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1 Chapter 1: Groups

1.1 Free Groups and Presentations

Definition 1.1. Let S be a set. Then a free group on S is a group F together with a map i : S → F, usually referred
to as (F, i), with the following “universal” property: If G is any group and j : S → G is any map, then ∃! group
homomorphism f : F → G such that fi = j, i.e., the following diagram commutes:

S
i //

j

²²

F

G

∃!fÄ Ä~
~

~
~

Theorem 1.2. Let S be any set. Then a free group on S exists.

Proof. See Lang.

Proposition 1.3. Let S and T be sets of the same cardinality. Then any free group on S is isomorphic to any free group
on T.

Proof. Let ` : S → T be a bijection. Let (F, i) and (G, j) be free groups on S and T, respectively.

S
i−−−−→ F

`

y
y

T
j−−−−→ G

`−1

y
y

S
i−−−−→ F

Then, by the universal property ∃!f : F → G and ∃!g : G → F. Compacting the above commutative diagram, we see

S
i //

i=i`−1`

²²

F

F

gfÄÄ~
~

~
~

by the uniqueness of the universal property, as we have the homomorphism gf : F → F and the identity homomorphism
1F : F → F , that gf = 1F . Similarly, by swapping the S and T in the diagrams above, we see fg = 1G. Thus f and g

are bijective homomorphisms and thus f is an isomorphism.

Corollary 1.4. Let S be a set and (F1, i1) and (F2, i2) free groups on S. Then ∃! isomorphism f : F1 → F2 such that
fi1 = i2.

Thus we can now talk about the unique (up to isomorphism) free group on a set.

Proposition 1.5. Let S be a set and (F, i) the free group on S. Then i is injective.

Proof. Suppose not, that is, i(x) = i(y) for x 6= y ∈ S. Consider the homomorphism j : S → Z2 defined by s 7→ 0 for
s 6= x and x 7→ 1. Then we have the commutative diagram

S
i //

j

²²

F

Z2

f~~}}
}}

}}
}



where f is the unique homomorphism given by the universal property of free groups. Now

0 = j(y) = fi(y) = fi(x) = j(x) = 1,

which is clearly a contradiction.

Thus, we can now identify S with its image i(S) ⊆ F. For simplicity we will simply say S ⊆ F. Also, we will now
simply say F (S) is the free group for S.

Proposition 1.6. The set S generates F (S).

Proof. Let F ′ be the subgroup of F = F (S) generated by S.

S
i1 //

i2

²²

F

F ′

j

²²

∃f~~~
~

~
~

F

⇒ S
i1 //

ji2

²²

F

F

jfÄÄ~~
~~

~~
~

By the uniqueness of the universal property, jf = 1F . Thus jf is a surjection, which implies j is surjective. Thus
F ′ = F.

If |S| = n, call F (S) the free group on n generators. So F (S) = {se1
1 · · · sek

k |si ∈ S, ei = ±1}. Note that since
homomorphisms preserve order and commutativity we can not have any conditions like sn = 1 or s1s2 = s2s1 as these
conditions do not hold in all groups. Thus there are no relations on the elements of S, which is why we say F (S) is
the free group. [For example, say sn = 1 and consider j : S → Z where j(s) = 2. Then, there exists a homomorphism
f : F (S) → Z. Then 2 = j(s) = f(i(s)) = f(s). If sn = 1, then 2n = 1, a contradiction].
Example. What is the free group on one element, i.e., S = {x}?

Since S generates F (S), we know F (S) =< x > . By above, x does not have finite order. Thus F (S) is infinite cyclic,
which says F (S) ∼= Z. Note: This is the only abelian free group.

Definition 1.7. Let F be the free group on a set S and R any subset of F. Let N be the intersection of all normal
subgroups of F containing R (i.e., N is the smallest normal subgroup containing R). Then F/N is called the group
generated by S with relations R = 1. Write F/N =< S|R = 1 > and call it a presentation for F/N.

Definition 1.8. Say a group G has the presentation < S|R = 1 > if G ∼= F (S)/N where N is the smallest normal
subgroup of F (S) containing R. Here G is defined by the generators S and relations R.

Example. What group G is defined by the presentation < x, y|x2 = 1, y3 = 1, xyxy = 1 >?
Here, G =< x, y > where x2 = 1, y3 = 1, yx = xy2. Thus G = {xiyj |i = 0, 1, j = 0, 1, 2}. Clearly, G could be the

trivial group, but let’s see if there is a nontrivial group for this presentation.
Define j : {x, y} → S3 by x 7→ (12) and y 7→ (123). By the universal property of the free group, ∃! group homomor-

phism f : F ({x, y}) → S3 such that f(x) = (12) and f(y) = (123). Note that since (12) and (123) generate S3, f is
surjective.

With a little work, we see x2, y3, xyxy ∈ ker f and since ker f C F ({x, y}) and N is the smallest normal subgroup
containing x2, y3, xyxy, we have N ⊆ ker f. Thus we have

G ∼= F (S)/N ³ F (S)/ ker f ³ S3

by the First Isomorphism Theorem. Therefore we have the surjective homomorphism ψ : G ³ S3. Of course, as |G| ≤ 6
we see G ∼= S3.



Here, we saw that the trivial group could be presented by any given presentation. However, in practice we want to
find the largest group that satisfies the relations.

Claim: Let D2n be the group of symmetries of a regular n − gon. Let f be any reflection and r a rotation by 2π/n

radians. Then D2n has the presentation G =< x, y|x2 = 1, yn = 1, xyxy = 1 > .

Proof. By the same argument as above, |G| ≤ 2n. Now, define a homomorphism f : F ({x, y}) → D2n by x 7→ f and
y 7→ r. As above, x2, yn, xyxy ∈ ker f which gives us the surjective mapping F/N ³ F/ ker f ³ D2n. Thus we find
F/N ∼= D2n.

1.2 Automorphisms

Definition 1.9. Let G be a group. An automorphism of G is an isomorphism f : G → G. Let Aut(G) denote the
group of all automorphisms of G. Let g ∈ G. An inner automorphism of G is an isomorphism of the form ψg : G → G

such that x 7→ gxg−1. Clearly (ψg)−1 = ψg−1 and ψgψh = ψgh. Thus the set of inner automorphisms forms a group,
which we will denote Inn(G). In fact, Inn(G) C Aut(G). Thus, we can define Aut(G)/Inn(G) as the group of outer

automorphisms.

Notation. Let R be a ring with 1. Let R∗ = {u ∈ R|u is a unit in R}. This is a group under multiplication.

Theorem 1.10. Let Cn =< a > denote the cyclic group of order n. Then Aut(Cn) ∼= Z∗n.

Proof. Define φ : Z∗n → Aut(Cn) by k 7→ ψk where ψk : Cn → Cn is such that a 7→ ak. Since if gcd(k, n) = 1, then
|ak| = n, we know < ak >=< a >= Cn. Thus ψ is surjective and therefore injective (as the image has the same order).
Therefore ψ is an isomorphism and φ is well-defined. Clearly, φ defines a homomorphism. Thus it remains to show it
is injective and surjective. Notice if k ∈ kerφ, then ψk = 1Cn which implies ψk = ak = a. Thus n|k − 1, that is, k = 1
which implies kerφ = {1} and φ is injective. Also ψk ∈ Aut(G) if and only if < ak >=< a > which happens if and only
if gcd(k, n) = 1. Thus φ is surjective and therefore an isomorphism.

Example. Aut(C15) ∼= Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. As none of those elements have order 8, the group is not cyclic.
Thus Aut(G) is not always cyclic. In general, let n = pq where p, q are odd primes. By the Chinese Remainder Theorem,
Zn

∼= Zp×Zq. Thus Z∗n ∼= (Zp×Zq)∗ ∼= Z∗p×Z∗q ∼= Zp−1×Zq−1. Since p− 1, q− 1 are not relatively prime (they are both
even), this is not cyclic.

Theorem 1.11. Let F be a field and H a finite subgroup of F ∗. Then H is cyclic.

Proof. Since a field is commutative, H is a finite abelian group. Thus all subgroups of H are normal and, in particular,
the Sylow subgroups are unique by the Second Sylow Theorem. Therefore H is the internal direct product of its Sylow
subgroups, that is, H ∼= P1 × · · · × Pl where Pi are the Sylow subgroups. If we show all of the Pi are cyclic, we will be
done. WLOG, assume |H| = pn, that is, there is only one Sylow subgroup. By the Fundamental Structure Theorem for
finitely generated groups, H ∼= Cpn1 × · · · × Cpnk where n1 ≥ n2 ≥ · · · ≥ nk. Since pni |pn1 for all i, hpn1 = 1 for all
h ∈ H. Since F is a field, every element of H is therefore a root of xpn1 − 1. This polynomial has ≤ pn1 roots, which
implies |H| ≤ pn1 . Then H ∼= Cpn1 and thus H is cyclic.

Corollary 1.12. For a prime p, Z∗p is cyclic, as Zp is a field.

Corollary 1.13. Aut(Cp) ∼= Z∗p ∼= Cp−1.

Example. Find an automorphism of C13 of order 6.
By above, Aut(C13) ∼= C12, which has an element of order 6. By brute force, we see o(4) = 6. Thus, if C13 =< a >,

then the automorphism a 7→ a4 has degree 6.

Example. Find an automorphism of C55 of order 20.



By the Chinese Remainder Thm, Aut(C55) ∼= Z∗55 ∼= Z∗5 × Z∗11 ∼= C4 × C10. We know 2 is an element of C4 of order 4
and 4 is an element of C10 of order 5. Thus we want x ∈ Z∗55 such that x ≡ 2 mod 5 and x ≡ 4 mod 11. Brute force
tells us x = 37 works. Thus φ : C55 → C55 defined by a 7→ a37 is an automorphism of order 20.

Theorem 1.14. Let p be an odd prime, n ≥ 1. Then Aut(Cpn) is cyclic of order pn − pn−1.

Proof. We know |Aut(Cpn)| = |Z∗pn | = pn − pn−1.

Claim: Let p be prime, n ≥ 1. Let 1 ≤ i ≤ pn. Write i = pjx where p - x. Then pn−j |(pn

i

)
but pn−j+1 -

(
pn

i

)
.

Claim: Let p be prime. Then (1 + p)pn−1 ≡ 1 mod pn.

Proof: By the Binomial Theorem, (1 + p)pn−1
=

pn∑
0

(
pn−1

i

)
pi. Let 1 ≤ i ≤ pn, i = pjx as above. Note that

i ≥ pj ≥ j + 1. Thus pj+1|pi. Also pn−j−1|(pn−1

i

)
. Multiplying these together gives us pn|(pn−1

i

)
pi, which implies

(1 + p)pn−1 ≡ 1 mod pn.

Claim: Let p > 2. Then (1 + p)pn−2 6≡ 1 mod pn.

Proof: Let 1 ≤ i ≤ pn, i = pjx as above. If j = 0, then pn−2|(pn−2

i

)
. Since, for i ≥ 2, we have p2|pi we know

pn|(pn−2

i

)
pi. If j ≥ 1, i ≥ pj ≥ j + 2 and so pj+2|pi. Also pn−j−2|(pn−2

i

)
. Combining these, we see pn|(pn−2

i

)
pi. Thus

the only nonzero terms are i = 0, 1. Thus (1 + p)pn−2 ≡ 1 + pn−1 6≡ 1 mod pn.

Thus 1 + p is an element of order pn−1 in Z∗pn . As Z∗pn is abelian, all its subgroups are normal, which implies the Sylow
subgroups are unique and Z∗pn is the internal direct product of its Sylow subgroups. Thus it is enough to show every
Sylow subgroup is cyclic. Note |Z∗pn | = pn−1(p − 1). Consider the Sylow p−subgroup. Since 1 + p has order pn−1, it
is a generator for the Sylow subgroup and thus the Sylow p−subgroup is cyclic. Let q be any other prime such that
q|pn−1(p − 1). Let Q be the Sylow q−subgroup of Z∗pn . Define the homomorphism ψ : Z∗pn → Z∗p by [a]pn 7→ [a]p, that
is, send an element to its corresponding residue class. Since gcd(a, pn) = 1 if and only if gcd(a, p) = 1, the map is well-
defined. Clearly the map is surjective and | kerψ| = pn−1. Thus Q

⋂
kerψ = 1 and ψ|Q is injective. So Q is isomorphic

to a subgroup of Z∗p, a cyclic group. Since subgroups of cyclic groups are cyclic, Q is cyclic. Thus all Sylow subgroups
are cyclic and therefore Z∗pn is cyclic.

Note. If p = 2, then Z∗2n is not cyclic for n > 2. For example, in Z∗8 = {1, 3, 5, 7}, all nontrivial elements have order 2.

Example. If F is a field, then GLn(F ) = {φ : Fn → Fn|φ is a vector space isomorphism}.

Remark 1.15. Suppose |F | = q. Then |GLn(F )| = (qn − 1)(qn − q) · · · (qn − qn−1).

Proof. Fix a basis e1, ..., en for Fn. Then φ is determined by the values φ(e1), ..., φ(en), which must be a basis for Fn.

Then |GLn(F )| = the number of distinct ordered bases for Fn. There are qn − 1 choices for e1, qn − q for e2, etc.

Proposition 1.16. Let G = Cp × · · · × Cp︸ ︷︷ ︸
n times

. Then Aut(G) ∼= GLnZp. Thus |Aut(G)| = (pn − 1)(pn − p) · · · (pn − pn−1).

Proof. Using additive notation, G ∼= Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
n times

. This is a Zp vector space. Thus any group homomorphism φ : G → G

is actually a Zp linear transformation as φ(a(h1, ..., hn)) = aφ(h1, ..., hn). So every bijective linear transformation of G is
a group homomorphism and vice versa. Thus Aut(G) ∼= GLn(Zp).



1.3 Semi Direct Products

Let H,K be groups and φ : K → Aut(H), a group homomorphism. Define

H oφ K = {(h, k)|h ∈ H, k ∈ K}

and
(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2).

Claim. H oφ K is a group.
Proof: Clearly, (1, 1) is the identity. Also (h, k)−1 = (φ(k−1)(h−1), k−1) as

(h, k)(φ(k−1)(h−1), k−1) = (hφ(k)(φ(k−1)(h−1)), kk−1)
= (h(φ(k)φ(k−1))(h−1), 1)
= (hφ(kk−1)(h−1), 1)
= (hh−1, 1)
= (1, 1)

and
(φ(k−1)(h−1), k−1)(h, k) = (φ(k−1)(h−1)φ(k−1)h, k−1k)

= (φ(k−1)(h−1h), 1)
= (φ(k−1)(1), 1)
= (1, 1).

Lastly, associativity holds.

Definition 1.17. Say H oφ K is the (external) semidirect product of H and K (and φ). (Note: If φ(k) = 1 for all
k ∈ K, then the semidirect product is the usual direct product.

Example. Find a nonabelian group of order 21.
Take K = C3 =< a > and H = C7 =< b > . To find φ we want to send a to an element of order o(a) in Aut(C7). So

let φ : C3 → Aut(C7) be defined by a 7→ ψ where ψ : C7 → C7 is such that b 7→ b2. Thus we can now define G = C7oφ C3.

We know G is nonabelian as
(b, 1)(1, a) = (bφ(1)(1), a) = (b, a)

and
(1, a)(b, 1) = (φ(a)(b), a) = (b2, a).

For simplicity, let’s say a = (1, a) and b = (b, 1). Notice (bi, aj) = (bi, 1)(1, aj) = (b, 1)i(1, a)j = b
i
aj . Then we see that

a3 = 1, b
7

= 1, and ab = b2a.

What’s a presentation for G? Let H =< x, y|x3 = 1, y7 = 1, xy = y2x > . As before, we can show |H| ≤ 21 and map
it onto G, so the map is bijective and thus G is isomorphic to H.

Let G = H oφ K. There are the natural injective homomorphisms i1 : H → G such that h 7→ (h, 1) and i2 : K → G

such that k 7→ (1, k). Let H ′ = i1(H) and K ′ = i2(K).

Remarks.

1. G = H ′K ′ as (h, k) = (h, 1)(1, k) ∈ H ′K ′

2. H ′ ∩K ′ = {(1, 1)}

3. H ′ C G since (h′, k)(h, 1)(h′, k)−1 = (h′, k)(h, 1)(φ(k−1)(h′−1), k−1) = (∗, 1) ∈ H ′.



Proposition 1.18. K ′ C H oφ K if and only if φ is trivial. In this case, the semidirect product is exactly the direct
product.

Proof. (⇐) : Easy
(⇒) : Let h ∈ H, k ∈ K. Want to show φ(k)(h) = h. Since H ′,K ′ C G and H ′ ∩K ′ = {(1, 1)}, we know that h′k′ = k′h′

for all h′ ∈ H ′, k′ ∈ K ′. Thus (h, k) = (h, 1)(1, k) = (1, k)(h, 1) = (φ(k)h, k). Thus φ(k)h = h.

Corollary 1.19. H oφ K is abelian if and only if φ is trivial and H, K are abelian.

Definition 1.20. Let G be an abelian group. Then f : G → G such that g 7→ g−1 is an automorphism of the group,
called the inversion map. Note o(f) = 2, except when every element is its own inverse.

Example. Let n > 2. Define φ : C2 → Aut(Cn) where C2 =< x > and Cn =< y > such that x 7→ the inversion map.
Then Cn oφ C2 is a nonabelian group of order 2n. (In fact, its the dihedral group.) Notice

(1, x)(y, 1)(1, x)−1 = (φ(x)y, x)(1, x−1) = (φ(x)yφ(x)(1), 1) = (φ(x)y, 1) = (yn−1, 1).

Thus we get the presentation
< x, y|x2 = 1, yn = 1, xyx−1 = yn−1}.

Theorem 1.21. Let G be a group and H,K subgroups such that
(1) G = HK (2) H ∩K = {1} (3) H C G

Then φ : K → Aut(H) defined by k 7→ ψk(h) = khk−1 is a group homomorphism and G ∼= H oφ K. In this case, we say
G is the internal semidirect product of H and K.

Proof. Define f : H oφ K → G by (h, k) 7→ hk. Then f is a group homomorphism as

f((h1, k1)(h2, k2)) = f((h1φ(k1)h2, k1k2)) = f((h1k1h2k
−1
1 , k1k2)) = h1k1h2k2 = f((h1, k1))f((h2, k2)).

Also, f is surjective as G = HK implies that for g ∈ G there exists h, k such that g = hk and thus (h, k) 7→ g. Finally,
f is injective as if (h, k) 7→ 1 then hk = 1 which implies k = h−1 ∈ H ∩K = {1} and so k = 1 and similarly h = 1 and
thus ker f = {(1, 1)}.

Theorem 1.22. Let G be a group of order 2p where p is an odd prime. Then G ∼= C2p or G ∼= D2p.

Proof. Let P be the Sylow p−subgroup (By 3ST, there exists only one and it is normal). Let Q be the Sylow 2−subgroup.
Then, since |P ∩Q| = 1, we know G = PQ. Thus there exists φ : Q → Aut(P ) such that G ∼= P oφ Q. Since |Q| = 2, we
know Q ∼= C2 =< x > . Similarly, P ∼= Cp =< y > . Now, Aut(Cp) ∼= Z∗p and so we have two cases.

Case 1: If φ(x) = 1P , then G ∼= P ×Q ∼= C2p.

Case 2: If |φ| = 2, there exists a unique element of order 2, as Z∗p is cyclic. Clearly, its −1. Then φ(x)(y) = y−1, that
is, φ is the inversion map. By our previous example, this says G ∼= D2p.

Theorem 1.23. Let K be a cyclic group of order n and H be any group. Suppose φ1, φ2 : K → Aut(H) are group
homomorphisms. If φ1(K) and φ2(K) are conjugate in Aut(H) (that is, φ1(k) = ψφ2(K)ψ−1 for ψ ∈ Aut(H)), then
H oφ1 K ∼= H oφ2 K.

Special Cases.

1. If |φ1(K)| = |φ2(K)| and Aut(H) is cyclic, since there is only one subgroup of each order, they are equal.

2. If φ1(K), φ2(K) are Sylow p−subgroups for some p, they are conjugate by 2ST.



Example. Classify all groups of order 75 = 3 · 52.

Let P ∈ Syl3(G) and Q ∈ Syl5(G). By 3ST, Q C G. So G = Q oφ P for some φ. Now P ∼= C3 =< x > and since Q

has order 52 it is abelian and thus either Q ∼= C25 or Q ∼= C5 × C5.

Case 1: Q ∼= C25. Then |Aut(Q)| = |Z∗25| = 25− 5 = 20. Since 3 - 20, φ is trivial. Thus we have G ∼= C3 × C25
∼= C75.

Case 2: Q ∼= C5 × C5 =< y, z > . Then Aut(Q) = GL2(Z5), which has order (52 − 5)(52 − 1) = 20 · 24. Now if we
have φ = 1, then G ∼= C15 × C5. Otherwise, |φ| = 3 which implies it is a Sylow 3-subgroup and thus all φ of
this order yield an isomorphic semidirect product. Now, lets try to find a presentation for this group. We know

x3 = 1, y5 = z5 = 1, yz = zy, however we need to know what xyx−1 and xzx−1 are. One can see that

[
1 1
2 3

]
has

order 3 in GL2(Z5). This corresponds to ψ : Q → Q such that y 7→ yz2 and z 7→ yz3 (take y =

[
1
0

]
and z =

[
0
1

]
).

Thus we see that G is presented by < x, y, z|x3 = y5 = z5 = 1, yz = zy, xy = yz2x, xz = yz3x > .

Example. Classify all groups of order 20 = 22 · 5.

Let Q ∈ Syl5(G) and P ∈ Syl2(G). Then, by the 3ST, Q C G and also we know Q ∼= C5 =< y > . Now P has order
22 which implies it is abelian and thus P ∼= C4 or P ∼= C2 × C2. Define G = Qoφ P where φ : P → Aut(Q) ∼= Z∗5.

Case 1: P = C4 =< x > .

Case 1a: φ is trivial. Then G = C5 × C4 = C20.

Case 1b: |φ(P )| = 2. There is only one subgroup of Z∗5 of order 2, since its cyclic. Since y 7→ y4 works, we’re done.
So xyx−1 = y4 and this group is presented by < x, y|x4 = 1, y5 = 1, xyx−1 = y−1 > .

Case 1c: |φ(P )| = 4. Then φ(P ) is a Sylow subgroup, which says all possible φ here will be isomorphic- so we
can choose any one. We see y 7→ y2 works, so xyx−1 = y2. This group is presented by < x, y|x4 = 1, y5 =
1, xyx−1 = y2 > .

We just need to check that these are different. In case 1b, we see x2 ∈ Z(G). We will show that Z(G) = 1 in case
1c. Let Z be the center of G and suppose Z 6= {1}. First note that Z ∩Q = {1}. If not, then (as the order of Q

is prime) Q ⊆ Z. But this means Q commutes with every element of P, implying that φ = {1}. Thus, if Z 6= {1},
it must contain an element, say z, of order 2. But as z is in some Sylow 2-subgroup and every Sylow 2-subgroup
is conjugate to P, we must have z ∈ P (a conjugate of z is still z!). But then φ(z) = identity map, contradicting
that φ is an isomorphism . Hence, Z = 1. Thus the groups really are different.

Case 2: P = C2 × C2

Case 2a: φ is trivial. Then G ∼= C2 × C10.

Case 2b: |φ(P )| = 4. This would say φ was an isomorphism, contradiction since P is not cyclic but Z∗5 is.

Case 2c: |φ(P )| = 2. Then | kerφ|=2. Let x ∈ kerφ \ {1} and z ∈ P \ {kerφ}. Then P =< x, z > . (P is generated
by any 2 nonidentity elements.) Since x ∈ kerφ, x ∈ Z(G). Let Q′ = Z(G)Q =< x, y >∼= C10 =< xy >

and P ′ =< z >∼= C2. Note G = P ′Q′ (since G is generated by x, y, z), P ′ ∩ Q′ = {1}, Q′ C G. Therefore
G ∼= C10 oφ′ C2 which implies D20. This is clearly not isomorphic to the other 2 as the Sylow 2 subgroup is
C2 × C2.

Example. Classify all groups of order 30.
Let G be a group, |G| = 30. Let P ∈ Syl2(G), Q ∈ Syl3(G), R ∈ Syl5(G). By Sylows Theorems, n3 ∈ {1, 10}, n5 ∈

{1, 6}. If n3 = 10, there exists 20 elements of order 3 and if n5 = 6, there exists 24 elements of order 5, but there are
only 30 elements total. So either n3 = 1 or n5 = 1. Thus either Q or R is normal. So QR is indeed a subgroup (since
one of Q and R are normal). But [G : QR] = 2 implies QR C G and further QR is cyclic (since it is of the form pq

where p - q − 1.) [Note: This shows Q and R are normal: Let Q′ ∈ Syl3(G). Then Q′ = xQx−1 for some x ∈ G. As



Q ⊆ QRCG,Q′ = xQx−1 ⊆ xQRx−1 = QR. Since QR is cyclic, it has only 1 subgroup of order 3 which implies Q′ = Q.

Hence n3 = 1 and Q C G. Similarly, R C G.] Let QR =< b > and P =< a > . Since G = P (QR), QR ∩ P = {1} and
QR C G, we get G = QRoφ P for φ : P → Aut(QR). Now, |φ(P )||2 and |φ(P )|||Aut(QR)|. Since Aut(QR) ∼= Z∗15 which
has 3 elements of order 2: 4, 11, 14, there are 3 possibilities for a nontrivial φ.

Case 1: φ1(a) = ψ1 : QR → QR defined by b 7→ b−1. Then G1
∼= D30.

Case 2: φ2(a) = ψ2 : QR → QR defined by b 7→ b4. Then G2 is presented by < x, y|x2 = y15 = 1, xyx−1 = y4 > .

Case 3: φ3(a) = ψ3 : QR → QR defined by b 7→ b11. Then G3 is presented by < x, y|x2 = y15 = 1, xyx−1 = y11 > .

Case 4: φ is trivial and G4
∼= C30.

How do we know G1, G2, G3 are different? Since Gi/Z(Gi) cyclic implies G is abelian, |Z(Gi)| ∈ {1, 2, 3, 5}. If |Z(Gi)| = 2,

some Sylow 2 subgroup is in the center which implies all Sylow 2 subgroups are in the center (since the Sylow 2 sub-
groups are conjugate), which implies n2 = 1, that is P C G. Thus G is abelian, a contradiction. So |Z(Gi)| ∈ {1, 3, 5}.
If |Z(Gi)| = 3, then Z(Gi) = Q =< b5 > (since there is only one Sylow 3 subgroup) and if |Z(Gi)| = 5, then
Z(Gi) = R =< b3 > . In G1, ab3a−1 = b−3 = b12 which implies b3 /∈ Z(G1). Similarly b5 /∈ Z(G1). Thus Z(G1) = 1. In
G2, we see ab5a−1 = b20 = b5. Thus Z(G2) =< b5 > . Similarly, Z(G3) =< b3 > . Thus they are all different. Now, we
know Z(S3 × C5) ≥ 5, so G3

∼= S3 × C5. Similarly, G2
∼= D10 × C3.

Suppose m|n. Then f : Zn → Zm defined by [a]n 7→ [a]m is a surjective ring homomorphism.

Lemma 1.24. Suppose m|n. Then the group homomorphism f∗ : Z∗n → Z∗m is surjective.

Proof. Suppose n = ps for some prime p. Then m = pr where r ≤ s. If [a]pr ∈ Z∗pr , then [a]ps ∈ Z∗ps . So f∗ is surjective.
In general, let n = ps1

1 · · · psk

k for p1, . . . , pk distinct primes. Then m = pr1
1 · · · prk

k where ri ≤ si. Using the Chinese
Remainder Theorem, we see

Z∗n −→ Z∗m
↓∼= ↓∼=

Z∗
p

s1
1
× · · · × Z∗

p
sk
k

−→ Z∗
p

r1
1
× · · · × Z∗

p
rk
k

By the previous case, the bottom map is surjective. Since the bottom three maps are surjective, the top is as well.

Corollary 1.25. Suppose m|n and gcd(a,m) = 1. Then there exists t ∈ Z such that gcd(a + tm, n) = 1.

Proof. Let [a]m ∈ Z∗m. As f∗ : Z∗n → Z∗m is onto, there exists [c]n ∈ Z∗n such that f([c]n) = [a]m. Thus gcd(c, n) = 1 and
c ≡ a mod m which implies c = a + tm.

Corollary 1.26. Let φ : Cn → Cm be a surjective group homomorphism (thus m|n). Let Cn =< a > and Cm =< b > .

Then b = φ(a)r where gcd(r, n) = 1.

Proof. Since < φ(a) >= Cm =< b >, b = φ(a)s where gcd(s,m) = 1. By the previous corollary, there exists t ∈ Z such
that gcd(s + tm, n) = 1. Let r = s + tm. Then φ(a)r = φ(a)s+tm = φ(a)sφ(a)tm = φ(a)s = b.

Theorem 1.27. Let K be a cyclic group of order n and φ1, φ2 : K → Aut(H) be group homomorphisms, where H is
some group. Suppose φ1(K) and φ2(K) are conjugate. Then H oφ1 K ∼= H oφ2 K.

Proof. Let σ ∈ Aut(H) be such that φ2(K) = σφ1(K)σ−1. Let K =< a > . Then φ2(K) = σ < φ1(a) > σ−1 =<

σφ1(a)σ−1 > . Then φ2 : K →< σφ1(a)σ−1 > is a surjective group homomorphism. By the corollary, there exists r ∈ Z
with gcd(r, n) = 1 such that σφ1(a)σ−1 = φ2(a)r. Let x ∈ K. Then x = as for some s. Then

σφ1(x)σ−1 = (σφ1(a)σ−1)s = (φ2(a)r)s = (φ2(a)s)r = φ2(x)r.



Thus σφ1(x) = φ2(x)rσ. Define f : H oφ1 K → H oφ2 K by (h, k) 7→ (σ(h), kr). Then

f((h1, k1)(h2, k2)) = f((h1φ1(k1)(h2), k1k2))
= (σ(h1φ1(k1)(h2)), (k1k2)r)
= (σ(h1)σ(φ1(k1)(h2)), kr

1k
r
2)

= (σ(h1)φ2(k1)rσ(h2), kr
1k

r
2)

= (σ(h1), kr
1)(σ(h2), kr

2)
= f((h1, k1))f((h2, k2)).

Thus f is a homomorphism. Also, we know it is 1-1 and onto as h 7→ σ(h) and k 7→ kr are automorphisms (since
gcd(r, n) = 1). Thus f is an isomorphism.

1.4 Characteristic Groups

Definition 1.28. Let G be a group. A subgroup H of G is called characteristic if σ(H) = H for all σ ∈ Aut(G). We
denote this as Hchar G.

Example. Z(G)char G. To see this, let σ ∈ Aut(G), x ∈ Z(G) and y ∈ G. Then y = σ(z) for some z ∈ G and

σ(x)y = σ(x)σ(z) = σ(xz) = σ(zx) = σ(z)σ(x) = yσ(x).

So σ(x) ∈ Z(G). So σ(Z(G)) ⊆ Z(G) for all σ ∈ Aut(H) which implies σ−1(Z(G)) ⊆ Z(G) for all σ and applying σ, we
see Z(G) ⊆ σ(Z(G)). Thus Z(G) = σ(Z(G)).

Remarks.

1. If H is a unique subgroup of G of order |H|, then Hchar G. Therefore, every subgroup of a cyclic group is
characteristic.
Example. Let G = Z2 ⊕Z2. Then φ : G → G defined by (a, b) 7→ (b, a) is an automorphism but φ(< (1, 0) >) =<

(0, 1) > . So < (1, 0) > is not characteristic in G.

2. Characteristic subgroups are always normal.
Proof: Let g ∈ G. Then ψg : G → G defined by x 7→ gxg−1 is an automorphism. If Hchar G, then gHg−1 =
ψg(H) = H. Thus H C G.

Note: The converse is not true (see previous example).

3. Let P ∈ Sylp(G). Then P char G if and only if P C G.

Proof: (⇐) : If P C G, then P is the only Sylow p−subgroup. Done by Remark 1.

Note. If K C H and H C G does NOT imply K C G.

Example. D8 =< x, y|x2 = y4 = 1, xy = y3x > . We see < xy > C{1, xy, xy3, y2} C D8 (the first because a group of
order 4 is abelian and the second because its index 2). However, < xy >6 D8.

Remarks.

1. K char H and H char G implies K char G.

Proof: Let φ ∈ Aut(G). As H char G, φ(H) = H which implies φ|H ∈ Aut(H) and thus φ(K) = φ|H(K) = K as
K char H. So K char G.

2. K char H and H C G implies K C G.

Proof: Let g ∈ G and consider ψg ∈ Aut(G) where ψg(x) = gxg−1. As H C G, ψg(H) = H. In particular,
ψg|H ∈ Aut(H). Since K char H, ψg(K) = ψg|H(K) = K. Thus K C G.



Example. (Old Comp Problem) Let P ∈ Sylp(G). Then NG(NG(P )) = NG(P ), where NG(H) = {g ∈ G|gHg−1 = H}.

Proof. Clearly, P C NG(P ) implies P char NG(P ) (since Sylow p−subgroups are normal if and only if they are charac-
teristic). But NG(P ) C NG(NG(P )). By Remarks 2, P C NG(NG(P )). Thus NG(NG(P )) ⊆ NG(P ) and since the other
containment is obvious, they are equal.

1.5 Solvable Groups

Definition 1.29. Let G be a group and x, y ∈ G. Define the commutator of x and y by

[x, y] := xyx−1y−1.

The commutator subgroup of G, denoted [G,G] or G′, is the subgroup of G generated by all its commutators.

Remarks.

1. x, y commute if and only if [x, y] = 1.

2. G is abelian if and only if G′ = {1}.

3. G′ char G

Proof: Let φ ∈ Aut(G), x, y ∈ G. Then φ([x, y]) = φ(xyx−1y−1) = φ(x)φ(y)φ(x)−1φ(y)−1 = [φ(x), φ(y)]. So
φ(G′) ⊆ G′. If [x, y] is a generator of G′, then there exists a, b ∈ G such that φ(a) = x, φ(b) = y which implies
φ([a, b]) = [x, y]. Thus G′ ⊆ φ(G′) and so they are equal.

Lemma 1.30. Let G be a group. Then

1. G′ C G and G/G′ is abelian.

2. If H ⊇ G′, then H C G and G/H is abelian.

3. If H C G and G/H is abelian, then H ⊇ G′.

Proof. 1. As G′ char G, G′ C G. Let x, y ∈ G/G′. Then xyx−1y−1 = 1 which implies xy = yx which implies G/G′ is
abelian.

2. If H ⊇ G′, H/G′ < G/G′ which is abelian. Thus H/G′CG/G′ which implies H CG. Note G/H ∼= G/G′

H/G′
is abelian

as G/G′ was.

3. Let [x, y] be a commutator. Then, as G/H is abelian, [x, y] = [x, y] = xyx−1y−1 = 1. Thus [x, y] ∈ H and therefore
H ⊇ G′.

Definition 1.31. A sequence of subgroups · · ·Gi CGi−1 C · · ·G0 = G is called a normal series. The derived normal

series is · · ·G′′′ C G′′ C G′ C G. For simplicity, we will take G(0) = G, G(1) = G′, and G(i) = (G(i−1))′ for i ≥ 2.

Example. Let G = S3. Then, G′ =< (123) > .

Proof. As < (123) > CS3 (index 2) and G/ < (123) > is abelian (its cyclic), the above lemma says < (123) >⊇ S′3. As
S′3 is nonabelian, S′3 6= {1}. So S′3 =< (123) > .

Now < (123) > is abelian, so (S3)′′ = {1}. Thus

{1}C < (123) > CS3

is the derived normal series for S3.

Definition 1.32. A group is solvable if G(n) = {1} for some n.



Remark. Suppose φ : A → B is a surjective group homomorphism. Then φ(A(i)) = B(i) for all i.

Proof. Induct on i. If i = 0, clear. Suppose true for i− 1. Want to show φ((A(i−1))′) = (B(i−1))′. For simplicity, we can
take i = 1. Know φ([a, b]) = [φ(a), φ(b)]. Thus φ(A′) ⊆ B′. On the other hand, as φ is surjective, any commutator of B

is the image of a commutator of A.

Special Case. Suppose H C G and φ : G → G/H is the natural homomorphism. Then G(i) = G
(i)

.

Proposition 1.33. Let G be a group and H ≤ G.

1. If G is solvable, then so is H. Furthermore, if H C G, the G/H is solvable.

2. If H C G and H and G/H are solvable, then so is G.

Proof. 1. For some n, G(n) = {1}. But H(i) ⊆ G(i) for all i. Thus H(n) = {1}. Also, if H C G, then (G/H)(n) =
G(n) = {1}.

2. Since G/H is solvable, there exists n such that G(n) = (G/H)(n) = {1}. Thus G(n) ⊆ H. Since H is solvable, there
exists m such that H(m) = {1}. Then G(n+m) ⊆ H(m) = {1}. Thus G is solvable.

Proposition 1.34. Let G be a group of order pn, p prime. Then G is solvable.

Proof. Induct on n. If n = 0, 1, 2, then G is abelian and thus G′ = {1}. So suppose n ≥ 3. Recall that p−groups have
nontrivial center. Since Z(G) is abelian, it is solvable. Now |G/Z(G)| = pr for some r < n. Thus G/Z(G) is solvable by
induction and by Proposition 1.33, G is solvable.

Fact. An is not solvable for n ≥ 5. We know An is simple and nonabelian for n ≥ 5. Since the commutator is a normal
subgroup, (An)(i) = An for all i ≥ 1. Thus An is not solvable. By Prop 1.33, we see Sn is therefore not solvable for n ≥ 5
as then its subgroup An would be. Note: A4 is solvable (see later)

Note. Since G′ char G and G(2) char G′, we know that G(2) char G and by induction, G(n) char G. In particular, this
says G(n) C G.

Definition 1.35. A solvable series for a group G is a normal series

{1} = Gn C Gn−1 C · · ·C G0 = G

such that Gi/Gi−1 is abelian for all i.

Proposition 1.36. G is solvable if and only if G has a solvable series.

Proof. (⇒:) The derived normal series is a solvable series for G.

(⇐:) Let {1} = Gn C · · ·C G0 = G be a solvable series for G. Induct on n. If n = 0, then G = {1} and we are done. Let
n > 0. Then G1 has a solvable series of length n− 1. So G1 is solvable by induction. Also G/G1 is abelian, which
implies it is solvable. Then, since G1 and G/G1 is solvable, G is solvable by Prop 1.33.

Fact. A4 is solvable. We see it has the solvable series

{1}C {(1), (12)(34), (13)(24), (14)(23)}C A4 C S4.

Thus A4 and S4 are solvable.

Lemma 1.37. If |G| = pq for primes p, q, then G is solvable.

Proof. If p = q, then G is abelian and thus solvable. Say p < q. By ST, the Sylow q−subgroup is normal and solvable
(since abelian). Of course |G/Q| = p implies G/Q is abelian and thus solvable. Thus by Prop 1.33, G is solvable.



Proposition 1.38. Every group of order pqr for primes p, q, r is solvable.

Proof. Case 1: p = q = r. Then done by Prop 1.36.

Case 2: p < q < r. By counting arguments, at least one of the Sylow subgroups is normal and hence solvable, say H.

Then |G/H| = p′q′ for primes p′q′ and is thus solvable by the lemma. Thus by Prop 1.33, G is solvable.

Case 3: |G| = p2q, p < q. Similar.

Case 4: |G| = pq2, p < q. Similar.

2 Fields

Definition 2.1. A field is a commutative ring with identity such that every nonzero element has a multiplicative
inverse. Let R be a ring with identity. Consider the ring homomorphism φ : Z → R defined by n 7→ n · 1R. Say R has
characteristic 0 if φ is injective. Otherwise, if kerφ = (n), then R has characteristic n. In this case Z/(n) ↪→ R. If
R is a domain, then so is Z/(n) which says (n) is prime. In particular, if R is a field, then char R = 0 or (p) for some
prime p. Let R be a commutative domain. Then the fraction field or quotient field of R is Q(R) = {a

b |a, b ∈ R, b 6= 0}.
Note. Instead of saying a field F has characteristic 0, it is often said that F contains the rationals. This is because if
Z→ F defined by n 7→ n · 1 is injective, then Z ⊆ F which implies its quotient field Q(F ) = Q ⊆ F.

Remark. If R is a domain, then R[x] is a domain. In this case, Q(R[x]) = Q(R)(x) =
{

f
g |f, g ∈ Q(R)[x], g 6= 0

}
.

Notation. Let F ⊆ E be fields. Usually, we will say E/F is a field extension.

2.1 Algebraic Extensions

Definition 2.2. Let E/F be a field extension, α ∈ E. Then α is algebraic over F if there exists f(x) ∈ F [x] \ {0} such
that f(α) = 0. If α is not algebraic, we say it is transcendental. The degree of E/F, denoted [E : F ], is the dimension
of E as an F−vector space. We say [E : F ] is finite if [E : F ] < ∞.

Examples.

1. If x is an indeterminant, then F (x)/F is a field extension and [F (x) : F ] = ∞ as {1, x, x2, ...} is an F−basis for
F (x).

2. [Q(
√

2) : Q] = 2 as {1,
√

2} is a Q−basis.

Lemma 2.3. Let L ⊆ F ⊆ E be fields. Then [E : L] = [E : F ][F : L].

Proposition 2.4. Let α ∈ E, E/F a field extension. TFAE

1. α is algebraic over F.

2. F [α] = F (α).

3. [F (α) : F ] < ∞.

Proof. (1) ⇒ (2) : Define φ : F [x] → F [α] by f(x) 7→ f(α). Then φ is a surjective ring homomorphism. Thus F [α] ∼=
F [x]/(kerφ). Since F [x] is a PID, we know ker φ = (h(x)) for some h(x) ∈ F [x]. Since α is algebraic over f, we
know kerφ 6= 0. So h(x) 6= 0. Since F [α] ⊆ F (α), its an integral domain. Thus kerφ is prime and h(x) is irreducible
over F (as if it factored, the factors would be zero divisors). So (h(x)) is a maximal ideal which implies F [x]/(h(x))
is a field. Thus F [α] = F (α).



(2) ⇒ (3) : If α = 0, trivial. So let α 6= 0. Then 1
α ∈ F (α) = F [α]. So 1

α = c0 + c1α + . . . + cnαn for cn 6= 0. Multiplying
by α

cn
, we see αn+1 ∈ SpanF {1, α, ..., αn} which implies αi ∈ SpanF {1, α, ..., αn} for all i. Then dimF F [α] ≤ n + 1

which implies [F (α) : F ] ≤ n + 1.

(3) ⇒ (1) : Say [F (α) : F ] = n. Then {1, α, ..., αn} is a linearly dependent set over F. Thus there exists c0, ..., cn ∈ F

(not all zero) such that c0 ·1+ ...+ cnαn = 0 which implies α is a root of f(x) = c0 + ...+ cnxn. Thus α is algebraic.

Corollary 2.5. Let {α1, ..., αn} ∈ E, E/F a field extension. TFAE

1. α1, ..., αn is algebraic over F.

2. F [α1, ..., αn] = F (α1, ..., αn).

3. [F (α1, ..., αn) : F ] < ∞.

Proposition 2.6. If [E : F ] < ∞, then E/F is algebraic.

Proof. Let α ∈ E. Then [F (α) : F ] ≤ [E : F ] < ∞. By Prop 2.4, α is algebraic.

Note. The converse is not true. Consider Q ⊆ C and let Q = {α ∈ C|α is algebraic over Q}. Clearly, [Q : Q] = ∞ and
[Q( n

√
2) : Q] = n.

Proposition 2.7. Suppose E/F and F/L are algebraic. Then E/L is also algebraic.

Proof. Let α ∈ E. Then α is algebraic over F which implies [F (α) : F ] < ∞. Say f(α) = 0 where f(x) = cnxn + ...c0 ∈
F [x]\{0}. Let K = L(c0, ..., cn). Then K/L is finite and α is algebraic over K. Then [K(α) : L] = [K(α) : K][K : L] < ∞.

Thus α is algebraic over L.

Proposition 2.8. Let E/F be a field extension, α ∈ E algebraic over F. Say h ∈ F [x] \ {0} such that h(α) = 0. TFAE

1. h(x) is irreducible over F.

2. h|f for all f(x) ∈ F [x] such that f(α) = 0.

3. h(x) = kerφ for φ : F [x] → F [α].

If h is monic and satisfies the above, say h is the minimal polynomial for α over F and denote it by Irred(α, F ) or
Min(α, F.)

Proposition 2.9. Suppose α is algebraic over F. Then [F (α) : F ] = deg Irred(α, F ).

Definition 2.10. Let F be a field and f(x) ∈ F [x] \ F. Then a splitting field for f(x) over F is a field L ⊇ F such
that f(x) factors into linear factors in L[x] and f(x) does not split in E[x] for all F ⊆ E ( L.

Remark. Let f(x) ∈ F [x] and E ⊇ F such that f(x) = c(x − α1) · · · (x − αn) in E[x]. Then a splitting field for f(x)
over F is F [α1, ..., αn].

Examples.

1. Find the splitting field of x4 − 2 over Q.

The roots of x4 − 2 are ± 4
√

2,±i 4
√

2. So Q( 4
√

2, i) is the splitting field.

Q( 4
√

2, i)
| 2 since x2 + 1 is irreducible as i 6∈ ( 4

√
2).

Q( 4
√

2)
| 4 since x4 − 2 is irreducible (by Eisenstein).
Q

Thus [Q( 4
√

2, i) : Q] = 8.



2. Find the splitting field for x6 + 3 over Q.

First, lets find the roots. In polar coordinates, z6 = −3 = 3eiπ = r6ei6θ. Thus r6 = 3 and 6θ = π + 2πk which
implies θ = π

6 + πk
3 . Thus the roots are 6

√
3e

πi
6 (e

πi
3 )k for k = 0, ..., 5.

Q( 6
√

3e
πi
6 , e

πi
3 )

| m ≤ 2 since the cyclotomic polynomial works.
Q( 6
√

3e
πi
6 )

| 6 since x6 + 3 is irreducible (by Eisenstein).
Q

In fact, m = 1 as ( 6
√

3e
iπ
6 )3 =

√
3i implies 1±√3i

2 ∈ Q( 6
√

3e
iπ
6 ) which is the roots of the cyclotomic polynomial.

3. Find the splitting field of x5 − 2 and its degree.

We see the roots are ωi 5
√

2 for i = 0, ..., 4 where ω = e
2πi
5 . So the splitting field is Q( 5

√
2, ω).

Q( 5
√

2, ω)
≤4� �

Q( 5
√

2) Q(ω) since x5 − 2 and the cyclotomic

5� �4 ← polynomials are irreducible
Q over Q by Eisenstein.

Then D = [Q( 5
√

2, ω) : Q] ≤ 20. Of course 4|D and 5|D implies 20|D. Thus D = 20.

Note. This says x4 + x3 + x2 + x + 1 is irreducible over Q( 5
√

2, ω).

Lemma 2.11. Let K be a field and f(x) ∈ K[x] a nonconstant polynomial. Then there exists a field extension E ⊇ K

such that [E : K] ≤ deg f and f(x) has a root in E.

Proof. Let p(x) be an irreducible factor of f(x). It is enough to show true for p(x). Let t be an indeterminant over K

and E = K[t]/(p(t)), a field as p(t) is irreducible in K[t]. Let α = t + (p(t)) = t. Then {1, α, ..., αn−1} is a K−basis
for E where n = deg p(t). Define σ : K → E by a 7→ a + (p(t)). Since there does not exist constants in (p(t)) we see
kerφ = {0} and σ is an injective field map. So by identifying K with σ(K), we can assume K ⊆ E = K(α). Note
p(α) = p(t) + (p(t)) = 0. So α ∈ E is a root of p(x) and [E : K] = n.

Lemma 2.12. Let K be a field. Then there exists a field E ⊇ K such that every nonconstant polynomial f ∈ K[x] has
a root in E.

Proof. For each nonconstant f ∈ K[x], let tf be an indeterminant. Let R = K[{tf}f∈K[x]\K ] and I an ideal of R

generated by {f(tf )}f∈K[x]\K .

Claim. I 6= R.

Proof: Suppose I = R. Then 1 ∈ I which implies

1 = r1f1(tf1) + . . . + rsfs(tfs) (1)

for f1, ..., fs ∈ K[x] \ K and r1, ..., rs ∈ R. For ease of notation, let ti := tfi . Let t1, ..., ts, ..., tn be all the
indeterminants involved in r1, ..., rs along with t1, ..., ts. Now, define F1 ⊇ K such that f1(t1) has a root in F1.

Iteratively define Fi ⊇ Fi−1 such that fi(ti) has a root in Fi. Then Fs ⊇ K is such that fi(ti) has a root αi in Fs

for all i = 1, ..., s. Plug in α = (α1, .., αs) into Equation (1) to get 1 = 0, a contradiction. Thus I 6= R.



Let M be a maximal ideal of R containing I (this exists by Zorn’s Lemma) and let E = R/M, a field. Define σ : K ↪→
R → R/M by a 7→ a 7→ a + M. Here, we see kerσ = {0} as if a + M = 0 then a ∈ M which implies M contains a unit.
Thus σ is injective and so we can identify K with its image σ(K) and conclude K ⊆ E. Let f(x) ∈ K[x] be a nonconstant
polynomial and αf = tf + M. Then f(αf ) = f(tf ) + M = 0 since f(tf ) ∈ I ⊆ M. So αf is a root of f in E.

Definition 2.13. A field F is algebraically closed if every nonconstant polynomial f(x) ∈ F [x] has a root in F.

Equivalently, f(x) splits completely in F [x]. An algebraic closure of a field F is a field F ⊇ F such that F is algebraically
closed and F/F is algebraic.

Proposition 2.14. If F ⊆ L and L is algebraically closed, then F = {α ∈ L|α is algebraic over F} is an algebraic
closure of F.

Proof. First, we want to show that this is a field. Given α, β ∈ F , we want to show αβ, α ± β, α
β are algebraic over F.

Since α, β are algebraic, [F (α, β) : F ] < ∞ by the Corollary. But αβ, α±β, α
β ∈ F (α, β) where every element is algebraic

over F (since the degree is finite). Thus they are algebraic over F and thus in F . Now, we show F is algebraically closed.
Let f(x) ∈ F [x] \F. Then f(x) has a root α ∈ L. So F (α)/F is algebraic and F/F is algebraic which implies F (α)/F is
algebraic. Thus α is algebraic over F which implies α ∈ F .

Theorem 2.15. Let F be a field. Then there exists an algebraic closure of F.

Proof. Let E0 = F. For n ≥ 1, define En ⊇ En−1 to be a field such that every nonconstant polynomial in En−1[x] has a
root in En. Let L = ∪∞i=1Ei. This is a field as the Ei’s are nested. L is also algebraically closed as for f(x) ∈ L[x] \ L,

there exists n such that f(x) ∈ En[x]. Then f(x) has a root in En+1 ⊆ L. Now, let F = {α ∈ L|α is algebraic over F}.
Then by the above proposition, F is an algebraic closure for F.

Corollary 2.16. Let f(x) ∈ F [x] \ F. Then there exists a splitting field for f(x).

Proof. Let F be an algebraic closure of F. Then f(x) = c(x − α1) · · · (c − αn) in F [x]. Then F (α1, ..., αn) is a splitting
field for f(x) over F.

Definition 2.17. Let E/F and E′/F ′ be field extensions. Let σ : F → F ′ and τ : E → E′ be field homomorphisms. Say
τ extends σ if τ |F = σ. As a special case, if F = F ′ and σ = 1F , then τ extends σ if and only if τ fixes F.

Remarks. Suppose τ extends σ.

1. σ extends to a ring homomorphism σ̃ : F [x] → F ′[x] by a0 + a1x + . . . + anxn 7→ σ(a0) + σ(a1)x + . . . + σ(an)xn.

Write this as p(x) 7→ pσ(x). Check: (fg)σ = fσgσ and (f + g)σ = fσ + gσ.

2. Suppose α ∈ E is a root of p(x) in F [x]. Then τ(α) is a root of pσ(x) :

pσ(τ(α)) = σ(a0) + σ(a1)τ(α) + . . . σ(an)τ(α)n = τ(a0) + τ(a1α) + . . . τ(anαn) = τ(p(α)) = τ(0) = 0.

Note that in general pσ(τ(α)) = τ(p(α)) for all α(i.e., not just roots).

3. If F = F ′, σ = 1F . If α ∈ E is a root of p(x), then τ(α) is also a root of p(x).

Proposition 2.18. Let E/F be an algebraic extension and τ : E → E a field homomorphism fixing F. Then τ is an
isomorphism.

Proof. Clearly τ is 1-1. So its enough to show τ is surjective. Let α ∈ E. As α is algebraic over F, there exists some
p(x) ∈ F [x] \ F such that p(α) = 0. Let R = {α = α1, α2, ..., αn} be all the roots of p(x) in E. Then τ(αi) ∈ R for all i.

We know τ |R is 1-1 and since finite it is also onto. Thus τ(αj) = α for some j.

Theorem 2.19. Let σ : F → K be a nonzero field homomorphism where K = K. Suppose E/F is an algebraic extension.
Then there exists τ : E → K extending σ.



Proof. Let Λ = {(T, φ)|F ⊆ T ⊆ E, T is a field, φ : T → K extends σ}. Note that Λ 6= ∅ as (F, σ) ∈ Λ. Define a partial
order on Λ by (T1, φ1) ⊆ (T2, φ2) if and only if T1 ⊆ T2 and φ2|T1 = φ1. Let C be a totally ordered subset of Λ (i.e., a
chain). Let T0 = ∪T such that (T, φ) ∈ C, a field (since the T ’s are nested), and F ⊆ T0 ⊆ E. Define ψ : T0 → K by
t 7→ φ(t) if t ∈ T for some (T, φ) ∈ C. Check this is well-defined and ψ is a field homomorphism. Clearly ψ|T = φ for all
(T, φ) ∈ C. Then (T0, ψ) ∈ Λ is an upper bound for C. By Zorn’s Lemma, there exists a maximal element (M, δ) ∈ Λ.

Want to show M = E. Let N ∼= δ(M) ⊆ K. We can extend δ to δ : M [x] → N [x] by p(x) 7→ pδ(x). This is an isomorphism
as δ is. Suppose there exists α ∈ E \ M. Let f(x) = Irred(α, M). Then fδ(x) is irreducible in N [x] ⊆ K[x]. As K is
algebraically closed, fδ(x) has a root β ∈ K. Of course Irred(β,N) = fδ(x). Then

δ′ : M(α) → M [x]/(f) → N [x]/(fδ) → N(β) ⊆ K

defined by g(α) 7→ g(x) 7→ gδ(x) 7→ gδ(β). So δ′ : M(α) → K. We can see δ′|M = δ. So (M, δ) < (M(α), δ′), a
contradiction. Thus M = E.

Corollary 2.20. Using the notation of the above theorem, suppose E is algebraically closed and K is algebraic over
σ(F ). Then τ is an isomorphism.

Proof. Since ker τ is an ideal, it is either (0) or E. Since σ is nonzero, ker τ 6= E. Thus τ is injective. So it is enough
to show τ is surjective. Note τ(E) ∼= E and since E is algebraically closed, τ(E) is. Since K/σ(F ) is algebraic, so is
K/τ(E) since σ(F ) ⊆ τ(E) ⊆ K. But τ(E) is algebraically closed, so K = τ(E).

Corollary 2.21. Let F be a field. Then any two algebraic closures of F are isomorphic via an isomorphism fixing F.

Proof. Let L1, L2 be algebraic closures of F. Consider σ : F → L2. We can extend σ to τ : L1 → L2. By previous
corollary, τ is an isomorphism fixing F.

Definition 2.22. Let F be a field and S ⊂ F [x] \ F. A splitting field for S over F is a field L ⊇ F such that every
f ∈ S splits in L[x] and L is minimal with respect to this property.

Remark. Let F, S be as above and fix an algebraic closure F of F. Then there exists a unique splitting field L ⊆ F of
S over F. Namely L = F (T ) where T = {α ∈ F |f(α) = 0 for some f ∈ S}.
Proposition 2.23. Let F be a field and S ⊆ F [x] \ F. Any two splitting fields for S over F are isomorphic via an
isomorphism fixing F.

Proof. Let L1, L2 be splitting fields for S over F and L1, L2 their algebraic closures. Since L1, L2 are algebraic over F,

L1, L2 are also algebraic closures for F. Define Ti = {α ∈ Li|f(α) = 0 for some f ∈ S}. Then Li = F (Ti). Extend 1F to
τ : L1 → L2. By the corollary, τ is an isomorphism. Since τ fixes F, τ(T1) = T2. Thus τ(L1) = τ(F (T1)) = F (τ(T1)) =
F (T2) = L2. So τ |L1 : L1 → L2 is an isomorphism.

Remark. With the above notation, ρ : L1 → L2 which fixes F is an isomorphism from L1 to L2.

Proposition 2.24. Let F be a field, S ⊆ F [x] \ F and F an algebraic closure of F. Let L ⊂ F be a splitting field for S

over F. Then any field map σ : L → F which fixes F is an automorphism of L.

Proof. Apply previous proposition with L1 = L2 = L.



2.2 Normality

Theorem 2.25. Let F be a field and F an algebraic closure of F. Let F ⊆ E ⊆ F be a field. Then TFAE

1. E is a splitting field for some S ∈ F [x] \ F.

2. Any embedding σ : E → F which fixes F is an automorphism of E.

3. Any irreducible polynomial in F [x] with a root in E splits in E.

If E/F satisfies the above, we say E/F is normal.

Proof. (1)⇒(2) Previous Proposition

(2)⇒(3) Let f(x) ∈ F [x] \ F be irreducible and have a root α ∈ E. Let β be another root of f(x) in F. Consider
F (α) → F (β) ↪→ F defined by p(α) 7→ p(β). Extend σ to τ : E → F . Then τ fixes F and by (2), τ(E) = E. So
β = τ(α) ∈ E. Thus all the roots of f are in E which implies f(x) splits.

(3)⇒(1) Let S = {f(x) ∈ F |f(x) is irreducible and has a root in E}. Let L be the splitting field in F for S over F.

Want to show E = L. By (3), every polynomial in S splits in E so L ⊆ E. Let α ∈ E ⊆ F. Let f(x) = Irred(α, F ).
Then f(x) ∈ S implies α ∈ L. Thus L = E.

Remarks.

1. If [E : F ] = 2, then E/F is normal as (3) is true.

2. Q( 3
√

2)/Q is not normal since x3− 2 is irreducible in Q[x] and has a root in Q( 3
√

2) but the other two roots are not
in Q( 3

√
2) as they are complex.

3. If K ⊆ F ⊆ E and E/K is normal, so is E/F. If E is a splitting field for S over K then it is also the splitting field
for S over F. Note that F/K need not be normal. For example Q ⊆ Q( 3

√
2) ⊆ Q( 3

√
2, ω).

4. If F/K and E/F are normal, then E/K need not be normal. For example Q ⊆ Q(
√

2) ⊆ Q( 4
√

2) as x4 − 2 does
not split in Q( 4

√
2).

Note. If we say normal, we imply algebraic.

Proposition 2.26. Let F be a field, F an algebraic closure of F, and {Eλ} a family of subfields of F containing F. If
each Eλ/F is normal, then ∩Eλ/F is normal.

Proof. Let f(x) be an irreducible polynomial in F [x] with a root in ∩Eλ. Then it has a root in each Eλ which implies it
splits in each Eλ as they are normal. Thus f splits in ∩Eλ.

Definition 2.27. Let E/F be an algebraic extension. The normal closure of E/F in F is

⋂

E⊂L⊂F,L/F normal

L,

the smallest normal extension of F containing E.

Remark. Suppose E = F (α1, ..., αn) is algebraic over F. Let L be the splitting field for

{Irred(α1, F ), ..., Irred(αn, F )}

over F. Then L is the normal closure of E/F.

Example. Let E = Q( 3
√

2). The normal closure of E/Q is Q( 3
√

2, ω).



Definition 2.28. Let E1, E2 be subfields of a field L. The compositum (or join) of E1 and E2 is

E1E2 =
⋂

E1∪E2⊂F⊂L,F a field

F,

the smallest subfield of L containing E1 and E2.

Remarks. Let E1, E2 ⊆ L.

1. E1E2 = E1(E2) = E2(E1) = {
P

αiβiP
γjδj

|αi, γj ∈ E1, βi, δj ∈ E2}.

2. If E1, E2 are algebraic over F then E1E2 = {∑αiβi|αi ∈ E1, βi ∈ E2} since if α is algebraic over F then the
smallest field containing it is the smallest ring containing it.

3. E1 = K(α1, ..., αn), E2 = K(β1, ..., βn). Then E1E2 = K(α1, ...αn, β1, ..., βn).

Proposition 2.29. Suppose E1/F and E2/F are normal. Then E1E2/F is normal.

Proof. Suppose σ : E1E2 → F is an embedding which fixes F. Now σ|E1 , σ|E2 are embeddings of E1, E2 into F which fix
F. Thus σ(E1) = E1 and σ(E2) = E2. Now σ(E1E2) = σ(E1)σ(E2)︸ ︷︷ ︸

this requires work

= E1E2. So E1E2/F is normal.

The work: Let α ∈ E1E2. Then α = e1`1 + ... + en`n. Then σ(α) = σ(e1)σ(`1) + ... + σ(en)σ(`n) ∈ σ(E1)(σ(En)).
Similarly, σ(E1)σ(E2) ⊆ σ(E1E2).

2.3 Separability

Definition 2.30. Let f(x) ∈ F [x] \ F. A root α ∈ F of f(x) is called a multiple root of f(x) if (x− α)2|f(x) in F [x].
Otherwise, α is a simple root.

Definition 2.31. Let f(x) ∈ F [x] and say f(x) = anxn + ... + a1x + a0. The derivative f ′ of f(x) is f ′(x) =
nanxn−1 + ... + a1 where kak = ak + ... + ak︸ ︷︷ ︸

k times

.

Note. One can check (f + g)′ = f ′ + g′, (cf)′ = cf ′, (fg)′ = fg′ + f ′g, (f(g))′ = f ′(g)g′

Example. Consider f(x) = x6 + 2x5 + x3 + 2 ∈ Z3[x]. Then f ′ = 6x5 + 10x4 + 3x2 = 10x4.

Proposition 2.32. Let f(x) ∈ F [x] \ F and α ∈ F. Then α is a multiple root in f(x) if and only if f(α) = f ′(α) = 0.

Proof. ⇒ Say f(x) = (x−α)2g(x) for g(x) ∈ F [x]. Then f ′(x) = 2(x−α)g(x)+(x−α)2g′(x). Clearly f ′(α) = f(α) = 0.

⇐ As f(α) = 0, we can say f = (x−α)g(x) for some g(x) ∈ F [x]. Taking the derivative, we see f ′(x) = g(x)+(x−α)g′(x)
and plugging in α we see 0 = g(α). Thus g(x) = (x− α)h(x) for some h(x) ∈ F [x]. Then f(x) = (x− α)2h(x).

Proposition 2.33. Let f ∈ F [x]. Then f(x) has no multiple roots in F if and only if gcd(f, f ′) = 1.

Proof. Suppose gcd(f, f ′) = h 6= 1. Let α be a root of h in F. Then α is a root of f and f ′ which implies α is a multiple
root. Now suppose f has a multiple root α ∈ F . Let h = Irred(α, F ). Since f(α) = f ′(α) = 0, we see h|f and h|f ′. Thus
h| gcdF (f, f ′) which implies gcd(f, f ′) > 1.

Proposition 2.34. Let F be a field and f(x) an irreducible polynomial in F [x].

1. If char F = 0, then f has no multiple roots.

2. If char F = p > 0, then f(x) has a multiple root if and only if f(x) = g(xp) for some g(x) ∈ F [x].

Proof. 1. Let f = anxn + · · ·+ a1x + a0. Then f ′ = nanxn−1 + · · ·+ a1 6= 0. Since f is irreducible and deg f ′ < deg f,

we see gcd(f, f ′) = 1. Thus f has no multiple roots by the previous proposition.



2. By the same argument, f has multiple roots if and only if f ′ = 0. Of course, f ′ = 0 if and only if iai = 0 for all i

which occurs if and only if i = 0 mod p or ai = 0 mod p for all i as F is an integral domain. This is if and only
if f(x) = apmxpm + ap(m−1)x

p(m−1) + · · ·+ a0 = g(xp) for some g(x) ∈ F [x].

Theorem 2.35. Let E/F be an algebraic extension and let σ : F → L1 and τ : F → L2 be embeddings of F into
algebraically closed fields L1 and L2. Let Sσ = {π : E → L1|π|F = σ} and Sτ = {π : E → L2|π|F = τ}. Then |Sσ| = |Sτ |.

Proof. Consider the isomorphism τσ−1 : σ(F ) → F → τ(F ) ↪→ L2. Then there exists an extension λ : σ(F ) → L2 such
that λ|σ(F ) = τσ−1 where σ(F ) is the algebraic closure of σ(F ) in L1. In fact, if τ(F ) is the algebraic closure of τ(F )
in L2, then λ : σ(F ) → τ(F ) is an isomorphism. Let π ∈ Sσ. Since E/F is algebraic and π extends σ, we see π(E)
is algebraic over σ(F ). So π(E) ⊆ σ(F ). Then λπ : E → σ(F ) → L2 and λπ|F = λσ = τ. Thus λπ ∈ Sτ . Thus we
have a map λ̃ : Sσ → Sτ defined by π 7→ λπ. This is injective as λ is. Similarly, we can define λ̃−1 : Sτ → Sσ which
is again injective. Clearly λ̃λ̃−1(π) = λ̃λ−1(π) = λλ−1(π) = π and λ̃λ̃−1(π) = π. Thus λ is bijective which implies
|Sτ | = |Sσ|.

Definition 2.36. Let E/F be an algebraic extension. The separable degree of E/F, denoted [E : F ]S , is |Sσ| = |{π :
E → F |π|F = 1F }|.
Proposition 2.37. Let E = F (α) where α is algebraic over F. Then [E : F ]S = the number of distinct roots of Irred(α, F )
in F ≤ deg Irred(α, F ) = [E : F ].

Proof. Let f(x) = Irred(α, F ) ∈ F [x]. Let π : F (α) → F such that π fixes F. Clearly π is determined by π(α). Also π(α)
is a root of f(x) as π fixes F. So [F (α) : F ]S ≤ the number of distinct roots of f(x) in F. Let β be any root of f(x).
Then π : F (α) → F [x]/(f(x)) → F (β) ⊆ F is an embedding of f(α) into F taking α 7→ β. So [F (α) : F ]S ≥ the number
of distinct roots of f(x) in F .

Theorem 2.38. Let K ⊆ F ⊆ E be fields and E/K algebraic. Then [E : K]S = [E : F ]S [F : K]S . Moreover, if E/K is
finite, then [E : K]S ≤ [E : K].

Proof. Let E be a fixed algebraic closure of E. Let S = {π : F → E|π fixes K}. Then |S| = [F : K]S . Let Tπ = {τ :
E → E|τ |F = π} for all π ∈ S. By the Theorem, |Tπ| = [E : F ]S . If π1 6= π2 ∈ S, then Tπ1 ∩ Tπ2 = ∅. If τ ∈ Tπ, then
τ |K = 1K . Therefore ∪π∈STπ ⊆ {σ : E → E|σ fixes K}. On the other hand, if σ : E → E fixes K, then σ|F : F → E

fixes K which implies σ|F ∈ S. Say σ|F = π. Then σ ∈ Tπ. So ∪π∈STπ = {σ : E → E|σ fixes K}. Now

[E : K]S = |{σ : E → E|σ fixes K}| = | ∪π∈S Tπ| = ∪π∈S |Tπ| = |S||Tπ| = [F : K]S [E : F ]S .

Moreover, suppose [E : K] < ∞. Then E = K(α1, ..., αn) for some n. If n = 1, done by previous proposition. If n > 1,

let L = K(α1, ..., αn−1). By induction on n, [L : K]S ≤ [L : K]. Now E = L(α) implies [E : L]S ≤ [E : L] by proposition.
Thus, by the multiplicative property, [E : K]S ≤ [E : K].

Definition 2.39. A polynomial f(x) ∈ F [x] is called separable if f(x) has no multiple roots in an algebraic closure.
Let α be algebraic over F. Then α is separable over F if Irred(α, F ) is separable. Let E/F be an algebraic extension.
Then E/F is separable if and only if α ∈ E is separable over F for all α.

Remarks.

1. Suppose α is algebraic over F. Then α is separable over F if and only if [F (α) : F ]S = [F (α) : F ].

2. Let K ⊆ F ⊆ E be algebraic extensions. If E/K is separable, then E/F and F/K are separable.

Proof. Let α ∈ E. Know Irred(α, F )|Irred(α,K) in F [x]. If α is separable over K, then Irred(α,K) has no multiple
roots which implies Irred(α, F ) has no multiple roots. Thus α is separable over F.



Theorem 2.40. Suppose E/F is finite. Then E/F is separable if and only if [E : F ]S = [E : F ].

Proof. (⇐) Let α ∈ E. Consider F ⊆ F (α) ⊆ E. We know

[E : F (α)]S [F (α) : F ]S = [E : F ]S = [E : F ] = [E : F (α)][F (α) : F ].

Since [F (α) : F ]S ≤ [F (α) : F ], they are equal and thus α is separable by remark 1.

(⇒) Assume E = F (α1, ..., αn). Induct on n. If n = 1, done by remark. Let L = F (α1, ..., αn−1). Then L/F is separable
by remark 2 and by the induction hypothesis [L : F ]S = [L : F ]. Note E = L(αn). Since E/F is separable, so is
E/L. So [E : L]S = [E : L] by the n = 1 case. Thus

[E : F ]S = [E : F ]S [L : F ]S = [E : F ][L : F ] = [E : F ].

Corollary 2.41. Suppose E = F (α1, ..., αn). Then E/F is separable if and only if each αi is separable over F.

Proof. (⇒) Clear

(⇐) Induct on n. If n = 1, done by remark and theorem. Let L = F (α1, ..., αn−1). Then L/F is separable and thus
[L : F ]S = [L : F ]. Also E/L is separable by the n = 1 case which implies [E : L]S = [E : L]. Multiplying, we see
[E : F ]S = [E : F ] which implies E/F is separable.

Definition 2.42. Let E be an arbitrary algebraic extension of F. Then E is separable over F is every finitely generated
subextension is separable.

Corollary 2.43. Suppose E = F (S). Then E/F is separable if and only if α is separable over F for all α ∈ S.

Proof. (⇒) Clear

(⇐) Note that F (S) = {∑finite aisi|ai ∈ F, si ∈ S}. Thus, for all α ∈ E, there exists a finitely generated subfield
such that α ∈ F (s1, ..., sn). By the finite case, each of these finitely generated subfields are separable. Thus, by
definition, E is separable.

Proposition 2.44. Suppose K ⊆ F ⊆ E are fields. Then E/K is separable if and only if E/F and F/K are separable.

Proof. (⇒) Done (Remark 2 above)

(⇐) Let α ∈ E and f(x) = Irred(α, F ) = xn + cn−1x
n−1 + ... + c1x + c0. Since α is separable over F, f is a separable

polynomial. Let L = K(c0, ..., cn−1). Then f(x) ∈ L[x] and f(x) = Irred(α,L). So f is separable, which implies
α is separable over L. Thus [L(α) : L]S = [L(α) : L]. Since F/K is separable, each ci is separable over K. So
L = K(c0, ..., cn−1) is separable over K. Thus [L(α) : K]S = [L(α) : K]. Thus L(α)/K is separable, which implies
α is separable over K.

Proposition 2.45. Suppose E/F is separable and let L be the normal closure of E/F. Then L/F is separable.

Proof. Let S = {Irred(α, F )|α ∈ E} ⊆ F [x]. Then L is the splitting field for S over F. Let

R = {α ∈ F |α is a root of f(x) for some f ∈ S}.

Then L = F (R). Since S is a set of separable polynomial, for all r ∈ R we see Irred(r, F ) ∈ S which implies r is separable.
Thus L is separable.



Definition 2.46. A field F is called separably closed if whenever α ∈ F is separable over F we have α ∈ F. Equivalently,
every separable irreducible polynomial in F [x] is degree 1. A separable closure of a field F is a field E ⊇ F such that
E is separably closed and E/F is separable.

Proposition 2.47. Separable closures exist.

Proof. Let F be a field, F an algebraic closure of F, and E = {α ∈ F |α is separable over F}. This is a field as for
α, β ∈ E, F (α, β) is separable over F which implies α ± β, αβ, α

β ∈ F (α, β) which implies they are separable and thus
in E. Clearly E/F is separable, so we need only to show it is separably closed. Suppose α ∈ F = E is separable over
E. Then E(α)/E is separable and E/F is separable which implies E(α)/F is separable. Thus α is separable over F and
therefore α ∈ E.

Notation. F sep denotes a separable closure of F.

Definition 2.48. A field F is called perfect if every algebraic extension of F is separable. Equivalently, F/F is separable.

Proposition 2.49. Every field of characteristic 0 is perfect.

Proof. Let α be algebraic over F where char F = 0 and f(x) = Irred(α, F ). Then f has no multiple roots which implies
α is separable.

Suppose char F = p. Then (a + b)pn

= apn

+ bpn

. Thus there exists a field homomorphism φ : F → F defined by
a 7→ ap. This is called the Frobenius map. Then φ(F ) = F p = {ap|a ∈ F} is a subfield of F.

Proposition 2.50. Suppose char F = p. Then F is perfect if and only if F = F p.

Proof. (⇒) Let a ∈ F. Consider f(x) = xp− a ∈ F [x]. Let α be a root of f(x) in some splitting field of f(x) over F. Let
g(x) = Irred(α, F ). Then g(x)|f(x). Note αp = a implies xp − a = xp − αp = (x− α)p. Then g(x) = (x− α)m for
m < p in the splitting field. But α is separable over F as F is perfect. So m = 1. Then g(x) = x− α ∈ F [x] which
implies α ∈ F. So a = αp ∈ F p. So F = F p.

(⇐) Let α be an algebraic element over F. Let f(x) = Irred(α, F ). Suppose α is not separable, i.e., f has multiple roots.
This means f(x) = g(xp) for some g(x) ∈ F [x]. Say g(x) = xm +xm−1x

m−1 + ...+ c0. As F = F p, let ci = dp
i . Then

f(x) = g(xp) = (xm)p + dp
m−1(x

m−1)p + ... + dp
1x

p + dp
0 = (xm + dm−1x

m−1 + ... + d1x + d0)p.

This contradicts the fact that f is irreducible. So α is separable.

Corollary 2.51. Every finite field is perfect.

Proof. First note a finite field F has characteristic p < 0 where p is prime [Since φ : Z → F defined by n 7→ n · 1 is
not injective (as F is finite), say ker φ = (p) 6= 0. Then Z/(p) ↪→ F and since F is a domain, p is prime.] Consider the
Frobenius map φ : F → F defined by a 7→ ap. This is an injective homomorphism and since |F | < ∞ it is surjective as
well. Thus F = F p which implies F is perfect.

Examples.

• Let F be any field of characteristic p > 0. Let t be an indeterminant and E = F (t). Then xp − t ∈ E[x] is an
irreducible nonseparable polynomial. Thus E is not perfect.

Proof: Eisenstein: Let R be a UFD, K its fraction field and f(x) = anxn + ... + a0 ∈ R[x]. Suppose there ex-
ists a prime element p ∈ R such that p - an, p|ai for 0 ≤ i ≤ n−1, and p2 - a0. Then f(x) is irreducible over K[x].

Apply Eisenstein with R = F [t], a PID. Note t is a prime. Then f(x) = xp − t ∈ R[x] is irreducible in
E[x], a quotient field. Note f ′(x) = 0, so f(x) has multiple roots, which implies nonseparable.



• By the same proof, F (t)/F (tp) is not separable as xp − tp = Irred(t, F (tp)) has multiple roots.

Definition 2.52. Let E/F be a field extension. A primitive element for E/F is an element α ∈ E such that E = F (α).

Theorem 2.53 (Primitive Element Theorem). Let [E : F ] < ∞. Then there exists a primitive element for E/F

if and only if there are finitely many intermediate fields of E/F. Furthermore, if E/F is separable, then there exists a
primitive element.

Proof. (⇒) Suppose E = F (α). Let f(x) = Irred(α, F ). Let L be a splitting field of f(x) = (x− α1) · · · (x− αn). Define
a map

λ : {Intermediate fields of E/F} → {monic factors of f(x) in L},

such that K 7→ Irred(α, K). Clearly, there are only finitely many factors of f(x) in L.

Claim: λ is injective.

Proof: It is enough to show K is determined by Irred(α, K) = xn + cn−1x
n−1 + ... + c0 = g(x). Note [E :

K] = [K(α) : K] = n. Let L′ = F (c0, ..., cn−1) ⊆ K. Then g(x) ∈ L′[x] and is irreducible over L′. So
g(x) = Irred(α,L′). Since E = L′(α), [E : L′] = [L′(α) : L′] = n. So [K : L′] = 1, that is K = L′. Thus λ is
injective.

(⇐) Suppose |F | < ∞. Since [E : F ] < ∞ we have |E| < ∞. Note that E∗ is cyclic, so E∗ =< α > for some α ∈ E. Of
course, E is a field, so everything but 0 is a unit. Thus E = F (α). Now suppose |F | = ∞. Let E = F (α1, ..., αn).
We will induct on n. If n = 1, obvious. So let L = F (α1, ..., αn−1). By induction, L = F (γ) for some γ ∈ L.

Then E = F (α1, γ). So it is enough to prove the result for E = F (α, β)/F. Let Λ = {F (α + cβ)|c ∈ F}. This is
a subset of the set of all intermediate fields of E/F. Thus Λ is finite. Since |F | = ∞, there exists c1 6= c2 ∈ F

such that F (α + c1β) = F (α + c2β) =: L. Then α + c1β, α + c2β ∈ L. Subtracting, we get (c1 − c2)β ∈ L. But
0 6= c1 − c2 ∈ F ⊆ L. Thus β ∈ L which implies α ∈ L. So F (α + c1β) = F (α, β). Thus we have found a primitive
root.

Finally, let E/F be finite and separable. As above, the finite case has a primitive element equal to the cyclic generator
and we can reduce the infinite case to E = F (α, β)/F. Let [E : F ] = n = [E : F ]S . Let {σ1, ..., σn} be the distinct
embeddings of E → F which fix F. Let P (x) =

∏
i<j(σi(α)−σj(α))x+(σi(β)−σj(β)) ∈ F [x]. Note that P (x) 6= 0

as σi 6= σj and σi are determined by σi(α) and σi(β). So P (x) has finitely many roots in F. Since |F | = ∞, there
exists c ∈ F such that P (c) 6= 0. Thus, rearranging the terms of each factor of P (x) we see σi(cα+β) 6= σj(cα+β)
for all i < j. Now cα + β ∈ E and σi|F (cα+β) are distinct for i = 1, ..., n. Thus [F (cα + β) : F ]S ≥ n. Of course,
[F (cα + β) : F ]S ≤ [E : F ]S = n. So [F (cα + β) : F ] = n which implies E = F (cα + β).

Example. Let F be a field of characteristic p (e.g. F = Zp). Let t, u be algebraically independent elements over F

(that is, t and u are indeterminants with no relations like u = t2). Consider

F (t, u) = L(t)
|p since xp − tp is irreducible over L.

F (tp, u) = L = K(u)
|p since xp − up is irreducible over K.

F (tp, up) = K

Then [F (t, u) : F (tp, up)] = p2. We will show there does not exist a primitive element for this extension. Let g(t, u) ∈
F (t, u) and note that g(t, u)p ∈ F (tp, up). So [F (tp, up, g(t, u)) : F (tp, up)] ≤ p. So F (t, u) 6= F (tp, up, g(t, u)). Thus there
is no primitive element. Note that this also implies there are infinitely many intermediate fields between the two fields.



2.4 Finite Fields

Often, if char F = p, we say that Zp ⊆ F. We can do this by considering the embedding Zp → F defined by 1 7→ 1 and
identifying Zp with its image.

Proposition 2.54. Let F be a finite field of characteristic p. Then |F | = pn.

Proof. Note that F is a Zp vector space with dimension n, for some n. Then F ∼= Zn
p as vector spaces. This says

|F | = pn.

Proposition 2.55. Let p be a prime and n > 0 an integer. Then there exists a field F such that |F | = pn. In fact, any
field of order pn is a splitting field for xpn − x over Zp. Therefore, any two fields of order pn are isomorphic and any
algebraically closed field of characteristic p contains a unique field of order pn.

Proof. First we show existence. Let E be the splitting field for f(x) = xpn − x over Zp. Let F = {α ∈ E|αpn − α = 0}.
Since (α + β)pn

= αpn

+ βpn

= α + β and (αβ)pn

= αpn

βpn

= αβ for all α, β ∈ F, we see that F is a subfield of E. Now
|F | ≤ pn as xpn − x has at most pn roots. Of course, gcd(f, f ′) = 1 as f ′ = −1, so xpn − x has distinct roots, which
implies |F | = pn. Thus, we have found a field of order pn. To show uniqueness, let F be a field of order pn and note that
F ∗ is a group of order pn − 1. So for all α ∈ F \ {0}, αpn−1 = 1, which implies αpn

= α. Thus every element of F is a
root of xpn − x = 0. As |F | = pn, all the roots of xpn − x are in F. So F is a splitting field.

Proposition 2.56. Let F be a field of order pn. Then F is a splitting field for an irreducible polynomial f(x) ∈ Zp[x] of
degree n. Moreover, any irreducible polynomial of degree n in Zp[x] splits in F. Finally F ∼= Zp[x]/(f(x)) where f(x) is
irreducible and deg f = n.

Proof. Recall (HW Exercise) that F is normal over Zp. Let F = Zp(α). (We can do this by the Primitive Element
Theorem as every finite field is separable). Let f(x) = Irred(α,Zp). Since F/Zp is normal and f(x) has a root in F, f(x)
splits over F. Note that Zp[x]/(f(x)) is a field of order pn as f is irreducible of degree n. Let E be a splitting field for
g(x) contained in F where deg g = n. Then E = Zp(β) where β is a root of g(x) and |E| = pn. But, there exists a unique
field of order pn in F. Thus E = F.

2.5 Inseparability

Theorem 2.57. Let F be a field of characteristic p > 0 and α ∈ F .

1. α is separable over F if and only if F (α) = F (αp).

2. If α is inseparable over F, then [F (α) : F (αp)] = p and Irred(α, F (αp)) = xp − αp.

3. For all n ≥ 1, [F (αpn

) : F ]S = [F (α) : F ]S .

4. αpn

is separable over F for all n >> 0.

5. Let n be the smallest n >> 0 such that αpn

is separable over F. Then [F (α) : F ] = pn[F (α) : F ]S .

Proof. 1. (⇒) Suppose α is separable over F. Then α is separable over F (αp). Certainly, α is a root of xp − αp. So
Irred(α, F (αp))|xp − αp = (x− α)p. Since α is separable, there are no multiple roots. Thus Irred(α, F (αp)) =
x− α. So α ∈ F (αp). Thus F (α) = F (αp).

(⇐) Suppose F (α) = F (αp). Let f(x) = Irred(α, F ). Suppose f(x) has a multiple root. Then f(x) = g(xp) for
some g(x) ∈ F [x]. Then g(αp) = f(α) = 0 which implies Irred(αp, F )|g(x). Then [F (αp) : F ] ≤ deg g <

deg f = [F (α) : F ], a contradiction. Thus f has no multiple roots, which implies α is separable.



2. Suppose α is inseparable over F. Consider Irred(α, F (αp))|(x − α)p. This says Irred(α, F (αp)) = (x − α)m =
xm − mαxm−1 − · · · ∈ F (αp)[x] where 1 ≤ m ≤ p. If m < p, then m is a unit. But −mα ∈ F (αp)[x]. Thus
α ∈ F (αp). This says F (α) = F (αp), a contradiction to (1) as α is inseparable. Thus m = p which implies
[F (α) : F (αp)] = p.

3. Consider [F (α) : F (αp)]S . This is the number of distinct roots of Irred(α, F (αp)). By (1) and (2), [F (α) : F (αp)]S =
1. By induction (and the n = 1 case), [F (αpn

) : F ]S = [F (αpn−1
) : F ]S = [F (α) : F ]S .

4. Consider the descending chain of fields: F (α) ⊇ F (αp) ⊇ F (αp2
) ⊇ · · · ⊇ F. This can be viewed as a descending

chain of F−vector spaces, all of which are subspaces of the finite dimensional vector space F (α). Thus there exists
n such that F (αpn

) = F (αpn+1
) and by (1), αpn

is separable over F.

5. Let n be the least element such that αpn

is separable over F. Then

[F (α) : F ] = [F (α) : F (αpn

)][F (αpn

) : F ]
= pn[F (αpn

) : F ] by iterative applications of (2)
= pn[F (αpn

) : F ]S as αpn

is separable
= pn[F (α) : F ]S by (3).

Corollary 2.58. Suppose E/F is finite and char F = p. Then [E : F ] = pn[E : F ]S for some n.

Proof. Say E = F (α1, ..., αk). Induct on k. For k = 1, done by Theorem. Let L = F (α1, ..., αn−1). By induction,
[L : F ] = pn1 [L : F ]S and by k = 1 case [E : L] = pn2 [E : L]S . By the multiplicative property of separable degrees,
letting n = n1 + n2, done.

Definition 2.59. Let E/F be a finite extension. Define the inseparable degree of E/F to be

[E : F ]i =
[E : F ]
[E : F ]S

=





1 if characteristic 0,

pn if characteristic p.

Remark. If F ⊆ L ⊆ E where E/F is finite, [E : F ]i = [E : L]i[L : F ]i.

Definition 2.60. Let F be a field of characteristic p > 0 and α ∈ F. Then α is purely inseparably (p.i.) over F is
αpn ∈ F for some n >> 1. An algebraic extension E/F is p.i. if α ∈ E is p.i. over F for all α ∈ E.

Lemma 2.61. Let α ∈ F. Then TFAE

1. α is p.i. over F

2. [F (α) : F ]S = 1

3. [F (α) : F ]i = [F (α) : F ]

Proof. We know (2)⇔(3) by the definition of inseparable degree. So we have

α is p.i. over F ⇔ αpn ∈ F for n >> 0
⇔ [F (αpn

) : F ] = 1 for n >> 0
⇔ [F (αpn

) : F ]S = 1 by (4) of Thm
⇔ [F (α) : F ]S = 1 by (3) of Thm

Proposition 2.62. Let E = F (α1, ..., αn) be algebraic over F. TFAE



1. E/F is p.i.

2. Each αi is p.i. over F

3. [E : F ]S = 1

4. [E : F ]i = [E : F ]

Proof. (3)⇔(4): By definition of inseparable degree.

(1)⇒(2): Clear

(2)⇒(3): Use induction on n. If n = 1, done by Lemma. Let n > 1 and L = F (α1, ..., αn−1). Then E = L(αn). By
induction [L : F ]S = 1 and by the n = 1 case (since αn p.i. over F implies αn is p.i. over L) [E : L]S = 1. By
multiplicative property, done.

(3)⇒(1): Let β ∈ E. By the Lemma, it is enough to show [F (β) : F ]S = 1. But [F (β) : F ]S ≤ [E : F ]S = 1. Thus
[F (β) : F ]S = 1 and β is p.i.

Example. Let F be a field of characteristic p and t an indeterminate over F. Then F (t)/F (tp) is p.i. Note that
F (t)/F (tp) is inseparable, but not p.i.

2.6 Cyclotomic Field Extensions

Let Un = {z ∈ C|zn = 1}. Note that Un =< e2πi/n >=< e2πik/n > for all k such that gcd(k, n) = 1. Any cyclic generator
of Un is called a primitive nth root of unity. There are φ(n) primitive nth roots of unity.

Definition 2.63. The nth cyclotomic polynomial is

Φn(x) =
∏

1≤i≤n, gcd(i,n)=1

(x− ωi)

where ω is any primitive root of unity.

Examples.

• Φ1(x) = x− 1

• Φ2(x) = x + 1

• Φ4(x) = (x− i)(x + i) = x2 + 1

Facts.

1. xn − 1 =
n−1∏

i=0

(x− ωi)

2. xn − 1 =
∏

d|n, d>0

Φd(x) since xn − 1 =
∏

d|n

( ∏

ω has order d

(x− ωi)

)
.

3. deg Φn(x) = φ(n).

Lemma 2.64. Φn(x) ∈ Z[x].

Proof. Induct on n. The n = 1 case is trivial. Let n > 1 and assume Φd(x) ∈ Z[x] for all d < n. By Fact 2, xn − 1 =∏
d|n, d>0 Φd(x) = f(x)Φn(x) where f(x) ∈ Z[x] by induction. Note that f(x) is monic, so by the Division Algorithm,

xn − 1 = f(x)q(x) + r(x) where q(x), r(x) ∈ Z[x]. Thus it is also true in C[x], where we know xn − 1 = f(x)Φn(x). By
the uniqueness of quotients and remainders, r(x) = 0 and Φn(x) = q(x) ∈ Z[x].



Theorem 2.65. Φn(x) is irreducible over Q.

Proof. Suppose not. Then by Gauss’s Lemma, since Φn(x) ∈ Z[x], there exists f, g ∈ Z[x] such that Φn(x) = fg where
f, g are monic and f is irreducible over Q (if not, take an irreducible factor of f and group the other factors into g).
Let ω be a root of f (and therefore of Φn(x)) and p any prime such that p - n. Since gcd(p, n) = 1 we see ωp is also a
primitive nth root of unity and thus is a root of Φn.

Claim: ωp is a root of f.

Proof: If not, then g(ωp) = 0 which says ω is a root of g(xp). Since f is monic and irreducible, f = Irred(ω,Q).
Thus f |g(xp) in Q[x] (and thus in Z[x] as it is monic). So g(xp) = fh for some h ∈ Z[x]. In Zp[x] we see
(g(x))p = g(xp) = fh. Let β be any root of f(x) in Zp. Then G(β) = 0 as we are in an ID. Then Φn(x) has multiple
roots, which says xn − 1 = xn − 1 has multiple roots in Zp[x]. But gcd(xn − 1, nxn−1) = 1, a contradiction. Thus
ωp is a root of f.

Thus every primitive nth root of unity is a root of f which is enough to say f = Φn and since f is irreducible, Φn(x) is
irreducible.

Corollary 2.66. If ω ∈ C is a primitive nth root of unity, then [Q(ω) : Q] = φ(n) and Irred(ω,Q) = Φn.

Note. The above extension is normal as it is the splitting field for Φn(x).

Example. Let ω be a primitive 9th root of unity. Then [Q(ω) : Q] = φ(9) = 6. To find the minimal polynomial, note
that x9 − 1 = Φ1Φ3Φ9 = (x3 − 1)Φ9. Thus Irred(ω,Q) = Φ9(x) = x6 + x3 + 1.

Definition 2.67. An extension Q(ω)/Q where ω is a root of unity is called a cyclotomic extension.

2.7 Inseparable Closure

Definition 2.68. Say the inseparable closure of E/F is F insep = {α ∈ E|αpn ∈ F for n >> 0}. Note that F insep/F

is p.i. and F insep is a field by the Frobenius property.

Proposition 2.69. Let E/F be normal and inseparable. Then there exists α ∈ E \ F such that α is p.i. over F.

Proof. By assumption, there exists β ∈ E which is inseparable over F. Let f(x) = Irred(β, F ). Then, as E/F is normal,
f(x) splits in E. Let E′ ⊆ E be the splitting field of f over F. Then [E′ : F ] < ∞, E′/F is normal, and E′/F is inseparable
as β ∈ E′ is inseparable. So it is enough to show there exists a p.i. element in E′. So, since inseparable, we may suppose
the characteristic of F is p > 0. Then f(x) = g(xp) for some g(x) ∈ F [x]. Since f is irreducible, g is. If g is inseparable,
then g(x) = h(xp). So g(x) = h(xp2

). Continue until f(x) = g(xpn

) where g(x) is irreducible and separable (we must stop
as deg f < ∞). Say deg g = r and let α1, ..., αr ∈ F be the roots of g. Then g(x) = (x− α1) · · · (x− αr) (note that it is
monic as f is). So f(x) = (xpn−α1) · · · (xpn−αr). Let βi be a root of xpn−αi. Then f(x) = ((x−β1) · · · (x−βr))pn

. Thus
f(x) = `(x)pn

where `(x) ∈ E′[x]. Say `(x) = xr +dr−1x
r−1 + . . .+d0 ∈ E′[x] and g(x) = xr +cr−1x

r−1 + . . .+c0 ∈ F [x].
Then `(x)pn

= xpnr + dpn

r−1x
pn(r−1) + . . . dpn

0 = f(x) = g(xpn

). Thus dpn

i = ci. Note that if `(x) ∈ F [x], then f would be
reducible. So there exists some i such that di ∈ E′ \ F. Then di is p.i. over F.

Theorem 2.70. Let E/F be normal with K = F sep and L = F insep. Then

1. K, L are fields

2. E/K is p.i. and E/L is separable

3. E = KL.

Proof. 1. Easy



2. E/K p.i. is a HW exercise. So we will only show E/L is separable. Know E/L is normal as E/F is. If it were
inseparable, then the previous proposition says there exists α ∈ E \L which is p.i. over L, that is αpn ∈ L for some
n >> 0. But L/F is p.i. so there exists r >> 0 such that (αpn

)pr ∈ F which says α is p.i. over F, that is, α ∈ L, a
contradiction. Thus E/L is separable.

3. Certainly KL ⊆ E. We see that E/KL is p.i. as E/K was and E/KL is separable as E/L was. Thus E/KL is
both p.i. and separable which says [E : KL] = 1. Thus E = KL.

Example. Let F = Z2(s, t) where s, t are indeterminants. Let f(x) = x4 + sx2 + t and β be a root of f in F . Then
F (β)/F is inseparable,but there are no p.i. elements in F (β) \ F.

Proof. First, we need to show f is irreducible. Let D = Z2[s, t]. Then f(x) ∈ D[x] and, by Gauss’ Lemma, if f is
reducible over F [x], then f = gh for some g, h ∈ D[x].

Case 1: deg g = 1. Then g = x− u for u ∈ D. Then f(u) = 0, which implies u4 + su2 + t = 0. If u is not constant, say
p is an irreducible factor of u, then p2|t by the 2 out of 3 lemma, a contradiction. So u is constant, that is, u = 0
or 1. But f(0), f(1) 6= 0. So deg g 6= 1.

Case 2: deg g = 2. Then

f(x) = (x2 + ux + v)(x2 + ax + b)
= x4 + (u + a)x3 + (ua + v + b)x2 + (ub + va)x + bv.

So we have
(1) u + a = 0
(2) ua + v + b = s

(3) ub + va = 0
(4) bv = t

From (4) we can say WLOG b = t and v = 1. From (2) we can say u = a. Plugging these into (3) we get ut = u,

which implies u = 0 = a. Plugging this into (2) gives s = t + 1, a contradiction as they are indeterminants.

Thus f is irreducible. This tells us that [F (β) : F ] = 4. We also know that β is inseparable as f ′ = 0. So [F (β) : F ]S =
1 or 2. On the other hand, g(x) = Irred(β2, F ) = x2 + sx + t (which is irreducible as g(x2) = f(x), which is irreducible)
and g(x) is separable (as f ′ 6= 0.) So F (β2) is separable. [Note that by HW4 #1, this says F (β2) = F sep.] This gives
[F (β) : F ]i = 2 = [F (β) : F ]S .

Claim: x2 − t has no roots in F (β).

Proof: Suppose γ ∈ F (β) satisfies γ2 = t. Then γ = c0 + c1β + c2β
2 + c3β

3, ci ∈ F which implies t = γ2 =
c2
0 + c2

1β
2 + c2

2β
4 + c2

3β
6. For simplicity, define di = c2

i ∈ F 2 = Z2(s2, t2). Then t = d0 + d1β
2 + d2β

4 + d3β
6. Of

course, since f(β) = 0, we know

β4 = sβ2 + t

β6 = β2(sβ2 + t) = sβ4 + tβ2 = s2β2 + st + tβ2.

So
t = d0 + d1β

2 + d2(sβ2 + t) + d3(s2β2 + st + tβ2)
= (d0 + d2t + d3st) + (d1 + d2s + d3s

2 + d3t)β2.

Since t ∈ F and the β’s form a basis for F (β), we get

(1) t = d0 + d2t + d3st

(2) 0 = d1 + d2s + d3s
2 + d3t.



Then (1) implies (1 + d2 + d3s)t = d0. So d0 = 0, and d2 = 1 + d3s. Plugging this into (2), we see

0 = d1 + (1 + d3s)s + d3s
2 + d3t = d1 + s + d3t

as we are in Z2. But this says s = d1 + d3t ∈ Z2(t, s2), a contradiction.

Suppose δ ∈ F (β) \ F is p.i over F. Then 2 ≤ [F (δ) : F ] = [F (δ) : F ]i ≤ [F (β) : F ]i = 2. So we see δ2 ∈ F. So
[F (β) : F (δ)] = 2. Consider x2 + sx+ t = (x−α1)(x−α2) in F [x]. Suppose β2 = α1 and let ρ be a root of x2−α2. Then
f(x) = (x−β)2(x−ρ)2. Since β is separable over F (δ), we see h(x) = Irred(β, F (δ)) = (x−β)(x−ρ) = x2+(β+ρ)x+βρ.

Thus we see βρ ∈ F (δ) ⊂ F (β). Also g(x)2 = f(x), which implies (βρ)2 = t, a contradiction to the above claim.

2.8 Galois Groups

Definition 2.71. Let E/F be a field extension. Then Aut(E/F ) = {φ ∈ Aut(E) : φ fixes F}.
Remark. Let E/F be a finite extension.

1. |Aut(E/F )| ≤ [E : F ]S with equality if and only if E/F is normal.

2. |Aut(E/F )| = [E : F ] if and only if the extension is normal and separable.

Proof. 1. By definition of the separable degree and normal.

2. We know |Aut(E/F )| ≤ [E : F ]S ≤ [E : F ]. Then we get equality if and only if the extension is normal and
separable by definition of normal and separable.

Definition 2.72. Say E/F is Galois if E/F is normal and separable. In this case, we say Aut(E/F ) is the Galois

Group and denote it Gal(E/F ).

Example. Let E be the splitting field of x3 − 2 over Q. Find Gal(E/Q).
First note that this is a Galois extension as we are in characteristic 0 (thus every extension is separable) and E is

a splitting field (thus normal). Further, since [Q( 3
√

2) : Q] = 3 and [Q(ω) : Q] = 2, which are relatively prime, we see
[E : Q] = 6. So |Aut(E/Q)| = 6. Further, we know that any automorphism of E sends roots of x3 − 2 to other roots and

similarly for x2 + x + 1. So let σ : E → E be defined by

{
3
√

2 7→ ω 3
√

2
ω 7→ ω

}
and τ : E → E be defined by

{
3
√

2 7→ 3
√

2
ω 7→ ω2

}
.

Then σ3 = 1E , τ2 = 1E and στ 6= τσ. Thus (since there is only nonabelian group of order 6),

Gal(E/F ) =< σ, τ |σ3 = τ2 = 1, τστ = σ2 > .

Example. Let E be the splitting field of x6 + 3 over Q. Recall (a test problem) that the splitting field is E = Q(ω 6
√

3)
where ω = eπi/6 and [E : Q] = 6. Define σi : E → E by ω 6

√
3 7→ ω2i+1 6

√
3. Then G = Gal(E/Q) = {σ1, ..., σ6}. We

just need to decide whether G is C6 or S3. First note that ω2 = 1
2 + 1

2 (ω 6
√

3)3 and thus σ1(ω2) = 1
2 + 1

2 (σ1(ω
6
√

3))3 =
1
2 − i

2

√
3 = ω10. Thus we see σ2

1(ω 6
√

3) = σ1(ω3 6
√

3) = σ1(ω2)σ1(ω
6
√

3) = ω10ω3 6
√

3 = ω 6
√

3. Thus σ2
1 = 1. Similarly, we

can show σ3
2 = 1 and σ1σ2 6= σ2σ1. Thus G = S3.

Proposition 2.73. Let ω ∈ C be a primitive nth root of unity. Then Gal(Q(ω)/Q) ∼= Z∗n.

Proof. By previous study, we know [Q(ω) : Q] = φ(n). Thus Gal(Q(ω)/Q) = {φi : Q(ω) → Q(ω)|φi(ω) = ωi, where gcd(i, n) =
1, 1 ≤ i < n}. Define ρ : Gal(Q(ω)/Q) → Z∗n by φi 7→ [i]n. Clearly, ρ is an isomorphism.

Remarks. Let E/F be Galois and L an intermediate field.

1. Then E/L is Galois and Gal(E/L) < Gal(E/F ).



Proof. If E/F is separable and normal, then so is E/L. Also, any automorphism of E which fixes L also fixes F.

2. Let H ≤ Gal(E/F ). Then EH = {u ∈ E|σ(u) = u for all σ ∈ H} is an intermediate field of E/F. Call it the fixed

field of H.

Theorem 2.74. Let E/F be Galois and G = Gal(E/F ). Then EG = F.

Proof. Clearly, F ⊆ EG. Let α ∈ EG and σ : F (α) → F be an embedding which fixes F. Then we can extend σ to
τ : E → F. Since E/F is normal, τ is an automorphism, which implies τ ∈ G. Then α ∈ EG implies τ(α) = α and thus
σ(α) = α. So σ = 1F (α). Then 1 = [F (α) : F ]S = [F (α) : F ], since separable. Thus α ∈ F and EG = F.

Lemma 2.75. Let E/F be a separable extension such that [F (α) : F ] ≤ n for all α ∈ E. Then [E : F ] ≤ n.

Proof. Choose α ∈ E such that [F (α) : F ] = m is as large as possible (can do this as it is bounded above by n.) If
E 6= F (α), let β ∈ E \ F (α). Then, by the Primitive Element Theorem, there exists γ ∈ E such that F (γ) = F (α, β).
Then [F (γ) : F ] > [F (α) : F ] = m, a contradiction. So E = F (α) which says [E : F ] = [F (α) : F ] ≤ n.

Theorem 2.76 (Artin’s Theorem). Let E be a field and G a finite subgroup of Aut(E). Let F = EG. Then

1. E/F is finite, Galois, and [E : F ] = |G|

2. G = Gal(E/F ).

Proof. Let α ∈ E and {σ1(α), ..., σr(α)} ⊆ {φ(α)|φ ∈ G} be maximal with respect to the property σ1(α), ..., σr(α) are
distinct. Let τ ∈ G. Since τ is injective, τσ1(α), ..., τσr(α) are also distinct. Thus τσ1(α), ..., τσr(α) is a permutation of
σ1(α), ..., σr(α). Let fα(x) =

∏r
i=1(x− σi(α)). Then for τ ∈ G, fτ

α(x) = fα(x). So fα(x) ∈ F [x]. Thus Irred(α, F )|fα(x)
and fα(x) has distinct roots. Thus α is separable over F. Since α was arbitrary, E/F is separable. Also for all α ∈ E,

fα(x) splits in E so Irred(α, F ) splits in E which says E/F is normal. Thus E/F is Galois. Now [F (α) : F ] ≤
deg fα(x) = r ≤ |G|. Since E/F is separable, the lemma tells us [E : F ] ≤ |G|. Now G ≤ Gal(E/F ) thus we have
|G| ≤ |Gal(E/F )| = [E : F ] ≤ |G|. So |G| = |Gal(E/F )| = [E : F ] which implies G = Gal(E/F ).

Theorem 2.77 (Fundamental Thm of Galois Theory). Let E/F be a finite Galois Extension. Then there is a
bijective correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F ) defined by L 7→ Gal(E/L)
and H 7→ EH for an intermediate field L and a subgroup H.

Proof. By the previous lemma, EGal(E/L) = L. By Artin’s Theorem, for H < Gal(E/F ), E/EH is Galois and Gal(E/EH) =
H.

Note. The correspondence is inclusion reversing. That is, for intermediate fields

L1 ⊆ L2 we see Gal(E/L1) ⊇ Gal(E/L2)

and for subgroups
H1 ⊇ H2 we see EH1 ⊆ EH2 .

Recall that Artin’s Theorem says |Gal(E/L)| = [E : L] and for H < G = Gal(E/F ), |H| = [E : EH ], which implies
[G : H] = [EH : F ]. Thus we can construct the following diagram:

E < > {1} < > E

L

[E:L]

< > H = Gal(E/L)

|H|

< > EH

F

[L:F ]

< > G = Gal(E/F )

[G:H]

< > EG



Example. Let E = Q(
√

2,
√

3). Find primitive elements for all intermediate fields of E/Q.

1. Compute G = Gal(E/Q). We know [E : Q] = 4 and there are 4 obvious automorphisms:
√

2 7→ ±√2 and√
3 7→ ±√3. So that must be all of them. It is easy to check that G =< σ, τ |σ2 = τ2 = 1, στ = τσ >= C2 × C2

where σ : E → E sends
√

2 7→ −√2 and τ : E → E sends
√

3 7→ −√3.

2. Create a subgroup lattice:
{1}

2
2

KKKKKKKKKK

< σ >

2

LLLLLLLLLLL

2
ssssssssss
< στ >

2

< τ >

G

2
rrrrrrrrrrr

This tells us our Intermediate fields are E<σ>, E<στ>, E<τ>, all of which have degree 2 over Q. Now,
√

3 is fixed
by σ,

√
2 by τ, and

√
6 by στ. So

E<σ> = Q(
√

3), E<στ> = Q(
√

6), E<τ> = Q(
√

2)

and of course E = Q(
√

2 +
√

3) (this element is not fixed by any of the above automorphisms.)

Example. Let E = Q(ω 6
√

3), ω = e2πi/12. Then E is the splitting for x6 + 3. Recall from before that Gal(E/Q) = S3

and was generated by σ : E → E defined by ω 6
√

3 7→ ω3 6
√

3 and τ : E → E defined by ω 6
√

3 7→ ω5 6
√

3. Now, we can again
make our subgroup lattice:

{1}
2

2

LLLLLLLLLL
3

UUUUUUUUUUUUUUUUUUUUU

< σ >

KKKKKKKKKKK

2
tttttttttt
< στ > < στ2 > < τ >

G

rrrrrrrrrrr

iiiiiiiiiiiiiiiiiiiiii

• We see τ fixes ω2 = eπi/3, an element of degree 2 over Q (the irreducible polynomial is x2+x+1.) So E<τ> = Q(ω2).

• Since σ2 = 1, we see ω 6
√

3σ(ω 6
√

3) = ω 6
√

3ω3 6
√

3 = ω4 3
√

3 is fixed by σ and not in Q. Thus E<σ> = Q(ω4 3
√

3).

• We expect the other roots of x3 − 3 to be fixed by our other two intermediate fields.

• Since (στ)2 = 1, we see ω 6
√

3στ(ω 6
√

3) = 3
√

3 is fixed by στ. So E<στ> = Q( 3
√

3).

• Similarly, we see E<στ2> = Q(ω8 3
√

3).

Definition 2.78. Let F be a field and α ∈ F . Let σ1, ..., σs be the distinct embeddings of F (α) → F fixing F. Then
σ1(α), ..., σs(α) are called the F−conjugates of α, that is, the F−conjugates of α are the distinct roots of Irred(α, F ).

Remark. Suppose α is separable over F and Irred(α, F ) =
∏s

i=1(x−σi(α)) = xn+cn−1x
n−1+...+c0. Then

∏
σi(α) = c0

and
∑

σi(α)) = cn−1. Thus they are in F.

Proposition 2.79. Let E/F be a finite Galois extension. Say E = F (α). Then

1. Irred(α, EH) =
∏

h∈H(x− h(α)) = xn − c1x
n−1 + ... + cn.

2. EH = F (c1, ..., cn).



Proof. 1. Let f(x) =
∏

(x − h(α)). If h′ ∈ H, then fh′(x) =
∏

(x − h′h(α)) = f(x) as h′ ∈ H. Thus f(x) ∈ EH [x].
Note that deg f = |H| and deg Irred(α, EH) = [EH(α) : EH ] = [E : H] = |H| = deg f. Since f(α) = 0 (1 ∈ H) and
f is monic, f = Irred(α,EH).

2. Let L = F (c1, ..., cn) ⊆ EH (as the ci’s are fixed by H). Then f(x) ∈ L[x], f is irreducible, and f(α) = 0. Thus
f = Irred(α, L). So [E : L] = [E : EH ] which implies L = EH .

Example. Let ω be a primitive 11th root of unity and E = Q(ω). We’ve proved Gal(E/Q) ∼= Z∗11 = C10. Say
Gal(E/Q) =< σ > where σ : E → E is such that ω 7→ ω2.

{1} E
5� �2 � �

< σ2 > < σ5 > ↔ Q(ω + ω3 + ω4 + ω5 + ω9) Q(ω + ω10)

2� �5 � �
G Q

• ω + σ5(ω) = ω + ω10 6∈ Q as otherwise ω would be a root of both x10 + x− q for some q ∈ Q and x10 + x9 + ... + 1,

a contradiction as the minimal polynomial is unique.

• ω + σ2(ω) + σ4(ω) + σ6(ω) + σ8(ω) = ω + ω4 + ω5 + ω9 + ω3 6∈ Q as then [Q(ω) : Q] ≤ 9, a contradiction.

Theorem 2.80. Let E/F be a finite Galois extension and G = Gal(E/F ). Let L be an intermediate field and H =
Gal(E/L). Then

1. L/F is normal if and only if H is normal

2. If H C G, then Gal(L/F ) ∼= G/H.

Proof. ⇒: Define φ : G → Gal(L/F ) by σ 7→ σ|L. This is well-defined as L/F is normal. Furthermore, φ is surjective
as for π ∈ Gal(L/F ), we can extend π to an element σ ∈ G. Thus σ|L = π and thus Gal(L/F ) ∼= G/ kerφ. Now
σ ∈ kerφ if and only if σ|L = 1 if and only if σ fixes L if and only if σ ∈ H. Thus H C G and Gal(L/F ) ∼= G/H.

⇐: Suppose σ : L → F fixes F. Need to show σ(L) ⊆ L. Let α ∈ L. Extend σ to τ : E → F . Then τ ∈ G as E/F is
normal. It is enough to show τ(α) ∈ L = EH . Let h ∈ H. As H C G, τ−1hτ ∈ H. Therefore τ−1hτ(α) = α, which
implies hτ(α) = τ(α). Thus h fixes τ(α). Since h is arbitrary, τ(α) ∈ EH = L. Thus σ is an automorphism of L

and L/F is normal.

Definition 2.81. Let E/F be a Galois extension. Say E/F is abelian/cyclic/solvable if Gal(E/F ) is abelian/cyclic/solvable.

Example. Cyclotomic Extensions are abelian.

Example. Let E be the splitting field of x6 + 5 over Q. Recall [E : Q] = 12 and E = Q(ω2, ω 6
√

5) for ω = e2πi/12.

E
2� �6

Q(ω 6
√

5) Q(ω2)

6� �2

Q

As Irred(ω 6
√

5,Q(ω2)) = x6+5, we can define σ : E → E such that

{
ω 6
√

5 7→ ω3 6
√

5
ω2 7→ ω2

}
. Similarly, we can define τ : E → E

by

{
ω 6
√

5 7→ ω 6
√

5
ω2 7→ ω10

}
. Note that σi : ω 6

√
5 7→ ω2i+1 6

√
5 as σ fixes ω2. So |σ| = 6 and clearly |τ | = 2. Since τ 6∈< σ >,



G =< σ, τ > . Note στ(ω 6
√

5) = ω3 6
√

5 but τσ(ω 6
√

5) = τ(ω3 6
√

5) = τ(ω2)τ(ω 6
√

5) = ω10ω 6
√

5 = ω11 6
√

5. Thus τσ 6= στ.

Note τστ ∈< σ > and by order arguments, τστ = σ−1 = σ5. So G = D12. Now we want to find the subgroups of D12.

• 7 subgroups of order 2: < σ3 >,< τ >, < τσ >,< τσ2 >,< τσ3 >,< τσ4 >,< τσ5 >(All the subgroups generated
by the elements of order 2.)

• 1 subgroup of order 3: < σ2 > (since either the Sylow 3 or Sylow 4 subgroup is normal by Sylows Theorems but
the Sylow 4 subgroup can not be normal as then we’d only have 3 order 2 elements, not 7)

• 3 subgroups of order 4: P1 =< σ3, τ >, P2 =< σ3, τσ >, P3 =< σ3, τσ2 > (by Sylow’s Theorems)

• 2 subgroups order 6: < σ >,< σ2, τ > .

{1}

LLLLLLLLLLL

VVVVVVVVVVVVVVVVVVVVVV

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

< τ >

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS < τσ >

hhhhhhhhhhhhhhhhhhhhhhh

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS < τσ2 >

rrrrrrrrrrr

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS < τσ3 > < τσ4 > < τσ5 > < σ3 >

< σ2 >

P1

llllllllllllllllllllllllllllllllllllll
P2

rrrrrrrrrrrrrrrrrrrrrrrrrr
P3

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

< σ2, τ >

111111111111111111111111

VVVVVVVVVVVVVVVVVVVVVV < σ >

;;;;;;;;;;;;;;;;;;

MMMMMMMMMMMM

G

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

To translate this into field extensions, note:

• Degree 6 extensions: Roots of x6 + 5 correspond to E<τσi> and E<σ3> = Q(ω2, 6
√

5).

• Degree 4 extension: We’ve seen this is Q(i
√

3, i
√

5) = Q(ω2, (ω 6
√

5)3).

• Degree 2 extensions: We know one is E<σ> = Q(ω2). We expect the other to be E<σ2,τ> = Q((ω 6
√

5)3). In fact it
is as σ2((ω 6

√
5)3) = (σ5 6

√
5)3 = ω3

√
5 = ( 6

√
5)3 and τ((ω 6

√
5)3) = (ω 6

√
5)3.

• Degree 3 extensions: Roots of x3 + 5.

E

MMMMMMMMMMM
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YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Q(ω 6
√

5)

ddddddddddddddddddddddddddddddddddddddddddd

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT Q(ω3 6
√

5)

gggggggggggggggggggggggggg

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS Q(ω5 6
√

5)

qqqqqqqqqqq
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Q(ω7 6

√
5) Q(ω9 6

√
5) Q(ω11 6

√
5) Q(ω2 3

√
5)

Q(ω2, (ω 6
√

5)3)

Q( 3
√

5)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Q(ω4 3

√
5)

rrrrrrrrrrrrrrrrrrrrrrrrrrr
Q(ω8 3

√
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√

5)3)
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Theorem 2.82. Let F be a finite field and E/F a finite extension. Then E/F is cyclic.

Proof. Say char F = p. Then Zp ⊆ F. Since Gal(E/F ) ⊆ Gal(E/Zp), it is enough to show Gal(E/Zp) is cyclic. Say
[E : Zp] = n. Then |E| = pn. Let σ : E → E be the Frobenious map. The σ ∈ Gal(E/Zp).

Claim: Gal(E/Zp) =< σ > .

Proof: We want to show |σ| = n. Suppose σi = 1 for some 1 ≤ i ≤ n. Then a = σi(a) = api

for all a ∈ E. Then
xpi − x has |E| = pn roots, contradiction as pn > pi. Thus |σ| = n.

Corollary 2.83. Let E be a field with pn elements. Then E contains a subfield with pm elements if and only if m|n.

Equivalently, xpm − x splits in E if and only if m|n.

Proof. Let G = Gal(E/Zp). Then n = |G| = [E : Zp]. So E contains a subfield F with order pm if and only if there
exists F ⊆ E with [F : Zp] = m if and only if there exists F ⊆ E with [E : F ] = n

m if and only if there exists a subgroup
H ⊆ G such that |H| = n

m if and only m|n as G is cyclic.

Remark. Let E be the splitting field of a degree n separable irreducible polynomial f ∈ F [x]. Then E/F is Galois and
Gal(E/F ) ∼= a subgroup of Sn.

Proof. Let E = F (α1, ..., αn) where α1, ..., αn are the roots of f(x). Define φ : Gal(E/F ) → Perm(Γ) such that σ 7→ σΓ

where Γ = {α1, ..., αn}. Then φ is injective as σ is determined by σ(α1), ..., σ(αn).

Example. Consider x3 − 2 ∈ Q(ω)[x] where ω = e2πi/3. This is irreducible as [Q 3
√

2 : Q] = 3 and [Q(ω) : Q] = 2 and
gcd(2, 3) = 1. Then |Gal(E/Q(ω))| = 3.

Let x1, ..., xn be independent indeterminants over a field F. Let E = F (x1, ..., xn). Let σ ∈ Sn. Then there exists an
automorphism of E induced by σ, say σ̃ : E → E defined by f(x1,...,xn)

g(x1,...,xn) 7→ f(σ(x1),...,σ(xn))
g(σ(x1),...,σ(xn)) .

Example. Let n = 3 and σ = (123). Then

σ̃

(
x2

1 + 3x1x3 + x2
2

x1x2 − 2x5
1

)
=

x2
2 + 3x2x1 + x3

3

x2x3 − 2x5
2

.

For simplification, we will identify σ̃ with σ.

Let L = ESn . By Artin’s Theorem, E/L is Galois and Gal(E/L) ∼= Sn. We call L the field of symmetric rational

functions. Now, any finite group is a subgroup of a group of permutations. So H ≤ Sn will correspond to an intermediate
field of E/L.

Example. Let n = 3, F ⊆ L. Let t be an indeterminant over E and consider f(t) =
∏n

1 (t− xi) ∈ E[t]. For all σ ∈ Sn,

we see fσ(t) = f(t). Thus f(t) ∈ L[t]. Then, if f = tn − s1t
n−1 + s2t

n−2 − ... + (−1)sn, we see si ∈ L for all i. Call {si}
the elementary symmetric functions in x1, ..., xn.

Theorem 2.84. With the above notation, L = ESn = F (s1, ..., sn).

Proof. Note f(t) ∈ F (s1, ..., sn)[t]. Then E = F (s1, ..., sn)(x1, ..., xn) is the splitting field of f(t) over F (s1, .., sn). But
deg f = n, so [E : F (s1, ..., sn)] ≤ n!. But [E : F (s1, ..., sn)] ≥ [E : L] = n!. Thus E = L.

Inverse Galois Problem: Is every finite group the Galois group of a Galois extension of Q?

Fact. For all n ∈ Z such that n > 0, there exist infinitely many primes p such that p ≡ 1 mod n.

Theorem 2.85. Let G be a finite abelian group. Then there exists a primitive mth root of unity ω and a field E ⊆ Q(ω)
such that Gal(E/Q) ∼= G.



Proof. Let G ∼= Cn1 ×Cn2 × · · · ×Cnk
. Let p1, ..., pk be distinct primes such that pi ≡ 1 mod ni. (Note we use the claim

here in the case of ni = nj .) Let m = p1 · · · pk. Let ω be a primitive mth root of unity. Then Gal(Q(ω)/Q) ∼= Z∗m =
Z∗p1

× · · · × Z∗pk
∼= Cp1−1 × · · · × Cpk−1. Since ni|pi − 1, let Hi ≤ Cpi−1 such that |Hi| = pi−1

ni
. Then H1 × · · · × Hk is

a normal subgroup of Gal(Q(ω)/Q). Let E be the fixed field for H1 × · · · ×Hk. Then E/Q is normal and Gal(E/Q) ∼=
Z∗p1

× · · · × Z∗pk
/H1 × · · · ×Hk

∼= Cn1 × · · · × Cnk
∼= G.

2.9 Norm and Trace

Definition 2.86. Let E/F be a finite extension. Let σ1, ..., σr be the distinct embeddings of E → F which fix F. For
α ∈ E, define NE

F (α) = (σ1(α) · · ·σr(α))[E:F ]i as the norm of α and TrE
F (α) = (σ1(α) + · · · + σr(α))[E : F ]i as the

trace of α.

Examples.

1. If E = Q(
√

2). Then 1 : E → E and σ : E → E defined by
√

2 7→ −√2 are the only 2 embeddings. So
N(a + b

√
2) = (a + b

√
2)(a− b

√
2) = a2 − 2b2 and Tr(a + b

√
2) = (a + b

√
2) + (a− b

√
2) = 2a.

2. Let E = Q( 3
√

2). Then there are three embeddings: 1 : 3
√

2 7→ 3
√

2, σ : 3
√

2 7→ ω 3
√

2, τ : 3
√

2 7→ ω2 3
√

2, where
ω = e2πi/3. Then NE

Q (a + b 3
√

2 + c 3
√

4) = a3 + 2b3 + 4c3 − 6abc and TrE
Q (a + b 3

√
2 + c 3

√
4) = 3a.

3. Let F = Zp(t) and E the splitting field of f(x) = xp− t over F. Then E = F (α where αp = t. Clearly, α is p.i. over
F which implies E/F is p.i. and [E : F ] = p. So [E : F ]S = 1 and [E : F ]i = p. Then we have only one embedding-
the identity. So NE

F (β) = βp and NE
F (β) = pβ = 0 (since charF = p.)

Lemma 2.87. If E/F is finite and separable, then NE
F (α), T rE

F (α) ∈ F for all α ∈ E.

Proof. Let L be the normal closure of E/F. Then L/F is finite and Galois. Let σ1, ..., σr be the distinct embeddings of
E → F which fix F. Let φ ∈ G = Gal(L/f). Then φσi : E → L for all i. Further, φσi are distinct as φ is injective. So
{φσ1, ..., φσr} = {σ1, ..., σr} for all φ ∈ F. Thus φ(NE

F (α)) = φ(σ1(α) · · ·σr(α)) = φσ1(α) · · ·φσr(α) = NE
F (α). Since this

holds for all φ ∈ G, we see NE
F (α) ⊆ LG = F. Similarly for TrE

F (α).

Proposition 2.88. If E/F is finite, then NE
F (α), T rE

F (α) ∈ F for all α ∈ E.

Proof. If E/F is inseparable, then [E : F ]i = pn. So TrE
F (α) = pn(· · · ) = 0 as char F = p. Let L be the separable closure of

F in E. Then E/L is p.i. and L/F is separable (by HW4#1). Therefore, [E : F ]S = [E : L]S [L : F ]S = [L : F ]S = [L : F ].
Let σ1, ..., σr be the distinct embeddings of L → F fixing F. Then r = [L : F ]S . Extend σ1, ..., σr to τ1, ..., τr : E → F.

Then {τ1, ..., τr} is the set of distinct embeddings of E → F fixing F. Let α ∈ E. Then pm = [L(α) : L]i ≤ [E : L]i = pn.

So αpn ∈ L since α[L(α):L]i ∈ L. By the lemma, for all β ∈ L, NL
F (β) ∈ F as L/F is separable. Now NE

F (α) =
(τ1(α) · · · τr(α))[E:F ]i=[E:L]i = τ1(α[E:L]i) · · · τr(α[E:L]i) = σ1(α[E:L]i) · · ·σr(α[E:L]i) ∈ F by the previous sentence (take
β = α[E:L]i).

Proposition 2.89. Let E/F be a finite extension. Let α, β ∈ E. Then

1. NE
F (αβ) = NE

F (α)NE
F (β) and TrE

F (α + β) = TrE
F (α) + TrE

F (β).

2. If α ∈ F, then NE
F (α) = α[E:F ] and TrE

F (α) = α[E : F ].

3. If K is an intermediate field, then NE
F = NK

F ◦NE
K and TrE

F = TrK
F ◦ TrE

K .

Proof. 1. Follows from the definition as σi are homomorphisms.

2. Let α ∈ F. Then NE
F (α) = (σ1(α) · · ·σr(α))[E:F ]i = (αr)[E:F ]i = α[E:F ] as r = [E : F ]S .



3. Let σ1, . . . , σr be the distinct embeddings of K → F fixing F. Extend these to τ1, ..., τr : E → F . Let φ1, ..., φt be
the distinct embeddings of E → F fixing K. Then {τiφj}i,j are the distinct embeddings of E → F fixing F. Then

NK
F NE

K(α) = NK
F





∏

j

φj(α)




[E:K]i

 =




∏

i

τi


∏

j

φj(α)




[E:K]i



[K:F ]i

=


∏

i,j

τiφj(α)




[E:F ]i

= NE
F (α).

Similarly for the trace.

Remarks.

1. NE
F : E∗ → F ∗ is a group homomorphism and TrE

F : (E, +) → (F, +) is an additive group homomorphism. In fact,
TrE

F : E → F is a linear functional of E as an F−VS.

Proof. Let c ∈ F, α ∈ E. Then

TrE
F (cα) = [E : F ]i

(∑
σi(cα)

)
= [E : F ]i

(
c
∑

σi(α)
)

= cTrE
F (α)

as σi fixes c ∈ F. We have already seen the trace is additive.

2. If char F = 0, then TrE
F (c) = [E : F ]c 6= 0. If char F = p and [E : F ]i > 1, we have already seen TrE

F (α) = [E :
F ]i(−−) = pi(−−) = 0. So TrE

F degenerates. It’s a little harder to see, but if char F = p and [E : F ]i = 1, then
the trace is non-degenerate. We will prove this.

Lemma 2.90. Let E/F be a field extension, L a field such that F ⊆ L, and σ1, ..., σn the distinct field embeddings of
E → L which fix F. Then σ1, ..., σn are linearly independent over F.

Proof. We will induct on n. Let n = 1. Suppose aσ1 = 0, where σ1 6= 0. Let α ∈ E \ {0}. Then σ1(α) 6= 0. Since
we are in a field, aσ1(α) = 0 implies a = 0. Let n > 1. Suppose (∗)a1σ1 + · · · + anσn = 0 for some σ1, ..., σn not
all zero. If any of these terms are 0, we are done by induction. So assume ai 6= 0 for all i. Let β ∈ E such that
σ1(β) 6= σ2(β). For α ∈ E, we see a1σ1(αβ) + · · ·+ anσn(αβ) = 0 which implies a1σ1(β)σ1(α) + · · ·+ anσn(β)σn(α) = 0
for all α ∈ E. This implies a1σ1(β)σ1 + · · · + anσn(β)σn = 0. Now divide by σ1(β) and subtract from (∗). Then
a2

(
1− σ2(β)

σ1(β)

)
σ2 + · · ·+an

(
1− σn(β)

σ1(β)

)
σn = 0. By induction, since ai 6= 0, we see 1 = σi(β)

σ1(β) which implies σ1(β) = σi(β),
contradiction.

Corollary 2.91. If E/F is a finite separable extension, then TrE
F 6= 0. So TrE

F is nondegenerate for separable extensions.

Theorem 2.92 (Hilbert’s Satz 90). Let E/F be a finite cyclic extension. Let < σ >= Gal(E/F ) and β ∈ E. Then
NE

F (β) = 1 if and only if β = α
σ(α) for some α ∈ E.

Proof. Let |σ| = n.

(⇐:) Then NE
F (β) =

∏n−1
0 σi(β) =

∏n−1
0 σi

(
α

σ(α)

)
=

∏n−1
0

σi(α)
σi+1(α) = 1 as σn = 1.

(⇒:) Suppose N(β) = 1. By the lemma, {1, σ, ..., σn−1} are linearly independent over F. Let

g = 1 + βσ + (βσ(β))σ2 + . . . + (βσ(β) · · ·σn−2(β))σn−1 6= 0.



Then there exists u ∈ E such that g(u) 6= 0. Let α = g(u). Then

βσ(α) = βσ(g(u))
= βσ(u + βσ(u) + (βσ(β))σ2(u) + . . . + (βσ(β) · · ·σn−2(β))σn−1(u))
= βσ(u) + βσ(β)σ2(u) + βσ(β)σ2(β)σ3(u) + . . . + (βσ(β) · · ·σn−1(β))︸ ︷︷ ︸

=N(β)=1

σn(u)︸ ︷︷ ︸
u

= g(u) = α.

Thus β = α
σ(α) .

Remark. Let F be a field, n ≥ 1. Then the roots of xn − 1 form a finite subgroup Un of (F )∗. Thus Un is a cyclic
group, say Un =< ω > . If char F - n, then xn − 1 has n distinct roots. Thus |Un| = n. Any generator for Un is called a
primitive nth root of unity.

Theorem 2.93. Let F be a field, n ≥ 1 such that char F - n. Assume F contains a primitive nth root of unity. Then
E/F is cyclic of deg |n if and only if E = F (α) where αn ∈ F.

Proof. (⇒:) Let [E : F ] = d. Then, since d|n, there is a primitive dth root of unity, call it ξ ∈ F. Then ξ−1 ∈ F and
NE

F (ξ−1) = (ξ−1)[E:F ] = 1. So there exists α ∈ E such that ξ−1 = α
σ(α) , where < σ >= Gal(E/F ). Then σ(α) = ξα

which implies σi(α) = ξiα as ξ ∈ F implies σ fixes ξ. Since σ(α), ..., σd(α) are distinct, we see [F (α) : F ]S ≥ d.

Since [E : F ] = d this says [E : F (α)] = 1 and thus E = F (α). Now notice σ(αd) = σ(α)d = (ξα)d = αd. So
αd ∈ E<σ> = F and since d|n, αn ∈ F.

(⇐:) Let a = αn ∈ F. Then α is a root of xn − a ∈ F [x]. Let ω ∈ F be a primitive nth root of unity. Then

xn − a =
n−1∏

i=0

(x− ωiα) ∈ E[x].

So E is the splitting field of xn−a which implies E/F is normal. Since char F - n, the ωi are distinct and thus xn−a is
separable. So E/F is Galois. Let d = [E : F ]. Let f(x) = Irred(α, F ). Then f(x)|xn−a. So f(x) =

∏d−1
`=0 (x−ωi`α)

where 0 ≤ ij ≤ n − 1. Therefore, the d elements of Gal(E/F ) are σi`
: E → E defined by α 7→ ωi`α. Define

φ : Gal(E/F ) →< ω > by σi`
7→ ωi` . This is a homomorphisms as σi`

σij (α) = ωij σi`
(α) = ωij+i`(α) and so

φ(σi`
σij ) = φ(σi`

)φ(σij ). This is injective as the ωij are distinct. So Gal(E/F ) is isomorphic to a subgroup H of
< ω >. Clearly, H is cyclic and has order d.

2.10 Can we find polynomials whose Galois Group is Sn?

Theorem 2.94. Let f(x) ∈ Z[x] be monic of degree n, with n distinct roots. Let p be prime and f(x) ∈ Zp[x] where f(x)
is obtained by reducing the coefficients of f(x) modulo p. Let α1, ..., αn be the roots of f(x) and u1, ..., un the roots of f(x)
(assume u1, ..., un are also distinct.) After possibly reordering u1, ..., un, there exists an injective group homomorphism
GalZp(f) → GalQ(f) defined by σ(ui) = uj if and only if σ(αi) = αj .

Definition 2.95. A subgroup H ≤ Sn is called transitive if for all i 6= j ∈ [n], there exists σ ∈ H such that σ(i) = j.

Proposition 2.96. Suppose f(x) is irreducible in Zp[x]. Then

1. GalZp(f) is transitive and hence GalQ(f) is transitive.

2. GalQ(f) contains an n−cycle.

Proof. 1. As f(x) is irreducible, there exists a map φ : Zp(αi) → Zp(αj) sending αi 7→ αj . Extend φ to the splitting
field. Then φ : GalZp(f) → GalZp(f).



2. As Zp is a finite field, GalZp(f) is cyclic of order n. Let < σ >= GalZp(f). Say σ = π1 · · ·πk, where πi are disjoint.
Of course, < σ > is transitive so we must have σ = π1. Thus π1 is an n−cycle.

Theorem 2.97. Let n ≥ 4 and f1, f2, f3 ∈ Z[x] be monic polynomials of degree n such that

1. f1 ∈ Z2[x] is irreducible.

2. f2 ∈ Z3[x] is such that f2 = g1h1 where g1 is irreducible of degree n− 1.

3. f3 = g2h2 ∈ Z5[x] where g is irreducible of degree 2 and h is a product of irreducible factors of odd degree. [Note:
we may need that the roots are distinct here...]

Let f = −15f1 + 10f2 + 6f3. Then f is monic of degree n and GalQ(f) ∼= Sn.

Proof. The key here is to note that Sn is generated by an n−1 cycle and a transposition. By 2, we see GalQ(f) contains an
n− 1 cycle. Now, we will show that the construction in 3 gives us a transposition. Let f(x) = g(x)h1(x) · · ·hk(x), where
g, hi are irreducible, deg g = 2 and deg hi is odd for all i. Consider G = GalZp

(f) as a subgroup of Sn. Let α1, α2 ∈ Zp

be the roots of g(x) and α3, ..., αn the roots of h1, ..., hk. Let F = Zp(α1, α2) and L = Zp(α3, ..., αn). Then E = FL is
the splitting field of f. If we show [E : L] = 2, then any nontrivial element of Gal(E/L) corresponds to a transposition
(we swap α1 and α2 and leave all the other roots fixed). To do this, we need only show [L : Zp] is odd. Induct on k. If
k = 1, since every finite extension of a finite field is cyclic, L = Zp(α) where α is a root of h1. So [L : Zp] = deg h1 which
is odd. So suppose k > 1. Let T be the splitting field for h1, ..., hk−1 and α be a root of hk. By the same reasoning as
above, hk splits in Zp(α). So [Zp(α) : Zp] is odd. By induction, [T : Zp] is odd. Note that L/T and Zp(α)/Zp are Galois
(they are both splitting fields for hk. Recall Gal(L/T ) ≤ Gal(Zp(α)/Zp). So [L : T ]

∣∣ [Zp(α) : Zp]. So [L : T ] odd implies
[L : Zp] is odd. Thus 2 = [E : L] which says G contains a transposition. Now, by the previous theorem, since there exists
an injection G → GalQ(f), we see that GalQ(f) contains a transposition.

Example. Find a polynomial f(x) ∈ Q[x] such that GalQ(f) ∼= S4.

f1 = x4 + x + 1

f2 = (x3 + 2x + 2)(x) = x4 + 2x2 + 2x

f3 = (x2 + 2)(x)(x + 1) = x4 + x3 + 2x2 + 2x

Then f = −15f1 + 10f2 + 6f3 = x4 + 6x3 + 32x2 + 17x− 15 has Galois group S4 over Q by the theorem. Note that
f is irreducible as it is modulo 2.

2.11 Solvability by Radicals

Motivation:

• Let f(x) = ax2 + bx + c ∈ F [x], a 6= 0. Then, if char F 6= 2, the roots of f(x) = −b±α
2a where α is a root of

x2 − (b2 − 4ac). Less specifically, we know the roots of f(x) lie in F (α) for some α ∈ F such that α2 ∈ F.

• Let f(x) = ax3 + bx2 + cx + d ∈ F [x]. Then, if char F 6= 2, 3, we can reduce f to f(x) = x3 + px + q ∈ F [x].
Cardano (1500s) found that the roots of f(x) lie in F (ω, δ, y1, y2) where ω is a primitive 3rd root of unity, δ is a



root of x2 − (12p3 − 81q2), y1 is a root of x2 + ( 27
2 q + 3

2δ), and y2 a root of x3 + ( 27
2 q − 3

2δ).

F (ω, δ, y1, y2)
|

y2
2 ∈ F (ω, δ, y1)

|
y2
1 ∈ F (ω, δ)

|
δ2 ∈ F (ω)

|
ω3 ∈ F

Definition 2.98. A finite extension E/F is called radical if E = F (α1, ..., αn) such that for all i = 1, .., n there exists
mi such that αmi

i ∈ F (α1, ..., αi−1). A polynomial f(x) ∈ F [x] is solvable by radicals over F if f(x) splits in some
radical extension of F.

Theorem 2.99. Let f(x) ∈ F [x] be a separable polynomial. Let E be the splitting field for f(x) over F. Suppose
char F - [E : F ]. If Gal(E/F ) is solvable, then f(x) is solvable by radicals over F.

Proof. Let n = [E : F ] and ω be a primitive nth root of unity. Let L = F (ω). By HW3#1, EL/L is Galois and
Gal(EL/L) is isomorphic to a subgroup of Gal(E/F ). Since subgroups of solvable groups are solvable, Gal(EL/L) is
solvable. Now EL is the splitting field of f(x) over L. Note that

f(x) is solvable by radicals over L ⇔ EL lives in a radical extension of L

⇔ EL lives in a radical extension of F (since L = F (ω) and ωn ∈ F )
⇔ E lives in a radical extension of F

⇔ f(x) is solvable by radicals over F.

So WLOG, we may assume ω ∈ F. Let G = Gal(E/F ). Since G is solvable, there exists a normal series {1} = Gt C
Gt−1 C · · ·CG0 = G such that Gi/Gi+1

∼= Cni (we know the factor groups are abelian, if not cyclic then just take smaller
subgroups so that they are), where ni|n = |G|. Let Ei be the corresponding intermediate field of Gi with E = Et and
E0 = F. Note that Ei+1/Ei is Galois for all i and Gal(Ei+1/Ei) ∼= Gi/Gi+1

∼= Cni and since F contains a primitive nth
i

root of unity (it contains a primitive nth root of unity and ni|n). Then by the previous theorem, Ei+1 = Ei(αi) where
αni

i ∈ Ei. Therefore, E is a radical extension of F and so f is solvable by radicals over F.

Lemma 2.100. Suppose E/F is a radical extension. Let L be the normal closure of E/F. Then L/F is radical.

Proof. Let E = F (u1, ..., un) where umi
i ∈ F (u1, ..., ui−1) for i = 1, ..., n. Let σ1, ..., σs be the distinct embeddings of

E → F which fix F. Then L = F ({σi(uj)}i,j) (as this gives all of the roots of {Irred(ui, F )}i). Note that σi(uj)mj =
σi(u

mj

j ) ∈ σi(F (u1, ..., uj−1)) = F (σi(u1), ..., σi(uj−1)).

Lemma 2.101. Let L/K be a Galois, radical extension. Then Gal(L/K) is solvable.

Proof. Say K = K0 ⊆ K1 ⊆ · · · ⊆ Kn = L where Ki = Ki−1(ui) and umi
i ∈ Ki−1.

Claim: char K - mi for all i.

Proof: Suppose mi = pt` where p = char K and p - `. Then (u`
i)

pt = umi
i ∈ Ki−1. This says u`

i is p.i. over Ki−1.

But L/K Galois says L/Ki−1 is separable. Thus we must have u`
i ∈ Ki−1. So we can simply replace mi with ` and

since p - `, done.



Let m = m1 · · ·mn. Then um
i ∈ Ki−1 and char K - m. Let ω be a primitive mth root of unity.

L(ω)
� � Galois, Radical

L K(ω)
� � Galois, Radical

K

By the picture, L(ω)/K is radical and Galois (as L(ω) = LK(ω) where L, K(ω) are Galois). Now, since L/K is normal,

Gal(L/K) ∼= Gal(L(ω)/K)/Gal(L(ω)/L).

Since quotient groups of solvable groups are solvable, it is enough to show Gal(L(ω)/K) is solvable. Also

Z∗m ∼= Gal(K(ω)/K) ∼= Gal(L(ω)/K)/Gal(L(ω)/K(ω)).

Recall that Gal(L(ω)/K) is solvable if and only if Gal(K(ω)/K) and Gal(L(ω)/K(ω)) are solvable. Since Gal(K(ω)/K)
is abelian, it is solvable. So we need only show Gal(L(ω)/K(ω)) is solvable. Note that we have shown that Gal(L/K)
is solvable if Gal(L(ω)/K(ω)) is solvable. Thus, we may assume K contains a primitive mth root of unity. By the
theorem on cyclic extensions, Ki/Ki−1 is cyclic. Let Hi−1 = Gal(L/Ki−1) and Hi = Gal(L/Ki). As Ki/Ki−1 is normal,
Hi C Hi−1 and Hi−1/Hi

∼= Gal(Ki/Ki−1) is cyclic. So {1} = Hn C Hn−1 C · · · C H0 = Gal(L/K) is a solvable series.
Thus G is solvable.

Theorem 2.102. Let F be a field and f(x) ∈ F [x] a separable polynomial. If f(x) is solvable by radicals over F, then
GalF (f(x)) is solvable.

Proof. Let E be the splitting field for f(x) over F. Then E ⊆ L for some radical extension L over F. WLOG, assume
L/F is normal (can do by the first lemma). Define φ : Aut(L/F ) → Gal(E/F ) by σ 7→ σ|E . Since E/F is normal, φ

is well-defined. Also φ is surjective as L/F is normal (given ρ ∈ Gal(E/F ), we can extend it to L and it will be an
automorphism of L). Hence

Gal(E/F ) ∼= Aut(L/F )/ kerφ.

Since quotients of solvable groups are solvable, it is enough to prove Aut(L/F ) is solvable. Note |Aut(L/F )| = [L : F ]S ≤
[L : F ] < ∞ (as radical extensions are by definition finite). Let G = Aut(L/F ) and K = EG. By Artin’s Theorem, L/K

is Galois and G = Gal(L/K). Note that F ⊆ K and L/K is radical. Thus by the second lemma, we’re done.

Definition 2.103. Let F be a field and t1, .., tn indeterminants over F. Then the general equation of degree n over
F is f(x) = xn − t1x

n−1 + t2x
n−2 + . . . + (−1)ntn ∈ F (t1, ..., tn)[x].

Theorem 2.104. Let L = F (t1, .., tn) and f(x) as above. Then GalL(f) ∼= Sn.

Proof. Let E be the splitting field for f(x) over L. Say f(x) =
∏n

i=1(x−yi) ∈ E[x]. Then E = L(y1, ..., yn) = F (y1, ..., yn).
Thus ti = si(y1, ..., yn), where si ∈ L[x1, ..., xn] is the ith elementary symmetric function. Define a field homomorphism
σ : L → F (s1, .., sn) ⊆ F (x1, ..., xn) by ti 7→ si and fixes F. Then σ is clearly surjective.

Claim: σ is an isomorphism

Proof: Define τ : F (x1, ..., xn) → E = F (y1, ..., yn) by xi 7→ yi. Then τ(si) = ti as ti = si(y1, ..., yn) and
τσ

(
p(t1,...,tn)
q(t1,...,tn)

)
= τ

(
p(s1,...,sn)
q(s1,...,sn)

)
= p(t1,...,tn)

q(t1,...,tn) . So σ is injective and thus an isomorphism.



Note that fσ(x) = xn − s1x
n−1 + . . . + (−1)nsn and has splitting field F (x1, ..., xn) (where the xi’s are such that

fσ(x) =
∏n

i=1(x− xi)− from our definition of the elementary symmetric functions).

F (y1, ..., yn)
φ−→ F (x1, ..., xn)

splitting field of f(x) → | | ← splitting field of fσ(x)

F (t1, ...., tn)
∼=−→ F (s1, ..., sn)

By the theorem on the uniqueness of splitting fields, there exists an isomorphism φ : F (y1, ..., yn) → F (x1, ..., xn) where
φ|L = σ. Hence GalL(f) ∼= GalF (s1,...,sn)(fσ) ∼= Sn, as we saw earlier with the symmetric functions, using Artin’s
Theorem.

Recall: Sn is solvable if and only if n ≤ 4.

Corollary 2.105. If n ≤ 4 and char F - |Sn| = n!, then the general equation of degree n over F is solvable by radicals.

Corollary 2.106 (Abel’s Theorem). If n ≥ 5, then the general equation of degree n over F is not solvable by radicals.

Fact. If p is prime, then Sp is generated by any transposition and any p−cycle.

Lemma 2.107. Let f(x) ∈ Q[x] be irreducible of prime degree p and suppose f has exactly p − 2 real roots. Then
GalQ(f) ∼= Sp.

Proof. Let E = Q(α1, ..., αp) where α1, ..., αp are roots of f(x) with α1, α2 6∈ R. Let G = Gal(E/Q) ⊆ Sp. Since f(x) is
irreducible, p||G|. Since p is prime, the only elements of Sp of order p are the p−cycles. Thus G contains a p−cycle. Let
σ be complex conjugation restricted to E. Then σ transposes α1 and α2 and fixes α3, ..., αn. So σ ∈ G is a transposition.
Done by fact.

Example. Let f(x) = x5 − 2x3 − 8x − 2 ∈ Q[x]. This is irreducible by Eisenstein. Using Calculus to find the critical
numbers and looking at the end behavior, we see f(x) crosses the x− axis 3 times. Thus f(x) has 3 real roots. By the
lemma, GalQ(f) ∼= S5. Thus f is not solvable by radicals.

2.12 Transcendental Extension

Definition 2.108. Let E/F be a field extension and S ⊆ E. Then S is algebraically dependent over F if there exists
s1, ..., sn ∈ S and f(x1, ..., xn) ∈ F [x1, ..., xn] \ {0} such that f(s1, ..., sn) = 0. Otherwise, we say S is algebraically

independent over F.

Remarks.

1. ∅ is algebraically independent over any field.

2. {u} is algebraically independent if and only if u is transcendental over F.

3. {s1, ..., sn} is algebraically independent over F if and only if F [s1, ..., sn] ∼= F [x1, ..., xn], where x1, ..., xn are
variables.

Lemma 2.109. Let E/F be a field extension and S ⊆ E an algebraically independent set over F. Let u ∈ E. Then
S ∪ {u} is algebraically independent if and only if u is transcendental over F (S).

Proof. (⇐) It is enough to show {s1, ..., sn, u} is algebraically independent for s1, ..., sn ∈ S. Suppose f(x1, ..., xn+1) ∈
F [x1, ..., xn+1] and f(s1, ..., sn, u) = 0. Let g(xn+1) = f(s1, ..., sn, xn+1) ∈ F (S)[xn+1]. Note g(u) = 0. Since u is
transcendental over F (S), we must have g(xn+1) = 0. Write

f(x1, ..., xn+1) = hr(x1, ..., xn)xr
n+1 + . . . + h0(x1, ..., xn).



Then 0 = g(xn+1) says hi(s1, ..., sn) = 0 for all i. Since {s1, ..., sn} are algebraically independent, we must have
hi(x1, ..., xn) = 0 for all i. Thus f(x1, ..., xn+1) = 0.

(⇒) Suppose u is algebraic over F (S). Then u is algebraic over a finite subset of S. So WLOG, S is finite. Then there
exists f(x) ∈ F (S)[x] \ {0} such that f(u) = 0. Say

f(x) =
gr(s1, ..., sn)
hr(s1, ..., sn)

xr + . . . +
g0(s1, ..., sn)
h0(s1, ..., sn)

,

where gi(x1, ..., xn), hi(x1, ..., xn) ∈ F [x1, ..., xn]. Multiply f by h0 · · ·hr to clear denominators and still get a
polynomial that u satisfies. So WLOG, hi = 1. Let `(x1, .., xn, x) = gr(x1, ..., xn)xr + . . .+ g0(x1, ..., xn). Note that
`(s1, ..., sn, u) = 0. Since S∪{u} is algebraically independent, `(x1, ..., xn, x) = 0, a contradiction as f(x) 6= 0. Thus
u is transcendental over F (S).

Definition 2.110. Let E/F be a field extension. A set S ⊆ E is called a transcendence base for E/F if S is
algebraically independent over F and E/F (S) is algebraic.

Theorem 2.111. Let E/F be a field extension and L ⊆ E an algebraically independent set over F. Then there exists a
transcendence base S for E/F such that L ⊆ S.

Proof. Let Γ = {T |L ⊆ T ⊆ E and T is algebraically independent over F}. Note L ∈ Γ so Γ 6= ∅. Let C be any totally
ordered subset of Γ. Then T0 = ∪t∈CT ∈ Γ is an upper bound. By Zorn’s Lemma, there exists a maximal set S ∈ Γ.

Then S is algebraically independent by definition of Γ and E/F (S) is algebraic by the lemma and maximality of S.

Example. Let X, Y be indeterminants over F. Then {X, Y } is a transcendence base for F (X, Y )/F. Also {X2, Y 2} is
a transcendence base.

Theorem 2.112. Let E/F be a field extension. Then any two transcendence bases for E/F have the same cardinality.

Proof. We’ll prove this in the case that E/F has a finite transcendence base S = {s1, ..., sn}. Let T be a transcendence
base for E/F.

Claim: There exists t1 ∈ T such that {t1, s2, ..., sn} is algebraically independent over E/F.

Proof: Suppose not. Therefore F (T ) is algebraic over F (s2, ..., sn). But E/F (T ) is algebraic, which implies
E/F (s2, ..., sn) is, so s1 ∈ E is algebraic over F (s2, ..., sn), a contradiction.

Claim: The set {t1, s2, ..., sn} is a transcendence base of E/F.

Proof: Suppose s1 is transcendental over F ({t1, s2, ..., sn}). Then {t1, s1, ..., sn} is algebraically independent, but
t1 is algebraic over F ({s1, ..., sn}), a contradiction. Thus s1 is algebraic over F ({t1, s2, ..., sn}) which implies
F ({t1, s1, ..., sn}) is algebraic over F ({t1, s2, ..., sn}). But E is algebraic over F ({t1, s1, ..., sn}) (as it is over
F ({s1, ..., sn})) and thus E is algebraic over F ({t1, s2, ..., sn}).

Repeating this process, replace s2, ..., sn by t2, ..., tn ∈ T to obtain a transcendence base {t1, ..., tn} for E/F. Since T is
algebraically independent, T = {t1, ..., tn}.

Definition 2.113. The transcendence degree of E/F is the cardinality of any transcendence base for E/F.

Note. The transcendence degree of E/F is 0 if and only if E/F is algebraic.

Theorem 2.114. Suppose K ⊆ F ⊆ E are fields. The tr deg E/K = tr deg E/F + tr deg F/K.

Proof. Let S, T be transcendence bases for E/F and F/K respectively. Since T ⊆ F and S ⊆ E \ F, we see S ∩ T = ∅.
Then it is enough to show S ∪ T is a transcendence base for E/K.

Claim 1: E is algebraic over K(S ∪ T ).



Proof: We know that F is algebraic over K(T ). So F (S) is algebraic over K(T )(S) = K(S ∪ T ). As E is algebraic
over F (S), E is algebraic over K(S ∪ T ).

Claim 2: S ∪ T is algebraically independent over K.

Proof: Let f(x1, ..., xm, y1, ..., yn) ∈ K[x1, ..., xm, y1, ..., yn] such that f(s1, ..., sm, t1, ..., tn) = 0. We want to show
f = 0. Say f =

∑
gi(y1, ..., yn)hi(x1, ..., xm) where gi ∈ K[y1, ..., yn] and the hi are distinct monomials in the

x′s. Let `(x1, ..., xm) = f(x1, ..., xm, t1, ..., tn) ∈ K(T )[x] ⊆ F [x1, ..., xm]. That that `(s1, ..., sm) = 0. As S is
algebraically independence over F, we know ` = 0. So f(x1, ..., xm, t1, ..., tn) = 0. Since the hi(x1, ..., xm) are
linearly independent over F [x] (as they are distinct monomials), we must have that gi(t1, ..., tn) = 0 for all i. Since
T is algebraically independent over K, gi(y1, ..., yn) = 0. Thus f = 0.

3 Rings and Modules

We will take all rings to have identity, but not necessarily be commutative.

Definition 3.1. Let G be a group, k a field. Let B be a k−vector space with basis {eg}g∈G. Then V is a group

ring with elements of the form
∑

g∈G cgeg where all but finitely many terms are zero. Define multiplication in V by
(
∑

cgeg)(
∑

dgeg) =
∑

cgdg′egg′ .

Remarks. Under this definition, V is a ring with identity element e1. For convenience, we will write g for eg and K[G]
for the ring V. Note that K[G] is commutative if and only if G is abelian.

Example. Let G = Cn =< g > and K be any field. Then K[Cn] = {∑n−1
i=0 cig

i|ci ∈ K}. Define a ring homomorphism
K[x] → K[Cn] such that k 7→ k and x 7→ g. Clearly, this is surjective. As gn = 1, we see xn − 1 ∈ kerφ. So we have an
induced map K[x]/(xn − 1) → K[Cn]. Since both of these have dimension n, we see that they are isomorphic.

Definition 3.2. A division ring is a ring in which every nonzero element is a unit.

Examples.

1. Any field is a division ring.

2. Consider the ring homomorphism R → M2(C) defined by r 7→ rI. In this way, we can consider R as a subring

of M2(C). Let i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
,k =

[
0 i

i 0

]
. Then {1, i, j,k} are linearly independent over R. Let

H = R · 1 + Ri + Rj + Rk ⊆ M2(C). Then H has dimension 4. Note that i2 = j2 = k2 = −1, ij = j = −ji, jk =
i = −kj,ki = j = −ik. Thus H is closed under multiplication and has identity. Since H is a vector space, its
an additive group. Thus H is a noncommutative subring of M2(C), called the ring of (real) quaternions. Let
α = r0 + r1i + r2j + r3k and α = r0 − r1i − r2j − r3k. One can check αα = αα = r2

0 + r2
1 + r2

2 + r2
3 =: |α|2. Note

α = 0 if and only if |α| = 0. So if α 6= 0, α−1 = α
|α|2 . Thus H is a division ring (but not a field!).

Definition 3.3. Let R be a ring. A left (respectively, right) R-module is an abelian group (M, +) together with a map
R×M → M defined by (r,m) 7→ rm such that

1. r(m + n) = rm + rn

2. (r + s)m = rm + sm

3. r(sm) = (rs)m

4. 1m = m

Notes. Not everyone requires (4). In this case, R is called a unital module. Also, we will assume 1 7→ 1 in a ring
homomorphism.



Definition 3.4. Let f : R → S be a ring homomorphism such that f(R) ⊆ Z(S). Then S is called an R−algebra.

Note. The ker f is a two-sided ideal. Thus f : R/ ker f → S is injective. Thus R/ ker f is commutative and R/ ker f ⊆
Z(S).

Examples. Assume R is a commutative ring.

1. Let R[x1, ..., xn] be the polynomial ring in x1, ..., xn and I an ideal of R[x1, ..., xn]. Then f : R → R[x1, ..., xn]/I

defined by r 7→ r = r + I is a ring homomorphism. Thus R[x1, ..., xn]/I is an R−algebra.

2. Define f : R → Mn(R) by r 7→ rI. This is a ring homomorphism, so Mn(R) is an R−algebra.

3. Let G be a group. Define f : R → R[G] by r 7→ re1. This is a ring homomorphism, so R[G] is an R−algebra.

4. Let C(R) = {f : R→ R|f is continuous}. Then f : R→ C(R) defined by r 7→ fr(x) = r is a ring homomorphism.
Thus C(R) is an R−algebra.

Definition 3.5. Let S be a ring, A ⊆ Z(S) a subring, T a subset of S. Say S is generated over A by T if every element
of S is a finite sum of elements of the form atn1

1 · · · tnk

k , where a ∈ A, ti ∈ T, ni ≥ 0. We write S = A[T ]. If S = A[T ] for
some finite subset T of S, then S is finitely generated over A as a ring. If f : R → S is a ring homomorphism with
f(R) ⊆ Z(S), then S is a finitely generated R−algebra if S is finitely generated over f(R) as a ring.

Notes.

• If E/K is a finitely generated field extension and F is an intermediate field, then F/K is a finitely generated field
extension (HW).

• This is NOT true for algebras. For example, K[x, y] is finitely generated as a K−algebra, but K[x, xy, xy2, ...] is
not finitely generated as a K−algebra.

Examples. Let R be a commutative ring.

1. S = R[x1, ..., xn]/I is a finitely generated R−algebra where T = {x1, ..., xn}. Using the above notation, we can say
S = R[x1, ..., xn].

Claim. Let S be a finitely generated A−algebra which is commutative. Say S = A[T ] where T = {t1, ..., tn}. Define
φ : A[x1, ..., xn] → S by f(x1, ..., xn) 7→ f(t1, ..., tn). Because the t′is commute, φ is an onto ring homomorphism.
So S ∼= A[x1, ..., xn]/I.

2. S = Mn(R). Let Eij be the n × n matrix with a 1 in the i, jth entry and zeros everywhere else. Then for
A = (aij) ∈ S, we see A =

∑
aijEij . Thus S is generated by Eij . So S = R[{Eij}].

3. R[G] is a finitely generated R−algebra if and only if G is a finitely generated group. For one direction, we see if
G =< g1, ..., gn >, then R[G] = R[g1, ..., gn].

4. C(R) is not a finitely generated R−algebra.

Let A be a ring. By an A−module, we mean a left A−module, unless when explicitly stated otherwise.

Remark. Let f : R → S be a ring homomorphism. Any S−module M is an R−module via the action r ·m := f(r)m.

In particular, S is an R−module.

Definition 3.6. Let M be an R−module and T ⊆ M. Say T generates M as an R−module if every element of M can
be expressed as

∑n
1 riti, for ti ∈ T, ri ∈ T, that is, M = RT = R−submodule of M generated by T. We say M is finitely

generated as an R−module if M = RT for some finite subset T of M. In practice, if T = {t1, ..., tn}, we will write
M = Rt1 + ... + Rtn. Sometimes, this is stated as “M is a finite R−module” even though M is not necessarily finite.

Examples. Let R be a commutative ring.



1. R[x1, ..., xn]/I need not be a finitely generated R−module. For example k[x, y]/(xy) is not a finitely generated
k−module.

2. Mn(R) is a finitely generated R−module (Mn(R) =
∑

REij).

3. R[G] is a finitely generated R−module if and only if |G| < ∞.

3.1 Free Modules and Bases

Definition 3.7. Let M be an A−module, T ⊆ M. Say T is linearly independent over A if whenever
∑n

1 aiti = 0
where t1, ..., tn ∈ T are distinct, then ai = 0 for all i.

Example. Let R = Z6 and I = (2). Then 2 is a minimal generating set of I but 3 · 2 = 0. So {2} is not linearly
independent over R.

Definition 3.8. A basis T for an A−module M is a generating set for M which is linearly independent over A.

Proposition 3.9. Let M be an A−module, S ⊆ M. TFAE

1. S is an A−basis for M

2. For any A−module N and any set map j : S → N, there exists a unique A−module homomorphism j̃ : M → N

such that the following diagram commutes

S //

j

²²

M

N
∃!ej~~}

}
}

}

Proof. (1) ⇒ (2) Given j : S → N, define j̃ : M → N by j̃ : (
∑

s∈S ass) =
∑

s∈S asj(s) (where all but finitely many as

are 0). Since S is a basis for M, every element of M can be written uniquely in the form
∑

s∈S ass. Thus j̃ is a
well-defined homomorphism. Also, j̃ is clearly unique.

(2) ⇒ (1) S is linearly independent: Suppose
∑

s∈S ass = 0. For each t ∈ S, define jt : S → A by t 7→ 1 and s 7→ 0 for
s 6= t. Then 0 = j̃t(0) = j̃t(

∑
ass) =

∑
asj̃t(s) = at. Since t was arbitrary, done.

S generates M : Let M ′ be the A−submodule of M generated by S, that is M ′ = {∑s∈S ass|as ∈ A, s ∈ S}. Define
j : S → M/M ′ by s 7→ 0 = s + M ′. Consider j̃ : M → M/M ′ defined by m 7→ m + M ′. By the uniqueness of j̃,

since the 0 map also make the diagram commute, j̃ = 0, which implies m + M ′ = 0 for all m ∈ M. Thus M = M ′.

Definition 3.10. An A−module is called free if M has a basis.

Remarks.

1. M is a free A−module if and only if M ∼= ⊗i∈IA.

Proof. (⇐) : For all j ∈ I, let ej ∈ ⊗i∈IA where (ej)i = 0 if i 6= j and 1 if i = j. Then {ej}j∈I forms a basis.

(⇒) : Let S be a basis for M. Define φ : ⊗s∈SA → M by es 7→ s. Then
∑

ases 7→
∑

ass. Since S generates M, its
onto. Since S is linearly independent, its injective.

2. Every A−module is the homomorphic image of a free A−module.

Proof. Let M be an A−module. Define ⊗m∈MA → M by em 7→ m. Then extend it to
∑

amem 7→ ∑
amm. Then

φ is a surjective homomorphism.



Examples.

1. The 0−module is always free.

2. Let R be a commutative ring, I 6= (0) an ideal. TFAE

(a) I is free

(b) I ∼= R

(c) I = Ra = (a) for some non-zero-divisor a ∈ R.

Proof. (a)⇒(b): Let S be a basis for I. Suppose |S| > 1. Let s 6= t ∈ S. Since R is commutative, st + (−t)s = 0.

Since s and t are linearly independent, the coefficients are 0. Thus s = t = 0. So |S| = 1 which implies I ∼= R.

3. Let R = Z[x] and I = (2, x). Then I can be shown to be not principal, thus I is not free.

4. Let R = Z[
√−5] and I = (2, 1 +

√−5). Then I is not principal, so I is not free. However, I ⊗ J ∼= R2 for some
ideal J.

5. Let R be commutative. Then Mn(R) is a free R−module with basis {Eij}.

6. R[G] is a free R−module with basis {g}g∈G.

Remark. Let A be a ring, I a two-sided ideal. Let M be an A−module. Then M/IM is an A/I−module via
(a + I)(m + IM) = am + IM.

Lemma 3.11. Let M be an A−module and I a two-sided ideal. If S is a basis for M, then S = {s + IM |s ∈ S} is an
A/I basis for M/IM.

Proof. Let m ∈ M/IM. Then if m = m + IM, we know m =
∑

ass, which says m =
∑

ass. So S generates M/IM.

Suppose
∑

ass = 0. Then
∑

ass = 0 which implies
∑

ass ∈ IM. Then
∑

ass =
∑n

j=1 ijmj for ij ∈ I, mj ∈ M. Now
mj =

∑
s∈S bjss. So,

∑
ass =

∑
j,s ijbjss =

∑
s(

∑
j ijbjs)s which implies as =

∑
ijbjs ∈ I. Thus as = 0.

Lemma 3.12. Let R be a division ring. Any R−module M has a basis and any two bases for M have the same cardinality.

Proposition 3.13. Let R be a commutative ring and M an R−module. Then any two bases have the same cardinality.

Proof. Let m be a maximal ideal of R (it exists by Zorn’s Lemma). Then R/m is a field. Let S1, S2 be two R−bases
for M. By the above two lemmas, S1, S2 are R/m−bases for M/mM and S1, S2 have the same cardinality (as R/m is a
field).

Claim: For any basis S of M, S and S have the same cardinality.

Proof: We know the map S → S defined by s 7→ s is onto. Suppose s = t for s, t ∈ S. Then s − t ∈ mM. So
s− t =

∑
iss for is ∈ m by the proof of the first lemma. Comparing coefficients, this says 1 ∈ m, a contradiction

as m 6= R.

Thus S1 and S2 have the same cardinality.

Definition 3.14. If R is commutative and F is a free R−module, then the rank of F is defined to be the cardinality of
any basis for F. (Note: When R is a field, this is just the dimension).

Definition 3.15. Let M be an A−module. Define EndAM = {f : M → M |f is an A−module homomorphism}.
Remarks.

1. EndAM is a ring under addition and composition. We call it the endomorphism ring of M.



2. If A is commutative, then φ : A → EndA(M) defined by a 7→ aI is a ring homomorphism.

[Note: If A is not commutative, then for r 6∈ Z(A), we have rI 6∈ EndA(M) as f(r′m) 6= r′f(m).]

Thus if A is commutative, then EndA(M) is an A−algebra, and in particular an A−module.

3. If A is commutative and F is a free A−module of rank n, then EndA(F ) ∼= Mn(A) (as a homomorphism is
determined by where it sends the basis elements).

Example. Let A be a commutative ring, F a free A−module with basis N, that is F ∼= ⊗∞i=1A. Let {ei|i = 0, 1, ...} be
a basis for F and R = EndA(F ). Then R ∼= Rn for all n ≥ 1.

Proof. Define f1, f2 : F → F by f1(e2i) = ei, f1(e2i+1) = 0 and f2(e2i) = 0, f2(e2i+1) = ei for i ≥ 0. Then f1, f2 ∈
EndA(F ) = R.

Claim: {f1, f2} is an R−basis for R.

Proof: Let g1, g2 ∈ R. Note that (g1f1 + g2f2)(e2i) = g1(ei) and (g1f1 + g2f2)(e2i+1) = g2(ei). Now, suppose
g1f1 + g2f2 = 0. Then, by the note, g1(ei) = g2(ei) = 0 which implies g1 = g2 = 0 as the set {ei} is a basis. Thus
{f1, f2} is a linearly independent set. To show it is a generating set, let g ∈ R. Define g1, g2 ∈ R by g1(ei) = g(e2i)
and g2(ei) = g(e2i+1) for all i ≥ 0. Then (g1f1 + g2f2)(e2i) = g1(ei) = g(e2i) and (g1f1 + g2f2)(e2i+1) = g2(ei) =
g(e2i+1).

This shows R ∼= R2. Now, applying this inductively, we see R ∼= R⊕R ∼= R⊕R2 ∼= R3 ∼= · · · ∼= Rn.

3.2 Exact Sequences

Definition 3.16. Let L,M, N be A−modules and f : L → M, g : M → N A−module homomorphisms. We say the
sequence L

f−→ M
g−→ N is exact at M if imf = ker g. More generally, if the sequence M0

f0−→ M1
f1−→ M2

f2−→ · · · fn−1−−−→ Mn

is exact at each Mi for 1 ≤ i ≤ n − 1, then we say the sequence is exact. A short exact sequence is an exact
sequence of the form 0 → L

f−→ M
g−→ N → 0. Equivalently,

1. f is injective

2. g is surjective

3. imf = kerg

Examples.

1. Suppose L is a submodule of M. Then the sequence 0 → L → M → M/L → 0 is exact.

2. Let M1,M2 be A−modules. Then the sequence 0 → M1 → M1 + M2 → M2 → 0 is exact. This is called a split

short exact sequence.

Definition 3.17. Let A be a ring and (∗)0 → L
f−→ M

g−→ N → 0 a short exact sequence of A−modules. We say (∗)
splits (or is split exact) if there exists an A−module homomorphism φ : M → L⊕N such that the diagram commutes:

0 −−−−→ L
f−−−−→ M

g−−−−→ N −−−−→ 0

1L

y φ

y 1N

y
0 −−−−→ L

i−−−−→ L⊕N
j−−−−→ N −−−−→ 0

where i : ` 7→ (`, 0) and j : (`, n) 7→ n.

Proposition 3.18. Let (∗)0 → L
f−→ M

g−→ N → 0 be a short exact sequence. TFAE

1. (∗) splits



2. There exists an A−linear map σ : N → M such that gσ = 1N

3. There exists an A−linear map π : M → L such that πf = 1L.

If any of these hold, then φ : M → L⊕N is an isomorphism.

Proof. First, we prove φ is an isomorphism. Suppose φ(m) = 0. Then g · 1N (m) = jφ(m) = 0 implies m ∈ ker g = imf.

So there exists ` ∈ L such that m = f(`). Then i · 1L(`) = φf(`) = φ(m) = 0 and since i is injective, we have ` = 0
and thus m = 0. So φ is injective. Now, let (`, n) ∈ L ⊕ N. Since g is surjective, find m ∈ M such that g(m) = n.

Then φ(m) = (`′, n) for some `′ ∈ L. Consider φ(f(` − `′) + m). We see φ(f(` − `′) + m) = φf(` − `′) + φ(m) =
i · 1L(`− `′) + φ(m) = (`− `′, 0) + (`′, n) = (`, n). Thus φ is an isomorphism.

(1) ⇒ (2): Define σ : N → M by n 7→ φ−1((0, n)). Then gσ(n) = gφ−1((0, n)) = j(0, n) = n. Thus gσ = 1N .

(2) ⇒ (3): Let m ∈ M. Note that g(m−σg(m)) = g(m)−gσg(m) = 0 as gσ = 1N . Thus m−σg(m) ∈ ker g = imf. As f

is injective, there exists a unique ` ∈ L such that f(`) = m− σg(m). Define π : M → L by m 7→ f−1(m− σg(m)).
Then φ is a homomorphism and πf(`) = f−1(f(`)− σ gf︸︷︷︸

=0

(`)) = f−1(f(`)) = 1L.

(3) ⇒ (1): Define φ : M → L⊕N by m 7→ (π(m), g(m)). Then, for ` ∈ L, we see φ(f(`)) = (πf(`), gf(`)) = (`, 0) = i(`)
and for m ∈ M, we see jφ(m) = j(π(m), g(m)) = g(m). Thus the diagram commutes.

Example. Let A = R[x, y, z]/(x2 + y2 + z2 − 1). Consider g : A3 → A by (a, b, c) 7→ ax + by + cz. Note g is a surjective
homomorphism as g(x, y, z) = x2 + y2 + z2 = 1 ∈ img and since img is an ideal, this says img = A. Consider the short
exact sequence 0 → ker g ↪→ A3 g−→ A → 0. Define σ : A → A3 by 1 7→ (x, y, z). Note gσ(1) = 1, which implies gσ is the
identity on the basis for A. Thus gσ = 1A. By the proposition, the sequence splits and A3 ∼= A⊕ ker g.

Proposition 3.19. Let F be a free A−module and suppose 0 → L
f−→ M

g−→ F → 0 is exact. Then the sequence splits.

Proof. Let S be a basis for F. As g is onto, for all s ∈ S there exists ms ∈ M such that g(ms) = s. Define σ : F → M

by s 7→ ms. This gives a well defined map as S is a basis for F. Then by definition, gσ = 1S and thus gσ = 1F . Thus by
the proposition, the sequence splits.

Examples.

1. 0 → (2) → Z→ Z/(2) → 0 is a short exact sequence which does not split. Suppose that σ : Z/(2) → Z defined by
1 7→ m and 0 7→ 0 for some m ∈ Z. Then 0 = σ(0) = σ(2 · 1) = 2σ(1) = 2m ∈ Z. Thus m = 0 and so σ = 0. But
then, gσ = 0 6= 1.

2. Let G be a finite group, k a field such that char k 6= |G|. Let A = k[G] and V any A−module. Let W = {u ∈
V |gu = u for all g ∈ G}. Then W 6= ∅ as 0 ∈ W. So W is an A−submodule of V. So consider the short exact
sequence 0 → W ↪→ V → V/W → 0. This splits! Define ρ : V → W by v 7→ 1

|G|
∑

g∈G gv. Then for w ∈ W,

ρ(w) = 1
|G| |G|w = w. So ρi = 1W .

3. Let R be a PID and M a finitely generated R−module. Recall the torsion submodule of M is T (M) = {m ∈
M |rm = 0 for some r ∈ R \ {0}}. Also, M is called torsion free if T (M) = 0.

Remark. M/T (M) is torsion free.

Fact. Over a PID, finitely generated torsion free modules are free. (If A is a finitely generated abelian group, we
know A ∼= Zr ⊕ Z/(a1)⊕ · · · ⊕ Z/(an) and if torsion free, then it would just be A ∼= Zr).

Example. If R = Z[x], I = (2, x), then I is torsion free but not free (as I is not principal).

Thus 0 → T (M) → M → M/T (M) → 0 splits as M/T (M) is free. Hence T (M) is a direct summand of M.

4. Let R = k[x, y] for a field k (thus not a PID, but it is a UFD). Let M = R2/R(x2, xy). Then T (M) = R(x, y) ∼=
R/(x), but T (M) is not a direct summand of M.



Proof. Clearly, x(x, y) = (x2, xy) = 0. Thus (x, y) ∈ T (M). Suppose (a, b) ∈ T (M). Then there exists f ∈
k[x, y] \ {0} such that f(a, b) = 0 which implies f(a, b) = g(x2, xy) for some g ∈ k[x, y]. WLOG, assume g 6= 0 and
gcd(f, g) = 1. Then fa = x2g and fb = xyg which implies f |x2 and f |xy. Thus f = u or f = ux for u ∈ k∗. If
f = u, then (a, b) ∈ R(x2, xy) which says (a, b) = 0. If f = ux, then (a, b) ∈ R(x, y) (as a = u−1xy and b = u−1yg).
Thus T (M) = R(x, y).

Now suppose f(x, y) = 0. Then f(x, y) = g(x2, xy) which implies f = gx. So f ∈ (x). Define φ : R → R(x, y) by
r 7→ r(x, y). Then φ is onto and kerφ = (x). Thus R/(x) ∼= R(x, y) = T (M).

Now, we show the short exact sequence 0 → R/(x)
f−→ M

g−→ M/T (M) → 0 where f : r 7→ r(x, y) does not split.
Suppose it did. Let ρ : M → R/(x) be a splitting map so that ρf = 1. Let r = ρ(0, 1) and s = ρ(0, 1). Then

1 = ρ((x, y)) = ρ(x, 0) + ρ(0, y) = xρ(1, 0) + yρ(0, 1) = xr + ys = xr + ys.

Thus 1−xr− ys ∈ (x). So 1−xr− ys = px for some p, a contradiction (just plug in x = 0 and y = 0 to get 0 = 1).
Thus it doesn’t split.

5. Let R ⊆ S be commutative rings and suppose S is an integral domain (thus R is as well), R is a UFD, char R = 0
and S is a finitely generated R−module (thus S = Rx1 + ... + Rxn). Then R is a direct summand of S as an
R−module, that is, 0 → R → S → S/R → 0 splits.

Proof. Let E = Q(S) and F = Q(R). Then E is a finite vector space over F (generated by x1, ..., xn) and so
[E : F ] < ∞. Since char R = 0, we see char F = 0 and thus E/F is separable. Define ρ : S → R by s 7→ 1

[E:F ]TrE
F (s).

There is more work from here, but its beyond the scope of this course.

6. Theorem (Miyata): If R is a commutative, Noetherian ring and (∗)0 → L → M → N → 0 is a short exact
sequence of finitely generated R−modules, then (∗) splits if and only if M ∼= L⊕N.

This is not true in general. For example, let R = Z, F = ⊕∞n=1Z, T = ⊕∞n=1Z/2Z. Note that F/2F ∼= T. Consider
the short exact sequence 0 → F ⊕ T

φ−→ F ⊕ T
ψ−→ T → 0 defined by φ : (f, t) 7→ (2f, t) and ψ : (f, t) 7→ f. This

does not split.

Proof. Let ei denote the standard basis for F. Let ρ : F ⊕ T → F ⊕ T be a splitting map. Then ρφ = 1. Now
φ(e1) = 2e1 implies e1 = ρφ(e1) = 2ρ(e1) = 2

∑
aiei. Setting basis elements equal, we see e1 = 0 for i 6= 1 and

a1 = 1
2 , contradiction.

Note, however, that F ⊕ T ∼= (F ⊕ T )⊕ T as T ⊕ T = T (its a countable sum).

Definition 3.20. Let P be an A−module. Then P is called projective if whenever one has a diagram of the form

M
f // N // 0 exact

P

i

OO

∃h

``B
B

B
B

then there exists h : P → M such that i = fh (the diagram commutes). Note that this implies f and i are surjective.

Remark. Free modules are projective. Let F = P above, let S be a basis for F. For each s ∈ S, there exists ms ∈ M

such that f(ms) = i(s). Define h : F → M by h(s) = ms. Then the diagram commutes.

Example. Let R = Z[
√−5], I = (2, 1 +

√−5). Then I is projective, but not free (as it is not principal).

Proposition 3.21. Let A be a ring and P an A−module. TFAE



1. P is projective

2. there exists an A−module Q such that P ⊕Q is free

3. Every short exact sequence 0 → L → M → P → 0 splits.

Proof. (1) ⇒ (3): Let 0 → L
f−→ M

g−→ P → 0 be a short exact sequence. Since P is projective and we have 1P : P → P ,
there exists ρ : P → M such that the diagram below commutes:

0 // L
f // M

g // P // 0 exact

P

1P

OO

ρ

``AAAAAAAA

But then gρ = 1P and thus the SES splits.

(3) ⇒ (2): Let φ : F → P be a surjection, where F is free. Let Q = kerφ. Then 0 → Q → F → P → 0 is exact and
splits by (3). Thus F ∼= Q⊕ P.

(2) ⇒ (1):] Consider the diagram

M
f // N // 0 exact

P

i

OO

P ⊕Q

π

OOh

ZZ4
4

4
4

4
4

4
4

Since free modules are projective, there exists h : P ⊕ Q → M such that fh = iπ. Let j : P → P ⊕ Q be defined
by p 7→ (p, 0). Then hj : P → M. Also, f(hj) = fhj = iπj = i. Thus the diagram commutes.

Examples/Remarks.

1. Every free module is projective.

2. Every projective module over k[x1, ..., xn] (for a field k) is free. (Quillen-Suslin, 1975).

3. If R is a commutative Noetherian domain, then every non-finitely generated projective R−module is free (Bass,
1963).

4. Z/2Z is not a projective Z−module. Since the only map from Z/2Z → Z is the 0-map, the diagram below, with
f : 1 7→ 1, would never commute:

Z
f // Z/2Z // 0 exact

Z/2Z

i

OO

0

aaCCCCCCCC

5. Z/(6) ∼= Z/(2) ⊕ Z/(3). Since Z/(6) is free (as an Z/(6)−module), we see that Z/(2) and Z/(3) are projective
Z/(6)−modules. However, they are not free (just count elements...there are too few elements to be a direct sum of
copies of Z/(6).)

6. Let R = Z[
√−5], I = (2, 1 +

√−5). Then I is not free (it’s not principal), but it is projective.



Proof. Define φ : R2 → I by (a, b) 7→ 2a + (1 +
√−5)b. Let K = kerφ. We’ll show 0 → K → R2 → I → 0 splits.

Define ρ : I → R2 by x 7→ x
(

1−3
√−5
2 , 3

√−5
1+
√−5

)
. We need to show that the image is actually in R2, but to do that

it is enough to show for x = 2, 1 +
√−5 :

(1 +
√−5)

(
1− 3

√−5
2

)
=

1− 2
√−5 + 15

2
= 8−√−5, 2

(
3
√−5

1 +
√−5

)
=

6
√−5

1 +
√−5

= (1−√−5)(
√−5) ∈ R.

Since we are just multiplying, this is certainly a homomorphism. Note that φρ(x) = φ
(
x

(
1−3

√−5
2 , 3

√−5
1+
√−5

))
=

x(1− 3
√−5 + 3

√−5) = x. Thus the SES splits which says that I is a direct summand of a free module, and thus
projective.

7. Let G be a finite group and k a field such that char k - |G|. Let R = k[G].

Fact. Let M be any R−module and N any R−submodule of M. Then N is a direct summand of M.

Let M be any R−module, F any free module. Consider the short exact sequence 0 → kerφ → F
φ−→ M → 0.

Since kerφ is a summand, we get a splitting map. Thus F ∼= kerφ⊕M which implies every module is projective.
However, there exist non-free modules. Let M = R(

∑
g∈G g) = k(

∑
g∈G g). Then dimkM = 1 and dimkR = |G|.

Thus M cannot be a free R−module as the dimensions do not work out (unless of course |G| = 1.)

3.3 Localization

Let R be a ring. A set S ⊆ Z(R) is multiplicatively closed (mc) if ab ∈ S whenever a, b ∈ S.

Definition 3.22. Let R be a ring and S 6= ∅ a mcs of R. The localization of R at S is a ring T together with a ring
homomorphism φ : R → T such that

1. φ(s) is a unit in T for all s ∈ S.

2. If f : R → A is a ring homomorphism such that f(s) is a unit for all s ∈ S, then there exists a unique ring
homomorphism g : T → A such that

R
φ //

f

²²

T

∃!gÄÄ~
~

~
~

A

Proposition 3.23. If T exists, it is unique up to isomorphism

Proof. Show 2 maps compose to the identity

Notation. We denote T by S−1R or RS .

Theorem 3.24. RS exists.

Proof. Define an equivalence relation on R× S by (r1, s1) ∼ (r2, s2) if and only if t(s2r1 − s1r2) = 0 for some t ∈ S.

Claim: This defines an equivalence relation.

Proof: We show transitivity. Suppose (r1, s1) ∼ (r2, s2) and (r2, s2) ∼ (r3, s3). Then there exists t1, t2 ∈ S such that
t1s2r1 = t1s1r2 and t2s3r2 = t2s2r3. Then t1s2r1s3 = t1s1r2s3 and t2s3r2s1 = t2s2r3s1. Then t1t2s2(s3r1− s1r3) =
0.

Denote the equivalence class of (r, s) by r
s . Let RS := { r

s |(r, s) ∈ R × S}. Define +, · on RS in the usual manner
(this requires a little work to show its well-defined). Thus RS forms a ring with identity. The identity of RS is s

s

for any s ∈ S. Define φ : R → RS by r 7→ rs
s for any s ∈ S. This is a ring homomorphism. Let t ∈ S. Then



φ(t) = ts
s and φ(t)−1 = s

ts . Now, suppose f : R → A is a ring homomorphism such that f(s) is a unit for all s ∈ S.

Define g : RS → A by r
s 7→ f(r)f(s)−1. To show g is well-defined, suppose r1

s1
= r2

s2
. Then t(r1s2 − r2s1) = 0 for

some t ∈ S. So f(t)(f(s2)f(r1) − f(s1)f(r2)) = 0. This implies f(s2)f(r1) = f(s1)f(r2) as f(t) is a unit and thus
f(r1)f(s1)−1 = f(r2)f(s2)−1. To show that g is unique, suppose there exists g1 : Rs → A such that g1φ = f. Then, for
some t ∈ S, we see

g1

(r

s

)
f(s) = g1

(r

s

)
g1φ(s) = g1

(r

s

)
g1

(
st

t

)
= g1

(
rst

st

)
= g1φ(r) = f(r).

Thus g1( r
s ) = f(r)f(s)−1 = g( r

s ).

Remarks.

1. If S is a mcs of R, so is S′ = S ∪ {1}. Furthermore, RS
∼= RS′ . Thus, WLOG, we may assume 1 ∈ S and the

canonical ring homomorphism φ : R → RS is r 7→ r
1 .

2. 0 ∈ S if and only if RS = {0} (as 0(s2r1 − s1r2) = 0, i.e., there is only one equivalence class).

3. If S consists solely of units of R, then RS
∼= R.

4. If S consists solely of non-zero-divisors, then r1
s1

= r2
s2

if and only if s2r1 − s1r2 = 0. In particular, φ : R → RS is
one-to-one. So we can consider R as a subring of RS .

3 Important Examples of Localizations

1. Let x ∈ Z(R) and S = {xn}. The localization RS is denoted by Rx. Example. Z2 = Z[ 12 ]. (Don’t confuse this
with Z2 = {0, 1}.

2. Let R be a commutative ring and S = {x ∈ R|x is a non zero divisor}. Then RS is called the total quotient ring

of R, denoted Q(R). If R is a domain, Q(R) is the field of fractions of R.

3. Let R be a commutative ring, p 6= R a prime ideal. Let S = R − p. Then S is mc. In this case, we denote RS by
Rp. Example. Z(2) = {a

b |a, b ∈ Z, 2 - b}.

Definition 3.25. Let R be a commutative ring. The (prime) spectrum of R is SpecR = {p|p 6= R is a prime ideal of R}.
Examples.

1. If K is a field, then SpecK = {0}.

2. SpecZ = {(0), (p)|p is prime}.

3. SpecC[x] = {(0), (x− a)|a ∈ C}.

Proposition 3.26. Let R be commutative, I an ideal of R. Let V (I) = {p ∈ SpecR|p ⊇ I}. Then there exists a bijective
inclusion preserving correspondence V (I) ↔ Spec(R/I) defined by p ∈ V (I) 7→ p/I and q ∈ Spec(R/I) 7→ φ−1(q) where
φ : R → R/I is the canonical map r 7→ r.

Remarks.

1. If φ : R → S is a ring homomorphism and q ∈ SpecS, then φ−1(q) = {r ∈ R|φ(r) ∈ q} is a prime ideal of R.

2. If p ∈ V (I), then p/I ∈ Spec(R/I) as R/I/p/I ∼= R/p, a domain.

Examples.

1. SpecZ/(30) = {(2), (3), (5)}.



2. SpecC/(x2 + 1) = {(x + i), (x− i)}.

3. SpecR[x]/(x2 + 1) = {(0)}.

Proposition 3.27. Let R be a commutative ring, S a mcs of R. Then there exists a bijective inclusion preserving
correspondence {p ∈ SpecR|p∩S = ∅} ↔ SpecRS defined by p 7→ ps = pRs = {a

s |a ∈ p, s ∈ S} and q ∈ SpecRS 7→ φ−1(q)
where φ : R → RS is the canonical map r 7→ r

1 .

Proof. We will prove several claims.

Claim: pS is a proper prime ideal of RS .

Proof: Suppose a
s · b

t ∈ pS . Then ab
st = x

s′ for some x ∈ p, s′ ∈ S. Then there exists t′ ∈ S such that t′s′ab = t′stx ∈ p.

As t′, s′ ∈ S, t′s′ 6∈ p. So ab ∈ p which implies a ∈ p or b ∈ p. Thus a
s ∈ pS or b

t ∈ pS . Thus, its a prime ideal. To
show its proper, suppose ps = RS . Then 1

1 ∈ pS which implies 1
1 = a

s for a ∈ p, s ∈ S. Then there exists t ∈ S such
that t(s− a) = 0 which implies ts = ta ∈ p, but t, s ∈ S implies ts 6∈ p, a contradiction.

Claim: φ−1(p) ∈ SpecR for q ∈ SpecRS .

Proof: Since φ(1) = 1, if 1 ∈ φ−1(q), 1 ∈ q. So φ−1(q) is proper. It’s a prime ideal by the remark.

Claim: φ−1(ps) = p.

Proof: We know p ⊆ φ−1(pS). Suppose φ(r) ∈ pS . Then r
1 = a

s , a ∈ p, s ∈ S. Then there exists t ∈ S such that
tsr = ta ∈ p. Since t, s ∈ S, ts 6∈ p and so r ∈ p.

Claim: φ−1(q)S = q.

Proof: Let a
s ∈ φ−1(q)S , that is, a ∈ φ−1(q), s ∈ S. Then a

1 = φ(a) ∈ q. Thus a
s = a

1 · 1
s ∈ q as it is an ideal. Let x ∈ q.

Then x = r
s , r ∈ R, s ∈ S. Then sx = r

1 ∈ q. So r ∈ φ−1(q) which implies x = r
s ∈ φ−1(q)S .

Examples.

1. SpecZ2 = {(p)Z2|p > 2 is prime}.

2. SpecZ30 = {pZ30|p > 5 is prime}.

3. SpecZ(2) = {(0)Z(2), (2)Z(2)} as p ∩ S = ∅ if and only if (p) ⊆ (2) where S = R− (2).

Remark. If P ∈ SpecR, then SpecRP = {qp|q ∈ SpecR, q ⊆ P}. Thus RP has a unique maximal ideal, namely
PRP = PP .

Definition 3.28. A commutative ring which has a unique maximal ideal is called a local (or quasilocal) ring. Note:
For some, local means Noetherian and has a unique maximal ideal.

Remark. Let (R,m) be the local ring where m denotes the unique maximal ideal. Then x ∈ R is a unit if and only if
x 6∈ m.

Proof. x is a unit if and only if (x) = R if and only if (x) is not contained in any maximal ideal of R which is if and only
if x 6∈ m as m is the unique maximal ideal.

Note. Rm
∼= R. This is because Rm = RS where S = R−m and everything outside m is already a unit.

Examples.

1. Z/(8). The only prime ideal is (2).

2. C[[x]].
∑

aix
i is a unit if and only if a0 6= 0.



Proposition 3.29. Let S and T be mcs of R. WLOG, assume 1 ∈ S ∩ T. Then

1. ST = {st|s ∈ S, t ∈ T} is a mcs of R (containing both S and T ).

2. T
1 = { t

1 ∈ RS |t ∈ T} is a mcs of RS .

3. T
S = { t

s ∈ RS |t ∈ T, s ∈ S} is a mcs of RS .

Furthermore, RST
∼= (RS)T

1

∼= (RS)T
S
.

Proof. Note that 1,2,3 are trivial. For the last statement, we will use the fact (without proof) that if S consists of units of
R, then RST

∼= RT . Note T
S = T

1 · 1
S and 1

S consists of units of RS . Thus by the fact, (RS)T
S

∼= (RS)T
1
. So it is enough to

show RST
∼= (RS)T

1
. Consider the canonical map i : R → RST where r 7→ r

1 . Note i(s) is a unit for all s ∈ S as S ⊆ ST.

By the universal property, there exists a unique ring homomorphism g : RS → RST defined by r
s 7→ r

1 ·
(

s
1

)−1 = r
s . Note

that g( t
1 ) = t

1 is a unit in RST for all t ∈ T as T ⊆ ST. Thus, we can again use the universal property to obtain the
ring homomorphism φ : (RS)T

1
→ RST defined by

r
s
t
1
7→ r

s

(
t
1

)−1 = r
st . Now, consider the composition of canonical maps

ψ : R → RS → (RS)T
1
. Then ψ(st) =

st
1
1
1

, with inverse
1
s
t
1
. Thus ψ(st) is a unit for all s ∈ S, t ∈ T and so by the universal

property there exists a ring homomorphism ψ : RST → (RS)T
1

defined by r
st 7→

r
s
t
1
. It is obvious that φψ = ψφ = 1.

Corollary 3.30. Suppose S ⊆ T are mcs of R. Then (RS)T
S

∼= (RS)T
1

∼= RST
∼= RT as ST = T.

Corollary 3.31. Let S be a mcs and P ∈ SpecR such that P ∩ S 6= ∅. Then PS ∈ SpecRS and (RS)PS
∼= RP .

Proof. Recall RP = RT where T = R− P. Also, (RS)PS = (RS)T
S

∼= RT as P ∩ S 6= ∅ implies S ⊆ T.

Corollary 3.32. Let P ⊆ Q be prime ideals of R. Then P ∩ (R−Q) = ∅. Thus PQ ∈ SpecRQ and (RQ)PQ
∼= RP .

Example. (Z(2)) 2
1
. Let S = Z − (2) = {a ∈ Z|2 - a}, T = {2n|n ≥ 0}. Then, (Z(2)) 2

1
∼= (ZS)T

1

∼= ZST
∼= Q as

ST = Z \ {0}.
Definition 3.33. Let R be a commutative ring, I an ideal of R. The radical of I is

√
I = {r ∈ R|rn ∈ I, for some n ≥

0}. When I = (0), we call
√

(0) = nilradR = {a ∈ R|a is nilpotent} the nilradical.

Proposition 3.34. Let I be an ideal of R. Then
√

I = ∩P∈V (I)P where V (I) = {P ∈ SpecR|P ⊇ I}. In particular,
nilradR = ∩P∈SpecRP.

Proof. Let r ∈ √
I and P ∈ V (I). Then rn ∈ I for some n. As I ⊆ P, rn ∈ P. Thus r ∈ P as P is prime. Suppose

r 6∈ √
I. Then we will show there exists P ∈ V (I) such that r 6∈ P. Note Ir 6= Rr as otherwise 1

1 ∈ Ir which implies
1
1 ≡ i

rn , that is rm(rn − i) = 0 which implies rm+n = rmi ∈ I, a contradiction as that says r ∈ √I. Therefore, there
exists a prime (maximal) ideal of Rr containing Ir, that is, there exists P ∈ SpecR with r 6∈ √P = P such that Pr ⊇ Ir.

Let φ : R → Rr be the canonical map. Then P = φ−1(Pr) ⊇ φ−1(Ir) ⊇ I. So P ∈ V (I) and r 6∈ P.

Proposition 3.35. Let R be a commutative ring, I an ideal of R and S a mcs. Then S = {s = s + I|s ∈ S} is a mcs
of R/I. Then (R/I)S

∼= RS/IS .

Proof. Consider the canonical maps φ : R → R/I → (R/I)S . Note that φ(S) = S
1 is a unit for all x ∈ X. Thus there

exists a ring homomorphism f : RS → (R/I)S defined by r
s 7→ r

1 ·
(

s
1

)−1
= r

s . Clearly, f is surjective. Notice ker f = IS

as r
s ∈ ker f if and only if r

s = 0
1

if and only if there exists t ∈ S such that tr = 0 if and only if tr ∈ I for some t ∈ S if
and only if r

s ∈ IS . Thus, by the First Isomorphism Theorem, done.

Localization of Modules
Let R be a ring, S a mcs, M a left R−module. Define an equivalence relation on M × S by (m1, s1) ∼ (m2, s2) if and
only if there exists t ∈ S such that t(s2m1−s1m2) = 0. This defines an equivalence relation. Denote the equivalence class
of (m, s) by m

s . Let MS = {m
s |m ∈ M, s ∈ S}. Define m1

s1
+ m2

s2
:= s2m1+s1ms

s1s2
and r

s1
· m

s2
= rm

s1s2
. These are well-defined

and make MS an RS−module.



Proposition 3.36. Let R be a commutative ring, M an R−module. TFAE

1. M = 0

2. Mp = 0 for all p ∈ SpecR.

3. Mm = 0 for all maximal ideals m.

Proof. (1) ⇒ (2) ⇒ (3) is trivial. So we will only prove (3) ⇒ (1). Let x ∈ M and I = annRx = {r ∈ R|rx = 0}. Let m

be a maximal ideal of R. By (3), x
1 ∈ Mm = 0. Thus there exists t not in m such that tx = 0. So t ∈ I and I 6⊇ m. As m

is arbitrary, we must have I = R. Thus x = 0 as 1 ∈ I which implies M = 0.

Let f : M → N be an R−module homomorphism. Let S be a mcs. For s ∈ S, define f
s : MS → NS by m

s′ 7→ f(m)
ss′ .

This is a well-define RS−module homomorphism.

Proposition 3.37. Let (∗)0 → L
f−→ M

g−→ N → 0 be a short exact sequence of R−modules. Then (∗∗)0 → LS

f
1−→

MS

g
1−→ NS → 0 is a short exact sequence of RS−modules for any mcs S of R. Furthermore, if (∗) splits, then (∗∗) does.

Proof. f
1 is 1-1: Suppose f

1 ( `
s ) = 0. Then f(`)

s = 0
1 . Thus there exists t ∈ S such that tf(`) = 0, which implies

f(t`) = 0 and thus t` = 0. Therefore `
s ≡ 0

1 in LS .

g
1 is onto: Clear

im f
1 = ker g

1 : Since imf ⊆ ker g, gf = 0. Then g
1 · f

1 = 0. Hence, im f
1 ⊆ ker g

1 . Now, let m
s ∈ ker g

1 . Then
there exists t ∈ S such that g(tm) = 0. So tm ∈ ker g = imf. So tm = f(`). Thus tm

1 = f(`)
1 which implies

m
s = f(`)

st = f
1 ( `

st ) ∈ im f
1 .

Thus (∗∗) is exact. If (∗) splits, there exists h : N → M such that gh = 1N . Then g
1 · h

1 = 1NS
. Thus h

1 is the splitting
map for (∗∗).

Corollary 3.38. Suppose N ⊆ M are R−modules. Then (M/N)S
∼= MS/NS .

Proof. Since 0 → N → M → M/N → 0 is exact, the above says 0 → NS → MS → (M/N)S → 0 is exact. Thus
MS/NS

∼= (M/N)S .

Corollary 3.39. (A⊕B)S
∼= AS ⊕BS

Proof. Since 0 → A → A ⊕ B → B → 0 is split exact, so is 0 → AS → (A ⊕ B)S → BS → 0 is split exact. Thus
(A⊕B)S

∼= AS ⊕BS .

Exercise: (⊕i∈IAi)S
∼= ⊕i∈I(Ai)S .

Corollary 3.40. If F is a free R−module, then FS is a free RS−module.

Proof. Since F ∼= ⊕i∈IR, we see FS
∼= ⊕i∈IRS .

Corollary 3.41. If P is a projective R−module, then PS is a projective RS−module.

Proof. There exists Q such that P ⊕ Q ∼= F, a free module. Therefore PS ⊕ QS
∼= FS which is also free. So PS is a

projective RS−module.

Definition 3.42. Let R be a commutative ring. The Jacobson radical, denoted J(R), is defined to be the intersection
of all maximal ideals of R.

Examples. J(Z) = 0, J(k[x]) = 0, and J(Z/(12)) = (2) ∩ (3) = (6).

Remark. If x ∈ J(R), then 1− x is a unit.

Proof. If 1− x ∈ m, then 1 ∈ m, a contradiction. So 1− x 6∈ m for all maximal ideals m. Thus 1− x is a unit.



Lemma 3.43 (Nakayama’s Lemma). Let R be a commutative ring and M a finitely generated R−module. Suppose
M = JM where J = J(R). Then M = 0.

Proof. Choose a least n such that M is generated by n elements, say x1, ..., xn. We will show n = 0 (and so M = 0).
Let xn ∈ JM, so xn = j1x1 + ... + jnxn, ji ∈ J. Then (1 − jn)xn = j1x1 + ... + jn−1xn−1. Then, since 1 − jn is a unit,
xn = (1− jn)−1j1x1 + ... + (1− jn)−1jn−1xn−1 ∈ Rx1 + ... + Rxn−1, a contradiction to the minimality of n.

Corollary 3.44. Suppose N ⊆ M are R−modules and M is finitely generated. Suppose M = N +JM where J = J(R).
Then M = N.

Proof. Note that M/N = (N + JM)/N = J(M/N). Since M is finitely generated, so is M/N. By Nakayama’s Lemma,
M/N = 0.

Corollary 3.45. Let M be a finitely generated R−module. Let x1, ..., xn ∈ M. Then x1, ..., xn generate M if and only if
x1, ..., xn generate M/JM where J = J(R).

Proof. Note that (⇒) is trivial. To show (⇐), let N = Rx1 + ... + Rxn. Since x1, ..., xn generate M/JM, we have
(N + JM)/JM = M/JM which implies M = N + JM which implies M = N.

Notation. If M is an R−module, let µR(M) = inf{n|M = Rx1 + ... + Rxn for some x1, ..., xn ∈ M} = the minimal
number of generators for M.

Corollary 3.46. Let M be a finitely generated R−module, J = J(R). Then µR(M) = µR/J (M/JM).

Corollary 3.47. Suppose (R,m) is local. For any finitely generated R−module M, µR(M) = dimR/mM/mM. In
particular, any two minimal generating sets for M have the same number of elements.

Proof. Since R/m is a field, µR(M) = µR/m(M/mM) = dimR/mM/mM.

Proposition 3.48. Let (R,m) be a local ring and P a finitely generated projective R−module. Then P is free.

Proof. We will use the fact (without proof) that ⊕Mi/I(⊕Mi) ∼= ⊕(Mi/IMi). Let n = µR(P ) = dimR/m(P/mP ). Let
x1, ..., xn be a minimal generating set for P. Define φ : Rn → P by ei 7→ xi. Then φ is surjective. Let K = kerφ.

Then we have the short exact sequence 0 → K → Rn φ−→ P → 0. This splits as it ends with a projective module.
So Rn ∼= P ⊕ K and K is finitely generated (as Rn is finitely generated and Rn → P ⊕ K → K is onto). Then
Rn/mRn ∼= (P ⊕K)/m(P ⊕K) which implies (R/m)n ∼= (P/mP ) ⊕ (K/mK) by our fact. This is an isomorphism as
R/m vector spaces. Taking the dimensions of both sides, since dim(R/m)n = n = dimP/mP, we have dimK/mK = 0,

that is, K/mK = 0 and thus K = mK. Since K is finitely generated, K = 0 by Nakayama’s Lemma and thus φ is an
isomorphism. Thus Rn ∼= P.

3.4 Category Theory and the Hom Functor

Definition 3.49. A category C consists of a class of objects (denoted by Obj C) and a set of morphisms HomC(A,B)
for every pair of objects A, B of C such that

1. (Composition) there exists a function HomC(B,C) × HomC(A, B) → HomC(A,C) sending (f, g) 7→ f ◦ g for all
objects A, B,C.

2. (Associativity) (fg)h = f(gh) for all morphisms f, g, h where (fg)h is defined.

3. (Identity) For all objects A of C there exists 1A ∈ HomC(A,A) such that for all objects B of C we have 1Af = f

for all f ∈ HomC(B, A) and f1A = f for all f ∈ HomC(A, B).



Examples.

1. The category of sets: <<Sets>> has sets as objects and functions as morphisms.

2. The category of groups: <<Groups>> has groups as objects and group homomorphisms as morphisms. This
category has the subcategory <<Abel>> of abelian groups. Note that a subcategory is called a full subcategory

if it retains all of the morphisms.

3. For a commutative ring R, the category of R−algebras: <<R−algebra>> has R−algebras as objects and R−algebra
homomorphisms (φ : S → T where S, T are R−algebras such that φ is a ring homomorphism where φ(rs) = rφ(s)
for all r ∈ R) as the set of morphisms.

Note. Every ring is a Z−algebra. Thus <<Z−algebras>> = <<Rings>>.

4. For a commutative ring R, the category of left R−modules is written << R−mod>> and the category of right
R−modules is written << mod−R >>.

Special Cases

(a) << Z−mod>> = << Abel>>

(b) If k is a field, << k−mod>> = << k−vector spaces>>

Definition 3.50. Let C and D by categories. A (covariant) functor F : C → D is a rule which associates to each
object A of C an object F (A) of D and for each morphism f ∈ HomC(A,B) a morphism F (f) ∈ HomD(F (A), F (B))
with the following properties:

1. F (fg) = F (f)F (g) for all morphisms f, g of C where fg is defined.

2. F (1A) = 1F (A) for all objects A of C.

Examples.

1. The forgetful functor F :<<Groups>>→<<Sets>> defined by sending a group G to the set G and the group
homomorphism g to the function g. Another forgetful functor is F ′ :<< R−mod>>→<<Abel>> .

2. The Localization functor: F :<< R−mod>>→<< RS−mod>> where F (M) = MS and F (f) = f
1 .

3. The Modding Out functor: Let I be a 2-sided ideal of R. Then we can define F :<< R−mod>>→<< R/I−mod>>

by F (M) = M/IM and for an R−homomorphism f : M → M, F (f) : M/IM → N/IN where m + IM 7→
f(m) + IN.

Note. You can mod out by a left ideal, however the functor would then be << R−mod>>→<< R−mod>> .

Definition 3.51. Let M, N be left R−modules. Then HomR(M,N) denotes the set of left R−module homomorphisms
from M → N.

Remarks.

1. HomR(M,N) is an abelian group.

2. Generally, HomR(M,N) is not a left R−module, unless R is commutative.

3. Let M be a left R−module. Define a functor HomR(M,−) :<< R−mod >>→<< Abel >> by HomR(M,−)(N) =
HomR(M,N) and if f : N1 → N2 is an R−module homomorphism, then f∗ := HomR(M,−)(f) : HomR(M, N1) →
HomR(M,N2) defined by g 7→ fg. Note that (fg)∗ = f∗g∗ and (1N )∗ = 1HomR(M,N) (and thus it really is a functor).

Definition 3.52. A contravariant functor F : C → D is a rule which associates to each object A of C an object F (A)
of D and for every pair of objects A, B of C a map HomC(A,B) → HomD(F (B), F (A)) defined by f 7→ F (f) such that
F (fg) = F (g)F (f) and F (1A) = 1F (A).



Example. Let N be a left R−module. Define the contravariant functor HomR(−, N) :<< R−mod >>→<< Abel >>

by M 7→ HomR(M,N) and (f : M1 → M2) 7→ (f∗ : HomR(M2, N) → HomR(M1, N)) where g 7→ gf. One can check
that (fg)∗ = g∗f∗.

Definition 3.53. Let F be a functor (of either variance) on module categories. We say F is additive if for every
pair of objects A,B of the initial category, the map F : HomC(A,B) → HomD(F (A), F (B)) (or F : HomC(A, B) →
HomD(F (B), F (A))) is a group homomorphism, that is, F (f + g) = F (f) + F (g) for all f, g ∈ HomC(A,B).

Remarks.

1. Localization, Modding Out, and the Hom functors are all additive.

2. Suppose A
f−→ B

g−→ C is exact and let F be an additive covariant functor. Consider F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C).
In general, this is not exact - but we do still get imF (f) ⊆ kerF (g).

Proof. This is equivalent to showing F (g)F (f) = 0. Of course, F (g)F (f) = F (gf) = F (0) = 0 as F is additive
(F (0) = F (0) + F (0) implies F (0) = 0).

Definition 3.54. As additive functor on module categories is exact if whenever A
f−→ B

g−→ C is exact in the initial
category, then F (A)

F (f)−−−→ F (B)
F (g)−−−→ F (C) is exact (or in the contravariant case F (C) → F (B) → F (A) is exact).

Suppose F is covariant. Say F is left exact if

0 → A → B → C exact implies 0 → F (A) → F (B) → F (C) is exact

and F is right exact if

A → B → C → 0 exact implies F (A) → F (B) → F (C) → 0 is exact.

Suppose F is contravariant. Say F is left exact if

A → B → C → 0 exact implies 0 → F (C) → F (B) → F (A) is exact

and F is right exact if

0 → A → B → C exact implies F (C) → F (B) → F (A) → 0 is exact.

Proposition 3.55. Let F be an additive functor. TFAE

1. F is exact

2. F takes short exact sequences to short exact sequences

3. F is both left and right exact.

Remark. We’ve shown localization is an exact covariant functor.

Proposition 3.56. The modding out functor is right exact, but not generally exact.

Proof. Let I be a left ideal of R, L
f−→ M

g−→ N → 0 an exact sequence of R−modules. Consider L/IL
f−→ M/IM

g−→
N/IN → 0 where f(` + IL) = f(`) + IM and g(m + IM) = g(m) + IN. As g is onto, so is g. Also, imf ⊆ ker g as
modding out is an additive functor. So we need only show imf ⊇ ker g. Let x ∈ ker g. Then g(x) = g(x) = 0 which
implies g(x) ∈ IN. Thus there exists ij ∈ I, nj ∈ N such that g(x) =

∑k
j=1 ijnj . Let uj ∈ M such that g(uj) = nj . Then

g(x) =
∑

ujg(uj) = g(
∑

ijuj). Thus g(x −∑
ijuj) = 0 which implies x −∑

ijuj ∈ ker g = imf. Let ` ∈ L such that
f(`) = x−∑

ijuj . Then f(`) = x ∈ imf.



To show it is not always left exact, consider 0 → Z 2−→ Z where n 7→ 2n. Modding out by (2) gives us 0 → Z/2Z 2−→ Z/2Z
where n 7→ 2n = 0. Thus the map is not injective.

Proposition 3.57. Let M be a left R−module. Then HomR(M,−) and HomR(−, M) are both left exact, but not
generally exact.

Proof. We will prove only for HomR(M,−). Let 0 → A
f−→ B

g−→ C be exact and consider 0 → HomR(M,A)
f∗−→

HomR(M,B)
g∗−→ HomR(M,C). As f is 1-1, we have fh = f∗(h) = 0 which implies h = 0. Thus f∗ is 1-1. By additivity,

imf∗ ⊆ ker g∗. Thus we need only show imf∗ ⊇ ker g∗. Let h ∈ ker g∗ where h : M → B. So g∗(h) = gh = 0. This says
imh ⊆ kerg = imf. Thus for all m ∈ M there exists a unique am ∈ A such that f(am) = h(m). Define k : M → A by
k(m) = am. Then k ∈ HomR(M, A) and f∗(k) = h ∈ imf∗.

To show it is not always right exact, consider Z 2−→ Z→ Z/2Z→ 0. This gives us HomZ(Z/2Z,Z) → HomZ(Z/2Z,Z) →
HomZ(Z/2Z,Z/2Z) → 0. Now, the first two modules are 0 and the last is isomorphic to Z/2Z. Thus it does not preserve
surjectivity.

Proposition 3.58. Let R be a ring and P a left R−module. Then P is projective if and only if HomR(P,−) is exact.

Proof. We will only prove the forward direction. The backward direction is similar. Let 0 → A
f−→ B

g−→ C → 0 be exact
and apply the Hom functor:

0 → Hom(P,A)
f∗−→ Hom(P, B)

g∗−→ Hom(P, C) → 0.

By the previous proposition, it is enough to show g∗ is onto. Let h ∈ HomR(P,C). By the definition of projective, there
exists k : P → B such that gk = h which implies g∗(k) = h. Thus h ∈ img∗ and is thus onto.

3.5 Tensor Products

Definition 3.59. Let R, S be rings. An R − S bimodule is a left R−module M which is also a right S−module such
that (rm)s = r(ms) for all r ∈ R, s ∈ S, m ∈ M.

Examples.

1. Any ring R is an R−R bimodule.

2. Let S be an R−algebra (ρ : R → S, ρ(R) ⊆ Z(S), R commutative). Any left S module is an S − R bimodule via
m · r = ρ(r)m for all r ∈ R, m ∈ M (in general, we will just say m · r = rm for simplicity).
Check: (sm)r = r(sm) = (rs)m = (sr)m = s(rm) = s(mr).

Special Case.

1. If R is a commutative ring, every left R−module is an R−R bimodule (R is an R−algebra)

2. Any ring is a Z−algebra (as every ring is an abelian group). Thus every left R−module is an R− Z bimodule.

3. S = Mn(k), k a field. Any left S−module is an S − k bimodule (i.e., every left S−module is a k−vector space).

Remark. Let M be an R−S bimodule and N a left R−module. Then HomR(M, N) is a left S module via (sf)(m) :=
f(ms). Check: (sf)(rm) = f((rm)s) = f(r(ms)) = rf(ms) = r(sf)(m).
If M is an R − S bimodule, then HomR(M,−) :<< R −mod >>→<< S −mod >> . Check: Suppose f : N1 → N2

is an R−module homomorphism. Then we have f∗ : HomR(M, N1) → HomR(M, N2) defined by g 7→ fg and we see
f∗(sg)(m) = f ◦ (sg)(m) = f(g(ms)) = sfg(m). Thus f∗(sg) = sf∗(g).

Similarly, if S is an R− S bimodule, then HomR(M, N) is a right S−module via fs(m) = f(m)s.

Definition 3.60. Let A be a right R−module and B a left R−module. An R−biadditive map on A×B is a function
f : A×B → G where G is an abelian group such that for ai ∈ A, bi ∈ B, r ∈ R



1. f(a, b1 + b2) = f(a, b1) + f(a, b2)

2. f(a1 + a2, b) = f(a1, b) + f(a2, b)

3. f(ar, b) = f(a, rb)

Definition 3.61. Let A be a right R−module, B a left R−module. The tensor product of A,B is an abelian group
A ⊗R B and an R−biadditive map φ : A × B → A ⊗R B such that given any R−biadditive map f : A × B → T (an
abelian group), there exists a unique group homomorphism f̃ : A⊗R B → T such that f̃φ = f.

Note. Hom and ⊗ are in some sense adjoints of each other.

Exercise. If it exists, A⊗R B is unique up to isomorphism.

Theorem 3.62. A⊗R B exists.

Proof. Let F = ⊕(a,b)∈A×BZ (a free Z−module). Let [a, b] be the standard basis element with 1 in the [a, b]th coordinate
and 0’s elsewhere. Thus every element of F is uniquely expressed as

∑n
i=1 mi[ai, bi]. Let S be the subgroup of F generated

by all the elements of the form

[a, b1 + b2]− [a, b1]− [a, b2], [a1 + a2, b]− [a1, b]− [a2, b], [ar, b]− [a, rb].

Define A⊗R B = F/S, with generating elements a⊗b = [a, b]+S. (Note: For m ∈ Z,m > 0, we have m(a⊗b) = (ma)⊗b.

So every element looks like
∑

ai ⊗ bi, but is non uniquely represented).

Claim: The tensor product is biadditive, that is,

1. a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2

2. (a1 + a2)⊗ b = a1 ⊗ b + a2 ⊗ b

3. (ar)⊗ b = a⊗ (rb).

Proof: Since [a, b1 + b2] − [a, b1] − [a, b2] ∈ S, we know [a, b1 + b2] + S = [a, b1] + S + [a, b2] + S. Thus (1) holds.
Similarly, (2) and (3) are true.

Define φ : A×B → A⊗R B by (a, b) 7→ a⊗ b. By the remarks above, φ is clearly biadditive.
Now, let f : A × B → T be a biadditive map. Define f ′ : F → T by [a, b] 7→ f(a, b). As f is biadditive, S ⊆ ker f ′.

Thus there exists an induced homomorphism f̃ : F/S → T defined by [a, b] 7→ f(a, b), that is f̃ : A ⊗R B → T with
a⊗ b 7→ f(a, b). This makes the diagram commute. Clearly, f̃ is unique since A⊗R B is generated by {a⊗ b|a ∈ A, b ∈
B}.

Example. Z/2Z⊗ZZ/3Z ∼= 0. A typical generator looks like a⊗b. Since 2, 3 are relatively prime, there exists r, s, p, q ∈ Z
such that a = 2r + 3s, b = 2p + 3q. Thus a⊗ b = 3s⊗ 2p = 2s⊗ 3p = 0⊗ 0 = 0.

Proposition 3.63. Let R be a ring, f : A1 → A2 an R−homomorphism of right R−modules and g : B1 → B2 an
R−homomorphism of left R−modules. Then there exists a unique group homomorphism f ⊗ g : A1 ⊗R B1 → A2 ⊗R B2

defined by a⊗ b 7→ f(a)⊗ g(b).

Proof. Define f × g : A1×B1 → A2⊗R B2 by (a, b) 7→ f(a)⊗ g(b). Clearly this is R−biadditive. Thus we get the unique
homomorphism f × g.

Remarks. (f1 + f2)⊗ g = f1 ⊗ g + f2 ⊗ g and (f ⊗ g)(h⊗ `) = fh⊗ g`.

Corollary 3.64. Let R be a ring and A a right R−module. Define A ⊗R − :<< R − mod >>→<< Abel >> by
B 7→ A⊗R B and (f : B1 → B2) 7→ (1A ⊗ f : A⊗R B1 → A⊗R B2). Then A⊗R − is an additive covariant functor.

Note. If A is a left R−module, we get −⊗R B :<< mod−R >>→<< Abel >> .



Theorem 3.65. Let A be a right R−module. Then A⊗R − is right exact.

Proof. Let L
f−→ M

g−→ N → 0 be an exact sequence of left R−modules. We want to show A ⊗R L
1⊗f−−−→ A ⊗R M

1⊗g−−→
A⊗R N → 0 is exact.

1 ⊗ g is onto: Since A ⊗ N is generated by a ⊗ n, it is enough to show a ⊗ n ∈ im(1 ⊗ g). For n ∈ N, there exists
m ∈ M such that g(m) = n as g is onto. Then (1⊗ g)(a⊗m) = a⊗ g(m) = a⊗ n.

im(1⊗ f) ⊆ ker(1⊗ g): Notice (1⊗ g)(1⊗ f) = 1⊗ gf = 1⊗ 0 = 0.

im(1 ⊗ f) ⊇ ker(1 ⊗ g): By the above, we get an induced map 1⊗ g : A ⊗R M/im(1 ⊗ f) → A ⊗R N defined by
a⊗m 7→ a ⊗ g(m). It is enough to show 1⊗ g is 1-1. Define h : A × N → A ⊗M/im(1 ⊗ f) by (a, n) 7→ a⊗m

where m ∈ M is such that g(m) = n.

Claim: h is well-defined.
Proof: Suppose g(m1) = g(m2) = n. Since g(m1 −m2) = 0, we have m1 −m2 ∈ ker g = imf. Let ` ∈ L such

that f(`) = m1 −m2. Then a⊗m1 − a⊗m2 = a⊗ (m1 −m2) = a⊗ f(`) = (1⊗ f)(a⊗ `) ∈ im(1⊗ f). Thus
a⊗m1 = a⊗m2.

It is easy to show h is R−biadditive. Thus, there exists a unique group homomorphism h̃ : A ⊗R N → A ⊗R

M/im(1 ⊗ f) defined by a ⊗ n 7→ h(a,m). Note that h̃(1 ⊗ g)(a⊗m) = a⊗m. Thus it fixes the generating set,
which is enough to say h̃(1⊗ g) = 1. Thus 1⊗ g is injective and thus ker(1⊗ g) = im(1⊗ f).

Example. Z/2Z ⊕Z − is not exact. Consider the injection 0 → Z 2−→ Z defined by m 7→ 2m. This yields 0 →
Z/2Z⊗Z Z 1⊗2−−→ Z/2Z⊗Z Z defined by a⊗m 7→ a⊗ 2m = 2a⊗m = 0, but Z/2Z⊗Z Z is not 0.

Proposition 3.66. Let M be a left R−module. Then there exists a group isomorphism f : R ⊗ M → M defined by
r ⊗m 7→ rm.

Proof. Define f ′ : R × M → M defined by (r,m) 7→ rm. This is R−biadditive. Thus we have the unique group
homomorphism f : R ⊗ M → M. Define g : M → R ⊗ M by m 7→ 1 ⊗ m. This is clearly well defined and a group
homomorphism. Also fg = gf = 1. So f is an isomorphism.

Proposition 3.67. Let R,S be rings, M an S−R bimodule and N a left R−module. Then M ⊗R N is a left S−module
under the action s(

∑
mi ⊗ ni) =

∑
(smi)⊗ ni.

Proof. The S−module axioms are trivial. Thus we just need to show it is well-defined. Let s ∈ S. Define µS : M ×N →
M⊗RN by (m,n) 7→ (sm, n). We see µS is R−biadditive. Thus we get the group homomorphism µ̃S : M⊗RN → M⊗RN

defined by m⊗ n 7→ (sm)⊗ n. Define s(
∑

mi ⊗ ni) = µ̃S(
∑

mi ⊗ ni) =
∑

µ̃s(mi ⊗ ni) =
∑

(smi)⊗ ni. Thus it is well-
defined.

Corollary 3.68. In this situation, M ⊗R − :<< R−mod >>→<< S −mod >> .

Examples.

1. If R is commutative, every R−module M is an R−R bimodule. So M ⊗R− :<< R−mod >>→<< R−mod >> .

2. Let k be commutative and R a k−algebra. Let M be a right R−module. Then M is a k − R bimodule. So
M ⊗R − :<< R−mod >>→<< k −mod >> .

Theorem 3.69. Let R, S be rings, A a right R−module, B an R − S bimodule, and C a left S−module. Then there
exists a group isomorphism g : A⊗R (B ⊗S C) → (A⊗R B)⊗S C defined by a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c. In addition, if A

is an R−R bimodule, then g is a homomorphism of left R−modules.

Proof. Fix a ∈ A. Define ga : B × C → (A⊗R B)⊗S C by (b, c) 7→ (a⊗ b)⊗ c.



Claim: ga is S−biadditive.

Proof: Let s ∈ S. Then ga(bs, c) = (a⊗ (bs))⊗ c = ((a⊗ b)s)⊗ c = (a⊗ b)⊗ (sc) = ga(b, sc). The other properties
follow similarly.

So there exists a unique group homomorphism g̃a : B⊗SC → (A⊗RB)⊗SC. Now, define f : A×(B⊗SC) → (A⊗RB)⊗SC

by (a, x) 7→ g̃a(x). A little work shows f is also biadditive. Thus, we get f̃ : A⊗R (B ⊗S C) → (A⊗R B)⊗S C defined
by a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c. Analogously, there exists a homomorphism h̃ : (A⊗R B)⊗S C → A⊗R (B⊗S C) defined by
(a⊗ b)⊗ c 7→ a⊗ (b⊗ c). Then f̃ h̃ = h̃f̃ = 1 (its clearly true on the generators and thus all elements as they are group
homomorphisms). Take g = f̃ .

To show g is a homomorphism of left R−modules when A is an R−R bimodule, just need to check the following:

g(r(a⊗ (b⊗ c))) = g((ra)⊗ (b⊗ c))
= (ra)⊗ b)⊗ c

= (r(a⊗ b))⊗ c

= r((a⊗ b)⊗ c) = rg(a⊗ (b⊗ c)).

Change of Rings

Proposition 3.70. Let φ : R → S be a ring homomorphism. Let M be a left R−module. Then S ⊗R M is a left
S−module. Thus S ⊗R − :<< R−mod >>→<< S −mod >> .

Proof. Note that S is an S −R bimodule, where s · r = sφ(r).

Examples.

1. If I is a 2 sided ideal, then R/I ⊗R M is a left R/I module. In particular, R/m⊗R M is an R/m vector space (as
R/m is a field).

2. If S is a multiplicatively closed set, then RS ⊗R M (∼= MS) is an RS−module.

3. Let φ : G1 → G2 be a group homomorphism. Then there exists an induced ring homomorphism φ̃ : k[G1] → k[G2]
sending g 7→ φ(g) for a field k. Let V be a left k[G1]−module. Then k[G2] ⊗k[G1] V is a left k[G2]−module. This
is called the induced representation of V to G2.

Proposition 3.71. If I is a 2 sided ideal, then R/I ⊗R M → M/IM defined by r ⊗m 7→ rm is an isomorphism.

Exercise. Let F be an additive functor on module categories. Then F preserves split exact sequences, that is, if F

is covariant and 0 → A
f−→ B

g−→ C → 0 is split exact, then 0 → F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) → 0 is split exact. In
particular, F preserves the split exactness of 0 → A → A⊕ C → C → 0. Hence, F (A⊕ C) ∼= F (A)⊕ F (C).

Corollary 3.72. Hom(A⊕B, C) ∼= Hom(A, C)⊕Hom(B, C)
Hom(A, B ⊕ C) ∼= Hom(A,B)⊕Hom(A,C)
A⊗R (B ⊕ C) ∼= (A⊗R B)⊕ (A⊗R C)

Note. By induction, we can show the Corollary is true for finite sums. In general, this does not apply to infinite sums
with the Hom functors, however, it is true for the tensor product.

Proposition 3.73. Let A be a right R−module and {Bi}i∈I a family of left R modules. Then A ⊗R (⊕i∈IBi) ∼=
⊕i∈I(A⊗R B) via a⊗ (bi) 7→ (a⊗ bi).

Example. Rm ⊗R Rn ∼= Rm ⊗ (⊕n
i=1R) ∼= ⊕n

i=1(R
m ⊗R R) ∼= ⊕n

i=1R
m ∼= Rmn.

Corollary 3.74. Suppose φ : R → S is a ring homomorphism. If F is a free left R−module, then S ⊗R F is a free left
S−module.



Proof. Recall F ∼= ⊗i∈IR. So S ⊗ F ∼= ⊕i∈I(S ⊗R R) ∼= ⊕i∈IS, a free left S−module.

Corollary 3.75. Let P be a projective left R−module. Then S ⊗R P is a projective left S−module.

Proof. Recall that there exists a left R−module Q such that P ⊕Q = F, a free R−module. Then (S⊗R P )⊕ (S⊗R Q) ∼=
S⊗R (P⊕Q) = S⊗RF, a free S−module. Thus S⊗RP is a direct summand of a free S module and is thus projective.

Definition 3.76. Let R be a commutative ring, M an R−module. An element m ∈ M is torsion if there exists a non
zero divisor r ∈ R such that rm = 0. Say M is torsion free if the only torsion element is 0.

Note. Ideals are always torsion free (as if r · i = 0, then either r is a zero divisor or i = 0.

Example. Let R = k[[x, y]]/(xy), k is a field. This is local. Let m = (x, y)R, the maximal ideal. Then m is torsion free.

Claim: x⊗ y ∈ m⊗m is torsion.

Proof: We can see x+y is not a zero divisor in R. However, (x+y)(x⊗y) = (x+y)x⊗y = (x+y)⊗(xy) = (x+y)⊗0 = 0.

(In fact, AnnRx⊗ y = m).

Claim: x⊗ y 6= 0.

Proof: Recall if (R, m) is local and M is finitely generated, then the minimal number of generators, µR(M) =
dimR/mM/mM. Consequently, µR(M ⊗ N) = µR(M)µR(N) (if M, N are f.g.). Let h = (x, y)k[[x, y]]. Clearly,
µk[[x,y]](h) = 2. Note that m = n/(xy) and m/m2 = n/(xy)

n2/(xy) = n/n2. So µR(m) = µk[[x,y]](n) = 2. Thus µR(m⊗m) =
4. Every element of m⊗m is an R−linear combination of x⊗ x, x⊗ y, y⊗ x, y⊗ y, which implies this is a minimal
generating set and thus x⊗ y 6= 0.

Example. Let R = k[[x, y]],m = (x, y)R. Note R is a domain (so there are no zero divisors). In m ⊗ m, consider
u = x ⊗ y − y ⊗ x. Note that u 6= 0 as x ⊗ y, y ⊗ x are generators and thus basis elements in R/m, a field. Let r ∈ m.

Then ru = r ⊗ xy − r ⊗ xy = 0. Thus AnnRu = m.

Theorem 3.77 (Hom - Tensor adjointness). Let R, S be rings, A a left R−module, B an S − R bimodule, C a left
S−module. Then

HomS(B ⊗R A,C) ∼= HomR(A,HomS(B, C)).

Note that this is an isomorphism of abelian groups. However, if A is an R − S bimodule, then it is an isomorphism of
left S−modules.

Proof. Let f ∈ HomS(B ⊗R A,C). Fix a ∈ A. Define fa : B → C by b 7→ f(b⊗ a).

Claim: fa is S−linear.

Proof: fa(sb) = f((sb)⊗ a) = f(s(b⊗ a)) = sf(b⊗ a) = sfa(b) as f is S−linear. Additivity follows similarly. Thus
fa ∈ HomS(B,C).

Define f̃ : A → HomS(B,C) by a 7→ fa. This is R−linear as f̃(ra) = fra and rf̃(a) = r · fa implies r · fa(b) = fa(br) =
f(br) × a) = f(b × (ra)) = fra(b). Now, define τ : HomS(B ⊗R A,C) → HomR(A,HomS(B, C)) by f 7→ f̃ . Check
that this is additive (and thus a group homomorphism. Let f ∈ HomR(A,HomS(B, C)). Define g′ : B × A → C by
(b, a) 7→ g(a)(b).

Claim: g′ is R−biadditive.

Proof: g′(br, a) = g(a)(br) = (r ·g(a))(b) as HomS(B, C) is a left R−module. Now, (r ·g(a))(b) = g(ra)(b) = g′(b, ra)
by definition of g.

Thus we get g : B ⊗R A → C defined by b⊗ a 7→ g(a)(b). Now, define π : HomR(A,HomS(B, C)) → HomS(B ⊗R A, C)
by g 7→ g. Check that π is additive and πτ = τπ = 1.



3.6 Noetherian/Artinian Rings

Definition 3.78. Let R be a ring and M a left R−module. We say M is left Noetherian if every ascending chain of
left R−submodules of M stabilizes, that is, if M0 ⊆ M1 ⊆ · · · is an ascending chain of left R−submodules, then there
exists n such that Mn = Mn+1 = Mn+2 = · · · . Say M is left Artinian if every descending chain of left R−modules of
M stabilizes. Say R is a left Noetherian/Artinian ring if R is left Noetherian/Artinian as an R−module. Say R is
Noetherian/Artinian if it is both left and right Noetherian/Artinian.

Remarks.

1. Every division ring (and thus every field) is both Noetherian and Artinian (since the only ideals are 0 and 1).

2. Let R be a ring and D ⊆ R a division ring. Suppose R is finite dimensional as a D−module. Then R is Noetherian
and Artinian. (The length of every proper ascending/descending chain of D−submodules over R is bounded by
dimDR.)

3. Any PID is Noetherian (but not necessarily Artinian). For example Z is not Artinian as (2) ( (4) ( (8) ( · · · does
not stabilize.

Example. Let R = Mn(k), where k is a field. Then dimkR = n2. So R is Noetherian and Artinian.

Theorem 3.79 (Hilbert Basis Theorem). Let R be a commutative Noetherian ring. Then R[x] is Noetherian.

Corollary 3.80. If R is a commutative Noetherian ring, then R[x1, ..., xn] is Noetherian.

Fact. Any left Artinian ring is left Noetherian. (We will prove this later, once we build up more machinery).

The fact is not true for modules. Let R = Z(2) ⊆ Q. Note that every element of Q can be expressed uniquely as u2` for
some u ∈ R which is a unit and ` ∈ Z.

Claim: The only R−submodules of Q are N` = R2` for ` ∈ Z and 0,Q.

Proof: First note

• · · · ) N`−1 ) N` ) N`+1 ) · · ·
• ∪`N` = Q.

Now, let N be an R−submodule of Q such that N 6= 0,Q. Choose smallest ` such that N` ⊆ N (such an ` exists
as N` ( N`−1 ( · · · ).

Subclaim: N = N`.
Proof: Choose n ∈ N. Then n = u2r. Note that r ≥ ` as otherwise 2r ∈ N which implies Nr ⊆ N. Then
n = u2r = u2r−`2` and since u2r−` ∈ R, we see n ∈ N`.

Now, let M = Q/N0 = Q/R. Then the R−submodules of M are

M ) · · · ) N`/R ) N`−1/R ) · · · ) N0/R = 0.

Clearly, M satisfies DCC on R−submodules, but not ACC.

Proposition 3.81. Let R be a ring and 0 → A → B → C → 0 a short exact sequence of left R−modules. Then B is
left Noetherian (resp Artinian) if and only if A and C are.

Proof. We will prove for Noetherian modules. The proof for Artinian is similar. WLOG, we may assume A ⊆ B and
C = B/A. Now, the forward direction is clear. To prove the backward direction, let B1 ⊆ B2 ⊆ · · · be an ascending
chain in B. Consider the chains (∗)B1 + A ⊆ B2 + A ⊆ · · · and (∗∗)B1 ∩ A ⊆ B2 ∩ A ⊆ · · · . As A is Noetherian,
(∗∗) stabilizes. Since B/A is Noetherian, we can mod (∗) by A and that also stabilizes. Thus there exists n such that
Bn + A = Bn+1 + A = · · · and Bn ∩A = Bn+1 ∩A = · · · .



Claim: Bn = Bn+1 = · · · .

Proof: Let b ∈ Bn+1 ⊆ Bn+1 + A = Bn + A. Say b = bn + a for bn ∈ Bn and a ∈ A. Now, b− bn = a ∈ A ∩Bn+1 =
A ∩Bn. So b− bn ∈ Bn which implies b ∈ Bn.

Corollary 3.82. A left R−module M is left Noetherian (resp. Artinian) if and only if Mn = ⊕n
i=1M is left Noetherian

(resp. Artinian). In particular, if R is a left Noetherian (resp. Artinian) ring, then so is Rn for all n ≥ 1.

Proof. The backwards direction is clear. For the forward direction, use induction and the fact that 0 → M → M +M →
M → 0 is a short exact sequence.

Corollary 3.83. If R is a left Noetherian (resp. Artinian) ring and M a finitely generated left R−module, then M is
left Noetherian (resp. Artinian).

Proof. Since M is finitely generated, M = Rx1 + ... + Rxn which induces the short exact sequences 0 → kerφ → Rn φ−→
M → 0 where φ : ei 7→ xi. Apply previous corollary.

Proposition 3.84. Let M be a left R−module. TFAE

1. M is left Noetherian (resp. Artinian).

2. Every set of R−submodules of M has a maximal (resp. minimal) element.

For Noetherian only, these are equivalent to

3. Every R−submodule of M is finitely generated.

Proof. Note that 1 ⇔ 2 is clear.

2 ⇒ 3 Let A be a submodule of M and Λ = {N |N is a f.g. R− submodule of A}. Let M ′ be maximal in Λ. If M ′ 6= A,

choose x ∈ A \M ′. Then M ′ ( M ′ + Rx, a finitely generated submodule of A, a contradiction. Thus A = M ′ is
finitely generated.

3 ⇒ 1 Let M1 ⊆ M2 ⊆ · · · be an ascending chain. Let N = ∪∞i=1Mi. Then N is an R−submodule (as the Mi are nested),
which implies N is finitely generated. Say N = Rx1 + ... + Rxn. Choose ` large enough so that xi ∈ M` for all i.

Then N ⊆ M` ⊆ M`+1 ⊆ · · · ⊆ N.

Corollary 3.85. Let φ : R → S be a ring homomorphism. Suppose S is a finitely generated left R−module. If R is left
Noetherian (resp. Artinian), then so is S.

Proof. By the above corollary, S is Noetherian (resp. Artinian) as a left R−module. Every left ideal of S is a left
R−module. Therefore S satisfies ACC (resp. DCC) on left ideals.

Remark. If S is a finite dimensional k−algebra (for a division ring k), then S is both Noetherian and Artinian (as it
satisfies ACC and DCC).

Example. k[x]/(xn) (this is Artinian, but not a field) and Mn(k) are Noetherian and Artinian by the above remark.

Remarks.

1. If R is Noetherian (resp. Artinian) and I is an ideal of R, then R/I is Noetherian (resp. Artinian) (as R/I is a
finitely generated R−module, generated by 1.)

2. Let R be a ring, S ⊆ Z(R) a mcs of R. If R is Noetherian (resp. Artinian), then so is RS .

3. Let R, S be commutative rings and suppose S is a finitely generated R−algebra. Then R Noetherian implies S is
Noetherian.



Proof. WLOG, assume R ⊆ S. So say S = R[u1, ..., un] for ui ∈ S. Define a ring homomorphism φ : R[x1, ..., xn] → S

by xi 7→ ui. This is surjective and so S ∼= R[x1, ..., xn]/ kerφ. By the Hilbert Basis Theorem and Remark 1, S is
Noetherian.

Note that this is not true for Artinian rings. For example, the division ring k is Artinian but k[x] is not as
(x) ) (x2) ) · · · .

4. Subrings of Noetherian rings are not necessarily Noetherian. For example R = Q[x, y] is Noetherian, but S =
Q[x, xy, xy2, ...] ⊆ R is not.

Examples.

1. R =

{(
a b

0 c

)
|a ∈ Z, b, c ∈ Q

}
is right Noetherian, but not left Noetherian.

2. S =

{(
r s

0 t

)
|r ∈ Q, s, t ∈ R

}
is right Artinian, but not left Artinian.

Definition 3.86. A left R−module M is simple or irreducible if M 6= 0 and has no submodules other than 0 and M.

Proposition 3.87. Let M be an R−module. TFAE

1. M is simple.

2. M = Rx for all x ∈ M \ {0}.

3. M ∼= R/I where I is a maximal left ideal.

Proof. 1 ⇔ 2 Rx 6= 0 is a submodule of M .

3 ⇒ 1 Any submodule of M corresponds to R/J where I ⊆ J. Since I is maximal, done.

2 ⇒ 3 Define φ : R → Rx = M by r 7→ rx. So M ∼= R/ kerφ where kerφ is a left ideal. Since M has only 2 submodules,
kerφ must be maximal.

Definition 3.88. Let M be an R−module. A normal series for M is a finite chain of submodules (∗)M = M0 ⊇
M1 ⊇ · · · ⊇ Mn = (0). The factors of (∗) are Mi/Mi+1 for i = 0, ..., n− 1. The length of (∗) is the number of nonzero
factors. We say two normal series are equivalent if there exists a bijection between the nonzero factors of the two series
such that the corresponding factors and isomorphic. In particular, two equivalent normal series for M have the same
length. A composition series is a normal series for M such that all nontrivial factors are simple. A refinement of
(∗) is a normal series obtained by inserting additional modules between two links in the chain. A proper refinement is
a refinement which has length larger than the original normal series.

Note. A composition series has no proper refinements.

Theorem 3.89 (Jordan-Hölder Theorem). Any two normal series for M have equivalent refinements.

Corollary 3.90. Suppose M has a composition series. Then any normal series has a refinement which is equivalent to
the given composition series. Therefore, any normal series has length less than the length of a given composition series.
In particular, any two composition series are equivalent and have the same length.

Definition 3.91. If M has a composition series, define the length of M (denoted λR(M)) as the length of any compo-
sition series for M . If M does not have a composition series, we say it has infinite length.

Proposition 3.92. λR(M) < ∞ if and only if M is both Noetherian and Artinian.

Proof. ⇒ λR(M) is a bound on the length of any chain. Thus any chain must stabilize.



⇐ Let M0 = M. Let Λ = {N |N (M is a submodule}. As M is Noetherian, Λ has a maximal element, call it M1. Then,
M1 ( M0 and M/M1 is simple. If M1 6= 0, repeat. In this way, we get a descending chain M0 ) M1 ) M2 ) · · ·
which must terminate as M is Artinian, that is, there exists Mn = 0. This is a composition series.

Definition 3.93. A ring has finite (left) length if λR(R) < ∞.

Examples.

1. λR(k) < ∞ for a division ring k. (In this case, the length is the dimension).

2. Let R = MN (k) for a division ring k. Then λR(R) < ∞.

3. Let R = k[x]. Then λR(R) = ∞.

Proposition 3.94. Suppose 0 → A → B → C → 0 is a short exact sequence. Then λR(B) = λR(A) + λR(C).

Proof. By the previous proposition, we may assume λR(B), λR(A), λR(C) < ∞. Induct on λR(B). If λR(B) = 1, then B

is simple. Since A ↪→ B, either A = B (and C = 0) or A = 0 (and C = B). In either case, the equality holds. Otherwise,
assume C = B/A and consider the normal series B ⊇ A ⊇ (0). We may refine this series to get a composition series
B ) B1 ) · · · ) Bn−1 ) Bn = (0). Then A ⊇ Bn−1. Consider 0 → A/Bn−1 → B/Bn−1 → B/A → 0. By induction, since
λR(B/Bn−1) = λR(B) − 1, we see λR(B/Bn−1) = λR(A/Bn−1) + λR(B/A). Of course, λR(A/Bn−1) = λR(A) − 1 and
thus λR(B) = λR(A) + λR(C).

Definition 3.95. Let R be a ring and M a left R−module. M is completely reducible or semisimple if M is a direct
sum of a family of simple submodules. R is left semisimple if it is as an R−module.

Proposition 3.96. Let M be an R−module. TFAE

1. M is semisimple.

2. M is a sum of a family of simple submodules.

3. Every submodule of M is a direct summand of M .

Proof. 1 ⇒ 2 Trivial, as the direct sum is a sum.

2 ⇒ 3 Given M =
∑

i∈I Mi, where Mi is simple, let N be a submodule of M. Let Λ = {J ⊆ I|N +
∑

j∈J Mj =
N ⊕ (⊕j∈JMj)}. Since N 6= M, there exists Mi such that Mi 6⊂ N. Then N ∩Mi ⊆ Mi implies N ∩Mi = ∅. Thus
Λ 6= ∅. By Zorn’s Lemma, there exists a maximal element J ∈ Λ. Let F = ⊕j∈JMj .

Claim: N ⊕ F = M.

Proof: Note N ∩F = (0) by choice of J. Suppose N ⊕F 6= M. Then there exists i such that Mi 6⊂ N ⊕F. Note
Mi∩(N⊕F ) = (0) or Mi as Mi is simple. Since Mi 6⊂ N⊕F, Mi∩(N⊕F ) = (0). Hence N+F+Mi = N⊕F⊕Mi,

a contradiction to the maximality of J. Thus N ⊕ F = M.

3 ⇒ 1 First, we need a claim.

Claim: Assuming M satisfies (3), every nonzero submodule of M contains a simple submodule.
Proof: Let N 6= 0 be a submodule of M. WLOG, assume N is cyclic, that is N = Rx for x ∈ M \ {0}. Then
N ∼= R/I where I = Ann(x). Note I 6= R as N 6= 0. Thus I ⊆ m where m is a maximal left ideal. Then m/I

is a maximal proper submodule of R/I ∼= N. Thus N has a maximal proper submodule N ′ and so N/N ′ is
simple. By (3), M = N ′⊕F for some F ⊆ M. Note N = N ′⊕ (F ∩N). Thus F ∩N ∼= N/N ′, which is simple.
Thus F ∩N is a simple submodule of M.

Let T = {E|E ⊆ M is simple}. Let Λ = {J ⊆ T |∑E∈J E = ⊕E∈JE}. By Zorn’s Lemma, there exists a maximal
element J ∈ Λ.



Claim: M = ⊕E∈JE.

Proof: If not, let M ′ = ⊕E∈JE. By (3), M = M ′ ⊕ F where F ⊆ M. Since F 6= 0 as M 6= M ′, F contains a
simple submodule E′ ∈ T. Then J ∪ E′ ∈ Λ, a contradiction to maximality.

Corollary 3.97. Submodules, quotients, and (direct)sums of semisimple modules are semisimple.

Proof. • Let M be semisimple and N ⊆ M a submodule. Let N ′ be the sum of all simple submodules of N.

Claim: N = N ′.
Proof: By 3 of the proposition, there exists F ⊆ M such that M = N ′⊕F. So N = N ′⊕(F ∩N). If F ∩N 6= (0),
it contains a simple submodule E. Then E ⊆ N ′, a contradiction as M = N ′⊕F. Thus F ∩N = 0 and N = N ′.

• For quotients, say M/N, we know M/N ∼= F where M = N ⊕ F. Done by previous bullet point.

• Suppose {Mi}i∈I is a family of semisimple submodules. Then Mi = ⊕j∈Ji
Eij

, Eij
is simple. Then ⊕i∈IMi =

⊕i∈I,j∈Ji
Eij

is semisimple.

Proposition 3.98. If R is semisimple, every R−module is semisimple.

Proof. R semisimple implies every free module is semisimple which implies quotients of free modules are semisimple
which implies all modules are semisimple.

Examples.

• Division Rings are Semisimple.

• Let R1, ..., Rt be rings so that S = R1× · · · ×Rt is a ring. The left ideals of S are of the form I1× · · · × It where Ii

is a left ideal of Ri. Consequently, S is left Noetherian/Artinian/has finite length/is semisimple if and only if each
Ri has the corresponding property.

• Let G be a finite group and k a field such that char k - |G|. Then R = k[G] is semisimple.

Proof. Let I be a left ideal of R. So I is a k−subspace of R. Let Π : R → I be a projection onto I as k−vector
spaces, that is, Π is k−linear and Π(i) = i for all i ∈ I. Define Π̃ = 1

|G|
∑

g∈G gΠg−1.

Claim: Π̃ is R−linear.
Proof: It suffices to show Π̃(hr) = hΠ̃(r) for all r ∈ R, h ∈ G. Notice

Π̃(hr) = 1
|G|

∑
g∈G gΠg−1(hr)

= 1
|G|

∑
hg∈G(hg)Π(hg)−1hr

= 1
|G|

∑
g∈G hgΠg−1h−1hr

= 1
|G|

∑
g∈G hgΠg−1(r) = hΠ̃(r).

Note that if i ∈ I, then

Π̃(i) =
1
|G|

∑

g∈G

gΠg−1(i) =
1
|G|

∑
gg−1(i) = i

as g−1(i) ∈ I. This gives rise to the short exact sequence 0 → I ↪→ R → R/I → 0 with splitting map Π̃ : R → I.

Thus R ∼= I ⊕R/I. Thus every submodule of R is a direct summand of R which implies R is semisimple.

Let M be a left R−module. Let EndR(M) = HomR(M,M). Note EndR(M) is a ring under composition. If R is
commutative and F = Rn, then EndR(F ) ∼= Mn(R). This is not true if R is noncommutative.

Definition 3.99. Let R be a ring. Define the opposite ring Rop by Rop = R as abelian groups with multiplication in
Rop defined by r · s := sr.



Claim. EndR(R) ∼= Rop as rings.

Proof. Let a ∈ R. Define fa : R → R by r 7→ ra. Then fa ∈ EndR(R). Furthermore, if g ∈ EndR(R), then g = fa where
a = g(1). Observe (fa ◦ fb)(r) = fa(rb) = rba = fba(r). Now define φ : EndRR → Rop by fa 7→ a.

Note. If R is a division ring, so is Rop. It is easily shown that is F ∼= Rn as left R−modules, then EndR(F ) ∼= Mn(Rop).

Proposition 3.100. Let D be a division ring, M a finitely generated D−module. Then EndD(M) is semisimple.

Proof. As a D−module, M ∼= Dn for some n. Thus EndD(M) ∼= Mn(Dop). Since Dop is a division ring, it is enough
to show Mn(D) is semisimple where D is a division ring. Let ei be the matrix with a 1 in the i, ith−position and zeros
elsewhere. Then Mn(D)ei is the ring with a nonzero ith column and zeros elsewhere. This is simple by Exam 1. Thus
Mn(D) ∼= Mn(D)e1 ⊕ · · · ⊕Mn(D)en, a direct sum of simple modules. Then Mn(D) is semisimple.

Corollary 3.101. Let D1, ..., Dk be division rings, n1, ..., nk ∈ N. Then Mn1(D1)× · · · ×Mnk
(Dk) is semisimple.

Note. These rings are left and right Artinian/Noetherian and also right semisimple.

Proposition 3.102. Let R be a semisimple ring. Then λR(R) < ∞. Thus R is left/right Artinian/Noetherian.

Proof. As R is semisimple, R = ⊕α∈ΛIα, where Iα are simple left ideals. Then 1 = eα1 + ... + eαk
where eαi

∈ Iαi
\ {0}

and α1, ..., αk ∈ Λ.

Claim: R = Iα1 ⊕ · · · ⊕ Iαk
∈ Λ.

Proof: Suppose there exists α ∈ Λ such that Iα 6= Iαi for i = 1, ..., k. Then for r ∈ Iα, r = reα1 + ... + reαk
where

reαi ∈ Iαi which implies r ∈ Iα ∩ (
∑

Iαi), a contradiction as R is the direct sum of I ′αs.

Relabel Iαi as Ii for simplicity. Let Mi = I1 ⊕ · · · ⊕ Ii. Then Mi/Mi−1 = Ii, which is simple. Thus 0 ⊆ M1 ⊆ M2 ⊆
· · · ⊆ Mk = R is a composition series. Thus λR(R) = k < ∞.

Proposition 3.103. Let R be a semisimple ring. Then

1. Every simple left R−module is isomorphic to a simple left ideal.

2. There are only finitely many distinct simple left R−modules up to isomorphism.

Proof. Let R = I1 ⊕ · · · ⊕ Ik, Ii are simple as in the previous proposition. Let J be a simple left ideal. Then the normal
series 0 ⊆ J ⊆ R can be refined to a composition series for R. Then J is a factor of the composition series for R which
says J ∼= Ii for some i by the Jordan-Hölder Theorem. Thus there are only finitely many distinct simple left ideals. Thus
it suffices to prove (1). Let M be a simple left R−module. Let x ∈ M \ {0}. Then Rx is a nonzero submodule of M

which implies M = Rx. Thus M is cyclic and we have the sequence 0 → kerφ → R
φ−→ M → 0 where φ(r) = rx is exact.

As kerφ is a left ideal of R, kerφ is a direct summand of R by definition of semisimple. Thus the sequence splits and
thus there exists a splitting map ψ : M → R such that φψ = 1M . Then ψ is injective and M is isomorphic to a simple
left ideal of R.

Definition 3.104. A ring is simple if the only two sided ideals of R are (0) and R. Note: Simple rings are not necessarily
semisimple (this differs from Lang’s definition).

Note. An Artinian simple ring is semisimple.

Lemma 3.105. Let R be a ring, I a simple left ideal, M a simple left R−module. If I 6∼= M, then IM = 0.

Proof. Suppose IM 6= 0. Then there exists e ∈ M such that Ie 6= 0. Now Ie ⊆ M is a left R−module. Since M is simple,
Ie = M. Define φ : I → M by i 7→ ie. This is a left R−module homomorphism. Since Ie = M, φ is surjective. Also,
kerφ 6= I as φ 6= 0 and so kerφ = {0} as I is simple. Thus φ is an isomorphism.



Theorem 3.106. Let R be semisimple, {I1, ..., , Ik} the set of all distinct left R−modules. Let Ri =
∑

I left ideal∼=Ii
I.

Then

1. Ri is a ring with identity.

2. Ri is semisimple with only 1 distinct simple module.

3. Ri is a simple ring.

4. R ∼= R1 × · · · ×Rk as rings.

Proof. By the Lemma, RiRj = 0 for all i 6= j. Note R = R1 + ... + Rk and Rj ⊆ RjR = Rj(R1 + ... + Rk) = R2
j ⊆ Rj .

Hence Rj = RjR. Thus Rj is a two sided ideal. Write 1 = e1+...+ek for ei ∈ Ri. Let x ∈ R. We can write x = x1+...+xk

for xi ∈ Ri. Note xi = xi · 1 = xi(e1 + ...+ ek) = xiei = (x1 + ...+xk)ei = xei and similarly xi = eix. Thus xi is uniquely
determined by x which implies R = ⊕Ri. Also, if x ∈ Ri, then x = xei = eix implies that ei is the identity on Ri. Thus
Ri is a ring with identity. Its easy to show R ∼= R1 × · · · × Rk by mapping r 7→ (r1, ..., rk). Now, note that if J is a left
ideal of Ri then RJ = (R1 + ... + Rk)J = RiJ = J. So J is a left ideal of R contained in Ri. Conversely, if J ⊆ Ri is
an ideal of R, then J is an ideal of Ri. Thus the left ideals of Ri are exactly the left ideals of R contained in Ri. Thus
Ri =

∑
I (where I are in fact simple ideals of Ri) which implies Ri is semisimple. Also, every simple left ideal of Ri is

isomorphic to Ii.

Let J 6= 0 be a two sided ideal of Ri. Then J is a left ideal of R which implies J contains a simple left ideal I of R.

Since J ⊆ Ri, this says I ∼= Ii. Let K be a left ideal of R such that K ∼= I. Then K ∼= Ii which implies K ⊆ Ri.

Claim: K ⊆ J.

Proof: As R is semisimple, there exists a left ideal I ′ such that I ⊕ I ′ = R. Then 1 = e + e′ for e ∈ I, e′ ∈ I ′ where
e 6= 0. Then e = e2 + ee′. Since I ∩ I ′ = (0), we have e = e2 and thus Ie 6= 0. As Ie ⊆ I and I is simple, this says
I = Ie. Let φ : I → K be a left R−module isomorphism. Then K = φ(I) = φ(Ie) = Iφ(e) ⊆ Jφ(e) ⊆ J as J is
two sided.

Since K was arbitrary, this says J ⊇ Ri which implies J = Ri.

Corollary 3.107. Let R be a semisimple ring. TFAE

1. R is simple.

2. There exists a unique left simple ideal up to isomorphism.

Example. Let D be a division ring and n ≥ 1. Then Mn(D) is simple and semisimple.

Proof. Let R = Mn(D) and ei be the matrix with a 1 in the i, i-spot and zeroes elsewhere. Then R = Re1 ⊕ · · · ⊕Ren,

where Rei are simple left ideals and φ : Rei → Rej defined by rei 7→ reiEij is an isomorphism. Then R has a unique
maximal simple left ideal. Thus R is simple.

Notation. Let R be a ring and E an R−module. Let R′(E) = EndR(E). If a ∈ R, define ra : E → E by e 7→ ea. Then
ra ∈ R′(E). Let R′′(E) = EndR′(E). (Note that if E is an R′−module, then for φ ∈ R′, e ∈ E, we can define φe := φ(e)).
For a ∈ R, define `a : E → E by e 7→ ae.

Claim: `a ∈ R′′(E).

Proof: Let f ∈ R′, e ∈ E. Then f`a(e) = f(ae) = af(e) = `a(f(e)).

This gives yield to the natural homomorphism λ : R → R′′(E) defined by a 7→ `a. Note that λ is injective if and only if
`a 6= 0 for all a ∈ R \ {0} which is if and only if annR(E) = (0) (that is, E is a faithful R−module).

Schur’s Lemma: Let R be a ring and E a simple R−module. Then R′(E) is a division ring.



Proof. Let φ ∈ R′(E) \ {0}. It is enough to show φ is an isomorphism. Of course, kerφ is a submodule of E (which is
simple) and since φ 6= 0 we have ker φ 6= E and so kerφ = (0). Similarly, imφ is a submodule of E and since φ 6= (0) we
have imφ = E.

Theorem 3.108. Let R be a simple ring and I 6= (0) a left ideal. Then λ : R → R′′(I) is an isomorphism.

Proof. (Rieffel) Since kerλ is a two sided ideal and R is simple, kerλ = 0 or R. Since 1 7→ `1, which is clearly not
zero, we see kerλ = 0. Thus λ is injective. Note that IR 6= (0) is a two sided ideal of R. Thus IR = R. Then
{∑λ(ik)λ(rk)|ik ∈ I, rk ∈ R} = λ(I)λ(R) = λ(IR) = λ(R).

Claim: λ(I) is a left ideal of R′′.

Proof: Let f ∈ R′′, `a ∈ λ(I) where a ∈ I. Let i ∈ I. Then f`a(i) = f(ai) = f(ri(a)) = ri(f(a)) = f(a)i = `f(a)(i).
Thus f`a = `f(a) ∈ λ(I) as f(a) ∈ I.

Now, R′′ = R′′λ(R)︸ ︷︷ ︸
since 1=`1∈λ(R)

= R′′λ(I)λ(R) = λ(I)λ(R) = λ(R). Thus λ is onto.

Theorem 3.109 (Artin-Wedderburn). Let R be a simple ring. TFAE

1. R is semisimple.

2. R is left Artinian.

3. R ∼= Mn(D), n ∈ N, D a division ring.

Proof. 3 ⇒ 1 ⇒ 2 already done.

2 ⇒ 3 Since a minimal nonzero left ideal is a simple left ideal and R is left Artinian, we see that there exists a simple left
ideal, call it I. By the Theorem, λ : R → R′′(I) = EndR′(I) is an isomorphism. Since I is simple, R′ = EndR(I)
is a division ring by Schur’s Lemma.

Claim: I is finitely generated as an R′ module.
Proof: Suppose not. Then there exists an infinite set {e1, e2, ...} ⊆ I which is linearly independent over R′.

For each n ∈ N, let Jn = {f ∈ R′′(I)|f(e1) = · · · = f(en) = 0}. Note Jn is a left ideal of R′′ and Jn ) Jn+1

for all n. This says R′′ ∼= R is not left Artinian, a contradiction.

Thus I is finitely generated as an R′−module. So I ∼= (R′)n for some n. Thus R′′ = EndR′((R′)n) ∼= Mn((R′)op)
as (R′)n is a free module. Let D = (R′)op, a division ring.

Corollary 3.110. Let R be a ring. TFAE

1. R is semisimple.

2. R ∼= Mn1(D1)× · · · ×Mn`
(D`) for ni ∈ N, Di division rings.

Proof. 2 ⇒ 1 Done, as products of semisimple rings are semisimple.

1 ⇒ 2 R ∼= R1 × · · · ×R` where Ri are left Artinian simple rings.

Corollary 3.111. If R is semisimple, then R is left/right Artinian and left/right Noetherian. Also, left semisimple if
and only if right semisimple.

Proof. Clear as Mn1(D1)× · · · ×Mn`(D`) are.



Notation. Let R be a ring, E an R−module, R′ = R′(E) = EndR(E) and R′′ = R′′(E) = EndR′(E). Let En = ⊕n
i=1E

and Ei := 0⊕ · · ·⊕ 0⊕E⊕ 0⊕ · · ·⊕ 0. Let πi : En → Ei and µi : Ei → En be the natural maps. Let ψ ∈ EndR(En) and
ψij = πiψµj : Ej → Ei. So ψij ∈ HomR(Ei, Ej) ∼= EndR(E) = R′. Thus we can represent ψ as a matrix (ψij)n×n where

ψ




x1

x2

...
xn




= (ψji)




x1

x2

...
xn




=




∑n
j=1 ψji(xj)

...

...∑n
j=1 ψjn(xj)




for




x1

x2

...
xn



∈ En.

Thus EndR(En) ∼= Mn(EndR(E)), that is R′(En) ∼= Mn(R′).

Remark. Let f ∈ R′′(E). So f : E → E and f(φ(x)) = φ((f(x)) for all φ ∈ R′, x ∈ E. Thus fφ = φf for all φ ∈ R′.

Define f (n) : En → En by f (n)(x1, ..., xn) = (f(x1), ..., f(xn)). As a matrix, this says f (n) = fIn. Let ψ ∈ R′(En). Then
(fIn)(ψij) = ψij(fIn) since fψij = ψijf for all i, j. Thus f (n)ψ = ψf (n) for all ψ ∈ R′(En). Thus f (n) ∈ R′′(En) (its
clearly additive and we just showed we can pull out elements from R′.) Therefore,

f ∈ R′′(E) ⇒ f (n) ∈ R′′(En).

Lemma 3.112. Let R be a ring, E a semisimple R−module. Let f ∈ R′′(E), x ∈ E. Then there exists α ∈ R such that
f(x) = αx (note that α depends on x).

Proof. Fix x ∈ E. Since E is semisimple and Rx is a submodule of E, we have E = Rx⊕ F for some left submodule F.

Define π : E → E by rx + f 7→ rx (the projection onto Rx). So π ∈ R′ and since π(x) = x we have f(x) = f(π(x)) =
π(f(x)) ∈ Rx.

Theorem 3.113 (Jacobson Density Theorem). Let R be a ring and E a semisimple left R−module. Let f ∈ R′′(E)
and x1, ..., xn ∈ E. Then there exists α ∈ R such that f(xi) = `α(xi) for all i ∈ [n].

Proof. Let f (n) : En → En be as above and x = (x1, ..., xn) ∈ En. By the remark, f (n) ∈ R′′(En) and En is semisimple.
By the lemma, there exists α ∈ R such that f (n)(x) = αx which implies f(xi) = αxi for all i ∈ [n].

Corollary 3.114. If E is finitely generated over R′, then λ : R → R′′(E) defined by α 7→ `α is surjective.

Proof. Let x1, ..., xn be generators for E as an R′−module. If f ∈ R′′ and f(xi) = `α(xi) for i ∈ [n], then f = `α.

Corollary 3.115. Let R be a semisimple ring and E = Rn a left R−module. Then λ : R → R′′(E) defined by α 7→ `α

is an isomorphism.

Proof. As R is semisimple, E is. So kerλ = AnnR(E) = (0) as Rn is faithful (it’s free!). Note that E is generated over
R′ by {e1} (Let x ∈ E. As {e1} is part of an R−basis for E, there exists an endomorphism φe1 = φ(e1) = x. Thus
R′e1 = E). By the previous corollary, x is surjective.

Corollary 3.116. Let D be a division ring and E a finitely generated D−module. Then D ∼= EndD′(E), that is,
λ : D → D′′(E) is an isomorphism.

Proof. D is semisimple and E = Dn for some n. Done by previous corollary.

In matrix notation, this says EndD(Dn) ∼= Mn(Dop) =: D′. So Dn is an Mn(Dop)−module. Then EndD′(Dn) = D.

Corollary 3.117 (Wedderburn). Let R be a finite dimensional k−algebra, where k is a field. Let E be a simple
R−module. Then λ : R → R′′(E) is surjective. If, in addition, we have E is faithful, then λ is an isomorphism.



Proof. By the first corollary, it is enough to show E is finitely generated as an R′−module. Since E is simple, E = Rx

for x ∈ E. So dimk E < ∞. Since k ⊂ Z(R), we have k ↪→ R′(E) via α 7→ `α (`α ∈ R′(E) as k is commutative). So E

finitely generated over k implies E is finitely generated over R′.

Note. E a finitely generated R−module does NOT imply E is a finitely generated R′(E)−module.

Example. Let A be the ring from Exam 1 #6. A is called the (first) Weyl algebra of F and is denoted A1(F ). An
equivalent definition for A is A1(F ) ∼= F{x, y}/ < xy−yx−1 > where F{x, y} is the free algebra generated by x, y

(i.e., x, y do not commute). Let I be a maximal left ideal of A and E = A/I. Then E is a simple A−module. Thus
A′(E) = EndA(E) is a division ring (as E is simple). If E is finitely generated as an A′−module, then E ∼= (A′)n

and by the corollary, λ : A → A′′(E) would be surjective, where A′′(E) = EndA′((A′)n) = Mn(A′) is semisimple.
Since A is simple, ker λ = 0 which implies A ∼= Mn(A′), a contradiction as A is not Artinian by Mn(A′) is. Thus
E is not a finitely generated A′−module.

Remark. Let R be a ring, E an R−module. Let r ∈ Z(R). Then `r ∈ R′(E). Thus there exists a ring homomorphism
φ : Z(R) → R′(E) mapping r 7→ `r. Denote φ(Z(R)) by Z(R) · IE where IE is the identity map on E. If E is a finitely
generated Z(R)−module, then E is a finitely generated Z(R)IE−module (the actions on E are the same).

Observation. If E is a finitely generated R−module and R a finitely generated Z(R)−module, then E is a finitely
generated Z(R)−module and hence a finitely generated R′−module.

Proof. Let E = Rz1 + ... + Rzm, R = Zu1 + ... + Zun. Then E =
∑

i,j Zuixj . Now, Z(R)IE is a subring of R′ and thus
E finitely generated over Z(R) implies E is finitely generated over R′.

Proposition 3.118. Suppose R is finitely generated over Z(R) and E is a finitely generated semisimple R−module.
Then λ : R → R′′ is onto.

Note. Suppose r ∈ Z(R). Then `r ∈ R′(E). In fact, `r ∈ Z(R′) as for f ∈ R′, f`r(x) = f(rx) = rf(x) = (`rf)(x) for all
x ∈ E. Hence Z(R)IE ⊂ Z(R′).

Proposition 3.119. Suppose λ : R → R′′(E) is an isomorphism. Then Z(R′) = Z(R)IE = {`r|r ∈ Z(R)}.

Proof. Only need to show (⊂). Let f ∈ Z(R′). Then for all φ ∈ R′, f(φx) = φf(x) which implies f ∈ EndR′(E) = R′′(E).
So f = `r for some r ∈ R. Want to show r ∈ Z(R). Let s ∈ R. Then rsx = `r(sx) = f(sx) = sf(x) = s`r(x) = srx. Thus
rs(x) = sr(x) for all x ∈ E which says (rs− sr)E = 0. Of course, E is faithful which implies rs = sr.

Corollary 3.120. Let D be a division ring. Then Z(Mn(D)) = {xIn|x ∈ Z(R)}.

Proof. Let R = D,E = Dn. Then R′(E) = Mn(Dop) and since E is a finitely generated semisimple ring over a
division ring, we’ve seen λ : R → R′′(E) is an isomorphism. Thus Z(R′) = Z(R)IE . Now, note that Z(Mn(D)) =
Z(Mn(Dop)).

Proposition 3.121. Let D1, D2 be division rings, V1, V2 finitely generated D1, D2 vectors spaces. Then EndD1(V1) ∼=
EndD2(V2) if and only if D1

∼= D2 and dimD1 V1 = dimD2 V2.

Proof. Let R = EndD1V1 and φ : R → EndD2V2. Then V1 is an R−module and V2 is an R−module through φ. Note V1 is
a simple R−module (let v ∈ V \ {0} and u ∈ V1. Then there exists σ ∈ EndD1V1 = R such that σv = u. Thus Rv = V1).
Similarly, V2 is simple over EndD2(V2) ∼= R. Recall R is simple Artinian and thus has a unique simple R−module. Thus
V1

∼= V2. So D1
∼= D′′

1 (V1) ∼= EndR(V1) = EndR(V2) ∼= D′′
2 (V2) ∼= D2. If V1 = Dn1

1 , then dimD1EndD1V1 = n2
1. So

n2
1 = dimD1R = dimD2R = n2

2. Thus n1 = n2.

Proposition 3.122. Suppose A1 × · · · × Ak
∼= B1 × · · · × B` as a ring isomorphism where Ai’s and Bj’s are nonzero

simple rings. Then k = ` and Ai = Bj after reordering.



Proof. Suppose they are isomorphic via φ. A1 is an ideal of A1 × · · · × Ak. Thus φ(A1) is an ideal of B1 × · · · × B`.

Since ideals of B1 × · · · × B` are of the form I1 × · · · × I` where Ii is an ideal of Bi, but Ii = (0) or Ii = Bi, we have
φ(A1) = B1×· · ·×Bt×(0)×· · ·×(0) (after reordering). If t > 1, then φ(A1) has nontrivial proper ideals, a contradiction
as A1 simple. So φ(A1) = B1. Use induction (mod out and repeat) to get Ai = Bi and k = `.

Theorem 3.123. Let R be a semisimple ring. Then there exist unique division rings D1, ..., Dk and natural numbers
n1, ..., nk such that R ∼= Mn1(D1)× · · · ×Mnk

(Dk). Furthermore, every such R is semisimple.

Definition 3.124. An ideal I is nilpotent if In = 0 for some n and I is called nil if every element in I is nilpotent.

Note. I nilpotent implies I nil, but the converse is false.

Example. R = k[[x1, ..., xn]]/(x1, x
2
2, x

3
3, ...., ). R is quasilocal and m = (x1, ..., xn) is nil, but not nilpotent.

In 1907, Wedderburn proved: If R is a finite dimensional k−algebra (where k is a field), then there exists a largest
nilpotent left ideal of R (that is, it contains all other nilpotent ideals). 20 years later, Artin proved the same result
for left Artinian rings. This largest nilpotent ideal is called the Wedderburn radical. Wedderburn defined a finite
dimensional k−algebra to be semisimple if the Wedderburn radical was 0. In 1945, Jacobson extended the definition of
the Wedderburn radical:

Definition 3.125. Let R be a ring. The Jacobson Radical of R is radR = J(R) = ∩m, where the intersection runs
over all maximal left ideals.

Note. If R has DCC, then J(R) is exactly the Wedderburn radical.

Lemma 3.126. Let R be a ring and y ∈ R. TFAE

1. y ∈ J(R)

2. 1− xy is left invertible for all x ∈ R.

3. yM = 0 for all simple left R−modules.

Proof. 1 ⇒ 2 If 1− xy is not left invertible, then R(1− xy) 6= R, which says R(1− xy) ⊆ m for some maximal left ideal
m. Since y ∈ m, we know xy ∈ m and thus 1 ∈ m, a contradiction.

2 ⇒ 3 Suppose yM 6= 0. Then yu 6= 0 for some u ∈ M. Then Ryu 6= 0 which implies Ryu = M as M is simple. So
u = xyu for some x ∈ R which says (1− xy)u = 0. By 2, u = 0, a contradiction.

3 ⇒ 1 Let m be a left maximal ideal. Then R/m is simple which implies y(R/m) = 0 and thus y ∈ m. Since m was
arbitrary, y ∈ J(R).

Definition 3.127. For all R−modules M, the annihilator of M is defined as AnnR(M) = {r ∈ R|rM = 0}.
Recall that AnnR(M) is a two-sided ideal (AnnR(M) = ker(λ : M → EndRM)).

Corollary 3.128. J(R) = ∩AnnRM, where the intersection runs over all simple left R−modules. In particular, J(R)
is an ideal.

Proposition 3.129. Let R be a ring and y ∈ R. TFAE

1. y ∈ J(R)

2. 1− xyz is a unit for x, z ∈ R.

Proof. 2 ⇒1 Let z = 1 and use previous lemma.



1 ⇒2 By the corollary, yz ∈ J(R). Thus 1 − xyz is left invertible. Let u be its left inverse (so u is right invertible).
Then u(1−xyz) = 1 which implies u = 1 + uxyz. Note uxyz ∈ J(R) and thus u = 1 + uxyz is left invertible. Thus
u is a unit, which implies its left inverse is its right inverse and thus 1− xyz is a unit.

Corollary 3.130. Let R be a ring. Then J(R) = ∩m, where the intersection runs over all maximal right ideals.

Proof. We can prove the above results for the “right” Jacobson radical and then (2) of the proposition says they must
be the same.

Definition 3.131. A ring is called semiprimitive/Jacobson semisimple/J-semisimple if J(R) = 0.

Remark. Semisimple rings are semiprimitive.

Proof. Let R be semisimple and y ∈ J(R). Now R = I1 ⊕ · · · ⊕ Ik where Ij are simple. Now yIj = 0 for all j which
implies yR = 0 and in particular y · 1 = 0.

Examples. Z, F [x] for a field F are semiprimitive, but not semisimple.

Theorem 3.132. Let R be a ring. TFAE

1. R is semisimple

2. R is left Artinian and J(R) = 0.

Proof. Note that 1 ⇒ 2 is done by the remark. For the other direction, note that by DCC, every nonzero left ideal of R

contains a simple (that is, minimal nonzero) left ideal.

Claim: Every simple left ideal is a direct summand of R.

Proof: Let I be a simple left ideal (so I 6= 0). Since J(R) = 0, I 6⊂ m for some maximal m. Since m is maximal,
this says I + m = R. Since I is simple, I ∩m = 0. Thus I ⊕m = R.

Let I1 be a simple left ideal of R. Then R = I1 ⊕ J1 for some ideal J1 by the claim. If J1 = 0, done. Otherwise, J1

contains a simple ideal I2. By the Claim, R = I2⊕A2 and thus J1 = I2⊕A2∩J1. Let J2 := A2∩J1. Then R = I1⊕I2⊕J2.

Continuous in this manner. By DCC, the chain must eventually end at a simple Jn. Then R is the direct sum of simple
modules and therefore semisimple.

Proposition 3.133. Let R be a commutative ring, x an indeterminant. Then J(R[x]) = Nilrad(R[x]) = (Nilrad(R))[x].

Proof. Note that Nilrad(R[x]) = ∩p∈SpecR[x]p ⊆ ∩m∈SpmR[x]m = J(R[x]). Let f = a0 + ... + anxn ∈ J(R[x]). Then
1−xf = 1−a0x−a1x

2− ...−anxn+1 is a unit in R[x]. By a previous exercise, this implies a0, ..., an are nilpotent. Thus
f ∈ Nilrad(R[x]).

Corollary 3.134. If R is reduced (that is, NilradR = 0), then R[x] is semiprimitive. In fact, R[xα|α ∈ I] is semiprim-
itive.

Lemma 3.135. Let I1, ..., Ik be nilpotent left ideals. Then I1 + ... + Ik is nilpotent.

Proof. By induction, it suffices to prove for k = 2. Let n be such that In
1 = In

2 = 0. Then we see (I1 + I2)2n−1 = 0 by
showing (a1 + b1)...(a2n−1 + b2n−1) = 0 for ai ∈ I1, bi ∈ I2.

Corollary 3.136. If R is a left Noetherian ring, then there exists a nilpotent left ideal containing all other nilpotent
ideals (and is itself contained in J(R)).

Remark. The set of nilpotents in a noncommutative ring does not necessarily form a left or right ideal.

Lemma 3.137. If I is a nil left ideal, then I ⊆ J(R).



Proof. Let y ∈ I. It is enough to show 1 − xy is a unit for all x ∈ R. Now y ∈ I implies xy ∈ I and therefore xy is
nilpotent. In general, we’ve seen if an = 0, then (1− a)−1 = 1 + ... + an−1. Thus 1− xy is a unit and y ∈ J(R).

Theorem 3.138. Let R be a left Artinian ring. Then J(R) is nilpotent. Hence J(R) is the largest nilpotent left or right
ideal and so J(R) is the Wedderburn Radical.

Proof. Let J = J(R). By DCC, the descending chain J ⊇ J2 ⊇ J3 ⊇ · · · stabilizes. So there exists k such that
Jk = Jk+1 = · · · . Let I = Jk ⊆ J(R).

Claim: I = 0.

Proof: Suppose not. Consider Λ = {J |J is a left ideal such that IJ 6= 0}. Note R ∈ Λ so Λ 6= ∅. So there exists a
minimal element J ∈ Λ by DCC. Choose y ∈ J such that Iy 6= 0. Note Iy ⊆ J is a left ideal and I(Iy) = I2y =
Iy 6= 0. Thus Iy ∈ Λ and by minimality, we have Iy = J. Now y ∈ J implies y = iy for some i ∈ I. Thus (1−i)y = 0
but i ∈ J(R) implies 1− i is a unit. Thus y = 0, a contradiction.

Remark. Let R be a semisimple ring and M a left R−module. TFAE

1. M is (left) Artinian

2. M is (left) Noetherian

3. M is finitely generated

4. λR(M) < ∞.

Proof. If R is semisimple, then M is. Thus M = ⊕i∈ΛIi for Ii simple. If Λ is finite, we have a composition series. If Λ is
infinite, then we can find an ascending/descending chain that does not stabilize (just add on/pluck off components).

Theorem 3.139. Let R be a left Artinian ring. Then R is left Noetherian (and hence λ(R) < ∞ where R is considered
a left R−module).

Proof. Let J = J(R). Note that R/J is semisimple (as R is left Artinian, R/J is left Artinian and J(R/J) = 0 by the
bijection of maximal ideals of R and R/J). For any i, we see J i/J i+1 is an R/J−module as J(J i/J i+1) = 0. Since R

is left Artinian and J i ⊂ R, we see J i is left Artinian and thus J i/J i+1 is left Artinian as an R module and thus as an
R/J−module. Thus λR/J (J i/J i+1) < ∞ by the remark which says J i/J i+1 satisfies ACC as an R/J−module and thus
as an R−module and so λR(J i/J i+1) < ∞.(∗)

Claim: λ(R/J i) < ∞ for all i.

Proof: For i = 1, we see λ(R/J) < ∞ by the i = 0 case of (∗). For i > 1, consider the short exact sequence
0 → J i−1/J i → R/J i → R/J i−1 → 0. Since λR(J i−1/J i) < ∞ by (∗) and λR(R/J i−1) < ∞ by induction, we have
λR(R/J i) < ∞.

By the Theorem, Jn = 0 for some n and thus we get λR(R) = λR(R/Jn) < ∞.

Proposition 3.140. Let R be a commutative Artinian ring. Then R has only finitely many prime ideals, each of which
is maximal (that is, dim R = 0).

Proof. Recall that dim R = sup{n|p0 ( p1 ( · · · ( pn, pi ∈ SpecR}.

Claim: R has only finitely many maximal ideals

Proof: Suppose not. Let m1,m2, ..., be an infinite list of distinct maximal ideals. Then m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩
m3 ⊃ · · · is a descending chain of ideals. By DCC, there exists k such that m1 ∩ · · · ∩mk = m1 ∩ · · · ∩mk ∩mk+1.

Since maximal ideals are prime, mk+1 ⊇ mi for some i = 1, ..., k. Since both are maximal, this says mk+1 = mi, a
contradiction as they are distinct.



Thus J(R) = m1 ∩ · · · ∩mk. Let p ∈ SpecR. As J(R) is nilpotent, p ⊇ J(R) (as the nilradical is the intersection of all
primes). Then p ⊇ m1 ∩ · · · ∩mk which implies p ⊇ mi. Since mi is maximal, p = mi. Thus every prime is maximal.

Definition 3.141. Let R be a commutative ring, I an ideal. Say MinRR/I = {p ∈ SpecR|p is minimal over I} (Recall
by p minimal over I, we mean there does not exist q ∈ SpecR such that p ) q ⊇ I.)

By the bijection between primes p of R/I and primes I ⊆ p in R, these are the minimal primes of R/I. Thus
MinRR/I ↔ MinR/IR/I. Also, note that MinRR/(0) are just the minimal primes of R.

Remarks.

1.
√

I = ∩p∈MinRR/Ip.

2. MinRR/I is a finite set if and only if
√

I is the intersection of finitely many prime ideals.

Proposition 3.142. Let R be commutative and Noetherian, I an ideal. Then MinR(R/I) is finite.

Proof. Let Γ = {I ( R|MinRR/I is not finite}. By way of contradiction, suppose Γ 6= ∅. Choose I maximal in Γ by
ACC. Then, by maximality, I =

√
I as they have the same minimal primes. Replacing R/I with R, we have a Noetherian

ring R such that

1. MinRR is infinite

2. MinRR/J is finite for all j 6= 0

3. R is reduced (as I =
√

I).

Note also that R is not a domain as otherwise MinRR = (0). Choose a ∈ R \ {0} such that a is a zero divisor. Consider
annRa ⊆ annRa2 ⊆ · · · . By ACC, there exists n such that annRan = annRan+1. Let b = an. Then annRb = annRb2.

Claim: (b) ∩ annRb = (0).

Proof: First note that since R is reduced, b 6= 0 and since a is a zero divisor, annRb 6= 0. Now, let x ∈ (b) ∩ annRb.

So x = rb ∈ annRb which implies xb = rb2 = 0. Thus r ∈ annrb
2 = annrb. So x = rb = 0.

Thus (0) =
√

(0) =
√

(b) ∩ annRb =
√

(b) ∩√annRb = (P1 ∩ · · · ∩ P`) ∩ (Q1 ∩ · · · ∩Qk) (since MinR(R/J) < ∞, for an
ideal J we have

√
J is the intersection of finitely many primes). Thus 0 is the intersection of finitely many primes which

implies MinRR is finite, a contradiction.

Theorem 3.143. Let R be a commutative, Noetherian ring. Then every ideal has only finitely many minimal primes.

Proof. Let Λ = {I : I has infinitely many min’l primes}. Let I ∈ Λ be maximal. Clearly, I is not prime. Choose a, b ∈ R

such that a, b 6∈ I but ab ∈ I. Let J1 = (I, a) = I + aR and J2 = (I, b) = I + bR. Then Ji ) I and J1J2 ⊆ I.

Note that MinRR/I ⊆ MinRR/J1 ∪ MinRR/J2, which are both finite (as J1, J2 6∈ Λ). Thus MinRR/I is finite, a
contradiction.

Theorem 3.144. If V is a vector space over a division ring, then TFAE

1. V is Noetherian.

2. V is Artinian.

3. λ(V ) < ∞.

4. dim V < ∞.

5. V is finitely generated.

Theorem 3.145. Let M be a semisimple left R−module. TFAE



1. M is left Noetherian.

2. M is left Artinian.

3. λR(M) < ∞.

4. M is finitely generated.

Proof. To show any of 1,2,3 implies 4, use contrapositive. To show 4 implies any of 1,2, or 3, note that M ∼= ⊕n
i=1Rei.

Thus submodules are of the form ⊕j∈JRej which says there are finitely many submodules.

Theorem 3.146. Let R be a commutative ring. TFAE

1. R is Artinian.

2. λ(R) < ∞.

3. R is Noetherian and dim R = 0.

Proof. Recall that R Artinian implies all prime ideals are maximal and so dim R = 0. Thus,the only thing needed to prove
is 3 ⇒ 2. Let J = J(R). Since R is Noetherian and every prime ideal is maximal (as dim R = 0), SpecR = {m1, ..., mr}.
So J(R) = ∩r

i=1mi. So R/J = R/(m1∩· · ·∩mr). Now mi+mj = R for all i 6= j, thus by the Chinese Remainder Theorem,
we have R/J ∼= R/m1 × · · · ×R/mr. So R/J is semisimple. Now, since J is nilpotent as J = m1 ∩ · · · ∩mr =

√
(0) and

J is finitely generated, there exists n such that Jn = 0. Consider R = J0 ⊇ J ⊇ · · · ⊇ Jn = (0). Note that J i/J i+1 is
a finitely generated R/J module for all i which implies it is semisimple R/J module as R/J is. Thus it is a semisimple
R−module. (Recall an R−module M is simple if and only if M is a simple R/J-module). Now, R Noetherian implies
J i is finitely generated and thus λR(J i/J i+1) < ∞ for all i. But λ(R) =

∑n−1
i=0 λr(J i/J i+1) < ∞.

Example. R = k[x, y, z]/(x3, xy, y2, xz, z6) where k is a field. Note that SpecR = {(x, y, z)R} which implies dim 0. Now
R is Noetherian as k is. Consider k[x, y, z]/(x3, xy, xz, z6). Here, (x, y, z) ( (x, z) which implies it has dim > 0 and is
thus not Artinian.

Definition 3.147. Let R be a ring. R is called von Neumann regular if for all a ∈ R, there exists x ∈ R such that
axa = a.

Examples.

1. Division rings are von Neumann regular

2. Products of von Neumann regular rings are von Neumann regular.

3. Example of a commutative von Neumann regular ring which is not a product of fields: Let F be a finite field and
S =

∏∞
i=1 F. Consider S as an F−algebra via F → S defined by 1 7→ (1, 1, ...). Let R = F1S +⊕∞i=1F = {(ai) ∈ S :

there exists c ∈ F such that ai = c for all but finitely many i}. R is easily seen to be von Neumann regular (take
xi = a−1

i ).

The idempotents of R fall into disjoint sets A = {(ei) : ei = 1 for all but finitely many i} and B = {1− e : e ∈ A}.
Observe e ∈ A if and only if 1− e ∈ B. If e ∈ B, then |Re| < ∞. Thus there do not exist idempotents e ∈ R such
that |Re| = ∞ and |R(1− e)| = ∞. But any infinite product of fields has such idempotents: e = (1, 0, 1, 0, ...) and
1− e = (0, 1, 0, 1, ...).

Proposition 3.148. Let R be a ring. TFAE

1. R is von Neumann regular

2. Every finitely generated left ideal is generated by an idempotent.



3. Every finitely generated left ideal is a direct summand of R.

Proof. 1 ⇒ 2 Let I = Ra1 + ... + Ran. If n = 1, then there exists x ∈ R such that a = axa. Let e = xa ∈ Ra. Then
e2 = xaxa = xa = e. Clearly, Re ⊆ Ra. But a = ae ∈ Re. So Ra = Re. For n > 1, note that it is enough to show
the n = 2 case. Let I = Ra1 +Ra2. By the n = 1 case, we have I = Re1 +Re2 where e2

1 = e1 and e2
2 = e2. Note that

I = Re1 +Re2(1−e1) as re1 +se2(1−e1) = re1 +se2−se2e1. Let f be an idempotent such that Rf = Re2(1−e1).
Then fe1 ∈ Re2(1− e1)e1 = 0. So f(f + e1) = f.

Claim: I = R(f + e1).
Proof: We’ve shown f ∈ R(f + e1). Thus e1 ∈ R(f + e1). So Rf + Re1 ⊆ R(f + e1). Of course, I =
Re2(1− e1) + Re1 = Rf + Re1 ⊆ R(f + e1) and since I ⊇ R(f + e1), we see I = R(f + e1).

By the n = 1 case, R(f + e1) is generated by an idempotent.

2 ⇒ 3 Let I be a finitely generated ideal. Then I = Re, e2 = e. Then R = Re⊕R(1− e) = I ⊕R(1− e).

3 ⇒ 1 Let a ∈ R. Then R = Ra ⊕ J. So 1 = ra + j such that j ∈ J. This implies a = ara + aj. Now, aj = a − ara =
(1− ar)a ∈ Ra and aj ∈ J. Thus aj = 0 which implies a = ara.

Corollary 3.149. Let R be a ring. TFAE

1. R is semisimple.

2. R is von Neumann regular and left Noetherian.

Example.
∏∞

i=1 F is von Neumann regular but not semisimple for a field F.

Proposition 3.150. von Neumann regular rings are semiprimitive.

Proof. Let a ∈ J(R). Then there exists x ∈ R such that a = axa. Then a(1 − xa) = 0. As a ∈ J(R), 1 − xa is a unit
which implies a = 0.

Example. Let F be a field, V an infinite dimensional F−vector space. Then EndF V is not Artinian and hence not
semisimple. It is also not Noetherian.

Proof. Let {e1, e2, ...} be part of an F−basis for V. Let In = {f ∈ EndF V |f(e1) = ... = f(en) = 0}. These are left ideals
of EndF V and I1 ) I2 ) I3 ) · · · . Thus it is not left Artinian.

Proposition 3.151. Let M be a semisimple left R−module. Then EndRM is von Neumann regular.

Proof. Let f ∈ EndRM. Want to find g ∈ EndRM such that fgf = f. Let K = ker f. Then there exists N such that
M = K ⊕ N since M is semisimple. Also, there exists K ′ such that M = K ′ ⊕ f(N). Note f |N : N → f(N) is an
isomorphism as N ∩K = 0. Define g : M → M by g|K′ = 0 and g|f(N) = (f |N )−1. Then g ∈ EndRM and fgf = f.

Theorem 3.152 (Wedderburn 1905). Every finite division ring is a field.

Proof. Let D be a finite division ring. Let F = Z(D), a subfield of D. Say F = Fq (that is, |F | = q = pm, charF = p).
Let n = dimF D (so that |D| = qn) as D is an F−vector space. For each a ∈ D, let C(a) = {d ∈ D|da = ad},
the centralizer. It is easily seen that F ⊆ C(A) is a division subring of D (If d commutes with a so does d−1). Let
ra = dimF C(a), ma = dimC(a) D. Just as in the proof for fields, we can show mara = n. In particular, ra|n. By the class
equation, |D∗| = |Z(D∗)| + ∑ |D∗|

|C(a)∗| , where the sum runs over the distinct conjugacy classes. Since |Z(D∗)| = |F ∗|,
we see (∗)|D∗| = q − 1 +

∑
a

qn−1
qra−1 where ra < n as a 6∈ F. Suppose, by way of contradiction, that n > 1. Recall

xn − 1 =
∏

d|n φd(x). Then for all a 6∈ F, we see ra|n and ra < n. This says xn − 1 = (xra − 1)φnha(x) for some
ha(x) ∈ Z[x]. Letting x = q we see φn(q)| qn−1

qra−1 in Z for all a 6∈ F. By (∗), we have φn(q)|q−1. Of course, φn(q) =
∏

(q−w)
where w are the primitive nth roots of unity. So |q − 1| = |q − w1| · · · |q − wt||z|. By the triangle inequality and the fact
that w 6∈ R+, we see |q − w| > |q| − |w| = q − 1, a contradiction.



Corollary 3.153. Any finite subring of a division ring is a field.

Proof. Any finite subring of a division ring is a division ring.

Corollary 3.154. Let D be a division ring with charD > 0. Then any finite subgroup of D∗ is cyclic.

Proof. Note that Fp ⊆ Z(D). Let G = {g1, ..., gn} be a finite subgroup of D∗. Let R = {∑ αigi|αi ∈ Zp, gi ∈ G}. Then
R is a finite subgroup of D which implies R is a field. Now, G is a finite subgroup of R∗ which implies G is cyclic.

Example. The division ring of quaternions D = R ⊕ Ri ⊕ Rj ⊕ Rk. Now, Q8 is a finite subgroup of D∗ which is not
cyclic.

4 Representation Theory

Exercise. Let M be a finitely generated semisimple left R−module. Then M ∼= n1V1 ⊕ ... ⊕ nkVk where ni are
positive integers, Vi are simple left R−modules with Vi 6= Vj for all i 6= j, and niVi = Vi ⊕ · · · ⊕ Vi︸ ︷︷ ︸

ni times

. Furthermore, if

M = m1W1 ⊕ ...⊕m`W`, then k = ` and, after reordering, ni = mi and Vi
∼= Wi for all i.

Proof. The first statement is the additive version of M ∼= ∏
Mei

i , which is proven in HW5#2. For uniqueness, note that
these yield composition series which are unique by Jordan Hölder.

Definition 4.1. The ni’s in the above exercise are called the multiplicity of Vi in M.

Recall. Let R be a semisimple ring, I1, ..., It the distinct simple left ideals of R. Then R ∼= n1I1 ⊕ · · · ⊕ ntIt
∼=

B(I1)×· · ·×B(I1) as rings where B(Ij) =
∑

J∼=Ij
J(see Exam 1#1). Note that B(Ij) are two sided ideals of R. They are

not subrings of R (as they have different identities), but B(Ij) are simple Artinian rings (where Ij is the unique simple
left ideal of B(Ij)). Furthermore, EndB(Ij)Ij = EndRIj (Write r = b1 + ... + bt. Then rIj = bjIj), which is a division
ring, say Dj . By Artin Wedderburn, B(Ij) = EndDj Ij

∼= Mnj (D
op
j ) where nj = dimDj Ij .

Theorem 4.2. Let R be a semisimple finite dimensional k algebra for k = k a field. Let R ∼= n1I1 ⊕ · · · ⊕ ntIt where Ii

are simple left ideals and Ii 6∼= Ij for all i 6= j. Then

1. nj = dimk Ij for all j = 1, ..., t.

2. dimk R =
∑t

j=1 n2
j .

Proof. Clearly 1 ⇒ 2. So its only left to prove 1. Let mj = dimk Ij . Since dimk Ij ≤ dimk R < ∞, we see mj < ∞. Let
Dj = EndRIj . Note that dimk Dj ≤ dimk EndkIj = dimk Mmj (k) = m2

j < ∞. Now, k ⊆ Z(R). Hence, multiplication
by elements of k are in EndRIj . So k ↪→ EndRIj . In fact, k ⊆ Z(Dj) (Let f ∈ Dj and µa multiplication by a. Then
(fµa)(i) = f(ai) = af(i) = (µaf)(i)). Now, k = k and k ⊆ Z(Dj) which implies k = Dj for all j (Choose α ∈ Dj .

Then k(α)/k is algebraic, but k = k so k(α) = k). Now njIj
∼= B(Ij) ∼= EndDj Ij = EndkIj

∼= Mmj (k). Thus
njmj = dimk njIj = dimk Mmj (k) = m2

j . Thus nj = mj .

Theorem 4.3 (Maschke’s Theorem). Let G be a finite group and F a field. If char F - |G|, then F [G] is semisimple.

Proof. We proved this shortly after the definition of semisimple.

Note. The converse is true!

Proof. Let |G| = n and e =
∑

g∈G eg ∈ F [G]. Observe ege = e = eeg for all g ∈ G. Thus Fe is a two sided ideal.
Furthermore, e2 = eeg1 + ... + eegn = ng as eeg = e. Thus, if char F |n, then (1 − xey) is a unit for all x, y ∈ F [G] as
(1− xey)(1 + xey) = 1− (x2)e2(y2) = 1− (x2)ne(y2) = 1. Thus e ∈ J(F [G]) and since e is not zero (the eg are linearly
independent), we see F [G] is not semisimple.



Proposition 4.4. Let G be a finite group, F a field. Let C1, ..., Cr be the distinct conjugacy classes of G. Let zi =∑
g∈Ci

g ∈ F [G]. Then {z1, ..., zr} is an F−basis for Z(F [G]).

Proof. For all i and for all g ∈ G, gCig
−1 = Ci. Thus gzig

−1 = zi. Of course, zi commutes with elements in F and
so zi ∈ Z(F [G]) for all i. As C1, ..., Cr are disjoint, {z1, ..., zr} is linearly independent over F. Let c ∈ Z(F [G]). Say
c =

∑
g∈G γgg, where γg ∈ F. For h ∈ G, we see c = hch−1 =

∑
g∈G γghgh−1 =

∑
g∈G γh−1ghg. As the g’s form a basis

for F [G], we see γg = γh−1gh for all h ∈ G. Hence, if g1, g2 are in the same conjugacy class, then γg1 = γg2 . Thus c is a
linear combination of z1, ..., zr.

Theorem 4.5. Let G be a finite group, F an algebraically closed field, char F - |G|. Then the number of distinct simple
F [G]−modules is equal to the number of conjugacy classes of G.

Proof. By Maschke’s Theorem, F [G] is semisimple. By Artin-Wedderburn, F [G] ∼= n1I1 ⊕ · · · ⊕ ntIt and thus F [G] ∼=
Mn1(D1)× · · · ×Mnt

(Dt), where Dj = EndF [G](Ij). Moreover, t is the number of distinct simple F [G]−modules.

Claim: Di = F.

Proof: By definition of the group ring, F ⊆ Z(F [G]). Thus multiplication by any element of F induces an
F [G]−endomorphism of Ij . Thus F ⊆ Dj . Furthermore, F ⊆ Z(Dj) as multiplication by F commutes with elements
of EndF [G](Ij). As F [G] is left Noetherian, we see Ij is a finitely generated ideal. Further, as F [G] is a finitely
generated F−vector space, we can conclude Ij is a finitely generated F−vector space. Since Dj = EndF [G](Ij) ⊆
EndF (Ij) and EndF (Ij) is a finite dimensional F−vector space, we see Dj is a finite dimensional F−vector space.
Thus we have F ⊆ Z(Dj) where Dj is a finite dimensional F−vector space. Now, for u ∈ Dj we have F [u] is a
domain (it is contained in Dj), is a finite dimensional F−vector space, and is also commutative. Thus F [u] is a
field. Of course, F = F and so F = F [u]. Since u ∈ Dj was arbitrary, we see F = Dj .

Therefore, Z(F [G]) ∼= Z(Mn(F )) × · · · × Z(Mnt(F )). Recall Z(Mn(F )) = {λIn|λ ∈ F} ∼= F. Hence Z(F [G]) ∼=
F × · · · × F︸ ︷︷ ︸

t times

. Recall the number of conjugacy classes of G is dimF Z(F [G]) = dimF F t = t.

For simplicity, we will refer to the assumptions “G a finite group, F = F a field, char F - |G|” as the Standard

Hypothesis. Summarizing, under the standard hypothesis, let I1, ..., It be the distinct simple left ideals of F [G]. Let
ni = dimF Ii. Then

1.
∑t

i=1 n2
i = |G|.

2. t is the number of conjugacy classes of G.

3. ni is the number of times Ii appears in a decomposition into simple submodules of F [G] (the decomposition is
called the “regular representation” of G).

Corollary 4.6. Under the standard hypothesis, G is abelian if and only if dimF V = 1 for all simple F [G]−modules V.

Proof. Now G is abelian if and only if t (the number of conjugacy classes) is |G| which is if and only if ni = 1 for all i

by property (1) above.

Remark. Let M be an F [G]−module. Then M is an F−vector space. In general, we want M to be finitely generated.
So then M = Fn. So an F [G]− module structure is determined by how g acts on Fn for all g ∈ G. Now g̃ : M → M

defined by m 7→ gm is an F−endomorphism of M which implies g̃ can be represented by an invertible matrix.

Example. Let G = Cn. Let M be a simple F [G]−module. By the corollary, M = Fu. Let Cn =< a > . Then
ã : M → M defined by u 7→ au = λu for some λ ∈ F. Of course, an = 1 and so u = 1̃u = ãnu = ãnu = λnu which implies
λn = 1. So λ is an nth root of unity (not necessarily primitive). Thus each nth root of unity determines an F [G]−module
structure on F via aiu = λiu. Since F [G] has n distinct simple F [G]−modules, all of these simple modules given by the
roots of unity are non-isomorphic.



Example. Let G = V4 = {1, a, b, ab} and M = Fu. Since a, b are order 2 elements, ã : M → M and b̃ : M → M

are defined by u 7→ ±u. This yields 4 F [G]−module structures. Since G is abelian, there must be exactly 4 simple
F [G]−modules which says these maps are distinct and determine all of the simple F [G]−modules.

Example. Let G = S3. Then S3 has 3 conjugacy classes which means there are 3 simple F [G]−modules, call them
V1, V2, V3 where ni = dimF Vi. Recall that n2

1 + n2
2 + n2

3 = 6. So WLOG, n1 = n2 = 1 and n3 = 2. Then

• V1 = F with G acting trivially on F (there is always the trivial representation, which means we may always assume
n1 = 1)

• V2 = Fu. So 1u = u, (12)u = λu, (123)u = ωu where λ = ±1 and ω3 = 1. Now, (23)u = (13)(12)(13)u. Say
(13)u = δu (so δ = ±1). Then (23)u = δ2λu = λu. Thus everything in the same conjugacy class of (12) maps u to
the same scalar multiple of u. Also, u = (123)(132)u = ω2u. So ω2 = 1 = ω3 which implies ω = 1. We can similar
show all 3-cycles act trivially. So V2 is given by (1)u = u, (12)u = −u, (123)u = u (where everything in the same
conjugacy class act the same on u).

Definition 4.7. Let F be a field, V an F−vector space. Let GLF (V ) := EndF (V )∗. Let G be a group. A (linear)

F−representation of G is a group homomorphism ρ : G → GLF (V ) for some F−vector space V. The degree of ρ is
dimF V.

Remarks.

1. Let ρ : G → GLF (V ) be a representation of G. Define a left F [G]−module Vρ by Vρ = V as an F−vector space.
For g ∈ G and v ∈ V, define gv := ρ(g)v. One can check that Vρ is an F [G]−module.

Composition: g1(g2v) := ρ(g1)(ρ(g2)(v)) = (ρ(g1)ρ(g2))(v) = ρ(g1g2)(v) = (g1g2)v.

2. Conversely, let M be a left F [G]−module. For each g ∈ G, define g̃ : M → M by m 7→ gm. Then g̃ ∈ EndF (M)
(as F ∈ Z(G) and thus F commutes with everything). Since (g̃)−1 = g̃−1, we see g̃ ∈ GLF (M). Define ρ : G →
GLF (M) by g 7→ g̃. It is easily checked that ρ is a group homomorphism.

This gives us a correspondence between F−representations of G and F [G]−modules.

Definition 4.8. Let ρi : G → GLF (Vi) for i = 1, 2 be two F−representations of G. We say ρ1 is isomorphic (or
similar or equivalent) to ρ2 if (V1)ρ1

∼= (V2)ρ2 as F [G]−modules. An F−representation ρ : G → GLF (V ) is called
irreducible if Vρ is a simple F [G]−module. A subrepresentation of ρ is a representation φ : G → GLF (W ) where W

is a subspace of V and φ(G) = ρ(G)|W for all g ∈ G. Equivalently, Wφ is an F [G]−submodule of Vρ.

In particular, if ρ1 is isomorphic to ρ2 then V1
∼= V2 as F−vector spaces and thus have the same dimension.

Notes.

• The zero representation of G is ρ : G → {1} = EndF (0).

• Any degree 1 representation is irreducible (as deg 1 ↔ dim V = 1 which has no subrepresentations).

Examples.

1. The trivial representation: ρ : G → GLF (F ) where ρ(g) = 1 for all g. This is a degree 1 representation and Fρ is
the F [G]−module F where gf = f for all g ∈ G.

2. The sign representation: Let G = Sn and define ρ : G → GLF (F ) = EndF (F ) = F ∗ by σ 7→ (−1)sgn(σ) where
sgn(σ) is 1 if its an even permutation and -1 if its odd. This is a degree 1 representation and note ρ is nontrivial
if and only if n > 1 and char F 6= 2.



3. Let G = Cn and suppose w ∈ F where w is a primitive nth root of unity. Define ρi : Cn → GLF (F ) = F ∗ by
a 7→ ωi. Now deg ρi = 1 and thus the representation is irreducible. As we saw earlier, if char F - n, then ρi 6∼= ρj

for all 0 ≤ i 6= j ≤ n− 1.

4. G = S3. Recall there were 2 degree 1 representations and 1 degree 2 representation. We’ve seen ρ1 is the trivial
representation and ρ2 is the sign representation where ρ1 - ρ2 as long as char F 6= 2. Now let us figure out ρ3. Let V

be a 3-dimensional F−vector space with basis {e1, e2, e3}. Define ρ : S3 → GLF (V ) by σ 7→ σ̃ where σ̃(ei) = eσ(i).

So ρ is a degree 3 representation of S3. Since we’ve seen the only irreducible representations have degree 1 or 2, this
is not irreducible. So there exists a subrepresentation. Let W = F (e1 + e2 + e3) ⊆ V. Note σ̃ fixes W for all σ ∈ S3.

So W is an F [S3]− submodule of Vρ. Consider the F [S3]−module U = V/W ∼= Fe1 ⊕ Fe2 ⊕ Fe3/F (e1 + e2 + e3).
To show this is an irreducible representation, we can show it has no proper submodules. Note that dim V = 2.

Claim: U is a simple F [S3]−module if and only if char F 6= 3.

Proof: Suppose char F 6= 3. Note that U = Fe1 ⊕ Fe2 where e3 = −e1 − e2. Let u = re1 + se2 6= 0 in U.

Case 1: r 6= −s. Then (13)u + (123)u = re3 + se2 + re2 + se3 = −(r + s)e1. If r 6= −s, then e1 ∈ F [S3]u
which implies e2 = (12)e1 ∈ F [S3]u. So F [S3]u = U.

Case 2: r = −s 6= 0. Then, as we can divide by r, it is enough to show for u = e1−e2. Note (23)u+(123)u =
e1− e3 + e2− e3 = 3(e1 + e2). Since char F 6= 3, this says e1 + e2 ∈ F [S3](e1− e2). If char F 6= 2, this says
e1, e2 ∈ F [S3](e1−e2). Now, suppose char F = 2. Then e1−e2 = e1 +e2 and (13)(e1 +e2) = e1 +2e2 = e1.

Thus e1, e2 ∈ F [S3](e1 − e2) and therefore F [S3]u = U.

We have just shown that F [S3]u = U for all u ∈ U. Thus U is simple. The char F = 3 case is left as an
exercise.

Thus ρ3 : G → GLF (F 2) = GLF (F ) defined by (12) 7→
[
0 1
1 0

]
and (123) 7→

[
0 −1
1 −1

]
is the last representation.

Definition 4.9. Let ρ1, ρ2 : G → GLF (Vi) for i = 1, 2 be two F−representations of G. The direct sum ρ1 ⊕ ρ2 is
ρ1 ⊕ ρ2 : F → GLF (V1 ⊕ V2) defined by g 7→ ρ1(g)⊕ ρ2(g).

Note. (V1 ⊕ V2)ρ1⊕ρ2
∼= (V1)ρ1 ⊕ (V2)ρ2 as F [G]−modules.

Remark. If |G| < ∞ and char F - |G|, then every F−representation of G is a direct sum of irreducible representations.

Example. The regular representation. Let G be a group, F a field, and V an F−vector space of dim |G|. Let {eg|g ∈ G}
be a basis for V. For h ∈ G, define the F−linear map h̃ : V → V by eg 7→ ehg. Clearly h̃1h2 = h̃1h̃2 and h̃−1 = h̃−1. So
h̃ ∈ GLF (V ) and ρ : G → GLF (V ) defined by h 7→ h̃ is an F−representation of G, called the regular representation

of G. Note that Vρ
∼= F [G]. If F [G] is semisimple, then every F [G]−module appears in any decompositions of F [G] into

simple left F [G] modules. Thus every irreducible F representation of G appears in any decomposition of the regular
representation into irreducible representations.

Recall. If F = F and char F - |G|, then F [G] ∼= n1I2⊕· · ·⊕ntIt where I1, ..., It are the distinct simple left ideals (up to iso-
morphism) and ni = dimF Ii. Let ρ be the regular representation and ρ1, ..., ρt the distinct irreducible F−representations
of G corresponding to Ii. Then ρ = n1ρ1 ⊕ · · · ⊕ ntρt where ni = deg ρi.

4.1 Characters

Let k be a field and R a finite dimensional k−algebra. Let M be a finitely generated left R−module. So dimk M < ∞.

Let r ∈ R and define r̃M : M → M by m 7→ rm. Since k ⊆ Z(R), we see r̃M ∈ Endk(M). So tr(r̃M ) ∈ F is defined.
Define the character χM associated with M by χM : R → k where r 7→ tr(r̃M ).

Remarks.



1. Let B = {u1, ..., un} be a k−basis for R. Let r ∈ R. Then r =
∑

aiui for ai ∈ k. It is easy to see r̃ =
∑

aiũi,M

which implies tr(r̃M ) =
∑

aitr(ũi,M ). So χM (r) =
∑n

i=1 aiχM (ui). So χM is determined by χM |B .

2. If R = F [G] and M is a left R−module, since G is an F−basis for R we often consider χM to be a function from
G → F as opposed to R → F.

Note. If ρ : G → GLF (V ) is an F−representation of G, we define the character χρ associated to ρ by χρ := χVρ :
G → F. Explicitly, χρ(g) = tr(ρ(g)).

3. If char k = 0, then χ(1) = dimk M. If ρ : G → GLF (V ), then χρ(1) = dimF V = deg ρ.

Proposition 4.10. Let R be a finite dimensional k−algebra. Let 0 → L
f−→ M

g−→ N → 0 be a short exact sequence of
finitely generated left R−modules. Then χM = χL + χN .

Proof. Let r ∈ R and consider the following diagram:

0 −−−−→ L
f−−−−→ M

g−−−−→ N −−−−→ 0

erL

y erM

y erN

y
0 −−−−→ L

f−−−−→ M
g−−−−→ N −−−−→ 0

Claim: This is a diagram of k−linear maps.

Proof: Let ` ∈ L. Then f r̃L(`) = f(r`) = rf(`) = r̃M (f(`)). Similarly for the other square.

Since the rows split as k−vector spaces, we see M ∼= L⊕N. So we have

M
f−−−−→ L⊕N

erM

y erL⊕erN

y
M

f−−−−→ L⊕N

and r̃L ⊕ r̃N corresponds to

[
r̃L

r̃N

]
. This says tr(r̃M ) = tr(r̃L) + tr(r̃N ) and thus χM (r) = χL(r) + χN (r).

Corollary 4.11. 1. If N ⊆ M are finitely generated R−modules, then χM = χN + χM/N .

2. χM⊕N = χM + χN .

3. If M ∼= N as R−modules, then χM = χN .

Examples. The converse of 3 is not true in general.

1. Let k be a field, R = k[x]/(x2) ∼= k⊕ kx as k−vector spaces. Let M = R/(x)⊕R/(x) ∼= k⊕ k as k−vector spaces.
Then M 6∼= R since xM = 0 and xR = kx 6= 0.

Claim: χM = χR.

Proof: It is enough to show they agree on the basis {1, x}. Of course, χM (1) = dim M = 2 = χR(1). Also,

χM (x) = 0 as multiplication by x is the 0 map and since x̃R =

[
0 0
1 0

]
we see χR(x) = tr(x̃R) = 0.

2. Let R = F2,M = F2 ⊕ F2. Then χM (1) = 2 = 0 but obviously M 6∼= 0.

Exercise. If R is semisimple and finitely generated over k and M is simple, then χM 6= 0.

Proof. Note that M is isomorphic to a simple left ideal of R, say Ii, where R = n1I1 + ... + ntIt. Then χM = χi. Of
course, χi(1) = dimk Ii 6= 0.



Theorem 4.12. Let R be a finite dimensional k−algebra (for a field k), char k = 0. Let M,N be finitely generated
semisimple left R−modules. Then χM = χN if and only if M ∼= N as R−modules.

Proof. We’ve already shown ⇐, thus we need only show ⇒ . Let J = J(R). Since M, N are sums of simple modules,
JM = JN = 0. Thus M, N are left R/J−modules. Since R/J is semisimple (R is Artinian and J(R/J) = 0), we
know R/J ∼= R1 × · · · ×Rt, where Ri is Artinian, simple with left simple modules Ii. Let I1, ..., It be the distinct simple
R/J−modules. Then I1, ..., It are the distinct simple left R−modules. (Any simple R module is a simple R/J module
and vice versa). Thus

M ∼= m1I1 ⊕ · · · ⊕mtIt and N ∼= n1I1 ⊕ · · · ⊕ ntIt

for mi, ni ≥ 0. Thus it is enough to show mi = ni for all i = 1, ..., t. Let ei ∈ R be such that ei+J is the identity of Ri. Then
eiIj = 0 for all i 6= j and ei|Ii = 1|Ii . Consider (ẽi)M : M → M defined by m 7→ eim, a k−endomorphism. Choose a basis

for M by taking the union of bases for mjIj for j = 1, ..., t. Then (ẽi)M =




0
. . .

0
1mi dim Ii

0
. . .

0




, where

1mi dim Ii is the identity matrix of size mi dim Ii. So χM (ei) = tr((ẽi)M ) = mi dim Ii. Similarly, χN (ei) = tr((ẽi)N ) =
ni dim Ii. As char k = 0, we have mi = ni.

Corollary 4.13. Let R be a semisimple finite dimensional k−algebra with char k = 0. Let I1, ..., It be the distinct left
simple ideals. Let χi = χIi for i = 1, ..., t. Then χ1, ..., χt are distinct irreducible k−characters of R. Given any finitely
generated left R−module M , there exist unique n1, ..., nt ∈ Z such that χM = n1χ1 + ... + ntχt (since characters are
additive). If ni > 0, say χi is an irreducible constituent of χM .

Example. Let R be as above and k = k. For R = n1I1 ⊕ · · · ⊕ ntIt, we know ni = dimk Ii = χi(1). Thus χR =
χ1(1)χ1 + · · ·+ χt(1)χt.

Proposition 4.14. Let G be a group, F a field. Let χ be an F−character of G. Then for all g, x ∈ G, we have
χ(g) = χ(xgx−1), that is, χ is constant on conjugacy classes.

Proof. Let ρ : G → GLF (V ) be an F−representation of G with character χ. Then χ(xgx−1) = tr(ρ(xgx−1)) =
tr(ρ(x)ρ(g)ρ(x)−1) = tr(ρ(g)) = χ(g).

Examples. Let k = k and char k = 0.

1. G = Cn =< a > . Since G is abelian, all representations have deg 1. Then irreducible k−representations are
ρi = Cn → k∗ defined by a 7→ ωi for i = 0, ..., n − 1 where ω is a fixed primitive nth root of unity. The character
χi associated to ρi is χi(aj) = ωij . Thus we can construct the character table:

1 a a2

χ0 1 1 1
χ1 1 ω ω2

χ2 1 ω2 ω

where the top row consists of representations for each conjugacy class and the first column consists of the irreducible
characters.



2. G = V4 = {1, a, b, ab}. Recall the representations are ρij : G → k∗ defined by ai 7→ (−1)i and bj 7→ (−1)j for
i, j ∈ {0, 1}.

(ρ00 ↔ )
(ρ01 ↔ )
(ρ10 ↔ )
(ρ11 ↔ )

1 a b ab

χ0 1 1 1 1
χ1 1 −1 1 −1
χ2 1 1 −1 −1
χ3 1 −1 −1 1

3. G = S3. Recall that there were two degree 1 representations: the trivial representation ρ0 and the signed represen-

tation ρ1 and one degree 2 representation: ρ2 : S3 → GL2(k) defined by (12) 7→
[

1
1

]
and

[
−1

1 −1

]
. Thus the

character table is given by:

(1) (12) (123)

χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

← as there only 3 conjugacy classes

← Remember we just want the trace of the matrices

Note that the first column is always just the degree of the representation.

4. G = Q8 =< a, b|a4 = b4 = 1, a2 = b2, ab = b3a > . Note that any normal subgroup of Q8 induces the homomorphism
G → G/H → GLF (V ). Let Z = Z(G) = {±1}. Then G/Z ∼= V4. Recall that this has 4 degree 1 representations,
namely ρij : Q8 → k∗ by a 7→ (−1)i and b 7→ (−1)j where i, j ∈ {0, 1}. As G is not abelian, we know there must
exist a representation of degree ≥ 2. Furthermore, as

∑t
i=1 n2

i = |G| = 8, we see there can exist only one more

representation, which must have degree 2. Note that

[
1

−1

]
and

[
ω

ω

]
(where ω is a primitive 4th root of unity

(for k = C, ω = ±i)) satisfy the relations of G. So define ρ4 : Q8 → GL2(k) by a 7→
[

1
−1

]
and b 7→

[
ω

ω

]

Note that then c 7→
[

1
−1

][
ω

ω

]
=

[
ω

−ω

]
. Thus our character table is given by

1 −1 a b c

χ0 1 1 1 1 1
χ1 1 1 1 −1 −1
χ2 1 1 −1 1 −1
χ3 1 1 −1 −1 1
χ4 2 −2 0 0 0

For −1, just note that since −1 ∈ Z(G), −1 is 1 ∈ G/Z(G). So χi(−1) = χi(1) for i = 0, ..., 3. For χ4, we know
−1 7→ −I, which has trace −2.

Let G be a finite group, k = k, with char k - |G|. Recall k[G] ∼= B1 × · · · × Bt with Bi simple and Artinian. Let
ei ∈ Bi be the identity element. Then {e1, ..., et} are uniquely determined by k[G]. Recall Z(k[G]) = Z(B1)×· · ·×Z(Bt)
where Z(Bi) = Z(Mn(k)) = {λIn|λ ∈ k} = kei. Thus Z(k[G]) = ke1 × · · · × ket. On the other hand, we know
Z(k[G]) = kz1 ⊕ · · · ⊕ kzt where zi =

∑
g∈Ci

g where C1, ..., Ct are the distinct conjugacy classes of G.
Let χ1, ..., χt be the irreducible characters of G associated to the simple left ideals I1, ..., It, respectively and where

Bi
∼= niIi (as k−vector spaces). Recall dimk Ii = ni. Let mi = |Ci| for i = 1, ..., t.

Theorem 4.15. With the above notation,

1. ei = ni

|G|
∑

g∈G χi(g−1)g for i = 1, ..., t.



2. zi = mi

∑t
j=1

χi(g)ej

nj
for g ∈ Ci.

In particular, (1) says char k - ni.

Proof. Let φ be the character associated to the regular representation of G. Recall

(a) φ = n1χ1 + ... + ntχt.

(b) φ(1) = |G|.

(c) φ(g) = 0 for all g 6= 1 (as for V = {eh|eh ∈ G}, ρ : G → GLk(V ) defined by g · eh = egh 6= eh if g 6= 1. Thus
tr(ρ(g)) = 0 if g 6= 1.)

1. Let ei =
∑

g∈G aigg for aig ∈ k. Want to show aig = niχi(g
−1)

|G| . Let h ∈ G and consider φ(eih
−1) =

∑
g∈G aigφ(gh−1) =

aih|G| by (b) and (c). By (a), φ(eih
−1) =

∑t
j=1 njχj(eih

−1), where χj(eih
−1) = tr(ẽih−1

Ij
) = tr(δij h̃−1

Ij
) =

δijχj(h−1) as ẽi annihilates Ij but is the identity on Ii. Thus aih|G| = φ(eih
−1) = niχi(h−1). Thus aih = niχi(h

−1)
|G| .

2. Let g ∈ Ci, zi =
∑t

j=1 bgjej . Then χj(zi) = miχj(g) as zi =
∑

h∈Ci
h and χj(

∑t
`=1 bg`e`) =

∑t
`=1 bg`χj(e`) =

bgjχj(ej) = bgjtr(idIj
) = bgjnj . Thus bgj = miχj(g)

nj
which implies zi = mi

∑t
j=1

χj(g)ej

nj
. [It should be noted here

that we mean nj ∈ k, however, we will just say nj for simplicity]

Corollary 4.16. With the above notation (|G| < ∞, char k - |G|, k = k), let χ1, ..., χt be the irreducible characters of G.

Then

1. For i, j we have
∑

g∈G χi(g)χj(g−1) = δij |G|.

2. For all g, h ∈ G, we have
∑t

i=1 χi(g)χi(h−1) = δ|CG(g)|, where CG(g) := {x ∈ G|xg = gx} and δ = 1 if g, h are in
the same conjugacy class and δ = 0 otherwise.

3. If g 6= 1, then
∑t

i=1 χi(1)χi(g) = 0.

Proof. 1. By the Theorem, ei = ni

|G|
∑

χi(g−1)g. Apply χj to both sides. Then χj(ei) = δijni. So δijni = ni

|G|
∑

χi(g−1)χj(g).
Thus δij |G| =

∑
χi(g−1)χj(g).

2. Plug 1 of the theorem into 2 of the theorem to get for g ∈ Ci, zi = mi

|G|
∑

h∈G(
∑t

j=1 χj(g)χj(h−1))h. Comparing

coefficients, mi

|G|
∑t

j=1 χj(g)χj(h−1) = 1 if and only if h ∈ Ci (and 0 otherwise). Now, mi = |Ci| = |G|
|CG(g)| .

3. Follows from 2 be letting h = 1.

Definition 4.17. A k-class function on G is a function φ : G → k which is constant on conjugacy classes, that is,
φ(g) = φ(xgx−1) for all x, g ∈ G. Let Fk(G) be the set of k−class functions of G.

Remark. Fk(G) is a k−vector space in a natural way

(φ + ψ)(g) = φ(g) + ψ(g) and (aφ)(g) = aφ(g) for all g ∈ G, a ∈ k.

The dimk Fk(G) is the number of conjugacy classes. We can define an inner product (which is bilinear) on Fk(G) via

< φ, ψ >=
1
|G|

∑

g∈G

φ(g−1)ψ(g).

Proposition 4.18. With the above notation, the set of irreducible characters on G, {χ1, ..., χt}, is an orthonormal basis
for Fk(G).

Proof. We’ve shown < χi, χk >= δi,j . Since dimk Fk(G) = t, we see that it is a basis.



Examples.

1. G = A4 (where char k 6= 2, 3). First, we need to find the conjugacy classes. Let H = {(1), (12)(34), (13)(24), (14)(23)}.
Then H C A4 and the conjugacy classes are {1},H \ {1}, (123)H, (132)H. Thus there are 4 irreducible characters.
Note that G/H ∼= C3, which gives us 3 degree 1 representations. Since

∑
n2

i = |G|, we see there is only one other,
which has degree 3. Now, we can fill out the character table:

(1) (12)(34) (123) (132)

χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 −1 0 0 ← for this row, recall χ4(1) = deg ρ4 and 0 =
∑t

i=1 χi(g)χi(1).

Since (12)(34) ∈ H, it acts like (1) on χ1, χ2, χ3.

What is a representation with character χ4? Let V = ke1⊕ ke2⊕ ke3⊕ ke4/k(e1 + e2 + e3 + e4) ∼= ke1⊕ ke2⊕ ke3,

where e4 = −e1 − e2 − e3. Now, make V into a k[A4]−module by defining σei = eσ(i) for all σ ∈ A4, i = 1, 2, 3.

This is well-defined as σei = eσ(i) is well-defined and σ fixes e1 + e2 + e3 + e4. Thus V gives rise to a degree 3
representation of A4. Let χ be the associated character.

Claim: χ = χ4 (that is, χ is irreducible)

Proof: If χ 6= χ4, then it is reducible. Thus it is a sum of irreducible characters, which implies χ = χ1+χ2+χ3.

Then, χ((12)(34)) = χ1 + χ2 + χ3 = 3. However, χ((12)(34)) = tr(ρ((12)(34))) = tr




0 1 −1
1 0 −1
0 0 −1


 = −1.

This shows that, since χ is irreducible, V is simple.

2. G = S4. Here, the conjugacy classes are (1), (12), (12)(34), (123), (1234). Note that H above is still normal in S4.

Here, |S4/H| = 6. Since every element of S4 has order ≤ 4, we see S4/H ∼= S3.

(1) (12) (12)(34) (123) (1234)

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

← V, the k[A4]−module above is also a simple k[S4]−module
← Use the fact that χt

i=1χi(1)χi(g) = 0.

For χ1, χ2, χ3, note that (12)(34) maps to 1 in S4/H and (1234) maps to a transposition in S4/H.

By HW6# 6, if k = C, we see 1
|G|

∑
g∈G χi(g)χj(g) = δij .

Corollary 4.19. Suppose k = C. With the above notation, 1
|G|

∑
g∈G |χi(g)|2 = 1 and

∑
g∈G χi(g)χj(g) = 0 for i 6= j.

Let gi ∈ Ci for i ∈ [t] and mi = |Ci|. Then
∑t

i=1 miχj(gi)χ`(gi) = δj`|G|.
Facts. Let G be a finite group, ρ : G → GLCV a finite dimensional representation with associated character χ. Say
deg ρ = n. Then GLCV = GLn(C).

1. For all g ∈ G, |χ(g)| ≤ χ(1).

2. χ(g) = χ(1) if and only if g ∈ ker ρ.

Proof. 1. Let λ1, ..., λn be the eigenvalues of ρ(g). Then λ1, ..., λn are roots of unity. So |χ(g)| = |λ1 + ... + λn| ≤
|λ1|+ ... + |λn| = n · 1 = χ(1).



2. The backward direction is clear. So assume χ(g) = χ(1). Then, by (1), λ1 + .... + λn = n. By Cauchy Schwarz,
|λ1 + ... + λn| = |λ1|+ ... + |λn| if and only if λi = λj for all i, j. Then nλ1 = n which implies λ1 = 1. Thus λi = 1
for all i. Since the minimal polynomial divides xn − 1, ρ(g) is diagonalizable and since it is similar to the identity
matrix, it is in fact the identity matrix.

Examples.

1. Recall (12)(34) ∈ H C A4 and χi((12)(34)) = χi(1) for i = 1, 2, 3.

2. Let F = R, G = C4 =< g > . Then

R[G] = R · 1⊕ Rg ⊕ Rg2 ⊕ Rg3 = R[x]/(x4 − 1) ∼= R[x]/(x− 1)⊕ R[x]/(x + 1)⊕ R[x]/(x2 + 1).

Let ρ1 : G → R∗ be defined by g 7→ 1, ρ2 : G → R∗ be defined by g 7→ −1, and ρ3 : G → R∗ be defined by

g 7→
[
0 −1
1 0

]
. Then ρi is a representation of the ith summand on the right hand side of the above equation.

Now, let φ : G → GL4(R) be defined by g 7→




1
−1

0 −1
1 0




. Then φ = ρ1 ⊕ ρ2 ⊕ ρ3. Also, if we define

ρ : C4 → GL4(R) by g 7→




1
1

1
1




. Then ρ ∼= φ.

4.2 Integral Extensions

Our goal is to work towards proving Burnside’s Theorem, which says Every group of order paqb (for p, q primes) is
solvable.

Definition 4.20. Let R ⊂ S be commutative rings, u ∈ S. Then u is integral over R if f(u) = 0 for some monic
polynomial f(x) ∈ R[x]. We say S is integral over R if every element of S is integral over R.

Remark. If E/F is a field extension, then α ∈ E is integral over F if and only if α is algebraic over F.

Proposition 4.21. Let R ⊂ S be commutative rings, u ∈ S. TFAE

1. u is integral over R.

2. R[u] is a finitely generated R−module

3. There exists a faithful R[u]−submodule M of S which is finitely generated as an R−module. (Recall faithful means
AnnR[u]M = 0)

Note. The above are also equivalent to “There exists a finitely generated R−submodule M of S such that 1 ∈ M and
uM ⊆ M.”

Proof. (1) ⇒ (2) There exists an equation of the form un + r1u
n−1 + ...+ rn = 0, ri ∈ R. Then un+k ∈ R ·1+ ...+Run−1

for all k ≥ 0. So R[u] = R · 1 + ... + Run−1, a finitely generated R−module.

(2) ⇒ (3) Let M = R[u]. M is faithful as 1 ∈ M. Of course uR[u] ⊆ R[u].



(3) ⇒ (1) “determinant trick.” Recall: Let R be a commutative ring, A ∈ Mn(R). Define the adjoint of A by adjA =
(bij)n×n where bij = (−1)i+j det(Aji) where Aji is the (n−1)× (n−1) matrix obtained by deleting the jth row and
ith column. Also, A ·(adjA) = (detA)In = (adjA) ·A (p 511). Let M = Rx1+ ...+Rxn ⊆ S, AnnRM = 0, uM ⊆ M.

For j, i = 1, ..., n there exists rij ∈ R such that uxi =
∑

rijxj , that is, uIn




x1

...
xn


 = A




x1

...
xn


 for A ∈ Mn(R).

Then (uIn − A)




x1

...
xn


 = 0. Say B := uIn − A. Multiply both sides by adjB. Then 0 = adj(B)B




x1

...
xn


 =

(detB)I




x1

...
xn


 which implies (detB)M = 0. But M is faithful and det B ∈ R[u]. Thus detB = 0. One can show

detB has the form un + t1u
n−1 + ... + tn for ti ∈ R. Thus un + t1u

n−1 + ... + tn = 0 which implies u is integral over
R.

Corollary 4.22. S/R as above, u ∈ S. Then TFAE

1. u is integral over R.

2. R[u] is a finitely generated R−module.

3. R[u] is integral over R.

Proof. Let β ∈ R[u] and M = R[u] from theorem. Then βM ⊆ M (that is, M is an R[β]−module), 1 ∈ M. By (2), M

is a finitely generated R−module. By (3) of the theorem, β is integral.

Exercise. S/R as above and u1, ..., un ∈ S. Then TFAE

1. u1, ..., un are integral over R.

2. R[u1, ..., un] is a finitely generated R−module.

3. R[u1, ..., un] is integral over R.

Corollary 4.23. R ⊆ S as above.

1. If S is finitely generated as an R−module, then S is integral over R.

2. If S is integral over R, then S is finitely generated over R as an algebra if and only if S is finitely generated over
R as a module.

Examples.

1. Let K be a field, R = k[t2, t3], S = k[t]. Then t is integral over R (it is a root of x2 − t2 ∈ R[t]) and so S is integral
over R. Note that S is contained in the field of fractions. Also, S is integral over R and finitely generated as an
R−algebra. Thus S is finitely generated as as R−module (S = R + Rt).

2. Let S = Z[ 3+
√

5
2 ] and R = Z[

√
5]. Note S ⊆ Q(R) = Q(

√
5). Note 3+

√
5

2 is integral over R as it is a root of
x2 − 3x + 1 ∈ Z[x]. Thus S is integral over R and finitely generated as an R−module.

Corollary 4.24. Let R ⊆ S as above. Let T = {α ∈ S|α is integral over R}. Then T is a subring of S which is integral
over R. T is called the integral closure of R in S. If T = R, then T is said to be integrally closed in S.

Proof. Follows from above exercise as αβ, α± β ∈ R[α, β] which is integral over R when α, β are integral.



Example. Let A = {α ∈ C|α is integral over Z}. Then A is a ring. The elements of A are called algebraic integers.
Note A is integral over Z, but not finitely generated over Z (as either a module or algebra, by the corollary).

Definition 4.25. Let R be a commutative domain. Let Q be its field of fractions. The absolute integral closure of
R, denoted R+, is R+ = {α ∈ Q : α is integral over R} where Q is some algebraic closure of Q.

Theorem 4.26 (Hochster-Heneke, 1993). If char R = p, then R+ is a Cohen-Macauly R−algebra.

Definition 4.27. Let R be a domain. Say R is integrally closed (or normal) if R is integrally closed in its field of
fractions.

Proposition 4.28. Let R be a UFD. Then R is integrally closed.

Proof. Let a
b ∈ Q(R) be integral over R. WLOG, assume gcd(a, b) = 1. So

(
a
b

)n + r1

(
a
b

)n−1 + ... + rn−1

(
a
b

)
+ rn = 0

where ri ∈ R. Multiply by bn to get an + r1ba
n−1 + ... + rn−1b

n−1a + rnbn

︸ ︷︷ ︸
b divides these

= 0. Thus b|an. But gcd(an, b) = 1. So b is a

unit of R which implies a
b ∈ R.

Note. This says that PIDs are integrally closed.

Corollary 4.29. The only rational algebraic integers are integers.

Remark. Let R ⊆ S be commutative rings, I an ideal of S. Then φ : R/(I ∩R) → S/I defined by r + I ∩R 7→ r + I is
an injective ring homomorphism. So we can consider R/(I ∩ R) as a subring of S/I, where multiplication is defined by
r · s = rs (that is, (r + I ∩R)(s + I) = rs + I is well-defined).

Lemma 4.30. If S is integral over R and I is an ideal of S, then S/I is integral over R/I ∩R.

Proof. Let s ∈ S. Then sn+r1s
n−1+...+rn = 0 for ri ∈ R. By the remark, modding out by I gives sn+r1s

n−1+...+rn = 0
where ri ∈ R/(I ∩R).

Proposition 4.31. Let S be integral over R. Let p ∈ Spec S. Then p is maximal in S if and only if p ∩ R is maximal
in R.

Proof. By lemma, S/p is integral over R/p ∩ R. Also, S/p and R/p ∩ R are domains (as p, p ∩ R are prime). Thus it is
enough to prove:

Claim: If S is integral over R and both are domains, then S is a field if and only if R is a field.

Proof:

⇐ Suppose R is a field. Let u ∈ S \ {0}. Then u is integral over R which implies u is algebraic over R. Since
R[u] ⊆ S is a domain and is a finite dimensional R−vector space, R[u] is a field. Thus u−1 ∈ R[u] ⊆ S.

⇒ Suppose S is a field. Let u ∈ R \ {0}. Then u−1 ∈ S is integral over R. Then (u−1)n + r1(u−1)n−1 + ... + rn = 0
for ri ∈ R and multiplication by un−1 gives u−1 + r1 + ... + rnun−1 = 0. Thus u ∈ R.

Suppose R ⊇ S are commutative rings, Q a multiplicatively closed subset of R. Since localization is exact, RW ⊆ SW

(as rings).

Proposition 4.32. If S/R is integral, W is a multiplicatively closed subset of R, then SW is integral over RW .

Proof. Let s
w ∈ SW . Since S/R is integral, there exists an equation of the form sn + r1s

n−1 + ... + r1s + rn = 0, for
ri ∈ R. Divide by wn to get

(
s
w

)n + r1
w

(
s
w

)n−1 + ... + rn−1
wn−1

(
s
w

)
+ rn

wn = 0. Thus s
w is integral over RW .



Remark. Let N1, N2 be R−submodules of M and W a multiplicatively closed subset. Then (N1 ∩ N2)W = (N1)W ∩
(N2)W .

Lying Over (LO) Theorem. (Cohen - Seidenberg) Let S/R be an integral extension. Given p ∈ SpecR, there exists
P ∈ SpecS such that P ∩R = p.

Proof. Let W = R−p, a multiplicatively closed subset of R. Then pW is the unique maximal ideal of RW . As noted, SW

is integral over RW . Let P ∈ SpecS be such that PW is maximal in SW (as maximal ideals of SW correspond to maximal
ideals of S). By a previous proposition, PW ∩RW is maximal in RW . Since pW is unique, pW = PW ∩RW = (P ∩R)W .

Note P ∩ R ∈ SpecR. By the one-to-one correspondence between primes of R which do not intersect W and SpecRW ,

we have P ∩R = p.

Incomparable (INC) Theorem. Let S/R be integral and P1, P2 ∈ SpecS such that P1 ∩R = P2 ∩R. Then P1, P2 are
incomparable (that is, P1 6⊂ P2 and P2 6⊂ P1).

Proof. Let p ∈ P1 ∩ R = P2 ∩ R ∈ SpecR. Localize at W = R − p. Then (P1)W , (P2)W ∈ SpecSW and are 6= S. Also
(P1)W ∩ RW = pW = (P2)W ∩ RW . Therefore, it is enough to show in the case that P1 ∩ R = P2 ∩ R is maximal in R.

Then P1, P2 are maximal in S. Hence P1 6⊂ P2 and P2 6⊂ P1.

Going Up (GU) Theorem. Let S/R be integral and p ⊂ q primes of R. Let P ∈ SpecS such that P ∩ R = p. Then
there exists Q ∈ SpecS such that P ⊂ Q and Q ∩R = q.

Proof. By localizing at Q = R − q, we can reduce to the case that q is maximal. Thus it is enough to prove in the
case that (R, q) is quasilocal. Let Q be any maximal ideal of S containing P. Then Q ∩ R is maximal in R which says
Q ∩R = q.

Theorem 4.33. Let S/R be an integral extension. Then dim S = dim R.

Proof. Let Q0 ( Q1 ( · · · ( Qn be a chain of primes of S. Intersect with R to get Q0∩R ⊂ Q1∩R ⊂ · · · ⊂ Qn∩R, a chain
of primes in R. By the INC Theorem, these are still proper containments. Thus dim R ≥ dim S. Let p0 ( p1 ( · · · ( pn

be a chain of primes of R. By the LO Theorem, there exists Q0 ∈ SpecS such that Q0 ∩ R = p0. Now use the GU
Theorem n times to get Q0 ( Q1 ( · · · ( Qn where Qi ∩R = pi. Then dim S ≥ dim R.

Setup: Let G be a finite group, k = k a field, char k - |G|. Then k[G] is semisimple and thus k[G] = B1 × · · · ×Bt where
Bi are Artinian simple rings. Let ei be the identity of Bi. Let C1, ..., Ct be the conjugacy classes of G and zi =

∑
g∈Ci

g.

We’ve proved Z(k[G]) = ke1 × · · · × ket as rings and Z(k[G]) = kz1 ⊕ · · · ⊕ kzt as k−modules. If R is a commutative
ring, then R[G] = ⊕g∈GRg and one can show that Z(R[G]) = Rz1 ⊕ · · · ⊕ Rzt. Now, assume char k = 0. Then Z ⊆ k

and as k is a field, this says Q ⊆ k.

Remark. If char k = 0, k = k, then Z(Z[g]) = Zz1 ⊕ · · · ⊕ Zzt ⊆ kz1 ⊕ · · · ⊕ kzt = Z(k[G]).

Theorem 4.34. Let char k = 0 and χ1, ..., χt be the irreducible characters of G where χi correspond to Bi. Let mi = |Ci|.
Then for all i, j ∈ [t], g ∈ Cj we have mjχi(g)

χi(1)
∈ k is integral over Z. Thus zi ∈ Ae1 + ... + Aet, where A is the integral

closure of Z in k.

Proof. Recall that zj = mj

∑t
i=1

χi(g)ei

χi(1)
. Now zj ∈ Z(Z[G]) = Zz1 + ... + Zzt, which is a ring and a finitely generated

Z−module. Thus zj is integral over Z. Also, zj ∈ Z(k[G]) = ke1 + ...+ket. Say zj =
∑t

i=1 αiei for αi ∈ k. Let f(x) ∈ Z[x]
be monic such that f(zi) = 0. Then

0 = f(zi) = f(α1e1 + ... + αtet) = f(α1)e1 + ... + f(αt)et

as eiej = δijei. as e1, ..., et are linearly independent over k, we must have that f(αi) = 0 for all i. Thus αi ∈ A for all i.

Thus zi ∈ Ae1 + ...Aet.



Lemma 4.35. Let A be the integral closure of Z in k and χ be any character of G. Then χ(g) ∈ A for all g ∈ G.

Proof. Note that χ(g) =
∑

λi, where λi are the eigenvalues of ρ(g) for ρ : G → GLk(V ) a representation associated to
χ. Recall λi is a root of unity. Thus λi ∈ A for all i. Since A is a ring, χ(g) ∈ A.

Theorem 4.36. With the above notation, ni||G| for all i = 1, ..., t.

Proof. Recall that ei = ni

|G|
∑t

i=1 mjχi(g−1
j )zj where gi ∈ Ci. Thus |G|

ni
ei =

∑t
j=1 mjχi(g−1

j )zj , were mjχi(g−1
j ) ∈ A.

Thus |G|
ni

ei ∈ Az1 + ... + Azt ⊆ Ae1 + ... + Aet. Since the e′is are linearly independent, we must have |G|
ni
∈ A ∩Q ⊆ Z as

Z is integrally closed. Thus ni||G|.

4.3 Representations of Products of Groups

Let ρi : Gi → GLk(Vi), for i = 1, 2, be k−representations of Gi. Define the tensor product ρ1⊗ρ2 by ρ1⊗ρ2 : G1×G2 →
GLk(V1⊗V2) by (g1, g2) 7→ ρ(g1)⊗ρ(g2). This is easily seen to be a representation of G1×G2 of degree (deg ρ1)(deg ρ2).
Now χρ1⊗ρ2(g1, g2) = trk(ρ1(g1)⊗ ρ2(g2)) = trk(ρ1(g1))trk(ρ2(g2)) = χρ1(g1)χρ2(g2) (Exercise). Generally, we will write
χρ1⊗ρ2 = χρ1χρ2 . Let ρi, ρ

′
i be representations of Gi for i = 1, 2. Then

< χρ1⊗ρ2 , χρ′1⊗ρ′2 >=< χρ1 , χρ′1 >G1< χρ2 , χρ′2 >G2

(Exercise).

Conclusion. ρ1 ⊗ ρ2 is irreducible if and only if ρ1, ρ2 are irreducible. Moreover, if {χ1, ..., χs} is the set of irreducible
characters of G1 and {φ1, ..., φt} is the set of irreducible characters for G2, then {χiφj} is the set of irreducible characters
of G1 ×G2 (Use the fact that

∑
n2

i = |G| to show that this must be all of them).

Another Version of...

Lemma 4.37 (Schur’s Lemma). Let |G| be a finite group, char k - |G|, k = k. Let ρ : G → GLk(V ) be an irreducible
representation of G and χ its associated character. Then for all g ∈ Z(G), we have

1. ρ(g) = λI for some λ ∈ k∗.

2. |χ(g)| = χ(1) if k = C.

Proof. Write k[G] = B1×· · ·×Bt where Bi are simple, Artinian, and ei ∈ Bi is the identity. Then Z(k[G]) = ke1×· · ·×ket.

If g ∈ Z(G), then g ∈ Z(k[G]). Write α1e1 + ...+αtet = g, αi ∈ k. Now V is an irreducible k[G]−module. WLOG, say V

is a simple B1−module (if not, reindex the Bi’s). Then e1v = v for all v ∈ V and ejv = 0 for all j > 1. Then gv = α1v

for all v ∈ V and thus ρ(g) = α1IV .

Theorem 4.38. Under the “standard notation” above, ni

∣∣∣[G : Z(G)] for all i.

Proof. (Tate) Let n = n1, χ = χ1 with ρ : G → GLk(V ), a representation associated to χ. Let m be a positive integer and
consider ρm := ρ⊗· · ·⊗ρ : G× · · · ×G︸ ︷︷ ︸

:=Gm

→ GLk(V ⊗· · ·⊗V ). As ρ is irreducible, so is ρm. Define a map γ : Z(G) → k∗ by

g 7→ α where ρ(g) = αI. It is easily seen that γ is a group homomorphism. Let D = {(g1, ..., gm) ∈ Z(Gm)|λ(g1 · · · gn) =
1}. Let H = ker γ and g1, ..., gm−1 ∈ Z(G). Note (g1, ..., gm) ∈ D if and only if g1, ..., gm ∈ H which is if and only
if gm ∈ g−1

1 · · · g−1
m−1H. Thus |D| = |Z(G)|m−1|H| (as there are |Z(G)|m−1 choices for g1, ..., gm−1 and |H| choices for

gm. Now D C Gm as D ⊆ Z(Gm) and D ⊆ ker ρm (To see this, let (g1, ..., gm) ∈ D. Then ρ(g1, ..., gm) = ρ(g1) ⊗ · · · ⊗
ρ(gm) = αg1IV ⊗· · ·⊗αgmIV = (αg1 · · ·αgm)IV⊗···⊗V = γ(g1) · · · γ(gm)IV⊗···⊗V = γ(g1 · · · gm)IV⊗···⊗V = IV⊗···⊗V .) Thus
ρm : Gm/D → GLk(V ⊗ · · ·⊗V ) defined by (g1, ..., gm) 7→ ρ(g1)⊗ · · ·⊗ ρ(gm) is a well defined irreducible representation
of Gm/D. By the previous theorem, deg ρm

∣∣∣|Gm/D| which implies nm
∣∣∣|G|m/(|Z(G)|m−1 · |H|). So |G|m

nm|Z(G)|m−1|H| ∈ Z.



Then
|Z(G)|
|H|︸ ︷︷ ︸
∈Z

( |G|
n|Z(G)|

)m

︸ ︷︷ ︸
∈Q

∈ Z for all m. By HW7#5, we see |G|
n|Z(G)| is integral over Z which says n

∣∣∣[G : Z(G)] as Z is

integrally closed in Q.

Lemma 4.39. Let G be a finite group, ρ : G → GLn(C) an irreducible representation, and χ its associated character.
Let C be a conjugacy class of G such that gcd(|C|, n) = 1. Then for all g ∈ C, either χ(g) = 0 or |χ(g)| = 1.

Proof. Let m = |C|. Then there exists r, s ∈ Z such that rm+sn = 1. Then for all g ∈ C, we have rmχ(g)
n +sχ(g) = χ(g)

n .

Let A be the integral closure of Z in C. We’ve see χ(g) ∈ A for all g ∈ G. By a previous proposition, we have also shown
mχ(g)

n ∈ A for g ∈ C. Thus χ(g)
n ∈ A for all g ∈ C. Let χ(g) = λ1 + ... + λn where λi are kth roots of unity. Let ω be a

primitive kth root of unity and L = Q(ω). Then λi ∈ L for all i. Let H = Gal(L/Q) and σ ∈ H. Note σ(A∩L) ⊆ A∩L.

Also, σ(λi) = λj . Let α = χ(g)
n = λ1+...+λn

n . Then |α| ≤ 1. Note |σ(α)| = |σ(λ1)+...+σ(λn)
n ≤ 1 for all σ ∈ H and σ(α) ∈ A.

Consider N = NL
Q : L → Q where N(β) = Πσ(β) ∈ Q. So N(α) = Πσ∈Hσ(α) ∈ Q ∩ A = Z. So |N(α)| = Π|σ(α)| ≤ 1.

Thus N(α) = 0 or 1. Now N(α) = 0 implies χ(g)
n = α = 0. Thus χ(g) = 0. If N(α) = 1, then |α| = 1 which says

λ1 = ... = λn so that χ(g) = λn and |χ(g)| = n = χ(1).

Theorem 4.40. Let G be a finite simple group, C a conjugacy class of G. Then |C| 6= pa for p prime and a > 0.

Proof. Assume G is not abelian (as otherwise |C| = 1). Suppose there exists C such that C = pa for a > 0. Let χ1, ..., χt

be the irreducible C−characters of G and ρi : G → GLni(C) the irreducible representations associated with χi. Let ρ1

be the trivial representation.

Claim 1: If p - ni for i > 1, then χi(g) = 0 for all g ∈ C.

Proof: Let Gi = {g ∈ G|ρi(g) = λI, some λ ∈ C}. It is easy to see Gi C G. But G is simple, so Gi = {1} or Gi = G.

Suppose Gi = G. Note ker ρi C G and ρi 6= 1. Thus ker ρi = {1}. So G ∼= ρi(G) = {λgI|g ∈ G} as Gi = G, but this
is abelian, a contradiction. Thus Gi = {1} and ρi(g) 6= λI for all λ ∈ C and g 6= 1. Thus |χi(g)| < χi(1) by HW7.
By the lemma, χi(g) = 0 for all g ∈ C.

Claim 2: p|ni for some i > 1.

Proof: By an orthogonality relation, for g ∈ C, we have
∑t

i=1 χi(1)χi(g) = 0. So 0 = 1 +
∑t

i=2 χi(1)χi(g). Since
0 6= 1, there exists j ≥ 2 such that χj(g) 6= 0. Thus p|nj .

Reorder the characters such that p|ni for i = 2, ..., s and p - ni for i = s+1, ..., t. Thus by Claim 1, 1+
∑s

j=2 χj(1)χj(g) = 0.

Since p|nj , we have 1
p = −∑s

j=2(
nj

p )χj(g) ∈ A ∩Q = Z, a contradiction.

Corollary 4.41 (Burnside). Let G be a group of order paqb. Then G is solvable.

Proof. We will show that G is not simple. We’ve seen the case where b = 0. So assume a, b ≥ 1. Let P be a Sylow-p
subgroup. Let z ∈ Z(P ) \ {1}. Then CG(z) ⊇ P which implies [G : CG(z)] = qc, for some c. Of course, [G : CG(z)] = |C|,
where C is the conjugacy class of z. By the theorem, if G is simple, then c = 0 which implies z ∈ Z(G) \ {1} and so G

has a nontrivial subgroup. So G is not simple. Let H C G. By induction, H and G/H are solvable, which implies G is
solvable.

4.4 Injective Modules

Definition 4.42. An R−module E is injective if given

E

0 // M //

OO

N

``B
B

B
B

exact



there exists a map N → M such that the diagram commutes.

Theorem 4.43 (Baer’s Criterion). Let E be a left R−module. Then E is injective if and only if given a diagram

E

0 // I //

OO

R

∃h

__@
@

@
@

exact

where I is a left ideal, there exists h : R → E making the diagram commute.

Proof. The forward direction is clear from the definition. So suppose we are given a diagram

E

0 // M
i //

f

OO

N exact

where WLOG we may assume M ⊂ N and so i is just the inclusion map. Let Λ = {(K, fK)|M ⊆ K ⊆ N,K a left R−module, fK :
K → E, fK |M = f}. Partially order in the obvious way. Then Λ 6= ∅ and (M, f) ∈ Λ. By Zorn’s Lemma, there exists
(K, fK) maximal in Λ.

Claim: K = N.

Proof: Suppose not. Choose x ∈ N \ K. Let I = (K :R x) = {r ∈ R|rx ∈ K}. Then I is a left ideal of R. Define
φ : I → E such that i 7→ fK(ix). This is R−linear. By hypothesis, there exists φ̃ : R → E such that φ̃|I = φ.

Define g : K + Rx → E by k + rx 7→ fK(k) + φ̃(r). To show g is well-defined, suppose k + rx = 0. Then r ∈ I. So
φ̃(r) = φ(r) = fK(rx). Then g(k + rx) = fK(k) + fK(rx) = fK(k + rx) = fK(0) = 0. Thus (K + Rx, g) ∈ Λ, a
contradiction to the maximality of (K, fK).

Definition 4.44. Let R be commutative, M an R−module. Say M is divisible if for all m ∈ M and for all non-zero-
divisors r ∈ R, there exists m′ ∈ M such that rm′ = m.

Examples.

1. Every vector space over a field is divisible.

2. If R is a domain, then Q, the field of fractions of R, is divisible.

3. Sums, products, quotients of divisible modules are divisible.

4. Submodules of divisible modules are not always divisible. For example, Q is a divisible Z−module, but Z is not.

5. In particular, Q,Q/Z are divisible Z−modules.

Proposition 4.45. Let R be commutative. Every injective module is divisible. If R is a PID, then the converse holds.

Proof. Let E be injective, e ∈ E, and r ∈ R a non-zero-divisor. Consider the diagram

E

0 // R
r //

f

OO

R

__@
@

@
@

exact



where r : R → R is multiplication by r and f(1) = e. As E is injective, we have a map from R → E, say its defined by
1 7→ e′. Then, by commutivity, re′ = e. Now, suppose R is a PID and E is a divisible module. Let I = (a) be an ideal of
R and consider the diagram

E

0 // (a) r //

f

OO

R

``A
A

A
A

exact

If a = 0, done. Otherwise, let e = f(a). As a is a non-zero-divisor (R is a domain), there exists e′ such that ae′ = e.

Define f̃ : R → E by 1 7→ e′. Then f̃(ra) = raf̃(1) = rae′ = re = rf(a) = f(ra). So f̃ |(a) = f. By Baer’s Criterion, E is
injective.

Corollary 4.46. Any Z−module M can be embedded into an injective Z−module.

Proof. Consider 0 → K → ⊕α∈IZ→ M → 0, which is exact (let |I| be the number of generators of M as a Z−module).
So M ∼= ⊕Z/K ⊆ ⊕Q/K. By the above, ⊕Q/K is a divisible Z−module and so it is injective. Thus M embeds into an
injective module.

Proposition 4.47. Let φ : R → S be a ring homomorphism. Let E be an injective left R−module. Then HomR(S,E)
is an injective left S−module.

Proof. Recall HomR(S,E) is a left S−module via (sf) : S → E where s′ 7→ f(s′s) for s ∈ S, f ∈ HomR(S,E). Note sf

is R−linear. So it is enough to show that if 0 → M → N is an exact sequence of S−modules, HomS(N, HomR(S,E)) →
HomS(M, HomR(S, E)) is surjective. By Hom-⊗ adjointness and the fact that S ⊗S M = M, we have the following
diagram

HomS(N, HomR(S, E)) σ−−−−→ HomS(M, HomR(S,E))
y∼=

y∼=
HomR(S ⊗S N, E) −−−−→ HomR(S ⊗S M, E)

y∼=
y∼=

HomR(N, E) −−−−→ HomR(M, E) −−−−→ 0 exact

Note that both squares commute by the “naturality” of the isomorphisms. The bottom row is exact as E is an injective
R−module. So, we have σ is surjective.

Theorem 4.48. Let R be a ring, M a left R−module. Then there exists an injective R−module E and an injective
R−module homomorphism M → E.

Proof. Of course, there exists a ring homomorphism φ : Z→ R. As M is a Z−module, there exists an injective Z−module
I with M ⊆ I. By the above proposition, HomZ(R, I) is an injective left R−module. Define g : M → HomZ(R, I) by
m 7→ fm where fm : R → I is defined by r 7→ rm ∈ M ⊆ I. We need to show g is R−linear. It is enough to show
rfm = frm. For r′ ∈ R, we have (rfm)(r′) = fm(r′r) = r′rm = frm(r′). Also, g is injective as m = 0 if and only if
fm = 0.
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