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Abstract

Main conclusions A Chlorovirus aquaglyceroporin expressed in tobacco is localized to the plastid

and plasma membranes. Transgenic events display improved response to water deficit. Necrosis in

adult stage plants is observed.

Aquaglyceroporins are a subclass of the water channel aquaporin proteins (AQPs) that transport

glycerol along with other small molecules transcellular in addition to water. In the studies

communicated herein, we analyzed the expression of the aquaglyceroporin gene designated,

aqpv1, from Chlorovirus MT325, in tobacco (Nicotiana tabacum), along with phenotypic changes

induced by aqpv1 expression in planta. Interestingly, aqpv1 expression under control of either a

constitutive or a root-preferred promoter, triggered local lesion formation in older leaves, which
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progressed significantly after induction of flowering. Fusion of aqpv1 with GFP suggests that the

protein localized to the plasmalemma, and potentially with plastid and endoplasmic reticulum

membranes. Physiological characterizations of transgenic plants during juvenile stage growth were

monitored for potential mitigation to water dry-down (i.e., drought) and recovery. Phenotypic

analyses on drought mimic/recovery of juvenile transgenic plants that expressed a functional

aqpv1 transgene had higher photosynthetic rates, stomatal conductance, and water use efficiency,

along with maximum carboxylation and electron transport rates when compared to control plants.

These physiological attributes permitted the juvenile aqpv1 transgenic plants to perform better

under drought-mimicked conditions and hastened recovery following re-watering. This drought

mitigation effect is linked to the ability of the transgenic plants to maintain cell turgor.

Keywords

Aquaporins; Aquaglyceroporins; Water use efficiency; Agrobacterium; Local lesions; Chlorovirus
MT325

Introduction

Components of plant water relations include soil water availability, uptake and transport

through the root system to the aerial part of the plant. Water conductance in planta, uses

three primary routes, (1) apoplastic movement wherein water translocates intercellular

without crossing membranes, (2) symplastic movement whereby cell-to-cell transport of

water molecules occurs via plasmodesmata and (3) a transcellular route in which water

molecules move through water-specific channel proteins (Chrispeels and Maurel 1994;

Maurel and Chrispeels 2001; Maurel et al. 2008; Steudle and Peterson 1998). Water channel

proteins are members of the major intrinsic proteins (MIPs) family, that collectively are

referred to as aquaporins (AQPs) when they are exclusively water channels or as

aquaglyceroporins when transported molecules also include glycerol and other small

molecules (Eckert et al. 1999; Maurel and Chrispeels 2001; Maurel et al. 2008; Schaffner

1998; Tyerman et al. 2002). Plant AQPs are further subdivided into four subgroups

classified by subcellular localization, plasmalemma intrinsic proteins, tonoplast intrinsic

proteins, nodulin-26-like intrinsic membrane proteins and small basic proteins

(Alexandersson et al. 2005; Maurel et al. 2008; Peng et al. 2007).

Some dsDNA viruses that infect algae (family Phycodnaviridae) have genomes of up to 560

kb and contain as many as 600 protein-encoding genes including ion channels and ion

transporters (Van Etten and Dunigan 2012). An example is the Chlorovirus MT325 that

infects Micractinium conductrix (former name Chlorella Pbi). The MT325 open reading

frame (ORF) M30R encodes an aquaglyceroporin protein (AQPV1) that has MIP like

features and the capacity to transport both water and glycerol (Gazzarrini et al. 2006).

Xenopus oocytes injected with AQPV1 transcripts displayed significantly higher water

permeability than corresponding control oocytes in a hypotonic swelling assay. Moreover, a

single point mutation in AQPV1 abolished the activity of the protein channel with respect to

water permeability, which demonstrated that a functional pore was required for water

transport (Gazzarrini et al. 2006). The AQPV1 gene call was through in silico analyses of
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the MT325 sequence. However, information on the expression or subcellular localization of

aqpv1 protein in virus-infected Chlorella has not been ascertained.

This report describes the expression of aqpv1 in tobacco and subsequent phenotypic

characterizations under water limiting conditions. While transgenic approaches to elucidate

the role of AQPs in plant water relations have been reported (Lian et al. 2004; Peng et al.

2007; Sade et al. 2010; Wang et al. 2011), this is the first report describing in planta

heterologous expression of a viral aquaglyceroporin channel.

Materials and methods

Vector constructions

The coding sequence of aqpv1 from Chlorovirus MT325 (genbank acc no. DQ195162) was

amplified via PCR from virus DNA. The PCR reaction incorporated an NcoI and XbaI site at

the 5′ and 3′ ends of the ORF, respectively. The primer set used was aqua5: 5′-

TTCATGGCCACTTA CACCTCCTCCAGATT -3′ and aqua3: 5′-TTCTA

GATTAAATCGCAAAGGAAGTGATC -3′. The PCR reaction incorporated an Ala residue

at the N-terminus between the Met and Thr residues. The PCR product was subsequently

cloned into TOPO 2.1 cloning vector (TOPO TA cloning kit® Invitrogen Cat No. K4510)

and sequenced to verify authenticity of the PCR product. The NcoI/XbaI element containing

the aqpv1 ORF was subcloned into pRTL 2 (Carrington and Freed 1990), which fuses the

ORF to the tobacco etch virus translational enhancer element (TEV), and places expression

of the transgene TEV fusion under control of the 35S CaMV promoter. The resultant

plasmid is referred to as pPTN798 (not shown). The 35S CaMV aqpv1 expression cassette

was subcloned from pPTN798 as a PstI element into the base binary vector pPZP211

(Hajdukiewicz et al. 1994) with the final binary plasmid designated pPTN803 (Fig. 1). The

TEV-aqpv1 element was also placed under control of the Arabidopsis root-preferred

promoter Pyk10 (Nitz et al. 2001), by swapping the 35S CaMV promoter out from pPTN798

as a HindIII/XhoI and replacing it with the Pyk10 promoter delineated by HindIII/XhoI sites.

The final binary plasmid carrying this second TEV-aqvp1 expression cassette under control

of the Pyk10 promoter is referred to as pPTN817 (Fig. 1).

Two additional control vectors were assembled. The first binary control vector, designated

pPTN814 (Fig. 1) had a GUSPlus™ cassette derived from pCambia 1304 in which the

GUSPlus gene, fused to the TEV leader, is under control of the Arabidopsis pyk10

promoter. This plasmid was used to monitor pyk10 promoter activity in tobacco. The second

control plasmid had a N214A mutation in the AQPV1 peptide, which abolishes both water

and glycerol transport (Gazzarrini et al. 2006). The mutation was generated using a

QuickChange® site-directed mutagenesis kit (Stratagene Cat No. 200518) following the

protocol outlined by the manufacturer. The primer set aqF: 5′-GACTTCAATTGC

TGCGCGCACGTGATTTCTC -3′ and aqR: 5′-

GAGAAATCACGTGCGGGGGCGGCAGCAATTGAA GTC-3′ was used in the reaction

with plasmid pPTN798 serving as the template. The plasmid carrying the mutated aqpv1

gene cassette is designated pPTN839 (not shown). The fidelity of the targeted change was

confirmed by sequencing. The mutated expression cassette in pPTN839 was subsequently

subcloned into pPZP211 and the final binary vector referred to as pPTN841 (Fig. 1).
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To visualize subcellular localization of AQPV1 in tobacco, a GFP fusion protein was

generated, in which the C-terminal end of the full-length AQPV1 peptide was linked to the

visual marker. To this end primer sets, aqua- BspHI: 5′-

TCATGACTTACAACCTCCTCCAGATTT -3′, aqua-RV: 5′-

GATATCAATCGCAAAGGAAGTGATCTC GG-3′, GFP-RV: 5′-

GATATCATGTCCAAGGGCGAACT CTC-3′ and GFP-Xba: 5′-

TCTAGACTACTTGTAGAGCT CGTCATGCCGTG -3′ were used to amplify the aqpv1

ORF and a synthetic GFP ORF, using the aqua and GFPlabeled primer sets, respectively.

The aqpv1-GFP fusion N-terminus does not have an Ala residue between the Met and Thr,

and the linker region of the peptide is Phe-Ala-Asp-Ile-Met. Hence, the AQPV1 C-terminus

of the fusion is replaced with Asp-Ile, rather than Tyr-Leu in the native peptide. The aqvp1-

GFP fusion was cloned into pRTL 2 as described above, as a BspHI/XbaI element, and the

resultant plasmid, designated pPTN834 (not shown) was confirmed by sequencing. The 35S

CaMV-TEV-aqvp1-GFP cassette was subsequently cloned into pPZP211 and the final

binary vector referred to as pPTN836 (Fig. 1).

Tobacco transformations

Tobacco transformations (Nicotiana tabacum cv. Xanthi) were conducted using a

modification of the protocol described by Horsch et al. (1985). A detailed procedure of the

tobacco transformation protocol usedin this study was previously communicated (Clemente

2006).

Molecular characterizations of transgenic tobacco events

A subset of the pPTN803 transgenic events was characterized at the molecular level to

monitor both integration patterns and transcript accumulation of the aqpv1 transgene. The

former was determined via Southern blot analysis on selected progeny of transgenic plants.

Total genomic DNA was extracted from young leaves during vegetative growth using a

modification of the protocol described by Dellaporta et al. (1983). 10 μg of genomic DNA

was digested with KpnI, which contains one recognition site in the T-DNA. The digested

DNA s were subsequently separated on a 0.8 % agarose gel. The gels were blotted to a nylon

membrane (Bio-Rad, Hercules, CA) following a series of deamination and denaturation

steps, the DNA s were crosslinked to the membrane with a UV-crosslinker. Hybridizations

were carried out with 32P-labeled dCTP using the aqpv1 ORF in the random prime synthesis

reaction following the manufacturer’s protocol (Prime-It II, Stratagene, La Jolla, CA).

Membrane pre-hybridizations and hybridization conditions were carried out as previously

described (Eckert et al. 2006).

Transcript accumulation was monitored via northern blot analysis. Total RNA s were

isolated from young leaves during vegetative growth using TRIzol® reagent (Life

Technologies, Grand Island, NY, USA), and subsequently purified using RNeasy columns

(Qiagen, German Town, MD, USA). Approximately 15 μg of RNA s were separated on a 1

% formaldehyde agarose gel. The gel was subsequently blotted to a nylon membrane and

pre-hybridization and hybridization conditions followed as above, using the aqpv1 ORF as a

probe.
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Confocal imaging

Subcellular localization of AQPV1 was visualized in transgenic tobacco plants harboring the

T-DNA of pPTN836. Images were captured with an Olympus FV500 laser scanning

confocal microscope. Imaging analysis was conducted at the University of Nebraska’s

Morrison Microscopy Core Research Facility. Images were acquired with a 60× objective.

Two channel, simultaneous images of GFP and plastid autofluorescence images were

captured with 488 and 633 nm laser excitation and 505–524 nm and 660 nm long pass

emission filters, respectively.

Water stress experimental design

Water stress studies were carried out using two independent pPTN803-derived

transformants designated aqua3-1 and aqua4-12, along with three controls, wild-type (WT)

Xanthii, a vector control transgenic event, harboring T-DNA of the base binary plasmid

pPZP211 (Hajdukiewicz et al. 1994) and a transgenic event derived from pPTN841, referred

to as aqua841-2. All studies were carried out using T2 or T3 populations of the various

transgenic plants. Two treatments were created, “well-watered” and “dry-down” (drought

mimic). In the former, plants were watered to soil saturation throughout the study period,

while in the latter water was withheld until photosynthesis and stomatal conductance values

approached zero before plants were re-watered and allowed to recover. Plant physiological

and growth measurements were monitored at 2- or 3-day intervals prior to the initiation of

the dry-down treatment (day 0), and during dry-down/recovery times.

Due to the destructive nature in monitoring growth and development, a split-plot in time

experimental design was followed. Three subsets of plants were sampled at three time

periods during each experiment: prior to initiation of dry-down, the last day of dry-down,

and after recovery. A second set of plants was used only for leaf water status measurements.

These measurements are considered semidestructive due to leaf sampling that triggers

changes in water balance, and wounding stress. To avoid potential confounding data due to

leaf detachment, pots were arranged as a split-plot design in time with repeated

measurements within a period on different set of plants throughout each experiment. Leaves

were sampled prior to initiation and during the first half of the dry-down period, a second

sampling of leaves was carried out during the second half of the dry-down period, and a

third sampling of leaves occurred during the recovery phase. As measurements of leaf gas

exchange are non-destructive, plants in this part of the experiments were arranged in a

randomized factorial design with repeated measurements over time. Hence for each

experiment, three sets of plants were set up in the greenhouse; two sets were arranged in a

split-plot design, while the third was placed as a randomized factorial.

Measured parameters

Gas exchange measurements were conducted using a portable infrared gas analyzer system

mounted with a fluorescence chamber (LI-6400, Li-Cor Inc. Lincoln, NE, USA). Maximum

net photosynthesis (Anet, μmol m−2 s−1), stomatal conductance (gs, mol m−2 s−1),

transpiration rates (E, mmol m−2 s−1), and instantaneous water use efficiency (iWUE =

Anet/E, μmol mol−1) were followed at light saturation (photosynthetic active radiation, PAR

1,250 μmol m−2 s−1) determined from running initial photosynthetic light response curves.
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The rates of maximum electron transport (Jmax, μmol m−2 s−1) and maximum carboxylation

efficiency (Vcmax, μmol m−2 s−1) were derived from Anet/Ci curves. These curves were

created following the protocol previously described (Long and Bernacchi 2003), using leaf

chamber CO2 concentrations (Ca) of 2,500, 2,000, 1,500, 1,000, 800, 600, 400, 300, 100 and

50 μmol mol−1. Net photosynthesis (Anet) was first measured at ambient greenhouse CO2

concentration (Ca 400 μmol mol−1), after which the concentrations were lowered stepwise to

300, 200, 100, and 50 μmol mol−1, with Anet recorded at each level. Following the 50 μmol

mol−1 reading, Ca was returned to 400 μmol mol−1, and Anet ascertained for validation

before stepwise monitoring to 2,500 μmol mol−1 (Bihmidine et al. 2010; Long and

Bernacchi 2003; Xu and Baldocchi 2003). Both Vcmax and Jmax were then determined from

each Anet/Ci curve by non-linear regression using the Anet/Ci curve fitting utility (Sharkey et

al. 2007). The maximum photochemical efficiency of photosystem II (Fv/Fm) was

determined on dark-adapted leaves using a leaf fluorometer attached to the LI-6400 infrared

gas analyzer. Minimal or dark-adapted chlorophyll fluorescence (Fo) occurs when all PSII

reaction centers are open, and maximal fluorescence (Fm) occurs when all reaction centers

are closed. The variable fluorescence (Fv) was tabulated by the difference between Fo and

Fm. When measured in the dark, Fv/Fm is proportional to the maximum potential quantum

yield of photosynthesis (Bihmidine et al. 2010). Chlorophyll fluorescence was measured on

older leaves, adapted to dark for at least 30 min using dark-adapting clips (Li-Cor Inc.

Lincoln, NE, USA).

Water status determination

Midday leaf water potential (Ψw, MPa) was determined using a PMS 1000 pressure chamber

(PMS Instrument Co., Albany OR, USA). Osmotic potential was calculated from the Van’t

Hoff equation ΨΠ = −RTc, where R (J mol−1 K−1) is the universal gas constant, T (K) is the

temperature, and c (mol m−3) is the molar concentration of the solutes obtained using a

vapor pressure osmometer (Vapro 5520, Wescor, Logan UT, USA, Nobel 2009).

Growth parameters

Growth-related parameters including total number of leaves (NL), total leaf dry weight

(DWTL, g), above-ground dry weight (DWAG, g), total leaf area (LAt, cm2), and specific leaf

area (SLA, cm2 g−1) were determined. The LI-3100C leaf area meter (Li-Cor Inc. Lincoln,

NE, USA) was used to measure total LAt of the plants and SLA was ascertained by the ratio

of LAt to DWTL.

Statistical analysis

The statistical analysis package R v. 2.14 (R Development Core team, 2012) was used to fit

generalized linear models with gamma distributions and log link functions (Crowley 2005;

Faraway 2006) to data for the continuous response variables. The model consisted of

additive and interacting parameters for plant, line, and day either since initiation of drought

exposure or during continued watering for control plants. The contrast package v0.17 for R

v. 2.14 (R Development Core Team, 2012) was used to conduct pairwise comparisons with

one-degree-of-freedom Wald tests (Kuhn et al. 2011). The variable “day” was converted
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from numeric to a categorical variable to allow for pairwise comparisons (p ≤ 0.05) of plants

on a day-specific means within treatments (watered versus exposed to dry-down).

Results

Genotyping and phenotyping evaluation of transgenic pPTN803 tobacco events were carried

out on lineages from selected independent transgenic events. Southern analysis on 14 such

lineages is shown in Fig. 2a. Given that a single KpnI recognition site resides within T-DNA

of pPTN803, each hybridization signal corresponds to a genetic locus, which may have one

to many copies. Integration patterns reveal that between one and five aqpv1 transgenic loci

are present in the plants. One of the plants, designated Aqua4-6, was positive for the

selectable marker nptII (data not shown) but the aqpv1 transgenic allele was not detected.

Transcript accumulation in vegetative tissue is shown in Fig. 2b for the two pPTN803 events

Aqua3-1and Aqua4-12. The northern blot analysis revealed a strong hybridizing signal in

the transgenic plants and absence of a corresponding signal in the non-transgenic control

(WT). The transgenic plants, grown to maturity under greenhouse conditions, were

phenotypically indistinguishable from control, non-transgenic Xanthii during vegetative

growth. However, at the onset of flowering, necrotic lesions formed in older leaves, starting

at the base of the plant and progressively moved toward the apex (Fig. 3). The severity of

this necrosis phenotype varied among the transgenic events; however, all pPTN803 events

ultimately developed symptoms. However, we were unable to correlate transcript profiling

with lesion severity given the northern analysis was more qualitative rather than quantitative

and the transgenic events in which northern analysis was conducted were relatively strong in

expression.

We rationalized that organ-specific expression of aqpv1 might be responsible for the onset

of necrosis during the juvenile to adult stage transition in the aerial portion of the plants. To

explore this possibility we selected the root/ seedling preferred promoter that regulates

expression of an Arabidopsis myrosinase gene, designated Pyk10 (Nitz et al. 2001), to

control aqpv1 transgene expression. The Pyk10 aqpv1 expression cassette resides in the

binary vector designated pPTN817 (Fig. 1). Twelve to 15 independent tobacco transgenic

plants were produced. Genotyping of all derived plants from transformations with pPTN817

was not conducted; hence, we are assuming some genetic clones were established in the

greenhouse. However, like the constitutive 35S CaMV AQPV1 cassette (pPTN803),

necrotic lesions appeared at the onset of flowering, with a deeper penetrance at the base of

the plant (compare Fig. 4a to b). Moreover, the root systems of these plants were severely

reduced in robustness, and darkened in color (Fig. 4c) as compared to controls (Fig. 4d).

To monitor the Pyk10 promoter activity directly in tobacco we constructed a GUSPlus™

expression cassette (pPTN814, Fig. 1). Histochemical staining for GUS (Jefferson 1987)

revealed that the Pyk10 regulatory element is essentially constitutive in tobacco, with

intense GUS staining observed in roots, leaves and flowers of the transgenic tobacco plants

(Fig. 4e, f). This finding probably explains the similarity of the progressive necrotic lesion

phenotype during the induction of flowering in the transgenic Pyk10-aqpv1 plants

(pPTN814) with plants containing the constitutive aqpv1 cassette (pPTN803).
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To determine if a functional aquaglyceroporin is required to induce formation of the necrotic

lesions during the transition from juvenile to adult stage in tobacco, we constructed a single

point mutation at AQPV1 codon 214 that changed the asparagine residue to an alanine

(N214A). This N214A mutation was previously shown to make AQPV1 non-functional as a

water transport channel (Gazzarrini et al. 2006). The N214A aqvp1 transgene was

assembled into an expression cassette and subsequently subcloned into a binary vector

designated pPTN841 to resemble the constitutive cassette harbored in pPTN803 (Fig. 1).

Transgenic tobacco plants carrying the N214A aqvp1 constitutive transgene cassette

accumulated transcripts as monitored by northern blots at levels equal to the transgenic

events expressing the native aqpv1 gene (data not shown) and plant development proceeded

normally without forming necrotic lesions. Hence, the logical explanation for these results is

that a biologically active AQPV1 is required for lesion formation in adult plants.

To investigate the subcellular localization of AQPVI in planta a GFP fusion cassette was

assembled and the final binary vector was designated pPTN836 (Fig. 1). GFP expression

was monitored via confocal microscopy in a subset of the transgenic events. The images

suggest that AQPV1 is located in the plasmalemma, with possible association with plastids

and endoplasmic reticulum (Fig. 5). However, a plastid transit peptide was not detected in

the N-terminal region of the AQPV1 protein. The elucidation of the actual subcellular

location of the channel was hindered due to the relative weak GFP expression in the

transgenic events carrying the AQPV1 fusion. The transgenic tobacco plants carrying this

fusion, albeit low expressing based on GFP imaging, like the non-fusion AQPV1 plants,

formed necrotic lesions in older leaves of adult plants (data not shown).

Given the appearance of necrotic lesions in older leaves during the juvenile to adult stage

transition in transgenic plants expressing AQPV1, we restricted our investigations on

mitigation of mimicked drought stress to juvenile stage plants. Plants used in the study

included two independent events derived from pPTN803 (AQPV1), one event from

pPTN841 (aqpv1 N214A), a transgenic control group designated 744d-6 which harbors a T-

DNA carrying two unrelated transgenic cassettes, along with WT non-transgenic plants.

Therefore, a total of five tobacco lines were used; two test transgenic events, two control

transgenic events, and one wild-type non-transgenic line.

The effect of aqpv1 expression on leaf gas exchange was monitored by measuring Anet, gs

and E in the transgenic events. Under well-watered conditions Anet, gs and E did not differ

significantly (p ≤ 0.05) between plants expressing aqpv1 and control plants throughout the

study period (Fig. S1). The rates of Anet, gs and E varied between 14.3 and 17.9 μmol m−2

s−1, 0.083 and 0.135 mol m−2 s−1 and 3.8 and 7.9 mmol m−2 s−1, respectively.

Anet, gs, and E at light saturation declined in response to soil dry-down (drought mimic) as

expected, reaching minimal values on day 4 for E, and day 9 for Anet and gs, of water

deprivation, before they commenced the recovery process after re-watering on day 10 (Fig.

6). Photosynthesis in the pPTN803 transgenic events did not differ from controls after 2

days of dry-down. However, by day 4 the transgenic aqpv1 events maintained significantly

higher Anet (p ≤ 0.05) than controls. This observation of maintained Anet rates under water

deprivation was observed through day 9, which translated into enhanced photosynthetic
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performance during the dry-down and faster recovery from stress after re-watering in the

transgenic aqpv1 plants as compared to controls (Fig. 6). Stomatal conductance followed a

similar trend to Anet. However, significant differences between the transgenic pPTN803

events and controls did not appear until day 7 of water deprivation (Fig. 6). With respect to

E rates, no significant differences were observed among the plants tested, until day 9 of

water deprivation, contributing to higher water use efficiency (iWUE = Anet/E) in the two

aqpv1 plants (Table S1).

Leaf water and osmotic potentials

Variations in both leaf water (Ψw) and osmotic (ΨΠ) potentials were minimal in plants under

well-watered conditions and only few differences were observed (data not shown). For

example, plant Aqua3-1 had a significantly lower ΨΠ as compared to WT and control plant

744d-6 at day 2, while control plant Aqua841-2 had reduced ΨΠ at the initiation of the

study, day 0, compared to the rest of the lines (data not shown).

Soil water dry-down resulted in a significant (p ≤ 0.05) decline in both Ψw and ΨΠ (Fig. 7)

across all plants. Significant declines were observed on day 4 for ΨΠ in all plants, and on

day 7 for Ψw in controls. Significant declines in Ψw were not observed till day 9 for aqpv1

plants (Fig. 7). Importantly, significantly higher Ψw rates were maintained 7 and 9 days after

the initiation of the dry-down treatment and throughout the recovery period (Fig. 7a).

Overall the aqpv1 events Aqua3-1 and Aqua4-12 displayed enhanced ΨΠ compared to the

controls throughout the study (Fig. 7b), suggesting that aqpv1 improved water status of the

plant during the stress period by maintaining better leaf turgor than control plants. This

improvement is further supported by regressing Anet as a function of Ψw (Fig. S2), which

revealed that Ψw in the aqpv1 events did not fall below −1 MPa throughout the dry-down

period, and maintained higher rates of Anet at lower Ψw values compared to the respective

controls.

Rates of Jmax and Vcmax

To investigate the impact of aqpv1 expression in planta on maximum rates of electron

transport (Jmax) and rubisco carboxylation (Vcmax), Anet/Ci curves were created. Due to the

time limitation required for a single curve, and the challenge to obtain reliable curves under

increasing water stress, replication became an issue in developing the curves. To address the

replication issue, and thus allow for proper statistical analyses, an assumption was made that

under well-watered conditions Vcmax and Jmax rates did not differ significantly and therefore

data were complied across the study time frame for each line (Tables S1, S2). In addition,

for the dry-down treatment, there were many cases in which only one reliable curve was

obtained (i.e., one data point) per date assayed within each event/control, hence, no

statistical analysis was carried out in these cases (Tables S1, S2; Fig. S3). Nonetheless, the

results obtained from the data indicate that the estimated maximum rates of Jmax and Vcmax

were higher in the aqpv1 events as compared to the controls, with a higher positive

trajectory after 8 days of water deprivation through the recovery phase of the study (Tables

S1, S2; Fig. S3). For example, at day 8 of water deprivation, Vcmax was estimated at 15.87

and 16.09 μmol m−2 s−1, with Jmax values of 42.42 and 30.3 μmol−2 s−1 for Aqua3-1 and

Aqua4-12 plants, respectively. The control event 744d-6 had a Vcmax of 6.52 μmol m−2 s−1,
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and a Jmax of 21.25 μmol m−2 s−1; reliable Anet/Ci curves were not obtained with the other

controls, WT and the Aqua841-2 event, hence the absence of data points (Tables S1, S2;

Fig. S3). Nonetheless, even considering the missing data points for two of the controls,

taken together these results with the other datasets, suggest that leaves of the aqpv1 plants

maintained enhanced turgor, rubisco carboxylation, and electron transport, which translates

to improved tolerance to water stress relative to the controls.

Plant biomass, growth and development

During this study various biomass-related parameters were also monitored, including total

number of leaves (NL), leaf dry weight (DWTL), above-ground dry weight (DWAG), total

leaf area (LAt), and specific leaf area (SLA). The data are tabulated in Tables S1 and S2. No

statistical differences were observed when comparing biomass parameters between the

aqpv1 plants and the controls under well-watered conditions (Table S2). As expected

various parameters were impacted by the dry-down treatment (Table S1). Following 9 days

of water deprivation, the aqpv1 events displayed higher DWTL and DWAG, and lower SLA

compared to the controls. Hence, the observed enhancement of various physiological

parameters did translate moderately into biomass.

Although only modest enhancement occurred in some of the biomass parameters, which is

likely related to the brief exposure to stress imposed during the study, the aqpv1 events had

a significant delay in wilting relative to the controls (Fig. S4). The delay in wilting

phenotype was most pronounced at the 9 day dry-down time (Fig. S4).

Discussion

The various components of plants water relations, from soil absorption through in planta

translocation, are highly regulated throughout development. The maintenance of water

homeostasis at both the intracellular and the whole plant levels is a challenge when

individuals are exposed to environmental conditions that limit water availability. The water

status of plants associated with movement across biological membranes is regulated by

AQPs, hence, under water stress conditions coordination of AQPs in planta is paramount for

plant survival (Maurel et al. 2008; Quigley et al. 2001). Elucidation of the mechanism(s)

coordinating the network of AQPs’ governing water relations of plants under water

sufficient and depleted environments has great potential for developing genetic approaches

to enhance water use efficiency and mitigating the impact of drought stress on agronomic

performance of crop plants.

The underlying biology governing the influence of AQPs on plant water relations is

complicated by the dual regulation of AQPs at both transcriptional and post-translational

levels. Previous investigations monitoring transcript accumulation of AQPs under water

stress, summarized in the review by Tyerman et al. (2002), reveal both up- and

downexpression patterns in various tissues for both tonoplastic and plasmalemma localized

AQPs. The functional modulation of properly subcellular localized AQPs is mediated by

phosphorylation (Törnroth-Horsefield et al. 2006). This dual regulation at transcriptional

and post-translational levels, coupled with, in some cases, tissue-type coordinated
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localization (Prado et al. 2013) is the apparent underlying process that plays a significant

role in a plant’s water status.

The ability to modulate gene expression by plant transformation is a powerful approach for

gaining insight into gene function and coordination of biological processes such as water

relations. To this end, previous studies have used transgenic approaches to understand water

status and various abiotic stresses of plants by specifically overexpressing or down-

regulating targeted AQPs. Examples include: (1) heterologous expression of a barley

plasmalemma AQP, HvPIP2;1 in rice led to reduction in salt tolerance in transgenic plants

with modest phenotypic changes under control conditions (Katsuhara et al. 2003). (2)

Heterologous expression of a ginseng tonoplast localized AQP, PgTIP1, resulted in

improved salt tolerance and changes in root lengths, which translated into alterations in

drought responses in transgenic Arabidopsis plants (Peng et al. 2007). (3) Ectopic

expression of the tonoplastic localized AtTip5;1 resulted in boron tolerance in Arabidopsis

plants (Pang et al. 2010). (4) Transgenic tobacco plants expressing the Arabidopsis AQP

PIP1b exhibited positive phenotypic changes under well-watered conditions with respect to

physiological parameters including transpiration rates and photosynthetic capacity; these

physiological changes translated into enhanced biomass, but these positive phenotypes were

not displayed under water- or salt-stress conditions (Aharon et al. 2003).

One unexpected observation from this study was the induction of lesion formation in

transgenic tobacco plants expressing an active form of aqpv1. A cursory mineral analysis

was conducted on leaf tissue harvested from selected plants at both juvenile and adult stages,

with the latter displaying lesion formation. While some variation in leaf accumulation of

various minerals was observed, for example Ca levels were reduced in juvenile leaves of

aqpv1 events and Mn accumulation was, in general, reduced in transgenic aqpv1 plants, as

compared to control tissues (Table S3), the subtle changes in mineral accumulation were not

likely the underlying cause that led to cell death.

In addition to the mineral analysis we monitored both glycerol content (BioVision free

glycerol kit Cat # K630-100) and fatty acid profiles in vegetative tissues of juvenile stage

plants from representative transgenic plants Aqua3-1, Aqua4-12, 841-2 (N214A mutant)

along with a WT control in an attempt to gain insight into the underlying cause that

triggered lesion formation. No significant differences were detected (data not shown) among

the selected tobacco lines either in glycerol content, fatty acid profile or fatty acids levels.

While these data did not reveal the cause of lesion induction, one possible clue might lie in

the possible aqpv1 subcellular association with plastids and other cellular membranes (Fig.

5). Given that aquaglyceroporins can transport a plethora of molecules, including nitrogen

compounds, metals, hydrogen peroxide, carbon dioxide and glycerol (Bhattacharjee et al.

2008; Bienert et al. 2007; Luu and Maurel 2013; Uehlein et al. 2008), it is reasonable to

suggest that altered intracellular water and/or solute homeostasis via changes in permeability

of plastid and/or ER membrane(s) may have either altered cellular retrograde signaling from

plastids (Mullineaux 2009) and/or triggered an endoplasmic reticulum stress response

(Howell 2013), which in turn triggered the cell death cascade. However, this is merely

conjecture without confirmatory studies to resolve the subcellular location(s) of aqpv1 in

planta.
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We measured leaf chlorophyll fluorescence by monitoring rates of maximum efficiency of

photosystem II (Fv/Fm) in older leaves located at the base of adult stage transgenic plants in

which lesion formation was induced. The relationship between Fv/Fm and Ψw revealed that

the aqpv1 transgenic plants displayed lower rates of Fv/Fm and have a more negative Ψw

than corresponding controls (Fig. S5). These data reflect the impaired function of the

photosynthetic apparatus in the leaves with lesions.

The potential of aqpv1 to mitigate drought stress was investigated in juvenile stage tobacco

plants. Under wellwatered conditions no significant differences were found for the

parameters measured. However, under droughtmimicked conditions, aqpv1 mitigated some

of the expected water stress impacts through maintenance of higher Ψw and ΨΠ along with

Anet, gs and iWUE, essentially leading to improved turgor in the transgenic events as

compared to the corresponding controls which in turn facilitated maintenance of

physiological processes in the plant. In addition, under the dry-down treatment, the aqpv1

plants displayed higher DWTL and DWAG, and reduced SLA along with a delay in wilting

as compared to the respective controls. SLA (leaf area/dry weight) is known to decrease in

response to drought, due to water stress impacts on leaf expansion, cell size and cell

division, this is especially noticeable in expanding leaves, such as our case (Liu and Stutzel

2003). The higher DWTL and DWAG and lower SLA observed in the aqpv1 plants relative to

controls, probably contributed to improved turgor, which led to moderate biomass

accumulation relative to leaf area, resulting in decline in the overall SLA.

In summary, the viral aquaglyceroporin AQPV1 localizes to both plasmalemma and plastid

membranes in tobacco plants. Incorporation of this channel in the respective membranes

clearly impacts the physiology of the plant that results in a measurable mitigation of drought

stress response in young plants, but with an unexpected induction of cell death as the plant

transitions to the adult stage. These results reflect the importance of maintaining proper

water/solute relations in planta and the need for a deeper understanding of the coordinated

functional of AQPs before a rational genetic design to combat stress responses can be

implemented successfully in a breeding program.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AQPs Aquaporins

AQPV1 Aquaglyceroporin protein virus1
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MIPs Major intrinsic proteins

ORF Open reading frame

Anet Net photosynthesis (μmol m−2 s−1)

gs Stomatal conductance (mol m−2 s−1)

E Transpiration (mmol m−2 s−1)

PAR Photosynthetic active radiation (μmol m−2 s−1)

iWUE Instantaneous water use efficiency (μmol mol−1)

Jmax Maximum election transport rate (μmol m−2 s−1)

Vcmax Maximum carboxylation efficiency (μmol m−2 s−1)

Fv/Fm Maximum photochemical efficiency of photosystem II

Fo Minimal or dark-adapted chlorophyll fluorescence

Fm Maximal fluorescence

Fv Variable fluorescence

ΨΠ Osmotic potential (MPa)

Ψw Water potential (MPa)

NL Total number of leaves

DWTL Total leaf dry weight (g)

DWAG Above-ground dry weight (g)

LAt Total leaf area (cm2)

SLA Specific leaf area (cm2 g−1)
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Fig. 1.
Diagrams of T-DNA elements from the binary plasmids used in this study. a T-DNA

element of pPTN803, b T-DNA element of pPTN814, c T-DNA element of pPTN817, d T-

DNA element of pPTN836, and e T-DNA element of pPTN841. LB and RB refer to left and

right border elements, respectively. P35S and T35S indicate the positions of the 35S CaMV

promoter and terminator sequences, respectively. The marker gene is nptII (neomycin

phosphotransferase II). a highlights a unique KpnI restriction site used during Southern blot

analysis of selected plants
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Fig. 2.
Southern blot and northern blot analyses of selected tobacco events. a Southern blot analysis

on selected plants. Total genomic DNA was cleaved with KpnI and DNA s hybridized with

AQPV1 ORF. WT lane refers to control non-transgenic genomic DNA. b Northern blot

analysis showing AQPV1 transcript accumulation in events Aqua3-1 and Aqua4-12. Bottom

panel is the corresponding gel image
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Fig. 3.
Tobacco plants Aqua4- 12 and 841-2 at flowering stage. a Tobacco plant Aqua4-12 showing

necrosis in vegetative tissues at flowering stage of development (left) and plant 841-2

harboring the N214A mutation (right). Panels b and c show close-up of a leaf from

Aqua4-12 and 841-2, respectively
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Fig. 4.
Tobacco plants harboring Pky10 promoter-regulated cassettes. a Tobacco plant Aqua15-4

has the Pky10 promoter aqpv1 cassette in binary vector pPTN817. b Control wild-type

tobacco at flowering grown side-by-side under greenhouse conditions with the plant in (a).

Panels c and d show root mass corresponding to plants shown in a and b, respectively.

Panels e and f display histochemical GUS staining of various tissues of a transgenic tobacco

plant carrying the Pky10-GusPlus cassette within binary vector pPTN814. e Leaf (left) and

roots (right) f from left to right, roots, leaf, and floral tissues
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Fig. 5.
Confocal images of a tobacco plant with the aqvp1-GFP fusion. Panels a through c
correspond to red channel, green channel and merged images, respectively, observed in

control. wild-type tobacco. Panels d, e and f correspond to red channel, green channel and

merged images observed in tobacco event 836-11 which is expressing the aqpv1-gfp fusion

(pPTN836). Panels g, i and j are red and green channels, along with merged images,

respectively, of the transgenic pPTN836 event expressing the aqpv1-gfp fusion magnified

2×
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Fig. 6.
Physiological parameters monitored during the dry-down experiment. a Net photosynthesis

(Anet, μmol m−2 s−1), b stomatal conductance (gs, mol m−2 s−1), and c leaf transpiration (E,

mol m−2 s−1) at light saturation (PAR = 1,250 μmol m−2 s−1) of tobacco plants exposed to

drought stress followed by a period of recovery. Values are mean ± SE of n = 3, and an

asterisk indicates a significant difference between at least one of the two aqpv1 and one

control line within a given date at *p ≤ 0.05 or **p ≤ 0.1. Note: plant 744d-6 is a transgenic

control carrying the nptII marker gene cassette and unrelated gene of interest
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Fig. 7.
Leaf water and osmotic potential monitored during the drydown experiment. a Leaf water

(Ψw, MPa) and b osmotic potential (ΨΠ, MPa) of tobacco plants during drought followed by

a recovery period. Values are mean ± SE of n = 3, and an asterisk indicates significant

difference between at least one of the two aqpv1 plants and one control line within a given

date at *p ≤ 0.05 or **p ≤ 0.1. Note: plant 744d-6 is a transgenic control carrying the nptII

marker gene cassette and an unrelated gene
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