
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Holland Computing Center -- Faculty Publications Holland Computing Center

Summer 7-27-2015

Distributed Caching Using the HTCondor
CacheD
Derek J. Weitzel
University of Nebraska-Lincoln, dweitzel@cse.unl.edu

Brian Bockelman
University of Nebraska-Lincoln, bbockelman2@unl.edu

David Swanson
University of Nebraska - Lincoln, dswanson@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/hollandfacpub

Part of the Numerical Analysis and Scientific Computing Commons

This Article is brought to you for free and open access by the Holland Computing Center at DigitalCommons@University of Nebraska - Lincoln. It has
been accepted for inclusion in Holland Computing Center -- Faculty Publications by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Weitzel, Derek J.; Bockelman, Brian; and Swanson, David, "Distributed Caching Using the HTCondor CacheD" (2015). Holland
Computing Center -- Faculty Publications. 4.
http://digitalcommons.unl.edu/hollandfacpub/4

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/hollandfacpub?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/hollandcc?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/hollandfacpub?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/hollandfacpub/4?utm_source=digitalcommons.unl.edu%2Fhollandfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Distributed Caching Using the HTCondor CacheD
Derek Weitzel, Brian Bockelman,

and David Swanson
Computer Science and Engineering
University of Nebraska – Lincoln

Lincoln, Nebraska 68588
Email: dweitzel@cse.unl.edu

Abstract—A batch processing job in a distributed system has
three clear steps, stage-in, execution, and stage-out. As data sizes
have increased, the stage-in time has also increased. In order
to optimize stage-in time for shared inputs, we propose the
CacheD, a caching mechanism for high throughput computing.
Along with caching on worker nodes for rapid transfers, we also
introduce a novel transfer method to distribute shared caches
to multiple worker nodes utilizing BitTorrent. We show that
our caching method significantly improves workflow completion
times by minimizing stage-in time while being non-intrusive to
the computational resources, allowing for opportunistic resources
to utilize this caching method.

I. INTRODUCTION

Large input datasets are becoming common in scientific
computing. Unfortunately for campus researchers, the staging
time of the datasets to computational resources has not kept
pace with the increase in dataset sizes. The typical large dataset
workflow may consist of thousands of individual jobs, each
sharing input files.

The campus resources made available to researchers are
shared; therefore, the researchers have the limitation of not
having access to install programs on the clusters. Previous
work [1] built an overlay on top of campus resources to create
a virtual, on-demand pool of resources for task execution.
We expand the capabilities of this virtual pool to include
data caching and novel transfer methods to enable big data
processing.

An excellent example of a big data workflow is that of the
bioinformatics application: BLAST [2]. Each BLAST query
requires an entire reference database, which can range in size
from a few kilobytes to many gigabytes. The workflow to run a
BLAST query requires a large stage-in time in order to make
the reference database available. Additionally, the databases
are frequently updated with new entries.

Users in the past have copied the database using various
methods. The naı̈ve method includes copying the database
for each job. Storing the database on a shared filesystem has
the same effect as copying the database for each job, since
the database must be transferred to the execution node for
each job. We propose caching the database on the node for
subsequent executions.

We find that the BLAST workflow described above is
common among large data researchers.

Bosco [1] is a remote submission tool that can create overlay
virtual pools designed for campus resources. In previous work,

Bosco allowed campus researchers to submit high throughput
jobs to high performance clusters. We extend Bosco to include
data caching and novel data transfer methods.

We limit our design and analysis to a campus cluster
computing environment. Our solution is unique in that it is
designed to run opportunistically on the campus computing
resources. Additionally, they do not require administrator
intervention in order to create a virtual, on-demand pool of
resources.

II. BACKGROUND AND RELATED WORK

Data caching on distributed systems has been used many
times and at many levels. Caching can be done on the storage
systems and on the execution hosts, as well as well as in within
the infrastructure separating the two.

Some distributed filesystems use local caches on the worker
nodes. GPFS [3] has a read-only cache on each worker node
that can cache frequently accessed files. It is designed for a
fast, shared filesystem and is recommended when file access
latency is a concern. It is not recommended for large files since
internal bandwidth to the local disk is assumed to be less than
the bandwidth available to the GPFS shared filesystem. GPFS
file transfers are typically done over high speed interconnects
which can provide high bandwidth for large files. These
interconnects are not typically available to a user’s jobs for
transferring data from a remote source.

HTTP caching is used throughout the web to decrease
latency for page loads and to distribute requests among servers.
In high throughput computing, a forward proxy is commonly
used to cache frequent requests to external servers. The for-
ward proxy caches files requested through it, and will respond
to subsequent requests for the same file by reading it from
memory or its own disk cache.

The HTTP forward proxy caching does have limitations.
The HTTP protocol was designed and is used primarily for
websites. Websites have very different requirements from
high throughput computing. The data sizes are much smaller.
Software designed as forward proxies, such as Squid [4], are
optimized for web HTTP traffic, and therefore do not handle
large data file sizes optimally. Further, the Open Science Grid
(OSG) [5] sites typically only have one or possibly a few squid
caches available to user jobs. They are not designed to scale
to large transfers for hundreds of jobs, our target use case.



Parrot [6] is another application that will cache remote
files when using certain protocols. Parrot uses interposition
[7] to capture and interpret IO operations by an unmodified
binary application. The interposition allows Parrot to provide
a transparent interface to remote data sources. Parrot caches
some of those sources such as HTTP with GROW-FS, a
filesystem using HTTP. Parrot caches an entire file to the local
storage. Parrot must download directly from the source the first
time it is requested, exhausting WAN bandwidth quickly for
large files.

CernVM-FS [8] provides a filesystem over the HTTP proto-
col. It integrates into the worker node system using the FUSE
[9] interface. The CernVM-FS local node client caches files
on the node, as well as using Squid to cache files at the site.
Again, since it uses the HTTP, it’s not designed to cache large
files. Neither the Squid caches nor the web servers optimally
transfer large files, nor are they designed for large data sizes.
Further, CernVM-FS requires administrator access in order to
install and configure, a privilege that campus users do not
have.

XrootD [10] is designed for large data access, and it has
even been used for WAN data transfers [11] using a federated
data access topology. There has been some work in creating
a caching proxy for the XrootD [12]. The caching proxy is
designed to cache datasets on filesystems near the execution
resources. The caching proxy requires installation of software
and the running of services on the cluster. Unprivileged
campus users will be unable to run or install these services.

We define local caching as saving the input files on the
local machine and making them available to local jobs. Local
caching is different from site caching, which is done in the
OSG by Squid caches. We define site caching as when data
files are stored and available to jobs from a closer source than
the original. In most cases on the OSG, the site cache is a
node inside the cluster that has both low latency and high
bandwidth connections to all of the execution hosts.

We use distributed transfer to mean transfers that are not
from a single source. In our case, we will be using BitTorrent
[13], in which a client may download parts of files from
multiple sources. Additionally, the client may make available
to other clients parts of the files that have already been
downloaded.

BitTorrent is a transfer protocol that is designed for peer-
to-peer transfers of data over a network. It is optimized to
share large datasets between peers. The authors of [14] and
[15] discuss scheduling tasks efficiently in peer-to-peer grids
and desktop grids. Their discussion does not take into account
the network bottlenecks that are prevalent in campus cluster
computing.

In [16], the authors use scheduling, caching, and BitTorrent
in order to optimize the response time for a set of tasks on
a peer-to-peer environment. They build the BitTorrent and
caching mechanisms into the middleware which is installed
and constantly running on all of the peers. They do not
consider the scenario of opportunistic and limited access to
resources. Their cluster size is statically set, and therefore may

not see the variances that users of campus clusters may see.

III. IMPLEMENTATION

The HTCondor CacheD is a daemon that runs on both the
execution host and the submitter. For our purposes, a cache
is defined as an immutable set of files that has metadata
associated with it. The metadata can include a cache expiration
time, as well as ownership and acceptable transfer methods.

The CacheD follows the HTCondor design paradigm of
a system of independent agents cooperating. Each CacheD
makes decisions independently of each other. Coordination is
done by CacheDs communicating and negotiating with each
other.

Each caching daemon registers with the HTCondor Col-
lector. The collector serves as a catalog of available cache
daemons that can be used for replication.

In addition to the CacheD, a transfer plugin is used to
perform the cache transfers in the job’s sandbox. The plugin
uses an API to communicate with the local CacheD to request
local replication requests to the local host. After the cache is
transferred locally, the plugin then downloads the cache to the
job’s working directory.

Expiration time is is used for simple cache eviction. A user
creates a cache with a specific expiration time. After a cache
has expired, a caching server may delete it to free space for
other caches. The expiration may be requested to be extended
by the user

The CacheD supports multiple different forms of transfer-
ring data. Using HTCondor’s file transfer plugin interface,
it can support pluggable file transfers. For this paper, we
will only use the BitTorrent and Direct transfer methods.
The BitTorrent method uses the libtorrent library to manage
BitTorrent transfers and torrent creation. The Direct method
uses an encrypted and authenticated stream to transfer data
from the source to the client.

An important concept of the caching framework is a cache
originator. The original daemon that the user uploaded their
input files to is the cache originator. The cache originator is in
charge of distributing replication requests to potential nodes,
as well as providing the cached files when requested.

The caching daemons interact with each other during repli-
cation requests. A cache originator sends replication requests
to remote caching daemons that match the replication policy
that is set by the user. The remote caching daemon then
confirms that the cache data can be hosted on the server. The
remote cache then initiates a file transfer in order to transfer
the cached data from the origin to the remote CacheD.

The receiving CacheD can deny a replication request for
many reasons, including:

• The resource does not have the space to accommodate
the cache.

• The resource may not have the necessary bandwidth
available in order to transfer the cache files.

• The resource does not expect to be able to run the user’s
jobs and has determined that the cached files will not be
used.



The ability of the receiving CacheD to deny a replication
request follows HTCondor’s independent agent model.

The policy expression language is modeled after the match-
making language in the HTCondor system [17]. The caching
daemon is matching the cache contents to a set of resources;
therefore, it is natural to use HtCondor’s same matchmaking
language that is used to match jobs to resources. Once a
resource is determined to match the cache’s policy expres-
sion, the caching daemon will contact the resource’s caching
daemon in order to initiate a cache replication. The caching
daemon on the remote resource is an independent agent
that has the ability to deny a caching replication even after
matchmaking is successful.

Libtorrent is built into the CacheD to provide native BitTor-
rent functionality. The CacheD is capable of creating torrents
from sets of files in a cache, as well as downloading cache files
using the BitTorrent protocol. Since this is a distributed set of
caches, we will not use a static torrent tracker. Rather, we will
use a Distributed Hash Table [18] and local peer discovery [19]
features of the BitTorrent protocol. This ensures that there are
no single points of failure.

A. Creation and Uploading Caches

The user begins using the caching system by uploading a
cache to their own CacheD, which then becomes the cache
originator. This is very similar to a user submitting a job to
their own HTCondor SchedD. Using the cache’s metadata, the
CacheD decides whether to accept or reject the cache. If the
CacheD accepts the cache, it stores the metadata into resilient
storage. The user then proceeds to upload the cache files to
the CacheD.

The CacheD stores the cache files into its own storage
area. Once uploaded, the CacheD takes action to prepare the
cache to be downloaded by clients. This includes creating a
BitTorrent torrent for the cached files.

Numerous protections are used in order to ensure proper
usage of the CacheD. The upload size is enforced to the size
advertised in the metadata. The client cannot upload more
data to the CacheD than was originally agreed upon during
cache creation. Further, the ownership of the cache is stored
in the metadata, and is acquired by authenticating with the
client upon cache creation. Only the owner may upload and
download files from the cache directly.

A client may mark a cache as only allowing certain replica-
tion methods. This can be useful if a user wishes to keep data
private. BitTorrent doesn’t offer the authorization framework
to ensure privacy of caches. Users may mark the cache as
only allowing DIRECT replications, which are encrypted and
authenticated.

B. Downloading Caches

When a job starts, the CacheD begins to download the cache
file. The cache is identified by a unique string that includes
the cache’s name and the cache’s originator host. The flow of
replication requests is illustrated in Figure 1. The replication
requests originate from the file transfer plugin, which sends the

replication request to the node local CacheD. The node local
CacheD then sends the replication to its parent or the origin
cache. The propagation of replication requests are modeled
after well-known caching mechanisms such as DNS.

Request Cache
Replication

File Transfer
Plugin

Node Local
CacheD

Origin Cached

Request Cache
Replication

Notice of replication
complete

Wait

Download Cache

.

.

.

.

.
Request Cache

Replication

Notice of replication
complete

Download
Request

Symlink
Creation

Fig. 1. Flow of Replication Requests

1) The plugin contacts the node local CacheD daemon on
the worker node. It requests that the cache is replicated
locally in order to perform a local transfer.

2) The node local CacheD responds to the file transfer
plugin with a “wait” signal. The file transfer plugin
polls the node local CacheD periodically to check on
the replication request.

3) The local CacheD daemon propagates the cache repli-
cation request to its parent, if it exists. If the CacheD
does not have a parent it contacts the cache originator
in order to initiate a cache replication.

4) If the cache is detected to be transferable with BitTor-
rent, the download begins immediately after receiving
the cache’s metadata from the parent or origin.



5) Once the cache is replicated locally, the plugin down-
loads the files from the local CacheD.

Each download is negotiated for the appropriate transfer
method between the parent and the client. Between parent and
client CacheD’s, the cache’s individual replication preferences
are honored. Between a CacheD and the transfer plugin, an
additional protocol is offered: symbolic link (symlink).

If the transfer plugin successfully authenticates with a local
CacheD, transfer methods are negotiated. If supported, the
symlink method may be chosen. The symlink transfer method
allows near instant transfer of the cache from the CacheD to
the plugin. A symlink is created by the CacheD in the job’s
working directory pointing to the cache directory. This symlink
method eliminates transferring the cache to each job.

Replication

User’s Submit Machine

HTCondor CacheD

Cluster

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

Glidein

HTCondor CacheD

NAT or 
Network 

Connection

Fig. 2. Cache Replication Showing Bottleneck

In Figure 2, you can see a traditional configuration of a clus-
ter. The configuration shows that there is a Network Address
Translation bottleneck or a network bottleneck between the
submit machine and the execution nodes. The bottleneck limits
the bandwidth between the submit machine and the execution
nodes.

C. Parenting of CacheDs

During testing of the CacheD, it was apparent that BitTor-
rent increases the IO queue on the host server significantly,
degrading the IO performance for all jobs on the server. This
increased IO queue leads to competition between BitTorrent-
enabled CacheD’s on the same host. In order to address the
increased IO queue, each CacheD will designate a single dae-
mon on the host that downloads the files through BitTorrent.
All other CacheDs will then download the cache from the
parent using Direct file transfer mechanisms.

IV. RESULTS

A. Experimental Design

To evaluate our solution, we will run a BLAST benchmark
from UC Davis [20]. We chose a BLAST benchmark due to
many factors. BLAST is used frequently on campuses, but
used infrequently on clusters due to the size of the database.
BLAST has very large databases that are required by each
job. This makes it difficult to use on distributed resources
since each job requires significant data. BLAST databases are
frequently updated, making them poor candidates for static
caching, but good candidates for short-term caching, for which
our CacheD specializes.

The BLAST database distributed with the benchmark is a
subset of the Nucleotide NR database. In our tests, we will use
a larger subset of the NR database in order to demonstrate the
efficiency of our solution.

For researchers, the time to results is likely the most
important metric. The stage-in time of data can be a large
component of the entire workflow time. We will measure the
time for stage-ins as well as the average stage-in time.

We designed two experiments that represent our experience
on campus infrastructure. In the first experiment, we will
allow 100 simultaneous jobs to start at the same time and
measure the average download time versus the number of
distinct nodes. This experiment also includes the download
time for child caches. We chose 100 jobs somewhat arbitrarily
in order to completely fill all of the nodes we were allocated
on the cluster.

In the second experiment, we compare the total stage-in
time for a variable number of jobs while number of distinct
nodes remains constant at 50. This will show that the cache is
working to eliminate transfer times when the files are already
on the node. Further, it will compare HTCondor’s File Transfer
method versus the CacheD’s two transfer methods: BitTorrent
and Direct.

When the number of jobs is fewer than 50, each job must
download the cache since there are 50 nodes available for
execution. When the number of jobs is more than 50, all jobs
that run after the initial download use a cached version of the
data.

In our experiments, each job will use the CacheD to stage-
in data to the worker nodes. The jobs will be submitted
with glideins created by Bosco [1] and the Campus Factory
[21]. Bosco allows for remote submission to campus resources
while the Campus Factory allows for on-demand glidein
overlay of remote resources. The Campus Factory is used in
order to create and run glideins which, in turn, run the CacheD
daemon. Bosco was used in order to submit to multiple campus
resources simultaneously.

These two experiments were conducted on a production
cluster at the Holland Computing Center at the University of
Nebraska–Lincoln (UNL).

B. Results

We completed 41 runs of the BitTorrent versus Direct
transfer experiments on the UNL production cluster. We first
confirmed our suspicion that the Direct transfer method would
result in a linear increase in the average stage-in time to trans-
fer the cache as we increased the number of distinct nodes.
Conversely, we found that the BitTorrent transfer method did
not significantly increase the average stage-in time as we
increased the number of distinct nodes. The BitTorrent transfer
method was faster than the Direct in all experiments.

Figure 3 shows that the BitTorrent transfer method is supe-
rior to Direct for all experiments that were run. Since multiple
CacheDs on the same node will parent to a single CacheD,
the number of distinct nodes is the dependent variable. After
the parent cache downloads the cache for the node, then each



●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

●

●
●

●

●
●●● ●

●

●●
●

●
● ●

●
●

●
●

● ● ●

2000

4000

6000

20 30 40 50 60 70
Number of Distinct Nodes

S
ta

ge
−

in
 T

im
e 

(s
ec

on
ds

)

Transfer Method

●● BitTorrent

Direct

Average Stage−in Time vs. Number of Distinct Nodes

Fig. 3. Comparison of Direct and BitTorrent Transfer Methods with Increasing Distinct Node Counts

child cache will download from the parent using the Direct
transfer method.

The Direct method of transfer follows a linearly increasing
time to download the cache files. This can be explained by
bottlenecks of the transfers between the host machine and the
execution nodes. The increase in number of distinct nodes
increases the stage-in time for any individual node.

The average download times for BitTorrent stage-ins are
also shown in Figure 3. The stage-in time does not signifi-
cantly increase as the distinct nodes increases. This meets our
expectations. We expect this trend to continue as the number
of distinct nodes increases since BitTorrent can use peers to
speed up download time.

Fig. 4. Historgram of Transfers Mode vs Download Times

To better illustrate how parenting affects the download time

of a cache, we show a histogram of the different modes in
Figure 4. The figure shows that while the parents download
first, and nearly at all the same time, the children take a
variable amount of time to download. This variability can be
attributed to the number of children on a node. The more
children downloading the cache at the same time, the slower
each download will take.

For our second experiment, we calculated the total stage-in
time for a variable number of jobs.

When we limit the number of nodes to 50, we can clearly
see the effect of the caching by varying the number of jobs. In
Figure 5, both the Direct and BitTorrent transfer methods have
a natural bend at about 50 jobs. This correlates to when the
CacheD has on-disk caches of the datasets, and the transfer to
the job’s sandbox is nearly instantaneous.

The HTCondor file transfer method has a shorter stage-
in time for low numbers of distinct nodes than the Direct
method. This can be explained by the increased overhead
that the CacheD introduces when transferring datasets. After
all 50 nodes have the dataset cached locally, the Direct
transfer method becomes more efficient than the HTCondor
file transfers.

V. CONCLUSIONS

We have presented the HTCondor CacheD, a technique to
decrease the stage-in time for large shared input datasets. Our
experiments proved that the CacheD decreases stage-in time
for these datasets. Additionally, the transfer method that the
CacheD used can significantly affect the stage-in time of the
jobs.

The BitTorrent transfer method proved to be a efficient
method to transfer caches from the originator to the execution
hosts. In fact, the transfer time for jobs did not increase as the
number of distinct nodes requesting the data increased. Any



● ●● ●
● ●

●● ● ●●
●

●

0

100

200

300

0 50 100 150 200
Number of Jobs

S
ta

ge
−

in
 T

im
e 

(h
ou

rs
)

Transfer Method

● Bittorrent

Direct
HTCondor File
Transfer

Stage−in Time vs. Number of Jobs

Fig. 5. Transfer Method vs Number of Jobs

bottlenecks that surround the cluster are therefore irrelevant
using the BitTorrent transfer method.

In the future we plan to investigate incorporating job match-
making with cache placement. The HTCondor Negotiator
could attempt to match jobs first against resources that have
the input files before matching against any available computing
resources.

ACKNOWLEDGMENT

This research was done using resources provided by the
Open Science Grid, which is supported by the National Sci-
ence Foundation and the U.S. Department of Energy’s Office
of Science.

REFERENCES

[1] D. Weitzel, I. Sfiligoi, B. Bockelman, J. Frey, F. Wuerthwein, D. Fraser,
and D. Swanson, “Accessing opportunistic resources with bosco,” Jour-
nal of Physics: Conference Series, vol. 513, no. 3, p. 032105, 2014.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs,” Nucleic acids research,
vol. 25, no. 17, pp. 3389–3402, 1997.

[3] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for
large computing clusters.” in FAST, vol. 2, 2002, p. 19.

[4] Squid. (2015) Squid: optimizing web delivery. [Online]. Available:
http://www.squid-cache.org/

[5] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Würthwein et al., “The open
science grid,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012057.

[6] D. Thain and M. Livny, “Parrot: An application environment for data-
intensive computing,” Scalable Computing: Practice and Experience,
vol. 6, no. 3, pp. 9–18, 2005.

[7] ——, “Multiple bypass: Interposition agents for distributed computing,”
Cluster Computing, vol. 4, no. 1, pp. 39–47, 2001.

[8] J. Blomer, P. Buncic, and T. Fuhrmann, “Cernvm-fs: delivering scientific
software to globally distributed computing resources,” in Proceedings of
the first international workshop on Network-aware data management.
ACM, 2011, pp. 49–56.

[9] M. Szeredi et al., “Fuse: Filesystem in userspace,” Accessed on, 2010.

[10] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “Xrootd-a highly
scalable architecture for data access,” WSEAS Transactions on Comput-
ers, vol. 1, no. 4.3, 2005.

[11] L. Bauerdick, D. Benjamin, K. Bloom, B. Bockelman, D. Bradley,
S. Dasu, M. Ernst, R. Gardner, A. Hanushevsky, H. Ito et al., “Using
xrootd to federate regional storage,” in Journal of Physics: Conference
Series, vol. 396, no. 4. IOP Publishing, 2012, p. 042009.

[12] L. Bauerdick, K. Bloom, B. Bockelman, D. Bradley, S. Dasu, J. Dost,
I. Sfiligoi, A. Tadel, M. Tadel, F. Wuerthwein et al., “Xrootd, disk-based,
caching proxy for optimization of data access, data placement and data
replication,” in Journal of Physics: Conference Series, vol. 513, no. 4.
IOP Publishing, 2014, p. 042044.

[13] B. Cohen, “The bittorrent protocol specification,” 2008.
[14] B. Wei, G. Fedak, and F. Cappello, “Scheduling independent tasks

sharing large data distributed with bittorrent,” in Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing. IEEE
Computer Society, 2005, pp. 219–226.

[15] ——, “Towards efficient data distribution on computational desktop
grids with bittorrent,” Future Generation Computer Systems, vol. 23,
no. 8, pp. 983–989, 2007.

[16] C. Briquet, X. Dalem, S. Jodogne, and P.-A. de Marneffe, “Scheduling
data-intensive bags of tasks in p2p grids with bittorrent-enabled data
distribution,” in Proceedings of the second workshop on Use of P2P,
GRID and agents for the development of content networks. ACM,
2007, pp. 39–48.

[17] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed
resource management for high throughput computing,” in High Perfor-
mance Distributed Computing, 1998. Proceedings. The Seventh Interna-
tional Symposium on. IEEE, 1998, pp. 140–146.

[18] J. Dinger and O. P. Waldhorst, “Decentralized bootstrapping of p2p
systems: a practical view,” in NETWORKING 2009. Springer, 2009,
pp. 703–715.

[19] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing
incentives in bittorrent systems,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 35, no. 1. ACM, 2007, pp. 301–312.

[20] G. Coulouris. (2015) Blast benchmark. [Online]. Available:
http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/Blast Benchmark

[21] D. Weitzel, “Campus grids: A framework to facilitate resource sharing,”
Master’s thesis, University of Nebraska, 2011.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 7-27-2015

	Distributed Caching Using the HTCondor CacheD
	Derek J. Weitzel
	Brian Bockelman
	David Swanson

	tmp.1438965212.pdf.MmoWE

