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Monoclonal Antibodies to Distinct Regions
of Human Myelin Proteolipid Protein
Simultaneously Recognize Central Nervous
System Myelin and Neurons of Many
Vertebrate Species

Edward A. Greenfield,1,2 Jayagopala Reddy,2 Andrew Lees,3 Charissa A. Dyer,4

Omanand Koul,5 Khuong Nguyen,1 Shannon Bell,1 Nasim Kassam,2

Julian Hinojoza,6,7 Mary Jane Eaton,6,7 Marjorie B. Lees,5

Vijay K. Kuchroo,2 and Raymond A. Sobel6,7*
1Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
2Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, Massachusetts
3Biosynexus Inc., Gaithersburg, Maryland
4Department of Neurology, Abramson Research Center, Children’s Hospital Philadelphia,
Philadelphia, Pennsylvania
5Biomedical Sciences Division, E.K. Shriver Center, Waltham, Massachusetts
6Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California
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Myelin proteolipid protein (PLP), the major protein of mam-
malian CNS myelin, is a member of the proteolipid gene
family (pgf). It is an evolutionarily conserved polytopic inte-
gral membrane protein and a potential autoantigen in mul-
tiple sclerosis (MS). To analyze antibody recognition of
PLP epitopes in situ, monoclonal antibodies (mAbs) spe-
cific for different regions of human PLP (50–69, 100–123,
139–151, 178–191, 200–219, 264–276) were generated
and used to immunostain CNS tissues of representative
vertebrates. mAbs to each region recognized whole hu-
man PLP on Western blots; the anti-100–123 mAb did not
recognize DM-20, the PLP isoform that lacks residues
116–150. All of the mAbs stained fixed, permeabilized oli-
godendrocytes and mammalian and avian CNS tissue
myelin. Most of the mAbs also stained amphibian, teleost,
and elasmobranch CNS myelin despite greater diversity of
their pgf myelin protein sequences. Myelin staining was
observed when there was at least 40% identity of the
mAb epitope and known pgf myelin proteins of the same
or related species. The pgf myelin proteins of teleosts and
elasmobranchs lack 116–150; the anti-100–123 mAb did
not stain their myelin. In addition to myelin, the anti-178–
191 mAb stained many neurons in all species; other mAbs
stained distinct neuron subpopulations in different spe-
cies. Neuronal staining was observed when there was at
least approximately 30% identity of the PLP mAb epitope
and known pgf neuronal proteins of the same or related
species. Thus, anti-human PLP epitope mAbs simultane-
ously recognize CNS myelin and neurons even without
extensive sequence identity. Widespread anti-PLP mAb
recognition of neurons suggests a novel potential patho-

physiologic mechanism in MS patients, i.e., that anti-PLP
antibodies associated with demyelination might simulta-
neously recognize pgf epitopes in neurons, thereby affect-
ing their functions. VVC 2006Wiley-Liss, Inc.

Key words: demyelination; evolution; M6 proteins;
multiple sclerosis; rhombex

Proteolipid protein (PLP), the major protein of
mammalian CNS myelin, is an intrinsic membrane pro-
tein of oligodendrocytes with proposed roles in the for-
mation and maintenance of myelin, intracellular trans-
port, interactions with axons, and integrin signaling
(Griffiths et al., 1998; Campagnoni and Skoff, 2001;
Yool et al., 2001; Gudz et al., 2002). It is highly con-
served among mammals; the sequences of murine and
human PLP are identical. This conservation suggests that
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both the primary structure of PLP and its conformation
in situ are critical for its functions. DM-20, the smaller
isoform of PLP, is a minor component of mammalian
CNS myelin. The DM protein members of the PLP/
DM-20 gene family (pgf; also referred to as ‘‘lipophi-
lins’’; Gow, 1997) are found in CNS myelin in bony
fish and sharks, but they exhibit greater sequence diver-
sity, suggesting their greater plasticity (Kitagawa et al.,
1993; Geltner et al., 1998). Members of the pgf are also
expressed in nonmyelinating cells, including neurons, in
developing and mature vertebrate CNS tissues (Kitagawa
et al., 1993; Yan et al., 1993, 1996; Roussel et al., 1998;
Werner et al., 2001; Jacobs et al., 2003, 2004). To our
knowledge, however, evolutionary conservation of pgf
protein epitopes in situ has not been investigated.

PLP is a CNS autoantigen in demyelinating dis-
eases (Greer et al., 1996a). We previously demonstrated
that both naturally occurring and synthetic amino acid
substitutions in PLP epitopes can dramatically alter T-
cell responses and the induction of experimental autoim-
mune encephalomyelitis (Nicholson et al., 1995; Greer
et al., 1997). Thus, small alterations of PLP epitopes can
have profound effects on CNS autoimmunity. T-cell
responses to PLP epitopes in patients with multiple scle-
rosis (MS) have been associated with clinical relapses
(Pelfrey et al., 2000; Pender et al., 2000), and MS
patients may have anti-PLP antibodies in their sera and
cerebrospinal fluid (CSF). However, there currently is
little information on anti-PLP antibody recognition of
different PLP epitopes in CNS tissue or the potential
pathophysiologic consequences of this recognition.

To understand PLP epitope binding, a panel of
antibodies recognizing its distinct intra- and extracellular
regions is needed (Greer and Lees, 2002). In the present
study, PLP knockout (PLP�/�) and wild-type mice were
immunized with PLP and PLP peptides, and a large
panel of monoclonal antibodies (mAbs) with reactivities
to different PLP regions was generated. Selected mAbs
were characterized for their reactivities to 1) whole PLP
and PLP peptides by ELISA, 2) PLP and DM-20 on
Western blots, and 3) live and fixed oligodendrocytes
and normal human CNS tissue by immunohistochemis-
try. The results demonstrated the epitope specificity of
the mAbs and their applicability to immunohistochemi-
cal studies of paraffin-embedded tissue samples.

To analyze mAb recognition of PLP epitopes in
situ and assess their evolutionary conservation, archival
CNS tissue samples from representative vertebrates were
immunostained with the mAbs. In addition to staining
CNS myelin, most of the mAbs also stained multiple
neuron populations in each species. To understand the
basis for this unexpected result, the occurrence of myelin
and neuronal staining was then correlated with the
degree of identity of the anti-PLP mAb epitope sequen-
ces and sequences of known major pgf myelin and neu-
ronal proteins in the same or most closely related species.
Myelin staining was frequently observed when there was
as little as 40% sequence identity of the PLP mAb epit-
ope and a known pgf myelin protein; neuronal staining

was frequently observed when there was as little as 30%
sequence identity with a known pgf neuronal protein.
These results suggest that anti-PLP mAbs may recognize
evolutionarily conserved epitopes present not only in
CNS myelin but also in mature neurons. Insofar as an
mAb to pgf M6 neuronal proteins inhibits neuronal
development and function in vitro, the results raise the
possibility that, in MS patients with anti-PLP antibodies
associated with demyelination, similar recognition of
neuronal pgf protein epitopes might contribute to dys-
function, degeneration, or impaired regeneration of neu-
rons in vivo. Thus, the cross-reactivity of PLP mAbs
suggests a new potential pathogenetic mechanism in MS.

MATERIALS AND METHODS

Mice

Female BALB/c mice, 4–8 weeks old, were purchased
from Harlan Sprague Dawley, Inc. (Indianapolis, IN). PLP�/�

mice were obtained from Klaus-Armin Nave (Max-Planck
Institute of Experimental Medicine, Göttingen, Germany)
(Klugmann et al., 1997) and were bred onto the SJL back-
ground. (SJL 3 B10.BR)F1 mice were bred at The Children’s
Hospital of Philadelphia Laboratory Animal Facility. All animals
were acquired and maintained in accordance with the guidelines
of the Institutional Animal Care and Use Committees of Har-
vard Medical School, E.K. Shriver Center, and The Children’s
Hospital of Philadelphia.

PLP and PLP Peptides

PLP was isolated from frozen samples of human post-mor-
tem brain tissue and bovine brain, as previously described (Greer
et al., 1996a, 1997). All PLP preparations contain both PLP and
DM-20. All peptides were synthesized by using F-moc chemis-
try and were greater than 90% pure by HPLC analysis. Peptides
either were synthesized in the laboratory of Dr. Richard
Laursen, Department of Chemistry, Boston University, or were
a generous gift of Dr. David Hafler, Department of Neurology,
Harvard Medical School (Marcovic-Plese et al., 1995).

Generation of PLP Antibodies

One hundred micrograms of human PLP were sus-
pended in Dulbecco’s phosphate-buffered saline (PBS; Gibco,
Grand Island, NY) and emulsified with an equal volume of
complete Freund’s adjuvant (Sigma Chemical Co., St. Louis,
MO). Mice were immunized by injection of the emulsion at
three subcutaneous sites. Fourteen days after the initial immu-
nization, the mice were given a booster immunization i.p.
with 100 lg human PLP suspended in PBS and emulsified
with an equal volume of incomplete Freund’s adjuvant. A sec-
ond booster was given after another 14 days. Ten days later, a
small amount of blood was collected by retroorbital bleeding,
and the serum activity against PLP was titered by ELISA.
Mice were selected for cell fusion when the titer exceeded
1:24,300. Rat anti-PLP 264–276 mAb AA3 (IgG2b) or AB3
(IgG2a; Yamamura et al., 1991) were used as positive controls.

The selected mice were rested for 4 weeks after the last
immunization and then boosted by intravenous injection with

416 Greenfield et al.

Journal of Neuroscience Research DOI 10.1002/jnr



either 50 lg PLP or synthetic PLP peptide in PBS. Four days
later, the mice were sacrificed, and spleen cell suspensions
were prepared and washed with PBS. Spleen cells were
counted and mixed with SP 2/0 myeloma cells (ATCC No.
CRL8-006, Rockville, MD) that are incapable of secreting
either heavy or light immunoglobulin chains (Kearney et al.,
1979) at a spleen:myeloma cell ratio of 2:1. Cells were fused
with polyethylene glycol 1450 (ATCC) in 12 96-well tissue
culture plates in HAT selection medium according to standard
procedures (Kohler and Milstein, 1975).

Screening and Expansion of Hybridomas

Between 10 and 21 days after fusion, hybridoma colo-
nies became visible, and culture supernatants were harvested
and screened by ELISA. High-protein-binding 96-well EIA
plates (Costar, Cambridge, MA) were coated with 50 ll/well
of a 5 lg/ml solution (0.1 lg/well) of PLP or synthetic PLP
peptides and incubated overnight at 48C. The excess solution
was aspirated, and the plates were washed with PBS (three
times) and blocked with 1% bovine serum albumin (BSA) sol-
ution for 1 hr at room temperature (RT) to inhibit nonspe-
cific binding. The BSA solution was removed, and 50 ll/well
of hybridoma supernatant from each fusion plate were added.
The plates were then incubated for 45 min at 378C and
washed three times with PBS. Horseradish peroxidase (HRP)-
conjugated goat anti-mouse Ig (Zymed, South San Francisco,
CA) diluted 1:4,000 in 1% BSA/PBS was added to each well,
and the plates were incubated for 45 min at 378C. After
washing, 50 ll/well of ABTS (Zymed) were added. The
intensity of the green color of positive wells at 405 nm was
assessed on a Vmax microtiter plate reader (Molecular Devices
Corp., Sunnyvale, CA). All hybridoma wells that gave a posi-
tive response were then expanded to 24-well cultures, subcl-
oned by limiting dilution, and analyzed by ELISA. The three
best producing subclones were expanded further. Supernatants
were isotyped with an Isostrip kit (Boehringer Mannheim
Corp., Indianapolis, IN).

Antibody Purification

The antibodies were purified using Millipore Prosep
Protein A resin. They were diafiltered into PBS and concen-
trated with an Amicon Ultra 4 (30-kDa cutoff) device accord-
ing to the manufacturer’s protocol.

Epitope Identification by ELISA

The antibodies selected from the fusions were screened
by ELISA to determine the epitope or region of PLP that
they recognized. Each antibody supernatant was screened
against a panel of overlapping PLP peptides (1–19, 10–29, 20–
39, 30–49, 50–69, 60–79, 80–99, 100–119, 110–123, 110–
129, 120–139, 130–149, 139–151, 140–159, 150–169, 170–
189, 178–191, 180–199, 190–209, 200–219, 215–232, 220–
239, 240–259, 250–269, 260–276, and 269–276), human and
bovine PLP, and bovine MBP. The peptides were dissolved
in 0.1 M bicarbonate buffer, pH 9.0, and bound overnight to
EIA plates with 50 ll/well of a 5 lg/ml solution (0.25 lg/
well) and then processed as described above.

Immunoblots

Fifty micrograms of human PLP were mixed with sam-
ple buffer containing 0.7% dithiothreitol, 1 mM EDTA,
10 mM Tris-HCl, 5% sodium dodecyl sulfate (SDS), 13%
glycerol, and 0.007% bromophenol blue and electrophoresed
on a 12% SDS-PAGE under reducing conditions. The pro-
teins were transferred onto nitrocellulose membranes (Bio-
Rad, Hercules, CA) and treated with blocking buffer (50 mM
Tris, 150 mM NaCl, 0.05% Tween, 5% dry milk solids) for
1 hr at RT. The membranes were probed overnight with the
purified PLP-specific Ab at a concentration of 200 ng/ml in
buffer containing 5% BSA and 0.025% sodium azide. After
washing, the membranes were incubated with HRP-labeled
goat anti-mouse Ab (0.4 mg/ml; Jackson Immunoresearch,
West Grove, PA) in the above-mentioned buffer for 1 hr.
The membranes were then washed and autoradiographed by
using an ECL Western blotting detection kit (Amersham Bio-
sciences, Piscataway, NJ) according to the manufacturer’s rec-
ommendations.

Immunofluorescent Staining of Mouse
Oligodendrocytes

Oligodendrocyte-enriched shake-off cultures were pre-
pared from 2-day-old (SJL 3 B10)F1 newborn mice by using
a modified version of the method of McCarthy and de Vellis
(1980) as described by Dyer et al. (1995). Live cultures were
treated with undiluted hybridoma supernatant, followed by
addition of appropriate fluorescein isothiocyanate (FITC;
Boehringer Mannheim Corp.) or TRITC (Jackson Immunor-
esearch) goat anti-mouse IgG or IgM secondary antibody
diluted 1:40. Each step was carried out for 15 min at 378C in
5% CO2. To detect internal epitopes, the cells were fixed in
4% paraformaldehyde for 5 min and permeabilized with
0.05% saponin for 15 min prior to staining with the superna-
tant or primary mAb. The O4 hybridoma was grown and
purified as described elsewhere (Dyer et al., 1995). SMI-99
mouse mAb reactive with myelin basic protein (MBP) was
purchased from Sternberger Monoclonals (Baltimore, MD).
Images were captured with a 35-mm camera system on a Leitz
DMR fluorescent microscope with Tmax ASA 400 film.

Tissue Samples

Archival samples of routinely fixed, paraffin-embedded
CNS tissue from our previous studies and additional samples
of vertebrate CNS tissues were obtained from other investiga-
tors. Six-micrometer-thick serial sections from each paraffin
block were stained with Luxol fast blue-H&E stain and with
the mAbs by immunohistochemistry. A human CNS tissue
block contained at least three levels of normal spinal cord
from an autopsy of a 24-year-old male. The nonhuman sam-
ples consisted of a cow brainstem (N ¼ 3 blocks), two rabbit
brains (N ¼ 2 blocks), three Lewis rat brains (N ¼ 3 blocks),
the brains and spinal cords of SJL/J and C57/Bl6 mice (N ¼
2 blocks each), the brains and spinal cords of three Rana
pipiens (N ¼ 3 blocks), two Xenopus brains (N ¼ 2 blocks),
and one block each from the brains of a barn owl, a Malawi
cichlid, and a leopard shark. All vertebrate species had Luxol
fast blue-positive myelin.

Anti-PLP mAbs Recognize Myelin and Neurons 417
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Tissue Immunohistochemistry

Six anti-PLP mAbs generated in the present study (two
to 50–69 and one each to 100–123, 178–191, 200–219, and
264–276) were used for the immunohistochemical analyses.
This panel was supplemented with the previously described
mouse mAbs to 139–151 (1D5 and 1C5, both IgG1; Greer
et al., 1996b) and a rat mAb to 264–276 (AA3, IgG2b; Yama-
mura et al., 1991). Reactivities of the nine purified mAb
supernatants in the tissue sections were titered for optimal
staining using immunoperoxidase staining as described else-
where (Sobel, 2005). Controls included substitution of mAb
supernatants with PBS.

Sequence Comparisons

Percentages of sequence identities to the human PLP
mAb epitopes were determined from BLAST searches (http://
au.expasy.org/tools/blast/) and estimated by aligning sequen-
ces of the pgf myelin or neuronal proteins in the same or
most closely related species for which the sequences are
known (Table I). The pgf proteins listed are at least 30% iden-
tical to one or more of the PLP mAb epitopes.

RESULTS

Selection of Antibodies

Approximately 8,000 hybridomas were generated
from fusions of spleens from six PLP�/� mice and one
BALB/c mouse that had been immunized with human
PLP and boosted with synthetic PLP peptides. After ini-

tial screening against human PLP, 25 reactive hybrido-
mas were identified, subcloned, and isotyped. In addi-
tional testing, two of these showed consistent reactivity
to the region encompassing PLP 50–69, one to PLP
100–123, two to PLP 178–191, five to PLP 200–219,
and one to PLP 264–276. Eleven hybridomas initially
showed reactivity to PLP 139–151, but this reactivity
was not consistent through subcloning; all but one of
those hybridomas were determined to be of the IgM
subclass. Three hybridomas showed reactivity to whole
PLP but did not show consistent reactivity to any of the
peptides tested. Thus, their epitope specificities could
not be determined.

Epitope Assignments

Table II shows the reactivities to PLP and repre-
sentative PLP peptides of selected hybridomas. All of
these mouse hybridomas recognize human and bovine
PLP and not MBP. Each hybridoma shown specifically
recognizes a different region of human PLP. Based on
these and additional ELISA screening using overlapping
peptides, assignments for reactivity of the mAbs used for
further studies were made as follows: F4.4C2 and
F3.9E9 (PLP 50–69), F4.2D2 (PLP 100–123), P7.6A5
(PLP178–191), F4.8A5 (PLP 200–219), and P5.12A8
(PLP 264–276). Hybridoma P5.12A8 is an IgM; F3.9E9
is an IgG2aj; all of the other hybridomas are IgG1j. All
but one of these selected hybridomas were from PLP�/�

mice; the anti-PLP 178–191 hybridoma was from the

TABLE I. pgf Proteins

Vertebrate

group

Myelin pgf

proteins

Accession

number Abbreviationa
Neuronal

pgf proteins

Accession

numberb Abbreviationa

Mammals Bovine PLP P04116 bPLP Human M6a P51674 hM6a

Rabbit PLP P47789 rbPLP Human M6b Q13491 hM6b

Rat PLP P60203 rtPLP Rat M6a Q812E9 rtM6a

Mouse PLP P60202 mPLP Rhombex-29 Q9JJK1 Rh-29

Mouse M6a P35802 mM6a

Mouse M6b P35803 mM6b

Aves Zebra finch PLP P47790 ZF PLP Chicken GPM6a Q5EES3 Ch M6a

Chicken PLP P23289 Ch PLP Chicken GPM6b Q5EES2 Ch M6b

Amphibians Xenopus PLP1 P35801 Xe PLP1 Xenopus DMb Q98ST4 Xe DMb
Xenopus PLP2 P23290 Xe PLP2

Xenopus DMg1 Q98ST3 Xe DMg1
Xenopus DMg2/GPM6b Q98ST2 Xe DMg2/M6bc

Teleosts Rainbow trout DM20 P79826 RTr DM20 Zebrafish M6a Q8UUT4 Zfsh M6a

Zebrafish DMa1 Q8UUT6 Zfsh DMa1 Zebrafish Gpm6ab Q6D117 Zfsh M6b

Zebrafish DMa2a Q8UUT5 Zfsh DMa2a Zebrafish DMb2a Q8UUS9 ZFsh DM

Zebrafish DMa2b Q8UUT3 Zfsh DMa2b Zebrafish DMb2b Q8UUT1 ZFsh DMb2b
Zebrafish DMa2c Q8UUT2 Zfsh DMa2c
Zebrafish DMg1 Q8UUT0 Zfsh DMg1
Zebrafish DMg2 Q8UUS8 Zfsh DMg2

Elasmobranchs Squalus DMac P36963 Sq DMa
Squalus DMbc P36964 Sq DMb
Squalus DMgc P36965 Sq DMg

aThe sequences of the pgf proteins listed were compared to with the human PLP sequences. The abbreviations are used in Supplemental Tables A–C.
bUniProtKB/Swiss-prot or/TrEMBL entry.
cThe Xenopus DMg2/GPM6b protein sequence and the squalus DM protein sequences were used for analyses of both myelin and neuronal staining.
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BALB/c mouse. In additional testing by ELISA of one
of the previously reported anti-139–151 mAbs (1C5),
the specific reactivity of this mAb to a synthetic peptide
encompassing the 139–151 region and lack of reactivity
to a peptide encompassing the 100–123 region con-
firmed its specificity.

Western Blots

A representative Western blot demonstrates that all
five of the hybridomas tested recognize a band corre-
sponding to PLP (Fig. 1). All but one mAb also recog-
nize a slightly lower band corresponding to DM-20.
Because this mAb recognizes PLP 100–123, it does not
recognize DM-20, and there is a single band on the blot.
None of the mAbs recognized MBP (not shown).

Immunofluorescent Staining of Cultured
Oligodendrocytes

Only the one anti-50–69 mAb (F4.4C2) of the five
mAbs tested detected a PLP epitope on the surface of
cultured oligodendrocytes. A prominent membrane
staining pattern is evident in Figure 2A,B. Figure 2C
shows the same cells shown as in Figure 2B stained with
the oligodendrocyte marker antibody O4, confirming
that the cells are oligodendrocytes. However, the distri-
butions of PLP and antibody O4 are distinct: O4 is uni-
formly distributed, whereas PLP occurs in a punctate
pattern throughout the sheet and is also concentrated
along the edges (compare areas indicated by arrows in
Fig. 2B,C).

The mAbs recognizing PLP peptides 100–123,
178–191, 200–219, and 264–276 did not stain the sur-
face of live oligodendrocytes. Representative results for
the mAb to PLP 264–276 are shown in Figure 2D.
However, each of the mAbs to these regions stained
fixed and permeabilized oligodendrocytes. Figure 2E
shows a representative fixed oligodendrocyte stained for
PLP 264–276 with this mAb. PLP 264–276 has been
shown to be on the cytoplasmic portion of the mem-
brane (Konola et al., 1992), and staining for this epitope
shows a distribution in the cell body, along cytoskeletal
veins, and in the membrane sheet (highlighted by
arrows). Figure 2F shows the same cell stained for MBP.

The staining pattern for MBP differs from that of PLP
264–276 in that it appears more diffuse (compare areas
indicated by arrows in Fig. 2E,F). In summary, only an
anti-50–69 mAb immunostained live oligodendrocytes,
confirming that this region is on the extracellular face of
the membrane, whereas all of the other mAbs tested
stained fixed, permeabilized oligodendrocytes.

Immunostaining of Archival Paraffin Sections

For each of the purified mAbs, optimal staining
was observed at dilutions of 1:100–1:500; diffuse and
nonspecific patterns were observed when they were
more concentrated. The three pairs of mAbs to the same
regions (50–69, 139–151, and 264–276) gave essentially
identical staining results. Staining controls were negative.

Mammalian and Avian CNS Myelin

In the normal human spinal cord, all anti-PLP
mAbs specifically stained CNS myelin, but not PNS
myelin or axons in adjacent spinal nerve roots (Fig. 3A–
F). In gray matter areas, e.g., the posterior horns, they
stained individual myelinated fibers but not the back-

Fig. 1. Representative immunoblot of whole human PLP with
selected mAbs. With one exception, i.e., the mAb to 100–123, all of
the mAbs tested recognize two bands corresponding to PLP and
DM-20. The 100–123 epitope is part of the region absent in DM-20
(residues 116–150). Therefore, the mAb to this region stains only
PLP and not DM-20. The higher molecular weight bands represent
aggregates of multimeric complexes and the lower bands are pre-
sumed degradation products. All but the mAb to 200–219 were run
in the same gel. The data are representative of six gels performed for
different human PLP samples.

TABLE II. Epitope Mapping of Representative PLP Antibodies by ELISA

Hybridoma

Epitope

assignment

Absorbance (OD/405 nm)a

MBP

Human

PLP

Bovine

PLP

PLP peptide tested

50–69 120–139 139–151 178–191 200–219 260–276

F4.4C2 50–69 0.078 0.699 1.070 0.433 0.057 0.059 0.107 0.071 0.074

F4.2D2 100–123b 0.060 0.584 1.149 0.047 0.409 0.043 0.050 0.048 0.058

P7.6A5 178–191 0.052 0.487 n.d.c 0.094 0.075 0.076 0.656 0.089 0.076

F4.8A5 200–219 0.056 0.379 0.921 0.045 0.043 0.046 0.047 0.653 0.053

P5.12A8 264–276 0.074 0.693 0.250 0.100 0.084 0.090 0.140 0.151 0.268

aItalicized values indicate positive results.
bAssignment based on reactivity with PLP 100–119, 110–123, 110–129, and 120–139 but not with peptide 130–149 or 139–151.
cn.d., Not done.
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ground neuropil. They did not stain neurons in this
sample. There was similar specific staining of myelin
bundles and individual fibers in all samples of cow, rab-
bit, rat, and mouse CNS tissues, consistent with the 95–
100% identity with the human sequence of the PLP in
these mammals (Greer and Lees, 1992). Figure 4 illus-
trates this staining pattern in rabbit basal ganglion. All
mAbs also stained compact myelin in the barn owl brain.
Although the PLP sequence is not known for the barn
owl, the PLP sequences of other avian species (chicken

and zebra finch) are also highly conserved in most of the
regions recognized by the mAbs (Campagnoni et al.,
1994; Supplemental Tables A–C). Occasional staining of
oligodendrocytes in gray matter, particularly with the
mAbs to the C-terminus region, was also observed in
the mammals and barn owl (not shown).

Amphibian CNS Myelin

All of the mAbs stained compact myelin in the
Rana pipiens brain and spinal cord; the staining intensity

Fig. 2. Surface and internal staining of PLP epitopes in oligodendro-
cytes. A,B: Staining of live cultured oligodendrocytes with an anti-
50–69 mAb. Arrows indicate intensely stained perimeter of the mem-
brane. C: Same cell as in B stained for O4 showing diffuse staining.
Arrows in B and C indicate the same locations on the cell surface,
demonstrating the difference between PLP and O4 staining. D:

Staining of live oligodendrocyte cultures with anti-264–276 mAb;
note lack of stain. E: Fixed and permeabilized oligodendrocyte
stained with the anti-264–276 mAb shows diffuse PLP staining. F:
Same cell as in E stained for MBP. Arrows in E and F point to
cytoskeletal veins that are stained for the PLP epitope in E but not
MBP in F. A–C: 3250; D: 3150; E,F: 3350.
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was greatest in myelinated fiber tracts of the cord
(Figs. 5A–C, 9C). This pattern is consistent with the dis-
tribution of PLP in Xenopus (Yoshida et al., 1999). To
our knowledge, pgf proteins in Rana pipiens have not
been identified or sequenced. Therefore, staining corre-
lations were made with Xenopus protein sequences (Sup-
plemental Tables A–C). The Xenopus CNS samples
studied were limited to the brain, and only staining of
single myelinated fibers could be identified in those sec-
tions with all mAbs, except for mAb to 100–123 (Fig.
5D–F). The Xenopus PLP sequences are at least 80%
identical to the human sequence in all regions analyzed,

except 100–123 and 262–276. Xenopus pgf myelin pro-
teins have approximately 50–60% identity with human
PLP in the 100–123 and 264–276 regions. In the frog
samples, therefore, the minimum sequence identity that
resulted in recognition of compact CNS myelin by the
anti-PLP mAbs was approximately 60%.

Teleost CNS Myelin

The mAbs to 50–69, 200–219, and 264–276
immunostained CNS myelin in the Malawi cichlid brain
(Fig. 6A,F,G). In these regions. there are considerable

Fig. 3. Immunohistochemistry of a normal human spinal cord sample. Anterior spinal cord with
spinal nerve roots (upper portion) and white matter (lower portion) shows specific staining of
CNS myelin (brown) with the indicated mAb in each panel. PNS myelin, which lacks PLP, and
nerve root axons (blue) are not stained. All are counterstained with hematoxylin. 380.
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similarities (approximately 50–75% identity) between the
human PLP sequence and sequences of rainbow trout
and zebrafish DM proteins (Supplemental Tables A, C).
The anti-100–123 mAb did not stain the cichlid myelin
(Fig. 6B), consistent with the expected absence of resi-
dues 116–150 in the major pgf myelin proteins in tele-
osts (Supplemental Table A). By contrast, both mAbs to
the 139–151 region stained portions of the brain myelin
in a distinct pattern, i.e., predominantly on fibers in
peripheral portions of deep gray matter tract bundles,
leaving larger central portions of the bundles unstained
(Fig. 6C,D). The zebrafish DMg2 and the rainbow trout

DM-20 proteins have approximately 30–45% identity
with 139–151 (Supplemental Table B), but the implica-
tions and significance of this distinct partial staining pat-
tern are presently unclear. The anti-178–191 mAb did
not stain the cichlid myelin (Fig. 6E), despite the
approximately 38% identity of rainbow trout DM-20
and the 54% identity of zebrafish DMg2 with the
human PLP 178–191 sequence. The species of Malawi
cichlid tested and its DM sequences are not known, and
pgf myelin protein sequences are more diverse in teleosts
than in tetrapods (Geltner et al., 1998). In summary, the
mAbs to highly conserved regions, i.e., those in which

Fig. 4. Myelin staining in rabbit corpus striatum demonstrated by Luxol fast blue-hematoxylin and
eosin (A) and by immunostaining for the indicated PLP epitopes (B–F). Dense fiber bundles and
individual myelinated fibers but not the background neuropil or neurons are stained. This pattern
is representative of the staining observed in all mammals and in the barn owl. 3160.
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Fig. 5. mAb staining in Rana pipiens and Xenopus. Myelinated fiber tracts are stained with mAbs to
the indicated epitopes in Rana pipiens spinal cord (A–C). Large neurons in these fields (upper right
corners) are not stained. In Xenopus brain sections stained with mAbs to the indicated epitopes (D–
F), individual fibers are stained in beaded patterns for 50–69 and 264–276 (arrows in D,F). There
is no staining for 100–123 in E. A–C: 3160; D–F: 3240.

Fig. 6. mAb staining in Malawi cichlid brain. Compact myelin is stained with mAbs to 50–69 (A),
200–219 (F), and 264–276 (G, whole-brain section). No myelin is stained with mAbs to 100–123
(B) or 178–191 (E). Partial staining with two different anti-139–151 mAbs of peripheral portions
of myelinated fiber bundles (arrow in C) with central portions of the bundles remaining unstained
is shown in C and D. A–F: 3160; G: 34.



there is approximately 50% or greater identity of zebra-
fish and rainbow trout pgf proteins and PLP epitopes
recognized at least some compact CNS myelin in the
cichlid brain, whereas the mAbs to less well conserved
regions were recognized to a lesser extent.

Elasmobranch CNS Myelin

The mAbs to the 50–69, 200–219, and 264–276
regions also immunostained compact myelin in the
leopard shark brain (Fig. 7A,E,F). The sequences of
squalus DMa and DMg are greater than 60% identical
to the human PLP sequences in these regions (Supple-
mental Tables A, C). Myelin staining with the anti-
139–151 (Fig. 7C) and -178–191 (Fig. 7D) mAbs was
positive although less uniform than the staining of the
other mAbs; the squalus DMg sequences are approxi-
mately 46% and 61% identical to the human PLP 139–
151 and 178–191 sequences, respectively (Supplemental
Table B). The mAb to 100–123 did not stain the com-
pact myelin (Fig. 7B), consistent with the absence of
the PLP 116–150 sequence in elasmobranchs (Supple-
mental Table B).

CNS Myelin Staining Correlations

The left column in Table III summarizes the mye-
lin staining and correlates positive staining results in each
species tested with the percentage identities of the PLP
mAb epitope and the most similar known pgf myelin

and neuronal proteins. Because there is a high degree of
conservation of pgf myelin proteins, all 43 samples in
which a pgf myelin protein is at least 60% identical to
the human PLP epitope showed myelin staining with
the mAbs. Staining was also very often observed when
there was 40–60% identity of the mAb epitope and the
corresponding sequence in the pgf myelin proteins of
the species tested or the most closely related species.
Staining was not observed when there was less than 40%

Fig. 7. mAb staining in leopard shark brainstem. Compact myelin is stained with mAbs to 50–69
(solid arrow in A), 178–191 (D), 200–219 (E), and 264–276 (F). There is no staining with the
mAb to 100–123 (B), and the staining is minimal with an mAb to 139–151 (C). Additional neu-
ron cell bodies are stained in A and D (open arrows). 3160.

TABLE III. Summary of Myelin and Neuron Staining

Correlations*

Identity of mAb epitope

and most similar pgf myelin

or neuronal protein (%)

Myelin staining

(No. positive/

No. in group)

Neuronal staining

(No. positive/

No. in group)

0–29 0/1 0/4

30–39 0/1 10/18

40–49 3/4 9/16

50–59 4/5 4/5

�60 43/43 3/11

Total positive/total

sequence comparisons

50/54 26/54

*Correlations of myelin and neuronal staining by the mAbs to six PLP

regions in nine vertebrate species (54 correlations for each) with the

extent of sequence identity of the epitopes with pgf proteins. The data

are grouped according to the percentage identity of the mAb epitope and

the most similar sequence in the known pgf myelin or neuronal proteins

in each or the most closely related species (Table I). See Supplemental

Tables A–C for specific correlations.
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sequence identity or when the epitope was absent in the
known pgf proteins.

CNS Neuron Staining by the Anti-178–191 mAb
in All Vertebrate Species

In addition to CNS myelin, the anti-178–191
mAb unexpectedly immunostained neuron subpopula-
tions in all species tested. This positive staining included
but was not limited to rare large neurons in the bovine
brainstem (Fig. 8A)l temporal cortical neuron subpopu-
lations in the rabbit, rat, and mouse; Purkinje cells in
the rat (Fig. 8B); ventral horn cell subpopulations in
mouse spinal cord (Fig. 8C); many large gray matter
neurons in the barn owl (Fig. 8D); large neurons in the
spinal cord and brains of the frogs (Fig. 8E,F); and
many neurons and neuropil in the cichlid and shark
brains (Fig. 7D, 8G,H). The specificity of this staining

was indicated by identification of unstained similar-
appearing neurons in the same microscopic fields (e.g.,
Fig. 8A–C,F), and the absence of staining of the same
neuron subpopulations with the other mAbs in adjacent
serial tissue sections (e.g., insets in Fig. 8B,H) and in
negatively staining controls.

The staining patterns of individual neurons were
variable in different regions, but individual subpopulations
tended to have uniform staining patterns in the same ana-
tomic areas across species. For example, in most neurons
in the mammals and barn owl, the immunoperoxidase
reaction product appeared to be localized on soma mem-
branes, with less staining around nuclei (Fig. 8B–D). In
other species and anatomic regions, neuron cell bodies
were more often diffusely stained (Fig. 8A,E–H). Axonal
staining could generally not be assessed because of intense
myelin staining. However, nonmyelinated, i.e., Luxol fast
blue-negative, neuropil also showed diffuse staining, e.g.,

Fig. 8. Neuron subpopulations stained with the anti-178–191 mAb.
A: Cow brainstem with adjacent cell in field (open arrow) unstained.
B: Rat Purkinje cells are stained; granular layer neurons are not
stained. Inset: Unstained Purkinje cell from adjacent section stained
for 50–69 indicates epitope specificity. There is staining of individual
myelinated fibers in both. C: Mouse ventral horn cells with adjacent
cells in field (open arrows) showing little or no staining. D: Many
large neurons in the barn owl forebrain show peripheral soma stain-

ing. E: Large neurons in the Rana pipiens spinal cord are diffusely
stained. F: Neurons in Xenopus brain (arrows) are stained. Unstained
cells are seen in the same field. G: All neurons in this field from the
cichlid brain are stained. H: Large Golgi-like neurons in the leopard
shark cerebellar granular layer are stained, and there is diffuse staining
of neuropil fibers. Inset: Unstained large Golgi-like neuron with an
anti-139–151 mAb indicates epitope specificity of the anti-178–191
mAb staining. 3240.
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in the shark cerebellum (Fig. 8H), suggesting that the anti-
gen recognized was present in some cell processes.

To understand the possible basis for neuronal rec-
ognition, the human PLP 178–191 sequence was com-
pared with known sequences of major pgf neuronal pro-
teins (Table I). In human, rat, mouse, chicken, and
zebrafish M6a and M6b; zebrafish DMb2; Xenopus
DMb; and squalus DMb and -g proteins, there are
regions that are from approximately 30% to 60% identi-
cal to the human 178–191 sequence. Most of these
sequence identities are in the 35–46% range (Supple-
mental Table B). Recognition of pgf neuronal proteins
with this extent of sequence identity might, therefore,
account for the neuronal recognition by the anti-178–
191 mAb in the different species.

CNS Neuron Staining by Other mAbs

In addition to staining CNS myelin, the mAbs to
regions 50–69, 100–123, 139–151, and 264–276 stained
distinct neuron subpopulations in the different species
tested. For each of the mAbs, there were variations in
staining patterns of neuronal cell bodies and membranes
similar to those observed with the anti-178–191 mAb.

The anti-50–69 mAbs stained a subset of mouse
temporal cortical neurons (Fig. 9A), many neurons in
Rana pipiens brain and spinal cord, scattered neurons in
the cichlid brain, and scattered neurons in the shark

brain (see, e.g., Fig. 7A) and cerebellum (Fig. 9B). This
PLP region has approximately 30–60% identity with
sequences in mouse M6b, Xenopus DMg1 and DMg2/
GPM6b, zebrafish M6a, and squalus DM proteins (Sup-
plemental Table A).

The anti-100–123 mAb stained ventral horn cells
in the Rana pipiens spinal cord (Fig. 9C) and faintly
stained some neurons in the leopard shark brain but did
not stain neurons in any other species. The 100–123
region has approximately 30–40% identity with Xenopus
DMb and DMg2/M6b and squalus DMb (Supplemental
Table A).

One of the anti-139–151 mAbs (1C5) immunos-
tained a subset of of neurons in the brainstems of the rab-
bit, rat, and cow (Fig. 9D); both of the anti-139–151
mAbs stained similar neurons in the barn owl ventral
brainstem (Fig. 9E). The 139–151 region has a high
degree of identity (46%) with human, mouse, and chicken
M6b sequences and with the sequence of Rhombex-29, a
pgf neuronal protein that has been identified in the rat
ventral medulla and is involved in Hþ channels and the
regulation of sensitivity to acidosis (Shimokawa and
Miura, 2000; Shimokawa et al., 2005; Supplemental Table
B). Neurons of the other species were not stained with the
anti-139–151 mAbs.

The mouse anti-264–276 mAb stained rare neurons
in the bovine and barn owl brainstem and a subset of
ventral horn cells in mouse spinal cord. The rat anti-

Fig. 9. CNS neuron staining with mAbs to epitopes other than 178–
191. A: Mouse temporal cortex with many neurons stained for 50–
69. B: A large Golgi-like neuron in the leopard shark cerebellar
granular layer is stained with an anti-50–59 mAb. Absence of neuro-
pil staining indicates specific neuronal soma staining and contrasts
with Figure 8H. C: Neurons and myelin are stained for 100–123 in

Rana pipiens spinal cord (note contrast to Fig. 5B,C). D: Large neu-
ron in the cow brainstem stains for 139–151. E: A single neuron
stains for 139–151 in the barn owl ventral brainstem. F: Numerous
neurons are stained for 264–276 in the Rana pipiens spinal cord.
A,B,E: 3240; C,F: 3160; D: 380.

426 Greenfield et al.

Journal of Neuroscience Research DOI 10.1002/jnr



262–276 mAb stained these populations and additionally
stained neurons in the Rana pipiens spinal cord (Fig. 9F)
and Xenopus and shark brains. Staining of rat caudal
brainstem neurons with this mAb has also previously
been demonstrated (Miller et al., 2003). This PLP region
has from approximately 33% to 61% identity with most
of the known M6 and DM sequences and with the
Rhombex-29 sequence (Supplemental Table C).

CNS Neuron Staining Correlations

The right column of Table III summarizes the
results of neuronal staining and groups them according
to the percentage identities of the PLP mAb epitope and
the most similar known pgf neuron protein(s). For
example, there was from 40% to 49% identity between a
PLP mAb epitope and the most similar known pgf neu-
ronal protein in 16 samples. An anti-PLP mAb stained
neurons in nine of these. The mAbs to the six PLP
regions recognized neurons in nearly half (26 of 54) of
the samples tested. Neuron staining was observed fre-
quently in samples in which there is greater than 30%
sequence identity of the PLP mAb epitope and the cor-
responding sequence in the pgf neuron proteins of the
species tested or the most closely related species. How-
ever, despite high degrees of sequence similarity between
PLP sequences and corresponding neuronal proteins,
cross-reactivity was not invariably observed. In particu-
lar, the PLP 200–219 sequence and most species M6 and
DM proteins are 60–75% identical but the mAb to this
region did not react with neurons of any species (Sup-
plemental Table C). Thus, a minimal sequence identity
of approximately 30% appears to be necessary but it may
not be sufficient for neuronal epitope recognition by an
anti-PLP Ab.

DISCUSSION

Generation of Anti-PLP mAbs

We have used a novel strategy to generate a panel of
mAbs recognizing different regions of PLP and have dem-
onstrated their usefulness in elucidating patterns of anti-
PLP antibody recognition of myelin and neurons in verte-
brate CNS tissues. Immunization of PLP�/� mice circum-
vented immunologic tolerance arising from the identity of
human and murine PLP and its expression in lymphoid
tissues (Voskuhl, 1998; Klein et al., 2000; Anderson and
Kuchroo, 2003). Indeed, most of the PLP-reactive hy-
bridomas were obtained from fusions using PLP�/� mice.
Immunization of the mice with whole PLP initiated the
immune response, and boosting them with synthetic pep-
tides induced expansion of B-cell clones reactive with spe-
cific regions of the protein. Therefore, this strategy facili-
tated production of mAbs that recognize PLP regions to
which mAbs have been difficult to obtain.

We and others have previously generated both pol-
yclonal and mAbs to PLP. Potter and Lees (1988)
immunized rabbits with a series of synthetic PLP pepti-
des and obtained polyclonal sera reactive with specific
regions of PLP (residues 48–59, 97–105, 183–193, 192–

200, and 264–276) on immunoblots. That study sugges-
ted a conformational dependence of antibody recogni-
tion of PLP. Gunn et al. (1990) identified the carboxy
terminus of PLP as the immunodominant B-cell epitope
and raised polyclonal rat antibodies to this region. Yama-
mura et al. (1991) immunized Lewis rats with PLP and
generated mAbs specific for PLP 209–217 and PLP 264–
276. Konola et al. (1992) showed that one of these
mAbs to the C-terminus, mAb AB3, recognized the
cytoplasmic face of myelin. These mAbs were useful for
localizing PLP-expressing cells in the CNS. Greer et al.
(1996b) immunized different strains of mice with syn-
thetic PLP peptides known to be encephalitogenic in
each strain and generated mAbs to four regions of PLP
(residues 40–59, 139–151,178–191, and 215–232). Im-
munofluorescent staining with these mAbs helped to
verify the PLP orientation by identifying regions of PLP
that are expressed on the outer or inner surface of the
cell membrane. None of the mAbs generated in that
study proved useful for immunoblotting, and several of
them have been lost.

It is striking that, in previous attempts and in the
present study, it has not been possible to obtain antibod-
ies to the N-terminal region. A possible explanation may
be that the primary structure of PLP precludes immune
recognition of this portion of the molecule. This region
contains six half-cystines within the first 36 amino acids,
and these might shield reactions or limit the flexibility of
the native protein (Oteiza et al., 1987; Potter and Lees,
1988).

mAb Characterization

The mAbs generated in the present study and ana-
lyzed in detail recognize human and bovine PLP by
ELISA, and each recognizes a different region of PLP.
Unlike the mAbs previously generated, all of these mAbs
also recognize whole PLP on immunoblots, and all but
one of them recognize DM-20. Since the anti-100–123
mAb F4.2D2 recognizes an epitope within the 116–150
region found in PLP but absent in DM-20, it distin-
guishes PLP from DM-20.

The mAb to PLP 50–69 tested recognized PLP on
the surface of live, unfixed oligodendrocytes, thereby
confirming the previous results of Greer et al. (1996b)
showing that this region is on the external face of the
membrane. However, the anti-178–191 mAb generated
in that study also stained live oligodendrocytes, whereas
the anti-178–191 mAb generated in the present study
did not. One possible explanation is that those two anti-
178–191 mAbs do not recognize the same conformation.
Additionally, the 178–191 region of PLP is relatively
hydrophobic and may be partially buried in the cell
membrane, thus preventing the binding to the cell sur-
face epitope necessary for live staining.

In archival paraffin sections of a normal human spi-
nal cord, the anti-PLP mAbs generated both in the
present study and in previous studies showed specific
immunostaining of human CNS but not PNS myelin
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(Fig. 3). These results are consistent not only with the
immunoblot and in vitro oligodendrocyte staining data
but also indicate that routine tissue processing does not
preclude PLP epitope recognition by the mAbs. Conse-
quently, a phylogenetic analysis of in situ PLP epitope
recognition was feasible.

mAb Recognition of CNS Myelin

The mAbs stained compact CNS myelin in all
mammalian species and the barn owl. Examples of this
staining in the rabbit corpus striatum are shown in Fig-
ure 4. In the other species, highly conserved epitopes,
i.e., those with greater than 40% identity with PLP,
were also recognized, whereas less well conserved epito-
pes and those known to be absent from CNS myelin
were not (Figs. 5–7, Table III, Supplemental Tables A–
C). In particular, the anti-100–123 mAb did not stain
the cichlid or leopard shark myelin, which is consistent
with the absence of the 116–150 region in the major
myelin DM proteins of teleosts and elasmobranchs.
These observations further confirm the specificity of the
PLP epitope recognition in situ by the individual mAbs.
Moreover, they indicate that, although most of the PLP
sequences are highly conserved across species, as little as
40% sequence identity between an mAb epitope and the
known pgf major myelin proteins in each species
appeared to be sufficient for myelin staining. This sug-
gests a high degree of evolutionary conservation of pgf
myelin epitopes in situ despite considerable sequence
diversity among pgf myelin proteins in nonmammalian
species (Campagnoni et al., 1994; Geltner et al., 1998).
It is possible, however, that there are additional pgf or
other classes of proteins that have not yet been identified
in the various species that have greater sequence identity
with the human mAb epitopes. The present data provide
information only on the apparent minimal degree of
sequence identity of the human PLP epitopes and cur-
rently known proteins that may account for the immu-
nostaining results. It should also be emphasized that seq-
uence identities are only surrogate assessments of the
similarities among the mAb epitopes. The actual confor-
mation-dependent binding interactions in situ cannot be
assessed by current techniques.

mAb Recognition of Neurons

In addition to staining CNS myelin, the mAb to
PLP 178–191 (P7.6A5) and to a lesser extent the other
mAbs stained various CNS neuron subpopulations in all
species. Neuronal recognition generally correlated with
sequence identity of the anti-PLP mAb epitopes with
known neuronal pgf proteins, such as the M6a and -b
and DMb proteins and Rhombex-29 (Supplemental
Table B). We have also observed that several of these
mAbs also immunostain embryonal rat hippocampal neu-
rons grown in vitro (unpublished observations). These
data imply that the staining might be due to recognition
of conserved epitopes in pgf neuronal proteins. In view
of the large number of pgf transcripts in oligodendro-

cytes and neurons identified to date (Bongarzone et al.,
1999; Werner et al., 2001), however, multiple potential
epitopes could be recognized. For example, the anti-
139–151 (Fig. 9D,E) and anti-264–276 mAbs stained
small numbers of neurons in the ventral brainstem of
mammals and the barn owl. There is a relatively high
degree of sequence identity with rat Rhombex-29 in
these PLP regions, suggesting that the stained neurons
might be a specific chemosensitive Rhombex-29-
expressing population (Miller et al., 2003; Shimokawa
et al., 2005). On the other hand, M6 proteins, particu-
larly M6a, are abundant in mature neurons in the cere-
bellar granular layer (Yan et al., 1993, 1996; Roussel
et al., 1998), and we did not observe widespread staining
in that anatomic region with any of the mAbs, suggest-
ing that they might not recognize M6a protein epitopes.
Moreover, the staining patterns of the neurons were var-
iable, further indicating that different epitopes in differ-
ent subpopulations may be expressed and recognized by
the mAbs. The present study was not designed as a
detailed comparison of specific populations, and it was
not possible to compare staining patterns in neurons sys-
tematically among the different species. Furthermore, the
CNS tissue samples available from each species were
limited to certain anatomic regions, e.g., the bovine
brainstem, and the extent of antibody recognition of
neuron populations in each species may be greater than
the present results indicate. For all of these reasons,
therefore, although the neuron staining by the various
mAbs is specific to distinct subpopulations and likely
involves recognition of conserved pgf epitopes, at this
time there is considerable uncertainty regarding the
identity of the neuronal proteins recognized.

Shared antigens among nonmammalian and mam-
malian neural cell populations are increasingly being
identified (Gould et al., 1995; Morris et al., 2004).
These observations imply evolutionary acquisition of
new protein functions (Aharoni et al., 2005), which
appears to have been the evolutionary progression of the
pgf proteins among marine and terrestrial vertebrates
(Kitagawa et al., 1993). James et al. (2003) have sug-
gested that conformational diversity, i.e., one sequence
adopting multiple structures and functions, as in the con-
served sequences among pgf proteins, can increase the
numbers of potential antibody targets, thereby enhancing
the likelihood of developing cross-reactivity, which can
result in autoimmunity (Cohn, 2005). Our present
results may also be consistent with that proposition.

Implications for MS

Widespread immunohistochemical staining of neu-
ronal subpopulations by anti-PLP epitope mAbs suggests
possible pathogenetic roles for anti-PLP antibodies that
are found in humans with demyelinating diseases. Anti-
myelin component antibodies generated under patholog-
ical conditions might have either adverse or beneficial
effects (van der Veen et al., 1986, 1989; Endoh et al.,
1986; Sadler et al., 1991; Potter and Stephens, 1994;
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Genain et al., 1995; Laman et al., 2001; Morris-Downes
et al., 2002; Mitsunaga et al., 2002; Schwab, 2004).
Moreover, potential pathogenetic roles for antimyelin
antibodies, including anti-PLP antibodies, have been
suggested in MS (Sun et al., 1991; Warren et al., 1994;
Sellebjerg et al., 1995, 2000; Archelos et al., 2000; Car-
valho et al., 2003; Berger et al., 2003; Qin et al., 2003;
Kanter et al., 2005; Zhang et al., 2005a). Furthermore,
recent studies implicate an autoantibody to nonmyelinat-
ing cell populations in the pathogenesis of the MS var-
iant neuromyelitis optica (Lennon et al., 2005) and spe-
cific antibody localization on axons in MS plaques
(Zhang et al., 2005b). Our present results imply that
anti-PLP antibodies that may arise in association with
epitope spreading following myelin damage could simul-
taneously cross-react with neurons in vivo. The possible
functional consequences of cross-reactivity of antibodies
to pgf epitopes are suggested by the demonstration that
an anti-M6 mAb inhibits neurite extension of mouse
brain cells (Lagenaur et al., 1992) and suppresses neuro-
nal differentiation of M6-transfected PC12 cells (Muko-
bata et al., 2002). We have also found that some of the
anti-PLP mAbs generated in the present study inhibit
neurite outgrowth in vitro (unpublished observations).
Neuronal recognition by cross-reactive anti-PLP epitope
antibodies might, therefore, similarly contribute to neu-
ronal injury, altered function, or the failure of axon
regeneration in MS patients. Thus, our results suggest a
self-molecular-mimicry mechanism (Oldstone, 1998) that
might contribute to the axonal injury and loss that are
now considered to be major determinants of clinical
expression and disease progression in MS (Trapp et al.,
1999; Sobel, 2005). Whether there are autoantibody res-
ponses to PLP epitopes that simultaneously recognize
other pgf proteins and have functional effects on neurons
in vivo remains to be established.

In summary, we report the generation and charac-
terization of novel anti-PLP epitope mAbs and have
proved their usefulness as probes for demonstrating the
remarkable evolutionary conservation of pgf protein epi-
topes in myelin and neurons. The present results also
raise many new questions regarding the potential patho-
genetic significance of anti-PLP antibodies that cross-
react with neurons and may promote neuronal injury or
prevent neuronal regeneration in human demyelinating
diseases.
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