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Fig. 2. Amino acid alignments of BoNTC, BoNT C/D, BoNT D/C and BoNT D showing mosaic nature of the C/D and D/C toxins. BoNT C sequences are
red, BoNT D sequences are blue, conserved sequences are black with yellow highlighting, and sequences unique to BoNT D/C are green.



4278 R.P. Webb et al. / Vaccine 25 (2007) 4273–4282

2.3.4. Mouse serum ELISA titers
Mice were bled 2 days prior to challenge to obtain serum

for individual serum ELISA titers. Sera were tested in dupli-
cate for reactivity against the same toxin type used for
the mouse challenge. Ninety-six well microtiter plates were
coated with toxins diluted to 2 �g/ml and incubated overnight
at 4 ◦C. The toxins used to coat the plates were the com-
plexed form of BoNT D and C/D or pure neurotoxin from
types C1 and D/C. Skim milk diluent (5% skim milk in PBS,
pH 7.4) was used to block nonspecific binding and as an anti-
body diluent. Plates were washed with PBS (pH 7.4) with
0.1% Tween-20 between steps. Test sera were initially diluted
1:100, followed by four-fold serial dilutions for a total of eight
dilutions (1:100–1: 1,638,400), and incubated for 90 min at
37 ◦C. Goat anti-mouse antibody conjugated to horseradish
peroxidase (KPL, Gaithersburg, MD), diluted 1:1000, was
added as the secondary antibody, and incubated for 60 min
at 37 ◦C. Plates were developed for 30 min at room temper-
ature with 2, 2′-azino-di (3-ethylbenzthiazoline-6-sulfonate)
(ABTS) (KPL, Gaithersburg, MD) and absorbance was read
at 405 nm. The titer was defined as the reciprocal of the
highest dilution with an absorbance ≥0.2 above background.
Geometric means of the ELISA titers were generated to show
overall comparisons in antibody development to each toxin
subtype. Statistical analyses on geometric means were done
using ANOVA with Tukey’s post-hoc tests for comparisons
between non-controls and Dunnett’s post-hoc tests for com-
parisons to controls. Additional ELISAs comparing results
using pure versus complexed BoNT D/C toxin were done
(data not shown). Results were similar, regardless of toxin
state.

3. Results

3.1. r BoNT/C1 Hc purification

While our original rBoNT/C1 Hc construct was designed
specifically to produce stable full-length protein, the final
product was found to contain truncations. The predomi-
nant protein species purified was 426 amino acid residues,
representing a 22 amino acid deletion. The N-terminus of
the protein consistently began with YFNNINDSKI. Modi-
fications in fermentation and purification failed to produce
full-length protein, and, as a homogeneous vaccine product
is desirable and studies indicated that the additional 22 amino
acid residues removed were not necessary for immunogenic-
ity of the product, a new gene construct was made beginning
at amino acid residue 865. The three-step purification scheme
included initial capture using MEP HyperCel, followed by a
weak anion exchange step that removed the majority of higher
molecular weight Pichia proteins, and final removal of con-
taminants and any rBoNT/C1 Hc degradation products with
a repeat of MEP HyperCel. Diafiltration was used to raise the
pH and reduce the conductivity of the product. The final prod-
uct had a concentration of 320 �g/ml and was >98% pure by

Fig. 3. SDS-PAGE of purified BoNT/C1 Hc and BoNT/D Hc. Lanes 1 and
4: molecular weight markers, lane 2–5 �g of rBoNT/C1 Hc, lane 3–5 �g of
rBoNT/D Hc.

visual inspection of an SDS-PAGE (Fig. 3) and Western blot
(Fig. 4). Sequencing indicated the N-terminus of the protein
was intact.

3.2. rBoNT/D Hc purification

The rBoNT/D Hc protein product was >95% pure, with
a final concentration of 306 �g/ml. SDS-PAGE and West-
ern blot analyses showed single bands of expected molecular
weight. (Figs. 3 and 4). N-terminal sequencing of the purified
D Hc vaccine revealed 95% of the purified polypeptide began
with the sequence Y F N S I N D S K I, which represented a
rBoNT/D Hc species lacking the first 31 amino acid residues
from the expected N-terminus. Thus, the final rBoNT/D Hc
protein consisted of 415 amino acid residues, from Tyr 861-
Glu 1276. Care was taken to engineer the genes for these

Fig. 4. Western blot of purified BoNT/C1 Hc and BoNT/D Hc. Lanes 1 and
3: molecular weight markers, lane 2: BoNT/C1 Hc, lane 4: purified BoNT/D
Hc.
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recombinant proteins to express full-length proteins, but, as
with the rBoNT/C1 Hc protein, the rBoNT/D Hc showed a
distinct but stable truncation.

3.3. Vaccination and challenge with BoNT C and D
toxin subtypes

Mice receiving three vaccinations of 5 �g per mouse of
either rBoNT/C1 Hc, rBoNT/D Hc, or a bivalent vaccine con-
taining both antigens were challenged with 100,000 mouse
LD50 of appropriate toxin. Survival results are presented
in Table 1. Mice were challenged with BoNT C1 (NCTC
8264), BoNT C/D (003-9), BoNT D (CB-16), and BoNT D/C
(VPI 5995) toxins. Neurotoxin from the VPI 5995 strain was
thought to be type D, but previous studies showed that the
toxin was not effectively neutralized by anti-D antitoxin and
neurotoxin sequencing confirmed this toxin to be type D/C.
Survival against challenges with BoNT C1 toxin after vacci-
nation with rBoNT/C1 Hc or rBoNT/C1+D Hc was complete
and partial survival was seen after challenge with BoNT D/C
toxin. Complete survival was seen against challenges of either
BoNT D or C/D toxin after vaccination with rBoNT/D Hc or
rBoNT/C1+D Hc. Survival against D/C toxin was partial after
vaccination with rBoNT/C1 Hc or rBoNT/C1+D Hc (3–4/10
mice).

Potency assays using BoNT/C1 and /D Hc against homol-
ogous toxin show good protection, with ED50 values of
109 ng (95% confidence limits = 54–208 ng) and 232 ng (95%
confidence limits = 105–501 ng), respectively, after only one
vaccination (Fig. 5). No mice survived challenge after vacci-
nation with BoNT/D Hc and challenge with BoNT D/C toxin.
As the efficacy results after three vaccinations with BoNT/
C1 Hc at 5 �g/mouse and challenge with BoNT C/D toxin
showed no survival, it was deemed unnecessary to run a one-
dose potency assay using that vaccine-toxin combination.

3.4. Mouse serum ELISA results

Serum antibody titers were determined using individual
serum ELISAs for each mouse against their challenge toxin.
Geometric means of the titers are shown in Table 1 and Fig. 6.
Mice vaccinated with rBoNT Hc antigen homologous to the
challenge toxin Hc sequence developed the highest average
titers, ranging from 67,559 to 819,200, with the exception of
BoNT/D/C. In contrast, serum from mice vaccinated with

Fig. 5. Results from one-dose potency assays showing protection against
homologous toxins. ED50 values for BoNT /C1 Hc vs. BoNT C toxin and
rBoNT/D Hc vs. BoNT D toxin are 109 ng and 232 ng, respectively. There
were no survivors when BoNT/D Hc-vaccinated mice were challenged with
BoNT D/C toxin.

Fig. 6. Serum responses in mice following vaccination with rBoNT/C1 Hc,
rBoNT/D Hc, or a combination of C1 and D Hc vaccines. Mouse sera were
tested individually by ELISA where the antigens were the same subtype as
the challenge toxins for those animals. Geometric means of the titers were
generated for comparative purposes. Error bars represent the mean + 2 S.D.

rBoNT Hc heterologous to the Hc of the challenge toxin
developed substantially lower titers ranging from 100 to 919.
ELISA titers where BoNT D/C was used as coating toxin
were 673 for rBoNT/D Hc-vaccinated mice, and only 14,703
and 16,890 for rBoNT/C1 or rBoNT/C1+D Hc-vaccinated
mice, respectively. Overall differences in geometric mean
ELISA titers were analyzed using ANOVA. As expected with

Table 1
Survival data and geometric means of mouse serum ELISA titers

C NCTC 8264 C/D 003-9 D/C VPI 5995 D CB16

Challenge ELISA Challenge ELISA Challenge ELISA Challenge ELISA

C (Hc) 10/10 819,200 0/10 303 4/10 14,703 0/10 100
D (Hc) 0/10 919 10/10 470,507 0/10 673 10/10 310,419
C (Hc) + D (Hc) 10/10 270,235 10/10 67,559 3/10 16,890 10/10 102,400
toxin controls 0/10 <100 0/10 <100 0/10 <100 0/10 <100

Mice were immunized 3 times at 0, 4, and 8 weeks with 5 �g per mouse of rBoNT/C1 Hc, rBoNT D Hc, or both antigens. Two weeks following final
immunization, mice were challenged with 100,000 LD50 of listed toxin. Challenge numbers represent number of survivors/total number of mice in group.
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the monovalent formulations, highly significant differences
(p < 0.0001) were seen when comparing high versus low
titers. However, differences when comparing high with high
or low with low were not significant (p = 0.5056–0.9828),
with the exception of mice vaccinated with rBoNT Hc where
sera was tested against D/C toxin. Sequence differences
between BoNT C and D/C in the Hc region were sufficient
to lower antibody binding to significantly different levels
(p < 0.0001). The BoNT D/C Hc region contains approx-
imately 23% unique sequence that differs from any other
serotype, including C1 and D. Thus, we would expect sig-
nificant differences in ELISA titer after bivalent vaccination
when comparing BoNT C, C/D, or D versus BoNT D/C toxin.
Titers against BoNT C, C/D, or D ranged from 67,559 to
270,235 but averaged only 16,890 against BoNT D/C. These
were significantly different levels (p < 0.0001–0.0354). In
addition, differences between titers using C toxin versus C/D
toxin were significant (p = 0.0354), but not when compar-
ing C versus D or D versus C/D. These analyses indicate
that rBoNT/C1 Hc is not a significantly better immunogen
than rBoNT/D Hc, and that both antigens in combina-
tion are significantly less immunogenic against C/D mosaic
toxins.

4. Discussion

There are currently no licensed vaccines for the preven-
tion of botulism. Limited quantities of a pentavalent toxoid
vaccine granted Investigational New Drug status in 1979 are
available for individuals at risk of exposure. However, due
to the difficulties and risks associated with producing tox-
oid vaccines [25] subsequent efforts have largely focused on
recombinant vaccines for prophylaxis [26–29]. We have pre-
viously demonstrated that recombinant rBoNT Hc vaccines
are highly efficacious, protecting against challenges of over
100,000 LD50 of toxin, often after a single vaccination [30].

However, botulinum neurotoxins are known to be diverse
[31,32], with multiple subtypes that present distinct chal-
lenges in designing effective prophylactic and therapeutic
molecules. While some toxin subtypes differ by as much as
32%, only the C and D serotypes show specific mosaic pat-
terns, which make protection after vaccination particularly
challenging. An additional problem with these serotypes has
been the marketing of serotype C/D as serotype C, and of
serotype D/C as serotype D. Problems relating to vaccine
protection against BoNT D led us to pursue additional stud-
ies with this toxin, including gene sequencing. As a result,
we discovered the subtype discrepancy with BoNT D/C VPI
5995 (from Metabiologics), and verified the subtype of C/D
003-9 (from Wako). Previously, these subtypes were deter-
mined to be serotypes D and C solely on immunological
information, and since there is some cross-reactivity, even
between serotype C1 and serotype D, this has led to confusion
as to their true nature. An example of this confusion may be
seen in the conflicting reports of cellular toxicity with BoNT

C1, which could be due to use of C1 in some experiments
and C/D in others [33,34].

To date, all sequenced BoNT C or D strains have shown
remarkable conservation to either the standard or mosaic
toxins. However, the numbers of published sequences are
limited to about 13 BoNT C or C/D strains, and 6 BoNT D
and D/C strains. These strains are from Japan, South Africa,
Taiwan, and Europe, with only a very few sequences are rep-
resented from any specific geographic region. It is possible
that as more BoNT C and D strains are sequenced, additional
sequence diversity may be seen in these serotypes.

Catastrophic outbreaks of botulism in domestic animals,
birds [35,36] and farmed fur animals [12] have had severe
environmental and economic impacts. A survey of the litera-
ture reveals numerous case studies of botulism outbreaks in
cattle, sheep, and goats, where herd losses from 30–77% have
been recorded. Losses have been especially hard in South
America, Africa, and Australia, where vaccination against
BoNT C and D is encouraged. Veterinary use of rBoNT/C1
and /D vaccines could prevent such outbreaks in the future.

Woodward et al. [37] reported that recombinant
polyhistidine-tagged rBoNT/C1 and /D Hc antigens pro-
duced in E. coli were used to inoculate mice as both monova-
lent and bivalent vaccines. Vaccinations of 10 �g rBoNT/C1
and /D Hc delivered i.p. at 0 and 2 weeks provided 40% and
60% protection against 100,000 LD50 of BoNT C1 and BoNT
D. The bivalent formula conferred 100% and 40% protec-
tion against 1000 LD50 challenge with BoNT C1 and BoNT
D, respectively. While there was little or no cross protection
observed in the monovalent vaccines, mice given the bivalent
vaccine survived the BoNT C1 challenge and a subsequent
challenge of 1000 LD50 of BoNT D. In a separate study,
approximately 10 �g of rBoNT/C1 and /D HC expressed as
glutathione-S-transferase fusion proteins in E. coli were used
to inoculate mice at 0 and 3 weeks [38] The HC vaccines com-
pletely protected mice from challenge with 100,000 LD50 of
the homologous toxins. No bivalent formulations were inves-
tigated in this study. Additionally, the Woodward study did
not list the challenge toxin strains used, and the Arimitsu
study did not test their vaccines against mosaic strains.

Our rBoNT/C1 and /D Hc vaccines were composed of
synthetic genes designed for optimal full-length expression
in P. pastoris. Surprisingly, both recombinant proteins were
cleaved at the same conserved E/Y site (see Fig. 1A and
B) by an unidentified protease. The predominant proteolytic
product was shown to be stable, despite the inclusion of
two significant N-terminal destabilizing amino acids [23].
The relative stability of these recombinant proteins is unex-
plained but might be attributed to the N-terminal region
being sequestered within the recombinant protein, making
it unavailable for subsequent degradation.

Results indicate our monovalent rBoNT/C1 and /D Hc
vaccines are effective against homologous toxins, and the
bivalent formulation can significantly protect against BoNT
C1, D and both mosaic toxins. Complete protection was
seen after vaccination with vaccines containing similar Hc
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sequences as the challenge toxins. Mice vaccinated with
rBoNT/C1 Hc were completely protected against BoNT C1
and partially protected against BoNT D/C toxins; mice vac-
cinated with rBoNT/D Hc were completely protected against
BoNT C/D and D toxins. Mice vaccinated with the combi-
nation rBoNT/C+D Hc vaccine were completely protected
against all C and D toxin subtypes except the BoNT D/C
toxin.

Serum ELISA titers reflected survival results. Vaccination
with bivalent vaccine resulted in a less robust ELISA titer yet
offered the same level of protection against a toxin challenge
as the monovalent formulations. While the ELISA titers and
survival in the mosaic BoNT D/C-challenged animals appears
due primarily to protection from the rBoNT C1 Hc vaccine,
the relatively poor ELISA titers and survival rates observed
are most likely due to the significant sequence divergence
between BoNT D/C, C1 and D observed in the Hc region
(Fig. 2). The Hc of this toxin differs by 23% from the BoNT
C1 sequence and by 63% from the BoNT D sequence. The
antibodies derived from the rBoNT/C1 and /D Hc antigens
that do not contain this unique sequence would most likely
have a reduced efficacy in neutralizing the D/C mosaic toxin.

One dose potency assays were done with BoNT/C1 Hc
vaccination and challenge with BoNT C1 toxin, and with
BoNT/D Hc vaccination followed by challenge with either
BoNT D or D/C toxin. While the ED50 for BoNT/C1 Hc-
BoNT C toxin was 114 ng, and the ED50 for BoNT/D
Hc-BoNT D toxin was 232 ng, there were no survivors when
BoNT/D Hc vaccinated mice were challenged with BoNT
D/C toxin. The ED50 results after challenge with homolo-
gous toxin are within the range of ED50s of other rBoNT Hc
vaccines (89–250 ng) [1], indicating that equivalent effective
protection is seen with all rBoNT Hc vaccines. The potency
assays also showed that no effective protection can be gained
after single vaccination with rBoNT/D Hc and challenge
with mosaic D/C toxin. Woodward et al. indicated that pro-
tection might also be limited after two vaccinations. Three
vaccinations with our rBoNT /C1 and/D Hc vaccines are time-
consuming but effective. These results show our rBoNT/C1
Hc and /D Hc vaccines to be effective against challenge with
homologous toxin after single vaccination, but effective pro-
tection against heterologous may require a minimum of three
vaccinations.

Recombinant BoNT Hc vaccines are known to be highly
protective against homologous toxins. This report illustrates
their effectiveness in monovalent and bivalent formulations
against diverse toxin subtypes.
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