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Two Stage Procurement Processes With Competitive
Suppliers and Uncertain Supplier Quality

Yue Jin, Jennifer K. Ryan, and Walter Yund

Abstract—This paper considers a sourcing problem faced by a
manufacturer who outsources the manufacturing of a product to
one of several competing suppliers, whose cost and quality capa-
bilities are unknown. We consider a two-stage sourcing process in
which the first stage is the qualification stage, while the second
stage is the supplier selection stage. In the first stage, the manu-
facturer exerts effort to learn about the quality level of each of the
suppliers and then must determine the set of qualified suppliers,
subject to some tolerance for error. In the second stage, the manu-
facturer runs a price-only procurement auction, in which the qual-
ified suppliers compete for the manufacturer’s business. We model
this two-stage sourcing process with the goal of obtaining insights
into manufacturer’s optimal decisions. We seek to determine the
optimal qualification standard, the optimal amount of effort to be
exerted in the qualification process and the appropriate tolerance
for error in the qualification process, and to understand the in-
teractions between these decision variables. We are particularly
interested in understanding how the manufacturer can design the
process to 1) ensure the firm only sources from qualified suppliers
and 2) encourage competition among the suppliers during supplier
selection.

Index Terms—Competitive analysis, decisions under risk and
uncertainty, economic modeling, manufacturing supply chain, sup-
ply chain integration.

I. INTRODUCTION AND MOTIVATION

THE dramatic increase in the use of outsourcing over the
past several decades has been well documented. Manu-

facturers who make the decision to outsource often do so with
the goals of reducing costs and obtaining operational efficien-
cies [21]. However, the decision to outsource also creates a new
set of business problems for the manufacturer. In particular, the
manufacturer must now make critical decisions regarding the
design of the sourcing process, including determining the ca-
pabilities to be required of the selected suppliers, how those
capabilities will be assessed, and how to select among a set of
potential suppliers.
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In this paper, we consider the sourcing problem faced by
a manufacturer who has made the decision to outsource the
manufacturing of a critical product to one of several competing
suppliers. These suppliers differ in their capabilities for pro-
ducing high-quality products, and in their unit production costs.
In addition, the manufacturer does not have perfect informa-
tion regarding the suppliers’ capabilities and costs. Therefore,
the manufacturer must design the sourcing process to 1) enable
learning about the suppliers’ quality capabilities and 2) encour-
age competition between the potential suppliers.

When a manufacturer has imperfect information regarding the
suppliers’ cost and capabilities, it is common to use a two-stage
procurement process in which the first stage is the qualification
stage, while the second stage is the supplier selection stage.
In the qualification stage, potential suppliers are screened for
their quality capability, i.e., the manufacturer must determine
whether a given supplier is capable of producing products with
a given quality level. A key goal of this stage is to “mitigate the
risk of supplier nonperformance” on quality [31]. In the sup-
plier selection stage, those suppliers that have been qualified are
invited to compete for the manufacturer’s business by participat-
ing in a sealed-bid price-only procurement (or reverse) auction.
A key goal of this stage is to induce competition between the
qualified suppliers, so that the manufacturer can obtain the best
pricing terms. Thus, the design of a two-stage process requires
a fundamental tradeoff: A more stringent qualification stage im-
plies that the manufacturer sources from only the most qualified
suppliers. However, a more stringent qualification stage reduces
the number of qualified suppliers and the level of competition
in the supplier selection stage. Therefore, a key challenge when
designing the two-stage process is achieving the right balance
between qualification and competition.

Manufacturers who procure goods through reverse auctions
often do so in combination with a qualification process, i.e., as
part of such a two-stage process [12].1 This is because, as Mer-
son [22] notes, “[i]n a process that. . .results in an award to the
lowest bidder, it is imperative to have established, responsible
competitors who offer high-quality products.” However, quali-
fication can require substantial time and costly effort on the part
of the manufacturer. In addition, while qualification can allow
the manufacturer to refine her understanding of the suppliers’
capabilities, it is unlikely to provide perfect information regard-
ing those capabilities. Thus, when designing the qualification
process, the manufacturer must determine not only the level of
capability required for a supplier to be considered qualified, but
also the level of costly effort to exert to learn about the potential

1A two-stage process is used in the military [4], as well as in the telecommu-
nications [16], pharmaceutical [19], and automotive [25] industries.
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suppliers, and the appropriate tolerance for error in the qualifi-
cation decision. To address these issues, we develop a model of
a two-stage sourcing process. We use this model to study how
the manufacturer can design the sourcing process to ensure that
she only sources from qualified suppliers, while still maintain-
ing competition among the suppliers in the supplier selection
stage, and to understand the complex interactions between the
manufacturer’s three decision variables, as well as the impact of
key input parameters on the manufacturer’s decisions.

A. Problem Statement

We consider a buyer who must select a single supplier from a
set of potential suppliers by considering both price and quality.
The buyer’s profit consists of revenue from sales of the product,
along with the cost of procuring the product and the costs associ-
ated with poor product quality. The suppliers’ profits consist of
the revenue earned from the sale of the product to the buyer and
the production costs, which are increasing in the product quality.
The suppliers differ in their cost structure, as well as in their ca-
pabilities for producing high-quality products. The buyer uses a
two-stage sourcing process, in which the goal of the first stage is
to determine the set of qualified suppliers, i.e., those capable of
meeting a target quality level. We assume an inspection-based
qualification process, in which the buyer selects a sample of
each suppliers’ product in order to assess its quality level. In the
second stage, i.e., the supplier selection stage, the buyer invites
the qualified suppliers to compete in a procurement auction and
chooses among them on the basis of price. The buyer’s problem
is to design the sourcing process, i.e., to set the target quality
level used in the qualification stage, as well as the amount of
effort to exert in the qualification process, i.e., the number of
units to sample from each supplier, and the tolerance for error
in the qualification decision.

B. Literature Review

We consider the design of a two-stage sourcing process with
imperfect information regarding the potential suppliers’ costs
and quality capabilities, where supplier selection consists of a
price-only procurement auction. We divide the relevant literature
into four areas: papers considering 1) timing of the qualification
process; 2) design of the supplier evaluation process; 3) procure-
ment through multidimensional auctions; and 4) quality-related
procurement.

1) Timing of the Qualification Process: When considering
the design of a two-stage procurement process, one important
question is when to perform supplier qualification. Cripps and
Ireland [10] show that prequalification (i.e., qualification per-
formed prior to bidding) and postqualification (i.e., qualification
performed after bidding) are revenue equivalent when price and
quality are evaluated at the same time. Wan and Beil [31] note
that prequalification is expensive when there is a large num-
ber of potential suppliers, while postqualification can lead to a
higher winning bid price. Wan et al. [32] consider the question
of when to qualify suppliers in a setting with competition be-
tween an “incumbent” (i.e., already qualified) supplier and an
“entrant” (i.e., not yet qualified) supplier. Finally, bid evaluation

can be thought of as qualification during the competition (rather
than pre- or postcompetition). Carr [6] considers a system with
costly bid evaluation and characterizes conditions under which
it is optimal for the buyer to evaluate all bids. In this paper, we
assume that the buyer employs prequalification, i.e., the buyer
inspects and qualifies the suppliers prior to the bidding process.

2) Design of the Supplier Evaluation Process: A key aspect
of the supplier qualification stage is the evaluation and assess-
ment of the suppliers’ capabilities. There is a vast literature
on supplier evaluation, most of which considers the problem
of ranking, scoring, or categorizing a set of potential suppli-
ers when there are multiple attributes that matter to the buyer.
Recent surveys of this literature include [7], [15], [1], and [5].
While the literature considers a wide variety of supplier at-
tributes, the most commonly studied are price, quality, and de-
livery time. A wide variety of supplier evaluation approaches
have been proposed. Among the most common are analytic
hierarch process, analytic network process, data envelopment
analysis (DEA), mathematical programming (MP) techniques,
multiobjective programming (MOP), artificial intelligence ap-
proaches, and fuzzy set theory approaches. However, the vast
majority of this literature assumes that the buyer has perfect
information regarding the suppliers’ characteristics. In contrast,
in this paper we consider a buyer who has imperfect information
on the suppliers’ costs and capabilities.

The literature on supplier evaluation under imperfect infor-
mation is more limited. As noted in [7], fuzzy approaches are
the most common for handling imperfect information. However,
some authors have considered chance-constrained DEA and MP
approaches. For example, Talluri et al. [29] present a chance-
constrained DEA approach in which the outputs, conditioned
on the inputs, are assumed to follow a joint Normal distribution.
Wu [33] and Wu and Olson [34] also take a stochastic DEA ap-
proach to supplier evaluation. Wu and Olson [35] compare three
approaches (chance constrained programming, DEA, and MOP)
to supplier evaluation when the suppliers’ unit price, acceptance
rate, and on-time rate are uncertain. Bilsel and Ravindran [2]
use a chance-constrained programming approach when there is
uncertainty regarding demand, supplier capacities, and supplier
costs. Dogan and Aydin [11] present a Bayesian Network ap-
proach which allows the buyer to incorporate his domain specific
knowledge into the evaluation process.

The research considered in this paper differs from this previ-
ous work in two key ways:

1) Our model is appropriate when the buyer uses a two-stage
process in which the second stage is a reverse auction.
In such a setting, the suppliers choose their bid prices
under competition with other qualified suppliers. Hence,
decisions regarding supplier evaluation and qualification,
which influence the number of suppliers participating in
the auction, have an impact on the suppliers’ bid prices.
To our knowledge, this interaction has not previously
been considered in the supplier evaluation literature. In
addition, because we model supplier selection using an
auction, in our paper the prices charged by the suppli-
ers are endogenous and functions of the buyer’s deci-
sions regarding the design of the qualification process. In
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contrast, most of the supplier evaluation literature takes
the suppliers’ prices as exogenously specified.

2) Our model allows for imperfect information about the
suppliers’ costs and capabilities. In addition, our model
captures the fact that, in practice, the buyer must decide
how much costly effort to exert in order to learn more about
the suppliers’ capabilities. Finally, since the buyer cannot
perfectly assess the suppliers’ capabilities, we also allow
the buyer to determine the optimal tolerance for error in the
qualification decision. These issues have not been jointly
considered in the existing supplier evaluation literature.

3) Multidimensional Procurement Auctions: An alternative
to the two-stage procurement process and supplier evaluation
processes described earlier is a multidimensional auction, in
which the suppliers’ bids consist of multiple attributes, such
as price, quality, and logistics costs. Like some of the supplier
evaluation approaches, most of the multidimensional auction
approaches require the buyer to combine the various supplier
attributes into a single score. Unlike the much supplier eval-
uation literature, the auction models incorporate the effects of
imperfect information and competition on the suppliers’ bid-
ding strategies. Thiel [30] demonstrates that, under certain con-
ditions, designing a multidimensional auction is equivalent to
designing a single-dimensional auction. Che [8] and Branco [3]
consider multidimensional auctions in which the buyer evalu-
ates the suppliers using a score function that combines price and
quality. The aforementioned papers assume that the nonprice at-
tributes are determined endogenously. In contrast, Engelbrecht-
Wiggans et al. [13], Shachat and Swarthout [26], and Kostamis
et al. [18] consider various types of multidimensional auction
mechanisms when the suppliers’ nonprice attributes, such as
quality or logistics costs, are exogenously specified. In our pa-
per, the suppliers’ nonprice attribute is modeled as quality, which
is determined endogenously, subject to an exogenously specified
limit on the suppliers’ capability for achieving high quality.

4) Quality-Related Procurement: The literature on quality-
related procurement, in which the buyer evaluates the suppliers
based specifically on quality, is also relevant. See Zhu et al. [37]
for a recent review of this literature. As noted by Yan et al. [36],
this literature can be divided into two categories: i) papers that
consider a single buyer and a single supplier and ii) papers
that consider competition among multiple (potential) suppliers.
Papers in category (i) include Reyniers and Tapiero [24], who
present a model of the supplier’s quality decision and the buyer’s
inspection decision, given a procurement contract that specifies
penalties (price rebates and shared repair costs) to be incurred by
the supplier in the event of a defective unit, and Lim [20], who
study a similar model, but with information asymmetry. While
we also consider a buyer with imperfect information on supplier
quality, we take a different approach than Lim [20], who consid-
ers the design of a screening contract. In contrast, we assume the
buyer uses the qualification stage to learn about supplier qual-
ity. Papers in category (ii) include Tagaras and Lee [28], who
consider the problem of evaluating suppliers on both cost and
quality. In addition, the literature on quality-related procurement
includes numerous papers considering quality improvement de-
cisions on the part of the supplier and/or the buyer. Of particular

relevance is Starbird [27], who considers a buyer who uses ac-
ceptance sampling to monitor supplier quality and to encourage
supplier quality improvement.

II. PROBLEM DESCRIPTION

We consider a buyer (she) who sells a commodity-like item
to consumers at a fixed price. Total consumer demand, denoted
by V , is fixed and known. The buyer can purchase the item
from any of n potential suppliers (denoted by i = 1, . . . , n).
The buyer has chosen to single source, and thus must select
a single supplier from the set of potential suppliers. We take
the number of potential suppliers, n, as exogenously specified.
Relaxing this assumption would require the introduction of a
third stage into our model, i.e., the supplier’s decision regarding
whether to participate in the qualification stage, which would
complicate the analysis.

In the next section, we provide an overview of the two-stage
sourcing process used by the buyer. Then, in the following two
sections, we provide problem descriptions for the buyer and
suppliers. In Section III, we characterize the optimal decisions
for the buyer and suppliers at each stage of the process.

A. Two-Stage Sourcing Process

The buyer has imperfect information regarding the costs and
quality capabilities of the suppliers. Thus, she has chosen to use
a sourcing process consisting of two stages. The first stage is the
qualification stage, in which the buyer exerts effort in order to
learn about the quality capabilities of the potential suppliers, and
then determines the set of qualified suppliers. When designing
this qualification stage, the buyer has three key decisions:

1) The buyer determines the minimum acceptable quality
level for the suppliers, denoted by Q. We will refer to
Q as the qualification threshold. The buyer would like to
qualify only those suppliers who are capable of achieving
quality level Q.

2) The buyer chooses the level of effort, denoted by e, to exert
in the qualification process. The suppliers’ capabilities for
producing high-quality products are initially unknown to
the buyer, i.e., prior to qualification the buyer only knows
the distribution of the suppliers’ capabilities across the set
of suppliers. However, the buyer can exert effort during
the qualification process, e.g., the buyer can inspect a
sample of size e of each supplier’s product, in order to
learn about that supplier’s capability. This effort, although
costly, enables the buyer to a) differentiate between the
capabilities of the suppliers and b) reduce the uncertainty
regarding a given supplier’s capability.

3) The buyer sets the tolerance for error in the qualifica-
tion decision, denoted by α. After exerting effort in the
qualification process, the buyer has a different probabil-
ity distribution for each supplier, representing her beliefs
regarding the supplier’s quality capability. Given these
distributions, the buyer must determine whether a given
supplier, whose true quality capability is still uncertain,
should be labeled as qualified. The buyer does so by spec-
ifying a tolerance for error, where an error occurs when
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the buyer qualifies a supplier whose true quality capability
is less than the threshold Q. Thus, α represents the proba-
bility of qualifying a supplier who cannot achieve quality
level Q.

Given the design of the qualification stage, i.e., given
(Q, e, α), the buyer will exert effort e to inspect each of the
potential suppliers and then will determine the appropriate set
of qualified suppliers based on the qualification standards, Q
and α.

The second stage of the sourcing process is the supplier se-
lection stage, in which the buyer selects a single supplier from
the set of qualified suppliers. When the suppliers’ costs are un-
certain, a common approach is to use a procurement auction,
in which the qualified suppliers submit sealed price-only bids,
and the buyer chooses among them based only on price. The bid
prices are determined by the suppliers based on their own costs
and capabilities, as well as their beliefs regarding the costs and
capabilities of the other suppliers. The bid prices will also de-
pend on the number of competing suppliers, i.e., a larger number
of qualified suppliers competing in the supplier selection stage
will lead to lower bid prices.

B. Buyer’s Problem

We assume that the buyer designs the qualification stage, i.e.,
chooses (Q, e, α), in order to maximize her expected profit,
which is composed of several components.

1) The buyer’s revenue depends on the total consumer de-
mand V and the selling price to the consumer s. Because
we take both s and V to be exogenously specified, the
buyer’s total revenue, sV , is fixed.

2) The buyer incurs a procurement cost per unit, which is
the price offered by the winning supplier in the supplier
selection stage. We use cp to denote the buyer’s expected
unit procurement cost. As will be seen, cp depends on the
buyer’s decision variables.

3) The buyer incurs costs associated with poor quality prod-
ucts provided by the winning supplier. For simplicity, we
model these costs as warranty costs. In this case, the mea-
sure of quality for supplier i, denoted qi , will be the proba-
bility that a randomly selected unit of supplier i’s product
will not require warranty work. Therefore, qi takes values
between 0 and 1, with 1 representing the highest possible
quality level. The cost to the buyer of a single unit of prod-
uct requiring warranty work will be denoted by w. Then,
if we let q̄ denote the expected quality level provided by
the winning supplier, the buyer’s expected warranty cost
per unit is w(1 − q̄). As will be seen, q̄ depends on the
buyer’s decision variables and the distribution of quality
levels across the suppliers.

4) The buyer incurs a cost associated with effort exerted in
the qualification stage. We let e denote the level of effort
exerted on each supplier, which is assumed to be the same
for all suppliers, and we let cE (e) denote the cost to exert
effort level e. Thus, if there are n potential suppliers, the
buyer’s total cost of effort is n × cE (e).

The buyer’s total expected profit is πB = V {s − [cp + w(1 −
q̄)]} − ncE (e). Since the revenue is fixed, we will minimize the
buyer’s expected cost. It will be convenient to normalize by the
volume V and to consider the buyer’s expected unit cost, which
we will denote by cB :

cB = cp + w(1 − q̄) +
ncE (e)

V
. (1)

The buyer’s problem is to choose (Q, e, α) to minimize this total
expected unit cost.

C. Supplier’s Problem

Supplier i’s profit is a function of his bid price pi , his cho-
sen quality level qi , and the cost to manufacture an item with
quality level qi . We will assume that the unit production cost for
supplier i, who produces a product with quality level qi , is ciq

z
i ,

where z is a constant greater than or equal to 1, common to all
suppliers in the industry. Here ci represents the cost incurred
by supplier i to produce a unit of product with perfect quality
(qi = 1). These costs are assumed to vary across the suppliers.
To enable closed form results, we assume that the ci are uni-
formly distributed between lower and upper bounds, denoted by
cL and cH , respectively. For simplicity, we will refer to ci as
the unit cost for supplier i. Notice that this production cost is an
increasing and convex function of quality, i.e., the marginal cost
of quality is increasing, as would be typical in many industries.
A cost function of this form is commonly used in the literature.
See, for example, [9] .

Supplier i has a maximum achievable quality level, which we
denote by qmax

i . Thus, the supplier may choose to produce at any
quality level qi , subject to qi ≤ qmax

i . We refer to qmax
i as sup-

plier i’s quality capability. Each individual supplier’s capability
is a function that supplier’s experience, access to skilled la-
bor, and production technology. Thus, the qmax

i will vary across
the suppliers. To enable closed form results, we assume that
the qmax

i are uniformly distributed between lower and upper
bounds, denoted by qL and qH , respectively. This assumption
might apply in industries where many varying processes yield
varying qualities to meet the needs of many different buyers.

The profit for supplier i, given that he wins the buyer’s busi-
ness with bid price pi and quality level qi , can now be written as
πi = V [pi − ciq

z
i ]. Supplier i’s problem is to select his quality

level qi and selling price pi , to maximize his expected profit, sub-
ject to qi ≤ qmax

i , taking into consideration the buyer’s mecha-
nism for choosing among the potential suppliers, and the costs
and capabilities of the other suppliers. In doing so, we assume
each supplier knows three things: 1) his own cost structure and
capability, 2) the underlying distribution of costs ci within the
industry, and 3) the underlying distribution of maximum quality
levels qmax

i within the industry.

III. DESIGNING THE OPTIMAL TWO-STAGE

SOURCING PROCESS

We can now determine the optimal decisions for each party,
i.e., the optimal bid prices and quality levels for the suppliers,
and the buyer’s choice of Q, e, and α. We will work backward,
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i.e., we will first consider the supplier selection stage, assuming
a fixed number of suppliers have passed the qualification stage.
We will then consider the qualification stage.

A. Supplier Selection Stage

We first analyze the competition between the qualified sup-
pliers, who submit price-only bids to the buyer. We assume that
some number m of the original n suppliers have been qualified,
where m ≤ n. The analysis presented here is similar to that
in [16] .

To determine how the m qualified suppliers will bid in the
supplier selection stage, we must first consider how these sup-
pliers will set their quality levels. Recall that the buyer would
like to qualify only those suppliers who are capable of achieving
the qualification threshold, i.e., those suppliers with qmax

i ≥ Q.
However, the buyer cannot observe the exact values of qmax

i and
thus the buyer may make an error in the qualification process,
i.e., may qualify a supplier who has qmax

i ≥ Q. Thus, we must
consider two cases. First, if qmax

i ≥ Q, then supplier i is capable
of achieving quality level Q. Since the buyer’s supplier selection
decision is made only on the basis of price, to keep his costs
as low as possible, supplier i will choose to produce a product
with the minimum possible quality level, i.e., will choose to set
his quality level equal to the threshold, even if he is capable of
achieving higher levels of quality. Thus, if qmax

i ≥ Q, supplier i
will set qi = Q. Second, if qmax

i < Q, we assume that supplier
i will choose to set qi = qmax

i because doing so gives him the
best chance of maintaining the buyer’s business. Thus, overall,
we have qi = min{Q, qmax

i }.
Supplier i must also determine pi , i.e., the price at which he

will offer the product to the buyer. Recall that the buyer requires
the qualified suppliers to participate in a sealed-bid procurement
auction. Therefore, when modeling the bidding process for the
suppliers, we draw on the results of auction theory (e.g., [17]). In
a conventional first-price sealed-bid ascending auction (where
the highest price wins and is paid by the highest bidder), the bid
price for bidder i, given there are m bidders, is

b(ui) = ui −
∫ ui

u [Fu (x)]m−1dx

[Fu (ui)]m−1 (2)

where ui is the value of the item to bidder i, which has dis-
tribution Fu (·), defined on [u, u]. In our model, however, the
winning bidder will be the one with the lowest price. Also, the
economic relationship in a standard auction is reversed, i.e., it
is the bidder (supplier) who will provide the item and be paid,
not the seller. Thus, we modify the aforementioned to obtain the
price offered by the winning supplier, say supplier i, assuming
he wins, as follows:

pi = p(ci) = Qz

(

ci +

∫ cH

ci
[1 − Fc(x)]m−1dx

[1 − Fc(ci)]m−1

)

(3)

where Fc(·) denotes the cumulative distribution function (CDF)
for the ci , which is defined on [cL , cH ]. If we compare the two
expressions in (2) and (3), we see that in a traditional auction,
bidder i’s bid price is less that his valuation ui for the production.
On the other hand, in a reverse auction, supplier i’s bid price

is greater than his unit cost ci . Also, notice that in (3), we use
the complement of the CDF, 1 − Fc(·), which is the probability
that an individual supplier’s cost exceeds some value, while
in (2), we use the CDF, Fu (·), which is the probability that
an individual bidder’s valuation for the good is less than some
value. Intuitively, this is due to the fact that in the procurement
auction, supplier i wins only if all other suppliers’ unit costs
exceed ci , while in a traditional auction, bidder i wins only if
all other bidders’ valuations are less than ui .

Also notice the multiplier Qz in the expression for pi . When
bidding, each supplier must consider his beliefs regarding the
unit costs of the other suppliers. Recall that these unit costs are
ciq

z
i , where qi = min{Q, qmax

i }. However, we assume that the
suppliers are unaware of the potential inaccuracy of the qual-
ification process, i.e., we assume that supplier i believes that
all of the other suppliers competing in the supplier selection
stage have qmax

i ≥ Q, where the qualification threshold Q was
announced in the qualification stage. Thus, supplier i believes
that qi = Q for all the other suppliers competing in the supplier
selection stage, i.e., supplier i believes that the qualified suppli-
ers’ unit costs are of the form ciQ

z . Therefore, each supplier’s
bid price depends only on his beliefs about the distribution
of the ci across the suppliers, and the announced qualification
threshold Q.

To obtain closed form results, we assume the supplier costs ci

are independent random draws from a uniform(cL , cH ) distri-
bution. This assumption is common in auction theory when the
goal is to obtain closed-form results. See, for example, [14], [17],
and [23]. In this case, supplier i’s bid price is

pi = p(ci) = Qz

[

cH −
(

m − 1
m

)

(cH − ci)
]

. (4)

Given the bids from the suppliers, the buyer will choose to source
from the qualified supplier with the minimum price. From (4),
it is clear that the qualified supplier with the minimum cost,
denoted by c(1) , will submit the lowest bid. Thus, the buyer
will procure the product at price p(c(1)). Since c(1) is the min-
imum value of m draws from a uniform(cL , cH ) distribution,
E[c(1) ] = 1

m+1 cH + m
m+1 cL . Therefore, the buyer’s expected

unit procurement cost cp is just the expected price at which the
buyer procures the good, which can be written as

cp = E[p(c(1))] = Qz

[

cH × 2
m + 1

+ cL × m − 1
m + 1

]

. (5)

Finally, from (5), we can see that the expected winning bid price
is decreasing in m. In other words, when there are more qualified
suppliers competing in the supplier selection stage, the buyer’s
expected unit procurement cost decreases.

B. Qualification Stage

We next consider the design of the qualification stage, which
determines m, the number of qualified suppliers who compete
in the supplier selection stage. We assume an inspection-based
qualification process in which the buyer inspects a random sam-
ple of size e of each supplier’s product in order to measure its
quality level. We assume the sample size is the same for all
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suppliers. The sample size e represents the measure of effort
exerted in the qualification process, at cost cE (e) per supplier.

During the qualification process, supplier i produces prod-
ucts with his maximum quality level qmax

i with the goal of
maximizing the likelihood that the buyer will find supplier i
to be qualified. As noted earlier, the inspection process is not
perfect. If the supplier’s true quality level is qmax

i , for a given
sampled unit of product, j = 1, . . . , e, the buyer will observe
the quality level qij = qmax

i + εij , where εij represents the in-
dependent and identically distributed (i.i.d.) measurement error,
which is assumed to follow a Normal distribution with mean
0 and known variance σ2 , for i = 1, . . . , n and j = 1, . . . , e.

Given a sample of size e, we define q̂i =
∑ e

j = 1 qi j

e , i.e., q̂i is
the sample mean for supplier i, which has a normal distribution
with mean qmax

i and standard deviation σ/
√

e.
Given q̂i , the buyer must decide whether supplier i is qualified.

She does so using a hypothesis test with HO = qmax
i < Q and

HA = qmax
i ≥ Q. The null hypothesis HO is assumed to be true

and is rejected in favor of the alternative HA only if the data
are highly improbable given the null hypothesis. Thus, with this
formulation, the buyer assumes the supplier cannot achieve the
qualification threshold Q, and only rejects that assumption if
the data are sufficiently convincing.

The hypothesis test has a confidence level α, which repre-
sents the probability of type I error, i.e., the probability that
the buyer rejects the null hypothesis when it is true. Thus, α
is the probability the buyer declares a supplier to be qualified
when they do not meet the qualification threshold, i.e., have
qmax
i < Q. Therefore, α represents the buyer’s tolerance for er-

ror in the qualification process. Based on this hypothesis test,
there is a threshold, G(Q,α, e) = Q + z(1 − α)σ/

√
e, on the

observed value of q̂i , where z(1 − α) is the value of z that sat-
isfies P (Z ≤ z) = 1 − α, and Z is a standard normal random
variable. If q̂i is greater than or equal to G(Q,α, e), the sup-
plier is said to be qualified; otherwise, the supplier is said to
be not qualified. Thus, G(Q,α, e) depends on the qualification
threshold Q the tolerance for error α and the effort exerted in
the qualification process e. In summary, the qualification rule is
to qualify supplier i if and only if q̂i ≥ G(Q,α, e).

Given this qualification process, the probability supplier i,
whose true maximum quality level is qmax

i , is considered qual-
ified can be written as

P (q̂i ≥Q+z(1 − α)σ/
√

e)=1 − Φ
(

Q − qmax
i

σ/
√

e
+z(1 − α)

)

(6)
where Φ(·) the CDF for a standard normal distribution.

The level of competition in the supplier selection stage is
determined by the number of qualified suppliers m. It is now
clear that m will be a random variable and will depend on the
design of the qualification stage, i.e., on the buyer’s choice of
Q,α, and e. We can write the expected number of qualified
suppliers, which we denote by m(Q,α, e), as follows:

m(Q,α, e) = nE

[

1 − Φ
(

Q − qmax
i

σ/
√

e
+ z(1 − α)

)]

. (7)

Not every supplier that passes the qualification process will
actually have qmax

i ≥ Q. Thus, it is useful to compute the ex-
pected quality of the qualified suppliers, which we denote by
q̄(Q,α, e) and refer to as the expected delivered quality, assum-
ing that those suppliers with qmax

i ≥ Q will choose to set their
quality levels just equal to Q (8), as shown at the bottom of the
page.
Notice that (8) reduces to q̄(Q,α, e) = Q if Q ≤ qL , i.e., if the
buyer sets the qualification threshold to be less than the lower
bound on the qmax

i , then all suppliers will be able to achieve the
qualification threshold, i.e., qmax

i ≥ Q for i = 1, . . . , n.
We have assumed that those suppliers with qmax

i ≤ Q will
choose to set their quality levels just equal to qmax

i . In reality,
it is difficult to predict what quality level these suppliers will
provide. We consider the best case, i.e., these suppliers will set
their quality levels as high as possible, under the assumption
that, if selected, the supplier will make every possible effort
to meet the requirements of the buyer in order to maintain the
buyer’s business.

We can now state the following theorem, which character-
izes the behavior of the expected number of qualified suppliers
m(Q,α, e) and the expected delivered quality level q̄(Q,α, e)
under the assumption that the qmax

i are uniformly distributed
between qL and qH .

Theorem 1: For the inspection-based qualification process
with qualification threshold Q, level of effort e, and tolerance
for error α, we have the following results when qmax

i follows a
Uniform(qL , qH ) distribution.

1) The expected delivered quality level q̄(Q,α, e) is increas-
ing in Q and decreasing in α.

2) The expected number of qualified suppliers m(Q,α, e)
is decreasing in Q and increasing in α. If the buyer
sets α ≤ 0.5, then the expected number of qualified sup-
pliers m(Q,α, e) is decreasing and convex in Q for
Q ≤ qL +qH

2 + z(1 − α) σ√
e
, but decreasing and concave

in Q for Q > qL +qH

2 + z(1 − α) σ√
e
.

The proof of Theorem 1 can be found in the online sup-
plementary material. The theorem indicates that the expected

q̄(Q,α, e) =
E

{
min[qmax

i , Q] ×
[
1 − Φ

(
Q−qm a x

i

σ/
√

e
+ z(1 − α)

)]}

E
[
1 − Φ

(
Q−qm a x

i

σ/
√

e
+ z(1 − α)

)]

= Q −

∫ Q

qL
(Q − qmax

i )
[
1 − Φ

(
Q−qm a x

i

σ/
√

e
+ z(1 − α)

)](
1

qH −qL

)
dqmax

i

∫ qH

qL

[
1 − Φ

(
Q−qm a x

i

σ/
√

e
+ z(1 − α)

)](
1

qH −qL

)
dqmax

i

. (8)
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Fig. 1. Buyer’s cost as a function of quality threshold, Q, for various values
of n, for z = 2, qL = 0.3, qH = 1, cL = 1, cH = 3, sw = 5, se = 0.5, σ =
0.1, e = 50, α = 0.05.

delivered quality is increasing in the qualification threshold and
decreasing in the tolerance for error, while the number of qual-
ified suppliers is decreasing in the qualification threshold and
increasing in the tolerance for error.

Given m(Q,α, e) and q̄(Q,α, e), we can write the buyer’s
expected cost as a function of Q,α, and e, using (1), as follows:

cB (Q,α, e) = cp(Q,α, e) + w(1 − q̄(Q,α, e)) +
ncE (e)

V
(9)

where from (5) the buyer’s expected unit procurement cost is
computed as

cp(Q,α, e)=Qz

[

cH × 2
m(Q,α, e) + 1

+ cL×
m(Q,α, e) − 1
m(Q,α, e) + 1

]

(10)
where m(Q,α, e) is as given in (7). Note that, rather than taking
the expectation of (5) over the random number of qualified
suppliers, we have instead replaced the random variable with
its expected value. We make this approximation for analytical
convenience.

The buyer’s problem is to find the optimal Q,α, and e to mini-
mize cB (Q,α, e). Unfortunately, it is difficult to prove anything
about the behavior of cB (Q,α, e). For example, Fig. 1, which
shows the buyer’s cost as a function of the threshold Q for vari-
ous values of the number of potential suppliers n demonstrates
that the buyer’s cost is not strictly convex in Q. Instead, we
find that, for large Q, the cost function switches from convex to
concave. This is due to the behavior of m(Q,α, e) for α < 0.5,
as described in Theorem 1. This behavior results in the procure-
ment cost cp becoming concave for large values of Q. Thus, the
buyer’s total cost cB also becomes concave for large Q. How-
ever, the figure does demonstrate a key insights, i.e., the buyer’s
costs are decreasing in the number of potential suppliers, while
the optimal quality threshold is increasing in the number of sup-
pliers. Thus, with more potential suppliers, the buyer can be
more rigorous in the qualification stage, while still maintaining
competition in the supplier selection stage, resulting in lower
costs.

IV. NUMERICAL STUDY

To gain insight into the buyer’s optimal decisions, we con-
ducted a full factorial experiment in which the key parameters
were allowed to take three values, as specified in the following.

1) The warranty cost is set equal to a multiple of the average
cost to produce a unit of average quality, i.e., we set w =
sw ×

(
cL +cH

2

)
×

(
qL +qH

2

)z
, where sw ∈ {2, 5, 10}. We

have chosen to model the unit warranty cost in this way in
order to reflect the fact that the warranty cost is likely to
be correlated with the cost to produce a unit of product. In
addition, we allow the multiplier sw to be large in order to
capture the fact that the unit warranty may also incorporate
a goodwill cost, i.e., the customer dissatisfaction resulting
from poor quality and inconvenience.

2) Bounds on the distribution of costs in the industry: the
upper bound is fixed at cH = 3, while the lower bound
can take values of cL ∈ {1, 2, 2.9}.

3) Bounds of the distribution of quality in the industry: the
upper bound is fixed at qH = 1 (perfect quality), while the
lower bound can take values of qL ∈ {0.3, 0.5, 0.7}.

4) Number of potential suppliers: n ∈ {5, 10, 20}.
5) Cost of quality parameter: z ∈ {1, 2, 4}.
6) The standard deviation of the measurement error of test-

ing: σ ∈ {0.08, 0.1, 0.12}.
7) The cost of effort for each potential supplier is linear

in effort, where the unit cost of effort was set equal to
a multiple of the average cost to produce a unit of av-
erage quality, i.e., we set cE (e) = ce × e, where ce =
(1 + se) ×

(
cL +cH

2

)
×

(
qL +qH

2

)z
and se ∈ {0.5, 2.5, 5}.

8) The buyer’s total production volume V is taken to be fixed
at 1 million units.

For each of the seven key input parameters, we consider three
values (high, medium, and low), which results in a total of 2187
experiments. To find the optimal Q,α, and e, we conducted a
3-D grid search for the combination of values that minimized
the buyer’s expected total cost, as given in (9), where numerical
integration is used to evaluate q̄(Q,α, e), as given in (8). For
the number of samples e, we searched over integer values be-
tween 1 and 50. For the tolerance α, we discretized the search
area, considering values of α ranging from 0.01 to 0.96, in
increments of 0.05, as well as α = 0.99. For the quality thresh-
old, we also discretized the search area, considering values of
Q ∈ [0.01, 0.03, 0.05, . . . , 0.99].

A. Overview of Key Results and Insights

Before discussing our detailed results, we will summarize
the key insights and tradeoffs. The results reported in the Sec-
tions IV-B–IV-D will support the discussion in this section. Our
problem has three decision variables, which interact in complex
ways. The behavior of the optimal qualification threshold Q is
easiest to understand. If we are more stringent in the qualifica-
tion process, we qualify fewer suppliers, which leads to lower
warranty costs but higher procurement costs, due to less com-
petition in the supplier selection stage. Thus, when the problem
parameters are such that warranty costs dominate (e.g., the unit
warranty cost is high and/or the number of potential suppliers is
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large), the optimal Q will be high. However, when the problem
parameters are such that procurement costs dominate (e.g., the
number of potential suppliers is low and/or the warranty cost
is low), the optimal Q will be low. These results are consistent
with those in [16].

To understand the behavior of the remaining two decision
variables, it is useful to think in terms of type I and type II
errors. For our model, type I error occurs when we qualify a
supplier who does not meet the qualification threshold. Type II
error occurs when we do not qualify a supplier who does meet
the qualification threshold. Type I error reduces the expected
delivered quality and leads to higher warranty costs, while type
II error reduces the number of qualified suppliers and leads to a
higher procurement price. Thus, when the model parameters are
such that the warranty costs dominate, the buyer tries to reduce
the probability of type I error. When the model parameters are
such that the procurement costs dominate, the buyer tries to
reduce the probability of type II error. Finally, note that reducing
type I error also leads to fewer suppliers being qualified.

Next, we consider how the probabilities of type I and type II
errors are affected by α and e. Recall that α is the probability of
type I error. Thus, increasing α will increase the probability of
type I error, but will decrease the probability of type II error. On
the other hand, increasing e, the sample size, will decrease both
types of errors. As noted earlier, when the model parameters
are such that the warranty costs dominate, the buyer tries to
reduce the chance of type I error. To achieve this, she has two
alternatives: a low tolerance for error, α or a high level of effort,
e. Since a high e reduces the chance of both types of error, it is
preferred to a low α, as long as effort is not too costly. In addition,
when the effort level is high enough, and thus the variance of the
sample mean is very small, the qualification decision is fairly
accurate even when the tolerance is high. Thus, when the model
parameters are such that the warranty costs dominate, we tend
to see cases in which the optimal effort level is high, while the
optimal tolerance is less predictable.

When the model parameters are such that the procurement
costs dominate, the buyer will try to reduce the probability of
type II error in order to qualify more suppliers. This can be
achieved by setting a high tolerance for error α. The optimal
level of effort, however, is less clear. Increasing effort reduces
both type I and type II errors. Reducing type I error leads to
fewer qualified suppliers, while reducing type II error leads to
more qualified suppliers. Which effect dominates depends on
the value of α. If α is low, a higher level of effort increases the
number of suppliers qualified. However, if α is high, the opposite
is true. Thus, when the procurement costs dominate, we tend to
see cases in which the optimal α is high. Then, depending on
the magnitude of the optimal α, i.e., depending on exactly how
high α becomes, the optimal e may be either high or low.

B. Behavior of the Optimal Solution: Examples

We next discuss a series of examples, as shown in Ta-
ble I. Example 1 has a low warranty cost and a large
number of potential suppliers. We find the following opti-
mal solution: Q∗ = 0.49, α∗ = 0.56, e∗ = 12. Thus, the buyer

TABLE I
EXAMPLES OF OPTIMAL SOLUTION, FOR

z = 2, σ = 0.1, cL = 2, qL = 0.3, se = 2.5

should calculate G(Q∗, α∗, e∗) = Q∗ + z(1 − α∗)σ/
√

e∗ =
0.49 + z(0.44) × 0.08/

√
12 = 0.486. Then, the buyer should

sample and inspect 12 units from each potential supplier and
qualify only those suppliers whose average quality level is at
least 0.486. This will result in, on average, 73.5% of suppli-
ers being qualified, i.e., m(Q∗, α∗, e∗) = 14.7, and an expected
delivered quality of q̄(Q∗, α∗, e∗) = 0.489.

Example 2 considers an identical set of input values, except
that the number of potential suppliers is reduced from 20 to 5.
The buyer should sample 28 units from each potential supplier
and qualify those suppliers whose average quality is at least
G(Q∗, α∗, e∗) = 0.405. This will result in, on average, 85.0%
of suppliers being qualified, i.e., m(Q∗, α∗, e∗) = 4.3, and an
expected delivered quality of q̄(Q∗, α∗, e∗) = 0.429. Examples
1 and 2 demonstrate that when the number of potential suppliers
decreases, qualifying a larger percentage of potential suppliers is
critical in order to maintain sufficient competition in the supplier
selection stage. In this example, this is achieved by reducing the
qualification threshold, as well as increasing both the tolerance
for error and the sample size, both of which reduce the chance
of type II error, i.e., the chance of not qualifying a supplier who
does meet the qualification threshold.

Examples 3 and 4 are identical to examples 1 and 2, but with
a higher unit warranty cost. This results in a higher qualification
threshold, a higher expected delivered quality, and a smaller
percentage of suppliers qualified. The impact of the higher war-
ranty cost on the optimal tolerance for error and effort is as
predicted in Section IV-A. The optimal effort level is higher in
examples 3 and 4 (high warranty cost) than in examples 1 and 2
(low warranty cost). Thus, when the unit warranty cost is high,
the buyer will increase the level of effort in order to reduce type
I error, to ensure that only suppliers who meet the qualification
threshold are allowed to compete in the supplier selection stage.
This higher level of effort results in a very low variance for
the sample mean, enabling the buyer to increase the tolerance
for error, α, without significantly reducing the accuracy of the
qualification process.

In all four examples in Table I, the expected delivered qual-
ity q̄(Q∗, α∗, e∗) is very close to the optimal quality thresh-
old Q∗. From our computational study, we find that this result
holds in general. Across the 2187 experiments, the maximum
value of Q∗ − q̄(Q∗, α∗, e∗) was 0.048, while the median value
was 0.003. Thus, even when the optimal tolerance for error is
high, the buyer is still able to achieve close to the target quality
level Q∗.

We conclude this section by summarizing our general ob-
servations regarding the behavior of the optimal solution as a
function of the key problem parameters.
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1) In all experiments, the optimal qualification threshold Q,
optimal expected delivered quality q̄, and optimal expected
unit cost, cB are nondecreasing in the unit warranty cost, w
while the percentage of suppliers qualified is nonincreas-
ing in the unit warranty cost. The optimal effort level, e is
increasing in the warranty cost in most (greater than 86%)
of the experiments.

2) In most (greater than 95%) of the experiments, the optimal
qualification threshold, Q is nondecreasing in the num-
ber of potential suppliers, n while the optimal expected
unit cost, cB is nonincreasing in the number of potential
suppliers.

3) In all experiments, the optimal expected unit cost, cB is
decreasing in the parameter, z due to the fact that the cost
to produce a unit with given quality is decreasing in z.

4) In most (greater than 90%) of the experiments, the optimal
expected unit cost, cB is increasing in the lower bound on
the unit costs cL . In most (greater than 99%) of the exper-
iments, the optimal tolerance for error α is nonincreasing
in cL .

5) In most (greater than 99%) experiments, the optimal
threshold Q is nondecreasing in the lower bound on the
distribution of quality qL . In most (greater than 92%) of
the experiments, the optimal expected delivered quality q̄
is nondecreasing in qL .

6) The optimal effort level is always nonincreasing in the
unit testing cost ce while the optimal tolerance for error α
is nonincreasing in the cost of testing in more than 99%
of the experiments. The optimal qualification threshold Q
does not change with the testing cost in most (greater than
99%) experiments. The optimal expected unit cost cB is
increasing in the testing cost in all experiments.

C. Behavior of the Optimal Solution: Extreme Values

Extreme results such as α∗ = 0.99, e∗ = 1 or e∗ = 50 are
fairly common in our numerical study. We summarize these
results as follows.

1) α∗ = 0.99 in 1221 out of the 2187 experiments. For these
cases with α∗ = 0.99, we have the following results:

1) There are 173 cases in which e∗ = 1. All of these
cases occur when the warranty cost is low (i.e., sw =
2).

2) There are 78 cases in which e∗ = 50. The bulk (67)
of these cases occur when the warranty cost is high
(i.e., sw = 10).

2) e∗ = 50 in 453 out of the 2187 experiments. This result is
most likely to occur when the warranty cost is large (255
of these cases have sw = 10) and the lower bound on the
suppliers’ unit production cost is high (299 of these cases
have cL = 2.9).

3) e∗ = 1 in 175 out of the 2187 experiments. In all of these
cases, the warranty cost is low (sw = 2), while for most of
these cases the optimal tolerance is very high (α∗ ≥ 96%).

These results are in line with the discussion in Section IV-A.
The cases with α∗ = 0.99 tend to be those in which it is optimal
for the buyer to qualify a large number of suppliers in order to
maintain a high level of competition in the supplier selection

Fig. 2. Buyer’s cost as a function of effort e for various values of α, for z =
2, qL = 0.3, qH = 1, cL = 1, cH = 3, sw = 2, se = 0.5, σ = 0.1, n = 20.

stage. When the warranty cost is low, many of the cases with
α∗ = 0.99 have a very small optimal sample size. This is due
to the fact that when α∗ is large, a low level of effort leads to
a larger number of qualified suppliers. Thus, when warranty
costs are low, and competition in supplier selection is the main
concern, e∗ should be low. However, when the warranty cost is
high, α∗ = 0.99 tends to be associated with large e∗. In other
words, when the warranty cost is high, the buyer will choose
to increase the level of effort in order to reduce the chance of
type I error, i.e., of qualifying a supplier who cannot meet the
qualification threshold. As noted earlier, when e∗ is quite large,
the qualification process will still be fairly accurate, even when
α∗ = 0.99.

Finally, we note that in 63 out of the 2187 cases, the optimal
qualification threshold Q∗ was less than the lower bound on
the quality levels for the industry qL . These 63 cases all had a
low warranty cost (sw = 2) and high lower bound on quality
(qL = 0.7). In addition, almost half of these cases had a small
number of potential suppliers (n = 5) and a large unit produc-
tion cost (cL = 2.9). We can explain these results by noting that
the buyer’s total cost is composed of two factors: the expected
unit procurement cost and the expected warranty cost. The pro-
curement cost is affected by both the level of competition, i.e.,
the number of qualified suppliers m(Q,α, e) and the suppliers’
unit production costs, which are proportional to Qz . When the
number of potential suppliers n and the unit warranty cost sw are
both small, the procurement costs dominate the warranty costs.
To reduce the total cost, the buyer can increase the number of
qualified suppliers m(Q,α, e) which creates more competition
in the supplier selection stage. This can be achieved by setting
Q = qL . In addition, it may be beneficial for the buyer to reduce
Q further, i.e., to set Q < qL , in order to reduce the suppliers’
unit production costs, which are proportional to Qz . Thus, if the
warranty costs and the number of potential suppliers are suffi-
ciently low, while the unit production cost is relatively high, the
buyer may set Q to be less than qL , resulting in full competition
in the supplier selection stage and reduced production costs. Fi-
nally, when Q∗ < qL , all suppliers will be qualified, regardless
of the values of e and α. Thus, it is optimal to exert no effort
and the tolerance for error has no effect on the buyer’s cost.
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Fig. 3. Expected quality shortfall, percentage of suppliers qualified as a function of α for various e, for z = 2, qL = 0.3, qH = 1, cL = 1, cH = 3,
sw = 2, se = 0.5, σ = 0.1, n = 20. (a) Expected quality shortfall. (b) Percentage of suppliers qualified.

Fig. 4. Percentage of suppliers qualified as a function of α and e for various values of quality threshold, Q, for z = 2, qL = 0.3, qH = 1, cL = 1, cH = 3,
sw = 2, se = 0.5, σ = 0.1, n = 20. (a) Versus Tolerance. (b) Versus Effort.

D. Interactions Between Decision Variables

We next discuss the interactions and tradeoffs between the
three decision variables, Q,α, and e. Fig. 2 shows the buyer’s
cost as a function of effort e for various values of the tolerance,
α. We see that the optimal level of effort is decreasing in the
tolerance for error. When the tolerance for error is low, more
effort allows the buyer to qualify more suppliers, thus increasing
competition in the supplier selection stage and reducing the ex-
pected unit procurement cost. More effort also allows the buyer
to ensure that only suppliers who can meet the qualification
threshold are qualified, which reduces the expected warranty
costs.

Fig. 3(a) shows the expected quality shortfall, i.e., Q −
q̄(Q,α, e), as a function of the tolerance α for various lev-
els of effort, while Fig. 3(b) shows the percentage of suppliers
qualified, i.e., m(Q,α, e)/n, as a function of the tolerance α
for various levels of effort. We see that the expected quality
shortfall is decreasing in effort and increasing in tolerance for
error, as expected. Fig. 3(a) also demonstrates that effort has a
more significant impact on the expected quality shortfall than
the tolerance for error. Fig. 3(b) demonstrates that when the tol-
erance for error is small, the percentage of qualified suppliers is
increasing in effort, while the opposite is true when the tolerance
for error is large. In other words, if the buyer is more willing
to accept an error in the qualification process, most suppliers

will be considered qualified initially, and thus exerting effort
will only serve to eliminate some suppliers. The opposite is true
when the tolerance for error is low.

Fig. 4(a) and (b) shows the percentage of qualified suppliers
as a function of tolerance α and effort, e for various values
of the qualification threshold Q. As expected, this percentage
is increasing in the tolerance for error and decreasing in the
qualification threshold.

V. CONCLUSION AND MANAGERIAL INSIGHTS

In this paper, we considered the design of a two-stage sourc-
ing process for a buyer who outsources the manufacturing of a
product to one of several competing suppliers. The buyer has
imperfect information on the suppliers’ capabilities. Thus, in
the qualification stage, the buyer must exert costly effort to
learn about the suppliers’ capability for producing high-quality
products. The buyer also has imperfect information regarding
the suppliers’ costs. Thus, in the supplier selection stage, the
buyer uses a sealed-bid first-price procurement auction to se-
lect among the qualified suppliers. In designing this two-stage
process, the buyer must determine the qualification standard,
the level of effort to exert in the qualification process, and the
appropriate tolerance for error, in order to maximize her ex-
pected profits. The buyer’s goal is to ensure that the firm only
sources from qualified suppliers, while maintaining sufficient
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competition among the suppliers in the supplier selection stage.
Our results demonstrate the complex interactions between the
buyer’s decision variables, as well as the impact of key param-
eters on the buyer’s cost. Below, we provide insights into the
buyer’s optimal decisions:

1) When the unit warranty cost is high and/or the number
of potential suppliers is large, the optimal qualification
threshold will be high. In these cases, it is more critical
for the buyer to ensure a high level of quality than it
is to ensure competition in the supplier selection stage.
In contrast, when the unit warranty cost is low and/or
the number of potential suppliers is small, the optimal
qualification threshold will be low.

2) When effort is costly, the buyer’s optimal effort level is
generally limited. This is particularly true when the num-
ber of potential suppliers is small and the unit warranty
cost is low. In this case, encouraging competition between
the suppliers is more critical than ensuring that only high
capability suppliers are qualified. This result provides use-
ful insight for the supplier evaluation and the qualification
literature, which generally does not consider the cost of
effort. In particular, our findings imply that incorporating a
large set of attributes in supplier evaluation, which is likely
to make learning about supplier capabilities more costly,
may not always be optimal, particularly for attributes that
do not contribute substantially to the buyer’s overall profit.

3) While intuition might suggest that the buyer should set a
low tolerance for error in the qualification process, we find
that the optimal tolerance for error is often quite large.
This is particularly true when the number of potential sup-
pliers is small and the unit warranty cost is low, i.e., when
encouraging competition between the suppliers is critical.

We have also obtained several insights regarding the impact
of key problem parameters.

1) The number of potential suppliers has a significant impact
on the buyer’s decisions and optimal cost. As the number
of potential suppliers decreases, the buyer is motivated
to reduce the qualification threshold and increase the tol-
erance for error in order to ensure sufficient competition
in the supplier selection stage. This results in increased
warranty costs, but reduced procurement costs.

2) The magnitude of the unit warranty cost also has a signif-
icant impact on the results.

a) When the unit warranty cost is low, the need for
competition in supplier selection dominates the need
to maintain a high level of quality. Thus, the buyer
seeks to qualify more suppliers. This can be achieved
through a low qualification threshold, a high toler-
ance for error or a low level of effort.

b) When the unit warranty cost is high, the buyer wants
to maintain a high level of delivered quality. Thus,
in addition to setting a high qualification threshold,
she must reduce the chance of error in the qualifi-
cation decision. To achieve the latter, she has two
alternatives: a low tolerance for error or a high
level of effort. While both alternatives can reduce
the chance of qualifying suppliers who cannot meet

the qualification threshold, a high effort level also
increases the chance of qualifying suppliers who
are indeed qualified. Thus, the buyer will generally
choose to increase her effort, along with the qualifi-
cation threshold, when the warranty cost is high.
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