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Observation of p-Wave Threshold Behavior in Electron Attachment to F2 Molecules

M. Braun,1 M.-W. Ruf,1 I. I. Fabrikant,1,2 and H. Hotop1

1Fachbereich Physik, Technische Universität, D-67653 Kaiserslautern, Germany
2Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68455, USA

(Received 25 September 2007; published 19 December 2007)

Using the high resolution laser photoelectron attachment method, we demonstrate that the cross section
for F� formation due to electron capture by F2�X

1�g
�� molecules at very low energies exhibits p-wave

threshold behavior. This finding confirms the theoretical expectation that low-energy attachment to F2

proceeds through the F2
��2�u

�� p-wave shape resonance in contrast with previous experimental claims
for s-wave threshold behavior.

DOI: 10.1103/PhysRevLett.99.253202 PACS numbers: 34.80.Ht, 34.10.+x

Molecular fluorine F2 is an important constituent in
electrically excited gas lasers [1]. Correspondingly, much
interest has existed for a long time in low-energy collisions
of electrons with F2, resulting in vibrational excitation
(VE), neutral dissociation and ionization, or in dissociative
electron attachment (DEA) forming F� � F. Unfortu-
nately, F2 is an aggressive gas which is rather difficult to
work with, and until now experimental data for the men-
tioned processes are rather scarce. To our knowledge, only
one measurement has been carried out on VE [2]. The DEA
process has been investigated by several groups, using
electron swarms (see [3], and references therein), electron
beams [4–6], and a vacuum ultraviolet (VUV) photoelec-
tron attachment method [7,8]. In the electron beam work,
carried out with energy widths around 0.1 eV [5,6], a peak
was observed in the F� yield at near-zero energies, more or
less compatible with swarm-unfolded cross sections [8]. In
a TPSA (threshold photoelectron spectroscopy for attach-
ment) experiment, Chutjian and Alajajian [7] found a
narrow spike very close to zero energy with a width com-
patible with the optical resolution of 6–12 meV. They
interpreted their findings as a ‘‘conclusive demonstration
of non-resonant, s-wave coupling in the limit of zero
electron energy’’ (for s-wave capture the cross section at
very low electron energies E behaves as��E� / E�1=2 [9]).

From the theoretical side, however, electron attachment
to F2�X 1�g

�� molecules at very low energies is expected
to proceed by p-wave (l � 1) electron capture because of
the ungerade parity of the lowest anion resonance state
F2
��2�u

�� [10–19]:

 e��E; l � 1� � F2�X 1�g
�� ! F2

��2�u
�� ! F� � F:

(1)

It should thus exhibit a threshold behavior ��E� / E1=2 at
near-zero electron energies [9,17], independent of the ini-
tial vibrational level � of the F2 molecule. Depending on
the location of the F2

��2�u
�� anion state [relative to the

neutral F2�X
1�g

�� potential energy curve] and on the
coupling between the e� � F2�X 1�g

�� scattering states
and the resonance state, the calculated DEA cross sections

for � � 0 exhibit a maximum at energies of about 73 meV
[14], 160 meV [13], and 250 meV [19]. For � � 1, the
maximum shifts to higher energies in all calculations and
exhibits a peak cross section which is a little higher than
that for � � 0. For an ensemble of F2 molecules at a
vibrational temperature of Tv � 300 K (as relevant for
the previous [5–7] and the present work) nearly all
(98.6%) of the molecules reside in the lowest vibrational
level � � 0; thus, the DEA cross section measured at or
near Tv � 300 K largely reflects that for the vibrational
ground state. We note that the calculated peak cross sec-
tions for � � 0 differ substantially [�6–7� � 10�20 m2

[13,14] and 1:5� 10�20 m2 [19] ].
The apparent discrepancy between the theoretical pre-

dictions [13,14,19] and the experimental observations [5–
7] for the threshold behavior of the DEA cross section for
F2 is puzzling and has remained a challenge to date
[8,17,20]. Several reasons for an s-wave threshold be-
havior have been proposed [7,8,13], including the non-
adiabatic coupling between the 2�u

� and 2�g
� scatter-

ing states due to non-Born-Oppenheimer terms in the
Hamiltonian. However, these interactions are expected to
be small, and it appears unlikely that these effects could be
observed. Experimentally, a measurement with sufficiently
high resolution, low background, and a sufficiently well-
characterized target gas sample is needed for a decisive
result. In the present work we apply an improved version of
the laser photoelectron attachment (LPA) method to re-
study the energy dependence of the DEA cross section for
F2 at the well-defined gas temperature of 300 K over the
electron energy range E � 1–180 meV. Our measure-
ments exhibit a maximum in the F� yield at E �
31 meV and a substantial drop toward lower electron en-
ergies. We interpret this finding as a clear demonstration of
p-wave attachment near threshold in agreement with the
theoretical predictions.

In order to measure highly resolved cross sections for
anion formation in low-energy electron collisions with
fluorine (F2) molecules, we used an improved version of
the LPA method [20,21]: energy-variable photoelectrons
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(current 20 pA, energy range 1–180 meV) were created in
the reaction region with the target molecules by resonant
two-color photoionization of ground-state potassium
atoms [20,22]. A diffuse low-density target of 5% F2 in
helium (Linde Co.) at the gas temperature TG � 300 K
was used, and a pulsed sequence (100 kHz) of electron
production and attachment followed by delayed anion ex-
traction was applied. The anions resulting from attachment
processes were mass selected with a quadrupole mass
spectrometer and detected with an off-axis channel elec-
tron multiplier. A small background of F� ions was ob-
served which is attributed to the bimolecular reaction
F2 � K2 ! KF� K� � F� [23], involving K2 molecules
which are present in the potassium beam at an estimated
level of about 10�4. In order to separate this background
from the true signal due to reaction (1) the photoelectron
production was periodically switched on and off for inter-
vals of 10 ms each (identical to within 10�4) and the
respective anion counts stored separately. Typical counting
rates amounted to 1=s for the background and 3=s for the
maximum signal due to (1) at a partial F2 pressure of about
2� 10�6 mbar. The LPA-induced and the background F�

signals were found to rise linearly with target pressure. The
F2 and He components in the delivered gas mixture had
specified purities of 99% and 99.999%, respectively. The
data shown below were taken over a total sampling time of
21 h, following an initial passivation period of five days
over which the energy dependence of the background-
corrected F� yield was found to vary. This behavior is
attributed to the contribution of processes involving target
gas components which are produced during the passivation
period by reactions of the F2 molecules with the gas-
covered surfaces of the gas inlet system and the reaction
chamber. The energy resolution in the F2 experiment was
assessed by comparing the well-known yield for SF6

�

formation [20,21,24] with that measured when a small
amount of SF6 gas was added to the vacuum chamber in
the presence of the F2-He mixture.

The background-corrected F� yield is presented in
Fig. 1. Most notably, one observes a rather steep rise
from near-zero electron energy to a maximum at
31(2) meV, followed by a slower decrease toward higher
energies. The increase at very low energies is compatible
with p-wave threshold behavior. Note that the finite energy
resolution (see below) causes a nonzero signal at threshold.
Above 150 meV, the data appear to indicate—at somewhat
higher scatter—a weak rise.

Another indication for the threshold behavior of the
attachment cross section is provided by the energy de-
pendence of the anion yield observed at negative energies,
i.e., for Rydberg electron transfer (RET) processes. For
Rydberg electron collisions the anion signal mirrors the
RET rate coefficient knl. In the framework of the quasi-
free Rydberg electron model [25,26] knl is given by knl�R
��v� �v �fnl�v�dv, where v denotes the velocity and

fnl�v� denotes the normalized velocity distribution for
the nl Rydberg electron. For sufficiently high principal
quantum numbers (n > 50) postattachment interactions
between the anion and the remaining positive ion core
can be neglected [26]. Moreover, the electron velocities
are so small that the attachment cross section can be
replaced by its threshold velocity dependence; i.e.
�0��� � c0�v0=�� for s-wave attachment and �1��� �
c1��=v1� for p-wave attachment with c0; v0 and c1; v1

constants. Thus, for s-wave attachment knl � c0v0 is in-
dependent of n at high n, e.g., for SF6

� formation from
SF6 [25,26]. For p-wave attachment, in contrast, one
obtains knl � �c1=v1�

R
�2 � fnl���d� � �c1=v1�h�

2inl �
2�c1=v1�jEnlj=m, where Enl is the (negative) binding en-
ergy of the Rydberg electron whose modulus is equal to the
mean of its kinetic energy hEkinl � �m=2�h�2inl. In Fig. 2
we show the anion yields due to RET (E< 0) and due to
free electron attachment for (a) F�=F2 and (b) SF6

�=SF6

over the electron energy range from E � �3:8 meV (n �
60) to E � �14 meV. The yield for SF6

�=SF6 formation
(obtained in a single, short measurement at the end of the
F2 data runs) exhibits the expected s-wave behavior in the
RET regime [25,26] (apart from the narrow transition
region from Rydberg to free electron collisions) while
the free electron anion yield at very low energies stays
below that expected from the known cross section [21,24]
(chain curve, normalized to the yield data at higher ener-
gies). We attribute this deviation to the finite resolution
(estimated to be about 5 meV) due to the effects of residual
electric fields. The RET-induced F�=F2 yield, on the other
hand, decreases monotonically in a way which is essen-
tially compatible with that predicted for p-wave attach-
ment. The calculated RET rate coefficients (full curve:
l	 n; broken curve: fully l-mixed ensemble, jointly nor-
malized to the respective anion yields) were obtained with
analytical expressions for the free electron attachment
cross sections [chain curves in Figs. 2(a) and 2(b)]; i.e.,
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FIG. 1. Measured yield for F� formation due to electron
attachment to F2 molecules.
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for F�=F2, ��E� / E1=2 exp
�E=E1� with E1 � 73 meV
which represents a realistic fit to the measured yield up to
E � 100 meV, and for SF6

�=SF6, ��E� / E�1
1�

exp��0:405E1=2��, E in meV [21,24].
Thus, the experimental findings presented in Fig. 2 for

the near-threshold energy dependence of F� formation,
both for RET at high n and for free electron attachment
at very low energies, demonstrate p-wave threshold be-
havior in agreement with the p-wave character of the
lowest anion resonance F2

��2�u
��.

The observation of a peak at near-zero energy in the
previous electron beam work on F2 [5,6] can be explained
by insufficient energy resolution (close to 0.1 eV). Chutjian
and Alajajian [7], in contrast, used a VUV photoelectron
method at distinctly lower energy width, involving photo-
ionization of Kr atoms near the higher Kr��2P1=2� thresh-
old in a gas mixture of 8% F2 and 92% Kr. Their
attachment line shapes for the F� yield exhibited a spike
at essentially zero electron energy with a width nearly
equal to the optical resolution (6–12 meV) and a mono-
tonic decrease toward higher electron energies (up to
140 meV). In the present LPA anion yield a ‘‘zero-energy

spike’’ is absent. We tentatively attribute the findings in [7]
to be due to the influence of RET-induced F� formation
involving long-lived highly excited Kr���nl� Rydberg
atoms below the Kr��2P1=2� threshold. Electric fields
such as those used in [7] to continuously extract the anions
produce long-lived autoionizing Rydberg states nl with
high l by efficient l-mixing at a sufficiently high principal
quantum number n. The relevant range of n corresponds to
a narrow energy range close to the ionization limit and thus
yields a resolution-limited spike just below threshold.
Spikes of this origin have been observed in our LPA
work involving photoionization of excited Ar��4p 3D3�
atoms near the Ar��2P1=2� ionization threshold [21,27]
(see Fig. 8 and the discussion in [27]).

The maximum in the LPA anion yield (see Fig. 1) occurs
at a distinctly lower energy than in the calculations re-
ported in [13,14,19]. To get more insight we carried out
some exploratory R-matrix calculations of the DEA pro-
cess. Using parameters that reproduce the anion curve and
the adiabatic width of Bardsley and Wadehra [14] we
obtained a DEA cross section which peaks at 170 meV.
This is in contrast to the peak position of 73 meV, obtained
by Bardsley and Wadehra, but not far from the results of
Hazi et al. [13] and Brems et al. [19]. Note that the
theoretical approach of Bardsley and Wadehra [14] is
semilocal; i.e., it does not include the energy-dependent
resonance shift due to the interaction between the diabatic
state and the continuum. In contrast, the other two groups
[13,19] used completely nonlocal theories.

When we modify the R-matrix surface amplitude to
make it consistent with the width calculations of Ingr
et al. [18], the maximum in the DEA cross section moves
to 82 meV, but the peak value of the cross section drops
substantially to 0:45� 10�20 m2, which is not consistent
with the experimental estimates in [3,6,7]. All our attempts
to modify the R-matrix parameters in such a way that the
cross section would peak at a substantially lower energy
led either to an anion potential curve, which was incon-
sistent with the known values of the electron affinity of F
and of the dissociation energy of F2

�, or to a cross section
which is too small in absolute value. For example, a simple
shift of the anion curve used by Bardsley and Wadehra to
the left by 0.15 a.u. moves the peak position to 79 meV, but
the cross section is reduced down to 0:042� 10�20 m2.

In contrast to the case of DEA to the Cl2 molecule [28–
30], the R-matrix theory or its equivalent, the nonlocal
complex potential theory, thus appears to be unable to
reproduce the location of the first maximum in the DEA
cross section for F2, observed at 31(2) meV in the present
high resolution DEA experiment. We note that calculations
within the local complex approximation [11] produced an
artificial spike in the cross section at very low energies;
however, as emphasized by Domcke [17], this approxima-
tion is not suitable for treating DEA to F2 at very low
energies. The direct (nonresonant) s-wave process dis-
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FIG. 2. Anion yields due to RET (E< 0) and free electron
attachment (E> 0) for (a) F�=F2 formation and (b) SF6

�=SF6

formation. The full and broken curves represent RET rate
coefficients calculated for Rydberg atoms with l	 n and a fully
l-mixed ensemble (jointly normalized to the respective yields).
For the chain curves, see the text.
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cussed in the literature should be ruled out because the
non-Born-Oppenheimer coupling cannot explain the large
DEA cross section.

In conclusion, we emphasize again the important new
finding of the present experiment, namely, that the cross
section for electron attachment to F2 at very low energies is
dominated by p-wave threshold behavior. We can see no
experimental artifact (such as impurities in the gas present
in the reaction region) which would simulate p-wave
behavior instead of s-wave-type behavior reported previ-
ously [6,7]. The observation of p-wave behavior is dictated
by a special, selective symmetry of the target such as given
here by the 2�u

� symmetry of the lowest anion resonance
of F2. It is expected that impurity molecules, formed by
reactions of F2 with adsorbates on walls, do not possess
this special symmetry and thus should exhibit s-wave
threshold behavior.

This work was supported by the Deutsche Forschungs-
gemeinschaft (No. HO 427/29) and by the Forschungs-
zentrum OTLAP. I. I. F. acknowledges the hospitality of
the Fachbereich Physik at the TU Kaiserslautern during a
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