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Calcium-transporting ATPases (Ca®* pumps) are major players in maintaining calcium
homeostasis in the cell and have been detected in all cellular organisms. Here, we report the
identification of two putative Ca®>* pumps, M535L and C785L, encoded by chlorella viruses
MT325 and AR158, respectively, and the functional characterization of M535L. Phylogenetic and
sequence analyses place the viral proteins in group IIB of P-type ATPases even though they lack a
typical feature of this class, a calmodulin-binding domain. A Ca®* pump gene is present in 45 of
47 viruses tested and is transcribed during virus infection. Complementation analysis of the triple
yeast mutant K616 confirmed that M535L transports calcium ions and, unusually for group IIB
pumps, also manganese ions. /n vitro assays show basal ATPase activity. This activity is inhibited
by vanadate, but, unlike that of other Ca®* pumps, is not significantly stimulated by either calcium

or manganese. The enzyme forms a ®P-phosphorylated intermediate, which is inhibited by
vanadate and not stimulated by the transported substrate Ca®*, thus confirming the peculiar
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properties of this viral pump. To our knowledge this is the first report of a functional P-type Ca®™-
transporting ATPase encoded by a virus.

INTRODUCTION

P-type ion-transporting ATPases are essential molecules in
eukaryotes and in most eubacteria and archaea. These
ATP-hydrolysing enzymes are responsible for the primary
transport of charged substrates, generally cations, across
membranes. Typical of the P-type ATPase superfamily is
the temporary conservation of ATP energy in the form of a
phosphorylated enzyme intermediate (hence P-type)
formed between the y-phosphate of hydrolysed ATP and
an invariant Asp-residue in a highly conserved sequence:
SDKTGTI[L/I/V/M][T/1/S] (Brini & Carafoli, 2009). This
large family of primary transporters is divided into five
major groups (I-V) on the basis of phylogenetic analyses
and substrate specificity (Axelsen & Palmgren, 1998, 2001).
All Ca®* pumps described to date belong to group II,
subgroups A and B. Type IIA Ca*" pumps are localized
primarily in endomembranes, have short N- and C-
cytosolic termini and are not stimulated by calmodulin
(CaM). They are found in eubacteria, archaea and

tThese authors contributed equally to this paper.

eukaryotes (Axelsen & Palmgren, 2001). Type IIB Ca*™"
pumps are localized both in the plasma membrane and in
endomembranes and are stimulated by CaM binding to C-
or N-cytosolic domains. They only exist in eukaryotes.

This manuscript describes two Ca>"-ATPase IIB members
encoded by chlorella viruses, a group of viruses belonging
to the family Phycodnaviridae. Chlorella viruses are large,
icosahedral, plaque-forming, dsDNA viruses that replicate
in certain unicellular, eukaryotic chlorella-like green algae.
They contain an internal lipid bilayered membrane
surrounded by an outer glycoprotein capsid (Van Etten,
2003; Wilson et al, 2009). The chlorella viruses have
genomes as large as 370 kb that contain as many as 400
protein-encoding and 16 tRNA-encoding genes. Six
chlorella virus genomes have been sequenced and about
80 % of the genes are common to all six viruses (Li et al,
1997, Fitzgerald et al., 2007a, b, c). Three of the sequenced
viruses, PBCV-1, NY-2A and ARI158, infect Chlorella
NC64A; two, MT325 and FR483, infect Chlorella Pbi; and
one, ATCV-1, infects Chlorella SAG 3.83 (Fitzgerald et al.,
2007a, b, ¢). Annotation of the six genomes revealed that
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two viruses, MT325 and AR158, encode genes for putative
Ca’*-ATPases. This manuscript describes the functional
characterization of the Ca’* pump encoded by virus
MT325.

RESULTS

Sequence analysis

Annotation of six chlorella virus genomes revealed that two
of them, MT325 and AR158, code for putative proteins
that belong to the P-type superfamily subgroup IIB Ca*™ -
ATPases. Assignment to the P-type superfamily of ATPases
is based on predicted membrane topology and sequence
alignment of the two viral proteins with the well-known
calcium pumps ACA8 from Arabidopsis thaliana (Bonza
et al., 2000) and PMCA4b from Homo sapiens (James et al.,
1988). The two viral proteins (Fig. 1a) are predicted to have
10 transmembrane domains (TM), a small loop between
TM2 and TM3 and a large loop between TM4 and TM5
(Palmgren & Axelsen, 1998; Bonza et al., 2004). Sequence
alignments of M535L and C785L with prototype Ca*™*
pumps (Fig. 1b) highlight the conserved domain of the P-
type superfamily, DKTGT, containing the aspartic acid
residue that becomes phosphorylated during the catalytic
cycle. Furthermore, M535L and C785L have several
additional motifs characteristic of subgroup II (A and B)
P-type ATPases. These motifs (in grey in Fig. 1b) include
the PEGL sequence that plays a central role in energy
transduction and the KGAPE sequence implicated in
nucleotide binding (Meller, et al, 1996; Palmgren &
Axelsen, 1998). Finally, a feature only found in type IIB
ATPases exists in the viral proteins: one conserved
putative-binding site for calcium, formed by residues E***
in TM4, N’% and D’%” in TM6 (numbers refer to the
M535L amino acid sequence; the residues are marked with
asterisks in Fig. 1b).

M535L and C785L sequences are 64 % identical and 82 %
similar to each other, 37 and 33 % identical, 56 and 50 %
similar to ACA8 and PMCA4b, respectively. The cytosolic
termini of the viral proteins are short (27 aa at the N
terminus and 4-6 aa at the C terminus) and lack a CaM-
binding domain typically located at the N terminus of
plant members and at the C terminus of animal members.

Molecular phylogenetic analyses of the AR158_C785L and
MT325_M535L gene products also support the relatedness
of these molecules to members of the P-type IIB Ca®*-
transporting ATPases (Drummond et al, 2008) (Fig. 1c).
IIB Ca®* pumps fall into two clades, one in higher plants
and the other in animals (Axelsen & Palmgren, 1998; Bonza
et al., 2004; Marchler-Bauer et al., 2009). The viral pumps
clearly reside in the algal clade containing Chlorella and
Chlamydomonas, more closely related to the animal than to
the plant clade. Given the high similarity of the two viral
proteins, further analysis was conducted only on M535L.

Presence of the m535/ gene in other viruses and
its expression during host infection

To determine if the Ca>" pump gene is common among
the chlorella viruses, genomic DNAs from 47 Chlorella Pbi
viruses from diverse geographical regions were hybridized
with an m535] probe (Fig. 2a). The probe hybridized
strongly to 45 of 47 viruses. Virus Nw655.2 hybridized
poorly with the probe and no hybridization occurred with
virus Fr483. Virus Fr483 has been sequenced (Fitzgerald
et al, 2007a) and it lacks a Ca**-transporting ATPase
homologue. The strength of the hybridization signal differs
among the 45 positive viruses (Fig. 2a), suggesting there are
significant nucleotide substitutions among these genes. The
m5351 probe did not hybridize to the virus MT325 host,
Chlorella Pbi DNA.

To determine if the m535] gene is expressed during viral
infection and at which stage, the probe was hybridized to
total RNA extracted from MT325-infected cells. The probe
hybridizes to a single transcript of ~3.6 kb that is an
appropriate size for a 871 aa protein (Fig. 2b).
Hybridization is strongest at 15 min post-infection (p.i.)
and decreases slowly with time (Fig. 2b). Assuming the
replication cycle of virus MT325 resembles that of the
prototype chlorella virus PBCV-1 (Van Etten, 2003), m535]
is an early gene, i.e. it is expressed prior to virus DNA
synthesis. Proteomic analyses did not detect M535L or
C785 in their respective virions (D. D. Dunigan and others,
unpublished data). This result is consistent with the finding
that m535] is an early gene because proteins packaged in
nascent virions are usually transcribed at later stages of
infection. The fact that the calcium transporter gene is
present in most of the Pbi viruses and that it is transcribed
during virus infection suggests the protein might serve a
function in virus replication. Consequently, we tested the
gene product for functional activity.

Heterologous expression of m535/ in
Saccharomyces cerevisiae triple mutant K616

The viral m535] gene was expressed in S. cerevisiae mutant
K616 that lacks all endogenous Ca>*-ATPases
(Cunningham & Fink, 1994). Consequently, K616 does
not grow in Ca’*-depleted medium unless it is trans-
formed with a gene encoding a fully active Ca** pump
(Geisler et al., 2000; Bonza et al., 2004; Baekgaard et al.,
2006). The m535] gene was cloned into yeast vector pYES2-
NTC, which adds an N-terminal His tag to the recombin-
ant protein. Protein expression in high calcium, a non-
selective condition, was evaluated by Coomassie staining
and Western blot and compared to that of control yeast
transformed with the empty vector. Coomassie staining of
the proteins in the microsomal fraction reveals a strong
band with the expected molecular mass of the M535L
polypeptide (96.3 kDa) (data not shown). Western blot
analysis with antiserum against the His-tag clearly
identifies this band as the m535] gene product (data not
shown).

http.//virsgmjournals.org
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Complementation of the K616 phenotype

To determine if the expressed protein was functional, we
incubated K616 transformed with m535] in low external
calcium concentrations. When the test was performed on
solid medium (Fig. 3a), yeast growth occurred at calcium
concentrations as low as 200 pM, a non-permissive
condition for the negative control (K616 transformed with
the empty vector). As a positive control, we used yeast K601,
which grows in low (nM) external calcium concentrations.
Even though m535] clearly supports K616 growth in
micromolar calcium concentrations, we never observed
complementation at nanomolar concentrations, a result
expected for high-affinity calcium pumps (Geisler et al,
2000; Kabala & Klobus, 2005). Therefore, we used a different
complementation test in which yeast growth was evaluated
in liquid culture that provides better aeration of the me-
dium. Protein expression was induced in mid-exponential
cultures by substituting fresh medium containing either

10 mM CaCl, or 10 mM EGTA; the latter medium contains
nominal nanomolar concentrations of free calcium. Yeast
growth was evaluated by ODggy measurements 24 h after
induction and the results plotted as the ratio of ODgqq in
EGTA over CaCl, (Fig. 3b). The M535L protein clearly
supports growth in nanomolar calcium, allowing yeast cells
to grow almost as fast as in millimolar calcium (ODgq ratio
EGTA/CaCl,=0.75+0.07). In contrast, poor growth occurs
in the negative control at low calcium concentrations
(ODgpp ratio EGTA/CaCl,=0.37 +0.02). From these experi-
ments we conclude that M535L forms a functional high-
affinity calcium transporter in S. cerevisiae.

Selectivity of M535L

To determine the ion selectivity of M535L, we tested the
ability of the protein to rescue the K616 phenotype on solid
medium supplemented with either 0.5, 1.0 or 2.0 mM
Mn?; at these concentrations this ion is toxic to K616 that
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Fig. 1. Predicted membrane topology, comparative alignment and phylogeny of chlorella virus Ca®*-transporting ATPases. (a)
Hypothetical membrane topology of the viral Ca®* pump. (b) Multiple sequence alignments performed with cLUSTAL w (1.82) of
the deduced amino acid sequences of chlorella virus MT325 ORF M535L (NCBI reference no. ABT14089.1), chlorella virus
AR181 ORF C785L (NCBI reference no. YP_001498866.1), ACA8 (NCBI reference no. NP_200521.3) and PMCA4b
(GenBank accession no. NM_001684) from A. thaliana and H. sapiens, respectively. Conserved residues characteristic for P-
type ATPases type Il are highlighted in grey. Residues corresponding to the single binding site for calcium found in type IIB
Ca?*-ATPases are highlighted with asterisks. Bold lines indicate the ten transmembrane helices, TM1-TM10, predicted by the
TMHMM program (www.cbs.dtu.dk/services/TMHMM/). (c) Maximum-likelihood tree of 60 P-type ATPase protein sequences.
The phylogenetic tree was generated using the MUSCLE alignment and PHYML tree building programs within the Geneious Pro
4.7.5 software program. The Whelan and Goldman (WAG) amino acid substitution model was used to derive 100 bootstrap
datasets (the transition/transversion ratio for DNA models and the gamma distribution parameter were estimated, proportion of
invariable sites was zero and four substitution rate categories produced the illustrated unrooted tree; bootstrap values are

shown).

lacks the Ca®*/Mn®* pump Pmrl, which removes excess
Mn®* from the cytoplasm (Cunningham & Fink, 1994).
While K616 cells transformed with the empty vector barely
grew on 1 mM Mn®" and died on 2 mM Mn?", cells
expressing M535L survived in Mn”> " concentrations as high
as 2 mM and their growth was indistinguishable from the
control strain K601 (Fig. 4). The finding that M535L
protects K616 from excess Mn>" suggests that the viral
protein transports manganese in addition to calcium. This
behaviour differs from other IIB type Ca*>" pumps and
resembles ITA Ca®>* pumps ECA1 or ECA3 from A. thaliana
or LCAI from tomato that confer tolerance to Mn?>* (Wu
et al., 2002; Mills et al., 2008; Johnson et al., 2009). However,
in contrast to ECA1 and ECA3, M535L does not reverse the
toxic effect of Zn** (results not shown).

ATPase activity

ATPase activity was assayed by monitoring Ca®* -dependent
ATP hydrolysis in yeast membrane fractions (Bonza et al.,
2004). We initially measured M535L Ca®*-dependent
ATPase activity in crude microsomal membranes but, under
these conditions, activity was barely detectable. The low
Ca’*-dependent ATPase activity of the viral transporter did
not increase by systematically modifying the assay conditions
including: substrate concentrations, pH and addition of CaM
(results not shown). To improve the specific activity of
M535L, microsomes from K616 cells expressing M535L were
fractionated on a sucrose density gradient to separate the
viral protein from endogenous ATPases, such as the yeast
plasma membrane proton pump. A strong 95 kDa band
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Fig. 2. Presence of the Ca®* ATPase gene in other chlorella viruses and transcription pattern of m535/ during virus MT325
infection of its host Chlorella Pbi. (a) Dot blot hybridization of m535L to DNA isolated from 47 viruses that infect Chlorella Pbi. The
spots contain 1.0, 0.5, 0.25 and 0.125 ug DNA (left to right). The radioactive probe includes ~300 bp of the large loop preceding
the TM5 of the m535/ gene (Fig. 1a). Host: Chlorella Pbi. No hybridization signal was detected with viruses Fr483 and Nw655.2.
The virus Fr483 genome has been sequenced and it lacks a Ca®*-ATPase homologuous gene (Fitzgerald et al., 2007a). (b)
Transcription of m535/in the host Chlorella Pbi infected with virus MT325. Total RNA isolated from uninfected (Host) and infected
Chlorella Pbi sampled at the indicated times (min p.i.) were hybridized with the m535/ probe used in Fig. 2(a).

corresponding to the viral protein was detected at the 18-
33 % sucrose interface (Fig. 5a), which corresponds to the
ER-enriched fraction. In contrast, the endogenous yeast
plasma membrane H™"-ATPase was located primarily in a
heavier fraction (33-45%) corresponding to the plasma
membrane (Fig. 5b). P-type ATPases overexpressed in yeast
and in particular Ca®*-ATPases overexpressed in K616 cells
are typically located in the endoplasmic reticulum (ER)
fraction (Geisler et al, 2000; Sze et al., 2000; Bonza et al.,
2004; Fusca et al., 2009). The ER-enriched fraction was then
assayed for ATPase activity. Although, no Ca®*- or Mn**-
dependent activity was detected (results not shown), a 70 %
increase in ATPase-specific activity occurred between the ER
fraction purified from cells expressing M535L versus
microsomes (Fig. 6). This enrichment parallels the strong
M535L accumulation detected by Western blotting (Fig. 5a).
In contrast, ATPase activity in the ER fraction from yeast
transformed with the empty vector decreased by 30%, a
result that can be explained by the separation of the plasma
membrane, containing the HT-ATPase, from the ER
membranes. The ATPase activity of ER-enriched membranes
expressing m535] was inhibited by vanadate about three
times more than that from control membranes purified from
cells transformed with the empty vector (Fig. 7).

Since vanadate specifically inhibits formation of the
phosphorylated intermediate during the catalytic cycle of
P-type ATPases (Meller et al., 1996), we looked for such an
intermediate in M535L-expressing cells. ER-enriched mem-
branes from control and M535L-expressing yeast cells were
exposed to [*’PJATP in the presence and in the absence of

vanadate. The predicted M535L phosphorylated intermedi-
ate was detected on an acidic SDS-PAGE (Fig. 8). Two bands
are clearly visible: a band, at about 100 kDa, which most
likely is the plasma membrane yeast proton pump and is also
present in control membranes (Fig. 8, lane 4). A second
band, migrating at about 95 kDa, is about the expected size
of the viral protein; this band only appears in membranes
expressing M535L (Fig. 8, lanes 1-3). The three lanes show
the level of phosphorylation obtained with [**PJATP in the
presence of Mg” " and Ca’* (Fig. 8, lane 1), Mg**, Ca*"
and vanadate (Fig. 8, lane 2), and Mg” " alone (Fig. 8, lane 3).
The formation of the phosphorylated intermediate is strongly
inhibited by vanadate; surprisingly, the formation of the
phosphorylated intermediate does not require Ca>* (Fig. 8,
compare lanes 1 and 3). This result is unique among Ca*™ -
transporting ATPases and agrees with our inability to
measure a Ca’*-dependent ATPase activity in vitro.

DISCUSSION

In this manuscript we provide evidence that some chlorella
viruses encode P-type ATPases that are expressed during
virus replication and we show that one of them, M535L
from virus MT325, is functional. Phylogenetic analysis
indicates that the viral proteins belong to the IIB subgroup
of Ca’* -transporting ATPases. Sequence comparison with
plant and animal proteins identified several conserved
motifs and only one putative Ca>*-binding site, char-
acteristic of IIB Ca>" pumps (Brini & Carafoli, 2009). The
two viral proteins have short cytosolic termini and lack the
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Fig. 3. Complementation of the K616 phenotype by m535/. (a)
Complementation on solid medium. The Ca®?* ATPase-deficient
yeast strain K616 transformed with pYES2-m535/ and with the
empty pYES2 vector (EV) were grown at increasing free Ca®™"
concentrations (200-800 uM). The K601 strain transformed with
empty pYES2 vector served as a positive control. Results are from
one of three independent experiments. (b) Complementation in
liquid culture. Cells were grown 24 h in solutions containing 10 mM
EGTA or 10 mM CaCl, (selective and non-selective medium,
respectively). Results are expressed as the ratio of ODggo of the two
cultures (10 mM EGTA/10 mM CaCl,) and are the mean of four
independent experiments; bars represent the standard error.

regulatory domains present at the N- or C-termini of plant
and animal IIB Ca®*-transporting ATPases (Kabala &
Klobus 2005; Di Leva et al., 2008). The M535L protein is
functional because it complements mutant yeast K616
growth on Ca’*-depleted medium. Complementation of
the K616 phenotype clearly indicates that M535L is a fully
active Ca’* pump. In fact, only expression of non-
autoinhibited plant Ca®*-ATPases support K616 growth
on Ca®>"-depleted medium; expression of functional, but
autoinhibited IIB pumps do not (Geisler et al., 2000; Sze
et al., 2000; Fusca et al, 2009). M535L also complements
K616 growth in toxic concentrations of Mn*™, indicating
that the protein transports both calcium and manganese.
These apparently conflicting observations can be reconciled
because transformation of yeast cells with the functional
viral pump allows cell survival in low external Ca** and
high external Mn*" for different reasons. Expression of a
functional calcium pump, presumably in the ER, allows the

K616 + EV

K616 + M535L

K601 + EV

Fig. 4. M535L expression restores growth of yeast strain K616 on
Mn?*-supplemented medium. K616 cells transformed with
pYES2-m535/ and with the empty pYES2 vector (EV) were grown
on solid media containing increasing concentrations of MnCl,
(0.5—-2 mM). Strain K601 transformed with empty pYES2 vector
served as a positive control. Results are from one of four
independent experiments.

yeast mutant to survive low external Ca®*" because it
provides a high-affinity mechanism for pumping the (very
low) Ca®>" ions present in the cytosol into its internal
stores. Replenishing stores with Ca®* is essential for yeast
cell survival and is related to signal transduction. On the
other hand, when the yeast cells are grown in high external
Mn*™, the presence of a pump in the ER that transports
Mn*" ions efficiently allows the yeast cells to survive
because it removes the toxic Mn®* ions from the cytosol
and accumulates them in the internal stores.

The ability to transport Mn27, in addition to Ca’™, is a
property of pumps in the secretory pathway (SPCA) (Brini
& Carafoli, 2009). In plants that lack SPCA pumps, only

>*_ATPases belonging to type IIA subgroup, such as
ECA1 and ECA3 from A. thaliana and LCA1 from tomato,
function as Ca?t/Mn?" pumps (Wu et al, 2002; Mills
et al., 2008; Li et al., 2008; Johnson et al., 2009). The best
characterized Ca>*/Mn”* -transporting pump is PMRI, a
yeast protein localized in the Golgi apparatus. In PMRI,
the Mn>* selectivity is defined by residues Q’”* in TM6
and V*® in TM4 (Brini & Carafoli, 2009). These residues
are not conserved in M535L; furthermore, the viral protein
has slightly less resemblance to PMRI (30 % aa identity,
49% similarity) than to plant and animal IIB Ca’”-
ATPases (see results). Therefore, to our knowledge, this is
the first report of a type IIB pump that transports both
calcium and manganese.

No convincing Ca®*-dependent or Mn’*-dependent
ATPase activity was detected in the in vitro experiments.
However, vanadate-sensitive ATPase activity was enriched
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Fig. 5. M535L protein enrichment in the ER fraction. Western blot
analysis of different membrane fractions obtained from K616 cells
expressing M535L. Microsomes isolated from K616 cells expres-
sing M535L (lane 1) were loaded onto a sucrose step gradient.
After overnight centrifugation, fractions corresponding to the 18—
33% interface (lane 2) and 33-45% interface (lane 3) were
collected and subjected to SDS-PAGE. Western analysis was
performed with antisera against the His-tag (panel a, 4 pg
proteins) or against the PM H*-ATPase of Neurospora crassa
(panel b, 2 pg proteins). (c) Coomassie blue staining of the
proteins.

about 70% in the ER fraction purified from yeast cells
expressing m535] and this enrichment paralleled M535L
accumulation in the ER, the typical cellular location of
plant Ca®*-ATPases expressed in yeast K616 (Bonza et al.,
2004). Moreover, M535L forms a vanadate-sensitive
phosphorylated intermediate. The formation of the phos-
phorylated intermediate also occurs in the presence of
MgCl, alone, suggesting that M535L also transports
magnesium. Since the presence of Mg>" is unavoidable
in the ATPase assay, this could explain the independence of
M535L ATPase activity from exogenous Ca’* or Mn®™.
The presumption that M535L is a functional protein is
supported by the finding that the gene is expressed during
viral replication. In addition, the gene is present in 45 of 47
viruses that infect Chlorella Pbi. The common, but not
universal, presence of the gene in the chlorella viruses
suggests that the function of the protein is auxiliary, but
not essential for virus infection/replication. The conclusion
of an auxiliary function is supported by the fact that the
gene is not present in all chlorella viruses that infect

B Microsomes B ER

300 A

200 4

100 A

ATPase activity (nmol Pi mg! prot min-1)

M535L EV

Fig. 6. Total ATPase activity in microsomes (black bars) and in ER
fractions purified from cells expressing m535/ or from cells
transformed with the empty vector (dashed bars). Results
(£sem) are from three gradients performed on different yeast
cultures.

different hosts. Out of four other sequenced viruses that
infect either Chlorella NC64A (three viruses) or Chlorella
SAG 3.83 (one virus), only one contained the gene (virus
AR158 that infects Chlorella NC64A). Again these data
suggest that the activity of the protein is not essential;
presumably the predecessor chlorella virus had the gene
and some of the viruses lost the gene with time without
losing their infectivity. However, we cannot eliminate the

100

©
o
|

Relative ATPase activity
@
S
|

70= g T T 1
0 10 20 30
Vanadate (uUM)

Fig. 7. Vanadate inhibition of ATPase activity from an ER-enriched
fraction purified from K616 cells either expressing M535L (closed
symbols) or transformed with the empty pYES2 vector (open
symbols). ATPase activity, assayed in the presence of increasing
concentrations of vanadate, is expressed as a per cent of the
activity measured in the absence of vanadate (350 nmol Pi mg™"
protein min~" for M535L and 160 nmol Pi mg™" protein min~" for
empty vector).
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Fig. 8. M535L forms a phosphorylated intermediate during its
catalytic cycle. Phosphorylation with [y-32JATP of ER-enriched
membranes from K616 transformed with m535/ was performed in
the presence of either MgCl, and CaCl, (lane 1), MgCl,, CaCl,
and vanadate (lane 2) or MgCl, alone (lane 3). As a negative
control, ER membrane proteins from K616 transformed with the
empty vector were used (lane 4). Acidic SDS-PAGE, all lanes
were loaded with 40 ng protein. Numbers on the left indicate the
size of the molecular mass marker in kDa.

possibility that the gene was acquired independently by the
viruses on two occasions.

The evidence that M535L is functional together with its
transcription during infection suggests that the protein
functions as an ATP-driven ion pump during the virus
infection/replication cycle. Altering ion conducting mem-
brane proteins during virus replication is a common
mechanism to change the ion milieu in host cells or change
the electrical properties of membranes. Several genes
encoding membrane transport proteins have been
described in the chlorella viruses, including ion channels,
aquaglyceroporins and transporters (Plugge et al., 2000;
Kang et al., 2003; Gazzarrini et al., 2004, 2006). While the
role(s) of the aquaglyceroporin and of the Ca®* -transport-
ing ATPase are still unknown, there is circumstantial
evidence that the potassium ion channel is required early
during virus infection. The present study does not define
the role of the virus ATPase. However, expression studies
indicate that the gene is transcribed early during virus
replication, suggesting the protein fulfils an important
function in Ca’* homeostasis during infection. This
speculation is not unreasonable because Ca’* is an
important messenger in cells and many enzymes in
eukaryotes are sensitive to Ca’*. M535L function could
be important under the non-physiological conditions
which probably occur during infection, e.g. altered ion
concentrations, an alkaline pH, etc.

The presence of a Ca®*-ATPase in some chlorella viruses is
also interesting from an evolutionary point of view. To
date only a few green algae have been sequenced and
annotated, including one of the virus hosts, Chlorella
NC64A. Chlorella NC64A and another green alga,
Chlamydomonas reinhardtii, as well as others not listed in
Fig. 1(c), encode several IIB type Ca’* pumps and all of
them, like the viral ones, group with the animal clade. This
is surprising because green algae are considered to be

ancestors of higher plants. One possible explanation for
this unexpected finding is that higher plants have lost these
genes through evolution. Another explanation is that algae
acquired these genes after separation from higher plants.
The latter hypothesis is not unreasonable because presum-
ably the family Phycodnaviridae of viruses exclusively infect
algae; higher plants are not hosts. Hence, the phycodna-
viruses or their ancestors may have shuttled genes between
the animal and plant kingdoms. This is reasonable because
the phycodnaviruses have a common ancestor with several
other large DNA viruses including poxviruses, iridoviruses,
asfarviruses, ascoviruses and mimiviruses, referred to as
nuclear, cytoplasmic and large DNA viruses (NCLDV).
Accumulating evidence indicates that the NCLDVs have a
long evolutionary history, possible dating from the time
eukaryotes diverged from prokaryotes (2-3 billion years
ago) (Yutin et al.,, 2009).

METHODS

Phylogenetic analyses. A BLASTP search with the MT325_MS535L
(ABT14089.1) amino acid sequence was conducted using the NCBI
non-redundant protein sequence database with the default settings. In
addition, the bait sequence was blasted against genomes of A. thaliana
(taxid: 3701), Escherichia coli (taxid: 5620), Mycobacterium tuberculosis
(taxid: 1773), Synechocystis PCC6803 (taxid: 1148), Methanobacterium
thermoautotrophicum str. Delta H (taxid: 187420), Methanococci (taxid:
183939), S. cerevisiae (taxid: 4932), Caenorhabditis elegans (taxid:
6239), Drosophila melanogaster (taxid: 7227) and H. sapiens (taxid:
9606). Similar analyses were carried out using the homologous
sequence from AR158_C785L (YP_001498866.1). An unrooted max-
imum-likelihood tree of 60 P-type ATPase amino acid sequences from
the above organisms was generated based on sequence alignment by
using MUSCLE and PHYML in the Geneious Pro 4.7.5 software program
(Drummond et al., 2008). The Whelan and Goldman (WAG) amino
acid substitution model was used to derive 100 bootstrap datasets [the
transition/transversion ratio for DNA models and the gamma
distribution parameter were estimated, proportion of invariable sites
was zero and four substitution rate categories produced the tree in Fig.
1(c); bootstrap values are shown).

Dot blot hybridization. DNA was isolated from Chlorella Pbi and 47
viruses that infect Chlorella Pbi, transferred to nylon membrane
(Osmonics) and cross-linked by UV light as described previously
(Graves et al., 2001). A 281 bp highly conserved domain in m535],
located from 1744 to 2024 bp, was amplified by PCR as a hybridization
probe. The probe was labelled with Random Primers DNA labelling kit
(Invitrogen). The dot blot membrane was pre-hybridized in 6 x SSC
(standard sodium citrate), 5x Denhardt’s reagent, 0.5% SDS and
denatured salmon sperm DNA at 68 °C for 1 h. The denatured dsDNA
probe, labelled with [**P][dATP was added to the membrane, and
hybridized at 68 °C for 1 h. The membrane was washed in 2 x SSC,
0.5 % SDS at room temperature for 5 min, 2 x SSC, 0.1 % SDS at room
temperature for 15 min, twice, and 0.1 x SSC, 0.5% SDS at 65 °C for
2h, and finally subjected to signal detection with a Storm
Phosphorimager and ImageQuant software (Molecular Dynamics).

Northern hybridization. Three x 10° Chlorella Pbi cells were
collected at various times after virus MT325 infection (m.o.i. of 5),
frozen in liquid nitrogen, and stored at —80 °C. RNA was extracted
with TRIzol reagent (Invitrogen), denatured with formaldehyde,
separated on a 1.5% agarose gel, and then transferred to a nylon
membrane. [**P]dATP labelled probe was prepared as in the dot blot
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hybridization experiment. The membrane was pre-hybridized in
20 ml Church’s buffer (1 mM EDTA, pH 8.0, 0.5 M NaPO,, 7%
SDS) for 1 h at 65 °C, hybridized with fresh Church’s buffer and
denatured probe for 16 h. After hybridization, the membrane was
washed twice with 0.1 x SSC, 0.1% SDS, first time for 30 min,
second time for 15 min. The signal detection was the same as in the
dot blot hybridization.

Cloning. Amplification of the m535] gene from virus MT325 DNA
and addition of Xhol and Xbal restriction sites were done by standard
PCR methods. Forward primer: 5'-CAACTCGAGTAAAAGATGTC-
CGCGTTTAAAGC-3', reverse primer: 5'-CAATCTAGATTATTA-
GATGTCATCATTGTTGA-3". The 2643 bp PCR product was cloned
into Xhol and Xbal sites in a modified version of the yeast expression
vector pYES2-NTC (Invitrogen). This vector has a shorter version
(MGHHHHHH) of the original N-terminal tag and contains a uracil
gene for selection and a galactose inducible promoter upstream of
the multiple cloning site for induction of protein expression in
S. cerevisae.

Yeast transformation and growth media. S. cerevisiae strain K616
[MAT« pmrl::HIS3 pmcl::TRP1 c¢nbl::LEU2, ade2, wura3
(Cunningham & Fink, 1994)] was used to express M535L (Bonza
et al., 2004). K616, transformed with an empty pYES2 vector, served
as a negative control. Yeast strain K601/W3031A (MATu leu2, his3,
ade2 and ura3) transformed with the empty pYES2 vector served as a
positive control. The transformants were selected for uracil proto-
trophy on a synthetic medium lacking uracil (SC-URA) supplemen-
ted with 2% (w/v) glucose. For complementation studies, single
URA-positive colonies were grown in SC-URA medium containing
2% (w/v) glucose and 10 mM CaCl,, pelletted and washed twice with
sterile water prior to protein induction in selective conditions. All
media were supplemented with 50 mM succinic acid/Tris-Cl pH 5.5
and 0.7 % (w/v) yeast nitrogen base.

Complementation in liquid culture at nM Ca?* concentrations.
Cells were diluted fourfold with either SC-URA medium, 2 % (w/v)
galactose, 1% (w/v) raffinose, 10 mM EGTA or SC-URA medium,
2% (w/v) galactose, 1% (w/v) raffinose, 10 mM CaCl, (selective and
non-selective medium, respectively) and then grown for 24 h by
shaking at 30 °C.

Complementation on solid medium. Five microlitre drops of yeast
glucose culture (Ag=1) was spotted on solid SC-URA plates
containing either 2 % (w/v) galactose, 1% (w/v) raffinose and 5 mM
EGTA with increasing free Ca®* concentrations (200-800 uM) or
without EGTA but supplemented with increasing concentrations of
MnCl, (0.5, 1 or 2 mM) and incubated at 30 °C for 3-5 days. The
free Ca>* concentrations were calculated using the Ky Ca>*/EGTA at
pH 5.5 (7.12x 10™%).

Isolation of microsomes and ER-enriched fraction. Pelleted yeast
cells were homogenized and microsomes were harvested as reported
previously (Bonza et al., 2004). Yeast membranes were purified by
sucrose gradient centrifugation as described previously (Meneghelli
et al., 2008). The membrane fraction was frozen at —80 °C until use.
Protein concentration was determined using the Bio-Rad assay with
y-globulin as a standard.

Electrophoresis and immunoblotting analysis. SDS-PAGE was
performed as described previously (Bonza et al, 1998).
Immunodetection was performed with a monoclonal anti-polyhistidine
antibody (Sigma-Aldrich) or with antiserum against the PM H™-
ATPase of Neurospora crassa as described previously (Hager et al., 1986).

ATPase assays. ATPase activity was measured as MgATP hydrolysis.
Samples (4 pg membrane proteins) were incubated at 25 °C for 1 h,

during which the reaction proceeds linearly, in a reaction buffer
containing 40 mM BTP-HEPES pH 7, 5 mM ATP, 7 mM MgSO,.
Sensitivity to vanadate was tested in a reaction buffer containing
50 mM KCI and increasing concentrations of Nas;VO, (0-100 uM).
Released inorganic phosphate was determined colourimetrically (De
Michelis & Spanswick, 1986). Assays were performed at least three
times with three replicates.

Phosphorylated intermediate formation. The formation of **P-
phosphorylated intermediate was performed as reported in Rasi-
Caldogno et al. (1995) with minor changes. The reaction mixture
(0.1 ml final volume) contained 50 mM KCI, 10 mM BTP-HEPES
pH 7, 0.2 uM [p-*P]JATP [250 pCi (9.25 MBq) nmol '], 12 uM
MgSO,; 100 uM CaCl, or 100 pM NazVO, were included as
indicated in the text. The reaction was started by adding 100 pg
ER-membrane proteins from K616-expressing M535L or transformed
with empty pYES2 vector. After 60 s the reaction was stopped by
adding 1.7 ml ice-cold 12% trichloroacetic acid, 1 mM ATP and
50 mM NaH,PO,, incubated for 1 h at 0 °C and centrifuged for 1 h
at 4 °C at 20000 g. Pellets were resuspended with protease inhibitors,
solubilized and separated by acidic SDS-PAGE on a 5.6%
polyacrylamide gel (40 pg protein) as described in Rasi-Caldogno
et al. (1995). For **P autoradiography, the dryed gel was exposed to
Kodak Biomax MS film for 3 days at —80 °C.
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