)b. Let K = ker ¢. We’ll show 0 — K — R? — I — 0 splits.
Define p: I — R?by z— (1*32\/:5’, 1‘1\7_15) . We need to show that the image is actually in R?, but to do that
it is enough to show for x = 2,1+ /-5

(1+\/?5)(1‘32*/j5>=1‘2¢2‘75“5:s_\/?5, 2<1i€§5)=1i€§5=(1—¢?5)(\/?5)63.

2 U 1+V/-5
(1 — 3v/—5+ 3v/—5) = z. Thus the SES splits which says that I is a direct summand of a free module, and thus

projective. O

Since we are just multiplying, this is certainly a homomorphism. Note that ¢p(z) = ¢ (x (1_3‘/_75 3v—5 )) =

7. Let G be a finite group and k a field such that char k1 |G|. Let R = k[G].
Fact. Let M be any R—module and N any R—submodule of M. Then N is a direct summand of M.

Let M be any R—module, F' any free module. Consider the short exact sequence 0 — ker¢ — F %M - 0.
Since ker ¢ is a summand, we get a splitting map. Thus F = ker ¢ & M which implies every module is projective.
However, there exist non-free modules. Let M = R(3_ cq9) = k(3. e 9)- Then dimpyM = 1 and dimyR = |G|.

Thus M cannot be a free R—module as the dimensions do not work out (unless of course |G| = 1.)

3.3 Localization
Let R be a ring. A set S C Z(R) is multiplicatively closed (mc) if ab € S whenever a,b € S.

Definition 3.22. Let R be a ring and S # () a mcs of R. The localization of R at S is a ring T together with a ring
homomorphism ¢ : R — T such that

1. ¢(s) is a unit in T for all s € S.

2. If f : R — A is a ring homomorphism such that f(s) is a unit for all s € S, then there exists a unique ring

homomorphism g : T — A such that
¢
R——T
Ve
7/
fl, /// 3lg
A
Proposition 3.23. IfT exists, it is unique up to isomorphism
Proof. Show 2 maps compose to the identity O
Notation. We denote T by SR or Rg.
Theorem 3.24. Rg exists.
Proof. Define an equivalence relation on R x S by (71, $1) ~ (r2, s2) if and only if ¢(ser; — s172) = 0 for some ¢t € S.
Claim: This defines an equivalence relation.

Proof: We show transitivity. Suppose (11, $1) ~ (12, s2) and (rg, s2) ~ (rs, s3). Then there exists ¢;,t; € S such that
t1827’1 = t181’l"2 and t253T2 = t2827’3. Then t182’l"1$3 = t1517’283 and t2$3’l”251 = thngSl. Then t1t252(837’1 — 517"3) =
0.

Denote the equivalence class of (r,s) by Z. Let Rs := {Z|(r,s) € R x S}. Define +,- on Rg in the usual manner
(this requires a little work to show its well-defined). Thus Rgs forms a ring with identity. The identity of Rg is £

for any s € S. Define ¢ : R — Rg by r + *2 for any s € S. This is a ring homomorphism. Let ¢ € S. Then



o(t) = %5 and ¢(t)~! = +=- Now, suppose f : R — A is a ring homomorphism such that f(s) is a unit for all s € S.
Define g : Rg — A by £ — f(r)f(s)~'. To show g is well-defined, suppose 7 = 2. Then t(ris2 —r2s1) = 0 for

some t € S. So f(t)(f(s2)f(r1) — f(s1)f(r2)) = 0. This implies f(s2)f(r1) = f(s1)f(r2) as f(¢) is a unit and thus
fr1)f(s1)~t = f(ra) f(s2)~t. To show that g is unique, suppose there exists g; : Rs — A such that g;¢ = f. Then, for

some ¢ € S, we see

9 (g) f(s) = (g) 919(s) = g1 (g) 9 (it) =0 (?) =g19(r) = f(r).

Thus g1(%) = fir)f(s)™t = g(%). O
Remarks.

1. If S is a mes of R, so is S’ = S U {1}. Furthermore, Rg = Rg . Thus, WLOG, we may assume 1 € S and the
canonical ring homomorphism ¢ : B — Rg is 7 +— 1.
2. 0 € Sif and only if Rg = {0} (as 0(s2r; — s172) = 0, i.e., there is only one equivalence class).

3. If S consists solely of units of R, then Rg = R.

4. If S consists solely of non-zero-divisors, then % = Z—z if and only if sory — s172 = 0. In particular, ¢ : R — Rg is

one-to-one. So we can consider R as a subring of Rg.
3 Important Examples of Localizations

1. Let € Z(R) and S = {z"}. The localization Rg is denoted by R,. Example. Z; = Z[1]. (Don’t confuse this
with Zy = {0,1}.

2. Let R be a commutative ring and S = {z € R|z is a non zero divisor}. Then Ry is called the total quotient ring
of R, denoted Q(R). If R is a domain, Q(R) is the field of fractions of R.

3. Let R be a commutative ring, p # R a prime ideal. Let S = R — p. Then S is mc. In this case, we denote Rg by
R,. Example. Zy = {¢]a,b € Z,2{b}.

Definition 3.25. Let R be a commutative ring. The (prime) spectrum of R is SpecR = {p|p # R is a prime ideal of R}.
Examples.

1. If K is a field, then SpecK = {0}.

2. SpecZ = {(0), (p)|p is prime}.

3. SpecClz] = {(0), (x — a)|a € C}.

Proposition 3.26. Let R be commutative, I an ideal of R. Let V(I) = {p € SpecR|p 2 I}. Then there exists a bijective
inclusion preserving correspondence V (I) < Spec(R/I) defined by p € V(I) — p/I and q € Spec(R/I) — ¢~ 1(q) where

¢: R— R/I is the canonical map r — T.

Remarks.
1. If ¢ : R — S is a ring homomorphism and ¢ € SpecS, then ¢~1(q) = {r € R|¢(r) € ¢} is a prime ideal of R.
2. If pe V(I), then p/I € Spec(R/I) as R/I/p/I = R/p, a domain.

Examples.

1. SpecZ/(30) = {(2), (3), (5)}-



2. SpecC/(z® +1) = {(z +1),(x —1)}.
3. SpecR[z]/(xz? +1) = {(0)}.

Proposition 3.27. Let R be a commutative ring, S a mcs of R. Then there exists a bijective inclusion preserving
correspondence {p € SpecR|pNS = 0} — SpecRg defined by p — ps = pRs = {%|a € p,s € S} and q € SpecRs )
T

where ¢ : R — Rg 1is the canonical map r +— 7.

Proof. We will prove several claims.

Claim: pg is a proper prime ideal of Rg.

Proof: Suppose 2 - g € ps. Then ‘;—f = & for some x € p, s’ € S. Then there exists ¢ € S such that t's’ab = t'stx € p.
As t',s" € S,t's" ¢ p. So ab € p which implies a € p or b € p. Thus ¢ € pg or % € ps. Thus, its a prime ideal. To
show its proper, suppose ps = Rg. Then % € ps which implies % = 2 for a € p,s € S. Then there exists t € S such

that t(s — a) = 0 which implies ts = ta € p, but t,s € S implies ts € p, a contradiction.
Claim: ¢~1(p) € SpecR for q € SpecRg.
Proof: Since ¢(1) =1, if 1 € ¢~1(q),1 € ¢. So ¢~ *(q) is proper. It’s a prime ideal by the remark.
Claim: ¢~*(ps) = p.

Proof: We know p C ¢~ 1(ps). Suppose ¢(r) € ps. Then 1 = %,a € p,s € S. Then there exists t € S such that

tsr =ta € p. Since t,s € S,ts & p and so r € p.

Claim: ¢~ '(q)s = ¢.

Proof: Let ¢ € #71(q)s, that is, a € $71(q), s € S. Then ¢ =¢(a) €q Thus ¢ = ¢ % € q as it is an ideal. Let z € q.
Thenz = %,r€ R,s€S. Then szt =7 €q.Sor € ¢~ 1(q) which implies x = s ¢ Yq)s- O

Examples.
1. SpecZy = {(p)Zz|p > 2 is prime}.
2. SpecZso = {pZso|p > 5 is prime}.
3. SpecZizy = {(0)Z2), (2)Z2)} as pN S = 0 if and only if (p) C (2) where S = R — (2).

Remark. If P € SpecR, then SpecRp = {¢ylqg € SpecR,q C P}. Thus Rp has a unique maximal ideal, namely
PRp = Pp.

Definition 3.28. A commutative ring which has a unique mazimal ideal is called a local (or quasilocal) ring. Note:

For some, local means Noetherian and has a unique maximal ideal.

Remark. Let (R, m) be the local ring where m denotes the unique maximal ideal. Then x € R is a unit if and only if

T & m.

Proof. x is a unit if and only if (z) = R if and only if (z) is not contained in any maximal ideal of R which is if and only

if x ¢ m as m is the unique maximal ideal. O

Note. R,, = R. This is because R,, = Rs where S = R — m and everything outside m is already a unit.

Examples.
1. Z/(8). The only prime ideal is (2).

2. C[[z]]. 3 a;z® is a unit if and only if ag # 0.



Proposition 3.29. Let S and T be mcs of R. WLOG, assume 1 € SNT. Then
1. ST = {st|s € S,t € T} is a mecs of R (containing both S and T ).

2.

!

={% € Rs|t € T} is a mcs of Rg.
3. L={LteRslteT seS}isames of Rs.
Furthermore, Rsp = (Rg)z = (Rs)%.

Proof. Note that 1,2,3 are trivial. For the last statement, we will use the fact (without proof) that if S consists of units of

R, then Rgr =2 Rr. Note % = % . % and é consists of units of Rg. Thus by the fact, (Rs)% ™~ (RS)%. So it is enough to

show Rgp = (RS)%. Consider the canonical map i : R — Rgr where r — 7. Note i(s) is a unit for all s € S as S C ST.

By the universal property, there exists a unique ring homomorphism g : Rs — Rgsr defined by © — 7 - (‘T)_l = =. Note

that g(%) = % is a unit in Rgp for all ¢ € T as T C ST. Thus, we can again use the universal property to obtain the

ring homomorphism ¢ : (RS)% — Rgr defined by % — (5)71 = - Now, consider the composition of canonical maps

s \1
1# :R— Rg — (Rs)% Then QZJ(St) =

o~

s

, with inverse +. Thus 9 (st) is a unit for all s € S,¢ € T' and so by the universal
. It is obvious that ¢9p =Y =1. O

HH
et 1=

n
T

property there exists a ring homomorphism ¢ : Rgr — (Rg) ks defined by =

—lefo 13

Corollary 3.30. Suppose S C T are mcs of R. Then (RS)% = (RS)% > Rsr 2 Ry as ST =T.
Corollary 3.31. Let S be a mcs and P € SpecR such that PN S # (). Then Pg € SpecRg and (Rg)ps = Rp.

Proof. Recall Rp = Ry where T = R — P. Also, (Rs)ps = (Rs)z = Ry as PN S # ) implies S C T. O

r
S

Corollary 3.32. Let P C Q be prime ideals of R. Then PN (R — Q) = 0. Thus Py € SpecRq and (Rq)p, = Rp.

Example. (Z))z. Let S = Z — (2) = {a € Z[]2 f a},T = {2"|n > 0}. Then, (Z))2 = (ZS)% = Zsr = Q as
ST =7\ {0}.

Definition 3.33. Let R be a commutative ring, I an ideal of R. The radical of I is /T = {r € R|r™ € I, for some n >
0}. When I = (0), we call 1/(0) = nilradR = {a € R|a is nilpotent} the nilradical.

Proposition 3.34. Let I be an ideal of R. Then VI = Npey )P where V(I) = {P € SpecR|P 2 I}. In particular,
nilradR = Npespecr P

Proof. Let 7 € v/I and P € V(I). Then ™ € I for some n. As I C P, v™ € P. Thus r € P as P is prime. Suppose
r & \/I. Then we will show there exists P € V(I) such that r ¢ P. Note I, # R, as otherwise 1 € I, which implies
% = T%, that is 7™ (r™ — i) = 0 which implies r™*" = r™j € I, a contradiction as that says r € V/I. Therefore, there
exists a prime (maximal) ideal of R, containing I,., that is, there exists P € SpecR with r ¢ VP = P such that P, D I,..
Let ¢ : R — R, be the canonical map. Then P = ¢ (P,.) D ¢=1(I,) D I.So P € V(I) and r ¢ P. O

Proposition 3.35. Let R be a commutative ring, I an ideal of R and S a mcs. Then S = {5 = s+ I|s € S} is a mcs
of R/I. Then (R/I)g = Rs/Is.

=

is a unit for all x € X. Thus there
Clearly, f is surjective. Notice ker f = I

Proof. Consider the canonical maps ¢ : R — R/I — (R/I)g. Note that ¢(S5) =

exists a ring homomorphism f : Rg — (R/I)g defined by £ — . () =
as = € ker f if and only if % = % if and only if there exists t € S such that ¥ = 0 if and only if ¢tr € I for some t € S if

S

T
5

and only if = € Is. Thus, by the First Isomorphism Theorem, done. O

Localization of Modules

Let R be a ring, S a mcs, M a left R—module. Define an equivalence relation on M x S by (mq, s1) ~ (ma,s2) if and
only if there exists ¢t € S such that ¢(samq —syms) = 0. This defines an equivalence relation. Denote the equivalence class
of (m,s) by 7. Let Mg = {%}|m € M,s € S}. Define T+ + 72 := S2MItSIMe gpd L .M _ TM

LT L. — M These are well-defined
5182 S1 S2 §182

and make Mg an Rg—module.



Proposition 3.36. Let R be a commutative ring, M an R—module. TFAE
1. M=0
2. My, =0 for all p € SpecR.
3. My, =0 for all mazimal ideals m.

Proof. (1) = (2) = (3) is trivial. So we will only prove (3) = (1). Let x € M and I = anngx = {r € R|rz = 0}. Let m
be a maximal ideal of R. By (3), § € M,, = 0. Thus there exists ¢ not in m such that tx = 0. Sot € I and I 2 m. Asm
is arbitrary, we must have I = R. Thus x = 0 as 1 € I which implies M = 0. O

Let f: M — N be an R—module homomorphism. Let S be a mcs. For s € S, define % : Ms — Ng by 5 — fs(?).

This is a well-define Rg—module homomorphism.

I
Proposition 3.37. Let (x)0 — L LM L N — 0 be a short ezact sequence of R—modules. Then (¥¥)0 — Lg —
g

Mg - Ng — 0 is a short exact sequence of Rg—modules for any mes S of R. Furthermore, if (x) splits, then (xx) does.

Proof. % is 1-1: Suppose {(ﬁ) = 0. Then @ = Y. Thus there exists ¢ € S such that tf(¢) = 0, which implies

f(t¢) = 0 and thus t¢ = 0. Therefore £ = in Lg.

s 1

4 is onto: Clear

zm{ = ker { : Since imf C kerg, gf = 0. Then { - { = 0. Hence, zm{ C ker 4. Now, let ™ € ker 4. Then

there exists ¢ € S such that g(tm) = 0. So tm € kerg = imf. So tm = f(¢). Thus 2* = @ which implies

s st T 1 1

Thus () is exact. If (x) splits, there exists h : N — M such that gh = 1. Then { - % = 1n,. Thus % is the splitting

map for (#:x). O
Corollary 3.38. Suppose N C M are R—modules. Then (M/N)s = Mg/Ns.

Proof. Since 0 - N — M — M/N — 0 is exact, the above says 0 - Ng — Mg — (M/N)s — 0 is exact. Thus
Mg/Ns = (M/N)s. O

Corollary 3.39. (A® B)s = As @ Bs

Proof. Since 0 = A — A® B — B — 0 is split exact, so is 0 — Asg — (A ® B)s — Bgs — 0 is split exact. Thus
(A® B)s = As @ Bs. O

Exercise: (®ierd;)s = Dier(4i)s.

Corollary 3.40. If F is a free R—module, then Fg is a free Rg—module.

Proof. Since F' = @;c1R, we see Fs = @, Rg. O
Corollary 3.41. If P is a projective R—module, then Pg is a projective Rg—module.

Proof. There exists @ such that P & Q = F, a free module. Therefore Ps & Qg = Fs which is also free. So Pg is a

projective Rg—module. O

Definition 3.42. Let R be a commutative ring. The Jacobson radical, denoted J(R), is defined to be the intersection

of all maximal ideals of R.
Examples. J(Z) =0, J(k[z]) =0, and J(Z/(12)) = (2) N (3) = (6).
Remark. If z € J(R), then 1 — z is a unit.

Proof. If 1 — x € m, then 1 € m, a contradiction. So 1 — x ¢ m for all maximal ideals m. Thus 1 — z is a unit. O



Lemma 3.43 (Nakayama’s Lemma). Let R be a commutative ring and M a finitely generated R—module. Suppose
M = JM where J = J(R). Then M = 0.

Proof. Choose a least n such that M is generated by n elements, say 1, ...,2,. We will show n = 0 (and so M = 0).
Let x, € JM, so z, = j121 + ... + jnZn,Ji € J. Then (1 — j,)xn, = j121 + ... + jn—1Zn—1. Then, since 1 — j, is a unit,
Ty =(1—7j,) Y1+ ..+ (1 —j) Yin12n_1 € Rxy + ... + Rx,,_1, a contradiction to the minimality of n. O

Corollary 3.44. Suppose N C M are R—modules and M is finitely generated. Suppose M = N + JM where J = J(R).
Then M = N.

Proof. Note that M/N = (N + JM)/N = J(M/N). Since M is finitely generated, so is M/N. By Nakayama’s Lemma,
M/N = 0. O

Corollary 3.45. Let M be a finitely generated R—module. Let x4, ...,z, € M. Then x1,...,x, generate M if and only if
T1, ..., Ty, generate M/JM where J = J(R).

Proof. Note that (=) is trivial. To show (<), let¢ N = Rx; + ... + Rx,,. Since T7,...,T, generate M/JM, we have
(N + JM)/JM = M/JM which implies M = N + JM which implies M = N. O

Notation. If M is an R—module, let ur(M) = inf{n|M = Rz; + ... + R, for some z1,...,x, € M} = the minimal

number of generators for M.
Corollary 3.46. Let M be a finitely generated R—module, J = J(R). Then pr(M) = pp,(M/JM).

Corollary 3.47. Suppose (R,m) is local. For any finitely generated R—module M, pr(M) = dimpg/mM/mM. In

particular, any two minimal generating sets for M have the same number of elements.
Proof. Since R/m is a field, ur(M) = pp/m(M/mM) = dimpgm, M/mM. O
Proposition 3.48. Let (R, m) be a local ring and P a finitely generated projective R—module. Then P is free.

Proof. We will use the fact (without proof) that &M;/I(®M;) = ©(M;/IM;). Let n = pr(P) = dimpg/my,(P/mP). Let
T1,...,Tn be a minimal generating set for P. Define ¢ : R™ — P by e; — z;. Then ¢ is surjective. Let K = ker ¢.
Then we have the short exact sequence 0 — K — R" %, P — 0. This splits as it ends with a projective module.
So R* = P @® K and K is finitely generated (as R™ is finitely generated and R* — P ® K — K is onto). Then
R"/mR™ = (P ® K)/m(P @& K) which implies (R/m)™ = (P/mP) @ (K/mK) by our fact. This is an isomorphism as
R/m vector spaces. Taking the dimensions of both sides, since dim(R/m)" = n = dimP/mP, we have dimK/mK = 0,
that is, K/mK = 0 and thus K = mK. Since K is finitely generated, K = 0 by Nakayama’s Lemma and thus ¢ is an
isomorphism. Thus R™ = P. O

3.4 Category Theory and the Hom Functor

Definition 3.49. A category C consists of a class of objects (denoted by Obj C) and a set of morphisms Home (A, B)
for every pair of objects A, B of C such that

1. (Composition) there exists a function Home(B,C) x Home(A, B) — Home(A,C) sending (f,g) — fog for all
objects A, B, C.

2. (Associativity) (fg)h = f(gh) for all morphisms f, g, h where (fg)h is defined.

3. (Identity) For all objects A of C there exists 14 € Homc(A, A) such that for all objects B of C we have 14f = f
for all f € Home(B,A) and fla = f for all f € Home (A, B).



Examples.
1. The category of sets: <<Sets>> has sets as objects and functions as morphisms.

2. The category of groups: <<Groups>> has groups as objects and group homomorphisms as morphisms. This
category has the subcategory <<Abel>> of abelian groups. Note that a subcategory is called a full subcategory

if it retains all of the morphisms.

3. For a commutative ring R, the category of R—algebras: <<R—algebra>> has R—algebras as objects and R—algebra
homomorphisms (¢ : S — T where S, T are R—algebras such that ¢ is a ring homomorphism where ¢(rs) = r¢(s)

for all » € R) as the set of morphisms.

Note. Every ring is a Z—algebra. Thus <<Z—algebras>> = <<Rings>>.

4. For a commutative ring R, the category of left R—modules is written << R—mod>> and the category of right
R—modules is written << mod—R >>.

Special Cases

(a) << Z—mod>> = << Abel>>

(b) If k is a field, << k—mod>> = << k—vector spaces>>

Definition 3.50. Let C and D by categories. A (covariant) functor F : C — D is a rule which associates to each
object A of C an object F(A) of D and for each morphism f € Home¢ (A, B) a morphism F(f) € Homp(F(A), F(B))
with the following properties:

1. F(fg) = F(f)F(g) for all morphisms f,g of C where fg is defined.
2. F(1a) = 1p(ay for all objects A of C.
Examples.

1. The forgetful functor F' :<<Groups>>—<<Sets>> defined by sending a group G to the set G and the group
homomorphism g to the function g. Another forgetful functor is F’ :<< R—mod>>—<<Abel>> .

2. The Localization functor: F':<< R—mod>>—<< Rg—mod>> where F(M) = Mg and F(f) = {

3. The Modding Out functor: Let I be a 2-sided ideal of R. Then we can define ' :<< R—mod>>—<< R/I—mod>>
by F(M) = M/IM and for an R—homomorphism f : M — M, F(f) : M/IM — N/IN where m + IM —
f(m) +IN.

Note. You can mod out by a left ideal, however the functor would then be << R—mod>>—<< R—mod>> .

Definition 3.51. Let M, N be left R—modules. Then Hompg(M, N) denotes the set of left R—module homomorphisms
from M — N.

Remarks.
1. Hompr(M, N) is an abelian group.
2. Generally, Homg(M, N) is not a left R—module, unless R is commutative.

3. Let M be a left R—module. Define a functor Hompg(M, —) :<< R—mod >>—<< Abel >> by Homgr(M, —)(N) =
Homp(M,N) and if f : Ny — Ny is an R—module homomorphism, then f, := Homgr(M, —)(f) : Homg (M, N;) —
Hompg(M, No) defined by g +— fg. Note that (fg)« = f«g« and (1x)« = Lgomy(ar,n) (and thus it really is a functor).

Definition 3.52. A contravariant functor F : C — D is a rule which associates to each object A of C an object F(A)
of D and for every pair of objects A, B of C a map Home(A, B) — Homp(F(B), F(A)) defined by f — F(f) such that
F(fg) = F(g)F(f) and F(14) = 1p(a).



Example. Let N be a left R—module. Define the contravariant functor Hompg(—, N) :<< R —mod >>—<< Abel >>
by M — Hompg(M,N) and (f : My — Ms) — (f* : Homg(M2, N) — Hompg(My, N)) where g — gf. One can check
that (fg)* = g"f*.

Definition 3.53. Let F' be a functor (of either variance) on module categories. We say F' is additive if for every
pair of objects A, B of the initial category, the map F : Home(A, B) — Homp(F(A),F(B)) (or F : Hom¢(A,B) —
Homp(F(B), F(A))) is a group homomorphism, that is, F(f +g) = F(f) + F(g) for all f,g € Hom¢ (A, B).

Remarks.

1. Localization, Modding Out, and the Hom functors are all additive.

2. Suppose A 1, B % € is exact and let F be an additive covariant functor. Consider F (A) 0, g (B) Fla),

In general, this is not exact - but we do still get imF(f) C kerF(g).

F(O).

Proof. This is equivalent to showing F(g)F(f) = 0. Of course, F(g)F(f) = F(gf) = F(0) = 0 as F is additive
(F'(0) = F(0) + F(0) implies F(0) = 0). O

Definition 3.54. As additive functor on module categories is exact if whenever A ENY IR C is exact in the initial

category, then F(A) £, F(B) ), F(C) is exact (or in the contravariant case F(C) — F(B) — F(A) is exact).

Suppose F' is covariant. Say F is left exact if

0— A — B — C ezact implies 0 — F(A) — F(B) — F(C) is exact
and F is right exact if

A — B — C — 0 ezact implies F(A) — F(B) — F(C) — 0 is ezact.
Suppose F' is contravariant. Say F is left exact if

A — B — C — 0 exact implies 0 — F(C) — F(B) — F(A) is ezact
and F is right exact if

0— A— B — C exact implies F(C) — F(B) — F(A) — 0 is ezact.

Proposition 3.55. Let F' be an additive functor. TFAE
1. F s exact
2. F takes short exact sequences to short exact sequences
3. F is both left and right exact.

Remark. We’ve shown localization is an exact covariant functor.

Proposition 3.56. The modding out functor is right exact, but not generally ezxact.

Proof. Let I be a left ideal of R, L LM % N — 0 an exact sequence of R—modules. Consider L/IL ER M/IM LN
N/IN — 0 where f({+IL) = f({) + IM and g(m + IM) = g(m) + IN. As g is onto, so is . Also, imf C kerg as
modding out is an additive functor. So we need only show imf D kerg. Let x € kerg. Then m = g(z) = 0 which
implies g(z) € IN. Thus there exists ¢; € I,n; € N such that g(z) = Z?:l ijn;. Let u; € M such that g(u;) = n;. Then
g(x) = > u;g(uj) = g3 i;u;). Thus g(xz — > i;u;) = 0 which implies « — ) i;u; € kerg = imf. Let £ € L such that
f(0) =z = iju;. Then f({) =7 € imf.



To show it is not always left exact, consider 0 — Z 2, Z where n — 2n. Modding out by (2) gives us 0 — Z/27Z 2, Z7)2Z
where 7 — 21 = 0. Thus the map is not injective. O

Proposition 3.57. Let M be a left R—module. Then Homp(M,—) and Hompg(—, M) are both left exact, but not

generally exact.

Proof. We will prove only for Homgr(M,—). Let 0 — A 4, B % ¢ be exact and consider 0 — Hompg(M, A) ELN
Hompg(M, B) ELN Hompg(M,C). As f is 1-1, we have fh = f.(h) = 0 which implies h = 0. Thus f, is 1-1. By additivity,
imfi C ker g,.. Thus we need only show imf, D kerg.. Let h € ker g, where h : M — B. So g.(h) = gh = 0. This says
imh C kerg = imf. Thus for all m € M there exists a unique a,, € A such that f(a,,) = h(m). Define k : M — A by
k(m) = ap,. Then k € Hompg(M, A) and f.(k) = h € imf..

To show it is not always right exact, consider Z 2 Z — Z/2Z — 0. This gives us Homz(Z/2Z,Z) — Homgz(Z/2Z,7) —
Homg(Z/2Z,7/2Z) — 0. Now, the first two modules are 0 and the last is isomorphic to Z/2Z. Thus it does not preserve

surjectivity. O
Proposition 3.58. Let R be a ring and P a left R—module. Then P is projective if and only if Homg(P,—) is ezact.

Proof. We will only prove the forward direction. The backward direction is similar. Let 0 — A 1. B % ¢ = 0 be exact
and apply the Hom functor:
0 — Hom(P, A) £ Hom(P, B) % Hom(P,C) — 0.

By the previous proposition, it is enough to show g, is onto. Let h € Hompg(P,C). By the definition of projective, there
exists k : P — B such that gk = h which implies g.(k) = h. Thus h € img, and is thus onto. O

3.5 Tensor Products

Definition 3.59. Let R, S be rings. An R — S bimodule is a left R—module M which is also a right S—module such
that (rm)s = r(ms) for allr € R,s € S,m € M.

Examples.
1. Any ring R is an R — R bimodule.

2. Let S be an R—algebra (p: R — S, p(R) C Z(S5), R commutative). Any left S module is an S — R bimodule via
m-r = p(r)m for all r € R,m € M (in general, we will just say m - r = rm for simplicity).

Check: (sm)r =r(sm) = (rs)m = (sr)m = s(rm) = s(mr).
Special Case.
1. If R is a commutative ring, every left R—module is an R — R bimodule (R is an R—algebra)
2. Any ring is a Z—algebra (as every ring is an abelian group). Thus every left R—module is an R — Z bimodule.
3. S=M,(k),k a field. Any left S—module is an S — k bimodule (i.e., every left S—module is a k—vector space).

Remark. Let M be an R — S bimodule and N a left R—module. Then Hompg(M, N) is a left S module via (sf)(m) :=
f(ms). Check: (sf)(rm) = f((rm)s) = f(r(ms)) = rf(ms) = r(sf)(m).
If M is an R — S bimodule, then Hompr(M, —) :<< R — mod >>—<< S —mod >> . Check: Suppose f : Ny — Ny
is an R—module homomorphism. Then we have f. : Homgr(M, N1) — Hompg(M, N2) defined by g — fg and we see
fe(sg)(m) = f o (sg)(m) = f(g(ms)) = sfg(m). Thus f.(sg) = sf.(g).

Similarly, if S is an R — S bimodule, then Hompg(M, N) is a right S—module via fs(m) = f(m)s.
Definition 3.60. Let A be a right R—module and B a left R—module. An R—biadditive map on A x B is a function
f i+ Ax B — G where G is an abelian group such that for a; € A,b; € B,r € R



1. f(CL, b1 —+ bQ) = f(a,bl) + f(CL, bz)
2. f(a1 +az2,b) = f(a1,b) + f(az,b)
3. f(ar,b) = f(a,rd)

Definition 3.61. Let A be a right R—module, B a left R—module. The tensor product of A, B is an abelian group
A ®pgr B and an R—biadditive map ¢ : A x B — A ®pg B such that given any R—biadditive map f : AXx B — T (an
abelian group), there exists a unique group homomorphism f: A®gr B — T such that f(/) = f.

Note. Hom and ® are in some sense adjoints of each other.
Exercise. If it exists, A ® g B is unique up to isomorphism.

Theorem 3.62. A ®pg B exists.

Proof. Let F = ®(qp)caxpZ (a free Z—module). Let [a, b] be the standard basis element with 1 in the [a, b]"" coordinate
and 0’s elsewhere. Thus every element of F is uniquely expressed as ., m;[a;, b;]. Let S be the subgroup of F' generated

by all the elements of the form
[aﬂ by + b2] - [CL, bl] - [CL, bQ]a [0’1 + a2, b] - [a17 b] - [aQa b]a [CL’I”, b] - [(I,Tb].

Define A®r B = F/S, with generating elements a®b = [a, b]+S. (Note: For m € Z,m > 0, we have m(a®b) = (ma) ®b.

So every element looks like > a; ® b;, but is non uniquely represented).
Claim: The tensor product is biadditive, that is,

lL.a® (b1 +b)=a®b+a®bs
2. (a1 4+a2)@®b=a1@b+ay®b
3. (ar)®@b=0a® (rb).
Proof: Since [a, by + ba] — [a,b1] — [a,b2] € S, we know [a,b1 + ba] + S = [a,b1] + S + [a,b2] + S. Thus (1) holds.
Similarly, (2) and (3) are true.

Define ¢ : A x B— A®g B by (a,b) — a ®b. By the remarks above, ¢ is clearly biadditive.
Now, let f : A x B — T be a biadditive map. Define ' : F — T by [a,b] — f(a,b). As f is biadditive, S C ker f’.
Thus there exists an induced homomorphism f: F/S — T defined by [a,b] — f(a,b), that is f: A®pr B — T with

a®b+— f(a,b). This makes the diagram commute. Clearly, f is unique since A ® g B is generated by {a ® bla € A,b €
B}. O

Example. Z/27.®77/3Z = 0. A typical generator looks like a®b. Since 2, 3 are relatively prime, there exists r, s, p, q € Z
such that a =2r +3s,b=2p+3¢. Thus a®b=35®2p =250 3p=0®0=0.

Proposition 3.63. Let R be a ring, f : Ay — Ay an R—homomorphism of right R—modules and g : By — Bs an
R—homomorphism of left R—modules. Then there exists a unique group homomorphism f ® g: A1 ®g B1 — As @ Bo
defined by a ® b — f(a) ® g(b).

Proof. Define f x g: Ay x By — A3 ®g Bs by (a,b) — f(a) ® g(b). Clearly this is R—biadditive. Thus we get the unique
homomorphism f x g. O

Remarks. (f1i+ f2)®9=f/1i®g+ fo®gand (fRg)(h®{) = fh® gtL.

Corollary 3.64. Let R be a ring and A a right R—module. Define A ®p — :<< R — mod >>—<< Abel >> by
B— A®rBand (f : By = Bs)— (14Q f: AQr B1 — A®pg Bs). Then A Qg — is an additive covariant functor.

Note. If A is a left R—module, we get — ®p B :<< mod — R >>—<< Abel >> .



Theorem 3.65. Let A be a right R—module. Then A @g — is right ezxact.

Proof. Let L LmL N 0 be an exact sequence of left R—modules. We want to show A @ L 197, 4 Rr M 189,

A®r N — 0 is exact.

1® g is onto: Since A ® N is generated by a ® n, it is enough to show a ® n € im(1 ® g). For n € N, there exists
m € M such that g(m) =n as g is onto. Then (1® g)(a ®@m) =a® g(m) =a @ n.

im(1® f) C ker(1® g): Notice (1®g)(1® f)=1®@gf=1®0=0.

im(1 ® f) D ker(1 ® g): By the above, we get an induced map 1® g : A®r M/im(1 ® f) - A®g N defined by
a®m — a® g(m). It is enough to show 1® g is 1-1. Define h: Ax N - A® M/im(1® f) by (a,n) — a®@m
where m € M is such that g(m) = n.

Claim: h is well-defined.
Proof: Suppose g(m1) = g(msz) = n. Since g(my — ms) = 0, we have m; — mg € kerg = imf. Let £ € L such
that f({) =m1 —me. Thena®@mi; —a®@ma=a® (m; —ma) =a® f({) = (1@ f)(a® ) € im(1® f). Thus

a@mp =a® ms.

It is easy to show h is R—biadditive. Thus, there exists a unique group homomorphism h:A® rRN — A®p
M/im(1® f) defined by a ® n — h(a,m). Note that h(1 ® g)(a @ m) = a @ m. Thus it fixes the generating set,
which is enough to say E(l ® ¢g) = 1. Thus 1 ® g is injective and thus ker(1 ® g) = im(1® f). O

Example. Z/27 ®7 — is not exact. Consider the injection 0 — Z 2, 7 defined by m — 2m. This yields 0 —

7.)27 @5, 7. 22 7,/27, @y, 7. defined by @ @ m — a ® 2m = 2a®@ m = 0, but Z/27 7, Z is not 0.

Proposition 3.66. Let M be a left R—module. Then there exists a group isomorphism f : R® M — M defined by

rX@Mm — rm.

Proof. Define f' : R x M — M defined by (r,m) — rm. This is R—biadditive. Thus we have the unique group
homomorphism f: R®@ M — M. Define g : M — R® M by m — 1 ® m. This is clearly well defined and a group
homomorphism. Also fg = ¢gf = 1. So f is an isomorphism. O

Proposition 3.67. Let R, S be rings, M an S — R bimodule and N a left R—module. Then M ®gr N is a left S—module
under the action s(>_m; @ n;) = > (sm;) ® n;.

Proof. The S—module axioms are trivial. Thus we just need to show it is well-defined. Let s € S. Define ug: M x N —
M®gN by (m,n) — (sm,n). We see ug is R—biadditive. Thus we get the group homomorphism g : M@rN — M@r N
defined by m ® n — (sm) ® n. Define s(>_m; @ n;) = ps(>_m; @ n;) = > us(m; @ ny) = > (sm;) ® n;. Thus it is well-
defined. O

Corollary 3.68. In this situation, M @p — :<< R — mod >>—<< S — mod >> .
Examples.
1. If R is commutative, every R—module M is an R — R bimodule. So M ® p — :<< R—mod >>—<< R—mod >> .

2. Let k£ be commutative and R a k—algebra. Let M be a right R—module. Then M is a k — R bimodule. So
M®p — << R—mod >>—<< k—mod >> .

Theorem 3.69. Let R, S be rings, A a right R—module, B an R — S bimodule, and C a left S—module. Then there
exists a group isomorphism g : AQpr (B®s C) — (A®r B) ®s C defined by a ® (b® ¢) — (a ® b) ® c. In addition, if A

is an R — R bimodule, then g is a homomorphism of left R—modules.

Proof. Fix a € A. Define g, : Bx C — (A®p B) ®5 C by (b,¢) — (a®b) ® c.



Claim: g, is S—biadditive.
Proof: Let s € S. Then g,(bs,c) = (a® (bs)) @ c = ((a®b)s) ®c=(a®b) ® (s¢) = ga(b, sc). The other properties

follow similarly.

So there exists a unique group homomorphism g, : BRsC — (AQrB)®sC. Now, define f : Ax(B®sC) — (AQrB)®sC
by (a,z) — gu(z). A little work shows f is also biadditive. Thus, we get f : A®p (B ®g C) — (A ®g B) ® C defined
by a® (b®¢) — (a®b) ® c. Analogously, there exists a homomorphism h : (A®x B) ©gC — A®g (B ®g C) defined by
(a®@b)®cr— a® (b®c). Then ﬁl = Ef: 1 (its clearly true on the generators and thus all elements as they are group
homomorphisms). Take g = ]?

To show g is a homomorphism of left R—modules when A is an R — R bimodule, just need to check the following:

g(rle@ (b®c))) = g((ra)® (b®c))

Change of Rings

Proposition 3.70. Let ¢ : R — S be a ring homomorphism. Let M be a left R—module. Then S ®pr M is a left
S—module. Thus S ®r — : << R — mod >>—<< S — mod >> .

Proof. Note that S is an S — R bimodule, where s - r = s¢(r). O
Examples.

1. If T is a 2 sided ideal, then R/T ® g M is a left R/I module. In particular, R/m @ M is an R/m vector space (as
R/m is a field).

2. If S is a multiplicatively closed set, then Rg @ M (= Mg) is an Rg—module.

3. Let ¢ : Gy — G2 be a group homomorphism. Then there exists an induced ring homomorphism (Z : k[G1] — k[G2]
sending g — ¢(g) for a field k. Let V' be a left k[G]—module. Then k[G2] ®@4¢,] V is a left k[Go]—module. This

is called the induced representation of V' to Gs.
Proposition 3.71. If I is a 2 sided ideal, then R/I @ g M — M/IM defined by ¥ @ m +— T is an isomorphism.

Exercise. Let F' be an additive functor on module categories. Then F' preserves split exact sequences, that is, if F
is covariant and 0 —» A & B % ¢ = 0'is split exact, then 0 — F(A) ), F(B) F), F(C) — 0 is split exact. In
particular, F' preserves the split exactness of 0 = A - A®C — C — 0. Hence, F(A® C) = F(A) & F(C).

Corollary 3.72. Hom(A® B,C) = Hom(A,C) ® Hom(B, C)

Hom(A,B® C) = Hom(A,B) ® Hom(A,C)

AQr(B®C) = (A®rB)® (A®rC)

Note. By induction, we can show the Corollary is true for finite sums. In general, this does not apply to infinite sums

with the Hom functors, however, it is true for the tensor product.

Proposition 3.73. Let A be a right R—module and {B;}icr a family of left R modules. Then A Qg (®ierBi) =
@iEI(A Rnr B) via a ® (bz) — (Cl ® bz)

Example. R" @r R" =2 R" Q@ (&1 R) = ¢l (R ®@r R) = ® ;R™ = R™".

Corollary 3.74. Suppose ¢ : R — S is a ring homomorphism. If F' is a free left R—module, then S ®gr F is a free left

S—module.



O

Proof. Recall F 2 ®;c1R. S0 SQ® F = ®;c;(S Qr R) & ®;csS, a free left S—module.
Corollary 3.75. Let P be a projective left R—module. Then S ®g P is a projective left S—module.

Proof. Recall that there exists a left R—module @ such that P@® @ = F, a free R—module. Then (S®r P)® (S®rQ) =
SRr(P®Q) = SRgF, afree S—module. Thus S®g P is a direct summand of a free S module and is thus projective. [

Definition 3.76. Let R be a commutative ring, M an R—module. An element m € M is torsion if there ezists a non

zero divisor v € R such that rm = 0. Say M is torsion free if the only torsion element is 0.
Note. Ideals are always torsion free (as if r - ¢ = 0, then either r is a zero divisor or ¢ = 0.

Example. Let R = k[[z,y]]/(xy), k is a field. This is local. Let m = (z,y)R, the maximal ideal. Then m is torsion free.

Claim: z ® y € m ® m is torsion.

Proof: We can see x+y is not a zero divisor in R. However, (z+y)(z®y) = (z+y)z®y = (x+y)@(zy) = (x+y)®0 = 0.
(In fact, Anngx ® y = m).

Claim: z® y # 0.

Proof: Recall if (R, m) is local and M is finitely generated, then the minimal number of generators, ur(M) =

dimp/,, M/mM. Consequently, ur(M @ N) = pr(M)ur(N) (if M,N are f.g.). Let h = (z,y)k[[z,y]]. Clearly,

[tk [[z,y]] (h) = 2. Note that m = n/(zy) and m/m? = :2//((”%)) =n/n* S0 pr(m) = pz,y) (n) = 2. Thus pr(mem) =

4. Every element of m ® m is an R—linear combination of z ® z,z ® y,y ® x, y ® y, which implies this is a minimal

generating set and thus z ® y # 0.

Example. Let R = k[[z,y]],m = (x,y)R. Note R is a domain (so there are no zero divisors). In m ® m, consider
u=xQ®y—y®x Note that u # 0 as  ® y,y ® x are generators and thus basis elements in R/m, a field. Let r € m.
Then ru =r @ xy — r ® zy = 0. Thus Anngu = m.

Theorem 3.77 (Hom - Tensor adjointness). Let R, S be rings, A a left R—module, B an S — R bimodule, C a left
S—module. Then
Homg(B®gr A,C) = Homg(A, Homg(B,(C)).

Note that this is an isomorphism of abelian groups. However, if A is an R — S bimodule, then it is an isomorphism of
left S—modules.

Proof. Let f € Homg(B®g A,C). Fix a € A. Define f, : B— C by b— f(b®a).

Claim: f, is S—linear.
Proof: f,(sb) = f((sb) ®a) = f(s(b®a)) =sf(b®a) = sf,(b) as f is S—linear. Additivity follows similarly. Thus
fo € Homg(B,C).

Define f: A — Homg(B,C) by a — f,. This is R—linear as f(ra) = frq and rf(a) =1 - f, implies r - f,(b) = fa(br) =
f(br) x a) = f(b x (ra)) = fra(b). Now, define 7 : Homg(B ®r A,C) — Hompg(A, Homg(B,C)) by f — f. Check
that this is additive (and thus a group homomorphism. Let f € Homg(A, Homg(B,C)). Define ¢’ : B x A — C by
(b,a) — g(a)(b).
Claim: ¢’ is R—biadditive.
Proof: ¢'(br,a) = g(a)(br) = (r-g(a))(b) as Homgs(B, C) is a left R—module. Now, (r-g(a))(b) = g(ra)(b) = ¢'(b,ra)
by definition of g.

Thus we get §: B®p A — C defined by b ® a — g(a)(b). Now, define 7 : Homp(A, Homg(B,C)) — Homg(B ®pr A, C)
by g — g. Check that 7 is additive and 77 = 77 = 1. O



3.6 Noetherian/Artinian Rings

Definition 3.78. Let R be a ring and M a left R—module. We say M is left Noetherian if every ascending chain of
left R—submodules of M stabilizes, that is, if My C My C --- is an ascending chain of left R—submodules, then there
exists n such that M,, = My 41 = My 4o =--- . Say M is left Artinian if every descending chain of left R—modules of
M stabilizes. Say R is a left Noetherian/Artinian ring if R is left Noetherian/Artinian as an R—module. Say R is
Noetherian/Artinian if it is both left and right Noetherian/Artinian.

Remarks.
1. Every division ring (and thus every field) is both Noetherian and Artinian (since the only ideals are 0 and 1).

2. Let R be aring and D C R a division ring. Suppose R is finite dimensional as a D—module. Then R is Noetherian
and Artinian. (The length of every proper ascending/descending chain of D—submodules over R is bounded by
dimDR.)

3. Any PID is Noetherian (but not necessarily Artinian). For example Z is not Artinian as (2) C (4) € (8) € - -+ does

not stabilize.
Example. Let R = M, (k), where k is a field. Then dim;R = n?. So R is Noetherian and Artinian.
Theorem 3.79 (Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then R[z] is Noetherian.
Corollary 3.80. If R is a commutative Noetherian ring, then R[x1, ..., zy] is Noetherian.
Fact. Any left Artinian ring is left Noetherian. (We will prove this later, once we build up more machinery).

The fact is not true for modules. Let R = Z,) C Q. Note that every element of Q can be expressed uniquely as u2¢ for

some u € R which is a unit and ¢ € Z.

Claim: The only R—submodules of Q are N, = R2¢ for £ € Z and 0, Q.

Proof: First note
¢ 2N 2N 2N 2
e UyN; =Q.
Now, let N be an R—submodule of Q such that N # 0,Q. Choose smallest ¢ such that N, C N (such an ¢ exists
as Ny C Ny_1 C--+).

Subclaim: N = Ny.
Proof: Choose n € N. Then n = u2". Note that » > £ as otherwise 2" € N which implies N,, C N. Then

n=u2" = u2" 2% and since u2"~¢ € R, we see n € Ny.

Now, let M = Q/Ny = Q/R. Then the R—submodules of M are
M2 2N/R2Ng1/R2D---2 No/R=0.

Clearly, M satisfies DCC on R—submodules, but not ACC.

Proposition 3.81. Let R be a ring and 0 - A — B — C — 0 a short exact sequence of left R—modules. Then B is
left Noetherian (resp Artinian) if and only if A and C are.

Proof. We will prove for Noetherian modules. The proof for Artinian is similar. WLOG, we may assume A C B and
C = B/A. Now, the forward direction is clear. To prove the backward direction, let By C By C --- be an ascending
chain in B. Consider the chains (x)B; + A C Bo+ A C --- and (xx)BiNA C BoNAC ---. As A is Noetherian,
(%) stabilizes. Since B/A is Noetherian, we can mod (%) by A and that also stabilizes. Thus there exists n such that
B,+A=B,;1+A=---and B,NA=B,;1NA=---.



Claim: B, = Bpy1 ="+ .
Proof: Let be Byy1 C By1+A=B,+A. Sayb=b,+aforb, € B,anda € A. Now,b—b, =a€ AN By =
ANB,. Sob—b, € B, which implies b € B,,. O

Corollary 3.82. A left R—module M is left Noetherian (resp. Artinian) if and only if M™ = @, M is left Noetherian
(resp. Artinian). In particular, if R is a left Noetherian (resp. Artinian) ring, then so is R™ for alln > 1.

Proof. The backwards direction is clear. For the forward direction, use induction and the fact that 0 - M — M + M —

M — 0 is a short exact sequence. [

Corollary 3.83. If R is a left Noetherian (resp. Artinian) ring and M a finitely generated left R—module, then M is
left Noetherian (resp. Artinian).

Proof. Since M is finitely generated, M = Rxj + ... + Rx,, which induces the short exact sequences 0 — ker ¢ — R" 2,
M — 0 where ¢ : e; — x;. Apply previous corollary. O

Proposition 3.84. Let M be a left R—module. TFAFE
1. M is left Noetherian (resp. Artinian).

2. Every set of R—submodules of M has a mazimal (resp. minimal) element.

For Noetherian only, these are equivalent to
3. Bvery R—submodule of M is finitely generated.
Proof. Note that 1 < 2 is clear.

2 = 3 Let A be a submodule of M and A = {N|N is a f.g. R — submodule of A}. Let M’ be maximal in A. If M’ # A,
choose x € A\ M’'. Then M’ C M’ + Rz, a finitely generated submodule of A, a contradiction. Thus A = M’ is
finitely generated.

3=1 Let My C M C --- be an ascending chain. Let N = U2, M;. Then N is an R—submodule (as the M; are nested),
which implies NV is finitely generated. Say N = Rx1 + ... + Rx,. Choose £ large enough so that x; € M, for all i.
Then N C My C My,1 C--- C N. O

Corollary 3.85. Let ¢ : R — S be a ring homomorphism. Suppose S is a finitely generated left R—module. If R is left

Noetherian (resp. Artinian), then so is S.

Proof. By the above corollary, S is Noetherian (resp. Artinian) as a left R—module. Every left ideal of S is a left
R—module. Therefore S satisfies ACC (resp. DCC) on left ideals. O

Remark. If S is a finite dimensional k—algebra (for a division ring k), then S is both Noetherian and Artinian (as it
satisfies ACC and DCC).

Example. k[z]/(z™) (this is Artinian, but not a field) and M, (k) are Noetherian and Artinian by the above remark.

Remarks.

1. If R is Noetherian (resp. Artinian) and I is an ideal of R, then R/I is Noetherian (resp. Artinian) (as R/I is a
finitely generated R—module, generated by 1.)

2. Let R be aring, S C Z(R) a mcs of R. If R is Noetherian (resp. Artinian), then so is Rg.

3. Let R, S be commutative rings and suppose S is a finitely generated R—algebra. Then R Noetherian implies S is

Noetherian.



Proof. WLOG, assume R C S. Sosay S = R[ug, ..., u,] for u; € S. Define a ring homomorphism ¢ : R[z1,...,x,] — S
by x; — u;. This is surjective and so S & Rz, ..., z,]/ ker ¢. By the Hilbert Basis Theorem and Remark 1, S is
Noetherian. ]

Note that this is not true for Artinian rings. For example, the division ring k is Artinian but k[z] is not as
(z) 2 (a?) 2+

4. Subrings of Noetherian rings are not necessarily Noetherian. For example R = Q[z,y] is Noetherian, but S =
Q[z, 2y, ry?,...] C R is not.

Examples.

b
1. R= { <g > la € Z,b,c € Q} is right Noetherian, but not left Noetherian.
c

2. S = { <g i) lr e Q,s,t e R} is right Artinian, but not left Artinian.

Definition 3.86. A left R—module M is simple or irreducible if M # 0 and has no submodules other than 0 and M.

Proposition 3.87. Let M be an R—module. TFAE
1. M is simple.
2. M = Rx for all x € M \ {0}.
3. M = R/I where I is a mazimal left ideal.
Proof. 1< 2 Rx # 0 is a submodule of M.
3 =1 Any submodule of M corresponds to R/J where I C J. Since I is maximal, done.

2 = 3 Define ¢ : R — Rx = M by r +— rxz. So M = R/ ker ¢ where ker ¢ is a left ideal. Since M has only 2 submodules,

ker ¢ must be maximal. O

Definition 3.88. Let M be an R—module. A normal series for M is a finite chain of submodules (x)M = My D
My D --- 2 M, =(0). The factors of (x) are M;/M; 1 for i =0,...,n — 1. The length of (x) is the number of nonzero
factors. We say two normal series are equivalent if there exists a bijection between the nonzero factors of the two series
such that the corresponding factors and isomorphic. In particular, two equivalent normal series for M have the same
length. A composition series is a normal series for M such that all nontrivial factors are simple. A refinement of
(*) is a normal series obtained by inserting additional modules between two links in the chain. A proper refinement is

a refinement which has length larger than the original normal series.
Note. A composition series has no proper refinements.
Theorem 3.89 (Jordan-Holder Theorem). Any two normal series for M have equivalent refinements.

Corollary 3.90. Suppose M has a composition series. Then any normal series has a refinement which is equivalent to
the given composition series. Therefore, any normal series has length less than the length of a given composition series.

In particular, any two composition series are equivalent and have the same length.

Definition 3.91. If M has a composition series, define the length of M (denoted A\g(M)) as the length of any compo-

sition series for M. If M does not have a composition series, we say it has infinite length.

Proposition 3.92. A\g(M) < oo if and only if M is both Noetherian and Artinian.

Proof. = Ar(M) is a bound on the length of any chain. Thus any chain must stabilize.



< Let My =M. Let A={N|N C M is a submodule}. As M is Noetherian, A has a maximal element, call it M;. Then,
M; € My and M /M is simple. If My # 0, repeat. In this way, we get a descending chain My 2 My D My D ---

which must terminate as M is Artinian, that is, there exists M,, = 0. This is a composition series. ]

Definition 3.93. A ring has finite (left) length if Ar(R) < oc.

Examples.
1. Ar(k) < oo for a division ring k. (In this case, the length is the dimension).
2. Let R = My (k) for a division ring k. Then Ar(R) < 0.
3. Let R = k[z]. Then Ar(R) = cc.
Proposition 3.94. Suppose 0 — A — B — C — 0 is a short exact sequence. Then Ar(B) = Ar(A) + Ar(C).

Proof. By the previous proposition, we may assume Ag(B), Ar(A4), A\r(C) < oo. Induct on Agr(B). If Ag(B) =1, then B
is simple. Since A — B, either A = B (and C' = 0) or A =0 (and C = B). In either case, the equality holds. Otherwise,
assume C' = B/A and consider the normal series B 2 A D (0). We may refine this series to get a composition series
BD>By2---2B,-12B,=(0). Then A2 B,,_1. Consider 0 - A/B,,_1 — B/B,,_1 — B/A — 0. By induction, since
Ar(B/Bn-1) = Ar(B) — 1, we see Ag(B/Bn-1) = Ar(A/Bn_1) + Ar(B/A). Of course, Ag(A/Bp_1) = Ar(4) — 1 and
thus Ag(B) = Ar(4) + Ar(C). O

Definition 3.95. Let R be a ring and M a left R—module. M is completely reducible or semisimple if M is a direct

sum of a family of simple submodules. R is left semisimple if it is as an R—module.

Proposition 3.96. Let M be an R—module. TFAE

1. M is semisimple.

2. M is a sum of a family of simple submodules.

3. FEvery submodule of M is a direct summand of M.
Proof. 1 = 2 Trivial, as the direct sum is a sum.

2=3 Given M = 3, ; M;, where M; is simple, let N be a submodule of M. Let A = {J C I|N + 3, , M; =
N & (®esM;)}. Since N # M, there exists M; such that M; ¢ N. Then N N M; C M; implies N N M; = (). Thus
A # 0. By Zorn’s Lemma, there exists a maximal element J € A. Let F' = @&, M.

Claim: N & F = M.

Proof: Note NN F = (0) by choice of J. Suppose N @ F # M. Then there exists ¢ such that M; ¢ N & F. Note
M;N(N®F) = (0) or M; as M, is simple. Since M; ¢ N®F, M;N(N®F) = (0). Hence N+ F+M; = NOF®M,,
a contradiction to the maximality of J. Thus N & F' = M.

3 = 1 First, we need a claim.

Claim: Assuming M satisfies (3), every nonzero submodule of M contains a simple submodule.
Proof: Let N # 0 be a submodule of M. WLOG, assume N is cyclic, that is N = Rz for x € M \ {0}. Then

N = R/I where I = Ann(x). Note I # R as N # 0. Thus I C m where m is a maximal left ideal. Then m/I
is a maximal proper submodule of R/I = N. Thus N has a maximal proper submodule N’ and so N/N’ is
simple. By (3), M = N' @ F for some F C M. Note N = N'@® (FNN). Thus FNN = N/N’, which is simple.
Thus F'N N is a simple submodule of M.

Let T'= {E|E C M is simple}. Let A = {J C T|} p., E = ®pesE}. By Zorn’s Lemma, there exists a maximal
element J € A.



Claim: M = ®gesE.
Proof: If not, let M/ = ®gcsE. By (3), M = M’ & F where F C M. Since F' # 0 as M # M’, F contains a

simple submodule E’ € T. Then JU E’ € A, a contradiction to maximality. R

Corollary 3.97. Submodules, quotients, and (direct)sums of semisimple modules are semisimple.
Proof. e Let M be semisimple and N C M a submodule. Let N’ be the sum of all simple submodules of N.

Claim: N = N'.
Proof: By 3 of the proposition, there exists F' C M such that M = N'®&F. So N = N'®(FNN).If FNN # (0),
it contains a simple submodule E. Then £ C N’, a contradiction as M = N'@®F. Thus FNN =0and N = N'.

e For quotients, say M/N, we know M/N = F where M = N @& F. Done by previous bullet point.

e Suppose {M;}icr is a family of semisimple submodules. Then M; = @®jc, E;;, E;; is simple. Then @;c;M; =

Dier,jes; Fi; is semisimple. O

Proposition 3.98. If R is semisimple, every R—module is semisimple.

Proof. R semisimple implies every free module is semisimple which implies quotients of free modules are semisimple

which implies all modules are semisimple. O
Examples.
e Division Rings are Semisimple.

e Let Ry, ..., R; be rings so that S = Ry X --- X R; is a ring. The left ideals of S are of the form I; x --- x I; where I;
is a left ideal of R;. Consequently, S is left Noetherian/Artinian/has finite length/is semisimple if and only if each
R; has the corresponding property.

e Let G be a finite group and k a field such that char k1 |G|. Then R = k[G] is semisimple.

Proof. Let I be a left ideal of R. So I is a k—subspace of R. Let Il : R — I be a projection onto I as k—vector
spaces, that is, I is k—linear and I1(i) = i for all i € I. Define II = ﬁ > geG gllg=1.

Claim: II is R—linear. N B
Proof: It suffices to show II(hr) = hIl(r) for all r € R, h € G. Notice

M(hr) = & Tyeqollg™ (hr)
= ﬁ ZhgeG(hg)H(hg)*lhr
= ﬁ > ogeG hglg=—th=L1hr
= & Cyeq hllg~! (r) = hII(r),

Note that if ¢ € I, then

(i) = %” > glg (i) = ﬁ > g9 @) =i

geG
as g~ (i) € I. This gives rise to the short exact sequence 0 — I — R — R/I — 0 with splitting map II:R— I
Thus R = [ ® R/I. Thus every submodule of R is a direct summand of R which implies R is semisimple. O
Let M be a left R—module. Let Endr(M) = Hompg(M,M). Note Endg(M) is a ring under composition. If R is

commutative and F' = R", then Endgr(F) = M, (R). This is not true if R is noncommutative.

Definition 3.99. Let R be a ring. Define the opposite ring R°P by R°P = R as abelian groups with multiplication in
R°P defined by r - s := sr.



Claim. Endr(R) = R°P as rings.

Proof. Let a € R. Define f, : R — R by r — ra. Then f, € Endr(R). Furthermore, if g € Endgr(R), then g = f, where
a = g(1). Observe (f, o fp)(r) = fa(rb) = rba = fuq(r). Now define ¢ : EndgR — R°P by f, — a. O
Note. If R is a division ring, so is R°P. It is easily shown that is F' = R™ as left R—modules, then Endg(F) = M, (R°P).
Proposition 3.100. Let D be a division ring, M a finitely generated D—module. Then Endp(M) is semisimple.

Proof. As a D—module, M = D" for some n. Thus Endp(M) = M, (D°P). Since D°P is a division ring, it is enough
to show M,,(D) is semisimple where D is a division ring. Let e; be the matrix with a 1 in the 4, " —position and zeros

elsewhere. Then M, (D)e; is the ring with a nonzero i** column and zeros elsewhere. This is simple by Exam 1. Thus
M, (D)= M,(D)e1 & --- @ M,(D)e,, a direct sum of simple modules. Then M, (D) is semisimple. O

Corollary 3.101. Let Dy, ..., Dy be division rings, ny,...,ng € N. Then My, (D1) X +-+ x My, (Dy) is semisimple.

Note. These rings are left and right Artinian/Noetherian and also right semisimple.

Proposition 3.102. Let R be a semisimple ring. Then Ar(R) < co. Thus R is left/right Artinian/Noetherian.

Proof. As R is semisimple, R = @qecpla, where I, are simple left ideals. Then 1 = ey, + ... + €4, Where e, € I, \ {0}

and aq, ..., a € A.

Claim: R=1,, ®---®1,, € A.
Proof: Suppose there exists aw € A such that I, # I, for i = 1,....k. Then for r € I,, r = req, + ... + req, where

req, € I, which implies € I, N (3 I,,,), a contradiction as R is the direct sum of I,s.

Relabel I, as I; for simplicity. Let M; = I1 ® --- ® I;. Then M;/M;_1 = I;, which is simple. Thus 0 C M; C M, C
-+ C My, = R is a composition series. Thus Ag(R) = k < oc. O

Proposition 3.103. Let R be a semisimple ring. Then
1. Fvery simple left R—module is isomorphic to a simple left ideal.
2. There are only finitely many distinct simple left R—modules up to isomorphism.

Proof. Let R=1; & --- @ I, I; are simple as in the previous proposition. Let J be a simple left ideal. Then the normal
series 0 C J C R can be refined to a composition series for R. Then J is a factor of the composition series for R which
says J = I; for some i by the Jordan-Holder Theorem. Thus there are only finitely many distinct simple left ideals. Thus
it suffices to prove (1). Let M be a simple left R—module. Let x € M \ {0}. Then Rz is a nonzero submodule of M
which implies M = Rx. Thus M is cyclic and we have the sequence 0 — ker ¢ — R 2, M — 0 where o(r) = rx is exact.
As ker ¢ is a left ideal of R, ker ¢ is a direct summand of R by definition of semisimple. Thus the sequence splits and
thus there exists a splitting map ¥ : M — R such that ¢y = 1;;. Then ¥ is injective and M is isomorphic to a simple
left ideal of R. O

Definition 3.104. A ring is simple if the only two sided ideals of R are (0) and R. Note: Simple rings are not necessarily
semisimple (this differs from Lang’s definition).

Note. An Artinian simple ring is semisimple.

Lemma 3.105. Let R be a ring, I a simple left ideal, M a simple left R—module. If I 2 M, then IM = 0.

Proof. Suppose IM # 0. Then there exists e € M such that Ie # 0. Now e C M is a left R—module. Since M is simple,
Ie = M. Define ¢ : I — M by i — de. This is a left R—module homomorphism. Since Ie = M, ¢ is surjective. Also,
ker ¢ # I as ¢ # 0 and so ker ¢ = {0} as I is simple. Thus ¢ is an isomorphism. O



Theorem 3.106. Let R be semisimple, {I1,...,, I} the set of all distinct left R—modules. Let R; =), left ideal=1; 1.
Then

1. R; is a ring with identity.

2. R; is semisimple with only 1 distinct simple module.
3. R; is a simple ring.

4. R= Ry X - - X Ry, as rings.

Proof. By the Lemma, R;R; =0 for all i # j. Note R=R;+...+ Ry and R; C R;R=R;(Ri + ...+ Ry) = RJZ C R;.
Hence R; = R;R. Thus R; is a two sided ideal. Write 1 = e; +...4¢y, for e; € R;. Let x € R. We can write z = z1+... + x4
for z; € R;. Note x; = x;- 1 = wi(e1 +...+ex) = xe; = (x1 + ... + x)e; = xe; and similarly x; = e;x. Thus x; is uniquely
determined by x which implies R = ®R;. Also, if x € R;, then © = xe; = e;x implies that e; is the identity on R;. Thus
R; is a ring with identity. Its easy to show R = R; X --- X Ry, by mapping r — (rq,...,7;). Now, note that if J is a left
ideal of R; then RJ = (R1 + ... + Rx)J = R;J = J. So J is a left ideal of R contained in R;. Conversely, if J C R; is
an ideal of R, then J is an ideal of R;. Thus the left ideals of R; are exactly the left ideals of R contained in R;. Thus
R; =Y I (where I are in fact simple ideals of R;) which implies R; is semisimple. Also, every simple left ideal of R; is
isomorphic to I;.

Let J # 0 be a two sided ideal of R;. Then J is a left ideal of R which implies J contains a simple left ideal I of R.
Since J C R;, this says [ = I;. Let K be a left ideal of R such that K = [. Then K 2 I; which implies K C R;.

Claim: K C J.

Proof: As R is semisimple, there exists a left ideal I’ such that I @ I’ = R. Then 1 = e+ ¢’ fore € I,e¢’ € I’ where
e # 0. Then e = €% + ee. Since I NI’ = (0), we have e = ¢? and thus Ie # 0. As Ie C I and I is simple, this says
I =1TIe. Let ¢ : I — K be a left R—module isomorphism. Then K = ¢(I) = ¢(Ie) = Ip(e) C Jp(e) C J as J is
two sided.

Since K was arbitrary, this says J 2 R; which implies J = R;. O
Corollary 3.107. Let R be a semisimple ring. TFAE

1. R s simple.

2. There exists a unique left simple ideal up to isomorphism.
Example. Let D be a division ring and n > 1. Then M,, (D) is simple and semisimple.

Proof. Let R = M, (D) and e; be the matrix with a 1 in the 4, i-spot and zeroes elsewhere. Then R = Re; ® - - - ® Rey,
where Re; are simple left ideals and ¢ : Re; — Re; defined by re; — re; E;; is an isomorphism. Then R has a unique

maximal simple left ideal. Thus R is simple. O

Notation. Let R be a ring and E an R—module. Let R'(E) = Endr(F). If a € R, define r,, : E — E by e — ea. Then
rq € R'(E). Let R"(FE) = Endgr (E). (Note that if E is an R’—module, then for ¢ € R, e € E, we can define ¢e := ¢(e)).
For a € R, define ¢, : E — E by e — ae.

Claim: ¢, € R"(FE).

Proof: Let f € R',;e € E. Then fl,(e) = f(ae) = af(e) = L.(f(e)).

This gives yield to the natural homomorphism A : R — R"(FE) defined by a — ¢,. Note that A is injective if and only if
¢, #0 for all a € R\ {0} which is if and only if anng(E) = (0) (that is, E is a faithful R—module).

Schur’s Lemma: Let R be a ring and E a simple R—module. Then R'(E) is a division ring.



Proof. Let ¢ € R'(E) \ {0}. It is enough to show ¢ is an isomorphism. Of course, ker ¢ is a submodule of E (which is
simple) and since ¢ # 0 we have ker ¢ # E and so ker ¢ = (0). Similarly, im¢ is a submodule of E and since ¢ # (0) we
have im¢ = F. O

Theorem 3.108. Let R be a simple ring and I # (0) a left ideal. Then X\ : R — R"(I) is an isomorphism.

Proof. (Rieffel) Since ker A is a two sided ideal and R is simple, ker A = 0 or R. Since 1 — ¢;, which is clearly not
zero, we see ker A = 0. Thus X is injective. Note that IR # (0) is a two sided ideal of R. Thus IR = R. Then
{22 Ak)A(re)lin € I,re € Ry = AI)MR) = A(IR) = A(R).

Claim: A(I) is a left ideal of R”.
Proof: Let f € R”, £, € A(I) where a € I. Let i € I. Then fl,(i) = f(ai) = f(ri(a)) = ri(f(a)) = f(a)i = L) ().
Thus fl, = Ly € MI) as f(a) € 1.

Now, R”" = R'A(R) = R'NI)X\(R) = X(I)A(R) = A(R). Thus X is onto. O
N————
since 1=¢,e(R)

Theorem 3.109 (Artin-Wedderburn). Let R be a simple ring. TFAE
1. R is semisimple.
2. R is left Artinian.
3. R= M,(D), n e N,D a division ring.

Proof. 3 = 1= 2 already done.

2 = 3 Since a minimal nonzero left ideal is a simple left ideal and R is left Artinian, we see that there exists a simple left
ideal, call it I. By the Theorem, A : R — R"(I) = Endg/(I) is an isomorphism. Since I is simple, R’ = Endgr(I)

is a division ring by Schur’s Lemma.

Claim: [ is finitely generated as an R’ module.
Proof: Suppose not. Then there exists an infinite set {e1,es,...} € I which is linearly independent over R’.

For each n € N, let J,, = {f € R"(I)|f(e1) = --- = f(en) = 0}. Note J,, is a left ideal of R” and J,, 2 J,11

for all n. This says R” = R is not left Artinian, a contradiction.

Thus I is finitely generated as an R'—module. So I = (R’)™ for some n. Thus R” = Endgr/ ((R')") & M, ((R)°P)

as (R')™ is a free module. Let D = (R')°P, a division ring. O
Corollary 3.110. Let R be a ring. TFAE
1. R s semisimple.
2. R M,,(D1) X -+ x My,(Dy) forn; € N, D; division rings.
Proof. 2 =1 Done, as products of semisimple rings are semisimple.

1=2 R Ry X -+ X Ry where R; are left Artinian simple rings. 0

Corollary 3.111. If R is semisimple, then R is left/right Artinian and left/right Noetherian. Also, left semisimple if

and only if right semisimple.

Proof. Clear as M, (D7) X -+ x Myue(Dy) are. O



Notation. Let R be a ring, E an R—module, R’ = R'(E) = Endr(F) and R’ = R"(F) = Endg/(E). Let E" =@} |E
and E; =00 -®0®E®0® - -®0. Let m; : E™ — E; and p; : E; — E™ be the natural maps. Let ¥ € Endr(E"™) and
i =Y E; — E;. So ¢; € Homp(E;, E;) =2 Endr(E) = R'. Thus we can represent ¢ as a matrix (1;;)nxn where

1 xr1 Z?:l 1[1]1(173) xr1
T2 T2 T2
Tn In > i1 Yin(;) In

Thus Endr(E™) = M, (Endgr(E)), that is R'(E™) = M, (R’).

Remark. Let f € R'(E). So f : E — FE and f(é(z)) = ¢((f(z)) for all € R',z € E. Thus f¢ = ¢f for all € R'.
Define f(*) : E® — E™ by f()(x1,...,x,) = (f(21), ..., f(zn)). As a matrix, this says (™) = fI,,. Let ¢ € R'(E™). Then
(fI.)(Wij) = ij(fI,) since fipy; = ;i f for all 4, 5. Thus fMyp = ™ for all ¢ € R'(E™). Thus f™ € R"(E™) (its

clearly additive and we just showed we can pull out elements from R’.) Therefore,
feR"E)= f™ e R'(E").

Lemma 3.112. Let R be a ring, E a semisimple R—module. Let f € R"(E),xz € E. Then there exists « € R such that
f(x) = ax (note that « depends on x).

Proof. Fix x € E. Since F is semisimple and Rz is a submodule of E, we have E = Rx & F' for some left submodule F.
Define 7w : E — E by ra + f +— ra (the projection onto Rz). So w € R’ and since w(z) = & we have f(x) = f(n(z)) =
w(f(z)) € Rx. O

Theorem 3.113 (Jacobson Density Theorem). Let R be a ring and E a semisimple left R—module. Let f € R"(E)
and x1,...,x, € E. Then there exists a € R such that f(x;) = Lo (x;) for alli € [n].

Proof. Let f(") : E™ — E™ be as above and « = (21, ..., %,) € E™. By the remark, f(®) € R”(E") and E™ is semisimple.
By the lemma, there exists a € R such that f(™)(z) = ax which implies f(x;) = aw; for all i € [n]. O

Corollary 3.114. If E is finitely generated over R', then A\ : R — R"(E) defined by o — £, is surjective.
Proof. Let 1, ...,x, be generators for F as an R'—module. If f € R” and f(x;) = £ (x;) for i € [n], then f = £,. O

Corollary 3.115. Let R be a semisimple ring and E = R™ a left R—module. Then X\ : R — R"(FE) defined by a — £,

is an isomorphism.

Proof. As R is semisimple, E is. So ker A = Anngr(E) = (0) as R™ is faithful (it’s free!). Note that E is generated over
R’ by {e1} (Let z € E. As {e1} is part of an R—basis for F, there exists an endomorphism ¢e; = ¢(e1) = z. Thus

R'ey = E). By the previous corollary, x is surjective. O

Corollary 3.116. Let D be a division ring and E a finitely generated D—module. Then D = Endp:(E), that is,
A: D — D"(E) is an isomorphism.

Proof. D is semisimple and E = D™ for some n. Done by previous corollary. O
In matrix notation, this says Endp(D") = M, (D°P) =: D’. So D™ is an M,,(D°)—module. Then Endp/ (D") = D.

Corollary 3.117 (Wedderburn). Let R be a finite dimensional k—algebra, where k is a field. Let E be a simple
R—module. Then A : R — R"(E) is surjective. If, in addition, we have E is faithful, then X\ is an isomorphism.



Proof. By the first corollary, it is enough to show F is finitely generated as an R’—module. Since F is simple, £ = Rx
for x € E. So dimy E < co. Since k C Z(R), we have k — R'(E) via a — £, ({, € R'(F) as k is commutative). So F
finitely generated over k implies E is finitely generated over R’. O

Note. E a finitely generated R—module does NOT imply E is a finitely generated R’(E)—module.

Example. Let A be the ring from Exam 1 #6. A is called the (first) Weyl algebra of F' and is denoted A (F)). An
equivalent definition for A is Ay (F) = F{z,y}/ < 2y —yx —1 > where F{z,y} is the free algebra generated by z,y
(i.e., z,y do not commute). Let I be a maximal left ideal of A and E = A/I. Then FE is a simple A—module. Thus
A'(E) = Ends(E) is a division ring (as E is simple). If F is finitely generated as an A’—module, then E = (A")"
and by the corollary, A : A — A”(E) would be surjective, where A”(E) = Enda/((A")") = M, (A’) is semisimple.
Since A is simple, ker A = 0 which implies A = M,,(A4’), a contradiction as A is not Artinian by M, (A") is. Thus
FE is not a finitely generated A’—module.

Remark. Let R be a ring, E an R—module. Let r € Z(R). Then ¢, € R'(E). Thus there exists a ring homomorphism
¢ : Z(R) — R'(F) mapping r — £,. Denote ¢(Z(R)) by Z(R) - Ig where Iy is the identity map on E. If F is a finitely
generated Z(R)—module, then F is a finitely generated Z(R)Ig—module (the actions on E are the same).

Observation. If F is a finitely generated R—module and R a finitely generated Z(R)—module, then E is a finitely
generated Z(R)—module and hence a finitely generated R'—module.

Proof. Let E = Rz1 + ...+ Rzy,, R= Zui + ... + Zu,,. Then E = Zi,j Zu;xj. Now, Z(R)Ig is a subring of R’ and thus
E finitely generated over Z(R) implies E is finitely generated over R’. O

Proposition 3.118. Suppose R is finitely generated over Z(R) and E is a finitely generated semisimple R—module.
Then A : R — R is onto.

Note. Suppose r € Z(R). Then ¢, € R'(E). In fact, ¢, € Z(R') as for f € R', fl,.(x) = f(rz) =rf(z) = (¢.f)(z) for all
x € E. Hence Z(R)Ig C Z(R).

Proposition 3.119. Suppose A : R — R"(E) is an isomorphism. Then Z(R') = Z(R)Ig = {{,|r € Z(R)}.

Proof. Only need to show (C). Let f € Z(R’). Then for all ¢ € R, f(¢x) = ¢f(x) which implies f € Endr/ (E) = R"(E).

So f =4, for some r € R. Want to show r € Z(R). Let s € R. Then rsz = {,.(sz) = f(sx) = sf(x) = sl,(x) = srz. Thus
rs(z) = sr(z) for all z € E which says (rs — sr)E = 0. Of course, F is faithful which implies rs = sr. O

Corollary 3.120. Let D be a division ring. Then Z(M, (D)) = {zI,|r € Z(R)}.

Proof. Let R = D,E = D". Then R'(E) = M,(D°) and since F is a finitely generated semisimple ring over a
division ring, we've seen A : R — R’(E) is an isomorphism. Thus Z(R') = Z(R)Ig. Now, note that Z(M, (D))
Z(M,(D°P)).

O

Proposition 3.121. Let Dy, Dy be division rings, V1, Vs finitely generated D1, Dy vectors spaces. Then Endp, (V1) =
Endp,(Va) if and only if D1 = Dy and dimp, V7 = dimp, V.

Proof. Let R = Endp, V1 and ¢ : R — Endp,Vs. Then V; is an R—module and V5 is an R—module through ¢. Note V; is
a simple R—module (let v € V'\ {0} and u € V;. Then there exists ¢ € Endp, V; = R such that ov = u. Thus Rv = V7).
Similarly, V4 is simple over Endp,(V2) = R. Recall R is simple Artinian and thus has a unique simple R—module. Thus
Vi 2 V,. So Dy = DY (V1) = Endg(Vh) = Endr(Va) = DY(Va) & Dy. If V3 = D7, then dimp, Endp, Vi = n3. So

n? = dimp, R = dimp, R = n3. Thus ny = ny. O

Proposition 3.122. Suppose Ay X --- x A = By X --- X By as a ring isomorphism where A;’s and B;’s are nonzero

simple rings. Then k ={ and A; = Bj after reordering.



Proof. Suppose they are isomorphic via ¢. A; is an ideal of A; x --- X Ag. Thus ¢(A;) is an ideal of By x -+- x By.
Since ideals of By X --- x By are of the form Iy X --- x I, where I; is an ideal of B;, but I; = (0) or I; = B;, we have
¢(A1) = By x---x By x(0) x---x(0) (after reordering). If ¢ > 1, then ¢(A;) has nontrivial proper ideals, a contradiction
as A; simple. So ¢(A;1) = B;. Use induction (mod out and repeat) to get A; = B; and k = /. O

Theorem 3.123. Let R be a semisimple ring. Then there exist unique division rings D1, ..., Dy and natural numbers

Ny, ..oy N Such that R = M, (D1) X -+ X My, (Dy,). Furthermore, every such R is semisimple.
Definition 3.124. An ideal I is nilpotent if I"™ = 0 for some n and I is called nil if every element in I is nilpotent.

Note. [ nilpotent implies I nil, but the converse is false.
Example. R = k[[z1,...,2,]]/(z1,23, 23, ....,). R is quasilocal and m = (1, ..., z,) is nil, but not nilpotent.

In 1907, Wedderburn proved: If R is a finite dimensional k—algebra (where k is a field), then there exists a largest
nilpotent left ideal of R (that is, it contains all other nilpotent ideals). 20 years later, Artin proved the same result
for left Artinian rings. This largest nilpotent ideal is called the Wedderburn radical. Wedderburn defined a finite
dimensional k—algebra to be semisimple if the Wedderburn radical was 0. In 1945, Jacobson extended the definition of
the Wedderburn radical:

Definition 3.125. Let R be a ring. The Jacobson Radical of R is radR = J(R) = Nm, where the intersection runs

over all mazimal left ideals.
Note. If R has DCC, then J(R) is exactly the Wedderburn radical.

Lemma 3.126. Let R be a ring and y € R. TFAE
1. ye J(R)
2. 1 —xy is left invertible for all x € R.
3. yM =0 for all simple left R—modules.

Proof. 1 =2 If 1 — zy is not left invertible, then R(1 — xy) # R, which says R(1 — zy) C m for some maximal left ideal

m. Since y € m, we know zy € m and thus 1 € m, a contradiction.

2 = 3 Suppose yM # 0. Then yu # 0 for some v € M. Then Ryu # 0 which implies Ryu = M as M is simple. So

u = xyu for some x € R which says (1 — zy)u = 0. By 2, u = 0, a contradiction.

3 =1 Let m be a left maximal ideal. Then R/m is simple which implies y(R/m) = 0 and thus y € m. Since m was
arbitrary, y € J(R). 0

Definition 3.127. For all R—modules M, the annihilator of M is defined as Anng(M) = {r € RlrM = 0}.
Recall that Anngr(M) is a two-sided ideal (Anng(M) = ker(A: M — EndrM)).

Corollary 3.128. J(R) = NAnngM, where the intersection runs over all simple left R—modules. In particular, J(R)

is an ideal.

Proposition 3.129. Let R be a ring and y € R. TFAE
1. ye J(R)
2. 1 —xyz is a unit for x,z € R.

Proof. 2 =1 Let z =1 and use previous lemma.



1 =2 By the corollary, yz € J(R). Thus 1 — zyz is left invertible. Let u be its left inverse (so w is right invertible).
Then u(1 — zyz) = 1 which implies v = 1 + uzyz. Note uzyz € J(R) and thus v = 1 + uzyz is left invertible. Thus

u is a unit, which implies its left inverse is its right inverse and thus 1 — xyz is a unit. ]

Corollary 3.130. Let R be a ring. Then J(R) = Nm, where the intersection runs over all mazimal right ideals.

Proof. We can prove the above results for the “right” Jacobson radical and then (2) of the proposition says they must
be the same. O

Definition 3.131. A ring is called semiprimitive/Jacobson semisimple/J-semisimple if J(R) = 0.

Remark. Semisimple rings are semiprimitive.

Proof. Let R be semisimple and y € J(R). Now R =I; @ --- @ I, where I; are simple. Now yI; = 0 for all j which
implies yR = 0 and in particular y - 1 = 0. O

Examples. Z, F[x] for a field F' are semiprimitive, but not semisimple.

Theorem 3.132. Let R be a ring. TFAE
1. R is semistmple
2. R is left Artinian and J(R) = 0.

Proof. Note that 1 = 2 is done by the remark. For the other direction, note that by DCC, every nonzero left ideal of R

contains a simple (that is, minimal nonzero) left ideal.

Claim: Every simple left ideal is a direct summand of R.
Proof: Let I be a simple left ideal (so I # 0). Since J(R) = 0, I ¢ m for some maximal m. Since m is maximal,

this says I +m = R. Since [ is simple, I N'm = 0. Thus I & m = R.

Let I; be a simple left ideal of R. Then R = I, & J; for some ideal J; by the claim. If J; = 0, done. Otherwise, J;
contains a simple ideal I5. By the Claim, R = Is® A5 and thus J; = I AsNJq. Let Jy := AsNJy. Then R = 118158 Js.
Continuous in this manner. By DCC, the chain must eventually end at a simple J,. Then R is the direct sum of simple

modules and therefore semisimple. O
Proposition 3.133. Let R be a commutative ring, x an indeterminant. Then J(R[x]) = Nilrad(R[x]) = (Nilrad(R))[z].

Proof. Note that Nilrad(R[z]) = Npespecrz? € Nmespmrzm = J(R[z]). Let f = ag + ... + ap2™ € J(R[z]). Then
l—2f =1—apr —a1x? —... — a,x" ! is a unit in R[z]. By a previous exercise, this implies ay, ..., a,, are nilpotent. Thus
f € Nilrad(R]x]). O

Corollary 3.134. If R is reduced (that is, NilradR = 0), then R[z] is semiprimitive. In fact, Rlx|a € I] is semiprim-
itive.
Lemma 3.135. Let Iy, ..., I, be nilpotent left ideals. Then Iy + ... + I}, is nilpotent.

Proof. By induction, it suffices to prove for k = 2. Let n be such that I?* = I& = 0. Then we see (I; + I3)*"~! = 0 by
showing (ay + b1)...(a2n—1 + ban—1) = 0 for a; € I1,b; € I. O

Corollary 3.136. If R is a left Noetherian ring, then there exists a nilpotent left ideal containing all other nilpotent
ideals (and is itself contained in J(R)).

Remark. The set of nilpotents in a noncommutative ring does not necessarily form a left or right ideal.

Lemma 3.137. If I is a nil left ideal, then I C J(R).



Proof. Let y € I. It is enough to show 1 — zy is a unit for all x € R. Now y € I implies xy € I and therefore zy is
nilpotent. In general, we've seen if a” = 0, then (1 —a)~™! =1+ ... +a"!. Thus 1 — 2y is a unit and y € J(R). O

Theorem 3.138. Let R be a left Artinian ring. Then J(R) is nilpotent. Hence J(R) is the largest nilpotent left or right
ideal and so J(R) is the Wedderburn Radical.

Proof. Let J = J(R). By DCC, the descending chain J 2 J2 D J3 D ... stabilizes. So there exists k such that
JE=Jgktl — ... Let I = Jk C J(R).

Claim: I = 0.

Proof: Suppose not. Consider A = {J|J is a left ideal such that IJ # 0}. Note R € A so A # (). So there exists a
minimal element J € A by DCC. Choose y € J such that Iy # 0. Note Iy C J is a left ideal and I(Iy) = I?y =
Iy # 0. Thus Iy € A and by minimality, we have Iy = J. Now y € J implies y = iy for some ¢ € I. Thus (1—4)y =0
but i € J(R) implies 1 — ¢ is a unit. Thus y = 0, a contradiction. O

Remark. Let R be a semisimple ring and M a left R—module. TFAE
1. M is (left) Artinian
2. M is (left) Noetherian
3. M is finitely generated
4. Ap(M) < 0.

Proof. If R is semisimple, then M is. Thus M = @;cpl; for I; simple. If A is finite, we have a composition series. If A is

infinite, then we can find an ascending/descending chain that does not stabilize (just add on/pluck off components). [

Theorem 3.139. Let R be a left Artinian ring. Then R is left Noetherian (and hence A(R) < oo where R is considered
a left R—module).

Proof. Let J = J(R). Note that R/J is semisimple (as R is left Artinian, R/J is left Artinian and J(R/J) = 0 by the
bijection of maximal ideals of R and R/J). For any i, we see J'/Ji™! is an R/J—module as J(J¢/J*1) = 0. Since R
is left Artinian and J* C R, we see J' is left Artinian and thus J¢/J**! is left Artinian as an R module and thus as an
R/J—module. Thus Ag,;(J*/J") < oo by the remark which says J*/J"*! satisfies ACC as an R/J—module and thus
as an R—module and so Ar(J*/J1) < oco.(x)

Claim: A\(R/J*) < oo for all i.

Proof: For i = 1, we see A(R/J) < oo by the i = 0 case of (). For ¢ > 1, consider the short exact sequence
0— J7YJ - R/J' — R/J™! — 0. Since Ag(J*"1/J%) < o0 by (x) and Ag(R/J*™!) < oo by induction, we have
Ar(R/J?) < 0.

By the Theorem, J" = 0 for some n and thus we get Ag(R) = Ag(R/J") < oo. O

Proposition 3.140. Let R be a commutative Artinian ring. Then R has only finitely many prime ideals, each of which

is mazimal (that is, dim R = 0).
Proof. Recall that dim R = sup{n|po S p1 € -+ C pn,p: € SpecR}.

Claim: R has only finitely many maximal ideals

Proof: Suppose not. Let mq, mg, ..., be an infinite list of distinct maximal ideals. Then m; D mi; Nmgy D my Nmo N
mg D --- is a descending chain of ideals. By DCC, there exists k such that mi N ---Nmg =miN---Nmg N Mg41.
Since maximal ideals are prime, myy1 2 m; for some ¢ = 1, ..., k. Since both are maximal, this says myy; = m;, a

contradiction as they are distinct.



Thus J(R) = mq N---Nmyg. Let p € SpecR. As J(R) is nilpotent, p O J(R) (as the nilradical is the intersection of all

primes). Then p D my N---Nmy which implies p O m;. Since m; is maximal, p = m;. Thus every prime is maximal. [J

Definition 3.141. Let R be a commutative ring, I an ideal. Say MingR/I = {p € SpecR|p is minimal over I} (Recall
by p minimal over I, we mean there does not exist ¢ € SpecR such thatp 2 ¢ 2 1.)

By the bijection between primes p of R/I and primes I C p in R, these are the minimal primes of R/I. Thus
MingR/I < Ming, R/I. Also, note that MingR/(0) are just the minimal primes of R.

Remarks.

L VT = Npentingry1p-

2. MingR/I is a finite set if and only if VT is the intersection of finitely many prime ideals.
Proposition 3.142. Let R be commutative and Noetherian, I an ideal. Then Ming(R/I) is finite.

Proof. Let T' = {I € R|MingR/I is not finite}. By way of contradiction, suppose I' # (). Choose I maximal in T' by
ACC. Then, by maximality, I = /T as they have the same minimal primes. Replacing R/I with R, we have a Noetherian
ring R such that

1. MingR is infinite
2. MingR/J is finite for all j # 0
3. Ris reduced (as I = /T).

Note also that R is not a domain as otherwise MingR = (0). Choose a € R\ {0} such that a is a zero divisor. Consider

annpa C annga® C --- . By ACC, there exists n such that annga™ = annpa™t'. Let b = a™. Then anngb = anngb?.

Claim: (b) Nanngb = (0).
Proof: First note that since R is reduced, b # 0 and since a is a zero divisor, anngb # 0. Now, let = € (b) N anngbd.

So « = rb € anngb which implies b = rb®> = 0. Thus r € ann,b> = ann,.b. So = rb = 0.

Thus (0) = \/(0) = \/(b) Nanngb = +/(b) NVanngb=(PiN---NP)N(Q1N---NQy) (since Ming(R/J) < oo, for an
ideal J we have v/.J is the intersection of finitely many primes). Thus 0 is the intersection of finitely many primes which

implies MingR is finite, a contradiction. O
Theorem 3.143. Let R be a commutative, Noetherian ring. Then every ideal has only finitely many minimal primes.

Proof. Let A = {I : I has infinitely many min’l primes}. Let I € A be maximal. Clearly, I is not prime. Choose a,b € R
such that a,b &€ T but ab € I. Let J; = (I,a) = I +aR and Jo = (I,b) = I +bR. Then J; 2 I and J1J; C I.

Note that MingR/I C MingR/J1 U MingR/J>, which are both finite (as Ji,Jo € A). Thus MingR/I is finite, a

contradiction. O
Theorem 3.144. If V is a vector space over a division ring, then TFAE

1. V is Noetherian.

2.V is Artinian.

3. AV) < 0.

4. dimV < oo.

N

V' is finitely generated.

Theorem 3.145. Let M be a semisimple left R—module. TFAE



1. M is left Noetherian.
2. M is left Artinian.

3. Ar(M) < o0.

4. M is finitely generated.

Proof. To show any of 1,2,3 implies 4, use contrapositive. To show 4 implies any of 1,2, or 3, note that M = &7, Re;.

Thus submodules are of the form @,;cyRe; which says there are finitely many submodules. O
Theorem 3.146. Let R be a commutative ring. TFAE

1. R is Artinian.

2. A(R) < o0.

3. R is Noetherian and dim R = 0.

Proof. Recall that R Artinian implies all prime ideals are maximal and so dim R = 0. Thus,the only thing needed to prove
is 3= 2. Let J = J(R). Since R is Noetherian and every prime ideal is maximal (as dim R = 0), SpecR = {mq1, ..., m, }.
So J(R) = Ni_ym;.So R/J = R/(m1N---Nm,). Now m;+m,; = R for all i # j, thus by the Chinese Remainder Theorem,
we have R/J = R/my x -+ x R/m,. So R/J is semisimple. Now, since J is nilpotent as J = m; N---Nm, = 1/(0) and
J is finitely generated, there exists n such that J" = 0. Consider R = J° D J D --- D J" = (0). Note that J*/J*1! is
a finitely generated R/J module for all ¢ which implies it is semisimple R/J module as R/J is. Thus it is a semisimple
R—module. (Recall an R—module M is simple if and only if M is a simple R/J-module). Now, R Noetherian implies
Ji is finitely generated and thus Ag(J?/Jit1) < oo for all i. But A(R) = Y27 A(J?/Ji1) < oc. O

Example. R = k[x,y,2]/(23, 2y, 9%, 2z, 2%) where k is a field. Note that SpecR = {(x,y, z) R} which implies dim 0. Now
R is Noetherian as k is. Consider k[xz,y, 2]/ (23, vy, x2, 25). Here, (x,y,2) C (z,z) which implies it has dim > 0 and is

=

thus not Artinian.

Definition 3.147. Let R be a ring. R is called von Neumann regular if for all a € R, there exists x € R such that

ara = a.
Examples.

1. Division rings are von Neumann regular

2. Products of von Neumann regular rings are von Neumann regular.

3. Example of a commutative von Neumann regular ring which is not a product of fields: Let F be a finite field and

S =112, F. Consider S as an F—algebra via F' — S defined by 1 — (1,1,...). Let R= Flg+®2,F = {(a;) € S :
there exists ¢ € F such that a; = ¢ for all but finitely many i}. R is easily seen to be von Neumann regular (take
z; =a;t).
The idempotents of R fall into disjoint sets A = {(e;) : e; = 1 for all but finitely many i} and B = {1 —e:e € A}.
Observe e € A if and only if 1 —e € B. If e € B, then |Re| < co. Thus there do not exist idempotents e € R such
that |Re| = oo and |R(1 — e)| = oco. But any infinite product of fields has such idempotents: e = (1,0, 1,0, ...) and
1—e=(0,1,0,1,...).

Proposition 3.148. Let R be a ring. TFAE
1. R is von Neumann regular

2. Every finitely generated left ideal is generated by an idempotent.



3. Bvery finitely generated left ideal is a direct summand of R.

Proof. 1 = 2 Let I = Raj + ... + Ra,. If n = 1, then there exists x € R such that a = axa. Let e = xa € Ra. Then

e? = zaxa = za = e. Clearly, Re C Ra. But a = ae € Re. So Ra = Re. For n > 1, note that it is enough to show
the n = 2 case. Let I = Raj;+ Ras. By the n = 1 case, we have I = Re; + Res where e% = e; and e% = e5. Note that
I = Rei+ Rea(1—eq) as req +sea(1—eq) = rej + sea — seger. Let f be an idempotent such that Rf = Rea(1—eq).

Then fe; € Rea(1 —e1)e; =0. So f(f +e1) = f.

Claim: I = R(f +e1).
Proof: We've shown f € R(f + e1). Thus e; € R(f + e1). So Rf + Rey C R(f + e1). Of course, I =

Rey(1 —e1) + Rey = Rf + Rey C R(f +e1) and since I D R(f +e1), we see [ = R(f + e1).
By the n =1 case, R(f + e1) is generated by an idempotent.
2 = 3 Let I be a finitely generated ideal. Then I = Re,e? =e. Then R= Re® R(1 —¢) = & R(1 —¢).

3=1 Let a € R. Then R = Ra® J. So 1 =ra+ j such that j € J. This implies a = ara + aj. Now, aj = a — ara =
(1 —ar)a € Ra and aj € J. Thus aj = 0 which implies a = ara. 0

Corollary 3.149. Let R be a ring. TFAE
1. R is semistmple.
2. R is von Neumann regular and left Noetherian.
Example. [];2, F is von Neumann regular but not semisimple for a field F.

Proposition 3.150. von Neumann reqular rings are semiprimitive.

Proof. Let a € J(R). Then there exists x € R such that a« = aza. Then a(l — za) = 0. As a € J(R), 1 — za is a unit
which implies a = 0. U

Example. Let F' be a field, V an infinite dimensional F'—vector space. Then EndgV is not Artinian and hence not

semisimple. It is also not Noetherian.

Proof. Let {e1,ea,...} be part of an F—basis for V. Let I,, = {f € EndprV|f(e1) = ... = f(en) = 0}. These are left ideals
of EndpV and I; D I D I3 2 --- . Thus it is not left Artinian. O

Proposition 3.151. Let M be a semisimple left R—module. Then EndrM is von Neumann reqular.

Proof. Let f € EndrM. Want to find g € EndgM such that fgf = f. Let K = ker f. Then there exists N such that
M = K & N since M is semisimple. Also, there exists K’ such that M = K’ @ f(N). Note f|y : N — f(N) is an
isomorphism as N N K = 0. Define g : M — M by g|g = 0 and g|sn) = (fIln)~t. Then g € EndgM and fgf = f. O

Theorem 3.152 (Wedderburn 1905). Every finite division ring is a field.

Proof. Let D be a finite division ring. Let F' = Z(D), a subfield of D. Say F' = F, (that is, |F| = ¢ = p™, charF = p).
Let n = dimp D (so that |D| = ¢") as D is an F—vector space. For each a € D, let C(a) = {d € Dl|da = ad},
the centralizer. It is easily seen that F' C C(A) is a division subring of D (If d commutes with a so does d~1). Let
ry = dimp C(a), mq = dimg(,) D. Just as in the proof for fields, we can show mqr, = n. In particular, r,|n. By the class
equation, |D*| = |Z(D*)| + > %, where the sum runs over the distinct conjugacy classes. Since |Z(D*)| = |F*|,
we see (%)|D*| = q¢—1+>, (;1:;:11 where r, < n as a € F. Suppose, by way of contradiction, that n > 1. Recall

z" — 1 = [, ¢a(x). Then for all a ¢ F, we see rq|n and r, < n. This says 2" — 1 = (2" — 1)¢phe(z) for some

ha(z) € Z[z]. Letting z = ¢ we see ¢, (q) Z;I;T;__ll in Z for all a ¢ F. By (%), we have ¢,,(q)|¢—1. Of course, ¢,,(q) = [[(¢—w)
where w are the primitive n'" roots of unity. So |¢ — 1| = |¢ — w1 |- - - |¢ — w¢||z|. By the triangle inequality and the fact

that w € R*, we see |¢ — w| > |q| — |w| = ¢ — 1, a contradiction. O



Corollary 3.153. Any finite subring of a division ring is a field.
Proof. Any finite subring of a division ring is a division ring. O
Corollary 3.154. Let D be a division ring with charD > 0. Then any finite subgroup of D* is cyclic.

Proof. Note that F, C Z(D). Let G = {g1, ..., gn} be a finite subgroup of D*. Let R = {3 a;gi|la; € Zp,g; € G}. Then
R is a finite subgroup of D which implies R is a field. Now, G is a finite subgroup of R* which implies G is cyclic. [

Example. The division ring of quaternions D = R @ Ri ® Rj @ Rk. Now, (Jg is a finite subgroup of D* which is not

cyclic.

4 Representation Theory

Exercise. Let M be a finitely generated semisimple left R—module. Then M = n;V; & ... ® niV, where n; are
positive integers, V; are simple left R—modules with V; # V; for all ¢ # j, and n;V; = V; @ --- @ V; . Furthermore, if
~—_—
n; times
M=miWi ® ... ®mgWy, then k = £ and, after reordering, n, = m; and V; & W, for all i.
Proof. The first statement is the additive version of M = [[ M;*, which is proven in HW5#2. For uniqueness, note that

these yield composition series which are unique by Jordan Holder. O

Definition 4.1. The n;’s in the above exercise are called the multiplicity of V; in M.

Recall. Let R be a semisimple ring, I, ...,I; the distinct simple left ideals of R. Then R = n1I; & --- & nyly =
B(Iy) x - -+ x B(I1) as rings where B(I;) = }_ j~;, J(see Exam 1#1). Note that B(I;) are two sided ideals of R. They are
not subrings of R (as they have different identities), but B(I;) are simple Artinian rings (where I; is the unique simple
left ideal of B(l;)). Furthermore, Endpj,)l; = Endrl; (Write r = by + ... + b;. Then rI; = b;1;), which is a division
ring, say D;. By Artin Wedderburn, B(I;) = Endp,I; = M, (D;") where n; = dimp, I;.

Theorem 4.2. Let R be a semisimple finite dimensional k algebra for k =k a field. Let R = nyI; @ - -- ® nyI; where I;
are simple left ideals and I; % I; for all i # j. Then

1. n; =dimy I; forall j =1,...,t.
2. dim R=3Y_ n?

Proof. Clearly 1 = 2. So its only left to prove 1. Let m; = dimy I;. Since dimy, I; < dimy R < oo, we see m; < oo. Let
Dj = Endgrl;. Note that dimy, D; < dimg Endgl; = dimy, M, (k) = m? < oo. Now, k C Z(R). Hence, multiplication
by elements of k are in Endgrl;. So k — Endgl;. In fact, k C Z(D;) (Let f € D; and u, multiplication by a. Then
(fua)(@) = flai) = af(i) = (uaf)(i)). Now, k = k and k C Z(D;) which implies k = D; for all j (Choose o € D;.
Then k(a)/k is algebraic, but k = k so k(a) = k). Now n;I; = B(I;) = Endp,I; = Endpl; = My, (k). Thus

njm; = dimy n;I; = dimy, My, (k) = m3. Thus n; = m;. O
Theorem 4.3 (Maschke’s Theorem). Let G be a finite group and F a field. If char F 1 |G|, then F[G] is semisimple.
Proof. We proved this shortly after the definition of semisimple. O
Note. The converse is true!

Proof. Let |G| = nand e = 3 g
Furthermore, € = eey, + ... + ee,, = ng as ee; = e. Thus, if char F|n, then (1 — xey) is a unit for all z,y € F[G] as
(1 —zey)(1 +zey) =1— (z%)e?(y?) = 1 — (z*)ne(y?) = 1. Thus e € J(F|[G]) and since e is not zero (the e, are linearly

independent), we see F'[G] is not semisimple. O

eg € F[G]. Observe eje = ¢ = eeq for all ¢ € G. Thus Fe is a two sided ideal.



Proposition 4.4. Let G be a finite group, F' a field. Let Ci,...,C, be the distinct conjugacy classes of G. Let z; =
> gec, 9 € F[G]. Then {z1,..., 2} is an F—basis for Z(F|[G]).

Proof. For all i and for all ¢ € G, gC;g~! = C;. Thus gz;g~' = z;. Of course, z; commutes with elements in F and
so z; € Z(F[G]) for all i. As C4,...,C, are disjoint, {z1,...,2,} is linearly independent over F. Let ¢ € Z(F|[G]). Say
¢ =23 ,ec 799, where 7, € F. For h € G, we see ¢ = hch™! = > ogec Yghgh™! = > gec Yh-1gng- As the g’s form a basis
for F[G], we see 74 = 14 for all h € G. Hence, if g1, go are in the same conjugacy class, then v, = 7,,. Thus cis a

linear combination of z1, ..., z,. O

Theorem 4.5. Let G be a finite group, F' an algebraically closed field, char F 1|G|. Then the number of distinct simple

F[G]—modules is equal to the number of conjugacy classes of G.

Proof. By Maschke’s Theorem, F[G] is semisimple. By Artin-Wedderburn, F[G] = niI; & --- @ niJ; and thus F[G] =
My, (Dy) X -+ x My, (Dy), where Dj = Endpiq(1;). Moreover, t is the number of distinct simple F'[G]—modules.

Claim: D; = F.

Proof: By definition of the group ring, F C Z(F[G]). Thus multiplication by any element of F induces an
F[G]—endomorphism of I;. Thus F' C D;. Furthermore, F' C Z(D;) as multiplication by F' commutes with elements
of Endpic(I;). As F[G] is left Noetherian, we see I; is a finitely generated ideal. Further, as F[G] is a finitely
generated F'—vector space, we can conclude [; is a finitely generated F'—vector space. Since D; = Endpig)(1;) €
Endp(I;) and Endp(1;) is a finite dimensional F—vector space, we see D, is a finite dimensional F'—vector space.
Thus we have F' C Z(D;) where D; is a finite dimensional F'—vector space. Now, for v € D; we have F[u] is a
domain (it is contained in D), is a finite dimensional F'—vector space, and is also commutative. Thus Fu] is a

field. Of course, F = F and so F = F|u]. Since u € D; was arbitrary, we see F' = D;.

Therefore, Z(F[G]) = Z(Mp(F)) x -+ x Z(M,,(F)). Recall Z(M,(F)) = {A\,|A € F} = F. Hence Z(F[G]) =
F x .-+ x F. Recall the number of conjugacy classes of G is dimp Z(F[G]) = dimp F* = ¢. O
t times
For simplicity, we will refer to the assumptions “G a finite group, F = F a field, char F { |G|” as the Standard
Hypothesis. Summarizing, under the standard hypothesis, let Iy, ..., I; be the distinct simple left ideals of F[G]. Let
n; = dimpg I;. Then

t
L Yioini =|Gl.
2. t is the number of conjugacy classes of G.

3. m; is the number of times I; appears in a decomposition into simple submodules of F[G] (the decomposition is

called the “regular representation” of G).
Corollary 4.6. Under the standard hypothesis, G is abelian if and only if dimp V =1 for all simple F[G]—modules V.

Proof. Now G is abelian if and only if ¢ (the number of conjugacy classes) is |G| which is if and only if n; = 1 for all ¢

by property (1) above. O

Remark. Let M be an F[G]—module. Then M is an F'—vector space. In general, we want M to be finitely generated.
So then M = F™. So an F[G]— module structure is determined by how g acts on F" for all g € G. Now g : M — M

defined by m +— gm is an F'—endomorphism of M which implies g can be represented by an invertible matrix.

Example. Let G = C,. Let M be a simple F[G]—module. By the corollary, M = Fu. Let C,, =< a > . Then
@: M — M defined by u — au = Au for some A € F. Of course, a" = 1 and so u = 1lu = a"u = a"u = \"u which implies
A" = 1. So A is an n'" root of unity (not necessarily primitive). Thus each n'" root of unity determines an F[G]—module
structure on F' via a’u = A\u. Since F[G] has n distinct simple F[G]—modules, all of these simple modules given by the

roots of unity are non-isomorphic.



Example. Let G =V, = {1,a,b,ab} and M = Fu. Since a,b are order 2 elements, @ : M — M and b: M — M
are defined by w — fwu. This yields 4 F[G]—module structures. Since G is abelian, there must be exactly 4 simple

F[G]—modules which says these maps are distinct and determine all of the simple F[G]—modules.

Example. Let G = S3. Then S35 has 3 conjugacy classes which means there are 3 simple F[G]—modules, call them
Vi1, Vs, V3 where n; = dimp V;. Recall that n% + n% + n% = 6. So WLOG, n1 =n9 =1 and n3 = 2. Then

e V] = F with G acting trivially on F' (there is always the trivial representation, which means we may always assume
ny = 1)

o Vo = Fu. So lu = u, (12)u = Au, (123)u = wu where A = +1 and w?® = 1. Now, (23)u = (13)(12)(13)u. Say
(13)u = du (so § = £1). Then (23)u = §> u = Au. Thus everything in the same conjugacy class of (12) maps u to
the same scalar multiple of u. Also, u = (123)(132)u = w?u. So w? = 1 = w?® which implies w = 1. We can similar
show all 3-cycles act trivially. So V4 is given by (1)u = u, (12)u = —u, (123)u = u (where everything in the same
conjugacy class act the same on u).

Definition 4.7. Let F be a field, V an F—vector space. Let GLp(V) := Endp(V)*. Let G be a group. A (linear)

F—representation of G is a group homomorphism p : G — GLg (V) for some F—wvector space V. The degree of p is

Remarks.

1. Let p: G — GLp(V) be a representation of G. Define a left F'[G]—module V, by V, = V as an F'—vector space.
For g € G and v € V, define gv := p(g)v. One can check that V, is an F[G]—module.

Composition: g1(g2v) := p(g1)(p(92)(v)) = (p(g1)p(g2))(v) = p(g192)(v) = (g192)v.

2. Conversely, let M be a left F[G]—module. For each g € G, define g: M — M by m +— gm. Then g € Endp(M)
(as F € Z(G) and thus F commutes with everything). Since (§)~! = g=1, we see § € GLp(M). Define p : G —
GLp(M) by g+ g. It is easily checked that p is a group homomorphism.

This gives us a correspondence between F'—representations of G and F[G]—modules.

Definition 4.8. Let p; : G — GLp(V;) for i = 1,2 be two F—representations of G. We say py is isomorphic (or
similar or equivalent) to py if (V1),, = (Va2),, as F|G]—modules. An F—representation p : G — GLp(V) is called
trreducible if V, is a simple F|G]—module. A subrepresentation of p is a representation ¢ : G — GLrp(W) where W
is a subspace of V and ¢(G) = p(G)|w for all g € G. Equivalently, Wy is an F|G]—submodule of V,.

In particular, if p; is isomorphic to ps then V; = V5 as F—vector spaces and thus have the same dimension.
Notes.

e The zero representation of G is p : G — {1} = Endp(0).

e Any degree 1 representation is irreducible (as deg1 <> dimV = 1 which has no subrepresentations).

Examples.

1. The trivial representation: p : G — GLp(F) where p(g) = 1 for all g. This is a degree 1 representation and F), is
the F[G]—module F where gf = f for all g € G.

2. The sign representation: Let G = S,, and define p : G — GLp(F) = Endp(F) = F* by o + (—1)%9(?) where
sgn(o) is 1 if its an even permutation and -1 if its odd. This is a degree 1 representation and note p is nontrivial
if and only if n > 1 and char F # 2.



3. Let G = C,, and suppose w € F where w is a primitive n'" root of unity. Define p; : C,, — GLp(F) = F* by
a — w'. Now deg p; = 1 and thus the representation is irreducible. As we saw earlier, if char F { n, then p; % p,
foral0<i#j<n-—1

4. G = S5. Recall there were 2 degree 1 representations and 1 degree 2 representation. We’ve seen p; is the trivial
representation and ps is the sign representation where p; t p2 as long as char F' # 2. Now let us figure out p3. Let V
be a 3-dimensional F'—vector space with basis {e1, ez, e3}. Define p: S3 — GLp(V) by 0 +— & where o(e;) = e,
So p is a degree 3 representation of S3. Since we’ve seen the only irreducible representations have degree 1 or 2, this
is not irreducible. So there exists a subrepresentation. Let W = F'(e; +es +e3) C V. Note ¢ fixes W for all o € Ss.
So W is an F[Ss3]— submodule of V,,. Consider the F[Ss]—module U = V/W = Fe; @ Fea @ Fes/F(e1 + ez + e3).

To show this is an irreducible representation, we can show it has no proper submodules. Note that dim V' = 2.

Claim: U is a simple F'[S5]—module if and only if char F' # 3.

Proof: Suppose char F' # 3. Note that U = F'é; @ Fé; where 5 = —¢; — €3. Let u = re; + séa # 0 in U.

Case 1: 7 # —s. Then (13)u + (123)u = res + sez + res + ses = —(r + s)e;. If r # —s, then &, € F[Ss]u
which implies €2 = (12)e; € F[Ss3]u. So F[Ss3]u =U.
Case 2: r = —s # 0. Then, as we can divide by r, it is enough to show for u = €; —e,. Note (23)u+(123)u =
€ — €3+ —e3 = 3(€1 +€2). Since char F' # 3, this says e, +e» € F[S;](€1 —ez). If char F' # 2, this says
€1,€2 € F[S3](e1 —€2). Now, suppose char F' = 2. Then €; —éa = €1 +€5 and (13)(€1+¢2) = €1 + 262 = €;.
Thus €1,€; € F[S3](€1 — €2) and therefore F[Ss]u = U.

We have just shown that F[Ss]u = U for all w € U. Thus U is simple. The char F = 3 case is left as an

exercise.

Thus p3 : G — GLp(F?) = GLp(F) defined by (12) —

0 -1
and (123) — L 11 is the last representation.

Definition 4.9. Let p1,p2 : G — GLp(V;) for i = 1,2 be two F—representations of G. The direct sum p; ® py is
p1® p2: F'— GLp(Vi & Vz) defined by g — p1(g) & p2(9)-

Note. (Vi ®Va)p@p, = (Vi) @ (V2)p, as F[G]—modules.
Remark. If |G| < oo and char F' { |G|, then every F'—representation of G is a direct sum of irreducible representations.

Example. The regular representation. Let G be a group, F' a field, and V' an F'—vector space of dim |G|. Let {eg| g€ G}
be a basis for V. For h € G, define the F'—linear map h:V =V by e4 — epgy. Clearly I’Llhg = h1h2 and h~ h—1 = =h"1. So
he GLp(V) and p: G — GLp(V) defined by h — P is an F—representation of G, called the regular representation
of G. Note that V, = F[G]. If F[G] is semisimple, then every F'[G]—module appears in any decompositions of F[G] into
simple left F[G] modules. Thus every irreducible F' representation of G appears in any decomposition of the regular

representation into irreducible representations.

Recall. If F = F and char F 1 |G|, then F|G] = ny Iy®- - -@&n. I, where I, ..., I; are the distinct simple left ideals (up to iso-
morphism) and n; = dimg I;. Let p be the regular representation and p, ..., p; the distinct irreducible F'—representations

of G corresponding to I;. Then p =nip; @ - -+ ® nypy where n; = deg p;.

4.1 Characters

Let k be a field and R a finite dimensional k—algebra. Let M be a finitely generated left R—module. So dimy M < oco.
Let r € R and define 75y : M — M by m — rm. Since k C Z(R), we see 'y € Endi(M). So tr(ry) € F is defined.

Define the character xj; associated with M by xar : R — k where r — tr(ryy).

Remarks.



1. Let B = {u1,...,u,} be a k—basis for R. Let r € R. Then r = ) a;u, for a; € k. It is easy to see 7 = Y a;U; m
which implies tr(7as) = Y a;tr(wiar). So xar(r) = > oi; aixar(wi). So xar is determined by xar|5.

2. If R = F[G] and M is a left R—module, since G is an F—basis for R we often consider xas to be a function from
G — F as opposed to R — F.

Note. If p: G — GLp(V) is an F—representation of G, we define the character x, associated to p by x, := xv, :
G — F. Explicitly, x,(9) = tr(p(g)).

3. If char k =0, then x(1) =dimz M. If p: G — GLp(V), then x,(1) = dimp V = degp.

Proposition 4.10. Let R be a finite dimensional k—algebra. Let 0 — L EINY Y RENE N 0 be a short exact sequence of
finitely generated left R—modules. Then xap = XL + XN-

Proof. Let r € R and consider the following diagram:

0 L1 2N 0
er l en l en l
0 L1 9N 0

Claim: This is a diagram of k—linear maps.
Proof: Let ¢ € L. Then fr(¢) = f(rf) = rf(£) = 7 (f(€)). Similarly for the other square.

Since the rows split as k—vector spaces, we see M = L & N. So we have

M—L . LeN

enr l eroen l

M — . LaeN

and 7, @ 7Tx corresponds to [TL _ | - This says tr(rps) = tr(rp) + tr(¥n) and thus xar(r) = x5(r) + x5 (r). O
N

Corollary 4.11. 1. If N C M are finitely generated R—modules, then xnr = X~ + X /N-

2. XM&N = XM T XN-
3. If M =2 N as R—modules, then xn = XN-

Examples. The converse of 3 is not true in general.

1. Let k be a field, R = k[z]/(2?) = k @ kx as k—vector spaces. Let M = R/(z) ® R/(x) = k @ k as k—vector spaces.
Then M % R since xM =0 and R = kx # 0.
Claim: xp = XR-

Proof: Tt is enough to show they agree on the basis {1,z}. Of course, xp(1) = dim M = 2 = xg(1). Also,

~ 0 0 ~
X (z) = 0 as multiplication by x is the 0 map and since Tp = Lo we see Xr(z) =tr(Zr) = 0.

2. Let R=F9, M =F5 ® Fs. Then xp(1) =2 = 0 but obviously M % 0.
Exercise. If R is semisimple and finitely generated over k and M is simple, then x s # 0.

Proof. Note that M is isomorphic to a simple left ideal of R, say I;, where R = nil; + ... + nyly. Then xpr = x;. Of
course, x;(1) = dimy I; # 0. O



Theorem 4.12. Let R be a finite dimensional k—algebra (for a field k), char k = 0. Let M, N be finitely generated
semisimple left R—modules. Then xpr = xn if and only if M = N as R—modules.

Proof. We've already shown <, thus we need only show = . Let J = J(R). Since M, N are sums of simple modules,
JM = JN = 0. Thus M, N are left R/J—modules. Since R/J is semisimple (R is Artinian and J(R/J) = 0), we
know R/J = Ry X --- X Ry, where R; is Artinian, simple with left simple modules I;. Let I, ..., I; be the distinct simple
R/J—modules. Then Iy, ..., I; are the distinct simple left R—modules. (Any simple R module is a simple R/J module
and vice versa). Thus

M=mi i ®---®myly and N 2Xnil; @--- Dngly

for m;,n; > 0. Thus it is enough to show m; = n; foralli = 1, ..., t. Let e; € R be such that e;+.J is the identity of R;. Then
e;l; = 0 for all i # j and e;|7, = 1|7,. Consider (€;)ar : M — M defined by m — e;m, a k—endomorphism. Choose a basis
0

for M by taking the union of bases for m;I; for j = 1,...,t. Then (&)m = Lim; dim I; , where

0

Lim, dim 1; is the identity matrix of size m; dim I;. So xa(e;) = tr((€;)m) = m; dim I;. Similarly, xn(e;) = tr((e;)n) =

n; dim I;. As char k = 0, we have m; = n;. O

Corollary 4.13. Let R be a semisimple finite dimensional k—algebra with char k = 0. Let I, ..., I; be the distinct left
simple ideals. Let x; = xi1, for i =1,...,t. Then x1,...,xt are distinct irreducible k—characters of R. Given any finitely
generated left R—module M, there exist unique ny,...,ny € Z such that xpr = nix1 + ... + nexe (since characters are

additive). If n; > 0, say x; is an irreducible constituent of x ;.

Example. Let R be as above and k = k. For R = nyI; @ --- @ nily, we know n; = dimy I; = x;(1). Thus xyg =
x1(Dxa + -+ xe(1)xe

Proposition 4.14. Let G be a group, F a field. Let x be an F—character of G. Then for all g,x € G, we have

x(9) = x(xgx™1), that is, x is constant on conjugacy classes.

Proof. Let p : G — GLg(V) be an F—representation of G with character x. Then y(zgz~!) = tr(p(zgz~1)) =
tr(p(@)p(g)p(x) ™) = tr(p(g)) = x(9)- E

Examples. Let k = k and char k = 0.

1. G = C,, =< a > . Since G is abelian, all representations have deg1. Then irreducible k—representations are
pi = C,, — k* defined by a +— w’ for i = 0,...,n — 1 where w is a fixed primitive n*" root of unity. The character

X: associated to p; is x;(a’) = w®. Thus we can construct the character table:

2

1 a a
xo|l 1 1
X111l w w?
x2 |1 w? w

where the top row consists of representations for each conjugacy class and the first column consists of the irreducible

characters.



2. G = V4 = {1,a,b,ab}. Recall the representations are p;; : G — k* defined by a’ — (—1)" and & — (—1)7 for

i,7 € {0,1}.
1 a b ab
(poo= ) xo|1 1 1 1
(por+ ) x1|1 -1 1 -1
(pro= ) x2|1 1 -1 -1
(pr1< ) x3|1 -1 -1 1

3. G = Ss. Recall that there were two degree 1 representations: the trivial representation pg and the signed represen-

1
tation p; and one degree 2 representation: ps : S3 — GLo(k) defined by (12) — L ] and L . Thus the

character table is given by:

‘ (1) (12) (123) « as there only 3 conjugacy classes
X0 1 1 1
yi| 1 -1 1
X2 2 0 —1 <« Remember we just want the trace of the matrices

Note that the first column is always just the degree of the representation.

4. G = Qg =< a,bla* = b* = 1,a® = b, ab = b%a > . Note that any normal subgroup of Qg induces the homomorphism
G — G/H — GLp(V). Let Z = Z(G) = {£1}. Then G/Z = Vj. Recall that this has 4 degree 1 representations,
namely p;; : Qs — k* by a — (—1)" and b — (—1)7 where i,j € {0,1}. As G is not abelian, we know there must

. . t .
exist a representation of degree > 2. Furthermore, as ), , n? = |G| = 8, we see there can exist only one more

1 w
representation, which must have degree 2. Note that ) and (where w is a primitive 4" root of unity
— w

1
(for k = C,w = =+1i)) satisfy the relations of G. So define py : Qs — GLy(k) by a — [ ) ] and b — [ w}
- w

1
Note that then ¢ — l ) ] l w] = lw . Thus our character table is given by
— w —w

1
Xo |1
x1 |1 1 1 -1 -1
xe | 1 1 -1 1 -1
xs | 1 1 -1 -1 1
X4 | 2

For —1, just note that since —1 € Z(G), —1is 1 € G/Z(G). So xi(—1) = x;(1) for i = 0, ...,3. For x4, we know
—1+ —I, which has trace —2.

Let G be a finite group, k = k, with char k { |G|. Recall ¥[G] = By x --- x B, with B; simple and Artinian. Let
e; € B; be the identity element. Then {ey, ..., e;} are uniquely determined by k[G]. Recall Z(k[G]) = Z(B1) X - -+ x Z(By)
where Z(B;) = Z(My(k)) = {Mp|\ € k} = ke;. Thus Z(k[G]) = key x -+ X ke;. On the other hand, we know
Z(k[G)) = kz1 @ - - - @ kz where z; = EgeCi g where C1, ..., C; are the distinct conjugacy classes of G.

Let x1,..., x¢ be the irreducible characters of G associated to the simple left ideals Iy, ..., I;, respectively and where

B; = n;I; (as k—vector spaces). Recall dimy I; = n;. Let m; = |C;] for i =1, ..., ¢.

Theorem 4.15. With the above notation,

1. e = & > gec xi(g7Y)g fori=1,..,t.



2. Zi = my E;:l 7}(1’%‘?51 fO?” g < C’z

In particular, (1) says char k {n;.
Proof. Let ¢ be the character associated to the regular representation of G. Recall
(a) ¢ =n1x1 + ... +nexe-
(b) o(1) = |GI.
(c) ¢(g) =0 forall g # 1 (as for V = {epler € G}, p: G — GLi(V) defined by g - e, = eg, # e, if g # 1. Thus
tr(p(g)) =0if g #1.)

L Lete; =37 g aigg for aig € k. Want to show a;y = %ﬁ’il) Let h € G and consider ¢(e;h 1) = Y gea aigp(gh™) =
ainlGl by (b) and (¢). By (), d(esh™) = X'y nyxsleih™), where xjleh™") = tr(esh=1y,) = tr(6;5h717,) =
8ijx;(h™') as €; annihilates I; but is the identity on I;. Thus ;|G| = ¢(e;h™') = nyx;(h™!). Thus a;, = %ﬂl_l)

2. Let g € Cj,z = 2221 bgjej- Then x;(zi) = mix;(g) as zi = Y ¢, h and Xi(h_y bgeer) = b boexs(ee) =

bgix;(ej) = bgjtr(idy,) = bgyn;. Thus by; = %ﬁ(g) which implies z; = m; Z;:1 %gj)ej [It should be noted here

that we mean n; € k, however, we will just say hj for simplicity] O

Corollary 4.16. With the above notation (|G| < oo, char k|G|, k = k), let x1, ..., x¢ be the irreducible characters of G.
Then

1. Fori,j we have ) g xi(9)x;(g7Y) = 0;;]G|.

2. For all g,h € G, we have Z§=1 Xi(9)xi(h™1) = 6|Cq(g)|, where Ca(g) := {z € Glzg = gx} and § =1 if g, h are in
the same conjugacy class and § = 0 otherwise.

3. 1f g # 1, then 3, xi(1)xi(g) = 0.

Proof. 1. By the Theorem, e; = |LG\ > xi(97")g- Apply x; to both sides. Then x;(e;) = d;jni. So din; = \nﬁl xilg™x4(9)-
Thus 5”|G‘ = ZXi(g_l)Xj(g)'

2. Plug 1 of the theorem into 2 of the theorem to get for g € Cy, 2z = & ZheG(Zézl x;j(9)x;j(h~1))h. Comparing

. m; <t 1y g . . . e
coefficients, 124 > =1 Xi(9)x;(h 1Y =1 if and only if h € C; (and 0 otherwise). Now, m; = |C;| = ‘Clc(‘g)‘.

3. Follows from 2 be letting h = 1. ]

Definition 4.17. A k-class function on G is a function ¢ : G — k which is constant on conjugacy classes, that is,
&(g) = ¢p(xgx™?t) for all z,g € G. Let Fi,(G) be the set of k—class functions of G.

Remark. Fj(G) is a k—vector space in a natural way

(¢ +9)(g) = ¢(g9) + ¥ (g) and (ad)(g) = ag(g) for all g € G, a € k.

The dimy, F,(G) is the number of conjugacy classes. We can define an inner product (which is bilinear) on F(G) via

<o) >= ﬁ S o9 )(g):

geqG

Proposition 4.18. With the above notation, the set of irreducible characters on G, {x1, ..., xt}, is an orthonormal basis
for Fi.(G).

Proof. We’ve shown < x;, xx >= 0; ;. Since dimy, Fi,(G) = t, we see that it is a basis. O



Examples.

1. G = A4 (where char k # 2,3). First, we need to find the conjugacy classes. Let H = {(1), (12)(34), (13)(24), (14)(23)}.
Then H < A4 and the conjugacy classes are {1}, H \ {1}, (123)H, (132)H. Thus there are 4 irreducible characters.
Note that G/H =2 C3, which gives us 3 degree 1 representations. Since Y n? = |G|, we see there is only one other,

which has degree 3. Now, we can fill out the character table:

(1) (12)(34) (123) (132)
x1| 1 1 1 1
xe | 1 1 w w?
xs | 1 1 w? w
X4 | 3 -1 0 0 «— for this row, recall x4(1) = degp4 and 0 = 22:1 xi(9)xi(1).

Since (12)(34) € H, it acts like (1) on x1, X2, X3-
What is a representation with character x4? Let V = key @ kea @ kes @ key/k(e1 + e2 + e3 +e4) = key @ ke @ kes,

where €, = —e; — € — €3. Now, make V into a k[A4]—module by defining 0€; = €,(;) for all o € Ay,i = 1,2,3.
This is well-defined as oe; = e, ;) is well-defined and o fixes e; + ex + ez + eq. Thus V' gives rise to a degree 3

representation of A4. Let x be the associated character.

Claim: x = x4 (that is, x is irreducible)
Proof: If x # x4, then it is reducible. Thus it is a sum of irreducible characters, which implies x = x1+ x2+ X3-

01 -1
Then, x((12)(34)) = x1 + x2 + x3 = 3. However, x((12)(34)) = tr(p((12)(34))) =tr [1 0 —1| = —1.
00 -1

This shows that, since x is irreducible, V' is simple.

2. G = S4. Here, the conjugacy classes are (1), (12), (12)(34), (123), (1234). Note that H above is still normal in Sj.
Here, |S4/H| = 6. Since every element of Sy has order < 4, we see Sy/H = Ss.

1) (12) (12)(34) (123) (1234)
il 1 1 1 1 1
Yo | 1 —1 1 1 1
vl 2 o 2 1 0
Xa| 3 -1 0 —1 <V, the k[A4]—module above is also a simple k[S;]—module
xs| 3 -1 -1 0 1 «— Use the fact that x!_;xi(1)x:(g) = 0.

For x1, X2, X3, note that (12)(34) maps to 1 in Sy/H and (1234) maps to a transposition in Sy/H.
By HW6# 6, if k = C, we see ﬁ > geq Xil9)x;(9) = 6ij.
Corollary 4.19. Suppose k = C. With the above notation, ﬁ deG Ixi(g)]> =1 and deG Xi(g)m =0 fori# j.
Let g; € C; for i € [t] and m; = |C;|. Then 25:1 mix;i(gi)xe(gi) = 6;0|G|.

Facts. Let G be a finite group, p : G — GL¢V a finite dimensional representation with associated character y. Say
degp = n. Then GLcV = GL,(C).

1. For all g € G, |x(g9)] < x(1).
2. x(g) = x(1) if and only if g € ker p.

Proof. 1. Let Ay,..., A\, be the eigenvalues of p(g). Then A, ..., \, are roots of unity. So |x(g)| = |A1 + ... + A\n| <
Al + ..+ [ An] =n-1=x(1).



2. The backward direction is clear. So assume x(g) = x(1). Then, by (1), Ay + .... + A\, = n. By Cauchy Schwarz,
M+ o+ A = [A1] + ... + Ay if and only if A; = A; for all 4, j. Then nA; = n which implies A\; = 1. Thus \; =1
for all ¢. Since the minimal polynomial divides 2™ — 1, p(g) is diagonalizable and since it is similar to the identity

matrix, it is in fact the identity matrix. O

Examples.
1. Recall (12)(34) € H < A4 and x;((12)(34)) = x;(1) for i = 1,2,3.

2. Let F=R,G=Cy =<g>.Then
RG] = R-1®Rg ® Rg® © Rg* = Rlz]/(2* — 1) 2 Rla]/(z — 1) © Rlz]/(z + 1) © R[a]/(a? + 1).

Let p1 : G — R* be defined by g — 1, ps : G — R* be defined by g — —1, and p3 : G — R* be defined by

0 -1
g — L NE Then p; is a representation of the i*" summand on the right hand side of the above equation.
1
-1
Now, let ¢ : G — GL4(R) be defined by g — 0 . Then ¢ = p; @ p2 ® p3. Also, if we define
1 0
1
1
p:Cy— GL4(R) by g — ) . Then p = ¢.

4.2 Integral Extensions

Our goal is to work towards proving Burnside’s Theorem, which says Every group of order p®q® (for p,q primes) is

solvable.

Definition 4.20. Let R C S be commutative rings, u € S. Then wu is integral over R if f(u) = 0 for some monic

polynomial f(x) € Rlx]. We say S is integral over R if every element of S is integral over R.
Remark. If E/F is a field extension, then « € FE is integral over F if and only if « is algebraic over F.
Proposition 4.21. Let R C S be commutative rings, u € S. TFAE

1. u is integral over R.

2. R[u] is a finitely generated R—module

3. There exists a faithful Rlu]—submodule M of S which is finitely generated as an R—module. (Recall faithful means
ATLTLR[U]M = 0)

Note. The above are also equivalent to “There exists a finitely generated R—submodule M of S such that 1 € M and
uM C M.

Proof. (1) = (2) There exists an equation of the form u™ +ryu" ' +...+7, =0,7; € R. Then u"** € R-1+...4+ Ru"~!
for all k > 0. So R[u] = R-1+ ...+ Ru™"!, a finitely generated R—module.

(2) = (3) Let M = R[u]. M is faithful as 1 € M. Of course uR[u] C R[u].



= eterminant trick. ecall: Let e a commutative ring, A € M, . Define the adjoint o y adjA =
3 1) “d i ick.” Recall: Let R b A € M,(R). Define the ad f A by adj A
(bij)nxn where by; = (—=1)7 det(A;;) where Aj; is the (n—1) x (n— 1) matriz obtained by deleting the " row and
ith column. Also, A-(adjA) = (detA)I, = (adjA)-A (p 511). Let M = Rxy+...+Rx,, C S, AnngM = 0,uM C M.
X1 T1

For j,i =1,...,n there exists r;; € R such that ux; = > ri;x;, that is, ul, | : =A| : for A € M, (R).

LTn Tn

Then (ul, —A) | = 0. Say B := ul, — A. Multiply both sides by adjB. Then 0 = adj(B)B | - =
Tn Tn
T

(detB)I | which implies (detB)M = 0. But M is faithful and det B € R[u]. Thus detB = 0. One can show

Tn
detB has the form u™ 4+ t,u™ "' 4 ... +t, for t; € R. Thus u™ 4+ t,u™ ' 4 ... + ¢, = 0 which implies u is integral over
R. O

Corollary 4.22. S/R as above, u € S. Then TFAE
1. w is integral over R.
2. R[u] is a finitely generated R—module.
3. R[u] is integral over R.

Proof. Let 8 € R[u] and M = RJu] from theorem. Then SM C M (that is, M is an R[S]—module), 1 € M. By (2), M
is a finitely generated R—module. By (3) of the theorem, [ is integral. O

Exercise. S/R as above and uq, ..., u, € S. Then TFAE
1. wy,...,u, are integral over R.
2. Rluy,...,up] is a finitely generated R—module.
3. Ruq, ..., up] is integral over R.
Corollary 4.23. R C S as above.
1. If S is finitely generated as an R—module, then S is integral over R.

2. If S is integral over R, then S is finitely generated over R as an algebra if and only if S is finitely generated over

R as a module.
Examples.

1. Let K be a field, R = k[t?,t%], S = k[t]. Then t is integral over R (it is a root of 2% —t? € R[t]) and so S is integral
over R. Note that S is contained in the field of fractions. Also, S is integral over R and finitely generated as an
R—algebra. Thus S is finitely generated as as R—module (S = R + Rt).

2. Let S = Z[%] and R = Z[/5]. Note S C Q(R) = Q(+/5). Note 3+2\/5 is integral over R as it is a root of
22 — 3z + 1 € Z[z]. Thus S is integral over R and finitely generated as an R—module.

Corollary 4.24. Let R C S as above. Let T = {a € S|a is integral over R}. Then T is a subring of S which is integral
over R. T is called the integral closure of R in S. If T = R, then T 1is said to be integrally closed in S.

Proof. Follows from above exercise as a3, a + 8 € R[a, 3] which is integral over R when «, 3 are integral. O



Example. Let A = {a € Cla is integral over Z}. Then A is a ring. The elements of A are called algebraic integers.

Note A is integral over Z, but not finitely generated over Z (as either a module or algebra, by the corollary).

Definition 4.25. Let R be a commutative domain. Let Q) be its field of fractions. The absolute integral closure of

R, denoted R*, is RT = {a € Q : « is integral over R} where Q is some algebraic closure of Q.
Theorem 4.26 (Hochster-Heneke, 1993). If char R = p, then R* is a Cohen-Macauly R—algebra.

Definition 4.27. Let R be a domain. Say R is integrally closed (or normal) if R is integrally closed in its field of

fractions.

Proposition 4.28. Let R be a UFD. Then R is integrally closed.

Proof. Let ¢ € Q(R) be integral over R. WLOG, assume ged(a,b) = 1. So (%)n + 7 (%)nf1 T o S (%) +7r,=0
where 7; € R. Multiply by b™ to get a™ + riba™ ' + ... +r,_ 10" 'a + r,b" = 0. Thus b|a”. But ged(a™,b) = 1. So b is a

b divides these
unit of R which implies § € R. O

Note. This says that PIDs are integrally closed.
Corollary 4.29. The only rational algebraic integers are integers.

Remark. Let R C S be commutative rings, I an ideal of S. Then ¢ : R/(INR) — S/I defined by r + INR+— r+1 is

an injective ring homomorphism. So we can consider R/(I N R) as a subring of S/I, where multiplication is defined by
7-5=T78$ (that is, (r+ INR)(s+ I) =rs+ I is well-defined).

Lemma 4.30. If S is integral over R and I is an ideal of S, then S/I is integral over R/I N R.

Proof. Let s € S. Then s"+r;s" ' +...4r, = 0 for r; € R. By the remark, modding out by I gives " +75" 47, =0
where 7; € R/(INR). O

Proposition 4.31. Let S be integral over R. Let p € Spec S. Then p is mazximal in S if and only if p N R is mazimal
in R.

Proof. By lemma, S/p is integral over R/p N R. Also, S/p and R/p N R are domains (as p,p N R are prime). Thus it is

enough to prove:
Claim: If S is integral over R and both are domains, then S is a field if and only if R is a field.
Proof:

< Suppose R is a field. Let w € S\ {0}. Then u is integral over R which implies u is algebraic over R. Since
R[u] C S is a domain and is a finite dimensional R—vector space, R[u] is a field. Thus u~! € R[u] C S.

= Suppose S is a field. Let u € R\ {0}. Then u~! € S is integral over R. Then (u=%)" +ri(u=1)" 1 +...+r, =0

for 7; € R and multiplication by u"~! gives u=! +r; + ... + r,u” ! = 0. Thus u € R.
O

Suppose R O S are commutative rings, @ a multiplicatively closed subset of R. Since localization is exact, Ry C Sw

(as rings).
Proposition 4.32. If S/R is integral, W is a multiplicatively closed subset of R, then Sw is integral over Ryy.

Proof. Let = € Sy . Since S/R is integral, there exists an equation of the form s + rys"~! + ... + ris + 7, = 0, for
r; € R. Divide by w™ to get (i)n + (i)n71 + o 2t (i) + o = (. Thus < is integral over Ry . O

w w \w wnr—1 \w w™ w




Remark. Let Ny, Ny be R—submodules of M and W a multiplicatively closed subset. Then (N1 N No)w = (N1)w N
(N2)w

Lying Over (LO) Theorem. (Cohen - Seidenberg) Let S/R be an integral extension. Given p € SpecR, there exists
P € SpecS such that PN R = p.

Proof. Let W = R — p, a multiplicatively closed subset of R. Then py, is the unique maximal ideal of Ry, . As noted, Sy
is integral over Ry . Let P € SpecS be such that Py, is maximal in Sy, (as maximal ideals of Sy, correspond to maximal
ideals of S). By a previous proposition, Py N Ry is maximal in Ry . Since py is unique, pyy = P N Ry = (PN R)w .
Note PN R € SpecR. By the one-to-one correspondence between primes of R which do not intersect W and SpecRyy,
we have PN R = p. [

Incomparable (INC) Theorem. Let S/R be integral and Py, P, € SpecS such that PN R = P, N R. Then Py, Py are
incomparable (that is, Py ¢ P> and Py ¢ Py ).

Proof. Let p € PLN R = P, N R € SpecR. Localize at W = R — p. Then (Py)w, (P2)w € SpecSw and are # S. Also
(P1)w N Rw = pw = (P2)w N Ry . Therefore, it is enough to show in the case that P, N R = P> N R is maximal in R.
Then Py, P, are maximal in S. Hence P ¢ P, and P, ¢ P;. O

Going Up (GU) Theorem. Let S/R be integral and p C q primes of R. Let P € SpecS such that PN R = p. Then
there exists Q € SpecS such that P C Q and QN R = q.

Proof. By localizing at Q = R — ¢, we can reduce to the case that ¢ is maximal. Thus it is enough to prove in the
case that (R, q) is quasilocal. Let @ be any maximal ideal of S containing P. Then @ N R is maximal in R which says
QNR=q. O

Theorem 4.33. Let S/R be an integral extension. Then dim S = dim R.

Proof. Let Qo € Q1 S -+ € @, be a chain of primes of S. Intersect with R to get QoNR C Q1NR C --- C @, NR, a chain
of primes in R. By the INC Theorem, these are still proper containments. Thus dim R > dim S. Let po T p1 € -+ € pn
be a chain of primes of R. By the LO Theorem, there exists Qg € SpecS such that Qo N R = pg. Now use the GU
Theorem n times to get Qo C Q1 € - -+ C @, where ; N R = p;. Then dim S > dim R. O

Setup: Let G be a finite group, k = k a field, char k { |G|. Then k[G] is semisimple and thus k[G] = By x - - x B, where
B, are Artinian simple rings. Let e; be the identity of B;. Let Cy, ..., C; be the conjugacy classes of G and z; = > gec: 9-
We've proved Z(k[G]) = key X -+ X key as rings and Z(k[G]) = kz1 @ - - ® kz as k—modules. If R is a commutative
ring, then R[G] = ®4cqRg and one can show that Z(R[G]) = Rz @ - -+ @ Rz. Now, assume char k = 0. Then Z C k
and as k is a field, this says Q C k.

Remark. If char k = 0,k = k, then Z(Z[g]) = Z2z1 ® -+ ® Zz C ka1 @ --- @ kzy = Z(k[G)).

Theorem 4.34. Let char k =0 and x1, ..., xt be the irreducible characters of G where x; correspond to B;. Let m; = |Cy].

Then for all i,j € [t],g € C; we have mXL(g) € k is integral over Z. Thus z; € Aey + ... + Aey, where A is the integral

1)
closure of Z. in k.
Proof. Recall that z; = m; >.'_, XX(‘(]E Now z; € Z(Z|G)) = Zz1 + ... + Zz, which is a ring and a finitely generated
Z—module. Thus z; is integral over Z. Also, z; € Z(k[G]) = key +...+ke;. Say zj = i, cie; for oy € k. Let f(x) € Z[a]
be monic such that f(z;) = 0. Then

0= f(z:) = flarer + ... + ager) = far)er + ... + far)es

as eje; = 0;5€;. as eq, ..., e; are linearly independent over k, we must have that f(c;) = 0 for all 4. Thus «; € A for all 1.
Thus z; € Ae; + ... Ae;. O



Lemma 4.35. Let A be the integral closure of Z in k and x be any character of G. Then x(g) € A for all g € G.

Proof. Note that x(g) = > \;, where \; are the eigenvalues of p(g) for p : G — GLg(V) a representation associated to
X- Recall \; is a root of unity. Thus \; € A for all i. Since A is a ring, x(g) € A. O

Theorem 4.36. With the above notation, n;||G| for alli =1, ... t.

Proof. Recall that e; = 1z S, mjxi(gjfl)zj where g; € C;. Thus ‘n—cilei = Z;Zl 771]-)(2-(51;1),237 were mjxi(gjl) € A

Thus %ei € Azy + ...+ Az C Aey + ... + Ae;. Since the e)s are linearly independent, we must have L%‘ c ANQ CZ as
Z is integrally closed. Thus n;||G|. O

4.3 Representations of Products of Groups

Let p; : G; — GLi(V;), for i = 1,2, be k—representations of G;. Define the tensor product p; ®ps2 by p1®pa : G1 x Gy —
GL,(V1®Va) by (g1,92) — p(91) ® p(gz2). This is easily seen to be a representation of G x Gy of degree (deg p1)(deg p2).

Now Xp, 0. (91, 92) = tri(p1(91) ® p2(92)) = tre(p1(91))trr(p2(92)) = Xpi (91)Xp2 (92) (Exercise). Generally, we will write
Xp1®ps = Xp1 Xpa- Let ps, pi be representations of G; for i = 1,2. Then

< Xp1®p2s Xpi@ph ~=< Xp1»Xp}) ZG1< Xpz2sXp) >G>

(Exercise).

Conclusion. p; ® py is irreducible if and only if p;, p2 are irreducible. Moreover, if {x1, ..., xs} is the set of irreducible
characters of G1 and {¢1, ..., ¢:} is the set of irreducible characters for G, then {x;¢;} is the set of irreducible characters
of G x G2 (Use the fact that Y n? = |G| to show that this must be all of them).

Another Version of...

Lemma 4.37 (Schur’s Lemma). Let |G| be a finite group, char k1 |G|,k = k. Let p: G — GLy(V) be an irreducible

representation of G and x its associated character. Then for all g € Z(G), we have
1. p(g) = A for some X\ € k*.

2. x(g)l = x(1) if k=C.

Proof. Write k[G] = By x- - -x By where B; are simple, Artinian, and e; € B is the identity. Then Z(k[G]) = key x- - - X key.
If g € Z(G), then g € Z(k[G]). Write aieq + ... + ey = g, a; € k. Now V is an irreducible k[G]—module. WLOG, say V/
is a simple By—module (if not, reindex the B;’s). Then e;v = v for all v € V and ejv = 0 for all j > 1. Then gv = ayv
for all v € V and thus p(g) = a1ly. O

Theorem 4.38. Under the “standard notation” above, n;|[G : Z(G)] for all i.

Proof. (Tate) Let n = ny,x = x1 with p : G — GL(V), a representation associated to x. Let m be a positive integer and
sider pyy, 1= @ X XG> GL(V®---®V). As p is irreducible, so is p,,. Defi 1 Z(G k* b
consider p PR--Rp — GL(V®---@V). As p is irreducible, so is p efine a map v : Z(G) — v

=Gm
g — « where p(g) = al. It is easily seen that v is a group homomorphism. Let D = {(g1,...,9m) € Z(Gm )N (g1 gn) =

1}. Let H = kery and ¢1,...,gm-1 € Z(G). Note (g1,...,9m) € D if and only if ¢1,...,9,» € H which is if and only
if g € g7' - g8 H. Thus |D| = |Z(G)|™ '|H| (as there are |Z(G)|™ " choices for g1, ..., gm_1 and |H| choices for
gm- Now D 9 Gy, as D C Z(G,,) and D C ker p,, (To see this, let (g1,...,9m) € D. Then p(g1,...,9m) = p(g1) @ --- @
p(gm) = ag Iv®@- - -®@ag, Iv = (ag, - ag, ) ve..av =7(91) V(gm)Ive..ev =791 gm)lveav = Ivg..gv.) Thus
Pm i Gm/D — GLp(V®---®V) defined by (g4, ...,G,,) — p(91) ® - ® p(gm) is a well defined irreducible representation

of G,,/D. By the previous theorem, degp,,||G.,/D| which implies nm’|G’|m/(|Z(G)|m_1 -|H]J). So % € Z.



Z m
Then | |1(rj)| ( |Z((;|G)|) € Z for all m. By HWT7#5, we see % is integral over Z which says n|[G : Z(G)] as Z is
n
———

€L €Q
integrally closed in Q. O

Lemma 4.39. Let G be a finite group, p : G — GL,(C) an irreducible representation, and x its associated character.
Let C be a conjugacy class of G such that ged(|C|,n) = 1. Then for all g € C, either x(g) =0 or |x(g)| = 1.

Proof. Let m = |C|. Then there exists r, s € Z such that rm+ sn = 1. Then for all g € C, we have WTX(Q) +sx(g) = %.
Let A be the integral closure of Z in C. We've see x(g) € A for all g € G. By a previous proposition, we have also shown
%(g) € A for g € C. Thus @ € Aforall g€ C. Let x(9) = A\ + ... + \,, where \; are k" roots of unity. Let w be a
primitive k' root of unity and L = Q(w). Then \; € L for all 5. Let H = Gal(L/Q) and ¢ € H. Note 0(ANL) C ANL.
Also, o(N\;) = Aj. Let a = %g) = dbetAn Then |a| < 1. Note |o(a)| = |M <1lforallo € H and o(a) € A.
Consider N = N§ : L — Q where N(3) = Ilo(8) € Q. So N(a) = ,exo(a) € QN A = Z. So [N(a)| = Hlo(a)| < 1.
Thus N(o) = 0 or 1. Now N(a) = 0 implies # = a = 0. Thus x(g) = 0. If N(a) = 1, then |a| = 1 which says

A1 = ... = A\, so that x(g) = An and |x(g9)] = n = x(1). O
Theorem 4.40. Let G be a finite simple group, C a conjugacy class of G. Then |C| # p® for p prime and a > 0.

Proof. Assume G is not abelian (as otherwise |C| = 1). Suppose there exists C such that C = p® for a > 0. Let x1, ..., x¢
be the irreducible C—characters of G and p; : G — GL,,(C) the irreducible representations associated with x;. Let p;

be the trivial representation.
Claim 1: If p{n; for ¢ > 1, then x;(g) =0 for all g € C.

Proof: Let G; = {g € G|pi(g) = A, some X € C}. It is easy to see G; < G. But G is simple, so G; = {1} or G, = G.
Suppose G; = G. Note ker p; < G and p; # 1. Thus ker p; = {1}. So G = p;(G) = {A\¢I|g € G} as G; = G, but this
is abelian, a contradiction. Thus G; = {1} and p;(g) # AI for all A € C and g # 1. Thus |x;(g)| < xi(1) by HWT.
By the lemma, x;(g) =0 for all g € C.

Claim 2: p|n; for some 7 > 1.

Proof: By an orthogonality relation, for g € C, we have Zle Xxi(1)xi(g) =0.So 0 =1+ 25:2 Xi(1)xi(g). Since
0 # 1, there exists j > 2 such that x;(g) # 0. Thus p|n;.

Reorder the characters such that p|n; fori = 2, ..., s and p { n; for i = s+1, ..., t. Thus by Claim 1, 1+Z‘;:2 x;(L)x;(g) =0.

Since p|n;, we have % =— Zj’:Q(%)Xj (9) € ANQ = Z, a contradiction. O

Corollary 4.41 (Burnside). Let G be a group of order p*q®. Then G is solvable.

Proof. We will show that G is not simple. We’ve seen the case where b = 0. So assume a,b > 1. Let P be a Sylow-p
subgroup. Let z € Z(P)\{1}. Then C¢(z) 2 P which implies [G : C(z)] = ¢¢, for some c. Of course, [G : Ce(z)] = |C],
where C' is the conjugacy class of z. By the theorem, if G is simple, then ¢ = 0 which implies z € Z(G) \ {1} and so G

has a nontrivial subgroup. So G is not simple. Let H <1 G. By induction, H and G/H are solvable, which implies G is
solvable. 0

4.4 Injective Modules

Definition 4.42. An R—module E is injective if given

FE
‘
N
RN
N
O0——=M—>N exact



there exists a map N — M such that the diagram commutes.

Theorem 4.43 (Baer’s Criterion). Let E be a left R—module. Then E is injective if and only if given a diagram

N
N

FE
T k\ El
I—R exact

00—
where I is a left ideal, there exists h : R — E making the diagram commudte.

Proof. The forward direction is clear from the definition. So suppose we are given a diagram

E
d
0*>M*i>N exact

where WLOG we may assume M C N and so ¢ is just the inclusion map. Let A = {(K, fx)|M C K C N, K a left R—module, fx :
K — FE, fk|m = f}. Partially order in the obvious way. Then A # () and (M, f) € A. By Zorn’s Lemma, there exists

(K, fr) maximal in A.
Claim: K = N.

Proof: Suppose not. Choose x € N\ K. Let I = (K :g ) = {r € R|ra € K}. Then I is a left ideal of R. Define
¢ : I — E such that i — fx(iz). This is R—linear. By hypothesis, there exists a : R — F such that $|1 = ¢.
Define g : K + Rz — E by k + rz — fx(k) + &(r). To show g is well-defined, suppose k + rz = 0. Then r € I. So
o(r) = ¢(r) = fr(raz). Then g(k + rz) = fx (k) + fx(rz) = fx(k+ rz) = fx(0) = 0. Thus (K + Rz,g) € A, a
contradiction to the maximality of (K, fx).

O

Definition 4.44. Let R be commutative, M an R—module. Say M is divisible if for all m € M and for all non-zero-

divisors v € R, there exists m' € M such that rm’ = m.

Examples.
1. Every vector space over a field is divisible.
2. If R is a domain, then @, the field of fractions of R, is divisible.
3. Sums, products, quotients of divisible modules are divisible.
4. Submodules of divisible modules are not always divisible. For example, Q is a divisible Z—module, but Z is not.
5. In particular, Q, Q/Z are divisible Z—modules.
Proposition 4.45. Let R be commutative. Every injective module is divisible. If R is a PID, then the converse holds.

Proof. Let E be injective, e € F/, and r € R a non-zero-divisor. Consider the diagram

—R exact



where 7 : R — R is multiplication by r and f(1) = e. As F is injective, we have a map from R — FE, say its defined by

1+ €. Then, by commutivity, re’ = e. Now, suppose R is a PID and F is a divisible module. Let I = (a) be an ideal of

»
N
47
N

0—(a) /=R exact

R and consider the diagram

If a = 0, done. Otherwise, let e = f(a). As a is a non-zero-divisor (R is a domain), there exists e’ such that ae’ = e.
Define f: R — E by 1 — ¢’. Then f(ra) = raf(1) = rae’ = re = rf(a) = f(ra). So ﬂ(a) = f. By Baer’s Criterion, F is

injective. O
Corollary 4.46. Any Z—module M can be embedded into an injective Z—module.

Proof. Consider 0 — K — @®aec1Z — M — 0, which is exact (let |I| be the number of generators of M as a Z—module).
So M =2 @Z/K C &Q/K. By the above, ®Q/K is a divisible Z—module and so it is injective. Thus M embeds into an

injective module. O

Proposition 4.47. Let ¢ : R — S be a ring homomorphism. Let E be an injective left R—module. Then Hompg(S, E)

is an injective left S—module.

Proof. Recall Hompg(S, E) is a left S—module via (sf) : S — E where s’ — f(s's) for s € S, f € Homp(S, E). Note sf
is R—linear. So it is enough to show that if 0 — M — N is an exact sequence of S—modules, Homg(N, Homg(S, E)) —
Homg(M, Hompg(S, F)) is surjective. By Hom-® adjointness and the fact that S ®s M = M, we have the following

diagram
Homs(N, Homg(S,E)) —2— Homg(M,Homg(S, E))

|= lg

Homp(S®s N,E) ———  Homg(S®sM,FE)

|= lg

Hompg(N, E) Homp(M, E) —— 0 exact

Note that both squares commute by the “naturality” of the isomorphisms. The bottom row is exact as F is an injective

R—module. So, we have ¢ is surjective. O

Theorem 4.48. Let R be a ring, M a left R—module. Then there exists an injective R—module E and an injective

R—module homomorphism M — E.

Proof. Of course, there exists a ring homomorphism ¢ : Z — R. As M is a Z—module, there exists an injective Z—module
I with M C I. By the above proposition, Homgz(R,I) is an injective left R—module. Define g : M — Homgz(R,I) by
m +— fn, where f,, : R — I is defined by » — rm € M C I. We need to show g is R—linear. It is enough to show
Tfm = frm- For ' € R, we have (vf,)(1") = fm(r'r) = r'rm = frn(r’). Also, g is injective as m = 0 if and only if
fon = 0. O
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