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9.1  Introduction

Increasing prevalence of poorly water‐soluble drugs in pharmaceutical 
development provides notable risks of new products demonstrating low and 
erratic bioavailability. This dissolution‐limited bioavailability may have 
consequences for safety and efficacy, particularly for drugs delivered by the 
oral route of administration. Several novel drug delivery technologies have 
been developed to improve drug solubility, dissolution rates, and bioavaila-
bility. Among those are solid dispersion, nanotechnology, supercritical fluid 
technology, lipid‐based technology, and crystal engineering. Although these 
strategies are available for enhancing the bioavailability of drugs with low 
aqueous solubility, the success of these approaches is not yet guaranteed and 
is greatly dependent on the physical and chemical nature of the molecules 
being developed. On the other hand, crystal engineering [1] offers a number 
of routes such as cocrystallization [2, 3] and coprecipitation [4–6] to improve 
solubility and dissolution rate. Coprecipitation of poorly soluble drugs with 
polymers, an important technique for improving the dissolution and absorp-
tion of drugs, has been modified in recent years to prepare extended‐release 
preparations. Previous work on coprecipitation was largely focused on for-
mulation development and product characterization [4–6], for example, 
optimization of process variables for the preparation of ibuprofen coprecipi-
tates with Eudragit S100, screening of process and formulation variables for 
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the preparation of extended‐release naproxen tablets with Eudragit L100‐55, 
and preparation and characterization of coprecipitate of ibuprofen using 
different acrylate polymers. It was not until recently that the process analytical 
technology (PAT) approach [7–11] was explored to gain insights about the 
coprecipitation process and process monitoring.

PAT [7] offered unprecedented opportunities for the pharmaceutical com-
munity to take advantage of the availabilities of modern process analyzers and 
wealth of experience from other industry sectors. Successful implementation 
of PAT can enable real‐time process data acquisition and extract process infor-
mation and knowledge from real‐time data for better process understanding 
and better process control. One of the frequently used technologies for phar-
maceutical PAT applications is near‐infrared (NIR) spectroscopy (NIRS). NIRS 
is capable of monitoring many pharmaceutical unit operations [9, 10, 12], in 
addition to its well‐established pharmaceutical applications in quality control 
(QC) and quality assurance (QA) areas [13]. It is a well‐known fact that NIR 
spectrum of pharmaceutical material or dosage form is information rich and it 
embraces both the physical and chemical information of pharmaceutical mate-
rial or dosage form [10].

One of the technical challenges for implementing PAT in the pharmaceutical 
sector is how to handle the dense flow of process data, including spectra 
acquired  by real‐time online/in‐line/at‐line process analyzers and process 
data acquired by other process measurement techniques. To extract mean-
ingful information from real‐time process data for enhanced process under-
standing and ultimately process control, one must use chemometrics and process 
modeling techniques. Depending on specific systems studied and real‐time 
process monitoring techniques implemented, various data analysis and modeling 
techniques can be used. Multivariate statistical modeling techniques such as 
principal component analysis (PCA) [10, 14, 15], principal component regres-
sion (PCR), partial least squares (PLS) [14–16], and artificial neural network 
(ANN) [17] are often used to develop a predictive model for depleting raw 
material components and/or increasing product components, multivariate 
process trajectory, and process map for robust production with optimized 
process conditions, productivity, and yield.

Naproxen is a potent nonsteroidal anti‐inflammatory drug used in the 
treatment of rheumatoid arthritis, osteoarthritis, and acute gout and as 
analgesic and antipyretic. However, its use is frequently limited due to sig-
nificant gastrointestinal side effects. In this study, naproxen was selected as 
a model drug as it has a short half‐life, has gastrointestinal effects, is soluble 
in alcohol, and is practically insoluble in water. The literature data for the 
experimental and predicted solubility of naproxen in water are 15.9 and 
51.0 mg/l, respectively (http://www.drugbank.ca/drugs/DB00788, accessed 
on April 16, 2010). Eudragit L100 is the commercial name of an enteric 
polymer of methacrylic acid–methylmethacrylate that belongs to a class of 
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reversible soluble/insoluble polymers. Eudragit L100 was used as it yields 
coprecipitates with naproxen without any need of additives. The dynamic 
coprecipitation process designed in this work was proceeded via gradually 
introducing water to the ternary system of naproxen–Eudragit L100–alcohol at 
controlled temperature of 25°C. When water is introduced into the initially 
transparent ternary solution sequentially, the overall composition point of 
naproxen–Eudragit L100–alcohol–water system will be moved accordingly 
within the phase diagram. Due to significant difference of solubility in 
alcohol and water for both naproxen and Eudragit L100, the naproxen–
Eudragit L100 coprecipitates out from the solution when water is intro-
duced. As a result of the coprecipitation phenomena, the initial transparent 
solution of the four‐component system will become cloudy at the onset of 
nucleation. In this work, an integrated PAT real‐time monitoring strategy 
was developed to follow the dynamics of the coprecipitation process. As 
discussed previously, the real‐time in‐line data acquired can help to illustrate 
the progress of a multiphase process and to elaborate the sequential events 
that take place during the process [9]. In this work, multivariate process 
trajectory was constructed based on the real‐time process monitoring data 
sets, which would be helpful for achieving rational particulate process design 
and ultimately particulate process control.

9.2  Experimental

9.2.1  Materials

Naproxen USP was obtained from Albemarle Corporation (Orangeburg, SC). 
It is an odorless, white to off‐white crystalline substance. Eudragit L100 was 
obtained from Röhm America Inc. (Somerset, NJ). It is a white powder with a 
faint characteristic odor. Solvent reagent alcohol (HPLC grade) was purchased 
from Fisher Scientific. Nonsolvent DI water was obtained from a FDA in‐house 
facility and was kept in refrigerator at 4°C prior to use. All of these chemicals 
and solvents were used without any further processing or purification prior to 
the use for this experimental work.

9.2.2  Equipment and Instruments

Process NIR spectra were acquired with a LuminarTM acousto‐optic tunable 
filter (AOTF)‐based NIR process spectrometer (Brimrose Corporation of 
America, Baltimore, MD), equipped with a transflectance probe. This AOTF 
NIR process spectrometer has the capability of in‐line monitoring both the 
changes in the concentration of the key components and phase changes in the 
coprecipitation system or subsystems. The acquisition parameters of Brimrose 
NIRS being used in experiment included the following: the number of spectra 
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average was 50; no background correction was applied; normal scan type; and 
the gain was 2. One spectrum was recorded and saved automatically every 6 s. 
A 1.0 cm probe extension was attached to the 679B dark‐field diffuse reflectance/
transmission probe for the actual process monitoring.

Online turbidity measurements were made using a Model 2100AN 
Laboratory Turbidimeter (Hach Company, Loveland, Colorado) with a 
Masterflex® L/S® model 7518‐10 digital fluid pump (Cole Parmer Instrument 
Company, Chicago, IL). A flexible tubing connection between the coprecipita-
tion vessel and the sample flow cell of the turbidimeter was made, such that the 
fluid could be pumped from the coprecipitation vessel to the sample flow cell 
of the turbidimeter for online turbidity measurement and then be returned to 
the coprecipitation vessel in the reverse direction. Prior to its use for this work, 
the 2100AN turbidimeter was calibrated using formazin stock solution as 
recommended by the supplier. Data were reported using nephelometric 
turbidity units (NTU), which are specifically compliant for a 90° measurement 
technique.

Pure components of naproxen and Eudragit L100 were scanned by FOSS 
NIRsystems (Foss NIRsystems, Silver Spring, MD) offline. The schematic of 
the experimental setup is shown in Figure 9.1. As shown in Figure 9.1, among 
many important formulation and process variables, only the drug/polymer 
ratio was changed during the coprecipitation experiment of this study, while 

Important process variables
-slurry temperature (fixed)
-stirring rate (fixed)
-water addition rate (fixed)

Important formulation variables
-drug/polymer ratio (change)
-solvent selection (alcohol)
-nonsolvent selection (water)

Coprecipitation vessel

Data analysis and modeling

AOTF
Brimrose
spectrometer

Pump

NIR
Turbidity

Nonsolvent

Turbidimeter

Figure 9.1  Schematic diagram of experimental setup and process flow with an integrated 
PAT monitoring system for API (naproxen)/polymer coprecipitation process using in‐line 
process NIR and online turbidity measurement simultaneously.
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others were fixed. For terminologies about in‐line/at‐line/online definitions 
can be found in the FDA PAT guidance [7].

9.3  Data Analysis Methods

9.3.1  PCA and Process Trajectory

PCA is a very useful tool as it can reduce the dimensionality of a data set con-
sisting of a large number of interrelated variables while retaining as much as 
possible the variation present in the data set. PCA has been extensively applied 
in almost every discipline, such as chemistry, biology, engineering, meteorol-
ogy, and pharmaceutical. It can be used in process monitoring, QC, data visu-
alization, batch trajectories, and other areas. For pharmaceutical QbD and 
PAT applications where process analyzers are installed, frequently a huge 
amount of interrelated process data has to be handled, in a way that critical 
process information and knowledge can be extracted for both process and QC 
purposes. Therefore, PCA is a powerful chemometric technique for such 
applications. With the help of PCA, the following aspects could be examined: 
in what aspect one sample is different from another, which variables contribute 
most to this difference, and whether those variables contribute in the same way 
(i.e., are correlated) or independently of each other. It can also help to detect 
patterns and to quantify the amount of useful information, as opposed to noise 
or meaningless variation, contained in the data set. In this work, plots of a PC 
versus another (e.g., PC1 vs. PC2), called score plot, are used to depict the 
process trajectory. Process trajectory method has been used for batch process 
supervision [18], process monitoring, and diagnosis [19] in chemical and bio-
tech sectors. However, relatively few applications have been reported for phar-
maceuticals, especially for small molecule drug manufacturing process 
monitoring and process control [20]. In this work, all of the NIR spectra were 
acquired for the wavelength range of [1100, 2300] nm. PCA was conducted on 
raw NIR spectra without any preprocessing in all cases.

9.3.2  Singular Points of a Signal

It has been noticed that for a time‐varying signal in a dynamic system, the infor-
mation content is not homogeneously distributed throughout [21]. Some land-
marks such as extreme values and shape changes in the data, termed as singular 
points (SPs), in the process trajectory contain more information about the 
dynamic behavior than others. Mathematically, a singularity is in general a point 
at which a given mathematical object is not defined or a point of an exceptional 
set where it fails to be well behaved in some particular way, such as differentia-
bility. Therefore, for a differential equation, an SP is a point that is a singularity 
for at least one of the known functions appearing in the equation. Geometrically, 
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an SP is a point (ii) on a curve at which the curve possesses no smoothly turning 
tangent, or crosses or touches itself, or has a cusp or isolated point, or (ii) on a 
surface whose coordinates, x, y, and z, depend on the parameters u and v, at 
which the Jacobians D(x, y)/D(u, v), D(y, z)/D(u, v), and D(z, x)/D(u, v) all vanish. 
The property of singularity and SP could be very useful for many important 
engineering applications such as rational process design and process control. 
For example, SPs are used to segment the process signal into regions with 
homogeneous properties. Because SPs have physical meaning such as begin-
ning or ending of a process event, they can be directly used for state identifica-
tion, process monitoring, and process supervision. Examples of SPs include 
points of discontinuities, trend changes, and extrema. SPs were used to detect 
phase shifts during rifamycin B fermentation experiments [22] and to charac-
terize microscopic flows [23]. In our previous works, SPs were used to deter-
mine powder blending process end point [15] and phase change during a 
coprecipitation process [9]. In this work, SPs are used to detect the onset of 
nucleation and crystal growth and to establish the process transition window.

In the area of multivariate data analysis and modeling under the pharmaceu-
tical QbD/PAT framework, it is important to recognize the difference between 
SP and outlier. In multivariate statistics, an outlier is an observation that is 
numerically distant from the rest of the data. Outliers can occur by chance in 
any distribution, but they are often indicative either of measurement error or 
that the population has a heavy‐tailed distribution. Outliers may be indicative 
of data points that belong to a different population than the rest of sample set. 
The commonly used method for identifying outliers in multivariate analysis is 
based on the squared Mahalanobis distance (MD) [24]. Points for which MD2 
value is large are identified as atypical or outliers and evaluated using the χ2 
distribution with the appropriate degrees of freedom. SP, as discussed earlier, is 
in general a point at which a given mathematical object is not defined or a 
point of an exceptional set where it fails to be well behaved in some particular 
way, such as differentiability. Therefore, mathematically outlier and SP are two 
totally different concepts; physically, they have different meanings that are 
related to different properties.

9.4  Results and Discussion

To investigate the utility of process trajectory for pharmaceutical process moni-
toring, a step‐by‐step approach was taken. First, we examined simple cases of 
binary systems for which either two dry powder components or two liquid com-
ponents are involved. The NIRS was used for process assessment and process 
monitoring of the binary systems. Then, we examined a complicated system of 
four‐component coprecipitation process (both solid and liquid phases are 
involved) for which NIRS was used for real‐time in‐line process monitoring.
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9.4.1  Using Offline NIR Measurement to Characterize the 
Naproxen–Eudragit L100 Binary Powder Mixing Process

The binary systems of naproxen–Eudragit L100 with various ratios of Eudragit 
L100 over Naproxen (E/N ratio) were mixed and assessed by FOSS NIRS. The 
blending end point was determined by the STDEV method described in our 
previous work [15]. Care was exercised to ensure the sufficient homogeneity 
for the blends and the sampling representativeness. Only the NIR spectra of 
the final well‐blended binary mixtures at each E/N ratio were used for the 
PCA. It was found that PC1 and PC2 can explain 98 and 2% of the total varia-
bility captured by the NIR spectra, separately. As shown in Figure 9.2, process 
trajectory depicted by the PCA score plot demonstrated three distinct seg-
ments or clusters that can be approximated by three straight lines:

1)	 The leftmost segment starts with pure component of naproxen and is a cluster 
of binary blends dominated with naproxen. In addition, the plot of PC2 score 
versus PC1 score has a positive slope. Furthermore, the higher the Eudragit 
L100–naproxen ratio, the larger the scores of both PC1 and PC2. However, the 
situation in the vicinity of the transition is complicated. As expected, the PC2 
score value for point E/N = 0.257 is larger than that for point E/N = 0.206. This 
follows the trend displayed by other three points (E/N = 0, 0.098, 0.113). 

–0.30

–0.20

–0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5

PC1 score

P
C

2 
sc

or
e

Naproxen (E/N = 0)
Eudragit L100

E/N = 0.098

E/N = 0.113

E/N = 0.257

E/N = 0.206

E/N = 336.908

E/N = 3.734

E/N = 422.864

E/N = 543.074

E/N = 250.602

E/N = 91.863E/N = 18.833

E/N = 10.02
E/N = 38.581

E/N = 1.843

E/N = 842.729

Figure 9.2  PCA‐based process trajectory for binary powder blends of naproxen and 
Eudragit L100. The binary powder blends were made by mixing naproxen and Eudragit 
L100 with various weight ratios as shown in the figure by E/N values. After mixing well, the 
blends were transferred to vials that were then scanned by FOSS NIRS offline. The PCA was 
conducted on NIR spectra of the binary blends with various E/N values.



Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture242

However, the absolute PC1 score value for point E/N = 0.257 is a bit smaller 
than that for point E/N = 0.206. This does not follow the trend exhibited by 
other three points. Possible factors that may attribute to this situation include 
(i) abnormal powder behavior in the vicinity of transition point, such as local 
inhomogeneity due to back‐mixing, and (ii) experimental error.

2)	 The second segment links the leftmost segment and the rightmost segment, 
which is a cluster of binary blends dominated by either naproxen or Eudragit 
L100, respectively. In addition, the plot of PC2 score versus PC1 score has a 
negative slope.

3)	 The third segment is on the rightmost, starts with the pure component of 
Eudragit L100, and is a cluster of binary blends dominated by Eudragit L100. 
The plot of PC2 score versus PC1 score has a positive slope. It was found 
that apparently the sign change of the slope for the plot of PC2 score versus 
PC1 score might be linked to the NIR detection limit of each component in 
the binary mixture. That is, when the actual weight (mole) fraction of one 
component is decreased to such an extent that it becomes a minor compo-
nent in the binary mixture, the signal of the minor component becomes so 
weak that the presence of the minor component cannot be evidenced solely 
and directly by examining the NIR raw spectra of the blends. As demon-
strated in this case, the process trajectory based on PCA score plots has the 
capability of differentiating the information embedded. For example, it is 
able to distinguish when the dominant source of contributing component is 
switching, as demonstrated by the second segment in Figure 9.2. The second 
segment serves as a process transition window.

9.4.2  Using In‐Line NIR Spectroscopy to Monitor the Alcohol–Water 
Binary Liquid Mixing Process

In‐line NIRS was used to monitor the binary mixing process of alcohol and 
water in real time. Alcohol and water with various volume ratios were mixed 
and homogenized. The mixing process was monitored using in‐line NIRS. The 
NIR spectra of the well‐mixed binary mixture were complied as an NIR data set. 
PCA was then applied to this data set. It was found that PC1 and PC2 account 
for 98 and 2%, respectively, of the total variability embedded with the NIR spec-
tra of the binary mixtures. As shown in Figure 9.3, process trajectory depicted 
by the PCA score plot demonstrated that there is a process transition window 
where the slope of the plot of PC2 score versus PC1 score changes from positive 
to negative. The left segment starts with pure component of alcohol and con-
sists of a cluster of alcohol‐dominant binary solutions. When water is gradually 
introduced into alcohol, the scores of both PC1 and PC2 increase. In contrast, 
the right segment starts with pure component water and consists of a cluster of 
water‐dominant binary solutions. When alcohol is gradually introduced into 
water, the PC1 score is decreased, while the PC2 score is increased. Furthermore, 
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it was found that apparently the sign change of the slope for the plot of PC2 
score versus PC1 score is linked to the NIR detection limit of each component 
in the binary mixture. When the actual weight (mole) fraction of one compo-
nent is decreased to such an extent that it becomes a minor component in the 
binary mixture, the signal of the minor component becomes so weak that the 
presence of the minor component cannot be evidenced solely and directly by 
examining the NIR raw spectra of the blends. However, apparently the process 
trajectory based on PCA score plots helps to differentiate the information 
embedded. In other words, the switching of the dominant source of contribut-
ing component is demonstrated by the process transition window in Figure 9.3. 
As in this case, the inhomogeneous nature of the information embedded as well 
as the discontinuity exemplified by the sign change of the slope in the process 
trajectory collectively evidenced the existence of an SP.

9.4.3  Real‐Time Integrated PAT Monitoring of the Dynamic 
Coprecipitation Process

When the number of components involved in a multicomponent system is 
increased, typically the process complexity is increased accordingly. In this 
subsection, two aspects will be explored: (i) if a similar methodology can be 
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Figure 9.3  PCA‐based process trajectory for binary liquid mixtures of alcohol and water 
with various volume ratios at room temperature. The binary liquid mixtures were made by 
mixing alcohol and water with various volume ratios. After mixing well, the blends were 
measured by real‐time Brimrose in‐line NIR spectroscopy. The PCA was conducted 
on NIR spectra of the binary blends with various alcohol/water ratios.
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used to develop the process trajectory and (ii) if the PCA‐based process 
trajectory can reveal critical process events such as nucleation and growth.

9.4.4  3D Map of NIR Absorbance–Wavelength–Process Time 
(or Process Sample) of the Coprecipitation Process

When in‐line NIRS is applied to pharmaceutical unit operations, a lot of process‐
related information may be captured in real time. For the dynamic copre-
cipitation process evaluation, prior to the introduction of the nonsolvent 
(water) to the coprecipitation vessel, there was a ternary system of naproxen–
Eudragit L100–alcohol already present in the vessel. When water is gradually 
introduced into the vessel, according to classical thermodynamics, the overall 
composition point in the four‐component system phase diagram is moved 
from the liquid phase toward the solid (crystal)–liquid equilibrium line; the 
zone that is bordered by the solid–liquid equilibrium line (the solubility curve) 
and the metastable limit constitutes the metastable zone for coprecipitation. 
The graphical illustration of the movement of equilibrium line and metastable 
zone is shown in Figure 9.4. Once the solid–liquid equilibrium line is crossed, 
coprecipitate begins to form and grow. The overall composition point will be 
located within the solidus region. As discussed later, the three‐dimensional 
(3D) process map can illustrate how the coprecipitation process progress and 
what process events occur during the process.

A

Temperature, T

Solubility curve

Metastable limit

C E B

F

D

C2

Tlim

C1

C0

T1 T2

Concentration, C

Figure 9.4  Graphical illustration of the movement of equilibrium line and metastable line 
zone. Concentrations C0, C1, and C2 represent the solubility of solute at temperature 
Tlim, T1, and T2, respectively.
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To enhance the resolution of the 3D process map for identifying process 
signatures, the addition rate of the nonsolvent into the system was kept slow, 
such that the transition of one process state to another state could be observed 
clearly. The formulation components used, the amount of the nonsolvent 
added and its adding sequence, and significant visual observations or indica-
tions from turbidity measurement are summarized in Table 9.1. As one exam-
ple, the process 3D (NIR spectral number–wavelength–NIR absorbance) map 
for batch started with formulation components of 4.7617 g naproxen and 
1.205 g Eudragit L100 (batch code (a) in Table 9.1) is shown in Figure 9.5.

9.4.5  Process Signature Identification

The 3D process map is able to provide visual evidence about significant pro-
cess event for the ongoing process, such as addition of a new component into 
the existing system, depletion of an existing component, etc. The sensitivity 
and resolution of this kind of 3D direct and raw process map depend on a 
number of factors such as (i) the sensitivity and resolution of the instrumenta-
tion and the signal/noise ratio of the instrumentation used, (ii) the mass trans-
fer rates in the vicinity of process probe tip and the bulk solution in the vessel, 
and (iii) the hydrodynamics of the fluid and mixing characteristics in the vicin-
ity of water dispersion area inside the vessel. The physical distance between the 
process probe tip and the point where the nonsolvent water is introduced and 
in contact with the bulk solution presents a factor to limit the mass transfer 
process. In our study, despite the fact that the magnetic stirring of the solution 
could limit the possible concentration gradient within the vessel eventually, the 
time lag between the initial moment when the process event take places locally 
and the moment when the process probe is able to actually detect is always 
unavoidable due to the existence of physical distance. When a signal associated 
with a process event is relatively weak, especially when the process event is at 
its embryo stage, its appearance on the 3D process map will not be that obvi-
ous. In this case, other tools may be needed for magnifying or identifying the 
signature. Furthermore, there are some important questions associated with 
the 3D process map to be answered. Questions include but are not limited to: 
(1) What are the implications of the inflection points in the 3D map? (ii) Is 
there any new phase formation during the process? In this case, other tech-
niques such as chemometrics may play a vital role in terms of identifying pro-
cess signature associated with process event and provide essential information 
regarding process progression. In this work, PCA was applied to the process 
NIR spectra to construct process trajectory and identify SPs such that critical 
process information and knowledge could be extracted.

Applying PCA to the process NIR spectra of the aforementioned process 
batch showed that two principal components are sufficient to characterize the 
variability embedded with NIR spectra. PC1 and PC2 are able to account for 



Table 10.1 Risk assessment of the blending process step using FMEA according to Adam et al. [1].

Effect
Severity 
(S) Failure mode

Detectability 
(D) Cause

Probability 
(P) RPN

Varying content 
uniformity of final dosage 
form

5 Inhomogeneity of 
final blend

4 Raw material 
properties

Particle‐size ratio 5 100
Weight ratio 5 100
Particle shape 5 100
Cohesivity 5 100
Material density 4 80

Process 
parameters

Fill volume 4 80
Blending time/total 
revolutions

5 100

Blend rpm 1 20
Order of addition 3 60

Equipment 
design

Blender type 4 80
Blender total 
volume

3 60

Environment Relative humidity 3 60
Temperature 2 40

Five‐point scales for S, D, and P, with 5 as worst‐case value and 1 as best‐case value, are used. An RPN of 50 is defined as the cutoff limit.
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93 and 7%, respectively, of the total variability embedded with the process NIR 
spectra for this batch. As shown in Figure 9.6, when PC2 score is plotted against 
PC1 score, there is a sharp transition on its PCA score plot as reflected by the 
change in the slope of the straight line of PC2 score versus PC1 sore. The slope 
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Figure 9.5  Three‐dimensional map of the process state over the entire process course of 
adding water to the ternary system. An inflection point occurs among process spectra 
window between spectral numbers #60 and #67. New phase is detected between spectral 
numbers #60 and #67, which maybe an indication of nucleation and growth.
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Figure 9.6  PCA score plot for process NIR spectra of the process batch started with 
formulation components of 4.7617 g naproxen and 1.205 g Eudragit L100.
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is dramatically changed from positive value to negative value. As a matter of 
fact, the two segments of the process trajectory consisting of PC2 score versus 
PC1 score are almost perpendicular to each other. When tracking the sample 
number or NIR spectral number on this PCA score plot, it was found that 
(i)  the process trajectory that has positive slope value corresponds to the 
process state of transparent solution during the course of adding water into 
the ternary system, (ii) the sharp transition of the process trajectory corresponds 
to the period that solution starts to become cloudy when water is introduced to 
the ternary system for the third time, and (iii) the process trajectory that has 
negative slope value corresponds to the process state of cloudy solution during 
the course of adding water into the ternary system.

The process trajectory depicted by the PCA score plot demonstrated that 
certain process samples #61–66 can be identified, which cover the process 
transition window where nucleation and growth take place, as supported by 
both visual evidences and real‐time turbidity profile of the dynamic coprecipi-
tation process. In order to further verify this finding, similar data analysis 
method was extended to dynamic coprecipitation processes that have different 
drug/polymer ratios in the starting formulation preparation. In‐line NIRS was 
used to monitor the dynamic coprecipitation process in real time for various 
batches with different drug/polymer ratios. PCA was applied to each NIR 
spectra data set associated with a particular drug/polymer ratio. Process tra-
jectory for each coprecipitation process was constructed based on the PCA 
results. These results together with our previous work [9] collectively demon-
strated that process trajectory based on online NIR real‐time process monitor-
ing and PCA can differentiate various distinguishable process events and 
accurately track various process stages such as incubation, nucleation, and 
crystal growth.

9.4.6  Online Turbidity Monitoring of the Process

For the process runs being conducted in this work, we also used online turbid-
ity measurement to monitor the turbidity change real time during the process. 
The real‐time process slurry turbidity profile of a dynamic coprecipitation 
process (batch code (b) in Table 9.1) is shown in Figure 9.7. As we can see from 
Figure 9.7, there are several plateaus observed during the course of introducing 
water into the ternary system. Before adding any water to the ternary system, 
the baseline turbidity data of the ternary system were around 0.33–0.45 NTU. 
The first plateau (1.7–2.6 NTU) and the second plateau (50–70 NTU) corre-
spond to the first and the second addition of 100 ml of water into the ternary 
system, respectively. The third plateau (140–150 NTU) occurred due to third 
addition of 100 ml of water into the ternary system. Given that the turbidity 
value of first plateau of the four‐component system is still very close to the 
baseline turbidity value of the ternary system, most likely it indicates that 
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the  system remains as transparent solution and no new phase is formed 
(as confirmed by the online process NIR monitoring). The relative low turbid-
ity values for the second turbidity plateau suggest that the process is still at the 
incubation stage. At this early stage, the composition point of the system is still 
located within the liquid region. Therefore, no nuclei were formed and the 
solution was still transparent and thus had a small NTU value. When more 
water was introduced gradually, the third turbidity plateau (140–150 NTU) 
occurred, which is probably correlated with the nucleation process stage. At 
this stage, the system composition point reaches the solid–liquid equilibrium 
line, and thus nuclei were initiated and a bit higher turbidity values than 
the second stage were detected. Afterward, when more water was introduced, 
the system composition point reaches the metastable zone. Consequently, a 
large supersaturation was created and a crystal growth period was observed. 
This stage has a turbidity plateau of 2360–2770 NTU. When more and more 
water was introduced, the system approaches a quasi‐steady state where an 
even higher turbidity plateau of 4000–5180 NTU was observed.

The aforementioned experimental observations could be explained from a 
multiphase transfer perspective. When water was introduced into the ter-
nary system initially, there were some small nuclei formed initially in the 
vicinity of the water dispersion area due to local building up of supersatura-
tion; then, the newly formed local nuclei were dissolved quickly due to the 
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Figure 9.7  Turbidity profile during the process of sequentially adding water to the ternary 
system of API (0.1320 g), Eudragit L100 (6.0970 g), and alcohol (320 ml) to form the 
coprecipitate.
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de‐supersaturation phenomena via mass transfer (diffusion and convection) 
enhanced by the magnetic stirring of the slurry solution. However, since the 
existence of fine nuclei was so short and did not have sufficient time to travel 
to the area that was directly exposed to the process NIR probe tip, this short 
shelf‐life nuclei was not detected by the Brimrose Process NIRS system. The 
relative high turbidity values for the third turbidity plateau (140–150 NTU) 
plus the visible slightly cloudiness of the solution suggest that the process is 
at the nucleation stage. At this stage, the system composition point reaches 
the solid–liquid equilibrium line, and thus nuclei were initiated and a bit 
higher turbidity values than the second stage were detected. When more 
water was introduced gradually, the fourth turbidity plateau (2360–2770 
NTU) occurred, which is probably correlated with a stage that both nuclea-
tion and crystal growth are involved since the system composition point 
reaches the metastable zone. Afterward, when more water was introduced, 
consequentially, a large supersaturation was created and a crystal growth 
period was observed.

9.5  Challenges and Opportunities for PCA‐Based 
Data Analysis and Modeling in Pharmaceutical 
PAT and QbD Development

PCA is a popular and powerful technique for feature extraction and dimen-
sionality reduction and probably one of the most employed techniques of mul-
tivariate analysis. Maggio et al. reported a new PCA‐based approach for testing 
“similarity” of drug dissolution profiles [25]. Comparison between the area 
enclosed by the confidence ellipses of the weighted scores plot and the region 
obtained from the bootstrap‐calculated acceptable values of the corresponding 
f2 tests suggested that PCA confidence region represents, in general, a more 
discriminated standard. Otsuka et al. used PCA for identifying and predicting 
the most important variables in the process of granulation and tableting [26]. 
However, there are some limitations with PCA that we should take into consid-
eration, which include the following: (i) the absence of an associated probabil-
ity density or generative model; (ii) the subspace itself is restricted to a linear 
mapping as PCA is a linear method; and (iii) PCA does not reveal any reliable 
information on time scales that are not actually sampled [27] (e.g., a short 
molecular dynamics trajectory does not yield an accurate covariance matrix of 
protein fluctuations). The high‐order statistical information is discarded dur-
ing the linear mapping. Basically PCA involves rotating the ellipsoid in such a 
way that the direction of the variance of the data comes as the first component. 
This works fine as long as the X/Y relation is fairly linear. For a situation where 
the X/Y relation is nonlinear, there is a problem. While PCA still tries to pro-
duce components by variance, it fails as the largest variance is not along a 
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single vector, but along a nonlinear path, with the assumption that the observed 
data is independent. In real‐world process measurement environment, this 
may not be a valid assumption due to the facts that (i) the measurement data at 
consecutive time points could be interrelated and (ii) NIR absorbance values at 
nearby wavelengths could be correlated too. If a system is highly nonlinear or 
the observed data are not independent, then the limitations of PCA‐based 
process trajectory become a problem. In this challenging case, other methods 
may provide better option to handle the nonlinearity encountered, as discussed 
in the following text.

A number of strategies have been proposed to address the aforementioned 
limitations of PCA. For example, probabilistic principal component analysis 
(PPCA) [28], kernel principal component analysis (KPCA) [29], and probabil-
istic kernel principal component analysis (PKPCA) [30–32] have been developed 
to deal with the first two limitations of PCA. In addition, a hidden Markov 
model (HMM) [33] was used to obtain an optimized representation of the 
observed data through time. On the other hand, neural networks [17, 34] are 
perfectly capable of dealing with nonlinear problems and can on their own do 
this. Furthermore, they can do scaling directly so that the principal compo-
nents can be scaled by their importance.

In the pharmaceutical manufacturing setting, it is possible to encounter 
nonlinear process features due to many variables (such as formulation vari-
ables, process variables, environmental variables, etc.) coexisting and pos-
sible interactions. Risk analysis and risk assessment [35] may help to rank 
the relative importance of those variables and thus provide a list of critical 
variables for further scientific investigation and design space development 
[17]. On the other hand, depending on the ranges of various variables 
selected, the impact of interaction among variables could be significant, 
marginal, or insignificant. This can be quantitatively assessed via design of 
experiments (DOE) and ANOVA, as illustrated previously [17]. For those 
critical variables identified via risk analysis and initial DOE study men-
tioned earlier, another DOE could be conducted to establish the linkage 
between critical variables and essential response variables (such as key 
quality attributes) as demonstrated in most DOE‐based approaches. Or, as 
demonstrated in our recent work, an integrated PAT and DOE approach 
can be developed to establish dynamic linkages between the real‐time pro-
cess behaviors and the essential response variables at both transition state 
and steady state [17]. Both approaches are important to ensure product 
quality and help to achieve QbD.

The PCA‐based process trajectory is useful to diagnose process healthi-
ness and identify outliers and abnormal situations. However, the applicabil-
ity of the PCA‐based process trajectory for this kind of process QC and 
process QA really depends on the scope of the design space [36, 37] (formu-
lation and process variables) investigated, for which the process trajectory 
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was based on. Therefore, it is important to have a clear understanding of 
where and when PCA‐based process trajectory can be applied for process 
control purpose and of how robust the PCA‐based process trajectory is to 
the process disturbance in real applications, especially for the cases where 
events and disturbances appear in many different time scales. Issues sur-
rounding PCA‐based process trajectory, design space development, PAT 
process monitoring and control strategies, and QbD methodologies, as dis-
cussed briefly in this section, deserve much attention in future research and 
development during the implementation of PAT [7, 37] and QbD [7, 36–39] 
in the pharmaceutical sector.

9.6  Conclusions

This work provides a QbD case study that focuses on process trajectory devel-
opment for a dynamic pharmaceutical coprecipitation process based on an 
integrated real‐time PAT process monitoring strategy. The dynamic coprecipi-
tation process is visualized via three‐dimensional map of NIR absorbance–
wavelength–process time. The process trajectory based on the results of 
applying PCA to real‐time process NIR spectra data clearly demonstrated that 
physical meanings can be assigned to various SPs that occurred. Furthermore, 
those SPs in the process trajectory are directly linked to various distinguishable 
process events and process signatures such that incubation, nucleation, and 
crystal growth could be accurately tracked and differentiated. This information 
and knowledge are essential for developing a suitable design space and opera-
tional process space for a pharmaceutical unit operation. The challenges and 
opportunities of PCA‐based process trajectory under the PAT framework and 
ICH Q8(R2) have been discussed.
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