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Helical supramolecular architecture, such as helical foldam-
ers, supramolecular helicates and aggregates, helical mole-
cules, macromolecules, and oligomers, is a fascinating topic of 
interest in chemistry and materials science.[1–6] Although such 
supramolecular structures may provide advantages in the de-
sign of stimuli-responsive and functional materials, the weak 
nature of the noncovalent forces, as well as the dependency of 
the dynamic process on their local environments, may hinder 
their possible applications because of their limited structural 
stability and processibility. Stabilization of these supramolec-
ular structures could be achieved by modification of the mo-
lecular backbone with specific functional groups that permit 
intramolecular cross-linking, in which covalent bonds fix the 
secondary structure with variable degrees of fidelity.[6, 7]

Helical structures derived from conjugated ortho-annelated 
aromatic rings, known as [n]helicenes, are precisely defined 
at the molecular level.[8–11] For [n]helicenes with a sufficiently 
large number of aromatic rings (n), rigid conformations with 
large barriers to racemization and enhanced molecular chirop-
tical properties may be expected.[11a, 12, 13] Diverse electronic 
structures for such helices may result from various aromatic 
rings[11ab–19] or by introducing antiaromatic rings[20] to the 
structure, to obtain materials with a wide range of band gaps, 
2-4 eV.[11a, 11b, 17, 20, 21]

Although significant progress has been made in the synthe-
sis of [n]helicenes, the preparation of such highly annelated and 
strained π-systems,[11] especially by asymmetric synthesis,[16, 17, 

22–24] remains a challenge. The development of new synthetic 
strategies for the preparation of precisely defined and extended 
helical structures, as well as understanding the factors that con-
trol the structure and properties of these molecules, are crucial 
to making progress in the area of rigid helical motifs.

Herein, we demonstrate the important role of noncovalent 
interactions in the asymmetric synthesis of rigid, conjugated 
helical structures. Tetrakis(β-trithiophene) 1 folds into a heli-
cal conformation that facilitates the double ring annelation to 
provide a carbon-sulfur bis[7]helicene 2 with a rigid, helically 
locked structure (Figure  1  a). Further ring annelation of the 
rigid, locked bis[7]helicene to form the corresponding [15]he-

licene 3 was not successful, likely owing to strong noncovalent 
interactions between the two [7]helicene moieties which pro-
hibit their relative rotation to facilitate covalent bond forma-
tion, however, other effects may not be excluded. 

We propose that the “helical fold-and-lock” concept may be 
extended to facilitate the preparation of the oligomers of [n]he-
licenes, such as tetrakis[7]helicene (Figure 1b). Such oligomers 
may provide precisely defined models for helical folding, which 
is driven by intramolecular π-stacking and steric repulsion.[1a]

The asymmetric synthesis of bis[7]helicene 2 is outlined in 
Scheme 1. The synthetic approach mostly follows the method-
ology for the iterative synthesis of carbon-sulfur [n]helicenes 
(n = 7 and 11) that we developed previously.[15–17] In the syn-
thesis of long [n]helicenes, the isolation and purification of 
poorly soluble intermediates and products can be an arduous 
undertaking. We can circumvent solubility problems by us-
ing the large tripropylsilyl (TPS) group as a protecting group.  
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Figure 1. a) From helically folded tetrakis(β-trithiophene) to helically 
locked bis[7]helicene. b) Oligomer of [n]helicenes illustrated by tetra-
kis[7]helicene. R indicates the configuration of chiral axes and M indi-
cates the configuration of “left-handed” [n]helicene moieties.
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In the first step, monoprotection of the two most acidic posi-
tions in bis(β-trithiophene) 4 yielded its derivative 4 a, which 
had enhanced solubility and steric shielding at one of the CBr 
moieties.

The steric shielding provided selectivity in the palla-
dium-catalyzed homocoupling reaction to form tetrakis(β-
trithiophene) 1, as carbon-carbon bond formation is preferred 
at the less sterically shielded CBr moiety. In the double ring 
annelation reaction, 1 is tetralithiated with lithium diisopro-
pylamide (LDA) in the presence of a chiral diamine such as 
(-)-sparteine, and then treated with bis(phenylsulfonyl)sulfide 
((PhSO2)2S) to form two new thiophene rings. The resultant 
bis[7]helicene 2 was obtained in approximately 20 % yield af-
ter isolation and had a modest enantiomeric excess (ee) value.
[25] The isolated bis[7]helicene 2 is chiral, and therefore, its 
[7]helicene moieties are likely to possess identical configura-
tions, for example MM or PP. An alternative meso-diastereo-
mer, such as 2-PM, with the [7]helicene moieties of the oppo-
site configuration (PM) was not detected (Scheme 1, Inset).

The structures of tetrakis(β-trithiophene) 1 and bis[7]he-
licene 2 were determined by single-crystal X-ray analysis using 
synchrotron radiation (Figure 2).[26] Tetrakis(β-trithiophene) 1 
crystallized in the nonchiral space group C2/c with half of the 
molecule in the asymmetric unit. Bis[7]helicene 2 crystallized 
in the chiral space group C2221 with half of the molecule and 
half of a solvent molecule (benzene) in the asymmetric unit. 
The crystal of 2 was found to be merohedrally twinned with 
an enantiomeric ratio in the crystal of 88:12, which is consis-
tent with the ee value of the bulk sample (Scheme 1). 

In the X-ray structure, 1 adopts a C2-symmetric conforma-
tion, with approximately planar annelated β-trithiophene moi-
eties; the dihedral angles for the terminal-to-center and the 
center-to-center moieties are 83.28(3)° and 84.21(3)°, respec-
tively. Notably, the chiral axes have the same configuration, 
RRR or SSS, at all three β,β-linkages, that is, the carbon-car-
bon bonds connect the annelated β-trithiophene moieties at 
the β-positions of the terminal thiophenes. The helical folding

of 1, which is likely driven by steric re-
pulsion and pairwise π-stacking of the 
annelated β-trithiophene moieties, pro-
vides a preferred conformer for dou-
ble ring annelation to form the two [7]
helicene moieties in 2, as illustrated in 
the space-filling models in Figure  2  c,d. 
Thus, the RRR (or SSS) configuration of 1 
is converted into the MRM (or PSP) con-
figuration in bis[7]helicene 2. In the ma-
jor enantiomer of 2, MRM, the [7]helicene 
moieties possess the M configuration and 
the chiral axis at the β,β-linkage has the 
corresponding R configuration.

The conformation of 2 has an approx-
imate C2 point group of symmetry. The 
β,β-linkage, which has a torsion angle 
of approximately -50° about the carbon-
carbon bond connecting the [7]helicene 
moieties, resemble a molecular hinge 
in which two rigid [7]helicene moieties 
form an intramolecular π-stack assem-
bled in a helical motif. The short intramo-
lecular distances on both sides of the mo-
lecular hinge lead to a rigid conformation 

(Figure 2 e, Table S1 in the Supporting Information).
In solution, racemic tetrakis(β-trithiophene) 1 possesses a 

chiral conformation on the time scale of enantiomer separation 
by both high pressure liquid chromatography (HPLC) and nu-
clear magnetic resonance (NMR) methods. The chiral confor-
mation is indicated by well resolved peaks resulting from di-
astereomeric interactions with the chiral stationary phase of 
the HPLC column and interactions with chiral shift reagents in 
NMR experiments (see the Supporting Information). The con-
formation and electronic structure of chiral bis[7]helicene 2 in 
solution was further characterized by computational modeling 
of experimental circular dichroism (CD) and ultraviolet-visible 
(UV/Vis) spectra.

To gain deeper insight into the structure and properties of 
bis[7]helicene, we calculated a series of simplified structures, 
in which the large TPS group was replaced with a trimeth-
ylsilyl (TMS) group. Electronic CD and UV/Vis absorption 
spectra of bis[7]helicene 2 a, [15]helicene 3 a, and [7]helicene 
5 were computed using the TD-B3LYP/6-31G(d) method and 
the IEF-PCM-UAHF solvent model for cyclohexane.[27–29] The 
calculated spectra are qualitatively similar for all three struc-
tures, especially for bis[7]helicene 2  a and [15]helicene 3  a, 
which both possess relatively weak long-wavelength bands. 
For bis[7]helicene 2  a and [7]helicene 5, excellent agreement 
between experiment and theory was found (Figure 3 and see 
the Supporting Information). 

Specifically in 2 the weak, long-wavelength band with a 
positive Δε band at approximately 330  nm is qualitatively 
reproduced in the calculated spectrum (Figure 3, Inset). In 
[15]helicene 3 a, this long-wavelength band shows a some-
what larger and negative Δε  value, which may reflect the 
smaller torsion angles of about 14° between the two [7]he-
licene moieties (vs. 50° in bis[7]helicene) and the out-of-
plane distortion of the thiophene rings near the center in 
[15]helicene (see the Supporting Information). We conclude 
that bis[7]helicene 2 adopts a [15]helicene-like rigid confor-
mation in the solid state and in solution, and it possesses  

Scheme 1. Asymmetric synthesis of bis[7]helicene 2. Inset: meso-diastereomer of 
bis[7]helicene.
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an electronic structure similar to that for the corresponding 
[15]helicene.

We explored the isomerization of bis[7]helicene 2 into its 
meso-diastereomer (2-PM; Scheme  1), a process that corre-
sponds to the inversion of one of the [7]helicene moieties. Un-
der similar conditions that lead to the inversion (racemiza-
tion) of [7]helicene 5,[16] only the starting bis[7]helicene 2 was 
recovered. This result suggests that 2, with MM or PP [7]he-
licene moieties, is thermodynamically preferred. Compu-
tational studies at the B3LYP/6-31(d) level of theory indi-
cate that 2  a-PM is about 8  kcal  mol-1 higher in energy than 
2 a, which has the MM configuration. This energy difference is 

about the same for single point energy calculations using the  
IEF-PCM-UAHF solvent model for cyclohexane (see the Sup-
porting Information). We attribute this energy preference to 
the strong noncovalent interactions - π-stacking in the helically 
folded diastereomer 2 a.

We examined the correlation between molecular connec-
tivity and helical folding by computational modeling. Model 
oligomers of [7]helicenes, analogues of bis[7]helicene 2  a in 
which the bromine and TMS groups are replaced with hydro-
gen atoms, were studied at the B3LYP/6-31(d,p) level of the-
ory.[27] A series of structures based on bis[7]helicenes, tris[7]
helicenes, and tetrakis[7]helicenes, were constructed by con-
necting the [7]helicene moieties of identical (MM) or opposite 
(MP) configuration at each β,β-linkage. In this series, oligo-
mers with identical configurations, such as MM at each link-
age, have lower energies than those with MP  configurations. 
This preference is about 5 to 8 kcal mol-1 for each β,β-linkage, 

Figure 3. Experimental and calculated electronic CD spectra in cyclo-
hexane. Inset: expansion of CD spectra.

Figure 2. Molecular structure and conformation: a)  tetrakis(β-
trithiophene) 1; b)  bis[7]helicene 2; c)  space-filling model for 1; 
d)  space-filling model for 2; e)  short intramolecular C···C distances 
(3.23-3.30  Å) between the [7]helicene moieties in bis[7]helicene 2 are 
indicated with blue lines. ORTEP plots with thermal ellipsoids set at 
the 50 % probability level. Cocrystallized solvent and disorder in the 
propyl groups are omitted for clarity.
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and tends to be larger for higher oligomers, probably as a re-
sult of steric factors. For example, the tetramer of [7]helicenes 
with identical configuration (MMMM) such as tetrakis[7]he-
licene in Figure 1b and 8-MMMM (see Table S5 in the Support-
ing Information) is lower in energy by about 20 kcal mol-1 than 
the corresponding meso-diastereomer with MPMP  configura-
tion. In contrast, we found a reversed trend in analogous bis[7]
helicenes with ,-linkages, that is, the diastereomer with 
the [7]helicene moieties of opposite configuration is lower 
in energy,[27, 30] albeit the preference is quite small  -  about 
1 kcal mol-1.

We predict that a strong preference for helical folding, 
driven by intramolecular π-stacking and steric repulsion, may 
be realized in oligomers of [n]helicene monomers with the 
same configuration and which are connected at the inner rim 
of the [n]helicenes. For moderate values of n, such oligomers 
could provide extended rigid-rod helical structures that are 
precisely defined at the molecular level and are expected to 
possess enhanced chiral properties.
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1.  Experimental Section. 

1.a  Materials and general procedures.   

Ether and tetrahydrofuran (THF) for use on the vacuum line were freshly distilled from 

sodium/benzophenone prior to use; toluene was freshly distilled from sodium.  For small-scale reactions, 

solvents were vacuum-transferred to volume-calibrated Schlenk vessels, immediately prior to the reaction.  

t-BuLi (pentane) and n-BuLi (hexane) were obtained from either Aldrich or Acros; prior to use, their 

concentrations were determined by titration with N-pivaloyl-o-toluidine.S1 All other commercially 

available chemicals, including MeOD (99.5+ %D), were obtained from Aldrich, unless indicated 

otherwise.  Column chromatography was carried out on TLC grade silica gel (Aldrich), using 0–20 psig 

pressure.  Preparative TLC (PTLC) was carried out using Analtech silica plates (tapered with a 

preadsorbent zone).  For purification of bis[7]helicene 2, silica gel for column and thin layer 

chromatography were deactivated with 2–5% triethylamine in pentane.  Standard techniques for 

synthesis under inert atmosphere, using Schlenk glassware and gloveboxes (Mbraun and Vacuum 

Atmospheres), were employed. 

NMR spectra were obtained using Bruker spectrometers (1H, 500 MHz and 400 MHz), using 

chloroform-d, benzene-d6, toluene-d8, or p-xylene-d10 as solvents.  Most of the 500-MHz spectra were 

obtained using cryoprobe.  The chemical shift references were as followings: 1H, chloroform-d, (7.260 

ppm, CHCl3), benzene-d6, (7.160 ppm, C6D5H), toluene-d8 (2.090 ppm, CD2HC6D5), and p-xylene-d10 

(2.296 ppm, CD2HC4D4CD3), 13C, chloroform-d, 77.00 ppm (CDCl3).  Typical 1D FID was subjected to 

exponential multiplication with an exponent of 0.1 Hz (for 1H) and 1.0–2.0 Hz (for 13C).  Selected 

spectra were resolution enhanced, using exponential (LB, “line broadening”) and Gaussian (GB, 

“Gaussian broadening”) multiplications, with the values of the corresponding exponents, LB and GB, 

provided in Hz. 

IR spectra were obtained using a Nicolet Avatar 360 FT-IR instrument, equipped with an ATR 

sampling accessory (Spectra Tech, Inc.).  Compound (as solid or as solution in CH2Cl2) was applied to 
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the surface of a ZnSe ATR plate horizontal parallelogram (45°, Wilmad).  After the solvent evaporated, 

the spectrum was acquired (128 scans, 4-cm-1 or 2-cm-1 resolution). 

MS analyses were carried out at the Nebraska Center for Mass Spectrometry.   

 

1.b  X-ray crystallography (Figures S1–S3, and Table S1).  

Single crystals for the X-ray crystallographic studies were obtained by slow evaporation of solvent at 

room temperature from solutions of tetrakis(β-trithiophene) 1 (benzene, sample label: 

MM-19-71-solid-cr1) and bis[7]helicene 2 (benzene/isopropanol (2:1), sample label: MM-21-04-TP1). 

Data collection, structure solution, and refinement are briefly summarized below; more detailed 

description may be found in the crystallographic information files (CIFs). 

Data collection, structure solution and refinement.  Data for tetrakis(β-trithiophene) 1 and 

bis[7]helicene 2 were collected at the Advanced Photon Source, Argonne National Laboratory in 

Chicago, using synchrotron radiation (diamond 1 1 1 monochromators, two mirrors to exclude higher 

harmonics).  For 1, a wavelength of λ = 0.43321 Å, with a frame time of 2 s and a detector distance of 

6.5 cm were used.  For bis[7]helicene 2, a wavelength of λ = 0.48595 Å, with a frame time of 1 s and a 

detector distance of 6.0 cm were used. 

Single crystals were placed onto the tip of an ultra thin glass fiber.  The intensity data were corrected 

for absorptionS2 for bis[7]helicene 2 and used uncorrected for 1.  Final cell constants were calculated 

from the xyz centroids of strong reflections from the actual data collection after integration.S3  

Space groups were determined based on intensity statistics and systematic absences.  Structures were 

solved with direct methods using Sir2004S4 and refined with full-matrix least squares / difference Fourier 

cycles using SHELXL-97.S5 All non-hydrogen atoms were refined with anisotropic displacement 

parameters.  The hydrogen atoms were placed in ideal positions and refined as riding atoms with 

relative isotropic displacement parameters. 
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Tetrakis(β-trithiophene) 1.  The compound crystallized in the space group C2/c with half of the 

molecule in the asymmetric unit.  The final full matrix least squares refinement converged to R1 = 

0.0402 and wR2 = 0.1227 (F2, all data).  Propyl groups of TPS are disordered over two positions (ratio 

of approximately 62:38) and were refined with a set of restraints and constraints.  The remaining 

electron density was located near the bromine atom. 

Bis[7]helicene 2.  The compound crystallized in the chiral space group C2221 with half of the 

molecule and half of a solvent molecule (benzene) in the asymmetric unit.  The crystal of 2 was found to 

be merohedrally twinned with an enantiomer ratio in the crystal of 88:12.  One of the propyl groups is 

disordered over two positions (50:50) and was refined with a set of restraints and constraints.  The final 

full matrix least squares refinement converged to R1 = 0.0405 and wR2 = 0.1011 (F2, all data).  The 

remaining electron density was located near the sulfur atoms on bonds. 

   
1.c  UV-vis absorption spectroscopy, CD spectroscopy, and optical rotation (Figures S4–S6). 

UV-vis spectra were recorded on Shimadzu (UV-2401PC) spectrophotometer, using cyclohexane as 

solvent.  The Lambert-Beer plots were obtained using several solutions with the concentration range 

exceeding an order of magnitude; for all compounds studied, linear plots were obtained (R2 > 0.999). 

CD spectra were obtained using Jasco J-810 spectropolarimeter, equipped with a Peltier temperature 

controller.  Five solutions of bis[7]helicene 2 in cyclohexane were prepared, and immediately following 

the collection of UV-vis data for the Lambert-Beer plot (R2 = 1.000), CD spectra were recorded in 1-mm 

pathlength cells. 

Optical rotations were measured with Autopol III (Rudolph Research) at ambient temperature. 
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1.d  Chiral HPLC and 1H NMR spectroscopy with chiral shift reagents (Tables S1 and S2, Figures 

S7–S18). 

Chiral HPLC determinations for tetrakis(β-trithiophene) 1 and bis[7]helicene 2 were carried out using 

ChiralPak AD-H column (250-mm long) with 1.0 mL/min flow rate of hexane/isopropanol (i-PrOH) or 

hexane, as summarized in Table S2.  Racemic [7]helicene 5S6 and racemic carbon-sulfur [11]heliceneS7 

were used as references.  

The 1H NMR spectrum for tetrakis(β-trithiophene) 1 or bis[7]helicene 2 in chloroform-d (0.4 – 0.5 mL) 

was first obtained; then silver(I) 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (Ag(fod)) and 

ytterbium(III) [tris-3-(heptafluoropropylhydroxymethylene)-(+)-camphorate] (Yb(hfpc)) were added until 

baseline separation between the peaks corresponding to the enantiomers (in fast exchange with 

diastereomeric complexes) was attained as summarized in Table S3. 
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1.e  Synthesis of bis[7]helicene 2, its attempted isomerization and annelation (Figures S19–S32). 

Typical procedure for preparation of LDA in ether/hexane.  n-BuLi (2.56 M in hexane, 0.3 mL, 

0.77 mmol) was added to diisopropylamine (0.12 mL, 0.85 mmol) in ether (2 mL) at 0 °C ([c]LDA = 0.32 

M).  After 2 h at 0 °C, the solution of LDA was ready for immediate use, or alternatively, neat 

(−)-sparteine (1.5 equiv) was added to obtain LDA/(−)-sparteine mixture.  

 
Monoprotection: bis(β-trithiophene) 4a. 
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Summary for bis(β-trithiophene) 4a.  

Run SM 
(mg) 

Ether 
(mL) 

LDA (n-Pr)3SiClb 
(equiv) 

4b 
(mg, %) 

4a  
(mg, %) 

4 
(mg, %) (equiv) Temp/Time 

(K)/(h) 
MM1298 100.0 35 1.1 273/6a 1.2 5.8, 4 55.1, 43 - 
MM1306 56.8 35 1.5 273/6     1.8 13.8, 15 21.5, 29 3.0, 5 
MM1817 100.0 35 1.5 273/6 1.8 29.3, 19 44.4, 34 22.4, 22 
MM1918c 200.0 70 1.5 273/7 1.8 119, 19 154, 30 56.4, 14 MM1923 200.4 70 1.6 273/7.5 1.9 
MM1945d       27, 18 (35)  

 MM1946 205.6 72 1.5 273/8.3 1.8    
 119.4 42 1.5 273/8.3 1.8 87, 17 103, 25 38, 12  

MM1967e 50.8 18 1.5 273/7 1.8 Failed 
MM1976e,f 45.1 18 1.5 273/7 1.8 67.3, 18 128.4, 41 72.4, 30  MM1997e,f 200.4 80 1.5 273/7 1.8 

 MM2012e,f 92.8 37 1.5 273/7 1.8 13.8, 10 41.6, 35 
(170.0, 66)g  23.8, 26 

a After 6 h at 273 K, the reaction mixture was warmed to room temperature, and then stirred for 1 h, prior to cooling to 273 K 
for the addition of (n-Pr)3SiCl. 
b The addition of (n-Pr)3SiCl was carried out at 273 K. 
c This reaction crude mixture was combined with another crude (MM-19-23), and the combined crudes were purified by 
column chromatography.   
d The side product 4b from MM-19-23 was completely de-silylated, and then combined with the unreacted starting material 4.  
The combined 4 was recycled with LDA and chlorotripropylsilane.  The additional 27 mg of 4a was obtained.  The overall 
yield of 4a was 35%. 
e The solvent was toluene instead of ether.   
f (−)-Sparteine (4 equiv vs. 4) was added after addition of LDA. 
g One recycle was carried out (MM-19-97, and then MM-20-12); total 179.0 mg (66%) of 4a was obtained from 200.4 mg of 
4. 
 

Bis(β-trithiophene) 4a, without recycling (MM-19-23).  LDA in ether/hexane (0.32 M, 1.8 mL, 0.57 

mmol, 1.6 equiv) was added by syringe to bis(4,4’-dibromodithieno[2,3-b:3’,2’-d]thiophene) (4) (200.4 
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mg, 0.365 mmol, 1 equiv, MM-17-72-solid) in ether (70 mL) at 0 °C.  The reaction mixture (brown 

yellow suspension) was stirred for 7.5 h at 0 °C, and then chlorotripropylsilane (0.15 mL, 0.685 mmol, 

1.9 equiv) was added to reaction mixture at 0 °C.  The reaction mixture was briefly kept at 0 °C, and 

then allowed to warm slowly to ambient temperature.  After the reaction mixture was stirred for 1 – 2 

days at ambient temperature, the usual aqueous extraction with benzene was carried out, to provide the 

crude product as brown oil (0.355 g).  This crude product was combined with the crude product from 

other reactions on the 200-mg scale (MM-19-18), and purified by a column chromatography (silica, 

hexane/dichloromethane, 5:1), to give the three fractions: F1, 

bis(4,4’-dibromodithieno-5,5’-di(tripropylsilyl)-[2,3-b:3’,2’-d]thiophene) (4b) (119 mg, 19%, Rf = 0.72); 

F2, bis(4,4’-dibromodithieno-5-tripropylsilyl-[2,3-b:3’,2’-d]thiophene) (4a) (154.0 mg, 30%, Rf = 0.57); 

F3, bis(4,4’-dibromodithieno[2,3-b:3’,2’-d]thiophene) (4) (56.4 mg, 14%, Rf = 0.45).  From other five 

reactions on 100-, 50-, 100-, 200-, and 120-mg scales (MM-12-98, 13-06, 18-17, 19-46), 135.9 mg (4 − 

19%) of 4b, 224 mg (25 − 43%) of 4a, and 63.4 mg (5 − 22%) of 4 were obtained from 581.8 g of 4 

without recycling 4b and 4.   

Bis(β-trithiophene) 4a, with recycling (MM-19-97, MM-19-76, MM-20-12).  LDA in ether/hexane 

(0.32 M, 1.7 mL, 0.54 mmol, 1.5 equiv) was added by syringe to 

bis(4,4’-dibromodithieno[2,3-b:3’,2’-d]thiophene) (4) (200.4 mg, 0.365 mmol, 1 equiv) in toluene (80 

mL) at 0 °C.  After 20 min at 0 °C, (−)-sparteine (0.34 mL, 1.46 mmol, 4 equiv) was added to the 

reaction mixture.  The reaction mixture (brown yellow suspension) was stirred for 7 h at 0 °C, and then 

chlorotripropylsilane (0.14 mL, 0.658 mmol, 1.8 equiv) was added to reaction mixture at 0 °C.  The 

reaction mixture was briefly kept at 0 °C, and then allowed to warm slowly to ambient temperature.  

Subsequently, the reaction mixture was typically kept stirring for 1 – 2 days at ambient temperature.  

The usual aqueous extraction with benzene gave the crude product as brown oil.  This crude product 

was combined with the crude product from another reaction on the 45-mg scale (MM-19-76), and 

purified by a column chromatography (silica, hexane/dichloromethane, 5:1).  After the purification, 
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128.4 mg (41%) of 4a was obtained from 245.5 mg of 4.  The side product 4b (67.3 mg, 18%) was 

converted to 4 using trifluoracetic acid in chloroform (MM-20-11), and then combined with unreacted 4 

(72.4 mg, 30%).  The combined 4 was treated with LDA and chlorotripropylsilane, as described above.  

The additional 41.6 mg (35%) of 4a was obtained from 92.8 mg of 4 (MM-20-12).  The overall yield of 

4a was 170 mg (66%) after one recycle.   

Bis(4,4’-dibromodithieno-5-tripropylsilyl-[2,3-b:3’,2’-d]thiophene: bis(β-trithiophene) 4a.  M.p. 

50 – 51 °C (powder becomes a bulk solid), 57 – 58 °C (changed to clear jelly-like solid).  1H NMR (400 

MHz, CDCl3): δ = 7.364 (s, 1 H), 7.340 (s, 1 H), 7.083 (s, 1 H), 1.36 − 1.22 (m, 6 H), 0.888 (t, J = 7.2, 9 

H), 0.85 − 0.77 (m, 6 H).  13C{1H} NMR (100 MHz, CDCl3): δ = aromatic region, expected 16 

resonances; found 16 resonances at 143.8, 140.3, 139.9, 139.7, 139.2, 138.9, 138.3, 137.2, 135.6, 130.6, 

130.2, 127.72, 127.69, 124.3, 109.0, 102.4, aliphatic region, expected 3 resonances; found 3 resonances 

at 18.3, 17.3, 15.1.  IR (cm-1): 3102, 2952, 2922, 2864 (C-H).  LR/HR FABMS (3-NBA matrix): m/z 

(ion type, % RA for m/z = 650 – 1000, deviation for the formula): 701.8333 ([M]+, 51 %, 0.7 ppm for 

12C25
1H24

28Si1
32S6

79Br2), 702.8378 ([M+1]+, 41 %, –0.8 ppm for 12C24
13C1

1H24
28Si1

32S6
79Br2), 703.8327 

([M+2]+, 99 %, –1.2 ppm for 12C25
1H24

28Si1
32S6

79Br1
81Br1), 705.8315 ([M+4]+, 96 %, –2.6 ppm for 

12C25
1H24

28Si1
32S6

81Br2), 706.8320 ([M+5]+, 73 %, 1.6 ppm for 12C24
13C1

1H24
28Si1

32S6
81Br2).   

Bis(4,4’-dibromodithieno-5,5’-di(tripropylsilyl)-[2,3-b:3’,2’-d]thiophene): bis(β-trithiophene) 4b.  

Soft solid at room temperature.  1H NMR (400 MHz, CDCl3): δ = 7.336 (s, 2 H), 1.33 − 1.19 (m, 12 H), 

0.882 (t, J = 7.2, 18 H), 0.84 – 0.77 (m, 12 H).  13C{1H} NMR (100 MHz, CDCl3): δ = aromatic region, 

expected 8 resonances; found 8 resonances at 143.8, 140.3, 139.7, 138.5, 135.3, 130.8, 127.4, 109.1, 

aliphatic region, expected 3 resonances; found 3 resonances at 18.3, 17.3, 15.1.  IR (cm-1): 3099, 2953, 

2923, 2866 (C-H).  LR/HR FABMS (3-NBA matrix): m/z (ion type, % RA for m/z = 700 – 1000, 

deviation for the formula): 857.9686 ([M]+, 37 %, −1.6 ppm for 12C34
1H44

28Si2
32S6

79Br2), 859.9622 

([M+2]+, 99 %, 3.6 ppm for 12C34
1H44

28Si2
32S6

79Br1
81Br1), 861.9640 ([M+4]+, 100 %, −0.9 ppm for 

12C34
1H44

28Si2
32S6

81Br2), 862.9667 ([M+5]+, 81 %, −0.3 ppm for 12C33
13C1

1H44
28Si2

32S6
81Br2).  UV/vis, 
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cyclohexane, λmax/nm (εmax/L mol-1 cm-1) (MM-21-11): 265 (3.63 × 104), 227 (6.28 × 104), 203 (3.63 × 

104). 

   

Connection: tetrakis(β-trithiophene) 1. 
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Pd[P(t-Bu)3]2 (1 equiv)
K3PO4 (2 equiv)

 
 
Summary for tetrakis(β-trithiophene) 1. 
 

 

a This crude was combined with MM1829 and purified. 

Run SM (mg) TM 
(mg, %) 

MM1426 2.8 1.0, 40 
MM1429 10.2 3.6, 40 
MM1572 16.9 6.9, 46 
MM1826a 11.0 12.3, 26 MM1829 42.0 
MM1925b 50.5 29.6, 33 MM1928 51.0 
MM1971 
 

50.9 
51.9 31.1, 34 

MM2112 76.6 
75.0 45.2, 34 

b This crude was combined with MM1928 and purified. 
 

Tetrakis(β-trithiophene) 1 (MM-19-28).  Bis(β-trithiophene) 4a (51 mg, 72.4 μmol, 1.0 equiv), 

K3PO4 (37.3 mg, 0.176 mmol, 2.4 equiv) and Pd(P(t-Bu)3)2 (38.3 mg, 74.9 μmol, 1.03 equiv) in toluene 

(6 mL) were stirred at 90 °C in a Schlenk vessel overnight.  The usual aqueous workup with ether gave 

the crude product as a brown solid.  This crude product was combined with the crude products from 

another reaction on the 50-mg scale (MM-19-25), and purified by a column chromatography (silica, 

hexane/chloroform, 3:1, Rf = 0.78) and PTLC (silica, hexane/chloroform, 3:1) to provide 

tetrakis(β-trithiophene) 1 (29.6 mg, 33%) from 101.5 mg of 4a.  M.p. 309–310 °C.  1H NMR (400 

MHz, CDCl3): δ = 7.046 (s, 2 H), 6.707 (s, 2 H), 6.241 (s, 2 H), 1.38 – 1.19 (m, 12 H), 0.882 (t, J = 7.2, 

18 H), 0.87 – 0.76 (m 12 H).  13C{1H} NMR (100 MHz, CDCl3): δ = aromatic region, expected 16 

resonances; found 16 resonances at 143.7, 140.4, 140.1, 139.9, 138.4, 138.0, 137.4, 135.6, 135.0, 130.5, 

128.2, 128.0, 127.4, 127.24, 127.21, 109.1, aliphatic region, expected 3 resonances; found 3 resonances 
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at 18.2, 17.4, 15.0.  IR (cm-1): 3097, 2953, 2924, 2866 (C-H).  LR/HR FABMS (3-NBA matrix): m/z 

(ion type, % RA for m/z = 1000 – 1500, deviation for the formula): 1245.8292 ([M]+, 31 %, 1.5 ppm for 

12C50
1H48

28Si2
32S12

79Br2), 1246.8332 ([M+1]+, 31 %, 0.9 ppm for 12C49
13C1

1H48
28Si2

32S12
79Br2), 1247.8285 

([M+2]+, 91 %, 0.3 ppm for 12C50
1H48

28Si2
32S12

79Br1
81Br1), 1248.8296 ([M+3]+, 81 %, 2.2 ppm for 

12C49
13C1

1H48
28Si2

32S12
79Br1

81Br1), 1249.8275 ([M+4]+, 100 %, −0.4 ppm for 12C50
1H48

28Si2
32S12

81Br2).  

UV/vis, cyclohexane, λmax/nm (εmax/L mol-1 cm-1) (MM-21-09): 266 (shoulder, 4.40 × 104), 225 (9.20 × 

104).  1H NMR spectrum with chiral shift reagents: 1H NMR (500 MHz, LB = –0.8 Hz, GB = 0.3 Hz, 

tetrakis(β-trithiophene) 1 (0.8 mg), Ag(fod) (2.2 mg), and Yb(hfpc) (2.7 mg)): δ = aromatic region, 7.074 

(s, 1 H), 7.054 (s, 1H), 6.726 (s, 1H), 6.721 (s, 1 H), 6.242 (s, 1 H), 6.233 (s, 1 H), aliphatic region, 0.883 

(t, J = 7.5, 3 H), 0.879 (t, J = 7.5, 3 H).   
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Double ring annelation: bis[7]helicene 2.   
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SSS

S

S
S

Br

(C3H7)3Si

S
S

S

S

S S

Br

Si(C3H7)3

S
S

1
Bis[7]helicene 2

SSS

S

SS

Br

(C3H7)3Si

S S S

S

S
S

Br

Si(C3H7)3

S+

Tridecathiophene
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Summary of synthesis of bis[7]helicene 2. 
 

Label SM/ether LDA 
 

Addition of LDA (PhSO2)2S/ether 
 

Bis[7]helicene 2 

(mg/mL) equiva temp (K)/time (min) mg/mL equiv (mg, %) NMR 
(ee %) 

HPLCc 
(ee %) 

MM1446 2.5/1.2 12 273/120, 295-6/120, 273/30 3.0/0.8 4.8 1.3, 50   

MM1588 3.4/2.2 12 273/120, 295/120, 273/30 3.8/0.8 4.4 1.4, 39   

MM1859 3.0/1.8 12 273/120, 298-9/180, 273/30 10.5/1.7 6.0 0.7, 23  47 

MM1948b 6.4/4.0 12 273/120, 298/180, 273/30 12.3/2.2 6.0 

2.3, 13 7.8d 25d MM1953 10.0/6.4 12 273/120, 298/180, 273/30 17.6/2.9 6.0 

MM1957 9.5/6.0 12 273/120, 298/180, 273/30 16.9/2 6.0 1.4, 14 7.8e 21 

MM1989 4.0/2.4 18 273/120, 306/180, 273/30 15.8/1.8 10 0.4, 9.5   

MM2115 29.4/20 12.8 273/120, 298/180, 273/30 45.8/5 10 1.1, 3.6  62 

MM2126 30.0/20 12.5 273/120, 298/180, 273/30 54.5/5 10 1.1, 3.5 
2.7, 8.6 

 68 
5 

a LDA/(−)-sparteine, 1:1.5 
b This crude mixture was combined with MM-19-53 and purified. 
c The mobile phase was hexane (1 mL/min flow rate).  
d This sample preparation may not be homogeneous. 
e Homogeneous sample.   
 

S
S

S

S S S

Br
Si(C3H7)3

S S S

S
S

S

Br
(C3H7)3Si

1

S
S

S

S S S

Br
Si(C3H7)3

S S S

S
S

S

Br
(C3H7)3Si

X Y Z Z Y
X

X, Y, Z = D or H, 1-Dn

1. LDA/(-)-sparteine
    ether/hexane
2. MeOD

 
Summary of MeOD-quenching experiments. 
 

Label SM/ 
ether 

LDA 
 

Addition of LDA 1H NMR relative integrations for deuterated 1 
(CH2 and CH3 groups set to 15H) 

(mg/mL) equiva temp (K)/time (min) 6.230  
ppm 

6.703  
ppm 

7.045  
ppm 

MM1871 2.5/1.2 12 273/120, 298/180, 195/30 0.67 0.16 0.05 

MM1884 1.5/0.8 18 273/120, 308-9/180, 195/30 0.34 0.17 0.07 

MM1892 1.3/0.2 ~400 273/120, 298-9/180, 195/10 0.34 0.02 0.04 

MM1906 1.3/0.7 30 273/120, 313/880, 195/30 0.53 0.07 0.06 

a LDA/(−)-sparteine, 1:1.5. 
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Bis[7]helicene 2 (MM-21-26).  The LDA/(−)-sparteine solution (0.28 M in ether/hexane, 1.00 mL, 

0.28 mmol, 12 equiv of LDA, with LDA/(−)-sparteine, 1:1.5) was added to tetrakis(β-trithiophene) 1 

(30.0 mg, 24.0 μmol, 1.0 equiv) in ether (20 mL) at 0 °C.  After 2 h at 0 °C, the reaction mixture (white 

suspension) was allowed to attain room temperature (~298 K), and then kept stirring for another 3 h; the 

reaction mixture became more homogeneous and pale yellow.  The ether solution of 

bis(phenylsulfonyl)sulfide (54.5 mg/5 mL) (4.2 mL, 0.144 mmol, 6 equiv) was added to the reaction 

mixture at 0 °C.  The reaction mixture was allowed to attain ambient temperature (pale yellow 

suspension) over 12 h.  The usual aqueous workup with ether and benzene gave the crude product as a 

pale brown solid (52.2 mg); using the solution of the crude product, a small sample was put aside for 

analytical measurements.  Purification was carried out by multiple PTLC separations using deactivated 

silica (3% triethylamine in pentane); the PTLC plates were developed either in cold room or at room 

temperature, using heptane/benzene (6:1) and/or 5% ethyl acetate in heptanes.  The final PTLC 

(deactivated silica, 5% ethyl acetate in heptanes, room temperature) gave bis[7]helicene 2 (1.1 mg, 3.5 %, 

ee 68 %) as a pale yellow solid.  Due to low solubility of 2 and tailing on silica, most of the remaining 

PTLC plate was eluted, and the resultant solid was treated with pentane and methanol, to provide a 

second fraction of nearly racemic bis[7]helicene 2 (2.7 mg, 8.6%, ee ~5%) as a white solid.  Thus, 

overall yield was 3.8 mg, ~12%. 

From another reaction (MM-15-88) on the 3.4-mg scale, 1.4 mg (39%) of bis[7]helicene was obtained 

as the least polar fraction (MM-15-88-TP1) after single PTLC (silica, hexane/benzene, 6:1) purification.  

The fraction obtained by elution of the remaining silica plate (2.8 mg, MM-15-88-TP3) was separated by 

analytical TLC (silica, hexane/benzene, 6:1), to provide two fractions (0.3 mg and 0.2 mg), both 

containing a mixture of bis[7]helicene 2 and tridecathiophene by-product based upon LR FABMS data.  

1H NMR spectrum and LR FABMS for the fraction with lower Rf (0.2 mg, MM-15-88-TP3B) are shown 

in Figures S25 and S26, respectively.   

Bis[7]helicene 2.  The sample used for the melting point determination was nearly racemic (ee ~5%, 

label: MM-21-26-TP2+TP3-A-4+5-solid).  M.p. (dec., under air): 315–318 °C (pale brown solid).  
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M.p. (dec., under argon): ~370 °C (pale brown solid).  1H NMR (400 MHz, CDCl3): δ = 7.024 (s, 2 H), 

1.43 − 1.28 (m, 12 H), 0.947 (t, J = 7.2, 18 H), 0.92 − 0.77 (m, 12 H).  1H NMR (500 MHz, benzene-d6, 

MM-19-57-TP2-benzene2): δ = 7.292 (s, 2 H), 1.44 − 1.30 (m, 12 H), 1.012 (t, J = 7.0, 18 H), 0.93 − 

0.77 (m, 12 H).  1H NMR (500 MHz, toluene-d8, MM-20-25-2): δ = 7.243 (s, 2 H), 1.44 − 1.30 (m, 12 

H), 1.018 (t, J = 7.0, 18 H), 0.93 − 0.79 (m, 12 H).  13C{1H} NMR (100 MHz, CDCl3): δ = aromatic 

region, expected 16 resonances; found 16 resonances at 143.2, 140.1, 139.7, 139.5, 137.42, 137.36, 

136.84, 136.81, 132.1, 131.9, 130.3, 130.0, 128.73, 128.70, 126.8, 111.9, aliphatic region, expected 3 

resonances; found 3 resonances at 18.5, 17.5, 15.3.  IR (cm-1): 3112 (very weak), 2952, 2922, 2865 

(C-H).  LR/HR FABMS (3-NBA matrix): m/z (ion type, % RA for m/z = 800 – 1600, deviation for the 

formula): 1305.7400 ([M]+, 30 %, 2.9 ppm for 12C50
1H44

28Si2
32S14

79Br2), 1306.7434 ([M+1]+, 28 %, 2.9 

ppm for 12C49
13C1

1H44
28Si2

32S14
79Br2), 1307.7372 ([M+2]+, 84 %, 3.5 ppm for 

12C50
1H44

28Si2
32S14

79Br1
81Br1), 1308.7409 ([M+3]+, 70 %, 3.3 ppm for 12C49

13C1
1H44

28Si2
32S14

79Br1
81Br1), 

1309.7375 ([M+4]+, 100 %, 1.7 ppm for 12C50
1H44

28Si2
32S14

81Br2), 1310.7384 ([M+5]+, 69 %, 3.6 ppm for 

12C49
13C1

1H44
28Si2

32S14
81Br2).  1H NMR spectrum with chiral shift reagents: 1H NMR (500 MHz, CDCl3, 

LB = –0.8 Hz, GB = 0.4 Hz, bis[7]helicene 2-(TPS)2 (0.4 mg), Ag(fod) (3.0 mg), and Yb(hfpc) (2.8 mg)): 

δ = aromatic region, 7.070 (s, 1.00 H), 7.060 (s, 1.17 H). 

Chirooptical data for bis[7]helicene 2.  HPLC, ee 62%. UV/vis (MM-21-41), cyclohexane, 

λmax/nm (εmax/L mol-1 cm-1) (MM-21-09): 258 (4.40 × 104), 242 (5.83 × 104), 217 (5.58 × 104), 204 (6.10 

× 104).  [α]D
rt = −756 (c = 5.8 × 10-5, cyclohexane).  CD (MM-21-41-CD100), cyclohexane, λmax/nm 

(Δεmax/L mol-1 cm-1): 284 (–115), 255 (21), 231 (–101), 216 (20), 205 (–19), 196 (21).   

Tridecathiophene by-product.  1H NMR (500 MHz, CDCl3, Figure S24): δ = 6.804 (s, 1 H), 6.758 

(s, 1 H), 6.333 (s, 1 H), 6.085 (s, 1 H), 1.4 − 1.3 (m, 12H), 1.0 − 0.8 (m, 30 H).  LR FABMS (3-NBA 

matrix): Figure S25, HR FABMS (3-NBA matrix): m/z (ion type, % RA for m/z = 1275 – 1282, deviation 

for the formula): 1275.7910 ([M]+, 27 %, −2.8 ppm for 12C50
1H46

28Si2
32S13

79Br2), 1276.7918 ([M+1]+, 36 

%, −0.8 ppm for 12C49
13C1

1H46
28Si2

32S13
79Br2), 1277.7838 ([M+2]+, 83 %, 1.2 ppm for 
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12C50
1H46

28Si2
32S13

79Br1
81Br1), 1278.7883 ([M+3]+, 83 %, 0.3 ppm for 12C49

13C1
1H46

28Si2
32S13

79Br1
81Br1), 

1279.7865 ([M+4]+, 100 %, −2.5 ppm for 12C50
1H46

28Si2
32S13

81Br2), 1280.7880 ([M+5]+, 83 %, −1.0 ppm 

for 12C49
13C1

1H46
28Si2

32S13
81Br2). 

 

Attempted isomerization of bis[7]helicene 2.   

The isomerization experiments are summarized in the Supporting Text Section and in the Supporting 

Figures Section (Figures S30–S32).  

 

Attempted annelation of bis[7]helicene 2. 

[15]helicene

1. LDA/(−)-sparteine 
2. (PhSO2)2S

BrS

S

S
S

S

S

S
H

Br
S

S

S

S
S

S

S

HSiR3 SiR3

R = CH3CH2CH2, 2

S

S

S

S

Br

S

SiR3

S

S

S

SiR3

S

S

S

Br

S

S

S

S

R = CH3CH2CH2, 3

bis[7]helicene  

Summary of attempted annelation of bis[7]helicene to [15]helicene. 

Label SM 

(mg) 

LDA/(-)sparteine 

(equiv) 

Addition of  

LDA/(-)sparteine 

Solvent (PhSO2)2S 

(equiv) 

Comment 

MM-19-61 1.7 4-5 0 °C, then 3 h at rt ether 3.5 Suspension at all times; 

only SM recovered  

MM-19-64 1.1 4-5 0 °C, then 3 h at rt toluene 5 LR-FABMS (ONPOE): m/z 1309.6 

(strong) and 1340.7 (v. weak). 

MM-19-87 1.0 5 0 °C, then 3 h at 308 K ether 5 LR-FABMS (ONPOE): m/z 1309.6 

(strong) and nothing at higher m/z. 
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1.f  DFT calculations (Tables S4 and S5). 

All calculations were performed at 298 K by the Gaussian03 program package running on an 8-cpu 

workstation under Linux operating system.S8   

Ground-state geometries were optimized at the B3LYP/6-31G(d) level within the two-fold symmetric 

point group (C2 or Ci).  Vibrational analyses were carried out to confirm the minima corresponding to the 

C2-symmetric structures for bis[7]helicene 2a, [15]helicene 3a, and [7]helicene 5 (MM- or 

M-enantiomers).  Ci-symmetric structure for bis[7]helicene 2a-PM was found to be a transition state but 

with a very small  imaginary frequency (i2 cm-1), indicating a very flat potential energy surface; full 

geometry optimization (C1 point group) and subsequent vibrational analysis gave minimum on the 

potential energy surface with very small lowest vibrational frequency of about 5 cm-1 and with practically 

identical total energy to that of the Ci-symmetric transition state, thus suggesting that the structure is 

fluxional with respect to twisting about the helicene-helicene linkage. (The energy of the C1-symmetric 

structure was somewhat higher energy after the ZPE correction.)     

Analogously, the ground state geometries within C2 or Ci point group were optimized at the 

B3LYP/6-31G(d,p) level for model bis-, tris-, tetrakis-[7]helicenes that correspond to the diastereomers in 

which all helicene-helicene linkages between the β-positions of the terminal thiophenes (β,β-linkages) are 

either of the same chirality or of the opposite chirality.  Similar geometry optimizations were carried out 

for the corresponding model bis[7]helicenes in which the helicene-helicene linkages were between the 

α-positions of the terminal thiophenes (α,α-linkages).  All optimized geometries have RMS forces in 

Cartesian coordinates less than 2 × 10-6 a.u. (and about one order of magnitude lower in internal 

coordinates), i.e., significantly better than the “tight” criterion for RMS forces in geometry optimization in 

Gaussian03.  Vibrational analyses were carried out for all bis[7]helicenes, tris[7]helicenes, and 

tetrakis[7]helicenes to confirm the corresponding minima; the exception was the Ci-symmetric structure 

for bis[7]helicene 9-PM (Table S5) with the α,α-linkage, which possessed one small imaginary frequency 

(i5 cm-1).  The potential energy surfaces were rather flat, especially for the oligomers of [7]helicenes with 
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the linkages of opposite chirality.  The ZPE corrections to energy were not scaled by the usual scaling 

factor of 0.9806 for the B3LYP/6-31(d) method;S9,S10 the differences between the relevant ZPE’s were very 

small, so such scaling would have negligible impact on the relative energies.  (Similar considerations 

apply to the ZPE’s and relative energies obtained by the B3LYP/6-31G(d,p) method.)  The key results for 

the optimized structures and their vibrational analyzes are summarized in Tables S4 and S5. 

Using the C2- and Ci-symmetric gas phase geometries, the time-dependent density functional response 

theory (TDDFT) calculations at the B3LYP/6-31G(d) and B3LYP/6-31+G(d) levels of theory provided 

excitation energies and rotatory strength R in the dipole velocity form (Rvel) and dipole length form (Rlen) 

for electronic circular dichroism (CD) spectra for bis[7]helicene 2a, [15]helicene 3a, and [7]helicene 5 

(MM- or M-enantiomers).  In addition, TDDFT calculations at the B3LYP/6-31G(d) level of theory for 

bis[7]helicene 2 (MM-enantiomer) were carried out using its X-ray structure geometry (C1 point group).  

For all studied compounds, the values of Rvel and Rlen were practically indistinguishable. 

The inclusion of solvent models for cyclohexane such as integral equation formalism of the polarizable 

continuum model (IEF-PCM) were found to be essential for adequate reproduction of the long-wavelength 

part of the CD spectrum for bis[7]helicene.  PCM is expected to be a valid approximation of solvent 

effects because no specific interactions (such as hydrogen bonds, ion pairing) link the solute and the 

cyclohexane solvent molecules.  Different schemes for assigning atomic radii (UA0, UAHF, and Bondi) 

in the Gaussian03 were considered;S11,S12 our TD-B3LYP calculations on [7]helicene 5 suggested that the 

performance of these schemes is similar, with slightly better fit between the calculated and experimental 

CD spectra for the united-atom Hartree-Fock (UAHF) radii.  Inclusion of the diffuse functions in the basis 

set (6-31+G(d)) led to a greater red-shift for the calculated CD spectra for both [7]helicene 5 and 

bis[7]helicene 2a.  Therefore, the final CD spectra were calculated at the TD-B3LYP level with the 

6-31G(d) basis set and with the IEF-PCM-UAHF solvent model for cyclohexane, and using the 

B3LYP/6-31G(d) gas-phase optimized geometries; also, these calculations provided electronic absorption 

spectra for bis[7]helicene 2a, [15]helicene 3a, and [7]helicene 5, as well as for Ci-symmetric bis[7]helicene 
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2a-PM.  In the final TD-B3LYP calculations, 210 and 190 excited states were calculated for [15]helicene 

3a and bis[7]helicene 2a, respectively. 

The electronic CD data (Rlen) in the Gaussian03 output files were converted to stick spectra in the text file 

format and then convoluted with the Gaussian functions with half-width of 0.2 eV, using graphical user 

interface Gabedit (version 2.1.8, http://gabedit.sourceforge.net).  The resultant spectra were re-plotted 

with the wavelength (nm) axis using SigmaPlot program.  Analogous procedures were employed for 

extraction and plotting of the electronic absorption spectra.   

For all calculated spectra, vertical axes were scaled to fit the experimental spectra.  For bis[7]helicenes 

2a and 2a-PM, and [15]helicene 3a, the horizontal axes were not scaled; for [7]helicene 5, the calculated 

spectra were blue-shifted by applying scaling factor of 1.035 to the transition energies (eV), prior to the 

conversion to the wavelength (nm). 

 

 

 

 

 

 

 

 

 

http://gabedit.sourceforge.net/
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2.   Supporting Text 

As indicated in note 25 (main text), enantiomeric excess (ee) can be increased by more extensive 

purification process but at the expense of yield (Scheme 1).  For example, separation of bis[7]helicene 2 

by preparative TLC (deactivated silica using 3% triethylamine in pentane, 5% ethyl acetate in heptanes as 

eluent, room temperature) gives a fraction with enriched ee of about 68% (Fig. S14, Table S2).  Due to low 

solubility of 2, the larger fraction of the bis[7]helicene is tailing on the preparative TLC plate, and it is 

nearly racemic (~5% ee) as shown in Fig. S15 (Table S2). 

The identical configuration for all three β,β-linkages for tetrakis(β-trithiophene) 1 in the solid state is 

also indicated by the identical signs of the torsion angles (Table S1).   

Crystal packing plots for both tetrakis(β-trithiophene) 1 and bis[7]helicene 2 show multiple short 

contacts but no significant π-stacking between the molecules (Fig. S2).     

As a minor comment concerning conformations of both tetrakis(β-trithiophene) 1 and bis[7]helicene 2 in 

solution, we note that their 1H NMR spectra suggest that the methylene groups in the TPS groups are 

diastereotopic, as expected for molecules that are chiral on the NMR time scale. 

In the isomerization experiments for 2, the bis[7]helicene was either heated in the solid state at 280 °C for 

1 h under argon atmosphere or in p-xylene-d10 solution at 200 °C for 10 h (Figs. S30–S32).  These 

conditions are limited by an onset of decomposition of 2.  Under similar conditions [7]helicene 5 

racemizes; e.g., half-life for racemization in the solid state is 11±1 h at 199 °C or about 5 h at 203 °C.S6  

In the attempted triple ring annelation of bis[7]helicene 2 to provide [15]helicene, FABMS analyses of 

crude reaction mixtures and of selected chromatographic fractions revealed weak ion clusters at m/z 

1341–1342, in addition to a strong ion cluster at m/z 1309–1310 for 2.  For example, run MM1989, using 

the conditions for lithiation that are identical to those in the MeOD-quenching run MM1884 (p. S12).  

However, no conclusive evidence for [15]helicene was obtained. 
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3.   Supporting Figures  

 

 

Formula unit, disorder shown. 
 

 
Formula unit, disorder and solvent shown. 

 
Figure S1.  Molecular structure and conformation for tetrakis(β-trithiophene) 1 (top) and bis[7]helicene 2 

(bottom): formula unit, with all disorder and solvent shown.  Carbon, bromine, silicon, and sulfur atoms 

are depicted with thermal ellipsoids set at the 50% probability level. 
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Cell plot, view along b. 

 

              
Cell plots, views at (1 0 1) and (1 0 -1) 

 

Figure S2.  Selected plots for crystal packing for tetrakis(β-trithiophene) 1 (top, view along b) and 

bis[7]helicene 2 (bottom, views at (1 0 1) and (1 0 -1). 



 

S22 
 

 
 

Figure S3.  Enlarged version of Figure 2e in the main text, showing helically-locked bis[7]helicene 2 as a 

molecular hinge: short intramolecular C…C (3.23–3.30 Å) distances between the [7]helicene moieties that 

are at least 0.1 Å below the sum of the van der Waals radii.  Other short distances are summarized in Table 

S1. 
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Figure S4.  Expanded version of Figure 3 in the main text, with the experimental UV-vis absorption 

spectra.  Electronic CD and UV-vis absorption spectra for bis[7]helicene 2, its synthetic intermediates, 

and [7]helicene 5S6 in cyclohexane (solid lines).  The blue dash lines and sticks correspond to the 

calculated CD spectrum for bis[7]helicene 2a at the TD-B3LYP/6-31G(d) level with the 

IEF-PCM-UAHF solvent model for cyclohexane; the ground state geometry is optimized at the 

B3LYP/6-31G(d) level in the gas phase.  Top plot: UV-vis spectra.  Bottom plot including inset: CD 

spectra. 
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Figure S5.  UV-vis (top plots) and CD (bottom plots).  Experimental and calculated spectra are shown in 

solid and dash lines, respectively.  The spectra are calculated at the TD-B3LYP/6-31G(d) level using 

IEF-PCM-UAHF solvent model for cyclohexane; ground state geometries are optimized at the 

B3LYP/6-31G(d) level (gas phase). 
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Figure S6.  UV-vis (top plots) and CD (bottom plots) electronic spectra: comparison between [7]helicene 

5 (plotted as M-configuration), bis[7]helicenes 2 and 2a (MM-configuration) and 2a-PM, and [15]helicene 

3a (M-configuration).  Experimental and calculated spectra are shown in solid and dash lines, 

respectively.  The spectra are calculated at the TD-B3LYP/6-31G(d) level using IEF-PCM-UAHF solvent 

model for cyclohexane; ground state geometries are optimized at the B3LYP/6-31G(d) level (gas phase). 
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Figure S7. Chiral HPLC of tetrakis(β-trithiophene) 1 (label: MM-19-39-2, eluent: hexane). 
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Figure S8.  Chiral HPLC of tetrakis(β-trithiophene) 1 (label: MM-19-71-solid, eluent: hexane/i-PrOH, 

99.5:0.5). 
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Figure S9.  HPLC of bis[7]helicene 2 (label: MM-18-59-TP2, eluent: hexane/i-PrOH, 99:1).  
 

 

SSS

S

S
S

Br

(C3H7)3Si
S

S
S

S

S S

Br

Si(C3H7)3

S
S

Figure S10.  HPLC of bis[7]helicene 2 (label: MM-18-59-TP2, eluent: hexane).  
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Figure S11.  HPLC of bis[7]helicene 2 (label: MM-19-60-2, eluent: hexane). 
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Figure S12. HPLC of reference [7]helicene 5 (label: MM-21-40-1, eluent: hexane). 
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Figure S13. HPLC of bis[7]helicene 2 (label: MM-21-15-TP3-A+B-1+2-TP1-solid, eluent: hexane). 
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Figure S14. HPLC of bis[7]helicene 2 (label: MM-21-26-TP2+TP3-A-2, eluent: hexane). 
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Figure S15. HPLC of bis[7]helicene 2 (label: MM-21-26-TP2+TP3-A-4+5-solid, eluent: hexane). 
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Figure S16.  1H NMR (500 MHz, chloroform-d) spectra of tetrakis(β-trithiophene) 1 (0.8 mg) with 

chiral shift reagents (Yb(hfpc)/Ag(fod)).  Top spectrum: before addition of shift reagents 

(MM-19-25+28-col-2-solid-1).  Bottom spectrum: after addition of shift reagents, Yb(hfpc) = 2.2 mg, 

Ag(fod) = 2.7 mg, and resolution enhancement, LB = −0.8, GB = 0.4 (MM-19-25+28-col-2-solid-4).  
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Figure S17.  1H NMR (500 MHz, chloroform-d) spectra of bis[7]helicene 2 (~0.3 mg) with chiral shift 

reagents (Yb(hfpc)/Ag(fod)).  Top spectrum: before addn of shift reagents (MM-19-57-TP2-CDCl3). 

Middle spectrum: after first addn of shift reagents, Yb(hfpc) = 1.1 mg, Ag(fod) = 1.3 mg, LB = −0.5, GB 

= 0.3 (MM-19-57-TP2-1).  Bottom spectrum: after subsequent addn(s) of shift reagents, Yb(hfpc) = 3.7 

mg, Ag(fod) = 4.1 mg, LB = −0.6, GB = 0.3 (MM-19-57-TP2-3).  
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Figure S18.  1H NMR (500 MHz, chloroform-d) spectra of bis[7]helicene 2 (0.4 mg) with chiral shift 

reagents (Yb(hfpc)/Ag(fod)).  Top-to-bottom spectra: before addn of shift reagents and then after addns 

of increased amounts of shift reagents.  Top: MM-19-59-1.  Second from top: MM-19-59-2, Yb(hfpc) 

= 0.7 mg, Ag(fod) = 1.2 mg, LB = −0.8, GB = 0.4.  Third from top: MM-19-59-3, Yb(hfpc) = 1.9 mg, 

Ag(fod) = 2.0 mg, LB = −0.8, GB = 0.4.  Bottom: MM-19-59-4, Yb(hfpc) = 2.8 mg, Ag(fod) = 3.0 mg, 

LB = −0.8, GB = 0.4. 



 

S34 
 

 

S
S

S

S S S

Br
Si(C3H7)3

Br

Figure S19. 1H NMR (400 MHz, chloroform-d) spectrum of 4a. 
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Figure S20. 13C NMR (100 MHz, chloroform-d) spectrum of 4a.  
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Figure S21. 1H NMR (400 MHz, chloroform-d) spectrum of 4b. 
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Figure S22. 13C NMR (100 MHz, chloroform-d) spectrum of 4b. 
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Figure S23. 1H NMR (400 MHz, chloroform-d) spectrum of tetrakis(β-trithiophene) 1. 
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Figure S24.  13C NMR (100 MHz, chloroform-d) spectrum of tetrakis(β-trithiophene) 1. 
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Figure S25. 1H NMR (500 MHz, chloroform-d) spectrum of tridecathiophene by-product 

(MM-15-88-TP3-B).  

 

Figure S26. LR FABMS spectrum of tridecathiophene by-product (MM-15-88-TP3-B).  The spectrum 

was vertically expanded by factor of 5 in the m/z 440 – 2100 range.  Inset spectrum shows the expansion 

in the m/z 1268 – 1292 range. 
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Figure S27. 1H NMR (400 MHz, chloroform-d) spectrum of bis[7]helicene 2 
(MM-21-26-TP2+TP3-A-4+5-solid). 
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Figure S28. 13C NMR (100 MHz, chloroform-d) spectrum of bis[7]helicene 2 
(MM-21-26-TP2+TP3-A-4+5-solid). 
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Figure S29. Comparison of IR spectra of tetrakis(β-trithiophene) 1 and bis[7]helicene 2.  These IR 

spectra were obtained consecutively, starting with bis[7]helicene 2; 256 scans were acquired for each 

spectrum. 
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Figure S30.  1H NMR (500 MHz, chloroform-d) spectra of 2 (MM-21-26-TP2+TP3-A-4+5-solid).  

Top spectrum: before heating.  Bottom spectrum: after 1 h at 280 °C. 

 

 



 

S41 
 

 
 
Figure S31.  1H NMR (500 MHz, p-xylene-d10) spectra of 2 (MM-21-26-TP2+TP3-A-4+5-solid).  Top 

spectrum: before heating (label: MM-21-56-1H-xylene); the singlet at about 4.8 ppm is most likely due to 

the residual dichloromethane.  Bottom spectrum: after 10 h at 200 °C (label: MM-21-56-2). 
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Figure S32.  1H NMR (500 MHz, chloroform-d) spectrum of bis[7]helicene 2 after 10 h in p-xylene-d10 

at 200 °C (MM-21-56-2), and then removal of solvent in vacuo (label: MM-21-56-3). 
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4.  Supporting Tables. 

Table S1.  Selected intramolecular distances (Å) and angles (°) from X-ray structures of 

tetrakis(β-trithiophene) 1 and bis[7]helicene 2.   

Compound Distances between β-trithiophene moietiesa 

 
Torsion angles for β,β-linkages 

 

SSS

S
S

S

Br
Si(C3H7)3

S
S

S

SSS

Br
(C3H7)3Si

RRR 

C-C S-S C-S Terminal-inner Inner-inner 

 

C3-C16’ 3.451 
C6-C14’ 3.405 
C7-C13’ 3.495 
C8-C11’ 3.486 

 C11-C8’ 3.486  
C13-C7’ 3.495 
C14-C6’ 3.405 

 C16-C3’ 3.451 

S2-S6’ 3.706 
S3-S5’ 3.721 
S5-S3’ 3.721 
S6-S2’ 3.706 

C4-S6’ 3.598 
S6-C4’ 3.598 

C8-C7-C9-C10 
–77.6(3) 

 
C5-C7-C9-C11 

–88.7(4) 

C16-C15-C15’-C16’  
–77.12  

 
C13-C15-C15’-C13’

–88.44 

      

Compound 
 

Distances between [7]helicene moietiesb 

 
Torsion angles for β,β-linkages 

SSS

S

SS

Br

(C3H7)3Si
S

S
S

S

S
S

Br

Si(C3H7)3

S
S

 
MRM 

C-C S-S C-S Within [7]helicene 
moieties 

Between [7]helicene 
moieties 

 

C2-C16’ 3.226 
C16-C2’ 3.226 
C5-C13’ 3.296 
C7-C11’ 3.250 
C9-C9’ 3.297 
C11-C7’ 3.250 
C13-C5’ 3.296   

S1-S7’ 3.879 
S2-S6’ 3.856 
S3-S5’ 3.743 
S4-S4’ 3.742 
S5-S3’ 3.743 
S6-S2’ 3.856 
S7-S1’ 3.879 

C3-S7’ 3.459 
S7-C3’ 3.459 

C8-C7-C9-C10 
–11.68 

 
C5-C7-C9-C11 

–25.93 

C16-C15-C15’-C16’
–50.14 

 
C13-C15-C15’-C13’ 

–51.16 

a For tetrakis(β-trithiophene) 1, all C-C and C-S distances listed in the Table are below the sum of the van der Waals radii plus 
0.1 Å.  b For bis[7]helicene 2, all C-C and C-S distances listed in the Table are below the sum of the van der Waals radii.   
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Table S2.  Summary of chiral HPLC results for tetrakis(β-trithiophene) 1 and bis[7]helicene 2.   

Compound HPLC label No. Compound label 
Solvent system Left 

peak 
Right 
peak HPLC plot 

Hexane i-PrOH (%) (%) 
SSS

S
S

S

Br
Si(C3H7)3

S
S

S

SSS

Br
(C3H7)3Si

 
MM-19-71-solid 

1 
 

2 
MM-19-71-solid 

99.5 
 

99.5 

0.5 
 

0.5 

55.22 
 

56.18 

44.78 
 

43.82 

Figure S8 
 
 

 MM-20-92-1 1 Reference 
([11]helicene) 99.5 0.5 46.56 53.44  

 

 
MM-19-39-1 

 
 

 
1 
 

2 

MM-18-26+29-f2
+f1-B 

100 
 

100 

- 
 
- 

57.91 
 

58.49 

42.09 
 

41.51 
 

 MM-19-39-2 

 
1 
 

2 

MM-19-25+28-col
-2-solid 

100 
 

100 

- 
 
- 

57.64 
 

58.04 

42.36 
 

41.96 

 
 

Figure S7 

         

S
S

S

S

SS

Br

(C3H7)3Si
S

S
S

S

S
S

Br

Si(C3H7)3

S
S

 
MM-18-59-TP2 

1 
2 
3 
4 

MM-18-59-TP2 

99 
99 
100 
100 

1 
1 
- 
- 

single 
single 
26.91 
25.67 

peak 
peak 
73.09 
74.33 

 
Figure S9 
Figure S10 

 

 MM-19-60-1 1 Reference 
([7]helicene) 100 - 51.89 48.11  

 MM-19-60-2 2 
3 

MM-19-48+53-TP
1 

100 
100 

- 
- 

37.01 
37.17 

62.99 
62.83 

 
Figure S11

 MM-19-57-TP2 1 
2 MM-19-57-TP2 99.5 0.5 34.33 

34.01 
65.67 
65.99 (some impurities) 

 MM-20-92-1 1 Reference 
([11]helicene) 99.5 0.5 46.56 53.44  

 MM-20-96-solid 1 MM-20-96-solid 100 - 44.23 55.77  

 MM-20-98-1 1  Reference 
([7]helicene) 100 - 51.03 48.97  

 MM-21-40-1 3 Reference 
([7]helicene) 100 - 51.11 48.89 Figure S12 

 MM-21-15-solid 1 
2 

MM-21-15-TP3-A
+B-1+2-TP1-solid 100 - 19.05 

15.74 
80.95 
84.26 

Figure S13 
 

 MM-21-26-A-2 1 
2 

MM-21-26-TP2+T
P3-A-2 100 - 16.02 

15.87 
83.98 
84.13 

Figure S14 
(PTLC- purified) 

 MM-21-26-solid 1 
2 

MM-21-26-TP2+T
P3-A-4+5-solid 100 - 52.29 

52.83 
47.71 
47.17 

Figure S15 
(remaining on plate) 
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Table S3.  Summary of 1H NMR experiments with chiral shift reagents for tetrakis(β-trithiophene) 1 
and bis[7]helicene 2.  
 

Compound structure 
Sample label 

Mass 
(mg) NMR label Yb(hfpc) 

(mg) 
Ag(fod)  

(mg) 
LB/GB 

(Hz) 

Chemical shift of 1H 
NMR in aromatic region 

(integration) 
Comment 

SSS

S S

Br
Si(C3H7)3

S S

SSS

Br
(C3H7)3Si

SS

MM-19-25+28-col-2-solid 
 

(Figure S16) 

0.8 

 
MM-19-25+28-col-2-solid 
 
MM-19-25+28-col-2-solid 
 
 
MM-19-25+28-col-2-solid 
 
 
MM-19-25+28-col-2-solid 

 

 
― 
 

0.8 
 
 

0.8 
 

 
0.8+1.4 

 

 
― 
 

1.2 
 
 

1.2 
 

 
1.2+1.5 

 

 
0.3/0 

 
 
 

 
 
 
 

−0.8/0.4 
 

 
7.045, 6.706, 6.237 
 
7.056, 7.051, 6.715 (not 
split), 6.240 (not split) 
 
7.055, 7.050, 6.714 (not 
split), 6.239 (not split) 
 
7.074 (1.0 H), 7.054 
(0.96 H), 6.726 (1.03 H), 
6.721 (1.03 H), 6.242 
(0.99 H), 6.233 (0.99 H) 

 
 
 
 
 
 

(re-shimmed) 
 
 
 
 

SSS

SBr

SS(C H ) Si
S

S
S

S

S
S

Br

Si(C3H7)3

S
S

3 7 3

MM-19-57-TP2 
 

(Figure S17) 

~0.3 

 
MM-19-57-TP2-CDCl3 

 
MM-19-57-TP2-1 

 
MM-19-57-TP2-2 

 
MM-19-57-TP2-3 

 
― 
 

1.1 
 

1.1+2.6 
 

1.1+2.6 

 
― 
 

1.3 
 

1.3+2.8 
 

1.3+2.8 

 
0.3/0 

 
−0.5/0.3  

 
−0.6/0.3 

 
−0.6/0.3 

 
7.025 
 
7.042 (1.0 H), 7.036 
(1.37 H) 
7.088 (1.0 H), 7.070 
(1.21 H) 
7.086 (1.0 H), 7.069 
(1.17 H) 

 
 
 
 
 

(shimming?) 
 

(7.8% ee) 

S
S

S

Br

S

S
S

Br

Si(C3H7)3

S

S

S

S
S(C3H7)3Si

S
S

S

 
 

MM-19-48+53-TP1 
(Figure S18) 

0.4 

 
MM-19-59-1 

 
MM-19-59-2 

 
 

MM-19-59-3 
 
 
 

MM-19-59-4 

 
― 
 

0.7 
 

 
0.7+1.2 

 
 
 

0.7+1.2+0.9 

 
―      
 

1.2 
 
 

1.2+0.8 
 
 
 

1.2+0.8+1.0 

 
0.3/0 

 
−0.8/0.4 

 
 

−0.8/0.4 
 
 
 

−0.8/0.4 

 
7.025 
 
7.043 (1.0 H), 7.038 
(1.27 H) 
 
7.058 (1.0 H), 7.049 
(1.84 H, overlapped with 
13C satellite) 
 
7.070 (1.00 H), 7.060 
(1.17H) 

 
 
 

(12% ee) 
 
 
 
 
 
 

(7.8% ee) 

 
 
 
 

 

 

 

 

 

 

 

 

 

 



 

S46 
 

Table S4.  B3LYP/6-31G(d) geometry optimizations and vibrational frequency calculations for Br- and 
TMS-terminated carbon-sulfur [n]helicenes and bis[7]helicenes.  

  Bis[7]helicene   
2a-MM 

Bis[7]helicene             
2a-PM 

[15]Helicene  
3a 

[7]Helicene     
5 

Point group C2 C1 Ci C2 C2 

Torsion angle  
(outer/inner)a 

-52.2/-49.8h 175.0/175.7 180.0/180.0 -11.9/-15.2 - 

Total energyb -12757.0879517 -12757.0753497 -12757.0753501 -13154.0582402 -9358.9360643 

RMS gradient normc 1.70e-06 1.97e-06 8.20e-07 7.00e-07 1.03e-06 

Maximum forcec 0.000005921 0.000008132 0.000001906 0.000001975 0.000003668 

Zero-point-energyd 290.14984 290.37343 290.24331 277.55846 209.42599 

Relative energyd,e 0 8.13 8.00 - - 

Vibrational 
frequenciesf 

10.5, 19.1, 21.9 5.5, 14.3, 20.3 i2.2, 12.5, 19.0 15.9, 17.0, 25.7 26.0, 33.5, 36.1 

Dipole momentg 2.44 0.26 0.00 1.49 1.67 

Br-Br (Å) 7.25h 7.40 7.40 7.22 - 

terminal S-S (Å) 11.05h 10.98 11.02 10.86 - 

Total energy (in uahf 
cyclohexane)b 

-12757.0889289   - -12757.0762607   -13154.0591076   -9358.93673347   

Relative energy (in 
uahf cyclohexane)d,e 

0 - 7.949 - - 

Dipole moment (in 
uahf cyclohexane)g 

2.68 - 0.00 1.65 1.83 

a CCCC torsion angle (°) between the [7]helicene units; the inner angle is defined by the four center 
carbons on the inner helix and the outer angle is defined by the four carbons for the center thiophene ring in 
[15]helicene or the corresponding four carbons in bis[7]helicene.  b In Hartree/molecule.  c In a.u., 
Cartesian coordinates. d In kcal mol-1, unscaled.  e Relative energy with respect to 2a-MM. f Three lowest 
frequencies in cm-1.  g Dipole moment in Debeye.  h The corresponding values determined from the X-ray 
structure of 2: -50.1° (outer),  -51.2° (inner), 6.90 Å (Br-Br), and 11.24 Å (terminal S-S). 
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Table S5.  B3LYP/6-31G(d,p) geometry optimizations and vibrational frequency calculations for 
hydrogen-terminated carbon-sulfur bis[7]helicenes, tris[7]helicenes, and tetrakis[7]helicenes. 

S

S

S

SHS

S

S
S

S

S

S
H

H
S

S

S
S

S

S

S
HH H

bis[7]helicene 6-MM

S
H

HS

S
S

S

H

S
S

S

H

S

S
S

S

S

S

H

H

bis[7]helicene 6-PM
S

H

H

S

S

S

H
S

S

S

H

S

SS

S

S

S
S

H

H

  bis[7]helicene 9-MM

  bis[7]helicene 9-PM

α α

α
α

S

SS

S

S

S
S

HH H

S

S S

S

S

SS

H HH

S

H

S

S

S

S

H

S

S

S H

S

S

S S

S

S

H
S

H

S

S S

S

SH

SH

S

H

S

SS

S

S H

S H

S
H

H
S

SS

S

H

S
S

S

H

S

S
S

S

S

S
H

S
H

S

S

S S

S

H S

H

S

S
S

S

S

S
H H S

S

S

S
S

S

S

H

H

H

S
H

S
S

S

S

S
H H

S

S
S

S

S

S
H

HS

S

SS

S

S

S HHS

S

S

S S

H

H

H S
H

S

S

S
S

S

S
H

H

tris[7]helicene 7-MPM tetrakis[7]helicene 8-MPMP

tris[7]helicene 7-MMM tetrakis[7]helicene 8-MMMM

S

β β

ββ

 

Linkage Oligomer Point 
group 

Torsion 
anglesa 

Total energyb RMS 
gradient 
normc 

Zero 
point 
energyd 

Relative 
energyd,e 

Vibrational 
frequencyf 

Dipole 
momentg 

β,β 6-MM C2 -51.8 -6797.53316673 1.20e-06 174.99 0 11.2, 24.8, 35.4 1.81 

β,β 6-PM Ci 180.0 -6797.52426336  1.90e-06 174.94 5.54 2.3, 18.9, 32.4 0.0 

β,β 7-MMM C2 -53.8,   
-53.8 

-10195.6858842  7.84e-07 255.94 0 9.9, 16.7, 21.1 2.26 

β,β 7-MPM C2 172.3, 
172.3 

-10195.6656715 7.36e-07 255.92 12.70 5.1, 8.2, 14.5 1.20 

β,β 8-MMMM C2 -54.1,   
-55.9,    
-54.1 

-13593.8382720 7.83e-07 336.75 0 7.3, 12.6, 15.8 2.69 

β,β 8-MPMP Ci 171.9, 
180.0,   
-171.9 

-13593.8060036 1.38e-06 336.86 20.36 3.2, 5.9, 7.1 0.0 

α,α 9-MM C2 -32.4 -6797.56029703  2.12e-07 175.27 0 5.9, 13.1, 13.3 0.59 

α,α 9-PM Ci 180.0 -6797.56184080  1.61e-06 175.18 –1.05 i5.2, 13.8, 19.3 0.0 

a (H)CCCC(H) torsion angles (°) between the [7]helicene units.  b In Hartree/molecule.  c In a.u., 
Cartesian coordinates. d In kcal mol-1, unscaled.  e Energy difference between diastereomers relative to the 
energy of the “homochiral” diastereomer. f Three lowest frequencies in cm-1.  g Dipole moment in Debeye. 
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