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Figure 1.1 (a) Channel straightening of Mud Creek, IA in the 1950s. The                                               

white line is the original channel. The blue line is the creek after straightening;                                            

(b) Channel incision at Mud Creek.  1 

Figure 1.2 Knickpoint formation. The circled area is a knickpoint in                                                             

Mud Creek, IA.  4 
Figure 1.3 Knickpoint processes. A sketch of the steps involved in knickpoint                                   

migration.  5 

Figure 3.1 Mud Creek, IA. The red dot on the aerial photo is the monitored                                        

knickpoint. The circle in the site photo highlights the knickpoint.  12 

Figure 3.2 Core Collection. Cores from the stream banks near the knickpoint                                                       

face were collected using a Giddings probe and Shelby tube system.  13 
Figure 3.3 Stratigraphic Interpretation. A close-up of the surface section for the                                           

stream bank core used in the stratigraphy analysis. The ruler in                                                        

the image is in inches.  15 
Figure 3.4 Gamma Scanner. The gamma scanner system at IIHR. Typical                                             

results of a core’s density.  16 
Figure 3.5 Measuring Core Bulk Density. A section of the stream bank core                                                     

was placed in a vertical frame. A 
241

Am sealed source was moved up                                              

and down the core length in conjunction with a gamma energy                                                  

detector on the other side of the core. The attenuation of the received                                  

radioactivity was indication of the core density.  17 

Figure 3.6 Time-lapse images collected on (a) September 15, 2011                                                                                 

(b) December 3, 2011, and (c) February 12, 2012.  20 
Figure 3.7 Corrected Time-lapse images from (a) September 15, 2011                                                                  

(b) December 3, 2011, and (c) February 12, 2012.  19 
Figure 3.8 LPIV image samples: (a) original image sampled from LPIV video                                           

and (b) rectified LPIV image.  23 

Figure 3.9 Depiction of subareas associated with interrogation points used for                                                      

discharge calculations.  24 

Figure 4.1 Stratigraphic Discontinuity. There appears to be a stratigraphic                                                   

discontinuity close to the knickpoint with a darker sediment                                                                 

(in the black circle) overlaying a lighter-colored sediment                                                                 

(in the red circle).  26 

Figure 4.2 Particle Size Distribution. These graphs show key particle size                                                

diameters of the sampled depth intervals in a stream bank core                                                  

from the study site. The d16, d50, and d84 for each interval are                                             

plotted relative to depth. The red circle highlighting the 600-650 cm                                              

depth interval corresponds to a coarsening of the overall particle size distribution,                                                    

as there are increases in the d50 and d84. This elevation corresponds to the top                                           

elevation of the knickpoint face.  28 
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 v 

Figure 4.3 Soil Texture. The percentages of clay, silt, and sand for each depth interval                                               

of a stream bank core from the study site. The red  circle highlighting the                                                      

600-650 cm depth interval corresponds to a  discontinuity in bank stratigraphy.                                                             

This discontinuity corresponds  to the top elevation of the knickpoint face.  29 

Figure 4.4 Soil Ternary Diagram. The soil texture of depth intervals in a stream                                                

bank core based on USDA soil classifications and particle size measurements. Red                                        

circles represent samples above 600 cm, and blue circles represent samples                                                  

below 600 cm. The 600-650 cm  elevation corresponds to the top elevation                                                                        

of the knickpoint face. There is a coarsening of sediment below this elevation, as                                               

seen through a shift in the texture as the material becomes sandier.  31 
Figure 4.5 Atterberg Limits. The Atterberg limits of select depth intervals were                                                        

measured using a fall cone. The samples were chosen because they had a                                                              

majority of fine particle sizes. Red circles represent samples above 600 cm,                                                             

and blue circles represent samples below 600 cm. The 600-650 cm elevation                                        

corresponds to the top elevation of the knickpoint face. The samples are mostly                                        

characterized as clay with low plasticity.  32 
Figure 4.6 Surrogate Bulk Density. The density of a stream bank core was measured                                                      

using the attenuation of a gamma radiation source. These graphs show the depth                                             

profile of attenuation count rates for a stream  bank core. A high count rate                                              

translates to high transmission of the  gamma source through the core, so that                                                

depth interval will have a lower bulk density. The red circles highlight shifts in the                                      

depth profile.  33 

Figure 4.7 Stream bed cores. The depth profile of the percent sand of cores                                                 

collected along a transect of the stream bed reach near the knickpoint. The zero level                                

represents the top of the knickpoint face. Old KP represents the core furthest                                        

downstream where the knickpoint was in 2009. The transect moves upstream                                                

as follows: Chute -> Sensors -> Current KP. There appears to be no                                                      

difference in the depth profiles; however, there is a coarsening four feet                                                     

below the surface.  35 

Figure 4.8 Knickpoint migration between July 14, 2011 and March 16, 2012.  36 
Figure 4.9 50 cm contours for surveyed data for (a) September 27, 2011, and                                                          

(b) March 21, 2012.  38 
Figure 4.10 (a) Image of the knickpoint on March 18, 2011, prior to installation                                                  

of knickpoint monitoring equipment. Note the previous trench in the foreground                                                      

and the previous and new scour holes. (b) Plan view of the current knickpoint                                           

location depicting the approximate location of the current trench.  39 
Figure 4.11 Surface velocity distribution measured with LPIV on                                                                                 

(a) September 27, 2011, and (b) March 21, 2012.  41 
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Executive Summary 

 The goal of this study was to conduct a field-oriented evaluation, coupled with advanced 

laboratory techniques, of channel degradation in a stream of the Deep Loess Region of western 

Iowa, namely, Mud Creek. The Midwestern United States is an ideal place for such a study, 

considering that approximately $1 billion of infrastructure and farmland has been lost recently to 

channel degradation. A common form of channel degradation in this region is associated with the 

formation of knickpoints, which naturally manifest as short waterfalls within the channel that 

migrate upstream. As flow plunges over a knickpoint face, scouring of the downstream bed 

creates a plunge pool. This downcutting increases bank height, facilitating bank failure, stream 

widening, and damage to critical bridge infrastructure. We conducted a state-of-the-art 

geotechnical analysis of the sediments from the knickpoint face, plunge pool, and adjacent 

stream banks to determine the areas of the streambed near the bridge infrastructure that favor 

knickpoint propagation. Soil characterization using particle size distributions and Gamma 

Spectroscopy identified a stratigraphic discontinuity at the elevation where the knickpoint forms. 

An automated surveillance camera was established to monitor the location of the knickpoint face 

relative to a fixed datum, and to provide a first-order approximation of its migration rate, which 

was approximately 0.9 m over a 248-day study period. Surveys conducted of the stream reach 

also facilitated information about knickpoint migration. Flow measurements using Large-scale 

Particle Image Velocimetry were conducted during the study to understand the hydrodynamic 

conditions at the site. The results of this research will assist local and federal transportation 

agencies in better understanding the following: (1) principal geotechnical and hydrodynamic 

factors that control knickpoint propagation, (2) identification of necessary data for extraction and 

analysis to predict knickpoint formation, (3) provision of mitigating measures, such as grade 
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control structures (e.g., sheet-pile weirs, bank stabilization measures), near bridge crossings to 

control the propagation of knickpoints and prevent further damage to downstream infrastructure. 
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Chapter 1 Introduction 

1.1 Problem Statement 

Over the last century, the severity of stream channel erosion in the Deep Loess Region of 

western Iowa and eastern Nebraska has increased due to straightening of the stream corridor (fig. 

1.1a), coupled with intensive agriculture and highly erodible loess soils. As a result, canyon-like 

systems (fig. 1.1b) have formed from persistent down-cutting and widening of the channels. 

These “hungry canyons,” as termed by local residents, consume an estimated 450 million metric 

tons of eroded sediment annually from channel reaches in the Midwestern United States (Baumel 

1994).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 (a) Channel straightening of Mud Creek, IA in the 1950s. The white line is the 

original channel. The blue line is the creek after straightening. 
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Streams in the region are now deep, straight ditches, having once been merely wetlands 

or shallow meandering creeks. One example is West Tarkio Creek in western Iowa, where 

channel degradation has yielded an estimated loss of 147,000 metric tons/year resulting in a 6 m 

increase of channel depth (Simon 1992). 

Channel erosion in Midwestern streams has damaged highway- and county-road 

infrastructure on a scale of $1.1 billion from scour around bridge piers, pipelines, and fiber-optic 

lines, as well as the loss of farmland adjacent to the channels due to stream bank collapses 

(Baumel 1994). Governmental agencies, such as the Hungry Canyons Alliance (HCA) and Iowa 

Department of Transportation (IDOT), have constructed hundreds of sheet-pile weirs, flumes, 

and other grade control structures in the region to stabilize the stream channels and prevent 

further damage to the local infrastructure. Despite these remedial actions, the problem still 

continues, due mostly to the lack of alluvial sediment delivery and freeze/thaw mechanisms 

(Simon and Rinaldi 2000).  

Current efforts by city and county engineers, as well as state DOTs, include routine 

monitoring of threatened bridges using established procedures and checklists, which have been 

Figure 1.1 (b) Channel incision at Mud Creek 
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reasonably effective (Nixon 1982). However, the lack of field-oriented research related to 

channel degradation processes hinders the development of a truly successful remediation 

protocol (May 1989). 

To date, laboratory studies have been used almost exclusively. Although these laboratory 

studies have provided valuable insight into the mechanisms driving channel degradation, they 

cannot capture the complex morphology of degrading channels. 

Our goal in this study was to conduct a field-oriented evaluation of channel degradation, 

coupled with advanced laboratory methods, in a stream of the Deep Loess Region of western 

Iowa, namely, Mud Creek. This system contains multiple knickpoints, a common form of 

channel degradation in this region, that move upstream and threaten local and county bridges. 

We performed state-of-the-art geotechnical analyses of sediment cores from the knickpoint and 

adjacent stream banks to determine if there were specific layers of weakness along which the 

streambed would fail. Additionally, continuous monitoring of the knickpoint propagation and 

scour was conducted. This continuous monitoring contributed missing, but key, data regarding 

the exact timing of knickpoint propagation and its associated scour depth, as well as the 

conditions under which they occurred. This information will assist governmental agencies in 

better understanding the principal geotechnical and hydrodynamic factors that cause knickpoint 

propagation, and help to estimate the response time required to control the propagation of a 

knickpoint after one has been identified. This study will lead to developing predictive tools for 

knickpoint migration and help engineers in monitoring, maintaining, and protecting bridge 

waterways so as to mitigate or manage scour occurring at the bridge structures. 
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1.2 Definitions 

Streambed degradation occurs in the loess soils of western Iowa and eastern Nebraska by 

the formation and headward migration of knickpoints (fig. 1.2). Ongoing research suggests that 

knickpoints can account for more than 60% of the erosion in the streams where they form 

(Alonso et al. 2002). In addition, preliminary observations suggest that knickpoints greatly 

influence the flow thalweg (i.e., line of deepest flow) in small rivers, which is a primary factor 

contributing to bank erosion and scour. 

 

A knickpoint is a discontinuity in the channel bed elevation along the longitudinal stream 

profile (May 1989). Knickpoints naturally manifest as short waterfalls, often occurring in series. 

Flow plunges over the knickpoint and scours the bed, leading to knickpoint face collapse and 

plunge pool development (fig. 1.3) that over-steepen the stream banks, causing further failure. 

There are generally four mechanisms of mass failure observed at knickpoints (May 1989): (1) 

Undercutting that leads to cantilever toppling; (2) Undercutting that leads to tensile failure and 

Figure 1.2 Knickpoint formation. The circled area is a knickpoint in Mud Creek, IA. 
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toppling; (3) Undercutting that leads to shear failure; and (4) Rafting of material from water 

entering fractures. Fluid boundary shear, secondary flow currents, seepage, and pore pressure can 

also contribute to the formation and evolution of knickpoints (Clemence 1987). 

 

 

As the downstream portion of the channel bed erodes, the knickpoint moves upstream 

(fig. 1.3). Once a knickpoint has formed, it will continue to advance upstream, erode the channel 

bed, lower the base level for tributary streams, and, if unchecked, eventually affect the entire 

watershed. The knickpoint can cease its upstream advance once it reaches a more resistant bed 

layer, when it has advanced so far upstream that the drainage area does not provide enough 

runoff to continue the erosional cycle, or if tailwater conditions change downstream.  

Several factors that can affect the upstream migration of knickpoints (e.g., Schumm 

1973; Grissinger and Bowie 1984; Clemence 1987; May 1989) include geotechnical 

Figure 1.3 Knickpoint processes. A sketch of the steps involved in knickpoint 

migration. 



 

 6 

characteristics (e.g., bed/bank sediment cohesion, erodibility, density, and homogeneity). 

Additionally, hydrodynamic variables (e.g., water discharge, shear stress, angle of impinging 

flow into the scour hole, conditions under the nappe, negative pore-water pressures, tailwater 

depth, the presence of upward directed seepage forces on the falling limb of hydrographs) can 

affect a knickpoint’s upstream advance. 

The geotechnical controls of knickpoint migration stem from either structural 

discontinuities, which are products of natural compressive or tensile forces, or stratigraphic 

discontinuities, which are represented by unconformities, different bedding planes, or changes in 

sediment structures/ textures (May 1989). Knickpoints in the loess regions of Mississippi, for 

example, are products of stratigraphic discontinuities between the highly erodible loess and more 

resistant, underlying paleosol (Whitten and Patrick 1981).  

The hydrodynamic controls of knickpoint migration predominantly influence the angle of 

the impinging flow, which scours and undercuts the sediments below the knickpoint. Both low 

and high flows can influence knickpoint erosion. For lower flows, the impinging jet is closer to 

the knickpoint causing more scour (May 1989). During a runoff event, the relative amount of 

scour changes as the discharge changes. The impinging jet moves further from the knickpoint 

face, thereby decreasing scour, as flow increases. Thus scour most likely occurs at the beginning 

and end of the runoff events. 

1.3 Previous Research 

In the loess regions of the Midwest, most knickpoints form in unlithified, cohesive 

sediments. Previous studies of knickpoints in these environments have been either theoretical or 

conducted under simplified, scaled-down laboratory conditions focused on controlling 

hydrodynamic forces.  
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An extensive literature search provided only a few examples of field studies regarding 

knickpoint migration through unlithified, cohesive sediments. One study conducted in the loess 

alluvium deposits of Willow Creek, IA (Daniels 1960) described a knickpoint that migrated 

upstream 2,819 m over a five-year period. The highest recorded migration during a single runoff 

event was a 183 m advance over four days. Further studies (Daniels and Jordan 1966) in 

Thompson Creek, IA, observed that freezing and thawing, in conjunction with runoff, 

exacerbated annual migration rates. 

Extensive observations over five years of 11 major knickpoints in the Yalobusha River, 

MS watershed documented migration rates between 0.4 and 16 m/yr, depending on the parent 

material (Simon et al. 2000; Thomas et al. 2001; Simon and Thomas 2002; Simon et al. 2002). 

Measurements of the critical shear stress and erodibility for the different bed materials 

demonstrated a discrepancy between observed knickpoint retreat rates and available 

hydrodynamic shear stress, which suggested other mechanisms influenced knickpoint retreat 

(Simon and Thomas 2002; Simon et al. 2002), namely: (1) weathering and crack formation 

during low-flow periods, exacerbated by desiccation and fluvial erosion; (2) detachment of 

aggregates during the falling limb of hydrographs from upward-directed seepage due to a 

pressure imbalance at the bed surface and the inability of the streambed to dissipate excess pore-

water pressure (Simon and Collison 2001); (3) static liquefaction in areas with little jointing from 

upward-directed seepage; and (4) more rapid erosion and migration from a cyclical mass failure 

mechanism. 

The relative dominance of the four above mechanisms was a function of the 

hydrodynamic forces and geotechnical resistance of the cohesive material, as well as the nappe 

structure, tailwater depth, and flow stage. For example, during periods of low tailwater, a steep 
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hydrodynamic gradient formed within a knickpoint scour hole, which exacerbated seepage and 

undercutting. During periods of high tailwater, knickpoint erosion by mass failure was less likely 

because of the confining pressure afforded to the knickpoint face meaning erosion was probably 

dominated by particle-by-particle shear erosion enhanced by upward-directed seepage forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 9 

Chapter 2 Objectives and Tasks 

Several factors (e.g., May 1989) affect the upstream migration of knickpoints, including 

both geotechnical characteristics (e.g., the presence of joints or cracks, stratigraphic 

discontinuities, and bed sediment characteristics) and hydrodynamic variables (e.g., water 

discharge, shear stress, angle of impinging flow into the scour hole). To better understand the 

driving forces behind knickpoint propagation in the Deep Loess Region of the U.S. Midwest, 

detailed studies of both the knickpoint’s internal, geotechnical properties, as well as external 

hydrodynamic forces are necessary.  

The goal of the current project was to conduct field-oriented research, coupled with 

advanced laboratory methods, on the headward migration of a knickpoint in western Iowa, (i.e., 

Mud Creek). In order to accomplish this goal, we performed two encompassing tasks: we 

performed a state-of-the-art geotechnical analysis of the stream bank and knickpoint sediments in 

the laboratory; in addition, we conducted continuous monitoring of the knickpoint propagation 

and scour through time-lapse photos of the knickpoint face relative to a fixed datum; flow 

measurements using Large-scale Particle Image Velocimetry (LPIV) were periodically 

conducted during the study to understand the hydrodynamic conditions at the site.  
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Chapter 3 Methodology 

3.1 Study Site 

This study focused on a knickpoint (fig. 3.1) located in northeast Mills County, IA 

(N41
O
05’51’’; W95

O
31’00’’) along Mud Creek (HUC-12: 102400020505), a tributary of the 

West Nishnabotna River. The Mud Creek watershed covers approximately 97.5 km
2
 in 

Pottawattamie and Mills Counties of the Deep Loess Region in western Iowa. The creek flows 

south 25.75 km through an agricultural landscape. The knickpoint is approximately 4.44 km 

above the confluence with the West Nishnabotna River, and located about 30 m downstream of a 

sheet pile weir with a grouted limestone riprap cascade, or, 70 m downstream of the Elderberry 

Road county bridge. Mud Creek was straightened in the early 1950’s (fig. 1.1). The stream 

channel is approximately 19 m wide, and the channel banks are 4 to 5 m high. At baseflow, the 

channel at the knickpoint face is 4.8 m wide, with average depths of ~24 cm upstream of the 

knickpoint face and ~10 cm over the knickpoint. 

The soils and geology of the study site are functions of the multiple glaciation periods 

during the Pleistocene. The upland soils in the watershed are loess-derived and well-drained. 

They are characterized as silty clay loams with 2 to 4% organic matter (Nixon 1982). The soils in 

the bottomlands and floodplains are silt loams to silty clay loams with high organic matter 

content (3 to 7%), and are primarily derived from alluvium (Nixon 1982). Multiple layers of 

highly erodible loess deposits, which have eroded from the uplands and deposited in the valley 

bottoms, overlay the base paleosol, a glacial till (Bettis 1990). Mud Creek cuts through these 

different loess layers, which are unstratified and unconsolidated silt-sized particles. Conversely, 

the paleosol is less erodible than the loess (Ruhe 1969). At present, there is a stratigraphic 
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discontinuity near the elevation of the top of the knickpoint, and more geotechnical analysis is 

needed to identify accurately the layers at this critical boundary.  

3.2 Core Extraction 

Sediment cores were collected from both the channel banks and stream bed along the 

reach of Mud Creek, IA containing the knickpoint seen in figure 3.1 (below).  
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Figure 3.1 Mud Creek, IA. The red dot on the aerial photo is the monitored 

knickpoint. The circle in the site photo highlights the knickpoint. 
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Two cores were collected having a 7.6 cm diameter and being approximately 10 m in 

length from the stream banks along Mud Creek, near the location of the knickpoint face. One 

core was collected from the east bank, and the other was collected from the west bank. These 

cores were collected using a Shelby-tube system (fig. 3.2), in conjunction with the U.S. 

Department of Agriculture – Natural Resources Conservation Service. In addition, eight 2.5 cm 

diameter cores, approximately 3 m in length each, were collected from the stream bed of the 

reach containing the knickpoint.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Core collection. Cores from the stream banks near the knickpoint 

face were collected using a Giddings probe and Shelby tube system (cont’d. next 

page). 
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3.3 Core Parameterization 

The collected sediment cores were transferred to IIHR in the core tubes for geotechnical 

analysis. The cores were characterized for any stratigraphic discontinuities that could facilitate 

knickpoint migration.  

One of the 10 m stream bank cores was classified using a standard stratigraphic 

interpretation of the Natural Resources Conservation Service (NRCS). The examined soil 

characteristics during this stratigraphic interpretation included matrix color, soil texture, soil 

structure, and organic matter (fig. 3.3). 

 

Figure 3.2 (cont’d.) Core collection. Cores from the stream banks near the 

knickpoint face were collected using a Giddings probe and Shelby tube system 
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Following the classification, the core was sub-sectioned into 10 cm intervals, and 

geotechnical analyses of each core sub-section were conducted. The geotechnical analyses 

included measurements of the particle size distribution, Atterberg limits, porosity, and bulk 

density.  

Established methods (e.g., ASTM method D422-63; American Society of Testing and 

Materials 2004) were used to determine quantitatively the particle size distribution of each sub-

section of the core. For particle sizes larger than 75 micrometers, a nest of sieves was used to 

separate the coarser soil size fractions. For particle sizes smaller than 75 micrometers, the 

distribution of the fine sediments was determined through sedimentation using a hydrometer.  

The Atterberg limits were determined for select core sub-sections using ASTM method 

D4318-10 (American Society of Testing and Materials 2004) to provide further classification of 

Figure 3.3 Stratigraphic interpretation. A close-up of the surface section for the stream 

bank core used in the stratigraphy analysis. The ruler in the image is in inches. 
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the fine-grained soil fractions. The Atterberg limits include the liquid limit, plastic limit, and 

plasticity index of soils, which are used to characterize other soil properties, such as 

compressibility, hydraulic conductivity, shrink-swell, and shear strength.  

The fall-cone test was used to evaluate the Atterberg limits of the select sub-samples 

(Skempton and Bishop 1950). The fall cone was held over a sample and allowed to penetrate 

based on gravity. The depth of penetration of the fall cone into the sample was related to the 

water content.  

The second, 10 m stream bank core was kept intact for analysis of the soil pore structure 

and bulk density using a non-destructive means, namely, an automated gamma radiation 

scanning system (fig. 3.4; Papanicolaou and Maxwell 2006). 

 

 

 

 

 

 

 

 

 

 

 

  

The gamma scanner, housed at IIHR, consisted of a 550-mCi, sealed Americium-241 

(
241

Am) source, which produced gamma energy at a wavelength of 60 keV, and a Harshaw 

Figure 3.4 Gamma scanner. The gamma scanner system 

at IIHR. Typical results of a core’s density. 
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6S2/2-X NaI(Tl) detector with an integrated photo-multiplier for detection of the gamma 

radiation. The signal from the detector was amplified and passed through a single-channel 

analyzer, operated in windowed mode to filter out noise. Collimation was provided by a 9.5-mm 

thick lead plate with a 6.35-mm circular hole for the source beam and a 0.889-mm x 36.8-mm 

slit for the detector, machined in a 31.8mm deep block of lead. Vertical motion of the source and 

detector was provided by a QuickBASIC - controlled step motor, and measurements were taken 

at discrete points. By examining profiles and comparing with visual observation, the spatial 

accuracy of the system was ~1mm at a 5mm scan interval. The system was calibrated before the 

analysis using a core with a known density and recording the gamma count rate. Errors of 3–5% 

for the volume fraction of solids were typical and highest at very low volume fractions, due to 

the statistical nature of radiation interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Measuring core bulk density. A section of the stream bank core was 

placed in a vertical frame. A 
241

Am sealed source was moved up and down the core 

length in conjunction with a gamma energy detector on the other side of the core. 

The attenuation of the received radioactivity was indication of the core density. 
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3.4 Knickpoint Propagation Using a Time-Lapse Camera 

A time lapse camera was installed at the study site to continually monitor knickpoint 

progression and changes in bank topography. The camera was installed on the west descending 

bank of the channel, and was programmed to take a picture of the knickpoint every 30 minutes. 

Because images captured after nightfall were too dark to allow the observation of change, only 

daylight-captured images were useful. It was determined that the 30-minute temporal resolution 

was unnecessary, and that one image per day was sufficient for analysis. Of the images that were 

collected, 248 daily images were reviewed between July 14, 2011 and March 21, 2012. The 

camera continues to be in operation, collecting images for future analysis.  

Two issues associated with the time-lapse images required correction: (1) small changes 

in the camera position and (2) obliqueness of the images: 

First, the angle of the camera changed slightly from day to day because of thermal 

expansion of the camera mount, and possibly due to slight changes in the soil moisture content 

and temperature of the channel bank supporting the camera mount; furthermore, when images 

were downloaded from the camera, the design of the camera made it difficult to return it exactly 

to its original position. However, image magnification and camera distance remained the same; 

only camera angle changed slightly over the course of the study. To correct for camera rotation, 

approximately six base points near the water surface of the stream were identified in the time-

lapse images. The base points were easily identifiable points that were stationary from image to 

image (e.g., rocks that were known to have not changed position, strategically placed stakes, 

etc.). To apply the correction, a guide image (one of the initial time-lapse camera images) was 

loaded. The base points were identified in the guide image. A misaligned image was then loaded, 

and the same base points were identified in the second image. A program then applied equation 
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3.1 to determine the required coefficients to properly align the second image with the guide 

image. This was repeated for all of the time-lapse images prior to correcting them for 

obliqueness. Changes to the rotation angles of the images were relatively small, but were 

necessary in order that the same oblique correction could later be applied to all of the time-lapse 

images. 

Second, the images were collected at an angle not directly above the target, i.e., they were 

oblique. In order to properly determine distance in the time-lapse images, the images had to be 

rectified so that they appeared undistorted and as they would from directly above. To correct for 

obliqueness, seven to nine control points (different than previously identified base points) were 

chosen that were evenly distributed in the imaged area of the knickpoint and located at the 

intersection of the water surface and the stream bank during low flow. The control points were 

identified with markers for easy identification in the time lapse images. The control points were 

then surveyed so that each control point had a set of coordinates in the image plane (image 

coordinates), as well as in the object plane (surveyed coordinates). The images were then 

rectified using the oblique correction equations (after Fujita et al. 1997, 1998). 

 

                    (3.1) 

  

In equation 3.1, x and y are the control point coordinates in the image, and X and Y are 

the surveyed object coordinates of the control point. The coefficients b1 through b8 were 

determined using a least squares optimization that minimizes the sums of the squares of the 

differences between predicted and surveyed values of all control point object coordinates.  
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Lastly, the rotational correction described in the first step was imperfect, and the images 

from the second step were also horizontally and vertically adjusted (by translation only) until 

stationary parts of the banks in sequential images were aligned. The overall accuracy of the 

alignment and rectification process in the region of interest is estimated to be 5 to 10 pixels (2.5 

to 5 cm). As an example, figure 3.6 shows the oblique, unaligned images from the time lapse 

camera for the dates of September 15, 2011, December 3, 2011, and February 12, 2012. The 

corrected images are shown in figure 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Time-lapse images collected on (a) September 15, 2011, (b) 

December 3, 2011, and (c) February 12, 2012 
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Figure 3.7 Corrected time-lapse images from (a) September 15, 2011, (b) December 

3, 2011, and (c) February 12, 2012 
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Note that the banks are three dimensional, while the water is only slightly three 

dimensional. Equation 3.1 is based on the assumption that the control points and everything in 

the image fall within the same object plane. Because this is not completely true, objects outside 

of the plane of the control points (e.g., the banks) appear physically distorted when rectified. 

However, the water surface itself is not significantly distorted since care was taken to survey 

only control points that were at the water surface, and the water surface elevation did not change 

significantly within the knickpoint region.  

After aligning and rectifying the images, the knickpoint face was identified in each 

image, and was highlighted. The exact location of the knickpoint was not always known 

accurately because during higher flows the position of the knickpoint was sometimes hidden by 

the flow. However, for a significant part of the year, the stream had relatively low flows and the 

position of the knickpoint could be observed most of the time.  

3.5 Knickpoint Propagation Using Survey Data 

Surveys of the banks and stream bed were collected during all site visits. These surveys 

were used to provide control points for rectifying the time-lapse images and LPIV videos, as well 

as yield stage information for the channel. In addition, two extensive surveys of the bed and 

banks were conducted on September 27, 2011 and March 21, 2012. These extensive surveys 

contained detailed information about changes in the knickpoint bathymetry that provided insight 

into the mechanisms associated with knickpoint migration at the Mud Creek site. 

3.6 Flow Velocity Distributions Using LPIV 

Water surface velocity distributions were determined for the knickpoint stream reach 

using LPIV. During each site visit, a series of videos was collected that captured sequences of 

the flow. The lowest flow was seeded with cereal (slightly buoyant and biodegradable), but 
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higher flows were sometimes unseeded for practicality and safety reasons. To date, three flows 

have been captured at the site. These flows consist primarily of low flow conditions, since high 

flows were rare during the period of study and it was unsafe to collect velocity data during high 

flows using the method presented herein. The lowest flow was captured on September 27, 2011. 

Two higher flows were captured on June 27, 2011 and March 21, 2012. Due to an equipment 

error, survey data for the June 27 flow was faulty and the data could not be fully analyzed; some 

of this information may be recoverable in the future. The flows from September 27, 2011 and 

March 21, 2012 have been analyzed, and the results can be seen in chapter 4. All of the videos 

were converted into sequences of bitmaps with a known separation time of 1/30
th

 of a second. 

Using surveyed control points, the LPIV images were corrected for obliqueness. Corrections 

were applied in the same way as for the time-lapse images, where surveyed control points were 

identified in the LPIV images and then used in conjunction with equation 3.1 to correct the 

images. Figure 3.8 shows an example of a captured and rectified image. Note that for the LPIV 

images there was no need to align the images, since the camera was stationary during the tests 

and the tests were short enough (typically five to ten minutes) that long-term changes in camera 

position were not an issue.  
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The rectified images were loaded into an LPIV program where they were analyzed for 

surface velocities as follows: 

(1) Since LPIV analysis is based on image intensity, color images were converted to gray 

scale intensities prior to interrogation. 

(2) Velocities were calculated at cross-sections where detailed bathymetry of the stream 

was known from surveys. The cross sections were 0.74 m downstream of the 

knickpoint, and 0.48, 2.00, 3.53, 5.05, 6.58, and 8.10 m upstream of the knickpoint. 

(3) For each cross section, interrogation points were selected at 20 cm intervals from 

bank to bank. 

(4) The velocity was calculated at each interrogation point using a multi-file minimum 

quadratic difference (MQD) algorithm. The algorithm summed MQD objective 

functions from 40 pairs of images to determine the mean surface velocity at each 

point.  

Figure 3.8 LPIV image samples: (a) original image sampled from LPIV video 

and (b) rectified LPIV image. 

(a) (b) 

(a) (b) 
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Applying a multifile approach offered two distinct advantages over the traditional 

approach of analyzing one pair of images at a time. First, the number of tracers in the present 

arrangement was low for many of the flows, and analyzing the combined objective function from 

multiple files vastly improved the signal-to-noise-ratio of the interrogation procedure. Second, 

the improvement in signal-to-noise-ratio allowed us to apply a much smaller interrogation area, 

resulting in much better spatial resolution. Of course, the disadvantage of combining objective 

functions from multiple pairs of images is that temporal resolution is lost, but if the goal is to 

determine average velocities, loss of temporal resolution is a minor issue. 

Using the surface velocity distributions, discharges at the site were also determined for 

each cross section. To accomplish this, it was assumed that the velocity distribution obeyed the 

power law. While this assumption was not rigorous, it was likely sufficient in locations where 

the channel was shallow and wide. Assuming the power law was valid, the mean velocity for 

each interrogation point would be approximately 7/8
th

 of the surface velocity. The mean velocity 

for each interrogation point was then calculated, multiplied by the flow area of the point to 

obtain the discharge flux associated with the point (see fig. 3.9), and then summed with the 

fluxes from all of the subareas in the cross section to obtain the discharge in the channel.  

 

       
Figure 3.9 Depiction of subareas associated with interrogation points used for discharge 

calculations 
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To apply this method for calculating the discharge, the depth variation in the channel 

cross section must be known. For the analysis in this report, contour plots from surveyed data 

were used to obtain cross section depths for each of the cross sections. This method worked 

reasonably well, although there were a few locations where rapid streamwise changes in the 

depth led to erroneous results. 
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Chapter 4 Results 

4.1 Geotechnical Analysis 

A visual analysis of the stratigraphy of the bank soil profile at the knickpoint site in Mud 

Creek identified a discontinuity that can be seen in figure 4.1. The image distinctly shows two 

different layers, as well as what appears to be a “fault” between the two layers. This stratigraphic 

discontinuity is at the same level (i.e., elevation) as the top of the knickpoint face. 

 

 

A detailed geotechnical analysis of the bank soil profile was conducted to confirm the site 

stratigraphy and accurately identify the layers at this critical boundary. Herein, the top layer will 

be called the bank soil and the lower layer will be called the bed sediment.  

A classification of one of the 10 m cores from the adjacent stream bank was conducted 

using the established Natural Resources Conservation Service Field Book for Describing and 

Figure 4.1 Stratigraphic discontinuity. There appears to be a stratigraphic 

discontinuity close to the knickpoint with a darker sediment (in the black circle) 

overlaying a lighter-colored sediment (in the red circle). 
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Sampling Soils (Whitten and Patrick 1981). The classification identified two distinct layers: (a) 

the Roberts Creek Member, which overlaid (b) the Gunder Member. 

The Roberts Creek Member is characterized as dark, clayey, silty, and loamy late-

Holocene alluvium that has been observed throughout the region along the modern floodplain 

and parallel to the modern channel (Bettis 1990). The age range for the Roberts Creek Member is 

approximately 4,000 to 500 B.P. 

The Gunder Member is characterized as oxidized brown to yellowish-brown to grayish-

brown silt loam, silty clay loam, or loam grading, to sand and gravel at depth (Bettis 1990). 

These soils are from mid-early Holocene alluvium (~10,500 to 3000 B.P.), and are found at low 

terrace positions merging with side slopes. 

The Roberts Creek Member is usually darker in color than the older, underlying Gunder 

Member. The two members are often separated by a fluvial erosion surface or an unconformity 

(Bettis 1990). 

More detailed characterization of the 10 cm sub-sections for this core was conducted to 

confirm any differences between the two layers. Determination of the particle size distribution 

for each sub-section was part of this characterization. Figure 4.2 shows the depth profiles for key 

particle diameters (i.e., d16, d50, and d84; the number represents the percentage of sediment 

mass that is finer the associated particle size diameter). 

In this core, the stratigraphic discontinuity was found at a depth between 600 and 650 cm 

below the surface. The red circle in figure 4.2 highlights the location of this discontinuity. The 

bank soils above the discontinuity and the bed sediments below the discontinuity had slightly 

different particle size distributions (fig. 4.2). Visually, a shift was observed where the particle 

sizes of the key diameters increased at the discontinuity, signifying a coarsening of the sediment. 
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Further analysis of the particle sizes for the different sub-sections showed that the bank 

soil had higher clay percentages and lower sand percentages than the bed sediment (fig. 4.3). 

Again, the red circle highlights the location of this discontinuity. Quantitatively, the differences 

in size classes are seen in table 4.1, which contains the average values for each size class. Using 

a Student’s t-test, the average clay percentage for the bank soil was significantly higher (p<<< 

0.001) and the bank soil sand percentage was significantly lower (p<<0.001) than the 

corresponding values of the bed sediments. 

 

 

    This change (i.e., coarsening) in soil texture from the bank soil to the bed sediment can 

be seen using a ternary diagram (Figure 4.4), which has the percentages of sand, silt, and clay on 

the three axes. The bank soils, which are above the discontinuity observed between 600 and 650 

cm, were less coarse and tended to be loamy soils, while the bed sediments below the 600-650 

cm discontinuity tended to range from loam to sand.  

 

Figure 4.2 Particle size distribution. These graphs show key particle size diameters of the 

sampled depth intervals in a stream bank core from the study site. The d16, d50, and d84 for each 

interval are plotted relative to depth. The red circle highlighting the 600-650 cm depth interval 

corresponds to a coarsening of the overall particle size distribution, as there are increases in the 

d50 and d84. This elevation corresponds to the top elevation of the knickpoint face. 
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Thus, the particle size distribution and soil texture data support the division between the 

two stratigraphic layers at the study site. The Roberts Creek Member was found in the bank soils, 

while the Gunder Member was found in the bed sediments. The higher clay content of the 

Roberts Creek Member caused (at least partially) the darker soil color relative to the Gunder 

Member of the bed sediment (fig. 4.1). The Gunder Member also trended from loam to sandy 

Table 4.1 Average percentages of sediment size fractions 

 Sand Silt Clay 

Bank 47 ± 10% 35 ± 9% 18 ± 4% 

Bed 60 ± 19% 30 ± 15% 10 ± 5% 

 

Figure 4.3 Soil texture. The percentages of clay, silt, and sand for each depth interval of a stream 

bank core from the study site. The red circle highlighting the 600-650 cm depth interval 

corresponds to a discontinuity in bank stratigraphy. This discontinuity corresponds to the top 

elevation of the knickpoint face. 
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texture (Bettis 1990), as seen in the ternary diagram of figure 4.4. The higher percentage of sand 

particles could have resulted in cementing the bed sediment, making it more resistant to erosion. 

The discontinuity that formed between the two members can be a key component in the 

development of knickpoints. These findings appear to be similar to those in the loess region of 

Mississippi (Whitten and Patrick 1981) where a stratigraphic discontinuity was a primary control 

of the knickpoints.  

Additional geotechnical tests conducted in this study included the determination of the 

Atterberg limits for select fine-grained samples of the bank soils and bed sediments (fig. 4.5). 

Again the samples were divided into bank and bed samples as designated by the discontinuity 

between 600 and 650 cm below the ground surface.  
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Figure 4.4 Soil ternary diagram. The soil texture of depth intervals in a stream bank core based on 

USDA soil classifications and particle size measurements. Red circles represent samples above 600 

cm, and blue circles represent samples below 600 cm. The 600-650 cm elevation corresponds to the 

top elevation of the knickpoint face. There is a coarsening of sediment below this elevation, as seen 

through a shift in the texture as the material becomes sandier. 

  



 

 32 

 

 

All samples, bed and bank, fell in the range of the clays with low plasticity (designated as 

the “CL” region in fig. 4.5). The soils in this classification are defined as inorganic clays with 

low to medium plasticity, and can be sandy in nature. These soils are practically impervious, 

having fair shearing strength and medium compressibility when compacted or saturated. Using a 

Student’s t-test to differentiate the bank and bed sub-samples showed that Liquid Limits and 

Plasticity Indices for the two groups were not significantly different (p > 0.05), thus, no further 

analysis using Atterberg limits was performed to describe the samples. 

Figure 4.5 Atterberg limits. The Atterberg limits of select depth intervals were measured using a 

fall cone. The samples were chosen because they had a majority of fine particle sizes. Red circles 

represent samples above 600 cm, and blue circles represent samples below 600 cm. The 600-650 

cm elevation corresponds to the top elevation of the knickpoint face. The samples are mostly 

characterized as clay with low plasticity. 
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The second, intact, 10 m core from the stream bank was used in the next set of analyses. 

A radioactive 
241

Am sealed source and NaI detector were used to determine the porosity/density 

of this second core. Figure 4.6 shows the depth profile of the attenuation count rates determined 

as a result of this analysis.  

As the gamma energy emanated from the sealed source, it traveled through the core. The 

energy was attenuated as it passed through the core, based on the pore structure of the core. If the 

core density was low, then more of the gamma energy passed through the higher area of pore 

 

 

Figure 4.6 Surrogate bulk density. The density of a stream bank core was measured using the 

attenuation of a gamma radiation source. These graphs show the depth profile of attenuation 

count rates for a stream bank core. A high count rate translates to high transmission of the 

gamma source through the core, so that depth interval will have a lower bulk density. The red 

circles highlight shifts in the depth profile. 
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spaces. Thus, a high count rate translated to high transmission of the gamma energy through the 

core, so that sub-section had a lower bulk density. The average count rate for samples above the 

discontinuity (i.e., the bank soils) was 1304 ± 289 counts/second, while the average count rate 

for samples below the discontinuity (i.e., the bed sediments) was 1079 ± 219 counts/second. 

These sets of samples were significantly different using a Student’s t-test (p<<< 0.001).  

This is in agreement with the previous results. Since the bank soils contained more clay 

than the bed sediments, they were expected to have a higher porosity than the coarser bed 

sediments. The porosity for clays is around 40-70% of sand, while the porosity for sand is 

lower—around 25-50% (Freeze and Cherry 1979). 

Finally, additional cores were collected from a longitudinal transect in the stream channel 

from the current location of the knickpoint and moving downstream. A quick analysis of the 

percentage of sand-sized particles in these cores was conducted to identify any change as the 

knickpoint migrated upstream. Figure 4.7 shows four cores collected in the transect. There was 

no significant change (either fining or coarsening) in the cores moving upstream from the 

location of the knickpoint in 2009 (Old KP) to the Chute, then Sensors, then current knickpoint 

locations. However, there was a coarsening at depth, approximately 4-5 ft (122-152 cm) below 

the top of the knickpoint. This was the approximate location of the scour hole floor immediately 

downstream of the knickpoint face, based on visual observations and prior geodetic surveys. 
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4.2 Knickpoint Propagation 

Between July, 14 2011 and March, 21 2012, the position of the knickpoint face was 

observed using the collected time-lapse images. Five of these observations are shown in figure 

4.8, a rectified bitmap of the knickpoint, which offers a two dimensional representation of the 

knickpoint retreat over time. Identification of the knickpoint positions in figure 4.8 was not 

perfect; the face did not have sharp edges in all locations, and because the original images were 

oblique, the depth of water above the knickpoint and the position of the hydraulic jump below 

the knickpoint had an impact on the identified position of the knickpoint. Nevertheless, it was 

apparent that migration of the face itself was relatively slow most of the time, with pieces of the 

knickpoint breaking off periodically. During the study period, upstream migration of the 

Figure 4.7 Stream bed cores. The depth profile of the percent sand of cores collected along a 

transect of the stream bed reach near the knickpoint. The zero level represents the top of the 

knickpoint face. Old KP represents the core furthest downstream where the knickpoint was in 

2009. The transect moves upstream as follows: Chute -> Sensors -> Current KP. There appears to 

be no difference in the depth profiles; however, there is a coarsening four feet below the surface.   
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knickpoint slowed during the fall and winter months, as the base level of the streambed was low 

and temperatures were mild most of the winter. In fact, there were few periods that the water 

surface of the stream had any ice, and it is generally agreed that freezing has a significant impact 

on erosion (Daniels and Jordan 1966; Simon and Rinaldi 2000). According to analysis of the 

time lapse photos, the knickpoint face moved upstream approximately 0.9 m over the study 

period, mostly near the beginning of the study. There are too many time-lapse images to publish 

in this report, but the images are available from the authors upon request. 

 

 

 

Figure 4.8 Knickpoint migration between July 14, 2011 and March 16, 2012 
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Extensive survey data sets collected on September 27, 2011 and March 21, 2012 were 

transformed into the contour plots shown in figure 4.9. The east and north positions given on the 

x and y axes of figure 4.9 are relative to an arbitrary benchmark located on the southwest corner 

of the upstream bridge. The elevations given in the contour plot are also relative to an arbitrary 

benchmark elevation of 500 ft. Although the position and elevation of the benchmark are 

arbitrary, the same benchmark was used for both datasets so that elevations in the two plots 

could be directly compared. The second dataset had a higher resolution of surveyed 

measurements, particularly along the banks and downstream of the knickpoint, so the detail of 

the banks and downstream of the knickpoint is more accurate in figure 4.9(b). However, the 

channel bed and knickpoint locations are well-defined for both datasets.  

As noted in figure 4.8, figure 4.9 confirms that between September and March there was 

not much movement of the knickpoint face. However, the contour plots do show that, though the 

non-vegetated bed of the channel is about 4 m wide, there is also a deeper, narrow region in the 

center of the channel that is only about 1 m wide. Though the water surface covers most of the 

non-vegetated surface of the channel for much of the year, the bulk of the flow travels through 

the narrow region in the middle of the stream during non-storm events. It is only during large 

events that the flow is more evenly distributed over the entire face of the knickpoint, and these 

events have been rare and of short duration during the study period.  

The result is that the low flows had a significant impact on the morphology of the channel 

in this reach; this impact was seen in the development of the narrow trench in the middle of the 

channel in figure 4.9. Comparing figure 4.9(a) to figure 4.9(b), the low flows slowly deepened, 

widened, and lengthened the trench as the knickpoint worked its way upstream primarily within 

the trench. The trench will continue to erode until the knickpoint has cut down to where the bed 
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material coarsens. The knickpoint will then quickly erode upstream through the trench until it 

reaches a position where the base of the trench is more stable.  

 

 

 

 

 

 

 

 

 

 

 

 

Once the knickpoint has moved upstream, the banks of the channel immediately 

downstream of the knickpoint face are more susceptible to collapse, causing the channel 

downstream of the knickpoint to rapidly deepen and widen. When the study began at the site in 

2011, the existence of a previous trench was evident (fig. 4.10a). Since the beginning of the 

study, evidence of the previous trench has eroded away.  
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Figure 4.9 50 cm contours for surveyed data for (a) September 27, 2011, and (b) March 

21, 2012  
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Downstream of the previous trench is a scour hole that developed where the knickpoint 

was previously located. Upstream of the trench and downstream of the new knickpoint location, 

a new scour hole has begun to form. Because of safety issues, it was not possible to measure the 

bathymetry below the knickpoint, but the scour hole downstream of the knickpoint has visibly 

deepened and widened extensively over the course of the study.  

Figure 4.10 (a) Image of the knickpoint on March 18, 2011, prior to installation of 

knickpoint monitoring equipment. Note the previous trench in the foreground and the 

previous and new scour holes. (b) Plan view of the current knickpoint location 

depicting the approximate location of the current trench. 

(a) 

 

(b) 

Location of 

Current Trench 

 

Current Knickpoint 

Location 

Previous Trench 

 



 

 40 

4.3 Flow Velocity Observations – LPIV 

During the duration of the current study, three sets of LPIV data were collected. Of these 

sets, two have been analyzed to date. Issues with background noise required the implementation 

of a new algorithm capable of masking the effects of the noise; and the development of software 

that was able to accurately extract surface velocities from the images was time-consuming. The 

remaining dataset will be processed after this report has been submitted. The LPIV 

measurements presented herein are from video data captured on September 27, 2011 and March 

21, 2012. The videos were processed into individual bitmaps that were loaded into the LPIV 

software. The oblique images of the knickpoint region were rectified using control points 

gathered at the edges of the water surface for each site visit. Then, a multi-file minimum 

quadratic difference algorithm was applied to the bitmaps at cross sections that were estimated 

from the survey data. The horizontal spacing of the interrogation points was set at 20 cm and 10 

cm, respectively, for the two datasets. The calculated LPIV velocity distributions for the two 

datasets are shown in figures 4.11(a) and 4.11(b).  

 The distribution of calculated LPIV velocities is shown in Figure 4.11. Although the flow 

area is approximately 4 m wide, the higher flow velocities are primarily located in a 1.5 m wide 

region of the channel directly above the trench. Increased shear stresses associated with the 

concentrated flow will continue to deepen, lengthen, and widen the trench.  
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 Surface velocities measured at each cross section were converted into mean velocities, as 

discussed in chapter 3. The component of the mean velocity normal to the channel transect was 

multiplied by the subarea of the transect associated with that velocity to obtain the discharge flux 

through the subarea. Discharge fluxes from all of the subareas were then summed to determine 

Figure 4.11 Surface velocity distribution measured with LPIV on (a) September 27, 2011, 

and (b) March 21, 2012 

(a) (b) 
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the discharge of the transect. A summary of discharge calculations for each transect is given in 

tables 4.2 and 4.3. 

The discharges provided in table 4.2 are not completely in agreement. In particular, two 

of the entries in table 4.2 are significantly different from the others, and are considered to be 

untrustworthy. The cross section located downstream of the knickpoint (cross section [a]) will 

not produce reliable discharge measurements, because the velocity distribution is not fully 

developed and is located in the vicinity of the hydraulic jump. The cross section located 5.05 m 

upstream of the jump (cross section [e]) is also questionable. A large hole in the bed is located in 

the vicinity of this transect, and the hole artificially increases the cross sectional area associated 

with the transect. In other words, for cross section (e), the effective flow area is significantly less 

than the flow area provided by the contour plot. The remaining measurements produce an 

average discharge of 0.265 m
3
/s and have a standard deviation of 0.038 m

3
/s.  

 

Table 4.2 Summary of cross section discharge calculations, September 27, 2012 

 

 

 

 

 

 

 

 

Cross-

Section 

Distance Upstream of 

Knickpoint 

(m) 

Flow Area 

(m
2
) 

Discharge 

(m
3
/s) 

a -0.74 0.410 0.386 

b 0.48 0.392 0.254 

d 2.00 0.647 0.290 

d 3.53 0.425 0.261 

e 5.05 1.393 0.527 

f 6.58 1.112 0.310 

g 8.10 0.425 0.211 
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Table 4.3 Summary of cross section discharge calculations, March 21, 2012 

Cross 

Section 

Distance Upstream of 

Knickpoint (m) 

Flow Area 

(m
2
) 

Discharge 

(m
3
/s) 

h 0.15 - - 

i 0.75 0.413 0.448 

j 1.45 0.472 0.332 

k 2.25 0.578 0.412 

l 2.95 0.505 0.401 

m 3.75 0.485 0.336 

n 4.45 0.613 0.396 

o 6.45 0.871 0.539 

 

 

The discharges provided in table 4.3 are also reasonable, aside from cross section (o). 

Cross section (o) is located in the vicinity of the scour hole that has developed along the left 

descending bank. For reasons previously discussed, the presence of the scour hole reduces the 

accuracy of discharge measurements. The remaining measurements produce an average 

discharge of 0.387 m
3
/s, with a standard deviation of 0.045 m

3
/s. 
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Chapter 5 Summary and Conclusions 

The severity of channel erosion in the Deep Loess Region of western Iowa and eastern 

Nebraska is considerable, due to channelization of the stream corridor coupled with intensive 

agriculture and highly erodible loess soils. Knickpoints, or, discontinuities in bed elevation along 

the longitudinal stream profile, are common forms of channel degradation in this region. Once a 

knickpoint has formed, it will continue to advance upstream, eroding the channel bed, lowering 

the base level for tributary streams, and, if unchecked, eventually affecting downstream 

infrastructure. To date, information regarding knickpoint migration rates in the Deep Loess 

region of the Midwest is lacking. A field-oriented monitoring evaluation would assist 

governmental agencies in better understanding the principal geotechnical and hydrodynamic 

factors that cause knickpoint propagation, and help estimate the response time required to control 

the propagation of a knickpoint after one has been identified. 

This study was developed to provide a field-oriented evaluation, coupled with advanced 

laboratory techniques, of a knickpoint located on Mud Creek in Mills County, IA, and to identify 

the key geotechnical and hydrodynamic controls of its upstream migration rate. The result of 

these objectives was to provide a reliable method and, ultimately, a comprehensive and practical 

manual that will substantially aid engineers in monitoring, maintaining, and protecting bridge 

waterways, so as to mitigate or manage scour occurring at bridge structures. 

The geotechnical properties of the bank soils and bed sediments of the knickpoint reach 

supported the visual observations of a stratigraphic discontinuity located at approximately the 

same level (i.e., elevation) as the top of the knickpoint face. This discontinuity is most likely the 

separation between two district layers, namely, the Roberts Creek and Gunder Members, which 

are often separated by a fluvial erosion surface or an unconformity. 
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Monitoring methods included a state-of-the-art time-lapse camera mounted on the bank 

of the stream to capture the upstream migration of the knickpoint. Measurements were collected 

over a 248 day period from July, 2011 to March, 2012. Observations of knickpoint migration 

indicated a relatively slow advance of the face, totaling approximately 0.9 m during the study 

period, with periodic losses of sections of the face. Detailed surveys of the bed indicated that a 

submerged channel or trench formed upstream of the knickpoint that cut down into the 

knickpoint face and carried the bulk of the base flow. The submerged channel grew in size over 

time. It is expected that deepening of the trench will eventually lead to punctuated failure of the 

knickpoint.  

The scour hole that developed downstream of the knickpoint appeared to cause far more 

erosion than the retreat of the knickpoint itself, as deepening of the bed downstream of the 

knickpoint led to oversteepened banks and subsequent widening of the channel through bank 

collapse. 

Observations of the velocity distribution above the knickpoint and the associated 

discharge distribution in the stream confirmed that the bulk of the flow was confined to the 

submerged channel observed in bathymetric measurements. Measured velocities were as high as 

2.0 m/s during low flows through the trench, but did not rapidly erode bed material upstream of 

the knickpoint. Nevertheless, erosion of the knickpoint appeared to be more closely tied to low 

flow conditions than to large events. 

This research provided an evaluation protocol for developing predictive tools for 

knickpoint migration to help engineers in monitoring, maintaining, and protecting bridge 

waterways, in order to mitigate or manage the scour occurring at the bridge structures. The main 

features of this plan can be adopted by DOT personnel and county engineers for inspecting 
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streams that have recently experienced knickpoint migration. This inspection plan is outlined on 

the next page in table 5.1.  
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Table 5.1 The main features of inspection form used by the Iowa DOT when inspecting bridges that 

recently have experienced a major flood flow 

Proposed Evaluation Protocol for Knickpoints 

Iowa Department of Transportation 

 

Date inspected:  ________________________ 

Date Received in Office: _________________ 

Survey Team:  _______________________________________________________________________ 

____________________________________________________________________________________ 

 

Site Information 

Stream name. ____________________________   

County. _________________________________ 

Road. ___________________________________ 

 

This report contains 
Comments ____ Yes  ____ No 

Sketches     ____ Yes ____  No 

Photos         ____ Yes ____ No 

 

Place an “X” by all that apply 

 

1.____ Is there a visible knickpoint? 

 

2. ____ Is there a documentation of the knickpoint location?  

 

3. ____ Is there any indication of upstream movement of the knickpoint? How far is the knickpoint from 

the bridge crossing? 

 

4. ____ Is there shifting of the channel alignment or erosion of the stream banks?   

 

5. ____ How far is the knickpoint from the sheet piles 

 

6. ____ Do scour measurements indicate:  (Place an “X” by all that apply.) 

 _____A. scour developed below the bottom of the knickpoint? 

                      _____B. scour is at equilibrium? 

                      _____C. that the streambed has scoured five feet or more below the original streambed                

elevation at knickpoint? 

 

Note: 

Streambed laser data is to be documented. (sounding measurements may not be possible due to flow 

bubbling) 
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Table 5.1 The main features of inspection form used by the Iowa DOT when inspecting bridges that 

recently have experienced a major flood flow (cont’d.) 

 

A streambed profile via survey should be done on the upstream side of all bridges every two years. If 

Item #6 is yes, then a profile on the downstream side of the knickpoint should also be done in the 

scoured area. If the downstream profile also indicates a problem, then laser measurements should be 

made at the knickpoint crest if possible. 

 

If "No" is the answer to all of the items in the checklist, no further action will be necessary. 

 

If "Yes" is the answer to any items on the checklist, contact the Office for further instructions. 

 

An "*" indicates the item is not visible. 

 

Comments: __________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

Completed on __________________________  By _________________________________________ 

 

Reviewed by __________________________________  Date reviewed ________________________ 

 

Is a follow-up inspection recommended?  _____ Yes  _____ No 

 

Comments/Recommendations:_________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 
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