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Table of Notations

In the table of notations, the most popular mathematical symbols used 
through the text have been defined according to their presence at the 
book.
Symbol	 Name	 Meaning

=	 equality	 x = y means x and y represent the 			 
	     same thing or value.

{ , }	 set brackets	 {a,b,c} means the set consisting of a, 		
	    b, and c.

:	 extends; over	 K : F means the field K extends the 			 
	    field F.

<	 is less than	 x < y means x is less than y.
≤	 is less than or equal to	 x ≤ y means x is less than or equal to y.
>	 is greater than	 x > y means x is greater than y.
≥	 is greater than or equal to	 x ≥ y means x is greater than or equal to y.
( )	 parentheses	 Perform the operations inside the 			 

	    parentheses first.
∈	 is an element of	 a ∈ S means a is an element of the set S.
∉	 is not an element of	 a ∉ S means a is not an element of S.
∅	 the empty set	 ∅ means the set with no elements.
∪	 the union of	 A ∪ B means the set of those elements which 		

	    are either in A, or in B, or in both.
∩	 intersected with	 A ∩ B means the set that contains all those 		

	    elements that A and B have in common.
–	 negative; minus; the 	 −3 means the negative of the number 3. 

    opposite of
×	 the Cartesian product 	 X × Y means the set of all ordered pairs with 

   of ... and ...; the direct 	    the first element of each pair selected from 
   product of ... and ...	    X and the second element selected from Y.

∧	 and; min; meet	 The statement A ∧ B is true if A and B are 		
	    both true; else it is false.

∨	 or; max; join	 The statement A ∨ B is true if A or B (or  
	     both) are true; if both are false, the 		
	     statement is false.

⇒	 implies; if … then	 A ⇒ B means if A is true then B is also true; 		
	     if A is false then nothing is said about B.

⇔	 if and only if	 A ⇔ B means A is true if B is true and A is 		
	    false if B is false.
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Symbol	 Name	 Meaning

 |	 conditional probability	 P(A|B) means the probability of the event A 		
	    occurring given that B occurs.

 ∑	 sum over … from … to	  
n
∑
k=1

 ak means a1 + a2 + … + an. 
    … of

[ ]	 1 if true, 0 otherwise	 [S] maps a true statement S to 1 and a false 		
	    statement S to 0.

ℝ	 R; the (set of) real 	 ℝ means the set of real numbers. 
   numbers; the reals

∫	 integral from … to … 	 ∫a

b
 f(x) dx means the signed area between the 

   of … with respect to	    x-axis and the graph of the function f  
	    between x = a and x = b.

√	 the (principal) square 	 √x̄  means the positive number whose square 
   root of	     is x.

∞	 Infinity	 ∞ is an element of the extended number line 	 
	    that is greater than all real numbers; it  
	    often occurs in limits.

⊂	 is a subset of	 (proper subset) A ⊂ B means A ⊆ B but  
	    A ≠ B.

⊥	 orthogonal/perpendicular	 W⊥ means the orthogonal complement of 
   complement of; perp	    W (where W is a subspace of the inner  
	    product space V), the set of all vectors in V  
	    orthogonal to every vector in W.

δ	 Dirac delta of	  δ(x) =  { ∞,  x = 0

		                  0,   x ≠ 0

∀	 for all; for any; for each	 ∀ x: P(x) means P(x) is true for all x.
ℕ	 the (set of) natural 	 ℕ means either { 0, 1, 2, 3, ...}. 

   numbers	
ℚ	 the (set of) rational 	 ℚ means {p/q : p ∈ ℤ, q ∈ ℕ}. 

   numbers; the rationals	
∆	 delta; change in	 Δx means a (non-infinitesimal) change in x.
‖	 is incomparable to	 x ‖ y means x is incomparable to y.
‖...‖ 	 norm of; length of	 ‖ x ‖ means the norm of the element x of a  

	    normed vector space.
Κ	 K	 K means both R and C: a statement  

	    containing K is true if either R or C is  
	    substituted for the K.

~	 is row equivalent	 A~B means that B can be generated by using  
	    a series of elementary row operations on A
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Preface 

  

What is this book about? 

This book is about Information Retrieval (IR), particularly Classical In-
formation Retrieval (CIR). It looks at these topics through their mathe-
matical roots. The mathematical bases of CIR are briefly reviewed, fol-
lowed by the most important and interesting models of CIR, including 
Boolean, Vector Space, and Probabilistic. 
  
Why this book? 

Mathematics is a foundation and building block of all areas of knowl-
edge. It particularly affects disciplines concerned with information orga-
nization, storage, retrieval, and exchange. Information is manipulated 
using computers, and computers have a mathematical basis. The word 
“computer” reveals this relationship. Students and practitioners of com-
puter science, library and information science (LIS), and communications 
need a foundation in mathematics. IR, a subfield in all these disciplines, 
also needs mathematics as a common and formal language. Understand-
ing CIR is not possible without  basic mathematical knowledge. 
  
Who is the audience for this book? 

The primary goal of book is to create a context for understanding the 
principles of CIR by discussing its mathematical bases. This book can be 
helpful for LIS students who are studying IR but have no knowledge of 
mathematics. Weakness in math impairs the ability to understand current 
issues in IR. While LIS students are the main target of this book, it may be 
of interest to computer science and communications students as well. 
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How to read this book? 

There are three ways of reading this book including: 

1.     The obvious way is to read it from beginning to end, and in fact 
it has been designed for that. This approach satisfies the sup-
posed LIS student; 

2.     Another way is to read only the second part. Anybody with a 
good record in mathematics would be able to follow the second 
approach; 

3.     The third way is to refer to the Appendix. It would be of bene-
fit to those who are seeking admission to Computer and Infor-
mation Science Schools with a mathematical approach. These 
schools mainly aim to execute programs and do research projects 
in the field of IR from the perspective of mathematics. 
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Part One 

Roots 
  





Chapter One

Set Theory 

Introduction 

Set is one of the basic concepts in mathematics. It is a group of objects, 
identified in a way that any object can be defined as part of the group or 
not. The following examples can be use to clarify: 

•	 A set of one-digit numbers like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 
•	 The set of days in a week including Saturday, Sunday, Monday, 

Tuesday, Wednesday, Thursday, Friday; 
•	 A set of countries started with C, such as Cambodia, Canada, 

Chile, China. 

Each of the objects in a set is called an element. Every set is illustrated 
with a capital letter: A, B, …, Z. In contrast, elements of a set are illus-
trated with lower case letters: a, b, …, z. Sets can be categorized into two 
classes. The first class includes sets with a finite number of elements, and 
the second sets with an infinite number of elements. For example, the set 
of students in a school is a finite set, but the set of natural numbers is an 
infinite one. Visualizing sets is possible in the following ways: 

1.     Naming elements. There are three options: 
a.     If we have a finite set, we enter elements in {} and place com-
mas between them; 
  

A = {2, 4, 6, 8} 
  
b.     If there are too many elements to list, we list the first elements, 
followed by ellipses, and then the final element; 
  

A = {1, 2, 3, …, 999} 
  
c.      If the set is infinite, we list the first elements, followed by 
ellipses; 
  

A = {1, 2, 3, ….} 
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2.     Using a Venn diagram (Figure 1). A Venn diagram is a method for 
displaying relationships between subsets of a universal set. When ele-
ments of a set are illustrated in a circle, the Venn diagram is used as a 
geometrical interpretation. If A is a set of even numbers smaller than 
10, then we can illustrate the geometrical diagram of even numbers. 

  
 

  

Figure 1 – Venn diagram of even numbers smaller than 10 
  

3.     Using mathematical symbols. In this case, we can list elements of a 
set with a given property. For example, in A = {x : 1 < x < 9}, x is a vari-
able. A variable, which can be represented by a letter or a sign, substi-
tutes for an element of a set. In a more developed form, p(x) expresses 
a given property of an element. In other words, elements of A have a 
common property in p(x); 

  
A = {x : p(x)} 

  

Membership or non-membership in a set is illustrated with ∈ and ∉ 
respectively. 

Definition 1: A set with no elements is called empty or null set. The sym-
bol of an empty set is ∅ or { }. 

Definition 2: Every set may have several sub-sets (Figure 2). 
  
  

4  c h a p t e r 1  



Figure 2 – A set with two sub-sets 
  

In this figure, A as a set includes B and C. In the next level, B includes 
C. Inversely, C is the subset of B; and B is the subset of A. The essential 
condition for being a comprehensive set is that all elements of a subset ex-
ist in the set. Without this condition, the smaller set cannot be a subset of 
the larger one. As general rules, every set is the subset of itself, and the 
empty set is the subset of any set. 

Definition 3: A and B are equal, if and only if, elements of A exist in B and 
elements of B exist in A; 

  
A = B if and only if A ∈ B and B ∈ A

  
Sets may also overlap (Figure 3). 

  
  

Figure 3 – Overlap among sets 
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Algebra of Sets 

Algebra is used to describe the relationships among real numbers. The 
algebra of sets is used to describe the relationships among sets. Figure 3 
illustrates overlap among sets. This concept brings us to the algebra of 
sets, which primarily follows the rules of Boolean algebra. 

Definition 4: The union of A and B is a set that includes all the elements 
of A and B (Figure 4). The union is represented by the letter U; 

  
A ⋃ B = {x : x ∈ A or x ∈ B}

  
  

Figure 4 – Both sections are the union of A and B
  
Definition 5: The intersection of A and B is a set that includes only the 

common elements of both sets (Figure 5). The intersection is repre-
sented by ∩; 

  
A ∩ B = {x : x ∈ A and x ∈ B}

  
  

Figure 5 – The place where the circles overlap in the intersection of A and B 
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Definition 6: The complement of A and B is the elements of A that do not 

exist in B (Figure 6). The complement is represented by a minus sign; 
  

A – B = {x : x ∈ A and x ∉ B}
 

  

Figure 6 – The darker section (left) is the complement of A and B 
  

Cartesian product 

One of the methods for making new sets is the Cartesian product. Any 
two objects are a pair. We may have sorted and unsorted pairs. The sorted 
pair is showed with (a, b). 

Definition 7: The Cartesian product of sets A and B is those sorted pairs 
(a, b) in which a is an element of A and b is an element of B. This is 
represented by A × B; 

  
A × B = {(a, b) : a ∈  A , b ∈  B}

s e t t h e o r y     7



Chapter Two

Mathematical Logic 
  

Introduction 

The basis of mathematical logic is the proposition. A proposition is a 
statement that could be true or false. Its truth has not been proved. If 4 is 
an even number, then 24 will be an even number too, is an example of a prop-
osition. A statement will be a proposition if the following conditions are 
met: 

1.     The proposition should be a sentence; 
2.     The proposition should be an informative sentence; 
3.     The proposition may be true or false; 
4.     The proposition has just one value. 

The truth or untruth of a proposition is called its value and illustrated 
with T or F. A proposition is represented by p, q, r. Any proposition has 
one of two values (Figure 7): 

p

T
F

  
Figure 7 – Two values of a proposition 

  
Two equal propositions may have four relations including (Figure 8): 

 
 p        q

T        T
T        F
F        T
F        F

  
Figure 8 – Four relations of two propositions 
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Quantifier propositions 

Quantifiers are symbols that stabilize propositions. There are three 
forms of quantifiers: 

•	 Universal quantifier: stabilizes a general proposition; 
•	 Existential quantifier: stabilizes a partial proposition; and 
•	 Restricted quantifier: stabilizes a general proposition, but an 

empty one. 
  

Multi-quantifier proposition 

A quantifier proposition may have one variable, which is called a one-
quantifier proposition. A quantifier proposition may also have several 
variables, which is called a multi-quantifier proposition. 
  

Compound proposition 

A compound proposition is composed of several simple propositions 
based on propositional relations. Propositional relations include: 

•	 Union relation: This relation is used to unify two propositions. 
Values of such a relation are illustrated in Figure 9. 

p	 q	 p ∧ q

T	 T	 T

T	 F	 F

F	 T	 F

F	 F	 F

    
Figure 9 – Values of a union relation 
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  •	 Subtraction relation: This relation is used to subtract propositions 
from each other. Values of such a relation are illustrated by Figure 10. 

		  p	 q	  p ∨ q

		  T	 T	 T

		  T	 F	 T

		  F	 T	 T

		  F	 F	 F
  

Figure 10 - Values of a subtraction relation 
  

•	 Conditional relation: This relation is used to show a given condi-
tional relation between two propositions. Values of such a rela-
tion can be illustrated in Figure 11. 

		  p	 q	 p  ⇒  q

		  T	 T	 T

		  T	 F	 F	

		  F	 T	 T

		  F	 F	 T
  

  Figure 11 - Values of a conditional relation 
  

•	 Bi-conditional relation: This relation is used to show a bi-condi-
tional relation between two propositions. Values of such a rela-
tion can be illustrated in Figure 12. 

		  p	 q	   p  ⇔  q

		  T	 T	 T

		  T	 F	 F

		  F	 T	 F

		  F	 F	 T
  

Figure 12 - Values of a bi-conditional relation 
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  Generally, propositions can be equivalent; every proposition may have 
its own negation; and conditional propositions with a true hypothesis 
and true consequence are called conditional theorems. 
  

Methods of reasoning 

Apart from the intuitive reasoning, there are two major reasoning 
styles:

 
•	 Deductive: we explain a proposition and then generalize it to a 

vast number of elements. 

•	 Inductive: we survey a vast number of elements and conclude 
from them a general proposition. 

m a t h e m a t i c a l l o g i c     11



Chapter Three

Number Systems 
  

Introduction 

We learn to use a decimal number system and learn to write, read, 
and operate on numbers with facility. The decimal system is not the only 
available number system. Suppose that we have thirteen asterisks (*), dis-
played as follows: 

* * * * * * *
* * * * * *

If we use the decimal system, we will have a set of ten elements and 
another set of three elements. The result is one of the oldest methods of 
categorizing elements. Ancient people categorized things in decimal sets 
so that every ten elements made one set. In our example, ten is basis for 
categorization. Categorizing elements based on another numbers is also 
possible; however, n ≥ 2 is the basis of any number system. The following 
are some popular number systems: 

•	 Binary system 
This system has two symbols: 0, 1. It categorizes into sets of two. 

  
•	 Octal system 

This system has eight symbols: 0, 1, 2, 3, 4, 5, 6, 7. It categorizes 
into sets of eight. 

  
•	 Decimal system 

This system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It cate-
gorizes into sets of 10. Decile and percentile are two common 
examples. 

  
•	 Hexadecimal system 

This system has sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. For the 
next six numbers, English letters from A to F are used. It catego-
rizes into sets of 16. 
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Transformation among number systems 

Transformation among various number systems is often needed to 
do calculations. We can transform a number from decimal system to 
a non-decimal system; from a non-decimal to a decimal system; and 
from a non-decimal system to another non-decimal system. Such a pro-
cess is possible because of a common basis, i.e. n ≥ 2. All number sys-
tems have a common basis in the number 2, an even number that can 
be changed simply to other even numbers. Furthermore, number sys-
tems can be added, subtracted, multiplied, and divided through alge-
braic operations. 
  

Rounding-off error 

Since the binary system just has two symbols (0, 1), it is an efficient sys-
tem for computer applications. There are two main advantages for the bi-
nary system: 

•	 Physical systems have mainly two conditions. For this reason, a 
binary approach works well for them. In an electric circuit, for 
example, presence and absence of voltage can be shown using 1 
and 0. 

•	 Since there are few numerals, few rules are needed for addition 
and multiplication. 

There is one major disadvantage for binary number systems. One is 
forced to use multiple numerals, even for relatively small numbers. 

•	 These characteristics of binary systems lead to rounding errors, 
because there is always a numeral smaller or larger than 5 at the 
end of decimal numbers. 
    If the (n + 1) numeral is smaller than 5, we cancel it. For ex-
ample, rounding-off 23.341752 to two decimal numerals (places) 
results in 23.34. The 4 is not changed, because the next numeral 
is 1, which is smaller than 5, and rounding up occurs at 5. 
    If the (n + 1) numeral is larger than 5, we add one numeral to 
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the previous one. For example, rounding-off 23.341752 to three 
decimal numerals (places) results in 23.342. The “1” has 1 added 
to it, because the next numeral is 7, which is bigger than 5 and 
changes the previous numeral from 1 to 2. 
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Chapter Four

Combinatorics 
  
Introduction 

There are several principles for counting. Counting indicates how 
many possible arrangements are there for sorting objects or elements of 
a set. Counting methods are sometimes called “methods of combinator-
ics.” We need a way to count and display all possible states of a set of el-
ements. Multiplication and addition are important principles of counting. 
The inclusion-and-exclusion principle, inversion principle, and Stirling num-
bers are other counting principles. 

Determining the number of possible states for an occurrence is one of 
the main challenges in some probabilistic problems. In most cases, there 
is no need to determine all of states, but only to determine the number of 
elements. Suppose that you go to have lunch in a restaurant. You take the 
menu and make a decision to order plain boiled rice, salad, and a bever-
age. There are two types of plain boiled rice, two types of salad, and two 
types of beverages. What are all the possible combinations that could be 
ordered? (Figure 13) 

  
 

Figure 13 – Lunch combinations 
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  You have two choices with any plain boiled rice; and two choices with 
any salad. Therefore, you will have a total of 8 choices; 
  

2 × 2 × 2 = 8 
  

As another example, suppose that you have two coats and four pairs 
of pants. In how many combination can you wear each coat and pair of 
pants? Obviously, there are two choices for the coat and four choices for 
the pants. Therefore, you will have a total of 8 choices; 
  

2 × 4 = 8 
  
  
Multiplication Principle 

If you are able to do one operation in m ways and another operation 
in n ways, then you would have m × n choices to do both operations 
simultaneously. 
  

Addition principle 

In case of: 

•	 E1, E2, …, Er events, with r indicating the number; 
•	 Ei event could happen in ni forms; and 
•	 Neither the first event nor the second happened simultaneously; 
•	 The total number of ways in which one of the events could hap-

pen equals:   

n1 + n2 + … + nr 
  
  
Transformation 

If you have three books, how many ways can you shelve them? If we 
suppose three places for shelving, there are three possibilities for shelv-
ing the first book, two for the second book, and just one for the third book 
(Figure 14). 
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      The first place               The second place              The third place

       3                                    2                                        1
  

Figure 14 – The possibilities for shelving three books in three places 
  

According to the multiplication principle, the number of possible states 
is equal to: 
  

3 × 2 × 1 = 6 
  
  
Arrangement 

Suppose that you have n different objects and want to arrange r objects 
out of them beside each other (r ≤ n). In how many ways can you do that? 
As mentioned, you set r places. The first place is filled out with n possibil-
ities, the next place with n – 1 possibilities; and so on (Figure 15). 

  

The first place                 The second place                  The r-th place

   n                                       n – 1                                    n – r + 1
  

Figure 15 – The possibilities for arranging n objects in r places 
  

Therefore, according to the multiplication principle the number of pos-
sible states is equal to: 
  

n × (n – 1) × (n – 2) × … × (n – r + 1) 
  
  

Combination 

If the arrangement is not important in selecting r objects out of n, it is 
called “combination.” 

c o m b i n a t o r i c s     17



Inclusion-and-exclusion principle 

X is a finite set. The number of elements in this set is illustrated by 
n(X). If A and B are finite sets and A ∩ B = Ø, then n(A ∪ B) = n(A) + n B). 
If the intersection of A and B is not empty, use n(A) + n(B) to calculate the 
number of elements of A ∪ B. In this addition, common elements of A and 
B (their inclusion) have been calculated twice. The first time was when el-
ements of A were enumerated, and the second time when elements of B 
were enumerated. For this reason, one of the two calculations should be 
omitted (Figure 16). 

  
Figure 16 – The overlap between the two circles is the intersection of A and B 

  

For two finite sets, therefore, the inclusion-and-exclusion principle is 
expressed as follows: 
  

n(A ∪ B) = n(A) + n(B) – n(A ∩ B) 
  

  

Inversion principle 

Suppose that you intend to arrange numbers 1, 2, 3, …, 10 in a manner 
that every number stands in its own place. These arrangements are called 
inversions and are illustrated with dn. d is a symbol for inversion and n is 
the number of elements of the set. 
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Stirling numbers 

There are two kinds of Stirling numbers: 

1.     The integers s (n, k) generated by the recursive definition: 
  

s (0, 0) = 1;  
s (n, 0) = 0 (n > 0), and, 

for 0 < k < n, 

s (n + 1, k) = s (n, k – 1) – ns (n, k); 

and 
  
2.     Numbers of the second kind, n. The natural numbers S (n, k) 
generated by the recursive definition: 
  

S (n, n) = 1 (n > 0),  
S (n, 0) = 0 (n ≥ 0), and, 

for 0 < k < n, 

S (n + 1, k) = S (n, k – 1) + kS (n, k) 
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Chapter Five

Other Areas of Basic Mathematics 
  

Generating Function 

Suppose that you want to fill five boxes with three balls. How many 
ways are there for doing that? In our discussion of combinatorics, we 
learned that by using the multiplication principle, we can calculate an an-
swer to this problem. Suppose that you are going to put balls in boxes 
separated from each other by vertical lines. The first and the last lines do 
not move. Between them are four moving lines and three boxes (Figure 
17). If we show each place n with n + 1 vertical line, assuming the first 
and last lines constant, then filling out n places with r balls is equal to n – 
1 vertical line. 
  
                  *                                          * *

  
Figure 17 – Filling boxes with three balls 

  

Exponential function 

Functions can be categorized in two general groups. The above-men-
tioned function is a general one. The general function does not need ar-
rangement. In another type of function, the exponential, arrangement is 
necessary. 
  

Recursive Relations 

Follow the values sequence a0, a1, a2, a3, … . This simple sequence is 
called a recursive relation or difference equation. If a0 = 1 and a1 = 2, then a0 
+ a1 = 3 and a1 + a2 = 5. Recursive relations can be applied in counting 
and predicting possible conditions of a given set of elements. The most fa-
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mous example of the application of the recursive relation is the Towers of 
Hanoi (Figure 18). 

  

 Figure 18 - The Towers of Hanoi 
  

Suppose that you must transport disks around the left shaft to the right 
shaft. The transportation must be done without putting the bigger disk 
next the smaller disk. How many steps does it take? The answer is three 
steps. The best solution is to use the middle shaft. Transport all the disks 
except the biggest one to the middle shaft. In this phase, we will have 1 
disk on the left shaft and n – 1 disks on the middle shaft. Then, transport 
the biggest disk to the right shaft. We still have 1 and n – 1. In the third 
phase, transport n – 1 disks to the right shaft just above the biggest disk. 
  

Probability Theory 

Probability theory is the mathematical theory of the notions of chance, 
randomness, and phenomena. The term probability addresses the pos-
sibility of occurrence of an unpredictable event. In descriptive statistics, 
we extract some parameters and characteristics of a given population. If 
we intend to generalize the parameters and characteristics to the whole 
population, we must use probability theory. In probability theory, several 
terms are very important, including test, random test, sample space, event, 
and mathematical expectation. In general, the probability of the occurrence 
of an unpredictable event may influence subsequent events. Tools like 
charts and diagrams can be used to show the probability of occurrence of 
events. Tests are the basis of any probabilistic calculation. The test may be 
random or not. However, as an event, it happens in a sample space and the 
mathematical expectation is the ideal or the optimum point of our probabi-
listic viewpoint (Manning, Raghavan, and Schutze 2008). 
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The variable A, for example, represents an event (a subset of the set 
of possible outcomes). Equivalently, we can represent the subset via a 
random variable, random which is a function from outcomes to real num-
bers; the sub-variable set is the domain over which the random variable 
A has a particular value. Often we will not know with certainty whether 
an event is true in the world. We can ask the probability of the event 0 ≤ 
P(A) ≤ 1. For two events A and B, the joint event of both events occurring 
is described by the joint probability P(A, B). The conditional probability 
P(A|B) expresses the probability of event A given that event B occurred. 
The fundamental relationship between chain rule joint and conditional 
probabilities is given by the chain rule (Manning, Raghavan, and Schu-
tze 2008): 
  

P(A, B) = P(A ∩ B) = P(A|B) P(B) = P(B|A) P(A) 
  

Without making any assumptions, the probability of a joint event 
equals the probability of one of the events multiplied by the probability 
of the other event conditioned on knowing the first event happened.

Writing P(A‾) for the probability of the complement of an event A, we 
similarly have: 
  

P(A‾, B) = P(B|A‾) P(A‾)  
  

Probability theory also has a partition rule, which says that if an event B 
can be divided into an exhaustive set of disjoint sub-cases, then the prob-
ability of B is the sum of the probabilities of the sub-cases. A special case 
of this rule gives that: 
  

P(B) = P(A, B) + P(A‾, B) 
  

From these we can derive Bayes’ rule for inverting conditional proba-
bilities: 
  
                  

P(A|B) =
 P(B|A) P(A) 

=
 [            P(B|A)                ] 

P(A)
                                           P(B)               ∑X ∈ {A, A‾} P(B|X) P(X) 
  

This equation can also be thought of as a way of updating probabili-
ties. We start off with an initial estimate of how likely the event A is when 
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we do not have any other information; this is the prior probability P(A). 
Bayes’ rule of probability lets us derive a posterior probability P (A|B) after 
having seen the evidence B, based on the likelihood of B occurring in the 
two cases that A does or does not hold. Finally, it is often useful to talk 
about the odds of an event, which provide a kind of multiplier for how 
probabilities change (Manning, Raghavan, and Schutze 2008): 

                              
 Odds:     O(A) =

    P(A)    
=

     P(A) 
                                                             P(A‾)          1 – P(A) 

Graph 

A graph consists of a number of vertices (or points or nodes), some of 
which are joined by edges. The edge joining the vertex u and the vertex 
v may be denoted by (u, v) or (v, u). The vertex-set that is the set of ver-
tices of a graph G may be denoted by V (G) and the edge-set by E (G). In 
general, a graph may have more than one edge joining a pair of vertices. 
When this occurs, these edges are called multiple edges. Also, a graph 
may have loops – a loop is an edge that joins a vertex to itself. 

In another words, a graph is a geometric representation of a relation-
ship between numbers, usually in a rectangular coordinate system. The 
construction of a visual representation of a graph is called graphing. 
Composition is a method of graphing which consists of writing the given 
function as the sum of several functions whose graphs are easier to draw, 
plotting each of these functions, then adding the corresponding ordinates. 
Graphs are used primarily to illustrate a relationship among elements in 
a multi-dimensional space. 

Algorithms 

Algorithms are instructions for carrying out a series of logical proce-
dural steps in a specified order. The term is now used especially in com-
puting and related disciplines. In the Towers of Hanoi example, an algo-
rithm was used to transport disks. Another example of the application of 
an algorithm in daily life is the use of an ATM to do banking. 

The following commands constitute an algorithm for using an ATM: 
•	 Insert your card; 
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•	 Enter your code; 
•	 Select a payment option; 
•	 Get your card; 
•	 Get your payment; 
•	 Get the receipt. 

An algorithm is a finite set of commands, which must be unambig
uous. Several algorithms might be used to solve a given problem. Algo-
rithms may be combined to create one sophisticated algorithm to solve 
large or complex problems. Algorithms can be classified according to their 
degree of sophistication. Algorithms should be written in a way takes the 
shortest route to the result. 

Networks 

A network is a digraph in which every arc is assigned a weight 
(some non-negative number). In some applications, something may be 
thought of as flowing or being transported between the vertices of a net-
work, with the weight of each arc giving its capacity. In other cases, the 
vertices of a network may represent steps in a process and the weight of 
the arc joining u and v may be the time that must elapse between step u 
and step v. 
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Part 2

Applications





Chapter Six

Basics of Classical Information Retrieval 
  

Background 

van Rijsbergen (1979) states that, 

Since the 1940s, the problem of information storage and retrieval 
has attracted increasing attention. Vast amounts of information 
need accurate and speedy access. One effect of this is that relevant 
information gets ignored since it is never uncovered, which in turn 
leads to much duplication of work and effort. With the advent of 
computers, a great deal of thought has been given to using them to 
provide rapid and intelligent retrieval systems. In libraries, many 
of which certainly have an information storage and retrieval prob-
lem, some of the more mundane tasks, such as cataloguing and 
general administration, have successfully been taken over by com-
puters. However, the problem of effective retrieval remains largely 
unsolved. (p. 3)

Kowalski (1997) observes that, 

The first Information Retrieval Systems originated with the need 
to organize information in central repositories (e.g., libraries). Cat-
alogues were created to facilitate the identification and retrieval 
of items. As computers became commercially available, they were 
obvious candidates for the storage and retrieval of text. Early in-
troduction of Database Management Systems (DBMSs) provided 
an ideal platform for electronic manipulation of the indexes to in-
formation. Libraries followed the paradigm of their catalogs and 
references by migrating to the format and organization of their 
hardcopy information references into structured databases. These 
remain as a primary mechanism for researching sources of needed 
information and play a major role in available Information Re-
trieval Systems.

van Risjbergen (1979) continues, 

When high speed computers became available for non-numeri-
cal work, many thought that a computer would be able to “read” 
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an entire document collection to extract the relevant documents. 
It soon became apparent that using the natural language text of 
a document not only caused input and storage problems (it still 
does) but also left unsolved the intellectual problem of charac-
terizing the document content. … [A]utomatic characterization 
in which the software attempts to duplicate the human process 
of “reading” is a very sticky problem indeed. More specifically, 
“reading” involves attempting to extract information, both syntac-
tic and semantic, from the text and using it to decide whether each 
document is relevant or not to a particular request. The difficulty 
is not only knowing how to extract the information but also how 
to use it to decide relevance. (pp. 3–4)

What is and what does an Information Retrieval System? 

Manning, Raghavan, and Schütze (2008) observe that, 

Information retrieval (IR) is finding material (usually documents) 
of an unstructured nature (usually text) that satisfies an information 
need from within large collections (usually stored on computers). 
As defined in this way, information retrieval used to be an activity 
that only a few people engaged in: reference librarians, paralegals, 
and similar professional searchers. Now the world has changed, 
and hundreds of millions of people engage in information retrieval 
every day when they use a web search engine.

Kowalski (1997) continues, 

An Information Retrieval System is a system that is capable of stor-
age, retrieval, and maintenance of information. Information in this 
context can be composed of text (including numeric and date data), 
images, audio, video and other multi-media objects. Although the 
form of an object in an Information Retrieval System is diverse, the 
text aspect has been the only data type that lent itself to full func-
tional processing. The other data types have been treated as highly 
informative sources, but are primarily linked for retrieval based 
upon search of the text. 

A major part of an Information Retrieval System is a software 
program that facilitates finding the information the user needs. 
The system may use standard computer hardware or specialized 
hardware to support the search sub-function and to convert non-
textual sources to a searchable media (e.g., transcription of audio 
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to text). The gauge of success of an information system is how well 
it can minimize the overhead for a user to find the needed infor-
mation. Overhead from a user’s perspective is the time required to 
find the information needed, excluding the time for actually read-
ing the relevant data. Thus search composition, search execution, 
and reading non-relevant items are all aspects of information re-
trieval overhead.

Van Rijsbergen (1979) explains, 

In an overview, an information retrieval system has three compo-
nents: input, processor and output. The main problem here [with 
the input] is to obtain a representation of each document and query 
suitable for a computer to use. … A document representative could, 
for example, be a list of extracted words considered to be signifi-
cant. Rather than have the computer process the natural language, 
an alternative approach is to have an artificial language within 
which all queries and documents can be formulated. … Secondly, 
the processor, that part of the retrieval system concerned with the 
retrieval process. The process may involve structuring the infor-
mation in some appropriate way, such as classifying it. It will also 
involve performing the actual retrieval function that is, executing 
the search strategy in response to a query. … Finally, we come to 
the output, which is usually a set of citations or document num-
bers. In an operational system the story ends here. However, in an 
experimental system it leaves the evaluation to be done. (pp. 4-5)

In principle, information storage and retrieval is simple. Sup-
pose there is a store of documents and a person (user of the store) 
formulates a question (request or query) to which the answer is a 
set of documents satisfying the information need expressed by his 
question. He can obtain the set by reading all the documents in the 
store, retaining the relevant documents and discarding all the oth-
ers. In a sense, this constitutes “perfect” retrieval. This solution is 
obviously impracticable. A user either does not have the time or 
does not wish to spend the time reading the entire document col-
lection, apart from the fact that it may be physically impossible for 
him to do so. (p. 3)

Logical models of Information Retrieval represent documents and que-
ries as logical formulas, and apply some form of inference provided by 
the logic to decide relevance. The simplest approach is to model the rel-
evance test using the logical entailment d → q, where d and q are logical 
representations of a document and a query, respectively.
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The Concept of Similarity 

Park, Ramamohanaro, and Palanaswami (2005) observe that, 

Many current information retrieval systems are built around a 
similarity function. This function takes a query and a document 
as its arguments and generates a single score which represents the 
relevance of the query to the document. Current popular retrieval 
models, namely, Vector Space and Probabilistic models, base their 
similarity function on the hypothesis that a document is more 
likely to be relevant to a query if it contains more occurrences of 
the query terms. 

This implies that the similarity functions need the count of occur-
rences of each of the terms, and ignore any other information in the docu-
ment. Such a vision sets forth the similarity information retrieval. Similar-
ity Information Retrieval (SIR) is now defined as a special case of Classical 
Information Retrieval (CIR). SIR is equivalent to the classical vector IR; 
hence the latter is a special case of CIR. The vector IR has two (traditional) 
particular cases: binary and non-binary. These can easily be defined as 
being two special cases of SIR as follows: 

•	 Binary Similarity Information Retrieval (BSIR) is a SIR < D, R > 
with S = {0, 1}; 

•	 Non-Binary Similarity Information Retrieval (NBSIR) is a SIR < 
D, R > with S = [0, 1]. 

  

Information Retrieval Models 

Dominich (2001) says that, “the basic theoretical model types of IR re-
flect, on the one hand, the complexity and interdisciplinarity of IR in gen-
eral and of IR modeling in particular and, on the other hand, the model-
ing difficulty of the most critical parameter that is relevance.” 

The basic theoretical model types of IR differ from each other in the 
way objects (e.g., documents, images) are represented and retrieval is de-
fined. Mathematical IR represents objects as strings of numbers (tradi-
tionally called vectors), and defines retrieval using numeric relationships 
(e.g., a distance meant to express a likeness) between vectors. Logical IR 
assumes objects as representations (e.g., collections of sentences, situa-
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tions) and retrieval as an uncertain logical inference. Interaction IR views 
objects as flexibly interconnected active elements, and retrieval as mem-
ories of elements recalled by a query. Artificial intelligence (AI) IR con-
ceives objects as a Knowledge Base (KB), and retrieval as some reasoning 
or as neurons and retrieval as a spreading of activation. 

Different generalizations of the basic mathematical model types 
yielded the idea of creating a unified mathematical foundation for them. 
Because these generalizations shifted the interpretation of conditional 
probabilities toward logic, Logical IR models have been elaborated with 
the aim to contain the basic mathematical models, too, as special cases.

However, in CIR, the content analysis of the documents is used to de-
cide whether a document is relevant to a particular query. A general con-
cept of CIR is defined first from which the vector and probabilistic IR 
models can be formally obtained as special cases. CIR might be seen as 
a superstructure with a parameter, from which the vector model is ob-
tained taking a particular value for the parameter, whereas taking an-
other value for it, the probabilistic model is obtained. 
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Chapter Seven: 

Boolean Model of Information Retrieval 
  

Introduction 

Boolean retrieval poses queries in Boolean expressions of terms. Terms 
are combined with the operators AND, OR, and NOT. The model views 
each document as just a set of words (Manning, Raghavan, and Schütze 
2008). 

  
Boolean Logic as the Base of Boolean IR 

Boolean logic allows a user to relate multiple concepts to describe 
needed information.  Boolean functions apply to text found anywhere 
within a document. The Boolean operators are AND, OR, and NOT. 
These operations are use set intersection, union, and complement. A few 
systems use the concept “exclusive or” that may also be called exclusive 
disjunction (symbolized by XOR or EOR). Putting portions of the search 
statement in parentheses ����������������������������������������������      s���������������������������������������������      pecif����������������������������������������      ies�������������������������������������       the order of operations. ����������� Without pa-
rentheses���������������������������������������������������������         , �������������������������������������������������������        the����������������������������������������������������         default precedence ��������������������������������     is������������������������������      NOT��������������������������    ,�������������������������     AND���������������������   ,��������������������    OR�����������������   (Manning, Ragha-
van, and Schütze 2008). 

One kind of of Boolean search is “M of N” logic. The user lists search 
terms and searches for any item that contains a subset of the terms; for 
example, any item containing two of the following terms: “AA”, “BB”, 
and “CC”. This can be made into a Boolean search that does an AND 
search between all combinations of two terms and searches the results 
using OR: (Manning, Raghavan, and Schütze 2008)  

(AA AND BB) or (AA AND CC) or (BB AND CC) 
  

Most systems allow Boolean searching. Little attention has been given 
to putting Boolean search functions and weighted retrieval techniques 
into one search result. 
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Wavelet Model

A��������������������������������������������������������������             document ����������������������������������������������������          may be more relevant if query terms appear in a pat-
tern throughout the text. This could be examined using proximity or by 
mapping term positions to another domain. “Wavelet transforms” (Park, 
Ramamohanarao, and Palaniswami 2005) allow the discovery of patterns. 
The wavelet transform breaks a signal into wavelets of different scale and 
position. This allows the analysis of the signal at different frequencies, 
to identify spikes in the signal. A term that is frequent but scattered can 
be represented by a low-frequency wavelet, while a term that appears 
once is a high-frequency positional wavelet (Park, Ramamohanarao, and 
Palaniswami 2005).

A wavelet is described by a function ψ ∈ L2(ℝ) (where L2(ℝ) is the set 
of functions f (t) which satisfy ∫│f(t)│2 dt < ∞) with a zero average and 
norm of 1. A wavelet can be scaled and translated by adjusting the pa-
rameters s and u, respectively.

                                        ψu,s(t) =
    1   ψ ( t – u )                                                        √s‾           s

The scaling factor keeps the norm equal to one for all s and u. The 
wavelet transform of f ∈ L2(ℝ) at time u and scale s is

W (u, s) = ( f , ψu,s) = ∫ –∞
 

+∞

f (t)  1
√s‾

 ψ∗ ( t –su  ) dt,

where ψ∗ is the complex conjugate of ψ.
A wavelet function, ψu,s(t), requires a scaling function, φu,s(t) ∈ Vn. 

The scaling function must satisfy the property

…  ⊂  Vn+1  ⊂  Vn  ⊂  Vn−1  …,

where the set of φu,s(t) for all u is a basis of Vn (s = 2n for dyadic scaling), 
and ∪n∈ℤVn = L2(ℝ). Each set of scaling functions can be shown in terms 
of its subset of scaled scaling functions:

Vn−1 = Vn ∪ Wn−1,   Vn ⊥ Wn−1,

where ⊥ implies orthogonality. The set of functions Wn, satisfies the fol-
lowing properties:
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∪ Vn = L2(ℝ),    ∩ Wn = ∅
                                              n∈ℤ                           n∈ℤ                 

Therefore the set of functions Wn for all n is a basis for L2(ℝ). This 
set Wn is the set of shifted wavelet functions at resolution n (Park, 
Ramamohanarao, and Palaniswami 2005).  

Spectral-Based Document Retrieval 

Spectral-based retrieval considers occurrence patterns of query terms. 
Query terms with similar positional patterns make their documents more 
relevant than those without such patterns (Park, Ramamohanarao,  and 
Palaniswami 2005).

While vector space retrieval calculates relevance based on the occurrence 
of query terms, and proximity models calculate it based on the proximity 
of query terms to each other, proximity searching uses more information 
from the document to calculate the score, but takes more time. Spectral-
based retrieval overcomes this problem by comparing terms in their 
spectral, rather than their spatial, domain. A term signal for each query 
term is created, and the term signals are converted into term spectra using 
a spectral transform (Park, Ramamohanarao, and Palaniswami 2005).
  
1.     Term Signals 

A term signal shows the occurrence of a particular term in a particular 
section of a document. The term signal for term t in document d is repre-
sented by 
  

f̃d,t = [ fd,t,0  fd,t,1 · · ·  fd,t,B−1] 
  
where fd,t,b is the value of the signal component. If there are B signal com-
ponents and D terms in the document, the value of the b-th component is 
calculated by counting occurrences of term t between the bD/B-th word 
in the document and the {(b + 1)D/B − 1}-th word in the document. There-
fore, if B = 8, fd,t,0 would contain the number of times term t occurred in 
the first eighth of document d. If B = 1, fd,t,0 would contain the count of 
term t throughout the whole document (Park, Ramamohanarao,  and 
Palaniswami 2005). 
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  2.     Term Signal Weights 

Weighting schemes in vector space and probabilistic methods are used 
to reduce the impact of certain document and term properties on the 
document score. These exist in term signals as well, and weighting is used 
to reduced their impact. 

Each component of a term signal represents a portion of the document; 
existing document weighting schemes can be used to weight each of the 
term signal components. 

The document weights used were 
  

wd,t,b =
       1+log( fd,t,b)

              (1−s) + sWd / Wd 

wd,t,b =
         fd,t,b 

               fd,b,t + τd / τ̄d

wd,t,b =
      1+log( fd,t,b) 

              (1−s) + sWd / Wd 

wd,t,b =
  (1+log( fd,t,b)) / (1 + log( f̃d,t ))

                   ((1−s) + sτd / τ̄d ) 

where fd,t,b is the b-th component of the t-th term in the d-th document, 
f̃d,t is the average term count for document d, Wd is the document vec-
tor l2 norm, τd and τ̄d the number of unique terms in document d and the 
average unique terms, respectively, and s is a slope parameter (Park, 
Ramamohanarao, and Palaniswami 2005). 
  
3.     Term Spectra 

To compare query term signals to obtain a document score, component b 
of each term or different components in different terms could be compared. 
The former would reduce to passage retrieval, while the latter is a form 
of proximity measure. Term signal positions are not compared, but their 
patterns are. This can be done by examining their wavelet spectrum
  

ζ̃d,t = [ζd,t,0 ζd,t,1  …  ζd,t,B−1] 
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where ζd,t,b = Hd,t,b exp(iθd,t,b) is the b-th spectral component with magni-
tude Hd,t,b and phase θd,t,b. These transforms extract frequency information, 
but they focus on the signal as a whole. The wavelet transform focuses 
on parts of the signal at different resolutions. Frequency information is 
extracted from parts of the document, which results in frequency and 
position information. The resulting term spectrum contains orthogonal 
components, meaning that there is no need to compare spectral com
ponents (Park, Ramamohanarao, and Palaniswami 2005).
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Chapter Eight

Vector Space Model of Information Retrieval 
  
  
Introduction 

The Vector Space Model (VSM) is a classical model that has been 
used to process texts for about forty years. In this model, documents and 
queries are each mapped to a point based on frequency, using Euclidean 
geometry (Góth and Skrop 2005). The term “vector IR” can be misleading. 
In vector IR, objects are represented as strings of real numbers, as if they 
were mathematical vectors, although they not necessarily form a vector 
space  (Dominich 2001). Vector space represents documents and queries, 
with one dimension for each term. The number of appearances of each 
term in the document forms a dimension of the document vector. The 
“similarity function” applies weights to vectors and assigns a relevance 
score (Park, Ramamohanarao,  and Palaniswami 2005). 

Queries and documents are represented as strings of numbers: vectors. 
Every number represents the degree to which a term characterizes a 
document, based on frequency. Thus, a similarity measure expresses 
the likeness between queries and documents. The similarity measure 
is generally normalized (has a value between 0 and 1). This property is 
called normalization. The value of the similarity measure does not depend 
on the order in which queries and documents are comparied (symmetry 
or commutativity). Finally, the similarity measure is maximal (equal to 
1) when the vectors of queries and documents are identical. This is the 
property of reflexivity (Dominich 2000).

  
Vector Space Model 

A formal definition of vector IR is needed: 

Definition of Vector IR (VIR). Let D be a set of objects (documents). A func-
tion σ: D × D → [0, 1] is called a similarity if the following three properties 
(a) through (c) hold:
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(a) 0 ≤ (a, b) ≤ 1.  ∀ a, b ∈ D, 	 normalization

(b) σ(a, b) = σ(b, a).  ∀ a, b ∈  D, 	 symmetry or commutativity

(c) a = b ⇒ σ(a, b) = 1.  a, b ∈ D, 	 reflexivity

Let q ∈ D be a query, and t ∈ ℝ be a real threshold value. The set R(q) 
of retrieved documents in response to query q is defined as follows:

R(q) = {d ∈ D │ σ(d, q) > T, T ∈ ℝ }

As a broader description, VSM can be introduced as (Góth and Skrop 
2005): 

Given documents Dj, j = 1, …, m ∈ ℕ (ℕ denotes the set of natural num-
bers), and terms ti, i = 1, …, n ∈ ℕ. Using the VSM, every document Dj is 
assigned a vector wj = (wij)i =1, …, n of weights, where wij ∈ ℝ (ℝ denotes 
the set of real numbers) denotes the weight of term ti for document Dj. 
The matrix W = (wij)n × m is called the term-by-document matrix. The gen-
eral form of a weighting scheme is as follows:  

wij = local_weightij × global_weighti × normalizationj = li j × gi × nj 
  

Let Q denote a user’s query, and q = (qi) i = 1,..., n the corresponding query 
weight vector. The vectors wj and q belong to the En Euclidean orthonormal 
space, in which the weights wj and q are Cartesian coordinates (of points 
corresponding to document Dj and query Q). Each term ti is assigned to 
an axis xi. All the axes intersect at one common point O (the origin). They 
are pair-wise perpendicular to each other in the origin, and the weight wij 
corresponds to a point on the axis xi (with one point for each document 
Dj). Thus, every document Dj is represented by a vector wj, which defines 
a point in the space En. The relevance of document Dj relative to query Q is 
given by the value of a similarity measure σ (wj, q), whose general form is:
  

σ (wj , q) = wj q / ∆ 
  
where wj q denotes the inner—or dot—product of the vectors wj and q. 
Several similarity measures have been proposed, such as the Dot prod-
uct, Cosine, and the coefficients (overlap, Dice’s, Jaccard’s). The fol-
lowing uses the Cosine measure. Its explicit formula is obtained for  
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∆ = ║wj║ ∙ ║q║ (║ ∙ ║ denotes the Euclidean norm of a vector). The con-
cept of a σ-space is a formal generalization of the VSM to emphasize sim-
ilarity measures. A set D of objects with a symmetric and reflexive simi-
larity measure, i.e., 

  σ: D × D → R 

Symmetry: σ (a, b) = σ (b, a), ∀a, b ∈ D; i.e., the order in which the query 
and the document are considered is irrelevant;

Reflexivity: a = b ⇒ σ (a, b) = κ ; i.e., the similarity measure is equal to a 
maximal value κ if the query and the document are exactly the same; 
but the reverse is not necessarily true. For example, if σ is normal-
ized, κ may be taken as being equal to 1. It is referred to as a σ-space.

A document is defined by n independent features or attributes, used 
to describe the subject(s) of the document. In most cases, these are key-
words from the title, abstract, or full-text from the document. 

di = (ai1, ai2, ..., aij, ..., ain) 

di is a document, aij is a feature describing the document. Its value or 
weight reflects the importance of this feature aij to document di, valid 
value of aij ranges from 0 to infinity, and n is the number of features or 
the dimensionality of the vector space. Rn denotes a vector with n dimen-
sionality. A vector corresponds to a visible point in a low dimensional 
space (for instance, a two or three dimensional space), or an invisible 
point in a higher dimensional space. For a linear vector space, if d1, d2, 
and d3 ∈ Rn, c is a constant, the following equations always hold true.

(d1 + d2) × c = d1 × c + d2 × c 
d1 + d2 = d2 + d1 

(d1 + d2) + d3 = d1 + (d2 + d3) 

A matrix is a table or rectangular array of elements arranged in rows 
and columns. A document-term matrix is a group of document vectors. 
The rows and columns are documents and features respectively. 

Where aij is the weight of document di for feature j, m is the number 
of the documents in a document collection. A query can also be defined 
as a vector. Where qj is the weight of feature j and its value is dependent 
upon a user’s information need, n is the number of unique features which 
should be equal to n in the equation for di above. Query representation 
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structure is the same as a document representation structure, which 
makes various calculations between a document and a query possible. 

  q = (q1, q2 , …, q j, …, qn) 

The number of unique features (n) in a document-term matrix can be 
large, because the features are unique indexing terms used in a document 
collection. As the number of documents indexed in a collection increases, 
the number of the features (n) also increases. The relationship between 
the number of documents and the number of features (n) is not simply 
linear, however. When the number of documents indexed in a collection 
reaches to a certain level, the number of features (n) stays stable. 

Looking at each of the documents in the matrix, we find that the num-
ber of non-zero features relatively small compared to the number of fea-
tures (n). The number of non-zero features is affected by indexing prac-
tices and length of the document. As a result, the document-term matrix 
is a sparse matrix where most of its elements are 0. (Zhang 2008) 

The strengths of the vector space model are summarized as follows: 
•	 The vector-based structure can represent an object with multiple 

attributes; 
•	 Weights can be assigned to indexing terms to distinguish their 

significance;
•	 Similarly, weights can also be assigned to query terms, express-

ing users' needs in a more accurate and flexible way; 
•	 VSM allows a variety of similarity calculation methods, such as 

distance- or angle-based measures. This allows the comparison 
of query and a document, or a document and a document, re-
vealing the properties of compared objects; 

•	 Evaluation models such as the distance, angle, ellipse, conjunc-
tion, and disjunction are available to control a search in a vector 
space; 

•	 The partial match technique can describe the degree of a match-
ing between a query and a document representation. This can be 
used to rank retrieved documents on their correspondence to the 
query; 

•	 Relevance feedback is essential for dynamically adjusting a 
search strategy. VSM allows this adjustment; 

•	 VSM provides an environment for techniques like self-organiz-
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ing maps, associative networks, multidimensional scaling, and 
distance- and angle-based visualization. 

The weaknesses of VSM are: 

•	 One problem is high dimensionality, which makes it hard to ap-
ply to a large document collection; 

•	 Multiple features and attributes can be extracted from a docu-
ment that can describe its subject. As the terms are extracted and 
used to construct a document-term matrix, the semantic contexts 
are lost; 

•	 VSM assumes that all terms are independent. This may over-sim-
plify the interrelationship between the term and its context. 
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Chapter Nine

Probabilistic Model of Information Retrieval
  

Introduction 

Probabilistic Information Retrieval (PIR) computes the probability that 
a document is relevant to a query. Documents are ranked in decreasing 
order of relevance. Relevant documents are those whose prababilities of 
relevance in the ranked list exceed a cut-off value (Dominich 2000).

A formal definition of PIR is: 

Let D be a set of objects (documents), q ∈ D a query, a ∈ ℝ a real cut-off 
value, and P(R│(q, d)) and P(I│(q, d)) the probability that document d is 
relevant (R) and irrelevant (I), respectively, to query q. It is assumed that 
P(R│(d, d)) = 1, P (I│(d, d)) = 0. The retrieved documents in response to 
query q belong to the set R(q) defined as follows:

R(q) = { d│P(R│(q, d)) ≥ P(I│(q, d)), 
P(R│(q, d)) > a, a ∈ ℝ }

The inequality P(R│(q, d)) ≥ P(I│(q, d)) is called Bayes’ decision rule, 
and P(R│(q, d)) and P(I│(q, d)) are called the probability of relevance 
and irrelevance, respectively, of document d to query q. Users′ infor-
mation needs are translated into query representations. Documents are 
converted into document representations. IR systems try to determine 
whether documents meet information needs. IR systems have uncertain 
understanding of information need������������������������������������     s�����������������������������������     . Probability theory provides ����� a ba-
sis for computing the degree of matching and relevance (Manning, 
Raghavan, and Schütze 2008). 

During searching and retrieval, there is a degree of guessing about rel-
evance. To compute the accuracy of a guess, systems may use probability 
of relevance (Van Rijsbergen 1979), with a formula such as: 

  PQ (relevance/document) 

This computation of probability is based on frequency counts, which is 
a statistical and not a semantic approach. A matching function assigns a 
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score to each document. Assuming one query has been submitted to the 
system, it will be represented as:   

P (relevance/document) 

The relevance of a document is independent of other documents. The 
probability ranking principle states that a system's response to a request is 
the ranking of documents in order of decreasing probability of relevance.

The probability ranking principle assumes that we can calculate  
P(relevance/document). Without knowing which are the relevant docu
ments or how many there, there is no way to calculate P(relevance/docu-
ment). Using iteration, we can guess at P(relevance/document). Assuming 
that each document is described by the presence or absence of terms, a 
document can be represented by a binary vector:

  x = (x1, x2, . . ., xn) 

where xi = 0 or 1 indicates absence or presence of the i-th index term. 
There are two mutually exclusive potential events,   

w1 = relevant 
w2 = non-relevant 

  
  
Probabilistic Model 

There are both document-oriented and query-oriented retrieval 
models. VSM requires deciding whether to modify queries or to modify 
documents. Logical models must decide whether to estimate queries 
or documents or both. Regression and language models can estimate 
document or query������������������������������������������������������ �����������������������������������������������������characteristics, or both�����������������������������, and so on������������������ ����������������� (Bodoff and Rob-
ertson 2004). 

Early binary probabilistic approaches used relevance estimates for a 
particular document or query. Calculating a combined model begins 
with the assumption that the indexing is correct and has no error. That 
is,  if a document Di contains an arbitrary term t, and is indexed as xit = 1, 
and if a query Qi contains an arbitrary term t, yit = 1, then term t correctly 
represents the meaning of the document and query. The probability of 
relevance is xit = 0/1, yjt = 0/ 1, e.g., P(R = 1│xi t = 0, yjt = 1). Relevance is 
still uncertain for a particular document and query, even though they are 
correctly indexed. 
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To calculate the probability of relevance of Dk to Qc, count relevance 
frequencies across all documents and queries.  If all document indexes 
are correct, query indexes may have random error, in addition to the 
random error in relevancy data. Query indexes are random variables 
defined over the event space {Q} . The available data reflects two sources 
of random error.

Assuming that relevance, document indexing, and query indexing are 
all random variables with event spaces tries to account for all possible 
sources of error. Hidden variables of the correct indexing create the 
marginal views (query, relevance|correct documents) and (document, 
relevance|correct queries). There are many joint distributions of (docu
ment, query, relevance) that fit these two marginal distributions. 

To use relevance  data to estimate document and query parameters, an 
explicit error model is needed. Error models allow Bayesian updates or 
maximum likelihoods to adjust each parameter. More reliable data will 
rely on more adjustments from the relevance data, and less reliable data 
will adjust less (Bodoff and Robertson 2004). 

The procedure requires three error models: document, query, and 
relevance. 

Using the notation of a probability density as f(w; θ) with observations 
w and parameters θ, results in these three functions: 

 fD(Di
0; Di) = P(Di

0│Di ), 

fQ(Qi
0; ―Qi) = P(Qi

0│ ―Qi ),  and 

fR(Rij ; Di, ―Qj) = P(Rij│Di , ―Qj ) 

  This structure can be illustrated with the example of two documents 
and one query. Di indicates the parameters of the probability function for 
one document. Di

0 denotes indexing of the document. Di generates Di
0. 

Parameter Di represents the meaning of the document in vector space. 
The function fD represents the expression of an idea by an author. Rij is 
the relevance value of a document-query pair, generated by the function 
whose parameters are a document vector and a query vector. Actual 
relevance depends on the actual meaning, which must be estimated. 
Relevance of a document-query pair is independent of the the observed 
words of texts (Bodoff and Robertson 2004). 

Parameters and event spaces are not the same. The data-generating 
parameter for Di

0 is Di, but the event space is the set of all documents, 
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not the set of all Di. The difference is similar for queries. If two docu-
ments have the identical true parameter, it is not certain that their ob-
servations will be identical. Two authors can express the same idea 
with different words. The probability of relevance has been defined as  
P(Rij│Di , ―Qj), but there are two possibilities for the event space of a rele-
vance judgment random variable, which are either the Cartesian product 
of all document and query parameters { D × ―Q }, or the Cartesian product 
of all document and query individuals { D × Q }. The latter implies that 
the parameter vectors do not capture all aspects of content, and that rel-
evance depends on things besides “topicality.” The conditional P(Rij│Di , 

―Qj ) means that the parameter values Di , ―Qj  limit the set of possible events 
to all pairs of document–query individuals with these parameter values. 
The event space of each relevance judgment may also be considered to 
be all pairs of document–query parameters. If so, then two identical pairs 
of document and query parameters will have identical relevance values. 
Document and query parameters are related in a particular but unknown 
way to an event that causes relevance (Bodoff and Robertson 2004). 

Each observation and relevance value has a hypothesized distribution 
and a true parameter. The set of ND documents Di

0 is not a sample of size 
ND from a single distribution, but a set of ND random values, one Di

0 from 
each of ND distributions (Bodoff and Robertson 2004) 

The functional form for each of fD(Di
0; Di), fQ(Qi

0; ―Qi), and fR(Rij ; Di, ―Qj) 
can be hypothesized. A likelihood function is constructed for all the data, 
in order to estimate the unknown parameter vectors Di, ―Qj (Bodoff and 
Robertson 2004). After document and query parameters are estimated 
comes the prediction stage, where relevance predictions can use parameter 
vectors instead of the term vectors to predict the relevance of document-
query pairs (Bodoff and Robertson 2004). 

Using vectors that are real-valued with data consisting of three 
documents and two queries, suppose that of the six possible pairs, 
the following three are known to be relevant: (1, 1), (2, 2), (3, 2), while 
these three have unknown relevance: (2, 1), (3, 1), (1, 2). To estimate 
the true parameter vectors for all objects D1, D2, D3, ―Q1, ―Q2, it could be 
hypothesized that P(D1

0 ; D1), P(D2
0 ; D2), and P(D3

0 ; D3) are normal 
distributions with variance σ 2

D , that P(Q1
0 ; ―Q1) and P(Q2

0 ; ―Q2) have 
variance σ 2

Q , and that P(Rij ; Di, ―Qj) is proportional to the inner products.  
That could result in the following hypothesized data:  D1, D2, D3, ―Q1, ―Q2 : 
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D1
0 ~ N(D1, σD) 

D2
0  ~ N(D2, σD) 

D3
0  ~ N(D3, σD) 

Q1
0 ~ N(―Q1, σQ) 

Q2
0 ~ N(―Q2, σQ) 

R11 ~ D1 ∙ ―Q1 
R22 ~ D2 ∙ ―Q2 
R32 ~ D3 ∙ ―Q2 

If the data points are independent, a single integrated likelihood func-
tion can be constructed:

                    L = (D1 * ―Q1) (D2 * ―Q2) 

                               × (D3 * ―Q2)e –½(D1 – D1
0)2

 e –½(D2 – D2
0)2

 e–½(D3 – D3
0)2

 
                                                              

σD

                                       

σD

                                    

σD

                                       × e –½(―Q1 
– Q1

0)2

 e –½(―Q2 
– Q2

0)2

                                                                                σQ                                         σQ

The estimated parameters D̂1, D̂2, ―Q̂1 maximize the likelihood of the ob-
servations. After parameter estimation, predicting the relevance of the un-
known pairs uses the same relevance function, but with estimated true 
parameters R31 ~ D3 * ―Q1 rather than the observed D3

0 * Q1
0. If a new docu-

ment or query arrived,  its observed Di
0 (Qj

0) would be matched against the 
estimated ―Qj

0 (Di
0) (Bodoff and Robertson 2004). 

This combines document and query parameter estimation. Credit as-
signment is done based on principles and using probability.  (Bodoff and 
Robertson 2004). 
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Part 3

Appendix





Chapter Ten

Mathematics in IR Instructional  
and Research Sectors

Fiji
University of the South Pacific
Faculty of Science and Technology
School of Computing, Information and Mathematical Sciences
http://www.usp.ac.fj/index.php?id=415

The School of Computing, Information, and Mathematical Sciences 
(SCIMS) is one of the largest schools in the University, and is well-re-
sourced to pursue excellence in teaching and research. The Mission 
of SCIMS is to provide the best possible university education in mathe-
matics, statistics, computing science and information systems to the peo-
ple of the South Pacific.  This includes the creation and transmission of 
knowledge in these areas. The School, via its four divisions, offers degrees 
in Computing Science, Information Systems, Mathematics and Statistics. 
It is rigorous in the implementation of current ICT-related technologies, 
with courses in data communication, computer networks and security, 
internet computing, data mining, project management, etc, being revised 
or developed on a timely basis. The School also pursues research vigor-
ously, with many papers from staff published annually in leading inter-
national journals and conference proceedings.

Japan
Hiroshima University
Division of Mathematical and Information Sciences
http://www.mis.hiroshima-u.ac.jp/

This program aims at providing students with general understand-
ing and the ability to solve problems in information and human behav-
ior in contemporary society, by using methods of mathematical sciences, 
psychology, and political sciences. This Program consists of the Political 
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Sciences Curriculum, which offers ideas, systems, and methods of scien-
tific and rational policy analyses; the Behavioral Sciences Curriculum, 
which provides scientific analyses of human behavior from a psycholog-
ical viewpoint; and the Mathematical and Information Sciences Curricu-
lum, which offers information sciences based on mathematical sciences 
and mathematical sciences with special emphasis of information sciences.

Japan
The University of Electro-Communications

Department of Computer Science and Information Mathematics
http://www.fedu.uec.ac.jp/JUSST/RD/Dept_CI.html

The Department offers Master’s and doctoral degrees in computer sci-
ence and engineering and in mathematical engineering related to infor-
mation science. Faculty research subjects vary enormously from solid ba-
sic theories to modern challenging applications:

•	 Computer Science: Computer architecture, parallel and distrib-
uted processing, information theory, learning theory;

•	 Software Engineering: Algorithms, software systems, computer 
languages, natural language problems, color image processing;

•	 Information Mathematics: Basic mathematics, applied mathe-
matics, numerical analysis, coding theory, mathematical prob-
lems in engineering; and

•	 Applied Computer Science: Artificial intelligence, linguistic in-
formation processing, image and speech processing, computer 
research in music and acoustics, computer aided instruction, 
mathematical programming.

Poland
Warsaw University of Technology
Faculty of Mathematics and Information Science
http://www.mini.pw.edu.pl/tiki-index.php?page=studies_en

Due to its strategic position in Europe, Poland has always been re-
garded as the gateway to the East. Warsaw is host to thousands of for-
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eign companies doing business in Poland and many international insti-
tutions coordinating economic and scientific cooperation between, on the 
one hand, the European Union and USA and on the other, Central and 
Eastern European countries. This unique situation has created a high de-
mand for well-qualified engineers fluent in English.

The Warsaw University of Technology is the highest-ranked institu-
tion for advanced engineering education and research in Poland and one 
of the most prestigious academic institutions in Europe. The curricula 
and academic standards closely resemble those of many highly regarded 
U.S. universities. The low ratio of students to professors at Warsaw Uni-
versity of Technology’s Faculty of Mathematics and Information Science 
and the warm working relationship between students and instructors 
helps those studying to develop confidence in their ability to make signif-
icant contributions to engineering and research work.

The Faculty of Mathematics and Information Science offers the courses 
in Mathematics and Computer Science in Polish. The following programs 
are taught in English however:

•	 3.5-year undergraduate program in Computer Science leading to 
a Bachelor of Science in Engineering degree; and

•	 2-year graduate program in Computer Science leading to a Mas-
ter of Science degree.

Starting from the 2008/2009 academic year, the 1.5-year graduate pro-
gram in Computer Science leading to a Master of Science degree will com-
mence. Studies will start every half year - in October and in February.

Graduate programs exist in the following fields:

•	 Artificial Intelligence;
•	 Computing in Business and Economics; and
•	 Computing in Science and Engineering.

In each of the above three specializations there are general lectures on 
modern databases, foundations of Artificial Intelligence, Windows pro-
gramming, operating systems, computer network administration as well 
as several courses particular to the area of specialization. Each year, de-
pending on the number of candidates, one or two programs commence, 
depending on students’ preferences.

Students graduating in studies taught in the English language will re-
ceive their diplomas in the Polish language and a translation into English 
where:



•	 The Polish professional degree of an engineer is translated as a 
Bachelor of Science in Engineering; and

•	 The Polish professional degree of a master is translated as a Mas-
ter of Science.

The programs taught in English follow an English/American pattern 
and lead to a Bachelor of Science in Engineering degree in 3.5 years and 
a Master of Science degree in a further two years. The duration and ex-
tent of the programs are defined by a system of credits. Credits are ob-
tained on the basis of teaching results and are attained by a grade which 
is based on the semester workload and/or oral/written examinations. 
A student is supposed to study 30 credit points per semester (60 cred-
its per academic year). The Bachelor's degree programs total 210 cred-
its over seven semesters. To proceed from one year to the next, students 
have to obtain a certain minimum amount of credits defined by the Fac-
ulty Council. On successful completion of the final semester, final thesis 
and on passing the diploma examination students will be granted a B.Sc. 
degree. The Master's degree programs total 120 credits over four semes-
ters (two years) or 90 credits over 3 semesters.

Russia
R.Y. Alekseev Nizhny Novgorod State Technical University
Institute of Radio Engineering and Information Technologies (IRIT)
http://www.nntu.ru/NSTU/facul/facul_spec/irit.htm

The training and research Institute of Radio Engineering and Informa-
tion Technologies (IRIT) has been established on the order No. 200 from 
December 21st, 2005 on the basis of the Faculty of the Information Sys-
tems and Technologies.

In the past 70 years the Faculty and later the Institute have accumu-
lated wide experience of training engineers and research personnel par-
ticularly appreciated both in Russia and abroad.

Seven Lenin prize winners, more than 50 Laureates of the State Prize, 
dozens of Doctors of Engineering and hundreds of Candidates of Science 
(Engineering) as well as research and engineering managerial staff of the 
Nizhny Novgorod’s largest branch research institutes and telecommuni-
cation companies.

52  c h a p t e r 10  



The Institute of Radio Engineering and Information Technologies pro-
vides training in the following degree courses and professions:

•	 Radio Engineering;
•	 Design and technology of electronic facilities (electronic 

instrumentation);
•	 Information Science and Computer Engineering;
•	 Computer-aided Data-processing and Control Systems;
•	 Information Management Systems and Technologies;
•	 Information-processing Technologies for Education;
•	 Information-processing Technologies for Design;
•	 Applied Mathematics;
•	 Telecommunications;
•	 Networking and Switching Systems; and
•	 Wireless communication, broadcasting and television.

Slovenia
University of Ljubljana
Faculty of Computer and Information Science
Laboratory for Mathematical Methods in Computer and Information 
Science
http://www.fri.uni-lj.si/en/laboratories/mathematics_physics_group/
lab_mathematical_methods_computer_information_science/

The research activities of the laboratory involve various fields of math-
ematics with special emphasis on applications to computer and informa-
tion science. The following areas of mathematics are studied: scientific 
computing and numerical solutions of differential equations, in partic-
ular, methods for geometric integration, graph theory, mostly topolog-
ical and structural properties of graphs, vertex colorings of graphs and 
weighted graphs as a natural generalization of the channel assignment 
problem, algebraic topology, in particular cohomology of topological 
spaces with group actions, applications of topology to computer science, 
and computational topology, nonlinear dynamical systems and their ap-
plication in geometry, physics and mechanics, linear and nonlinear math-
ematical techniques in computer vision (in cooperation with the Com-
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puter vision laboratory), computational geometry and geometry of cycles 
(in cooperation the Faculty of Electrical Engineering and the Faculty of 
Mathematics and Physics) with applications to surface modeling, in the 
area of incidence structures we study problems related to combinatorial 
and geometric configurations (the study of combinatorial properties of 
configurations via their incidence graphs, and the study of possibility of 
the realization of configurations in other incidence structures), CFD pro-
grams and their use in sailing simulations

The laboratory organizes the Mathematical seminar at the FRI, where 
members of the lab and other researchers report on current work, con-
nected to the research and teaching activities of the lab. Several members 
of the lab are also members of research groups of the Institute of Mathe-
matics, Physics, and Mechanics. 

Members of the lab are involved in joint research work with other re-
search groups at the Faculty of Computer and Information Science and 
the Faculty of Electrical Engineering and with the following institutions: 
NTNU Trondheim, Norway, and University in Bergen, Norway.

UK
University of Brighton
Computing, Mathematical and Information Sciences
http://www.brighton.ac.uk/cmis/contact/details.php?uid=je11

The School of Computing, Mathematical and Information Sciences is 
at the forefront of teaching, research and consultancy in a range of disci-
pline areas: 

•	 Computing;
•	 Information and library studies;
•	 Mathematical sciences; and
•	 Media and communication.

The school offers a comprehensive range of foundation degree, honors 
degree, PhD and masters degree programs. Extensive applied research 
and consultancy activity ensures that these courses are up to date, relevant 
and serve the needs of both students and employers. 

The school is located in the Watts building of the Moulsecoomb site, 
about 2 miles from the sea front, pier, and Brighton city center, with 
library, study and computing facilities catered for within the campus. 
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USA
Jacksonville State University
College of Arts and Sciences
Department of Mathematical, Computing, and Information Sciences
http://mcis.jsu.edu/

As part of the College of Arts and Sciences at Jacksonville State Univer-
sity, the MCIS Department offers undergraduate degrees (B.S.) in Mathe-
matics, Computer Science, and Computer Information Systems.  Master’s 
degrees (M.S.) in Mathematics as well as in Computer Systems and Soft-
ware Design are also offered.

The Department of Mathematical, Computing, and Information Sci-
ences is accredited by the Southern Association of Colleges and Schools 
(SACS) with the Bachelor of Science degrees in Computer Science and 
Computer Information Systems additionally accredited by the Comput-
ing Accreditation Commission (CAC) of the Accreditation Board for En-
gineering and Technology (ABET).

The mission of the Mathematical, Computing, and Information Sci-
ences Department is to provide quality programs for three Bachelor of 
Science degrees and two Master of Science degrees. The MCIS Depart-
ment also provides a minor in four programs and provides the courses 
for students seeking a Bachelor of Science in Education with a concentra-
tion in secondary mathematics. The programs of this department place a 
strong emphasis on quality teaching and encourage research and other 
scholarly activities to strengthen this emphasis. In its presentation of the 
programs, the department attempts to provide a balance between the the-
ory and the practice.

The MCIS Department provides the appropriate courses for its own 
majors and minors in addition to several service courses in Mathemat-
ics and Computer Science for other disciplines. In conjunction with Aca-
demic Computer Services, the department attempts to provide all its stu-
dents access to modern computing laboratories.

•	 The Major Field Test (MFT) for Computer Science and for Math-
ematics is administered;

•	 An Exit Survey and Senior Exit Interviews to graduating seniors 
in each of our major areas (CS and MS) in the fall and spring are 
administered;
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•	 An alumnus questionnaire specific to our fields, which accompa-
nies the University alumni questionnaire, is administered; and

•	 The students are tracked in the MS 100 and MS 112 math classes.

USA
Mercy College
Mathematics and Computer Information Science
http://www.mercy.edu/acadivisions/mathcompinfo/index.cfm

The degree from the Mathematics Program at Mercy College places its 
emphasis on applied mathematics. The goal of the program is to prepare 
the students for success in any field that requires mathematics, e.g., actu-
aries, banking, and finance. The student will also be prepared for gradu-
ate programs in several fields including mathematics, computer sciences, 
environmental sciences, and biology. Students in this major will learn at 
least one computer language. They will receive a strong foundation in 
applied mathematics through Statistics and probability, Linear Algebra, 
Mathematical Modeling, Differential Equations, Numerical Analysis, and 
Algebraic Structures. Computers and graphing calculators are used ex-
tensively in most of the math courses.

The Computer Information Science program at Mercy College is de-
signed to enable students to adapt to fast-changing technologies by: 

•	 Introducing students to modern technology and software;
•	 Developing competencies, skills and a knowledge base for grad-

uates that are necessary for success in the work place and life-
long learning; and

•	 Preparing majors for graduate programs in related fields includ-
ing Computer Science, Computer Information Systems, Tele-
communication, Management Information Systems, Information 
Technology, Internet Business Systems, and Business.

USA
University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
Mathematical and Information Sciences for Industry (MISI)
http://www.math.uic.edu/~misi/approach.html
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UIC’s Master’s degree program in Mathematical and Information Sci-
ences for Industry (MISI) is unique in providing:

•	 An interdisciplinary curriculum balancing discrete mathemat-
ics, continuous mathematics, computer science, information sci-
ences, and statistics. To successfully model complex scientific, 
engineering and business problems, students need a knowledge 
not only of discrete mathematics, including algorithms, combi-
natorics, data structures, and programming, but also of classi-
cal topics in applied mathematics, including differential equa-
tions, numerical analysis, mathematical modeling, and analysis. 
This curriculum balances discrete mathematics, which forms 
the foundation of a computer science curriculum, with the con-
tinuous mathematics used to model complex scientific, engi-
neering, and business problems. In addition, students receive a 
solid foundation in software science, computer modeling, and 
simulation;

•	 The opportunity for students to work in teams on advanced re-
search and development projects. Each student will complete a 
major project in his or her area of specialization and several mi-
nor projects. Projects allow students to work in depth on a prob-
lem of interest to both themselves and industry. Projects also 
allow students to see current, ongoing research in new and 
emerging fields, as well as those fields containing a strong com-
putational component; and

•	 Workshops and projects to improve student's technical oral and 
written communications skills. Workshops and projects provide 
students with the opportunity to learn to work in a team and to 
improve their technical oral and written communication skills.

The program's approach is to have students concentrate on a core set 
of required Industrial Mathematics concentration courses and on a curric-
ulum which is project-oriented. As outlined below, concentration courses 
are required in the areas of Discrete Mathematics, Applied Mathemat-
ics, Information and Software Sciences, Statistics and Probability, and In-
dustrial Science. In addition, students graduating from the program will 
have worked as team members on one major project and several minor 
projects; each project chosen based on its applicability to current indus-
trial needs and based on its ability to provide results which are meaning-
ful to industry.
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The program has been designed to focus simultaneously on the stu-
dent graduating from the program and the industry that will potentially 
hire him or her. One focus is on the graduate student seeking a master's 
degree in mathematics but intending to seek employment in a non-aca-
demic career. The other is on companies in need of employees with an 
advanced degree in industrial mathematics and/or in need of UIC's ex-
pertise to assist them in finding solutions to projects of many types.

Graduate Students

The one and a half year MISI Master's Degree Program is structured 
so that graduates will have developed three overlapping skill sets: 

•	 The breadth and depth of their mathematical knowledge will allow 
them to make meaningful contributions to the solutions of com-
plex problems requiring sophisticated analysis;

•	 Their knowledge of computer science will give them the ability to 
develop algorithms and software which allow “real world” solu-
tions to complex problems; and

•	 Their oral and written communication skills, along with project 
management skills, will allow them to formulate and express eas-
ily understood technical goals and to insert new technology into 
an organization.

For these reasons, the program is interdisciplinary and places equal 
emphasis on mathematics, information sciences, oral and written com-
munication skills, and project management.

•	 Business and Industrial Participation 
UIC envisions three ways in which companies can participate in 
the MISI program:

•	 Companies can sponsor one of their own current employees who 
enrolls in the program;

•	 Companies can submit projects to one of the department's labo-
ratories; and

•	 Companies can sponsor ongoing research undertaken by MISI 
program graduate research assistants in one of the department's 
laboratories.
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USA
US Army Research Laboratory
ARO Mathematical and Information Sciences
http://www.arl.army.mil/www/default.cfm?Action=29&Page=216

The mission of the US Army Research Laboratory is to support and 
sponsor basic research in the information processing, computation, and 
mathematical modeling, enhance decision-making, command and con-
trol, communications, and combat system performance.
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