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Polycarbonate(PC), like most glassy polymers when undergoing large deforma-

tions exhibits a very complex thermo-mechanical response. We look at PC as a model

glassy polymer and examine its response to changes in loading rate, loading direction and

temperature. We show that plastic flow in compression is accompanied by a change in

the elastic response of PC from isotropic to anisotropic. This provides the necessity to

introduce a new modeling method that can capture these changes. A finite deformation

plasticity like thermodynamically consistent model is developed to capture this and the

observed rate and temperature dependence. For this modeling method, we need to pro-

vide expressions for the elastic response, flow of the plastic deformation gradient and also

provide methods to calculate the back stress. In an effort to mathematically capture the

observed response of PC under a broad range of mechanical loads and thermal conditions, a

protocol of experiments has been developed that can be used to systematically evaluate the

parameters needed to characterize PC, and with potential for application to other glassy

polymers. This experimental protocol combines traditional mechanical testing, ultrasonic

wave speed measurements, dynamic kolsky bar methods and standard calorimetric studies

to systematically construct a model for PC.



Polycarbonate (PC) is a tough transparent glassy polymer that is used for many

structural applications, particularly as components of window and protective armor. Below

its glass transition temperature of about 150oC, PC plastically flows under load , showing a

rate dependent response and will not fully recover after removal of load, showing elements of

plastic flow. As a result, the response of PC has been modeled using a rate dependent type

model. When plastically deformed below the glass transition temperature, unlike PMMA,

which is also a glassy polymer, PC will show very strong anisotropic elastic response. This

can be seen from ultrasonic measurement of elastic wave-speed moduli after different levels

of plastic compression. This is the first indication that traditional modeling methods based

on plasticity will not work for capturing the response of PC if they are based on stress

response models that only depend on the elastic deformation gradient. One needs to include

additional history defining parameters in the stress response function, such as the plastic

deformation gradient, to capture this development of anisotropy with plastic flow.
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Chapter 1

Introduction

1.1 General introduction

Amorphous glassy polymers such as poly (methyl methacrylate) (PMMA) and

polycarbonate (PC) due to their light weight, high impact strength and other desirable

characteristics are being continuously used in various engineering applications to resist high

rates of impact. They are not only considered in many commercial products applications

such as in electrical and electronics application, optical application, medical applications

but also in structural application which includes windscreens and transparent armor. Due

to the application of glassy polymers in a broad range of structural application it is im-

portant to analyze its mechanical behavior; hence the characterization of the response of

such polymers is of importance. The ultimate goal of this research project is to develop a

thermodynamically consistent large deformation constitutive modeling structure for amor-

phous polymers that can capture the response for large range of strain, strain rates and

temperatures and can be used for determining the response in various applications and
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under complex loading.

This dissertation provides a modeling structure that can be used to capture a di-

verse set of experimental observations for glassy polycarbonate spanning a large range of

strain, strain rates and temperature. In an effort to mathematically capture the observed

response under a broad range of mechanical loads and thermal conditions, a method of

modeling and protocol for experiments has been developed that can be used to systemati-

cally evaluate the parameters needed for this characterization. This experimental protocol

includes multiaxial monotonic compression experiments at different strain rates and temper-

atures, ultrasonic wave speed measurements in the axial and transverse directions, uniaxial

cyclic tests to systematically construct a large deformation thermodynamically consistent

model which could capture the responses at large strains and different strain rates and

temperatures.

1.2 Background

This dissertation is primarily concerned with the rate dependent mechanical be-

havior of materials, in particular polymers, with a focus on predicting large strain behavior

at low and at very high strain rates. The description of the stress strain response of an

amorphous polymer under uniform tension/compression is very well understood. Figure 1.1

shows the stress strain behavior of PC in uniaxial compression at 0.1 1/s strain rate. Region

1 in the figure is a nonlinear elastic region with a small rate dependence, reaches to the peak

which depends on the strain rate and temperature. As shown by Ravichandar and Lu [14]

any unloading below this peak point does not result in significant hysteresis or permanent
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Figure 1.1: Stress strain curve for glassy polycarbonate at room temperature and 0.1 1/s
strain rate.

strains. After yielding, the material possess an inelastic strain localization regions which

appear in the form of micro shear bands causing the response of strain softening which is

shown in Region 2 [14] and there is a drop in the true stress with plastic straining. These

bands keep on accumulating and initiating plasic localization that in tension is associated

with necking. The process in Region 3 is commonly called cold drawing and is a region

where the active necking zone start to align plastically along the extension direction and

this alignment give rise to strain hardening. Region 2 can also be explained as a transition

from low plastic strain in Region 1 to high plastic strain in Region 3 which causes stress to

drop.

The stress strain behavior explained in Figure 1.1 is strongly dependent on strain

rate and temperature. Figure 1.2 shows the room temperature stress strain behavior for
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Figure 1.2: Monotonic compression experiments (from [1, 2, 3]) for different strain rates at
room temperature.

glassy polycarbonate at different strain rates. As can be seen from the plot, with the

increase in strain rate the stress level increases, but the effect is nonlinear such that if the

rate is increased 100 times, the response does not increase by 100 times. This feature of

amorphous polymer response is important to predict the behavior at very high strain rates.

The same effect can be observed by comparing the response of PC at different temperatures

but with the same strain rate. With the increase in temperature the response decreases due

to thermal softening as shown in Figure 1.3 but again the effect is nonlinear. This is another

factor which needs to be captured when modeling and predicting high rate behavior.
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Figure 1.3: Monotonic compression experiments (from [2]) for different temperatures at
0.11s−1.

1.3 Hyperelastic constitutive modeling

Before discussing the constitutive models developed for a polymeric materials, let

us discuss various modeling approaches that are used in the literature to develop hypere-

lastic constitutive models. The approaches based on hyperelastic models can then be used

for polymeric materials. The modeling approaches can be classified into the three types

depending upon the authors to develop a strain energy function.

The first kind of the models which are known as phenomenological models are

the mathematical development of the free energy. The Mooney Model [15], Mooney Rivlin

Model [16, 17], Biderman model [18], Haines-Wilson model [19], Ogden model [20] all comes

under these form and the material parameters of these models are generally difficult to

determine due to assumed form of the free energy.

The second type of model assumes the free energy of certain form which depends
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on invariants and the derivative of free energy with respect to invariants are calculated

from the experimental data. Rivlin and Saunders model [21] , Gent and Thomas model

[22], Hart Smith model [23] are some of the examples of the model which fall into this form

of modeling.

The third type of the model are developed from physical motivation. Such type of

models are known as physics based models and are based on the physics of polymer chain

network and statistical methods. It leads to a different strain energy function depending

upon the microscopic response of polymer chains in the netwok. The Neo Hookean model

[24] is the simplest physically based model and matches Mooney Rivlin model with only one

material parameter but is derived from molecular chain statistics. It assumes that rubber

material are constituted by a network of long flexible oriented chains linked by chemical

bounds at junction points [25]. The 3 chain model used a non Gaussian chain elasticity.

In 1942, Kuhn an Grun [26] used a non Gaussian theory to take into account the limiting

extensibility of polymer chains and they derived the strain energy of the single chain. Later

James and Guth [27],developed similar models where the network chains were distributed

upon the principal stretches axis and Flory [28] and Treloar [29] assumed network chains

are distributed upon four axis corresponding to the vertices of a regular tetrahedron. Later

Arruda and Boyce [30] proposed a chain model with a distributed of chains upon eight

directions corresponding to the vertices of a cube inscribed in the unit sphere. The model

they developed was quite similar to three chain model but presents better agreement with

experimental data for equibiaxial extension.
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1.4 Polymer constitutive modeling

As discussed before, polymeric materials subjected to large strains have a rate

dependent deformation response . There are many linear and nonlinear viscoelastic and

viscoplastic constitutive models which have been developed to study the time dependent

deformation of polymers, as well as the thermomechanical behavior of polymers under large

deformation.

Traditionally, for an every small strain analysis, linear viscoelasticity has been used

to simulate the material behavior [31]. In the linear viscoelastic models, combinations of

springs and deshpots have been used to capture the rate dependent behavior. For the cases

where the strains are large enough that the response is no longer linear, linear models are

replaced by nonlinear viscoelastic models. For example, in a model developed by Cessna

and Sternstein [32] used nonlinear dashpots instead on linear and were incorporated into

the constitutive equations. The rate dependence observed in polymer deformation has also

been modeled empirically by scaling the yield stress as a function of strain rate [33].

Another technique for polymer constitutive modeling has taken a molecular ap-

proach. In this method [4], the polymer deformation was assumed to be due to the motion

of molecular chains over potential energy barriers. The molecular flow was due to applied

stress, and the internal viscosity was assumed to decrease with increasing stress. The yield

stress (the point where permanent deformation begins) was defined as the point where

the internal viscosity decreased to the point where the applied strain rate is equal to the

plastic strain rate. Internal stresses were also defined [4, 34]. These stresses represented

the resistance to molecular flow that tends to drive the material back towards its original
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configuration. A significant advancement in the modeling of polymers using a molecular

apporach has been made by Parks, Argon, Boyce, Arruda and their coworkers, by Wu and

VanderGeissen and Anand and Gurtin. In order to capture the characteristics feature of

the deformation behavior of glassy polymers, James and Guth [35] developed a model that

account for the evolution of microstructure of the glassy polymer. Subsequently, a general

three dimensonal constitutive model was established based on the three chain model [36]

using the generalized Argon double- kink model [37]. Further generalization of the model

to the eight chain model [30] and the full network model [38] has been done. In these

models, polymeric materials is approximated by a molecular chain network system defined

by a cross links, which are assumed to be physically entangled points of molecular chains,

whose number remains constant during the deformation. Therefore these types of model are

refered as affine models. The constitutive equation obtained can well reproduce the tension

and compression behavior, whereas the shear strength is likely to overestimate [38]. Indeed,

the results of exerimental investigations implicitly suggest the possibility of a change in

configuration of the entangled points due to deformation and a change in temperature [39],

[40] which causes a change in the rigidity of th polymeric materials. Tomita and coworkers

[41, 42] proposed the nonaffine model based on the molecular chain network theory, in which

a change in the number of entangled points was taken into account.

In all these approaches, constitutive equations were developed [4, 34, 36, 43, 44]. In

these equations, the polymer deformation was considered to be a function of parameters such

as the activation energy, activation volume, molecular radius, molecular angle of rotation,

and thermal constants. Furthermore, the deformation was assumed to be a function of
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state variables that represented the resistance to molecular flow caused by a variety of

mechanisms. The state variable values evolved with stress, inelastic strain and inelastic

strain rate.

An alternative approach to the constitutive modeling of polymers has utilized,

either directly or with some modifications, viscoplastic constitutive equations which have

been developed for metals. For example, Bordonaro [45] modified the Viscoplasticity Theory

Based on Overstress developed by Krempl [46]. In Bordonaro’s model, the original theory

was modified to attempt to account for phenomena encountered in polymer deformation

that are not present in metals. For example, polymers behave differently from metals

under conditions such as creep, relaxation and unloading. Other authors, such as Valisetty

and Teply [47] and Zhang and Moore [48], also utilized viscoplastic constitutive equations

developed to model the deformation of metals to analyze polymers. However, in these

studies, only uniaxial tensile behavior was analyzed, and no attempt was made to consider

phenomena such as unloading, creep or relaxation.

1.5 Motivation of the thesis

Many models that are developed to characterize the behavior of glassy polymers at

large deformations are based on a modeling structure similar to that of plasticity, examples

of such models are the models developed by Argon, Parks, Boyce, Arruda, and co-workers

[49, 50, 51, 36, 52, 53, 54, 55, 56, 57, 58, 43, 59] and Krempl and co-workers [60, 61, 62, 63]

and others. In most cases, a constitutive equation for stress is proposed, which depends on

the elastic deformation gradient, supplemented by a flow rule for the plastic deformation,
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which depends on the “over stress.” The over stress is a properly invariant difference between

the stress and the back stress (related to equilibrium stress). The accuracy of the model

depends upon the model used for stress and back stress along with the flow rule.

1.5.1 Modeling for stress

It is well known that the elastic response of many isotropic solid polymers become

anisotropic as a result of plastic strain [4, 64, 65, 66, 67, 68, 69, 70]. This is clearly seen in

Figure 1.4 that shows the axial and transverse wave moduli as a function of plastic strain

in tension for poly vinyl chloride (PVC), poly(methyl methacrylate) (PMMA), polystyrene

(PS) and bisphenol A polycarbonate (PC). As indicated in the figure, for each polymer the

axial and transverse wave moduli are initially identical indicating the response is isotropic,

and then gradually become different as the polymer is subjected to different extents of

plastic deformation. Typically, as shown in the figure, for uniaxial tension the axial modulus

increases and the transverse modulus decreases with the increase of plastic strain. The

extent of this difference depends on the polymer. For the polymers shown in Figure 1.4,

clearly PC is the most sensitive to plastic strain, developing very large differences in the

moduli along the two directions, even at relatively small plastic strains. Also, it should

be noted that this difference is in the order of the plastic strain (i.e., approximately 60%

difference in modulus for approximately 60% plastic strain in tension).

Even though, as shown in Figure 1.4, there can develop a large difference between

the axial and transverse moduli as a result of plastic flow, this fact is frequently ignored and

not reflected in the models that are developed. Many models that are used to characterize

the behavior of glassy polymers at large deformations are based on a modeling structure
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Figure 1.4: Axial and transverse modulus reported as a function of extent of plastic defor-
mation in tension for PVC, PMMA, PS, and PC (from Ward [4]). The axial longitudinal
modulus increases while the transverse longitudinal modulus decreases with plastic strain.

which describe the stress as a function of only the elastic deformation gradient. Without

a parameter to characterize the anisotropy that develops as a result of plastic flow, these

models preserve the initial symmetry (in most cases isotropy) of the elastic response. This

is true even after plastic flow. We have developed a model for stress that depends both on

the elastic and the plastic parts of the deformation and could capture the development of

anisotropy with plastic flow.

1.5.2 Experimentally evaluating and modeling of equilibrium stress

The models which uses modeling structure similar to that of plasticity to charac-

terize glassy polymers, all incorporates the idea of an equilibrium stress, that implies, ther-

modynamically, that there exist loading conditions under which the relaxation processes
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stop so the load may be held at constant strain indefinitely, and which the material re-

sponse tends towards these conditions. This is clearly observed above the glass-transition

temperature, as is shown for PMMA in Figure 1.5, reproduced from Negahban [5]. This

figure shows that at constant strain the stress either relaxes or increases toward the equilib-

rium response, depending on which side of the equilibrium response the process starts from,

and then indefinitely stays there. Below the glass-transition temperature the relaxation

processes slow down substantially, and identifying true equilibrium becomes more and more

difficult, frequently resulting in the identification of a range of stresses which seem to exhibit

the equilibrium conditions. Questions that arise in using these models are whether such

equilibrium stresses exist, how can they be evaluated, and what experiments can be used

to characterize the flow rule. One challenge in accurately evaluating the locus of equilib-

rium conditions is the fact that the relaxation process substantially slow down around these

points, and, therefore, a method that does not directly require being at the equilibrium is

desirable.

Several authors have looked at measuring the equilibrium stress. A review of the

two main methods used for this can be found in an article by Neu and coworkers [71] and

proposed by Ahlquist and Nix [72] and Onat [73], in which they use a model to characterize

the equilibrium stress in 60Sn-40Pb soldering material. The disadvantage of the method

is that it takes much longer time to evaluate the location of equilibrium stress. We have

proposed a new method based on uniaxial tests which is a faster method to obtain the values

for the equilibrium stress and it also provides with additional measurements of parameters

at equilibrium that are normally not obtained. Later, we modeled the free energy as a
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Figure 1.5: Stress buildup and stress relaxation seen in PMMA above its glass-transition
temperature (from Negahban [5]).

function of invariants. The derivative of free energy with respect to the invariants were

then calculated by fitting the experimental results for equilibrium stress measured from the

method.

1.5.3 Conversion of plastic work to heat during high strain rate deforma-

tion of glassy polymer

Since the early work of Farren and Taylor [74] and Taylor and Quinny [75], it

has been known that the mechanical energy of plastic deformation transform into heat

which can cause temperature rise under adiabatic consideration. These authors measured

the mechanical dissipation of energy in metals and showed that approximately 90% of

plastic work was transformed instantaneously into heat. Hodowany etal.[76] showed that

the fraction of plastic work converted into heat for an aluminium alloy AL2024-T3 varies
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from 60 to 30% at high strain rates 3000 1/s. The nature of the thermal problem determines

the temperature rise, if the generated heat flows away then little temperature rise will

be noticed (isothermal condition) but under adiabatic condition the temperature can rise

noticably. The monotonic compression at a very low strain rate corresponds to an isothermal

condition, but for a high strain rate curve corresponds to an adiabatic deformation due to

which temperature increases during the experiments. The experimental results from Rittel

[77]and Lerch [13] have performed a compression experiments under high strain rate and

have indicated that temperature can increase as much as 60◦C with 80% plastic strain.

Since depending upon the strain rate the monotonic compression experiments undergoes

isothermal and adiabatic condition, therefore a method is needed which could measure a

temperature rise for such experiments and calculate a stress under isothermal condition for

different rates and temperatures. We have calculated a temperature rise for a monotonic

compression experiments and calculated the response under isothermal conditions for the

high strain rate response.

1.6 Outline

For all the reasons given in the previous section, the synopsis of the present dis-

sertation can be stated as follows.

In this dissertation, we present a large deformation thermodynamically consistent

modeling structure whose primary objective is to capture the response of glassy PC at var-

ious ranges of strains, strain rates and temperatures. To achieve this objective, we address

the observed development of elastic anisotropy with plastic strain and we introduce a new
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method to evaluate the back stress using uniaxial cyclic tests. First, the constitutive model

for stress is developed, which is assumed to depends upon the elastic and plastic defor-

mation gradient and temperature. Then a constitutive model for back stress is developed

based on the experimentally evaluated equilibrium stresses. Both these models are thermo-

dynamically consistent and contribute to a single free energy. After developing the models

for stress and back stress, the flow rule is developed which could capture the response at

large strains and with different strain rates and temperature. In calculating the flow rule,

the temperature rise for the monotonic compression experimental results at very high strain

rates is calculated based on overstress and then the stress is interpolated under isothermal

conditions for different temperatures. These corrected monotonic compression plots at high

strain rates along with the low strain rates experimental plots at different temperatures

were used to model the flow rule.

In Chapter 2, we present the basics of continuum mechanics, which includes

kinematics and balance laws. After explaining the various terms related to continuum me-

chanics, finite deformation thermo-mechanically coupled viscoelasticity theory is presented

and the constraints imposed on stress, back stress and plastic flow is discussed for a model

to be thermodynamically consistent. Later, the heat generation and flow are described and

the conditions for isothermal and adiabatic response are derived.

Chapter 3 presents the one dimensional mechanical analog on which our modeling

structure is based on, and this analog is used to develop a three dimensional constitutive

model.

Chapter 4 focuses on modeling the thermo-elastic response observed in PC at
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different temperatures and pressures. Confined compression experiments were performed

by Masubichi etal. [7] using a combined PVT test system with an ultrasonic velocity

measurement system. They have reported longitudinal and shear wave speeds along with

the PVT curve. A thermodynamically based large deformation thermo-elastic model is

developed and was used to evaluate the wave moduli. The measured wave speeds were

then used to model the thermo-elastic response of PC. The resulting model reproduces the

correct longitudinal and shear wave speed moduli measured by the ultrasonic method under

confined compression for glassy PC at different temperatures and higher loads.

In Chapter 5 and 6, the development of anisotropy as a result of plastic defor-

mation below the glass-transition temperature is investigated and modeled for amorphous

polycarbonate. Initially isotropic polycarbonate was subjected to different extents of plastic

flow in uniaxial compression at zero load and the development of its anisotropic wave speed

moduli were studied using ultrasonic wave speed measurements. Longitudinal and shear

wave speed measurements were performed both in the axial and transverse direction. The

measured moduli were then used to model the elastic response of polycarbonate using a

model for stress that depends both on the elastic and plastic parts of the deformation. The

constitutive model which reproduces the correct anisotropic wave moduli measured by the

ultrasonic method at zero load was then combined with the large deformation thermoelastic

model under confined compression developed in Chapter 4 at higher load to reproduce the

anisotropic wave speed moduli at different temperatures below the glass transition temper-

atures and at higher load.

Chapter 7 and 8 discusses the measuring and modeling of the equilibrium stress
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(this is most commonly known as back stress but the back stress can be different from the

equilibrium stress). A method based on uniaxial compression is proposed for evaluating the

equilibrium stress of glassy polymers. The method is faster than other proposed methods

for calculating the equilibrium stress, and provides additional measurements of parameters

at equilibrium that are normally not obtained. Later, a model for back stress is developed

that directly uses the free energy as a function of invariants. The derivative of free energy

with respect to the invariants were then calculated by fitting the experimental results which

require a new modeling structure to model the back stress.

Chapter 9 discusses the free energy obtained such that it is consistent with both

the stress and back stress model. This is augmented by a part that will just depend upon

temperature, which is then calculated using the heat capacity at zero stress and zero elastic

and plasic strains. The material parameter in the expression was then calculated using the

experimental results from DSC.

In Chapter 10 a flow rule is developed that can capture the monotonic compres-

sion response at large strains and at different temperatures. To do this we first correct the

monotonic compression tests to obtain the isothermal response. In doing this, under the

assumption of adiabatic flow and assuming the majority of heat is generated due to plastic

flow, the temperature rise for uniaxial experiments is calculated. Interpolation is used to

obtain the isothermal response from those results. The corrected stress for high strain rates

along with low strain rate experimental results were used to model the flow rule.

Chapter 11 summarize the main features of the constitutive model along with

the future work needed to refine the propsed model.
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Chapter 2

Kinematics, balance laws and

notations

2.1 Introduction

In this chapter we introduce notation through the presentation of basic continuum

mechanics. This includes discriptions of the kinematics and balance laws. Although the

constitutive model developed in this dissertation is not necessarily the same as described in

this chapter, but will be sufficient in describing the notation. After explaining the various

terms, finite deformation thermo-mechanically coupled viscoelastic theory is presented and

the constraints imposed on stress, back stress and on plastic flow is derived for a thermody-

namically consistent model. Most of this development is based on Negahban [6]. For more

comprehensive treatment the reader is referred to numerous monographs and books on the

subject includes, for example Cristescu and Suliciu [78], Hill [79], Lubliner [80], Kachanov
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[81], Cristescu [82], Maugin [83], Khan and Huang [84], Simo and Hughes [85], Lubarda

[86], Bertram [87], Truesdell & Noll [88], Chadwick [89], Ferry [90] among others.

2.2 Kinematics

At each time, a material body occupies a physical region in space and each point

in the body can be identified by its location. The mapping which identifies each point in

the body by its location in space is the configuration of the body. The current configuration

of the body is denoted by κ. It is common to take one configuration of the body as a

reference configuration. This configuration serves as a means of distinguishing between

material points in the body and identifies the relative placing of all points. The reference

configuration will be denoted by κo. We will let X denote the position vector of points in

the reference configuration. The particle which occupied the location given by X in the

reference configuration will move to location x(t) at time t. The body contains many

particles and their motion can be given by a function χ(X, t) which gives the position at

time t of the particle in location X in the reference configuration. Therefore,

x(t) = χ(X, t). (2.1)

Consider point P and a point Q which is very close to P as shown in Figure 2.1. The vector

going from P to Q in the reference configuration will be denoted by dX and the vector

going from P to Q in the current configuration will be denoted by dx. The deformation

gradient F is a second-order tensor which relates dx and dX through the relation

dx = FdX. (2.2)
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Figure 2.1: Point P and Q changing from reference to current configuration.

It is intuitive that one can find F from the knowledge of the motion χ(X, t). One can

show that F contains all the information needed to calculate both change in length and

direction of line elements. Strain in a material is the amount line elements extend and the

amount angles change between line elements. The right Cauchy stretch tensor C and left

Cauchy stretch tensor B contains all the information needed to find how the length of any

line element changes with respect to reference and current configuration respectively. C

and B can be defined as

C = FTF, (2.3)

B = FFT . (2.4)

The polar decomposition theorem states that any deformation gradient F can be
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uniquely decomposed into

F = RU = VR, (2.5)

where R is orthogonal (i.e. RRT = RTR = I), and U and V are symmetric positive

definite (i.e. U = UT and V = VT ). R represents a rigid body rotation and U and V

represent pure deformation. Using polar decomposition one can show

C = U2, (2.6)

B = V2.

The velocity gradient is denoted by L and is defined as

L = ∇x (v) =
¦
FF−1, (2.7)

where v is the velocity. L is commonly separated into a symmetric tensor D and a skew

symmetric tensorW such that

L = D+W, (2.8)

and where

D =
1

2

¡
L+ LT

¢
, (2.9)

W =
1

2

¡
L− LT

¢
, (2.10)

forD known as the rate of deformation or rate of strain tensor andW is the spin or vorticity

tensor.

2.2.1 Elastic and plastic deformation gradient

The separation of the deformation into elastic and plastic parts is shown in Figure

2.2. This separation is the classical Kroner [91]- Lee [92] decomposition which considers the
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Figure 2.2: Decomposition of the deformation gradient F into a plastic deformation gradient
Fp and an elastic deformation gradient Fe (from Negahban [6]).

deformation gradient F to separate into two parts

F = FeFp, (2.11)

where Fe is the elastic deformation gradient and Fp is the plastic deformation gradient [36,

54, 38, 93, 94]. At any stage of loading it is assumed that the neighbourhood of each material

point can be unloaded (theoretically if not practically) leaving a stress free configuration.

The deformation gradient describing comparison of this intermediate and fictitious stress

free configuration to the reference configuration is taken as Fp. As shown in Figure 2.2, the

deformation gradient comparing the current configuration to the intermediate stress-free

configuration is take to be Fe. Obviously, this definition has the characteristic of assigning

information about the more permanent deformation to Fp, while the portion that can be

recovered by elastic unloading to Fe. Also, this decomposition is not unique since many



23

intermediate configurations, each differing from the other by a rigid body motion, can be

selected. As a result, in the modeling of Fp we needs to provide a description of how to

select among these. In general, one can use polar decomposition to write

Fe = ReUe = VeRe , Fp = RpUp = VpRp. (2.12)

For each of the elastic and plastic deformation gradients one can define the following strains

Ce = F
eTFe , Be = FeF

eT , (2.13)

Cp = F
pTFp , Bp = FpFpT .

For the total deformation we have

C = FTF = FpTCeFp, (2.14)

B = FFT= FeBpFeT .

Velocity gradient, deformation rate and spin tensor can be defined as

Le = ḞeFe−1, De =
1

2

¡
Le+LeT

¢
, We =

1

2

¡
Le − LeT

¢
, (2.15)

Lp = ḞpFp−1, Dp =
1

2

¡
Lp+LpT

¢
, Wp =

1

2

¡
Lp − LpT

¢
.

The total velocity gradient can then be written as

L =
·
FF−1 =

³
ḞeFp +FeḞp

´
(FeFp)−1 =

³
ḞeFp +FeḞp

´
Fp−1Fe−1. (2.16)

2.2.2 Incompressible plastic flow assumption

We have made the standard assumption that the plastic flow is incompressible, so

that

Jp = det(Fp) = 1. (2.17)
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Considering this assumption, the total volume ratio J can be written as

J = det(F) = JeJp = Je = det(Fe). (2.18)

2.3 Balance laws

The prediction of material response requires the combination of several element.

In general, these elements include mathematical models describing the material’s response

characteristics (constitutive equations), specific conditions describing the initial state of the

matter (initial conditions), conditions describing how the specific body is being influenced by

the surrounding (boundary conditions) and laws describing how to combine these elements

(balance laws). The balance laws have a special place in the theory of material response since

they are the same for all materials in contrast to constitutive equations that are different

for each material. The five laws which are collectively call the balance laws include: the

conservation of mass, the balance of linear momentum, the balance of angular momentum,

the balance of work and energy, and the entropy production inequality. Each of the balance

laws is a general statement on how all materials will respond over time, and can be used

to calculate the specific response of a particular material body only when augmented by

constitutive models for the specific material, and specific initial and boundary conditions

describing the initial state of the material and the processing conditions.
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2.3.1 Conservation of mass

The law of conservation of mass states that the mass in a body will not change if

the particles in the body remain the same. The conservation of mass can be written as

ρJ = ρo, (2.19)

where ρ is the current density and ρo is the density in reference configuration when J = 1,

where J = det(F) is the volume ratio.

2.3.2 Balance of linear momentum

The law of balance of linear momentum states that the resultant of all applied

forces on a material body is equal to the rate of change of linear momentum for that

material body. The law of balance of linear momentum can be written as

Z
S(t)

t(n)dS +

Z
ß

bdm =
d

dt

Z
ß
vdm, (2.20)

where the first integral represents the resultant force due to traction on the surface of the

body S(t), the second integral represents the resultant body force, and the third integral

represents the linear momentum of the body. In this expression t(n) is the traction vector

on the surface of the current body, b is the body force per unit mass of the body and m

denotes the mass. In the expression for the balance of linear momentum, using the Cauchy

relation for the traction vector given as t(n) = TTn, where T is the Cauchy stress tensor

and n is the unit normal to the current surface, replacing the integration over mass by

integration over volume through the relation dm = ρdV and assuming that the arguments



26

of the integrals are continuous, one can conclude that

divx(T
T ) + ρb =ρa, (2.21)

where a is the particle acceleration.

2.3.3 Balance of angular momentum

The law of balance of angular momentum states that the resultant moment applied

on a body must equal the rate of change of angular momentum of that material body. It

has been shown that balance of angular momentum states that the Cauchy stress tensor is

symmetric. That is,

T = TT . (2.22)

2.3.4 Balance of work and energy

The law of balance of work and energy states that the rate at which heat flows

into a body
·
Q plus the rate at which work is being done on that body

·
W is equal to the

rate at which the kinetic plus internal energy of the body changes. This can be written as

·
Q+

·
W =

d

dt
(KE + IE), (2.23)

where KE is the kinetic energy and IE is internal energy. The rate of doing work on the

body
·
W is due to the rate of doing work by the traction on the surface and by the body

forces. Since the power of a force to do work is given by the dot product of the force and

the velocity of the particle of the body that the force is applied on, the rate of doing work
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on the body is given by

·
W =

Z
S(t)

t(n) ◦ vdS +
Z
β

b ◦ vdm. (2.24)

The rate of heat flow into the body is given by

·
Q = −

Z
S(t)

q ◦ ndS +
Z
β

rdm, (2.25)

where q is the heat flux vector and r is the radiation. Substituting the expression for
·
Q

and
·
W in equation 2.23, using the definition of traction vector as t(n) = TTn, replacing the

integration over mass by integration over volume and assuming that the arguments of the

integrals are continuous, one obtains the final form of the balance of energy as

−divx(q) + ρr + tr(TL) = ρ
·
e. (2.26)

2.3.5 Entropy and the entropy production inequality

The entropy production inequality, also known as the second law of thermodynam-

ics, states that the entropy in a material body of fixed mass increases at least as rapidly as

entropy is added to the body through the addition of heat to the body, either by radiation

directly into the body or by heat flow through the boundaries of the body. The total entropy

in a body is given by
Z
ß

ηdm, where η is the entropy per unit mass of the body, known as

the specific entropy. The rate at which entropy is added to the body by heat is given by

Z
ß

r

θ
dm−

Z
S(t)

1

θ
q ◦ ndS, (2.27)

where θ denotes the particle temperature at each point in the body. Again replacing the

integration over mass by integration over volume and assuming that the integrals are con-
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tinuous, one can obtain the differential form of the law as

ρ
r

θ
− divx(

1

θ
q) ≤ ρ

·
η. (2.28)

Free-energy is defined by the relation e = ψ + ηθ where ψ is the free-energy per unit

mass, also known as the specific free energy. Free-energy represents the portion of internal

energy which is available for conversion into work or heat (not necessarily instantaneously).

Through the expression relating internal energy, free-energy and entropy one can see that ηθ

represent the portion of the energy which is not immediately accessible. One can introduce

the relation e = ψ + ηθ into the entropy production inequality after differentiation and

substitution for
·
η. Assuming a strictly positive temperature scale and use of the balance of

energy results in the inequality

ρ
·
ψ − tr(TL) + ρη

·
θ +

1

θ
q◦∇x (θ) ≤ 0. (2.29)

This inequality is also known as the Clausius-Duhem inequality.

2.4 Finite deformation mechanical theory

In this section we will study large deformations, including large rigid body mo-

tions. We will do this in the context of the multiplicative decomposition of the deformation

gradient into an elastic part and a plastic part given by

F = FeFp. (2.30)
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Figure 2.3: Two deformation histories that are identical but for the fact that each con-
figuration in one is obtained by an arbitrary rigid body translation and rotation of the
configuration of other is assumed to simply rotate the traction vector by the final amount
of rotation (from Negahban [6]).

2.4.1 Rigid body motions

The influence of rigid body motions on the stress is normally dictated by the

influence of rigid body motions on the traction. Normally, a rigid body motion is assumed

to reorient the traction by the amount of the rigid body rotation. As shown in Figure 2.3,

if the body is rotated by a rigid body rotation given by the orthogonal transformation Q

such that the current deformation gradient changes from F to F∗ = QF, then any normal

n transforms to n∗ = Qn and the traction on the surface with the normal n given by t(n)

changes to t∗(n
∗) = Qt(n). This can be shown to require that the Cauchy stress T changes

to the Cauchy stress T∗ = QTQT . Consider the constitutive model for Cauchy stress as
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T = T+(Fe,Fp). (2.31)

The requirement that T∗ = QTQT requires that

T+(F∗e,F∗p) = QT+(Fe,Fp)QT . (2.32)

Obviously, to impose this restriction we need to know what the effect of rigid body motions

is on Fe and Fp. Since F∗ = QF, we have

F∗ = F∗eF∗p = QFeFp. (2.33)

Let us first consider how we expect plastic deformation gradient to change with rigid body

rotation. It seems rational to take plastic deformation gradient to be unaffected by rigid

body rotations since this is consistent with our idea that plastic deformation does not change

with pure elastic deformation. Therefore, we will assume that

F∗p = Fp. (2.34)

This then requires that

F∗e = QFe, (2.35)

so that the relation above is satisfied. Once imposed on the constitutive model for Cauchy

stress, these assumptions result in

T+(QFe,Fp) = QT+(Fe,Fp)QT . (2.36)

Selection of Q = ReT and reorganization yields

T = T+(Fe,Fp) = ReT+(Ue,Fp)ReT . (2.37)
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Since there is a one-to-one relation between Ueand Ce, one can create models with the

arguments

T = ReT+(Ue,Fp)ReT = ReT++(Ce,Fp)ReT . (2.38)

2.4.2 Material symmetry

Material symmetry requires that the stress be the same for any two histories that

are identical up to a reorganization of the reference configuration in ways that reflect sym-

metries of the material. This idea is schematically shown in Figure 2.4 where an alternate

reference configuration is constructed which is materially identical to the original one since

the change represents the symmetry of the material. Two configurations κo and κo that

are related through a transformation M which represents the symmetry of the material

are shown in Figure 2.5. If on each one of these two configurations we impose the same

deformation history, the response should be the same. As can be seen in the figure 2.5, im-

posing a deformation on κo described by the deformation gradient F should be equivalent

to imposing the deformation gradient F on κo since F represents imposing F on κo. It is

easy to see that one can write

F = FM. (2.39)

If the deformation F is decomposed into an elastic and plastic part given by F = FeFp

and the deformation gradient F is decomposed into an elastic and plastic part given by

F = F
e
F
p
, then we will have

F = F
e
F
p
= FM = FeFpM = FeMM−1FpM. (2.40)
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Figure 2.4: Schematic of the reorganization of the neighbourhood of influence of a point to
get a new configuration that is materially equivalent (from Negahban [6]).

We will concentrate on symmetries that are described by orthogonal transformations and

select

F
e
= FeM, F

p
=M−1FpM. (2.41)

The assumption that the stress remains unchanged under such changes can be written as

T = T and imposes the following condition on the constitutive model for Cauchy stress

written as

T = T+(Fe,Fp) = T+(FeM,MTFpM). (2.42)

2.5 Thermodynamic models with internal parameters

The viscoelasticity model we have used is developed based on a modeling structure

for plasticity. The model is a special case of a general first-gradient thermomechanical
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Figure 2.5: Reorganization of the initial configuration that is associated with the materi-
als symmetry leaves the material indistinguishable from the original material so that the
response to any history would result in identical stress for the original and reorganized
configuration (from Negahban [6]).

material. To construct this model we will decompose the deformation gradient F into three

parts. These parts will be the elastic deformation gradient Fe, the plastic deformation

gradient Fp and the thermal deformation gradient Fθ, and will assume they combine to

give the deformation gradient through the equation

F (t) = Fe (t)Fp (t)Fθ (t) . (2.43)

This decomposition is not unique and becomes meaningful only after providing constitutive

assumptions and expressions for calculating Fp and Fθ from the history. For our plasticity

model we will assume that the state of the material is given by the following set of variables

S(t) =
n
Fe (t) ,Fp (t) ,Fθ (t) , θ(t),G(t)

o
, (2.44)
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where θ is the temperature and G is the temperature gradient. The assumption of the

response depending on the state of the material can be written as

ψ(X, t) = ψ+
n
Fe (t) ,Fp (t) ,Fθ (t) , θ(t),G(t)

o
, (2.45)

η(X, t) = η+
n
Fe (t) ,Fp (t) ,Fθ (t) , θ(t),G(t)

o
,

T(X, t) = T+
n
Fe (t) ,Fp (t) ,Fθ (t) , θ(t),G(t)

o
,

q(X, t) = q+
n
Fe (t) ,Fp (t) ,Fθ (t) , θ(t),G(t)

o
,

where a superscript “+” will denote the function for evaluating the dependent variables

which are free energy ψ, entropy η, Cauchy stress tensor T and heat flux vector q. The

entropy production inequality introduces constraints on the constitutive response functions.

This law in the form of the Clausius- Duhem inequality is written as

ρ
·
ψ − tr(TL) + ρη

·
θ +

1

θ
q◦∇x (θ) ≤ 0, (2.46)

and must be satisfied for all possible processes. The current assumptions on the constitutive

dependence of the specific free energy result in the expression for
·
ψ given as

·
ψ = ∂Fe (ψ) : Ḟ

e + ∂Fp (ψ) : Ḟ
p + ∂Fθ (ψ) : Ḟ

θ + ∂θ (ψ)
·
θ + ∂G (ψ) ◦

·
G. (2.47)

The rate of the deformation gradient can be written as

Ḟ = ḞeFpFθ +FeḞpFθ +FeFpḞθ. (2.48)

This provides an expression for the rate of elastic deformation gradient as

Ḟe =
·
FFθ−1Fp−1 −FeḞpFp−1 −FeFpḞθFθ−1Fp−1. (2.49)
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We can introduce this into the equation of
·
ψ and substitute it into the Clausius Duhem

inequality to get

h
ρ∂Fe (ψ)F

p−TFθ−T −TTF−T
i

:
·
F+ ρ [η + ∂θ (ψ)]

·
θ

+ρ
h
∂Fθ (ψ)−FpTFeT∂Fe (ψ)F

p−TFθ−T
i

: Ḟθ + ρ
£
∂Fp (ψ)−FeT∂Fe (ψ)F

p−T ¤ :Ḟp

+ρ∂G (ψ) ◦
·
G+

1

θ
q◦∂x (θ) ≤ 0.

This must hold for all admissible processes. We will focus on thermal deformation gradients

that can be represented in the rate form by a constitutive expression of the form

Ḟθ(t) = α(t)
¦
θ(t), (2.50)

where α is a second order tensor coefficient of thermal expansion. To manipulate this

restriction and obtain relations between the unknown functions, one needs to establish

the independence of the different terms of this equation. This can only be done after the

establishment of an evolution equation (“flow rule”) for the internal parameter Fp. The

evolution equation for
·
F
p

will be assumed to be given by the following relation

Ḟp = Ḟp+(Fe,Fp, θ). (2.51)

As a result of this, the flow rule cannot be made time independent and therefore a rate

dependence will appear in the final response. In theory one can select
·
F and

·
θ arbitrary and

each may take any arbitrary value. Under the current assumption the only way to satisfy

the entropy production inequality is that the following relations will always be satisfied.

These relations can be written as

TT = ρ∂Fe (ψ)F
eT , (2.52)
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η = −∂θ (ψ)−
h
∂Fθ (ψ)−FpTFeT∂Fe (ψ)F

p−TFθ−T
i
: α, (2.53)

ρ
£
∂Fp (ψ)−FeT∂Fe (ψ)F

p−T ¤ :Ḟp ≤ 0, (2.54)

∂G (ψ) = 0, (2.55)

1

θ
q◦∂x (θ) ≤ 0. (2.56)

Examination of these expressions reveals that the Cauchy stress and the specific entropy

cannot be functions ofG either, leaving only the heat flux vector with a possible dependence

on the temperature gradient. Introducing the back stress defined by

Tb = ρ∂Fp (ψ)F
pT , (2.57)

and substituting along with equation of stress in equation 2.54 gives

−
h³
TbT −FeTTTFe−T

´
Fp−T

i
:Ḟp ≤ 0. (2.58)

This expression suggest the introduction of an overstress ∆T defined by

∆T = Fe−1TFe −Tb. (2.59)

The restriction imposed by the Clausius Duhem inequality on the plastic flow can now be

written as

−∆TT : Lp ≤ 0, (2.60)

or ∆TT : Lp ≥ 0. This is the constraint on the flow rule which needs to be satisfied at all

times for a model to be thermodynamically consistent.
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2.6 Heat generation and flow

The heat generation and flow at a point can be calculated using the expression of

balance of work and energy given by

ρ
·
e = −divx(q) + ρr + tr(TL) . (2.61)

If we define

ρ
·
h = ρr − divx(q), (2.62)

where h is the specific heat added to the point, then the balance of work and energy can

be written as

·
h =

·
e− 1

ρ
tr(TL) . (2.63)

In terms of specific free-energy and entropy, using the relationship e = ψ+ηθ, the equation

2.63 can be written as

·
h =

·
ψ +

·
ηθ + η

·
θ − 1

ρ
tr(TL). (2.64)

To calculate
·
h, let us first consider the terms we have already calculated. For a thermody-

namically consistent model one can show that

ρ
·
ψ + ρη

·
θ − tr(TL) = −∆TT : Lp. (2.65)

Therefore, the expression for the rate of change of the heat added can be written as

·
h =

·
ηθ − 1

ρ
∆TT : Lp. (2.66)

The equation for
·
η can then be written as

·
η =

·
ηL : L+

·
η ·
θ

·
θ+

·
ηLp : L

p, (2.67)
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where

·
ηL =

1

ρ
∂θ
¡
TT
¢
, (2.68)

·
η ·
θ
= ∂θ (η)−

∙
∂Fθ (ψ)−

1

ρ
FpTFeT∂θ

¡
TT
¢
Fp−TFθ−T

¸
: ∂θ (α) ,

·
ηLp = −

½
1

ρ
∂θ
¡
TT
¢¾

.

Plastic fow would normally contribute to both the rising of temperature and the

flowing of heat from the point. If we consider a process that is adiabatic (i.e., we thermally

isolate the point) then
·
hmust be set to zero, and we should see the rising of the temperature.

In the adiabatic case, during plastic flow we have

0 = θ
·
ηL : L+ θ

·
η ·
θ

·
θ + θ

·
ηLp : L

p − 1
ρ
∆TT : Lp. (2.69)

Therefore the rate of temperature rise due to plastic flow under adiabatic conditions is given

by

·
θ =

1

θ
·
η ·
θ

∙
1

ρ
∆TT : Lp − θ

·
ηL : L− θ

·
ηLp : L

p

¸
. (2.70)

If on the other hand the process is happening under isothermal conditions, one can calculate

the heat that needs to be removed from the point. This is given by setting
·
θ = 0 to get

·
h = θ

·
ηL : L+ θ

·
ηLp : L

p − 1
ρ
∆TT : Lp.

The expression of
·
h can also be used to calculate specific heat capacity c to get

c =

·
h
·
θ
=

·
η
·
θ
θ − 1

ρ
·
θ
∆TT : Lp. (2.71)



39

2.7 Summary and conclusion

In this chapter we have discussed the basic notation. After presenting the kine-

matics and balance laws, the large deformation thermodynamically consistent theory is

discussed for viscoelastic solids based on thermo-plasticity like models. Based upon that

theory it is shown that a model for stress and back stress can be calculated by taking the

derivative of free energy with respect to elastic and plastic deformation gradient respectively

are given by the equations

TT = ρ∂Fe (ψ)F
eT , (2.72)

and

Tb = ρ∂Fp (ψ)F
pT . (2.73)

The restriction imposed on the flow rule is also discussed which is given by the relation

−∆TT : Lp ≤ 0, (2.74)

for a model to be thermodynamically consistent. Finally, the heat generation and flow at

the point is discussed and conditions for the adiabatic and isothermal conditions are derived.

Later, the expression for the specific heat capacity is calculated which is given by

c =

·
h
·
θ
=

·
η
·
θ
θ − 1

ρ
·
θ
∆TT : Lp. (2.75)
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Chapter 3

Constitutive modeling and

assumptions

In the previous chapter we have discussed the framework for developing the large

deformation thermodynamically consistent viscoelastic model. In this chapter we will dis-

cuss the one-dimensional mechanical analog which will be used to develop the constitutive

model to capture the response from very low to very high strain rates. The idea of the

mechanical analog will then be used to develop a three-dimensional constitutive model.

3.1 Mechanical analog for the model

The constitutive model that will be developed has similar ideas incorporated as

those given by Boyce et al. [36], Arruda and Boyce [54, 56, 36, 52, 53, 57, 58] and Krempl

and co-workers [60, 61, 62, 63] which require a model for stress, back stress and a flow

rule. These models were extended by Anand et al. [94] and Mulliken et al. [95]. The model



41

F F

sμ

b
sk

e
sk

fμ fk

Figure 3.1: Mechanical analog of proposed constitutive model for rate dependent thermal
plasticity.

developed here is based on the mechanical analog shown in Figure 3.1. This analog contains

a standard linear solid in parallal with a fast relaxation rate element. The standard solid

element consist of an elastic spring kes in series with viscoelastic element consisting of a back

stress spring kbs in parallal to dashpot with viscosity μs. The fast rate element consists of

the spring kf and dashpot μf . The subscript "s" and "f" denote, respectively, the "slow"

and "fast" relaxation rates.

If we construct a constitutive model based on the mechanical analog shown in

the Figure 3.1, the total load F is given by the sum of the loads Fs and Ff , where load

Fs corresponds to the load from standard linear solid and the load Ff corresponds to the

load from fast relaxation element. For a linear solid element the load Fs can be calculated

as Fs = kesε
e
s where k

e
s represents the stiffness in the elastic spring and εes represents the

strain in this spring. The backstress spring is modeled by the equation F b
s = kbsε

p
s where
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kbs represents the stiffness in the back stress spring and εps represents the strain in the back

stress spring. The load Fμs is the load in the viscous element and modeled by the equation

Fμs = μs
·
ε
p

s where μs represents the viscosity and
·
ε
p

s represents the rate of straining of

the element. Similarly, for the fast relaxation element, the load Ff can be calculated as

Ff = kfε
e
f and the load Fμf = μf

·
ε
p

f . The total strain in the system is given by

ε = εes + εps = εef + εpf . (3.1)

The applied load F on the system is given by

F = Fs + Ff , (3.2)

Fs = F b
s + Fμs ,

Ff = Fμf .

Under these conditions, the spring kes carries the load Fs, which is distributed between the

back stress spring kbs and the damper μs . From the constitutive equation we have

Fμs = Fs − F b
s = μs

·
ε
p

s,

giving the rate of extension of the viscous damper and back stress element through the

relation

·
ε
p

s =
1

μs

h
Fs − F b

s

i
=
1

μs
∆Fs, (3.3)

where ∆Fs = Fs−F b
s is the overstress. This is the difference between load carried by elastic

spring kes and back stress spring k
b
s. Considering load Ff , this load is carried by spring kf

and by the damper μf . The extension of the viscous damper μf is given by

·
ε
p

f =
1

μf
Ff . (3.4)
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This material model is defined by the values of kes, k
b
s, μs, kf and μf . Considering the case

where μs >> μf , there will be fast relaxation in damper μf compared to μs. Therefore, for

very low strain rates the relaxations are faster in the damper μf therefore giving Ff ≈ 0 ,

and the whole of the response will come from the standard linear solid and is given by Fs.

But for high strain rates, in which the time is not sufficient enough for the stress Ff to relax

out, the total load will be the summation of Fs and Ff . Therefore, the additional spring kf

and dashpot μf gives the flexibility of capturing the high rate response without contributing

to the low rate response characterized in slow tests by the standard solid model.

3.2 Response of the mechanical analog for different tests

In this dissertation a diverse set of experiments which includes monotonic com-

pression experiments at different strain rates and temperatures, ultrasonic wave speed mea-

surement and uniaxial cyclic tests are used to determine the material parameters in a

constitutive model. In this section let us see how the mechanical analog will behave under

different experimental conditions.

3.2.1 Quasistatic loading

Quasistatic loading corresponds to a very slow loading rate. If the loading rate

is slow enough so that we can assume that the high speed element is relaxed at all times,

then the quasistatic response measures the behavior of the standard linear solid element as

shown in Figure 3.2.
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Figure 3.2: Mechanical analog corresponding to the quasistatic testing.

F Fe
sk

Figure 3.3: Mechanical analog corresponding to the quasi fast loading at equilibrium

3.2.2 Quasi-fast deformation at equilibrium

Quasi-fast tests corresponds to loading rates faster than the quasistatic loading,

but slower than the high rate loading, such that the high speed element is relaxed at all

times. If we do a Quasi-fast deformation at equilibrium then μs will be large such that
·
ε
p

swill

be slow, so that whole of the response will come from the spring kes while the spring-dashpot

part is close to locked as shown in Figure 3.3. This type of deformation at equilibrium gives

a good measure of kes as a function of elastic deformation.
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Figure 3.4: Mechanical analog corresponding to the rapid load ∆F superimposed with force
Fo for an ultrasonic testing.

3.2.3 Ultrasonic testing at constant load

Ultrasonic testing corresponds to a rapid loading rate superposed on a slow loading.

In most cases ultrasonic testing is done in two steps, firstly a constant load Fo is applied

for a relatively large time period followed by a rapid superimposed force ∆F. This is shown

in Figure 3.4.

For the initial force Fo the time of application is large. As a result the force in

friction element Fμf = 0, which also gives Ff = 0. When the rapid load ∆F is applied

for a very short amount of time, the μs and μf elements will initially seem locked and so

elements kes and kf only deforms under load ∆F and the entire system will behave as two

springs in parallal. As a result, ultrasonics measures the response of the system shown in

Figure 3.5.
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sk
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Figure 3.5: Mechanical analog corresponding toan ultrasonic testing

3.3 Constitutive model

The idea of the mechanical analog presented in the previous section can be used

to develop a three-dimensional nonlinear constitutive model. As in the mechanical analog,

the total deformation gradient F is assumed to decompose into two parts for each element

such that

F = Fe
sF

p
s = F

e
fF

p
f , (3.5)

where Fe
s and F

p
s are, respectively, the elastic and plastic deformation gradient corresponding

to the slow strain rate response given by standard linear solid element and Fe
f and F

p
f are,

respectively, the elastic and plastic deformation gradient corresponding to the high strain

rate response of the high relaxation element. Since the two elements are in parallal, the

total Cauchy stress T can be written as

T = Ts +Tf , (3.6)
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where Ts is the stress corresponding to the low strain rate element (standard solid) and Tf

is the stress that comes from the higher strain rate element. The overstress ∆Ts, which is

the properly invariant difference between stress and back stress, can be written as

∆Ts= F
e−1
s TsF

e
s −Tb

s , (3.7)

where Tb
s is the back stress for the standard linear solid. ∆Tf can be defined by

∆Tf= F
e−1
f TfF

e
f , (3.8)

since there is no back stress in the fast relaxation element. The restriction imposed on the

flow rule due to thermodynamically consistency condition can be satisfied by setting

−∆TT
s : L

p
s ≤ 0 , (3.9)

−∆TT
f : L

p
f ≤ 0 , (3.10)

where Lps and L
p
f are, respectively, the plastic velocity gradient corresponding to F

p
s and

Fp
f , and are given by the equations

Lps = Ḟ
p
sF

p−1
s , (3.11)

Lpf = Ḟ
p
fF

p−1
f . (3.12)

In the remaining of the dissertation we will develop models to characterize the

three dimensional model based on this analog by providing specific experimental results

and developing models for Ts,Tb
s, Ḟ

p
s for the standard linear solid element and Tf , Ḟ

p
f for

high relaxation element.
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3.4 Assumed form of the free energy

The constitutive model for the stress and back stress can be tied together by as-

suming these are part of a consistent thermodynamic formulation. As discussed in the

previous chapter, once the free energy is known, the stress and back stress can be calcu-

lated using, respectively, the derivative of free energy with respect to elastic and plastic

deformation gradient. The constitutive model developed in the literature assumes the form

to be separable into additive parts of the free energy and is given by

ψ = ψe(Fe, θ) + ψb(Fp, θ), (3.13)

where ψe is the free energy which depends on the elastic deformation gradient and tem-

perature and ψb is the free energy which depends on the plastic deformation gradient and

temperature. From this form of the free energy the constitutive model for stress and back

stress can be calculated as

TT = ρ∂Fe (ψ
e)FeT , (3.14)

TbT = ρ∂Fp
³
ψb
´
FpT . (3.15)

Such a type of free energy has the advantage that the model for stress and back stress come

from different parts of the free energy that do not depend on one another. But, this form of

free energy, as will be explained in Chapter 5, cannot capture the development of anisotropy

seen with plastic flow. As was shown in Figure 1.4, glassy polymers are sensitive to plastic

strain, developing very large differences in the moduli along the two directions, even at

relatively small plastic strains. Therefore, to capture this development of anisotropy, the

constitutive model developed in this dissertation is based on the form
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ψ = ψs(F
e
s,F

p
s, θ) + ψf (F

e
f , θ) + ψθ(θ), (3.16)

where ψs(F
e
s,F

p
s, θ) and ψf (F

e
f , θ) are ,respectively, the free energy terms contributed from

the slow and fast response and ψθ(θ) is the free energy term contributed from the pure

thermal behavior. The part of the free energy from very low strain rates ψs(F
e
s,F

p
s, θ) is

assumed to be given by three terms

ψs(F
e
s,F

p
s, θ) = ψs1(F

e
s, θ) + ψs2(F

p
s, θ) + ψs3(F

e
s,F

p
s, θ), (3.17)

where ψs1 and ψs2 are terms which only depend upon the elastic or plastic deformation

gradient along with the temperature, and ψs3 is free energy term that depends upon all

three terms of Fe
s, F

p
s and θ. The free energy contribution from very high strain rates are

given by one term ψf (F
e
f , θ). It should be noted that this separation is not unique or well

defined at this time since ψs1 and ψs2 can simply be included as different parts of ψs3. Yet,

this separation of terms is convenient in the following development since it helps separate

the process of fitting the model. From this form of the constitutive model for free energy

the stress and back stress can be calculated as

T = Ts +Tf = ρ∂Fes (ψs1)F
eT
s + ρ∂Fes (ψs3)F

eT
s + ρ∂Fef

¡
ψf

¢
FeT
f , (3.18)

Tb
s = ρ∂Fps (ψs2)F

pT
s + ρ∂Fps (ψs3)F

pT
s . (3.19)

This form of the model for the free energy shows that the expression for stress and back

stress both contain ψs3 since it depends upon both F
e
s and F

p
s. The calculation of this type

of free energy from values of stress and back stress is more difficult than the separable free
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energy given by equation 3.13. This proposed type of free energy results in additional terms

in stress and back stress that help to capture the development of anisotropy with the plastic

flow, and the models constructed are at the same time thermodynamically consistent.

3.5 Summary and conclusion

In this chapter we have presented a one dimensional mechanical analog which is

used to capture the response at both low and high strain rates. This analog is based on two

elements, one having faster relaxation compared to the other, such that its effect dies out for

low strain rates and is active only at high strain rates. In the remaining of the dissertation

we will develop models to characterize the three dimensional model constructed based on

this analog by providing specific experimental results and developing models for ψ, Ts, Tf ,

Tb
s, Ḟ

p
s and Ḟ

p
f .
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Chapter 4

Modeling the nonlinear

thermo-elastic response of glassy

polycarbonate

4.1 Introduction

In this chapter and the next two chapters we will be using ultrasonic experiments

to calculate the response of PC. During ultrasonic testing, as discussed in the previous

chapter, the responses are approximately given by a mechanical analog constructed by the

slow and fast element elastic springs in parallal as shown in Figure 3.5. In such a case we

assume Fe
s ≈ Fe

f = Fe and Fp
s = Fp. Therefore, we will be using Fe and Fp instead of

concentrating on individual components. In Chapter 8, we will provide a way to separate

the response of the standard linear solid from the high relaxation element. This is done
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using the results at equilibrium.

In this chapter, we construct a nonlinear thermo-elastic model for polycarbonate

under load based on a set of experiments conducted at different temperatures in confined

compression by Masubichi et al. [7]. These authors have proposed a measurement method

under confined compression for calculating the longitudinal and shear wave velocities for PC

under high pressure and temperature using ultrasonic wave speed measurements. The model

developed in this chapter is a thermodynamically based large deformation thermo-elastic

model of this data.

Many models that are used to characterize the thermo-elastic behavior of glassy

polymers at large deformations are based on a modeling structure [49, 50, 51, 36, 52, 53,

54, 55, 56, 57, 58, 43, 59, 60, 61] which describe the stress as a function of the elastic

deformation gradient along with bulk and shear moduli that depend upon temperature.

The bulk and shear moduli are usually fitted using the initial slope of uniaxial compression

or tension experiments at different temperatures. In the current work we have used the

confined compression experimental results at different temperatures and pressures to make

a large deformation thermo-elastic model for stress. The resulting model reproduces the

correct longitudinal and shear wave speed moduli measured by the ultrasonic method under

confined compression for glassy PC at different temperatures and higher loads.

4.2 Experimental measurements

The experimental measurements discussed here were performed by Masubichi et

al. [7]. These authors have combined a pressure-volume-temperature (PVT) test system
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with an ultrasonic velocity measurement system to calculate the longitudinal and shear

wave speed of PC under high pressure using a closed and sealed system. The samples were

processed into a cylindrical shape (with 100% ceiling area and 3 mm height) and were set

into a PVT system (since the temperature and pressure need to be controlled during the

test) and they have measured the longitudinal and shear wave velocities for this PC. The

description of the experimental procedure is provided in [7, 96, 97, 98]. The compression

and shear wave moduli were calculated using the standard wave equations

E = ρv2l , (4.1)

G = ρv2s , (4.2)

where E is the longitudinal (compression/tension) wave modulus, G is the shear wave

modulus, ρ is the density, vl is the wave speed for longitudinal waves, and vs is the wave

speed for shear waves. Figure 4.1 shows the specific volume as a function of temperature (T)

with various pressures (P). The density can be calculated as the reciprocal of the specific

volume using the PVT curves shown in Figure 4.1. Figure 4.2 and 4.3 shows the wave

modulus at different temperatures and pressures.

4.3 Modeling consideration

In developing a model to characterize the observed changes in the elastic moduli,

we will consider an expression for the Cauchy stress T that is a function of the elastic

deformation gradient and temperature. We first start by constructing a standard thermo-

dynamic thermo-elastic model. Specifically, we will construct a model based on a specific
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Figure 4.1: Specific volume for PC as a function of temperature at various pressure (Data
extracted from [7]).

Figure 4.2: Longitudinal wave modulus for PC at different pressure and temperature (Data
extracted from [7]).
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Figure 4.3: Shear wave modulus for PC at different pressure and temperature (Data ex-
tracted from [7]).

free energy ψ given by a function of elastic deformation gradient Fe, thermal deformation

gradient Fθ, temperature gradient G and temperature θ. That is, we select a model of the

form

ψ = ψ+(Fe,Fθ,G,θ), (4.3)

where the superscript “+” indicates the function used to model the variable, and we assume

that the deformation gradient F is decomposed through the multiplicative decomposition

F = FeFθ. The thermodynamic restrictions remove the dependence of the free energy on

G. We also assume that the free energy doe not depend on Fθ. As a result, from this point

on we work with a free energy given by a constitutive equation written in the form

ψ = ψ+(Fe, θ). (4.4)
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Without any loss of generality, we can replace this form by one that depends on the elastic

right Cauchy stretch tensor where Ce = FeTFe = Ue2. This form will be written as

ψ = ψ+(Ce, θ). (4.5)

As given by Spencer [99], there are three isotropic scalar invariants for a symmetric tensor.

These are given by

I1 = tr (Ce) , I2 = tr
¡
Ce2

¢
, I3 = tr

¡
Ce3

¢
. (4.6)

Since the response of materials to volumetric deformations is normally vastly different from

the response in shear, we construct a new, yet equivalent, set of invariants given by

I∗1 =
I1

Je
2
3

, I∗2 =
I2
I21
, I∗3 = Je = det(Fe), (4.7)

where the effect of volume changes are removed from I1, I2 and explicitly expressed in the

form of the volume ratio given by I∗3 . We, thus, have an expression for free energy of an

isotropic material expressed by

ψ = ψ+(I∗1 , I
∗
2 , I

∗
3 , θ). (4.8)

As is shown in Negahban [100], as a result of the second law of thermodynamics, the Cauchy

stress T can be expressed as

TT = ρ∂Fe(ψ)F
eT , (4.9)

where ρ is the current density. Since the Cauchy stress is symmetric, we can remove the

transpose from the Cauchy stress.
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4.4 Model used for free energy

The specific model considered for free energy is described here. This model has

the form

ψ =
1

ρo
κθ ln

2 (Je) +
1

ρo
Gθ(I

∗
1 − 3) +

1

ρo
Ecomb(I

∗
1 − 3) ln2 (Je) + ψθ (θ) , (4.10)

where we will assume that κθ , Gθ, Ecomb and ψθ (θ) are functions only of temperature.

Considering this form of free energy and noting that

∂Fe(I
∗
1 − 3) =

2

Je
2
3

µ
Fe − I1

3
Fe−T

¶
, (4.11)

∂Fe
£
ln2 (Je)

¤
= 2 ln (Je)JeFe−T ,

the Cauchy stress can then be calculated from equations 4.9 and 4.11 as

T =
1

J

∙
Gθ

2

Je
2
3

µ
Be − I1

3
I

¶
+ 2κθJ

e ln (Je) I (4.12)

Ecomb

½
2

Je
2
3

µ
Be − I1

3
I

¶
ln2 (Je) + 2 ln (Je) (I∗1 − 3)I

¾¸
.

It should be noted that in this form the stress is automatically zero at zero elastic defor-

mation (i.e. Fe = I ). For the model presented, there are three material parameters κθ ,

Gθ and Ecomb which needs to be calculated.

4.5 Fitting the model to experimental results

To fit the experimental data we need to first evaluate the wave moduli under load

for the model. Once this is done, we can then use the experimental data to find the values of

the three material parameters given in equation 4.12. We take ei to denote an orthonormal

base with e3 along the direction of compression. During confined compression at constant
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temperature, the elastic stretch in the transverse directions will be taken to be unity, but

along the direction of compression will be denoted by λe. The thermal deformation gradient

is assumed to be the same in all the directions which makes the structure of elastic and

thermal deformation gradient given by the forms

Fe = e1 ⊗ e1 + e2 ⊗ e2 + λee3 ⊗ e3, (4.13)

Fθ = λθe1 ⊗ e1 + λθ e2 ⊗ e2 + λθe3 ⊗ e3. (4.14)

The deformation gradient F = FeFθ can then be calculated as

F = λθe1 ⊗ e1 + λθe2 ⊗ e2 + λe3 ⊗ e3, (4.15)

where λ is the total axial stretch and is given by the relationship

λ = λeλθ. (4.16)

As F is given through the relationship F = FeFθ, the volume ratio in this homogeneous

deformation is given by the relationship

J = JeJθ, (4.17)

where Je =det(Fe) and Jθ =det
¡
Fθ
¢
are, respectively, the elastic and thermal volume

ratios. For the confined compression in this experiment we will assume that the stress is

given during the compression by

T = Tt e3 ⊗ e3 + Tt e3 ⊗ e3 + Ta e3 ⊗ e3, (4.18)

where Ta is the axial stress and Tt is the transverse stress. For T = 0, Fe = I, which gives

λe = 1, volume ratio J can then be expressed as

J = Jθ = λθ
3

. (4.19)
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For T 6= 0

λe =
λ

λθ
=

J

Jθ
. (4.20)

In evaluating the response we can take the volume Vo at a given temperature θo and zero

pressure as the reference. For any measured volume V , we will have

J =
V

Vo
. (4.21)

First we focus on the response at zero pressure, which is characterized by Je = 1 so that

J = Jθ. For such a case Jθ can be calculated for all temperatures. Once we have calculated

Jθ, then by changing the pressure, we can calculate λe using the above relationship. As a

result, for all the data points below the glass transition temperature we can calculate λe

and λθ, so that by this process Fe and Fθ can be calculated.

For a general deformation, the components of elastic deformation gradient and

stress in the base ei are taken, respectively, as F e
ij and Tij so that

Fe = F e
ijei ⊗ ej , (4.22)

T = Tijei ⊗ ej . (4.23)

The wave moduli measured in the experiments can be evaluated from these components

through calculating the relations

Ea =
∂T33
∂F e

33

|Fe , Ga =
∂T13
∂F e

13

|Fe . (4.24)

These moduli were evaluated for the model and fit to the two measured moduli through a

least square fit. The results of this fit are shown in Figures 4.4, 4.5 and 4.6. The indicated

curves were fit to the obtained variables using the functions

Gθ = 1098× e−(
θ

357.15) MPa, (4.25)
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Figure 4.4: Change of the bulk modulus κθ with temperature at different pressures and the
fit from the model.

κθ = 7034× e−(
θ

588.23) MPa, (4.26)

Ecomb = 60500 MPa. (4.27)

As can be seen from Figure 4.7 and 4.8, showing the comparison of the experimental

results for the wave moduli and those obtained from this fit, the fitting process accurately

reproduces the observe wave moduli.

4.6 Summary and conclusion

This chapter focuses on modeling the thermal elastic response observed in PC at

different temperatures and pressures. Confined compression experiments were performed by

Masubichi etal. using a combined PVT test system with an ultrasonic velocity measurement

system. They have reported longitudinal and shear wave speeds along with the PVT curve.
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Figure 4.5: Change of the shear modulus Gθ with temperature at various pressures and the
fit by the model.

Figure 4.6: Change of combined modulus at various pressures and the fit from the model.
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Figure 4.7: Comparison of model results with experimentally measured longitudinal wave
moduli (from Masubichi et al. [7]) at different temperature and pressure.

Figure 4.8: Comparison of model results with experimentally measured shear wave moduli
(from Masubichi et al. [7]) at different temperature and pressure.
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To capture the wave speed moduli at different temperatures and pressures, a model

for the free energy based on the elastic deformation gradients was constructed. This model

was then simplified and fit to the experimental data. The resulting fits were in good agree-

ment with the experimentally observed moduli and provided the thermo-elastic response of

PC at various temperatures and pressures. The large deformation thermo-elastic constitu-

tive model for stress developed is given by

T =
1

J

∙
Gθ

2

Je
2
3

µ
Be − I1

3
I

¶
+ 2κθJ

e ln (Je) I (4.28)

Ecomb

½
2

Je
2
3

µ
Be − I1

3
I

¶
ln2 (Je) + 2 ln (Je) (I∗1 − 3)I

¾¸
,

where the material parameters Gθ, κθ and Ecomb selected to fit the results of Masubichi et

al. [7] are given by

Gθ = 1098× e−(
θ

357.15) MPa, (4.29)

κθ = 7034× e−(
θ

588.23) MPa, (4.30)

Ecomb = 60500 MPa, (4.31)

where temperature θ is in Kelvin.
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Chapter 5

Modeling the development of

elastic anisotropy with plastic flow

In the previous chapter we have developed a thermo-elastic model for stress that

reproduces the longitudinal and shear wave moduli measured by the ultrasonic method un-

der confined compression for glassy PC at different temperatures and under load. In doing

this we have ignored any plastic flow assuming constrained compression does not induce

much plastic flow. In this chapter the development of anisotropy as a result of plastic

deformation at room temperature is investigated and modeled for PC. Initially isotropic

polycarbonate was subjected to different extents of plastic flow in uniaxial compression and

the wave speed moduli were studied using ultrasonic wave speed measurements. Longitu-

dinal and shear wave speed measurements were performed both in the axial and transverse

direction. The measured wave moduli clearly indicates the development of anisotropy as

a result of plastic deformation. The measured moduli were then used to model the elastic
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response of polycarbonate using a model for stress that depends both on the elastic and the

plastic parts of the deformation. To simplify the modeling, in this chapter we only consider

response at room temperature. The effect of temperature is then considered in the next

chapter.

5.1 Introduction

As mentioned in Chapter 1, the elastic response of many isotropic solid polymers

such as poly vinyl chloride (PVC), poly (methyl methacrylate) (PMMA), polystyrene (PS)

and bisphenol A polycarbonate (PC) becomes anisotropic as a result of plastic strain [4,

64, 65, 66, 67, 68, 69, 70]. This is clearly seen in Figure 5.1 where at zero plastic strain the

axial and transverse modulus are identical indicating that material is initially isotropic and

then the axial modulus increases while the transverse modulus decreases with the increase

plastic strain. The extent of difference between the two moduli with plastic strain depends

on the polymer and it can be clearly seen from the figure that PC is the most sensitive to

plastic strain (i.e. approximately 60% difference in modulus for approximately 60% of the

plastic strain).

Even though a large difference can develop between the axial and transverse moduli

as a result of plastic flow, as shown in Figure 5.1, this fact is frequently ignored and not

reflected in the models that are developed. Many models that are used to characterize

the behavior of glassy polymers at large deformations describe the stress as a function of

only the elastic deformation. Without a parameter to characterize the anisotropy that

develops as a result of plastic flow, these models preserve the initial symmetry (in most
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Figure 5.1: Axial and transverse modulus reported as a function of extent of plastic defor-
mation in tension for PVC, PMMA, PS, and PC (from Ward [4]). The axial longitudinal
modulus increases while the transverse longitudinal modulus decreases with plastic strain.

cases isotropy) of the elastic response. This is true even after plastic flow. To remedy this,

in the modeling of stress one needs to introduce a structure parameter, such as the extent

of plastic deformation, in addition to the extent of elastic deformation.

In the current work ultrasonic wave speed measurements are used to characterize

the change in the elastic moduli of PC after compression to different extents of plastic

strain. These are then used to make a model for the elastic response of PC, using a model

for stress that depends on both the elastic and plastic deformation gradients. The resulting

model is a finite deformation model that at the limit of zero elastic strain reproduces the

correct anisotropic elastic moduli measured by the ultrasonic method.
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5.2 Experimental measurements

All tests were performed on Lexan 9034. Samples were cut from 1.27 cm thick

sheets and tested without any thermal conditioning.

The compression and shear wave moduli were calculated using the standard wave

equations

E = ρv2l , (5.1)

G = ρv2s , (5.2)

where E is the longitudinal (compression/tension) wave modulus, G is the shear wave

modulus, ρ is the density, vl is the wave speed for longitudinal waves and vs is the wave speed

for shear waves. The density was measured through a standard method based on weighing

the samples in air and water. The compression and shear wave speeds were evaluated by

using a standard pulse-echo method for waves produced using ultrasonic transducers in the

1-5 MHz range [101]. Figure 5.2 shows a schematic of the wave speed measurement method,

which is based on dividing the distance traveled by the travel time. The pulse echo method

is based on using the same ultrasonic transducer to both produce and measure the wave

profile. Once the signal is recorded using an oscilloscope, the time between two consecutive

echoes is measured, noting that the impedance mismatch between the PC and transducer

results in each echo being out of phase from the original signal, and the distance traveled

being twice the thickness of the sample. Figure 5.2 shows a typical digitized signal, where

one can see the initial pulse and its echoes. Note that the flat peaks on the initial pulse

are due to saturation of the oscilloscope signal and not an actual flat peak in the signal.

The initial pulse is not used, only the echoes are used since the interaction between the



68

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-2.00E-06 3.00E-06 8.00E-06 1.30E-05 1.80E-05 2.30E-05 2.80E-05

first echo

second echo

third echo

Transducer

Sample 
material

TimeV
o

lt
a

ge

Transducer

Sample

Backing

Figure 5.2: Description of the Pulse echo method (from Goel et al. [8]).

transducer and the surface creates an initially complex signal.

The experiments were performed on samples from a series of initially compressed

PC cylinders. The PC cylinders were plastically strained to approximately 10%, 20%, 30%

and 40% at a strain rate of 0.01 1/s, and then left unloaded for at least 1 day before

further testing. The recovery at this temperature after 1 day was minimal, and a study

of the samples after 1 day showed no noticable changes either in the permanent strain or

wave measurements. The samples were then ultrasonically tested in the axial direction to

calculate the associated longitudinal and shear wave speeds. From these wave speeds the
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Figure 5.3: Plastically compressed PC sample after cutting for transverse wave speed mea-
surements (from Goel et al. [8]).

axial longitudinal wave modulus Ea and axial shear wave modulus Ga were calculated. The

samples were then cut as shown in Figure 5.3, and were ultrasonically tested to get the

transverse longitudinal wave modulus Et and transverse shear wave modulus Gt . The sum-

mary of the testing procedure is shown in Figure 5.4. As shown in the figure, the axial shear

wave modulus was measured twice, once during axial wave speed measurements and again

during transverse wave speed measurements (indicated as G
0
a) by orienting the transducer

to produce waves that are similar. The two measurements were identical indicating the

sample was truly transversely isotropic.

Figures 5.5 and 5.6 show, respectively, the longitudinal and shear moduli that

were measured. As can be seen in Figure 5.5, the axial and transverse wave moduli are

the same at zero plastic strain, indicating that the sample was initially isotropic. The

difference between the axial and transverse moduli increases with increasing plastic strain,

which indicates that the material develops more pronounced anisotropy with the increase

of plastic strain. For the range of plastic strains considered, the axial wave modulus Ea
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Figure 5.4: Summary of testing: (a) original PC cylinder, (b) compressed PC cylinder,
(c) ultrasonic testing in the axial direction, (d) sample cut and ultrasonically tested in
transverse direction (from Goel et al. [8]).

decreases and the transverse wave modulus Et increases with the increase of the plastic

strain in compression. The difference in these moduli is significant compared to the error

in the measurement, indicated on the figure. Figure 5.6 shows the shear wave moduli

along the different directions. As can be seen in the figure, the shear wave moduli Ga

and G
0
a are the same and different from Gt. G

0
a and Gt are measured with the transducer

oriented to produce shear along the two directions 90o apart, one along the axis and another

perpandicular. The transverse shear wave modulus increases as a function of the plastic

strain in compression, while the axial shear wave modulus seems to remain constant.

5.3 Modeling considerations

In developing a model to characterize the observed changes in the elastic moduli,

we will consider an expression for the Cauchy stress T that is a function of the elastic

and the plastic deformation gradients. This is done since traditionally used expressions
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Figure 5.5: Axial and transverse longitudinal wave modulus at different plastic strains (from
Goel et al. [8]).

Figure 5.6: Axial and transverse shear wave modulus at different plastic strains (from Goel
et al. [8]).
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[49, 50, 51, 36, 52, 53, 54, 55, 56, 57, 58, 43, 59, 60, 61], that only depend on the elastic

deformation, do not allow modeling of a change in material symmetry. Specifically, we will

construct a model based on a specific free energy ψ given by a function of elastic deformation

gradient Fe, the plastic deformation gradient Fp, and temperature θ. That is, we select a

model of the form

ψ = ψ+(Fe,Fp, θ), (5.3)

where the superscript “+” indicates the function used to model the variable, and we assume

that the deformation gradient F is decomposed through the multiplicative decomposition

F = FeFpFθ for Fθ denoting the thermal deformation gradient. Imposing invariance to

rigid body motions allows one to write the model for free energy as

ψ = ψ+(Ue,Fp, θ), (5.4)

whereUe is the right symmetric factor in the polar decomposition of Fe. It also follows that

the plastic deformation gradient in this equation can be taken to indifferent to rigid body

motions [100] if it is assumed that it can be calculated from the history of the deformation

gradient. The initial symmetry of the material is characterized by a group of transfor-

mations containing members that reorganize the reference configuration [102, 103]. Each

member M in the material symmetry group G is a transformation of the reference config-

uration that leaves the reorganized neighborhood of the material point thermodynamically

indistinguishable from the original neighborhood. That is, transformation of F to FM, and

the associated transformations of Fe to FeM and Fp toM−1FpM , leave the value of the

free energy unchanged. For an orthogonal transformation M, this requires that

ψ = ψ+(Ue,Fp, θ) = ψ+(MTUeM,MTFpM,θ). (5.5)



73

For an initially isotropic material, with the reference configuration selected ap-

propriately such that all the symmetry transformations are orthogonal [102], the con-

straint given by equation 5.5 must be satisfied for all orthogonal transformations. Since

the decomposition of Fp into its symmetric and skew symmetric parts is unique, one can

use results given for the scalar isotropic invariants of two symmetric tensors ( Ue and

Fp
sym = 1

2

¡
Fp +FpT

¢
) and one skew symmetric tensor (Fp

skew =
1
2

¡
Fp −FpT

¢
), as given

by Spencer [99] and, more recently in reduced form, by Zheng [104]. Therefore, one can, in

general, construct a model for the specific free energy in terms of the 21 isotropic invariants

of Ue,Fp
sym and Fp

skew which are given by

I1 = tr(Ue), I2 = tr(Ue2), I3 = tr(Ue3),

I4 = tr(Fp
sym), I5 = tr(Fp2

sym), I6 = tr(Fp3
sym),

I7 = tr(UeFp
sym), I8 = tr(UeFp2

sym), I9 = tr(Ue2Fp
sym),

I10 = tr(Ue2Fp2
sym), I11 = tr(Fp2

skew),

I12 = tr(UeFp2
skew), I13 = tr(Ue2Fp2

skew), I14 = tr(Ue2Fp2
skewU

eFp
skew),

I15 = tr(Fp
symF

p2
skew), I16 = tr(Fp2

symF
p2
skew), I17 = tr(Fp2

symF
p2
skewF

p
symF

p
skew),

I18 = tr(UeFp
symF

p
skew), I19 = tr(UeFp2

symF
p
skew), I20 = tr(Ue2Fp

symF
p
skew),

I21 = tr(UeFp2
skewF

p
symF

p
skew).

(5.6)

Even though plausible, the number of invariants are too many to realistically be used

in modeling the response, so we assume that the contribution of the plastic deformation

gradient to the free energy is through the right Cauchy stretch tensor Cp = FpTFp. We

also use Ce = Ue2 in place of Ue, due to a convenience in calculation of the former relative

to the latter, and the fact that there is a one-to-one relation between them. As given by
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Spencer [99], there are ten isotropic scalar invariants of Ce and Cp. These are given by

I1 = tr(Ce), I2 = tr(Ce2), I3 = tr(Ce3),

I4 = tr(Cp), I4 = tr(Cp2), I6 = tr(Cp3),

I7 = tr(CeCp), I8 = tr(Ce2Cp), I9 = tr(CeCp2), I10 = tr(Ce2Cp2).

(5.7)

Since the response of materials to volumetric deformations is normally vastly different from

the response in shear, we construct a new, yet equivalent, set of invariants given by

I∗1 =
I1

Je
2
3
, I∗2 =

I2
I21
, I∗3 = Je = det(Fe),

I∗4 =
I4

Jp
2
3
, I∗5 =

I5
I24
, I∗6 = Jp = det(Fp),

I∗7 = I7 − I1 − I4 + 3, I∗8 = I8 − I2 − I4 + 3, I∗9 = I9 − I1 − I5 + 3,

I∗10 = I10 − I2 − I5 + 3,

(5.8)

where the effect of volume changes are removed from I1, I2, I4 and I5 and explicitly expressed

in the form of the volume ratio in I∗3 and I∗6 . We, thus, have an the expression for the free

energy given by

ψ = ψ+(I∗1 , ..., I
∗
10, θ). (5.9)

As has been given in Negahban [100], as a result of the second law of thermodynamics, the

Cauchy stress T can be expressed as

TT = ρ∂Fe(ψ)F
eT , (5.10)

where ρ is the current density. Since the Cauchy stress is symmetric, we can remove “T”

from the stress. Considering the form of the free energy given in equation 5.9, the Cauchy

stress can then be expressed as

T = ρ
10X
i=1

∂ψ

∂I∗i
∂Fe(I

∗
i )F

eT , (5.11)
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where from Appendix A we note that

∂Fe(I
∗
1 ) =

2

Je
2
3

¡
Fe − I1

3 F
e−T ¢ ,

∂Fe(I
∗
2 ) =

4
I21
Fe
³
Ce − I2

I1
I
´
,

∂Fe(I
∗
3 ) = JeFe−T ,

∂Fe(I
∗
4 ) = ∂Fe(I

∗
5 ) = ∂Fe(I

∗
6 ) = 0,

∂Fe(I
∗
7 ) = 2F

e (Cp − I) ,

∂Fe(I
∗
8 ) = 2F

e (CeCp +CpCe − 2Ce) ,

∂Fe(I
∗
9 ) = 2F

e
¡
Cp2 − I

¢
,

∂Fe(I
∗
10) = 2F

e
¡
CeCp2 +CpCe2 − 2Ce

¢
.

(5.12)

Substituting 5.12 into 5.11 results in the expression for Cauchy stress given by

T = ρ

½
2

Je
2
3

∂ψ

∂I∗1

µ
Be − I1

3
I

¶
+
4

I21

∂ψ

∂I∗2
Be

µ
Be − I2

I1
I

¶
+ Je

∂ψ

∂I∗3
I (5.13)

+2
∂ψ

∂I∗7
Fe(Cp − I)FeT + 2

∂ψ

∂I∗8
Fe(CeCp +CpCe − 2Ce)FeT

+2
∂ψ

∂I∗9
Fe(Cp2 − I)FeT + 2

∂ψ

∂I∗10
Fe(CeCp2 +Cp2Ce − 2Ce)FeT

¾
.

The stress should be zero for zero elastic strain, irrespective of the value of the plastic

deformation gradient. Therefore, we should have T = 0 for Fe = Re, where Re can be any

orthogonal tensor, and this should hold for all Fp. This can be satisfied by setting

∂ψ
∂I∗3

= 0,

∂ψ
∂I∗7

+ 2 ∂ψ
∂I∗8

= 0,

∂ψ
∂I∗9

+ 2 ∂ψ
∂I∗10

= 0,

(5.14)

for Fe = Re. One method to satisfy these conditions is to simply assume the last two

conditions are always true (even when the elastic strain is not zero) and to take functions
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for the free energy that have a derivative with respect to the third invariant that is zero at

Fe = Re. Under such a condition the expression for stress is given by

T = ρ

½
2

Je
2
3

∂ψ

∂I∗1

µ
Be − I1

3
I

¶
+
4

I21

∂ψ

∂I∗2
Be

µ
Be − I2

I1
I

¶
+ Je

∂ψ

∂I∗3
I (5.15)

+
∂ψ

∂I∗7
Fe [2(Cp − I)−(CeCp +CpCe − 2Ce)]FeT

+
∂ψ

∂I∗9
Fe
£
2(Cp2 − I)−(CeCp2 +Cp2Ce − 2Ce)

¤
FeT

¾
.

Even with these simplifications, five material functions ∂ψ
∂I∗1

, ∂ψ
∂I∗2

, ∂ψ
∂I∗3

, ∂ψ
∂I∗7

and ∂ψ
∂I∗9

need to be

evaluated at each loading point. Since we only have four elastic moduli measured per plastic

strain, the fitting of all five would be impossible with the current experimental results. In

addition, when confining the response to uniaxial compression, it can be shown that the

expressions to fit the material functions result in a linear system with a singular coefficient

matrix (see Appendix B), so only three conditions can be satisfied. As a result, we chose to

set the derivative of the free energy with respect to I∗2 and I∗9 equal to zero, and to fit the

three remaining derivatives to the four moduli using a least square fit. For the remainder

of this chapter we will focus on using a model for stress given by

T =

½
2

JJe
2
3

ρo
∂ψ

∂I∗1

µ
Be − I1

3
I

¶
+ ρo

∂ψ

∂I∗3

Je

J
I (5.16)

+ρo
∂ψ

∂I∗7

1

J
Fe [2(Cp − I)−(CeCp +CpCe − 2Ce)]FeT

¾
.

5.4 Fitting the model to the results from compression

To fit the experimental data we need to evaluate the wave moduli from the model

after plastic flow due to uniaxial compression. Once this is done, we can then use the

experimental data to find the values of the three derivatives of the free energy given in
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equation 5.16.

We take ei to denote an orthonormal base with e3 along the direction of com-

pression. During uniaxial compression, the plastic deformation gradient is given by the

form

Fp = λp∗e1 ⊗ e1 + λp∗e2 ⊗ e2 + λpe3 ⊗ e3, (5.17)

where λp is the plastic stretch in the axial compression direction and λp∗ is the plastic

stretch in the transverse direction. These are taken to be the measured stretches of the

sample after plastic deformation. The components of the elastic deformation gradient and

the stress in the base ei are taken, respectively, as F e
ij and Tij so that

Fe = F e
ijei ⊗ ej , (5.18)

T = Tijei ⊗ ej . (5.19)

The wave moduli considered in the experiments can be evaluated from these components

through the relations

Ea =
∂T33
∂F e

33

|Fe=I, Et =
∂T11
∂F e

11

|Fe=I, Ga = G
0
a =

∂T13
∂F e

13

|Fe=I, Gt =
∂T12
∂F e

12

|Fe=I . (5.20)

These moduli were evaluated for the model and fit to the four measured moduli through a

least square fit. The result of this fit is shown in Figures 5.7, 5.8 and 5.9 . The parameters

κ and G in the figures, which, respectively, become associated with the isotropic bulk

modulus and shear modulus, are defined in terms of the derivatives of the free energy given

by G = 2ρo
∂ψ
∂I∗1

and κ(1−Je) = ρo
∂ψ
∂I∗3

. The indicated curves were fit to the obtained variables

using the functions

κ = 4670 + 200× (I∗4 − 3) MPa, (5.21)
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Figure 5.7: Change of the isotropic bulk modulus with plastic deformation.

G = 1072− 159× (I∗4 − 3) MPa, (5.22)

ρo
∂ψ

∂I∗7
= −283− 150× e−

(I∗4−3)
0.125 + 433× e−

(I∗4−3)
0.004 MPa. (5.23)

In constructing these models we have assumed that these are only a function of the plastic

deformation gradient. As can be seen from Figure 5.10 and 5.11, which show the comparison

of the experimental results for the wave moduli and those obtained from this fit, the fit

accurately reproduces the observed wave moduli, with better results for the longitudinal

waves as opposed to the shear waves.

In Figure 5.12 and 5.13 we compare the model predictions with the results provided

by Ward for PC after uniaxial tension [4], also shown in Figure 5.1. As can be seen, the

model trends follow that reported by Ward, but the magnitudes are different. This might be

attributed to the fact that the current results were for wave moduli measured using a 1 MHz
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Figure 5.8: Change of the isotropic shear modulus with plastic flow.

Figure 5.9: Change of ρo
∂ψ
∂I∗7

as a function of plastic flow.
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Figure 5.10: Comparison of model results with experimentally measured wave moduli Ea

and Et (From Goel et al. [8]) for the given plastic strains.

Figure 5.11: Comparison of model results with experimentally measured wave moduli Ga

and Gt (From Goel et al. [8]) for the given plastic strains.



81

Figure 5.12: Comparison between model predictions and results presented by Ward [4] for
longitudinal modulus during after extension.

transducer as opposed to the results reported by Ward that were measured using frequencies

in the range of 100-400 Hz, or they might be due to the difference in the materials used

here and by Ward.

5.5 Summary and conclusion

This chapter focuses on measuring and modeling the anisotropic elastic response

observed in PC after plastic deformation at room temperature. Uniaxial compression was

used to prepare samples with different extents of plastic deformation, up to approximately

40% compression (a logarithmic strain of approximately -0.5). Ultrasonic wave speed mea-

surements were used to obtain the longitudinal and shear wave speed moduli along the

axis of compression and perpendicular to this axis. The transverse wave moduli, both lon-
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Figure 5.13: Comparison between model predictions and results presented by Ward [4] for
shear modulus during after extension.

gitudinal and shear, increased with plastic compression, while in the axial direction the

longitudinal wave modulus decreased and shear wave modulus stayed constant.

The extent of the difference in the wave moduli between axial and transverse

directions for PC is substantial, indicating that ignoring this could result in substantial

error in the predictions of the resulting models. These differences were in the same order

as the imposed plastic strains (i.e., approximately 20% difference in moduli for 40% plastic

compressive strain).

To capture the observed development of anisotropic elastic moduli, a model for

the free energy based on the elastic and plastic deformation gradients was constructed.

Since the PC used was initially isotropic, representations for this model were provided for

an initially isotropic material. This model was then simplified and fit to the experimental

data. The resulting fits were in good agreement with the experimentally observed moduli,
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and predicted similar trends to experimental results reported in tension by Ward [4].
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Chapter 6

The development of elastic

anisotropy at different temperature

6.1 Abstract

The development of anisotropy as a result of plastic deformation below the glass

transition temperature is investigated here for different temperatures. Initially isotropic

polycarbonate is subjected to different extents of plastic strain in compression and the

development of its anisotropic wave moduli are studied using ultrasonic wave speed mea-

surements for plastic deformation at different temperatures. Longitudinal wave speed mea-

surements were performed both in the axial and transverse directions at each temperature.

To model the response, the anisotropic model for stress develeped for the response at room

temperature in the previous chapter was then modified to add temperature dependence.

The temperature dependence was shown to be captured by separate Arrhenius equations
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separately scaling the "initially isotropic" and "anisotropic" parts.

6.2 Experimental measurements

All tests were performed on Lexan 9034. Samples were cut from 1.27 cm thick

sheets and tested without any thermal conditioning. The compression longitudinal wave

moduli were calculated using the standard wave equations

E = ρv2l , (6.1)

where E is the longitudinal (compression/tension) wave modulus, ρ is the density and

vl is the wave speed for longitudinal waves. The density, mass, and dimensions of the

uncompressed sample were recorded at room temperature. The density of the sample at

room temperature was measured through a standard method based on weighing the samples

in air and water. The oven was warmed up to the desired temperature and was allowed

to reach thermal equilibrium. The uncompressed sample was then placed inside the oven

and was allowed to reach thermal equilibrium to get a homogeneous temperature over the

sample. The sample was compressed to the desired strain. The entire compression process

was stereo optically recorded and then analyzed with ARAMIS. After reaching the desired

plastic strain, the longitudinal ultrasonic wave speed, dimensions, and volume were recorded

at the elevated temperature after unloading. The density at room temperature, volume

at room temperature, and volume at the elevated temperature were used to calculate the

density at the elevated temperature. The initial evaluated density is shown in Figure 6.1 for

samples that were not yet plastically deformed. The experimental procedure for calculating

the wave moduli is explained in the previous chapter. The experiments were performed
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Figure 6.1: Density measured before plastic deformation as a function of temperature for
PC using a weighing method at room temperature and the ARAMIS stereo optical system
strain at higher temperatures (from Strabala et al. [9]).

on samples from a series of initially uncompressed PC cylinders. The PC cylinders were

plastically strained to approximately 10%, 20%, 30% and 40% at a strain rate of 0.01 1/s.

All tests were conducted in a convection oven. The samples were then ultrasonically tested

in the axial direction to calculate the associated longitudinal wave speed. From this wave

speed the axial longitudinal wave modulus was calculated. The samples were then cut

as shown in Figure 5.3, and were placed in the oven and heated until they reached the

temperature of the compression. The samples were then ultrasonically tested to get the

transverse longitudinal wave modulus . The summary of the testing procedure is shown in

Figure 6.2.
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Figure 6.2: Summary of testing: (a) original PC cylinder, (b) compressed PC cylinder,
(c) ultrasonic testing in the axial direction, (d) sample cut and ultrasonically tested in
transverse direction (from Strabala et al. [9]).

6.3 Experimental results

The experiments were conducted at different temperatures below the glass tran-

sition temperature of PC. Figures 6.3 and 6.4 shows the longitudinal and transverse wave

moduli as they were measured at these temperatures. The longitudinal wave moduli de-

crease while the transverse wave moduli increase with increase in plastic strain at constant

temperature and the longitudinal and transverse wave moduli decrease with an increase in

the temperature at constant plastic strain.
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Figure 6.3: The axial longitudinal wave modulus (in MPa) at different plastic strains for
different temperatures (from Strabala et al. [9]).

Figure 6.4: The transverse longitudinal wave modulus (in MPa) at different plastic strains
for different temperatures (from Strabala et al. [9]).
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6.4 Fitting the model to results from compression at differ-

ent temperature

To include the effect of the temperature, the model presented in equation 5.16 can

be modified and written as

T = Aiso

∙
G

1

JJe
2
3

µ
Be − I1

3
I

¶
+ κ

Je ln(Je)

J
I

¸
(6.2)

+Aaniso

∙
ρo

∂ψ

∂I∗7

1

J
Fe {2(Cp − I)−(CeCp +CpCe − 2Ce)}

¸
FeT .

In the above model (1−Je) is replaced by ln(Je), since due to the fact that Je is very close to

1 both the functions are the same. Additionally, as the volume of a body is compressed and

tends to 0, the stresses should be very high which is expressed better by the function ln(Je)

which tends to infinity as Je tends to zero, rather than (1− Je) which tends to 1. The two

material parameters Aiso and Aaniso are assumed to be only a function of temperature, and

it is also assumed that the other material parameters do not depend upon temperature. To

fit the experimental data, at different temperature we need to evaluate the wave moduli from

the model, and to impose on the model the conditions of plastic flow during compression.

Once this is done, we can then use the experimental data obtained at different temperatures

to find the two factors Aiso and Aaniso in equation 6.2. We take ei to denote an orthonormal

base with e3 along the direction of compression. During uniaxial compression the plastic

deformation gradient is given by the form

Fp = λp∗e1 ⊗ e1 + λp∗e2 ⊗ e2 + λpe3 ⊗ e3, (6.3)

where λp is the plastic stretch in the axial direction and λp∗ is the plastic stretch in the

transverse direction. The wave moduli considered in the experiments can be evaluated from
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the components of stress through the relations

Ea =
∂T33
∂F e

33

|Fe=I, Et =
∂T11
∂F e

11

|Fe=I . (6.4)

These moduli were evaluated using the model given in equation 6.2. A least square fit of the

model to the experimental data was performed to calculate the temperature functions Aiso

and Aaniso. In performing the least square fit, the experimental data points at zero plastic

strain and 10% plastic strain are ignored because for the longitudinal wave moduli obtained

at different temperatures the moduli are much higher at low plastic strains compared to the

moduli at higher plastic strains. These high values might be due to aging which is removed

with plastic flow. Therefore, in fiting the response only the experimental data points of 20%

plastic strain and greater are considered in calculating Aiso and Aaniso. The plot fitting

the isotropic and anisotropic factors are shown in figures 6.5 and 6.6. The indicated curves

were fit to the obtained variables using the functions

Aiso = 2.28× e−(
θ
357) , (6.5)

Aaniso = 6.04× e−(
θ
166) , (6.6)

where θ is given in degree Kelvin. Figure 6.7 and 6.8 shows the comparison of the experimen-

tal results for the wave moduli and those obtained from this fit at different temperatures

from room temperature to 120oC. As can be seen, the fit reproduces the observe wave

moduli within the error bar.
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Figure 6.5: Change of the isotropic factor Aiso(θ) with temperature.

6.5 Introducing the effect of load

In the previous section we have developed a constitutive model for stress which

has the capability to predict the anisotropic wave moduli at different temperatures, but for

zero load. The purpose of this section is to combine this model with the large deformation

thermo-elastic model developed in Chapter 4. The resulting model will have both the

capability to capture the development of anisotropy with plastic flow measured at zero load

and include the nonlinear part of the effect of loading. The constitutive model to capture

development of elastic anisotropy at zero load resulting from plastic flow is given by equation

6.2 where Aiso and Aaniso are function of temperatures and G, κ and ρo
∂ψ
∂I∗7

are functions of
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Figure 6.6: Change of the anisotropic factor Aaniso(θ) with temperature.

Figure 6.7: Comparison of model results with experimentally measured wave moduli Ea

(from Strabala et al. [9]) for the given plastic strains at different temperatures.
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Figure 6.8: Comparison of model results with experimentally measured wave moduli Et

(from Strabala et al. [9]) for the given plastic strains at different temperatures.

plastic strain. The material parameters Aiso, Aaniso, G, κ and ρo
∂ψ
∂I∗7

are given by

Aiso = 2.28× e−(
θ
357) , (6.7)

Aaniso = 6.04× e−(
θ
166) , (6.8)

κ = 4670 + 200× (I∗4 − 3) MPa, (6.9)

G = 1072− 159× (I∗4 − 3) MPa, (6.10)

ρo
∂ψ

∂I∗7
= −283− 150× e−

(I∗4−3)
0.125 + 433× e−

(I∗4−3)
0.004 MPa. (6.11)

for θ given in degree Kelvin, and I∗4 =
tr(Cp)

Jp
2
3
. The nonlinear thermo-elastic constitutive

model for stress developed in Chapter 4 is given by

T = ρ

∙
Gθ

2

Je
2
3

µ
Be − I1

3
I

¶
+ 2κθJ

e ln (Je) I (6.12)

Ecomb

½
2

Je
2
3

µ
Be − I1

3
I

¶
ln2 (Je) + 2 ln (Je) (I∗1 − 3)I

¾¸
,
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where Gθ, κθ and Ecomb are functions of temperature. These material parameters are given

by

Gθ = 1098× e−(
θ

357.15) MPa, (6.13)

κθ = 7034× e−(
θ

588.23) MPa, (6.14)

Ecomb = 60500 MPa. (6.15)

We would like to combine both of these models such that the final model reproduces both

the effects of load and the development of anisotropy. A full combination of these two

models is not possible since the data does not match at zero load. This might be due to

several factors, one being the fact that these results are for different materials. We can still

partially combine the two models. Since we would like to develop a model for the Lexan

9034, we do this combination by using the model developed here, and only adding terms

from the thermo-elastic model, developed based on the experimental results of Masubichi et

al. [7], that vanish at zero load. In this way we may add the nonlinear elastic contribution

while retaining the ultrasonic response we have measured and fit for Lexan 9034. The

expression for the stress rate for thermoelastic model 6.12 is given by

·
T = ρ

⎡⎣ 2

Je
2
3

Gθ

⎛⎝ ·

Be − I1
3
I

⎞⎠+ 2κθ ·
Je ln (Je)I (6.16)

+Ecomb

⎧⎨⎩ 2

Je
2
3

⎛⎝ ·

Be − I1
3
I

⎞⎠ ln2 (Je) + 2

Je
2
3

µ
Be − I1

3
I

¶ ·
ln2 (Je)

⎫⎬⎭
+Ecomb

(
2

·
ln (Je)(I∗1 − 3) + 2 ln (Je)

·
(I∗1 − 3)

)#
.

Calculating
·
T at Fe = I gives,

·
T |Fe=I= ρ

⎡⎣ 2

Je
2
3

Gθ

⎛⎝ ·

Be − I1
3
I

⎞⎠+ 2κθ ·
Je ln (Je)I

⎤⎦ . (6.17)
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Therefore, the terms with coefficient Ecomb will not have any effect in calculating the wave

modulus at Fe = I. Therefore, we construct the final model for stress by adding this term

to 6.2 to get

T = Aiso

∙
G

1

JJe
2
3

µ
Be − I1

3
I

¶
+ κ

ln(Je)

J
I

¸
(6.18)

+ Aaniso

∙
ρo

∂ψ

∂I∗7

1

J
Fe [2(Cp − I)−(CeCp +CpCe − 2Ce)]

¸
FeT

+ Ecomb

½
2

Je
2
3

µ
Be − I1

3
I

¶
ln2 (Je) + 2 ln (Je) (I∗1 − 3)I

¾¸
.

The modification of 6.2 will not effect the modeling done to capture the development of

anisotropy with plastic flow, but it will introduce elements of the confined compression

results discussed in Chapter 4. A comparison was made between the experimental results

for the wave moduli and those obtained from the modified model given in 6.18. This is

shown in figures 6.9 and 6.10. As can be seen in the figures the model trends follow that

reported by Masubichi et al. [7] experiments, but the magnitudes obtained from the model

are higher than the experimental results. This might be attributed to the fact that the PC

used by Masubichi et al. [7] was different from the Lexan 9034 used here.

6.6 Summary and conclusion

This chapter focuses on measuring and modeling the anisotropic elastic response

observed in PC after plastic deformation at different temperatures. Uniaxial compression

was used to prepare samples with different extents of plastic deformation at different tem-

peratures, up to approximately 40% compression. Ultrasonic wave speed measurements

were used to obtain the longitudinal wave speed moduli along the axis of compression and

perpendicular to this axis. The transverse wave modulus increases while the axial wave
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Figure 6.9: Comparison of model results with experimentally measured longitudinal wave
moduli by Masubichi etal [7] in confined compression at different temperature and pressure.

Figure 6.10: Comparison of model results with experimentally measured shear wave moduli
Masubichi etal [7] in confined compression at different temperature and pressure.
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modulus decreases with plastic compression, but with the increase in temperature both

longitudinal and transverse wave moduli decreases. These experiments were the base for

the model developed.

To capture the observed development of anisotropic elastic moduli, a model for

the stress based on the elastic and plastic deformation gradients was constructed in the

previous chapter. The model was extended here to fit the wave moduli in longitudinal and

transverse direction at different temperatures using Arrhenius terms. In this process it was

assumed that the isotropic bulk and shear parts are scaled similarly with temperature and

behave differently from the anisotropic part. The experimental results and the constitutive

model were in good agreement using these two Arrhenius functions as factors on the original

model.

The two large deformation constitutive models, one constructed to fit the develop-

ment of elastic anisotropy with plastic flow at different temperatures at zero load, and the

another developed to reproduce the data of Masubichi et al. [7] under load, were combined

together such that the final model reproduces the wave moduli we have measured for Lexan

9034 at zero load, but also includes some of the effect resulting from loading as reported by

Masubichi etal [7].
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Chapter 7

Experimentally evaluating

equilibrium stress in uniaxial tests

7.1 Introduction

7.1.1 Background

One group of models proposed for characterizing the mechanical response of glassy

polymers is based on a structure that resembles finite plasticity. In most cases, a constitutive

equation for stress is proposed, which depends on the elastic deformation gradient, supple-

mented by a flow rule for the plastic deformation, which depends on the “over stress". The

over stress is a properly invariant difference between the stress and the equilibrium stress,

which is related to the back stress. The equilibrium stress represents conditions under which

relaxation events stop and the material can carry an applied load indefinitely without a need

to change the stress or strain. Questions that arise in using these models are whether such
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an equilibrium stresses exist, how can it be evaluated, and what experiments can be used to

characterize the flow rule. One challenge in accurately evaluating the locus of equilibrium

conditions is the fact that the relaxation processes substantially slow down around equilib-

rium, and, therefore, a method that is more rapid and does not directly require holding at

the equilibrium for long time intervals is desirable.

7.1.2 Method of approach

We start from a model for stress that depends on the elastic and plastic deformation

gradients and study its derivative with respect to time. In particular, we look at the

derivative at equilibrium, where the internal parameter becomes constant. In this case the

internal parameter is the plastic deformation gradient. We study the characteristics of the

equilibrium and show that the tangent modulus and local Poisson’s ratio at equilibrium

are both rate independent for this modeling assumption. This fact is used to propose a

method based on cyclic tests in uniaxial tension or compression to measure the equilibrium

stress, and the associated point’s tangent modulus and local Poisson’s ratio. This method

is based on evaluating the slope of stress-strain response under conditions of similar elastic

and plastic strain, but different strain rates.

7.1.3 Results presented

This method is used to characterize the equilibrium stress at room temperature

for glassy polycarbonate. The results are studied in regard to the possible error for such

a measurement. The added advantage of the proposed method is that we can get the

associated values of tangent modulus and local Poisson’s ratio at the equilibrium stress in
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uniaxial tests, a quantity never measured to our best reading of the available results.

7.1.4 Conclusions

The method proposed looks promising in evaluating the equilibrium stress of glassy

polymers. The method is faster than most other proposed methods for calculating the

equilibrium stress, and provides additional measurements of parameters at equilibrium that

are normally not obtained. This method is used to characterize the equilibrium stress

and the associated point’s tangent modulus and local Poisson’s ratio for PC at different

temperatures below the glass transition temperature.

7.2 Literature review

Many models that are used to predict the response of metals and polymers at

large deformations are based on internal parameters and take the form of plasticity-like

models that use the back stress in evaluating the response of the material. Examples of

such models are the models developed by Argon, Parks, Boyce, Arruda, and co-workers

[49, 50, 51, 36, 52, 53, 54, 55, 56, 57, 58, 43, 59], those developed by Krempl and co-

workers [60, 61, 62, 63], by Negahban [5], and others. These models all incorporate the

idea of an equilibrium stress, that implies, thermodynamically, that there exist loading

conditions under which the relaxation processes stop so the load may be held at constant

strain indefinitely, and which, when away from equilibrium, the material response would

normally tend toward this equilibrium. This is clearly observed above the glass-transition

temperature for polymers, as is shown for PMMA in Figure 7.1, reproduced from Negahban
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Figure 7.1: Stress buildup and stress relaxation seen in PMMA above its glass-transition
temperature (From Negahban [5]).

[5]. This figure shows that at constant strain the stress either relaxes or increases toward

the equilibrium response, depending on which side of the equilibrium response the process

starts from, and then indefinitely stays there. Such simple experiments cannot be done

for polymers below the glass-transition temperature that have very large relaxation times.

As a result, for such cases identifying true equilibrium from standard experiments becomes

difficult and the error is large.

In this chapter we have proposed a new method of calculating the equilibrium stress

using cyclic loading in tension or compression. The method is based upon the theoretical

characteristics of modeling stress and that of equilibrium, and is applied to the analysis of

the response of polycarbonate. We also use the response of polycarbonate to evaluate the
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estimated error in the response using the uncertainty in each of the measurements. The

method was first conceived in 1995 by Negahban [5] applied to the shear response of PMMA

and later applied by Negahban and coworkers [105, 106] for the shear response of polycar-

bonate. This is the first time it has been considered in a full three-dimensional context

and for compression, and with the analysis of the associated error in the measurement. The

method, in addition to equilibrium stress, provides values for the tangent modulus and local

Poisson’s ratio at equilibrium.

Several authors have looked at measuring the equilibrium stress. A review of the

two main methods used for this can be found in an article by Neu and coworkers [71] in

which they use a model proposed by McDowel to characterize the back stress in 60Sn-40Pb

soldering material. As described in this article, there are essentially two methods proposed

for measuring the equilibrium stress. One is that proposed by Ahlquist and Nix [72], where

rapid unloading of the sample to different levels of stress is used to identify points of zero

strain rate (the signature of equilibrium). The second method, proposed by Onat [73] and

Sehitoglu [107], is based on finding the center of the yield points. Neu and coworkers use

both the method of Ahlquist and Nix [72] and a modification of the method of Onat [73]

and Sehitoglu [107]. There are others that have used these methods to calculate equilibrium

stress. These are described and documented in the paper of Neu and coworkers [71].

The advantage of the method proposed here is that it is a faster method to obtain

the values for the equilibrium stress, it provides the tangent modulus and the local Pois-

son’s ratio at equilibrium, and also gives a measure of the error in each calculation. For

clarification, the local Poisson’s ratio refers to negative the transverse strain rate divided
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by the axial strain rate, as opposed to the ratio of the total strains. The method proposed

here, from our review of the literature, is the only method which also measures the tangent

modulus and local Poisson’s ratio at equilibrium.

7.3 Theoretical foundation

The proposed method for calculating the equilibrium stress, and associated tangent

modulus and local Poisson’s ratio, is based on the following theoretical derivation. The

procedure will work for small and large deformations of initially isotropic materials, and for

initially transversely isotropic materials with axis of transverse isotropy along the axis of

loading. The material need not remain isotropic or transversely isotropic, as long as it is

initially one of the two. The material needs to be characterizable by a stress that is a function

of elastic and plastic deformation gradients, and the total deformation gradient should be

given by a standard multiplicative relation in terms of the elastic and plastic deformation

gradients. Infinitesimal formulations can take advantage of the additive approximation of

the decomposition, but the final results are the same. Thermal effects can also be considered

by adding the thermal deformation gradient, but in this chapter we have not considered

this, assuming the deformations are isothermal. This addition simply provides additional

terms that can be introduced into the method by an additional set of terms.

A typical model for Cauchy stress T that can capture the developing anisotropy

seen in the elastic response, which is seen for many polymers [67, 68, 69, 70, 108], can be

written (see [108]) in the form

T = T+(Fe,Fp), (7.1)
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where T+ denotes the model used to evaluate the Cauchy stress from Fe and Fp.

For the case of uniaxial tension or compression along the third axis, the components

of the stress will be assumed to be homogeneous and given by

T = T33e3 ⊗ e3, (7.2)

where T33 is the axial stress, ei denote base vectors for a fixed orthonormal base along the

three directions, and “⊗” is the tensor product. The deformation gradient in this case is

F =λte1 ⊗ e1 + λte2 ⊗ e2 + λae3 ⊗ e3, (7.3)

where λa is the axial stretch and λt is the transverse stretch. It can be shown [102, 100]

that in this case both the elastic and plastic deformation gradients are diagonal and have

the same structure as the deformation gradient. That is,

Fe=λete1 ⊗ e1 + λete2 ⊗ e2 + λeae3 ⊗ e3, (7.4)

Fp=λpte1 ⊗ e1 + λpte2 ⊗ e2 + λpae3 ⊗ e3, (7.5)

with the relations obtained from the multiplicative decomposition written as

λa = λeaλ
p
a, λt = λetλ

p
t . (7.6)

The stress rate can be evaluated from the constitutive equation for stress through the

expression

T = ∂Fe
¡
T+
¢
: Ḟe + ∂Fp

¡
T+
¢
: Ḟp = E :Ḟe +Eb:Ḟp, (7.7)

where E is the fourth order tensor modulus associated with the elastic deformation gradient

andEb is the fourth order tensor modulus associated with the plastic deformation gradient at
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the current state. Here we use the standard tensor notation ∂A (·) for the partial derivative

and the notation “:” for double summation so that the component form of this equation is

given by

·
T ij =

∂T+ij
F e
kl

Ḟ e
kl +

∂T+ij
F p
kl

Ḟ p
kl = EijklḞ

e
kl +Eb

ijklḞ
p
kl. (7.8)

In the case of uniaxial tension or compression this will result in two distinct equations that

are given as

Ṫ11 =

µ
∂T+11
F e
11

+
∂T+11
F e
22

¶
λ̇
e
t +

∂T+11
F e
33

λ̇
e
a +

µ
∂T+11
F p
11

+
∂T+11
F p
22

¶
λ̇
p
t (7.9)

+
∂T+11
F e
33

λ̇
p
a,

Ṫ33 =

µ
∂T+33
F e
11

+
∂T+33
F e
22

¶
λ̇
e
t +

∂T+33
F e
33

λ̇
e
a +

µ
∂T+33
F p
11

+
∂T+33
F p
22

¶
λ̇
p
t (7.10)

+
∂T+33
F e
33

λ̇
p
a.

In the experiments the total stretch is measured as opposed to the elastic stretch so that

we use λa = λeaλ
p
a and λt = λetλ

p
t to replace the elastic stretch rate using the equations

λ̇
e
a =

1

λpa
λ̇a −

λa

λp2a
λ̇
p
a, (7.11)

λ̇
e
t =

1

λpt
λ̇t −

λt

λp2t
λ̇
p
t .

This results in the two equations
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µ
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11

+
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!
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µ
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¶
(7.12)

+
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33
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(7.13)

+

µ
∂T+33
F p
11

+
∂T+33
F p
22

¶
λ̇
p
t +

∂T+33
F p
33

λ̇
p
a.
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We will organize this into the matrix equation⎡⎢⎢⎣ A11 A12

A21 A22

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

λ̇
p
t

λ̇
p
a

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣ B11 B12

B21 B22

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

λ̇t

λ̇a

⎫⎪⎪⎬⎪⎪⎭−
⎧⎪⎪⎨⎪⎪⎩

Ṫ11

Ṫ33

⎫⎪⎪⎬⎪⎪⎭ , (7.14)

where

A =

⎡⎢⎢⎣ A11 A12

A21 A22

⎤⎥⎥⎦ =
⎡⎢⎢⎣ B11

λt
λpt
−
³
∂T+11
Fp
11
+

∂T+11
Fp
22

´
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λa
λpa
− ∂T+11

Fp
33

B21
λt
λpt
−
³
∂T+33
Fp
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∂T+33
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´
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λa
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Fp
33

⎤⎥⎥⎦ , (7.15)

B =
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F e
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´
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F e
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1
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⎤⎥⎥⎦ . (7.16)

In a typical uniaxial test we measure (λa, λt, T33), assuming T11 = T22 = 0. As a

result we also can calculate
³
λ̇a, λ̇t, Ṫ33

´
for isothermal conditions. An equilibrium condition

is one for which the material can carry a given load without changing its shape. That is,

equilibrium is a point for which the internal variable Fp is constant so that Ḟp = 0. If

we set Ḟp = 0 in equation 7.14, we obtain an equation that is true when passing through

equilibrium, and is given by⎡⎢⎢⎣ B11 B12

B21 B22

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

λ̇t

λ̇a

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
0

Ṫ33

⎫⎪⎪⎬⎪⎪⎭ . (7.17)

We can solve this to find

νeq = −
λ̇t

λ̇a
=

B12
B11

, (7.18)

Et
eq =

Ṫ33

λ̇a
= B22 − νB21, (7.19)

where νeq is the local Poisson’s ratio at equilibrium and Et
eq is the tangent modulus at

equilibrium. The right hand side of both 7.18 and 7.19 are independent of the rate of stress
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or stretch, so one can conclude that the condition of equilibrium is characterized by points

that have νeq and Et
eq that are independent of how fast we pass through the equilibrium.

We use this fact to propose a method for calculating the equilibrium stress, the tangent

modulus and local Poisson’s ratio at equilibrium in uniaxial tests.

7.4 Proposed experimental method

Figure 7.2 shows the basic idea of the proposed method. At the bottom of the

figure is shown a schematic of a loading process that includes a cycle of unloading and

loading. If we assume the plastic strain does not change substantially in this cycle, when

we reach points of equal stress, we are reaching also points of approximately equal elastic

strain, so that the state is approximately the same. In such a cycle, if we look at points

on the unloading and loading that have the same slope (tangent modulus) we can consider

them to represent a point of equilibrium since the tangent modulus has not changed even

though the strain rate has changed sign. At the top of the figure is shown a typical plot of

an unloading and subsequent loading cycle for polycarbonate at room temperature showing

the tangent modulus as a function of the load. As can be seen, the point of intersection

between the tangent modulus during unloading and loading provides the equilibrium stress.

The process of evaluating the equilibrium stress in this case is simple. We just

need to design a cycle in which the difference between the unloading and loading is small

enough so that we can assume there is little change in the plastic strain, but is different

enough so that we can accurately evaluate the equilibrium stress from the point of equal

tangent modulus. As will be shown, this can be done with reasonable accuracy for glassy
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Figure 7.2: Schematic of proposed experiment to calculate the equilibrium stress and the as-
sociated tangent modulus (bottom), and a typical plot of the tangent modulus as a function
of the axial stress in the cycle of unloading and loading for polycarbonate (top).

polymers, and may be possible for metals and other materials under certain conditions, and

when using appropriate experimental setups.

Once we calculate the equilibrium stress, we can then obtain estimates of the axial

and transverse strains at equilibrium, and also obtain estimates of the associated tangent

modulus and local Poisson’s ratio. Ideally, the difference between the unloading and loading

should be small so that the associated elastic and plastic strains are the same for a given

load. In reality, as shown in the schematic in Figure 7.2, the plastic stretch at the unloading

and loading are not the same. This could be inferred from the fact that the equilibrium

point obtained on unloading (point C in the figure) is not the same point as that obtained

during loading (point A in the figure). A good estimate of the difference between the state

of the materials (given by Fe and Fp) during the unloading and loading parts of the cycle
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is obtained from the difference in the strain at the two points (points A and C) since this

is a good estimate of the difference in plastic strain at a given stress. We will show how we

use this to estimate one part of the error in the calculation.

In the proposed procedure, once we evaluate the equilibrium stress, we designate

it to the average point (point B shown in the figure) between the unloading and loading

cycle. We do the same for the tangent modulus and local Poisson’s ratio. We also designate

to each point an error based on the uncertainty in each of the measurements and in the

state of the material. A description of this is provided in the following section.

7.5 Materials and experimental setup

All tests were performed on Lexan 9034 sheets. Samples were cut from 12.5 mm

thick sheets and tested without thermal conditioning.

All the experiments conducted were uniaxial compression experiments. Cylindrical

samples with a height of 12.5 mm and a diameter of 19 mm were placed in a preheated

environmental chamber and were left to stabilize for 15 minutes before compression. The

samples were compressed on a MTS load frame with a maximum load of 100kN and axial and

transverse strains were measured using ARAMIS, a stereo-optic surface strain measurement

system. Typical results for the response of polycarbonate at room temperature are shown in

Figure 7.3. The experiments were conducted at a loading unloading rate of approximately

0.001 1/s strain rate so as to eliminate thermal effects. In the figure is also shown the

measured equilibrium stress and the calculated standard deviation on each data point.

Figure 7.4 shows the transverse response observed in the entire test, the transverse strain at
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Figure 7.3: Typical cyclic loading in compression of polycarbonate at room temperature
and the calculated back stress (from Goel et al. [10])

equilibrium, and the transverse strain for an incompressible material. Figures 7.5 and 7.6

show the measured tangent modulus and local Poisson’s ratio, and the associated calculated

standard deviations, all evaluated at the measured equilibrium. The stress response was a

result of the strain history shown in Figure 7.7.

7.6 Error analysis

There are at least two distinct sources of error. First, in the experiment we measure

axial load, axial strain, and transverse strain. Each of these three measurements include

an uncertainty that contributes to the final measurements of equilibrium stress, tangent

modulus and local Poisson’s ratio. In addition, the method is based on assuming that there

is little difference in the state of the material between the unloading and the loading. We
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Figure 7.4: Typical transverse strain response obtained from the experiment (from Goel et
al. [10]), the response that would result for an incompressible material, and the transverse
strain measured at equilibrium.

Figure 7.5: Tangent modulus of polycarbonate at equilibrium in compression at room
temperature.
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Figure 7.6: Local Poisson’s ratio of polycarbonate at equilibrium in compression at room
temperature.

Figure 7.7: Strain history measured for polycarbonate in compression at room temperature
(from Goel et al. [10]).
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Figure 7.8: Comparison between calculated error for equilibrium stress and measurements
calculated from multiple tests.

Figure 7.9: Comparison between calculated error for tangent modulus and measurements
calculated from multiple tests.
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estimate these two types of error differently.

We analyze each cycle of unloading and loading separately. In addition, we consider

the unloading separately from the reloading, and we consider each part one segment of data.

We used an ARAMIS dual stereo optical surface strain measurement system to measure the

axial and transverse strains, and obtain the load from a load cell in series with the sample.

We used the uncertainty in each measurement to create 20 random values for each data

point using the uncertainty as the standard deviation in a normal distribution around the

measured value. The uncertainty in strain was estimated to be 0.0005 and of stress to be 0.1

MPa. We then randomly selected from each set to generate data that was used to calculate

the equilibrium stress, the tangent modulus and the local Poisson’s ratio. We repeated this

about 40,000 times until the average value and standard deviation became constant. A

MATLAB program was written to generate the random sets, select from them, evaluate the

values, and calculate the average and standard deviation.

To the standard deviation calculated from the uncertainty in each data we added

an error associated with the fact that the unloading and loading do not truly represent

the same state of the material. This error was estimated by evaluating the width of the

strain (distance between point A and C in Figure 7.2) in each cycle divided by the average

value of the strain (value at B in Figure 7.2). This is consistent with the fact that a small

difference at large strains represents little error, but that the same difference at small strains

could represent large relative differences in the plastic strain. As a result, the uncertainty

of the method grows to infinity as the point of measurement is closer to the strain of the

undeformed sample. As a result, the method in this particular setup provides much better
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results at large strains.

7.7 Results for polycarbonate at different temperatures

Cyclic compression experiments were performed on PC cylinders at various strain

rates and at different temperatures from room temperature to 120oC. To assess the quality

of the calculated error, we compare the calculated error and the values obtained in tests

conducted on several different samples. Figure 7.8 shows the equilibrium stress and the

calculated standard deviation as done using the procedure described above, and the equi-

librium stress calculated from a number of different samples. As can be seen, for some

of the tests we evaluated the equilibrium stress for small strains. As discussed above, the

error for these initial calculations are very large which indicates that the method is not

suitable for small strains. Figure 7.9 shows the measured tangent moduli and calculated

standard deviation as above, in addition to the tangent modulus at equilibrium calculated

using a number of other samples. As can be seen from both figures, the calculated standard

deviation is supported by the evaluation from multiple tests. Both Figure 7.8 and Figure

7.9 show one data set that was evaluated with a unloading/loading rate of approximately

0.01 1/s which is ten times faster than the other results at rates of 0.001 1/s. As can be

seen, the change in the rate does not alter the final results.

In addition to the room temperature, equilibrium stress was calculated at 60oC,

80oC, 100oC and 120oC and is shown in Figure 7.10. The figure shows the associated

uncertainty with each data point. Statistical analysis of the uncertainty shows a trend

with temperature but not with strain rate. At any particular strain, as the temperature
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Figure 7.10: Equilibrium stress and error for different temperatures (from [11]).

Figure 7.11: Local poisson’s ratio at equilibrium for different temperatures (from [11]).
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Figure 7.12: Tangent modulus at equilibrium for different temperatures (from [11]).

increases, the equilibrium stress decreases.

The local poisson’s ratio at equilibrium is plotted with strain at different temper-

atures and is shown in figure 7.11. As the compressive strain increases, the local poisson’s

ratio increases. There is no particular trend between the local poisson’s ratio and temper-

ature.

The tangent modulus at equilibrium is plotted with strain at different temperatures

and is shown in figure 7.12. As the compressive strain increases, the tangent’s modulus

increases.
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7.8 Summary

Based on the theoretical form of the stress, we have proposed a method to calcu-

late the equilibrium stress and the associated values of tangent modulus and local Poisson’s

ratio at the equilibrium stress in uniaxial tests at different temperatures. The method was

evaluated for measuring the response of polycarbonate at different temperatures below the

glass transition temperature and it was shown that both the calculated standard deviation

and the variation observed in tests with multiple samples correlated well. This suggests that

the calculated error can be used to evaluate the applicability of the method for evaluating

these parameters for other materials. This is the first time we believe that the equilibrium

stress has been measured in this test and the error in the measurement quantified. In addi-

tion, we believe this is the first time, to our knowledge, that both the tangent modulus and

local Poisson’s ratio at equilibrium have been measured for any material. The equilibrium

stress, local poisson’s ratio and tangent modulus at equilibrium were found to be indepen-

dent of strain rate. At any particular strain, as the temperature increases, the equilibrium

stress decreases but there is a weak trend of tangent modulus and local Poisson’s ratio with

temperature.

Finally, cyclic tests as we have proposed are not new. What is new is in how we use

this test to evaluate the equilibrium stress, how we evaluate the error for this measurement,

and the evaluation of the value and error of the associated tangent modulus and local

poisson’s ratio.
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Chapter 8

Thermodynamically consistent

model for back stress

In the last chapter we have discussed a new method based on uniaxial tests to

measure the equilibrium stress, and the associated tangent modulus and local Poisson’s ratio

at equilibrium. The measured quantities have also been studied in regard to the possible

error of such a measurement and this was reported at different temperatures. There are

two purposes of this chapter, one is to partition the total stress to identify the contribution

of the slow (corresponding to the standard linear solid element) and fast (corresponding to

high relaxation element) relaxing elements. Another objective of this chapter is to develop

a thermodynamically consistent model for back stress as a function of plastic deformation

gradient and temperature. For modeling the back stress, we need to calculate the part of the

response that will come from the slow relaxing element. Once this is evaluated, we use this

information to model the back stress element of the slow relaxing element by appropriately
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fitting the experimental results for the equilibrium stress.

8.1 Background

A significant part of the published work to model the back stress is based on "mole-

cular" models and/or use the physics of polymer chain networks and statistical methods.

The Neo Hookean model [24] is the simplest physically based model since it can be derived

from molecular chain statistics. This model assumes that the material is constituted by a

network of long chains linked by chemical bonds at junction points [25]. In 1942, Kuhn an

Grun [26] used a non Gaussian theory to take into account the limiting extensibility of poly-

mer chains and they derived the strain energy of the single chain. Later James and Guth

[27],developed similar models where the network chains were distributed upon the principal

stretch axis and Flory [28] and Treloar [29] assumed network chains are distributed upon

four axis corresponding to the vertices of a regular tetrahedron. The Wang and Guth model

[109], employed by Boyce, Parks and Argon [36], uses three non Gaussian chains arranged in

a unit cube are used to predict the entropic forces associated with large deformation. This

model was not capable of predicting the stress-stretch behavior so Arruda and Boyce [30]

proposed a model with chains upon eight directions corresponding to the vertices of a cube

inscribed in the unit sphere. The model they developed was quite similar to the three chain

model but presents better agreement with experimental data for equibiaxial extension.

In the current work, we do not use the proposed models, but have directly modeled

the free energy as a function of the strain invariants and fit them to experimental results.
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Figure 8.1: Mechanical analog of proposed constitutive model for rate dependent thermal
plasticity.

8.2 Partitioning the stress of the slow and fast elements

In Chapter 3, we have introduced a mechanical analog on which we have developed

our modeling structure. It contains a standard linear solid in parallal with a high relaxation

rate element as shown in Figure 8.1 . In this section we will consider how we can partition

the stress to identify the separate contributions of these two elements. As described in

Chapter 3, for a quasi-fast deformation at equilibrium, loading rates are faster than the

quasistatic loading but slower than the high rate loading such that the high relaxation

element is relaxed at all times and the entire response comes from the spring kes since the

spring-dashpot part of the slow relaxing element is locked as shown in Figure 8.2 and the

total stress will be equal to Ts. On the other hand, for ultrasonic tests, in which the time

is not sufficient enough for the higher relaxation element to relax, due to rapid load, both

dampers μs and μf will lock and the total stress will result from the two springs shown
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Figure 8.3: Mechanical analog corresponding to the ultrasonic testing.

in Figure 8.3 so that stress T is the summation of Ts and Tf . The model developed in

Chapter 7 captures the stress from ultrasonics measurements so the model represents the

contribution of both Ts and Tf . We would like to separate these two parts since in this

chapter we would like to focus on the slow relaxing element and need Ts to obtain the

information to model for back stress for this element. Therefore our first task is to take

constitutive model developed for stress in Chapter 7 and extract the model of Ts. This

model was given as
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T = Ts +Tf = Aiso
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This separation will be done using the tangent modulus calculated at equilibrium in the

previous chapter, assuming this is obtained under quasi-fast testing condition. We do this

by assuming Ts will produce the tangent modulus at equilibrium and thus stress Tf is

the additional stress which will result from the high relaxation element during ultrasonic

measurements. We assume that the anisotropy is fully represented in the slow model, and

only the other terms are split. A simple way to do this is achieved by selecting

Ts = Equ as

(
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In equations 8.2 and 8.3, G(Fp
s), κ(F

p
s) and ρo

∂ψ
∂I∗7
(Fp

s) are functions evaluated at F
p
s and

G(Fp
f ) and κ(F

p
f ) are the same functions but evaluated at F

p
f ,respectively. The relationship

between the deformation gradients, as explained in Chapter 3, is given by

F = Fe
sF

p
s = F

e
fF

p
f . (8.4)
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The constitutive model for stress in equation 8.2 corresponds to the stress at equilibrium

for quasi-fast test and can be used to calculate the tangent modulus at equilibrium. In

the equations for Ts and Tf , Equ as is the scalar material parameter which needs to be

calculated such that we get the tangent modulus at equilibrium. For a given temperature,

two quantities which are needed to calculate the modulus are Fe
s and F

p
s. For uniaxial tests

the deformation gradient F can be written as

F =λte1 ⊗ e1 + λte2 ⊗ e2 + λae3 ⊗ e3, (8.5)

where λt is the stretch in transverse direction and λa is the stretch in axial direction. A

similar form will be taken by Fp
s and is given by

Fp
s=λ

p
ste1 ⊗ e1 + λpste2 ⊗ e2 + λpsae3 ⊗ e3. (8.6)

We will assume the plastic deformation is incompressible so that

Jps = det(F
p
s) = λp2st λ

p
sa = 1, (8.7)

so that Fp
s can be simplified to

Fp
s =

Ã
1p
λpsa

!
e1 ⊗ e1 +

Ã
1p
λpsa

!
e2 ⊗ e2 + λpsae3 ⊗ e3. (8.8)

The stress at equilibrium corresponding to the uniaxial tests is given by

Ts = σb33e3 ⊗ e3, (8.9)

where σb33 is the equilibrium stress ("back stress"). At equilibrium λa and σb
33 are known,

therefore, λt and λpsa can be calculated using the equations of the stress in axial direction

given to be the equilibrium stress and the stress in the transverse direction equals to zero
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Figure 8.4: Comparison of tangent modulus from the ultrasonic model and measured from
experimental cyclic loading.

£
Ts33 = σb33 and Ts11 = 0

¤
. Once λt and λpsa are known, we know both F

e
s and F

p
s and can

then be used to calculate the modulus at equilibrium.

Figure 8.4 shows the modulus for Equ as = 1, which is the modulus from ultrasonic

tests, compared to that of the tangent modulus measured from the quasi-fast cyclic loading

tests. As can be seen, the tangent modulus from the ultrasonic model overestimates the

modulus calculated at equilibrium but both seems to have the same trend. Therefore, to fit

the tangent modulus, material parameter Equ as is calculated to fit the experimental results.

The value of Equ as calculated to fit the experimental equilibrium modulus is

Equ as = 0.6. (8.10)

Figure 8.5 shows the model for the tangent modulus using Ts with this Equ as compared to

the experimentally evaluated tangent modulus at equilibrium. As can be seen, the model

for Ts provides similar results to the experimentally evaluated values.
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Figure 8.5: Comparison of quasistatic stress model with the cyclic experiments.

8.3 Combining the models for free energy

For a model to be thermodynamically consistent, models for stress and back stress

should be calculated from a single free energy, as these models are respectively related to

the derivatives of free energy with respect to the elastic and plastic deformation gradient.

Therefore, the stress and the back stress can have terms that can come from the same term

in the free energy. As discussed in Chapter 3, the total free energy is based on the form

ψ = ψs(F
e
s,F

p
s, θ) + ψf (F

e
f , θ) + ψθ(θ), (8.11)

where ψs(F
e
s,F

p
s, θ) and ψf (F

e
f , θ) are ,respectively, the free energy terms associated to

slow and fast relaxation elements and ψθ(θ) is the free energy contribution just from the

temperature. The stress models given by equations 8.2 and 8.3 can be used to calculate
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the free energy. First let us see how we can calculate the free energy ψs(F
e
s,F

p
s, θ) from the

model of stress Ts given by equation 8.2. The free energy contributions from slow strain

rates ψs(F
e
s,F

p
s, θ) are given by

ψs(F
e
s,F

p
s, θ) = ψs1(F

e
s, θ) + ψs2(F

p
s, θ) + ψs3(F

e
s,F

p
s, θ), (8.12)

where ψs1 and ψs2 depend ,respectively, upon the elastic and plastic deformation gradients

and depend on temperature, ψs3 is an additional free energy term that depends upon all

three terms Fe
s, F

p
s and θ. For a thermodynamically consistent model, the expression for

Ts can be given by

TT
s = ρ∂Fes(ψs)F

eT
s . (8.13)

Knowing the model of Ts, ∂Fes(ψs) can be written as

∂Fes(ψs) =
1

ρ
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s F

e−T
s , (8.14)

which can be integrated to calculate ψs and is the summation of ψs1, ψs2 and ψs3.This can

be written as
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In the above equation, G, κ and ρo
∂ψ
∂I∗7

are the function of Fp
s and the invariants noted are

given by

I∗1 (F
e
s) =

tr(Ce
s)

J
e 23
s

, I∗4 (F
p
s) =

tr(Cp
s)

J
p 23
s

,

I∗5 (F
p
s) =

tr(Cp2
s )

tr2(Cp
s)
, I∗6 (F

p
s) = Jps ,

I∗7 (F
e
s,F

p
s) = tr(Ce

sC
p
s)− tr(Ce

s)− tr(Cp
s) + 3, I∗8 = tr(Ce2

s C
p
s)− tr(Ce2

s )− tr(Cp
s) + 3.

(8.16)

Also, the free energy term ψs2 can be a function of three invariants I
∗
4 (F

p
s), I∗5 (F

p
s) and

I∗6 (F
p
s). Similarly, the contribution from the fast relaxing element can be expressed as
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The free energy contributions from this element can then be given by
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where G, κ and I∗1 are functions of noted arguments and where

I∗1 (F
e
f ) =

tr(Ce
f )

J
e 2
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f

. (8.19)

In the free energy terms in equation 8.11 and 8.12 there are two terms which are unknown.

One is ψs2(F
p
s, θ), which as will be explained in the next section can be derived from the

model of back stress, and another term ψθ which is the contribution from pure thermal

behavior and is calculated in the next chapter.
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8.4 Constitutive model for back stress

At equilibrium, stress in quasi-fast response it can be assumed that the response

from high relaxation element will die out and there will be no stress coming from this

element. Therefore, in calculating the back stress there will be no contribution in the free

energy term corresponding to fast relaxing element. Therefore, free energy corresponds to

the slow relaxing element along with the free energy corresponding to pure thermal behavior

will be the only existing terms. This is given by

ψ ≈ ψs(F
e
s,F

p
s, θ) + ψθ(θ), (8.20)

where ψs(F
e
s,F

p
s, θ) is the summation of three terms ψs1(F

e
s, θ), ψs2(F

p
s, θ) and ψs3(F

e
s,F

p
s, θ)

and is given by equation 8.15. As discussed in Chapter 3, the model for back stress can be

calculated as

Tb
s = ρ∂Fps (ψs)F

pT
s . (8.21)

Since ψθ(θ) is only a function of temperature, therefore taking the derivative of it with

respect to Fp
s will be 0. The expression of back stress can then be calculated as
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s . (8.22)

The individual term of back stress can then be calculated as

ρ∂Fps (ψs1)F
pT
s = Equ as

∙
Aiso

½
∂
F
p
s
(G)(I∗1 (F

e
s)− 3) + ∂

F
p
s
(κ)
ln2(Jes )

2

¾¸
, (8.23)

ρ∂Fps (ψs2)F
pT
s = ρ

(
2

J
p 2
3

s

∂ψs2

∂I∗4

∙
Bp
s −

I4(F
p
s)

3
I

¸
+
4

I24

∂ψs2

∂I∗5
Fp
sC

∙
p
s −

I5(F
p
s)

I4(F
p
s)
I

¸
FpT
1 + ln(Jps )

∂ψs2

∂I∗6
I

)
,

(8.24)
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The total back stress can be calculated by summing the equations 8.23, 8.24 and 8.25. It is

to be noted that material parameters G, κ, ρo
∂ψ
∂I∗7

in equations 8.23 to 8.25 are functions of

plastic strain given by

G = 1072− 159× [I∗4 (Fp
s)− 3 ] MPa, (8.26)

κ = 4670 + 200× [I∗4 (Fp
s)− 3] MPa, (8.27)

ρo
∂ψ

∂I∗7
= −283− 150× e−

[I∗4 (F
p
s)−3]

0.125 + 433× e−
[I∗4 (F

p
s)−3]

0.004 MPa. (8.28)

Therefore, the derivative of those material parameters with respect to Fp
s can be calculated
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(8.31)

Equations 8.23 and 8.25 are known from the model of stress and can be denoted by Tb
stress

therefore the model of back stress can be given by

Tb = Tb
stress + ρ∂Fps (ψs2)F

pT
s , (8.32)

where

Tb
stress = ρ∂Fps (ψs1)F

pT
s + ρ∂Fps (ψs3)F

pT
s . (8.33)
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The equation for the back stress can then be given by
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(8.34)

In the above equation there are three material parameters ∂ψs2
∂I∗4

, ∂ψs2
∂I∗5

and ∂ψs2
∂I∗6

which

needs to be evaluated using the experimental results. The material parametres ∂ψs2
∂I∗4

and

∂ψs2
∂I∗5

correspond to the shear part of the plastic flow and ∂ψs2
∂I∗6

corresponds to the volumet-

ric part of the plastic flow. Considering the standard assumption that the plastic flow is

incompressibile, the equation for the back stress can be represented as
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In the above equation there are two material functions ∂ψs2
∂I∗4

and ∂ψs2
∂I∗5

and an indeterminate

constant pb. Since ∂ψs2
∂I∗4

and ∂ψs2
∂I∗5

both corresponds to the shear part of the deformation,

we have only selected ∂ψs2
∂I∗4

as being nonzero and have evaluated this by fitting to the

experimental value of the back stress. Using this simplification the model for back stress is

given by
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8.5 Free energy assumption of the back stress

As a specific model let us consider a model for ψs2 of the form
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p
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where Gb
o, τ

b
o , Gb

∞1 and Gb
∞2 are the material parameters, I

∗
4 = I4 = tr(Cp

s) and Jps = 1.

The back stress corresponding to this form of free energy can be calculated as

Tb = ρ∂Fps (ψs2)F
pT
s . (8.38)

This can be calculated to give
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To understand the model, let us consider its response in simple shear. Figure 8.6 shows

the in-plane deformation for simple shear, the out-of-plane deformation is assumed to be

zero. Let us assume that we are using similar rectangular coordinates for both reference

and current configuration. The deformation associated with simple shear can be written as

x1 = X1 + γX2, (8.40)

x2 = X2,

x3 = X3.

The deformation gradient in this case can be written as

Fs= e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γse1 ⊗ e2. (8.41)

Let us assume that the plastic deformation gradient will be of similar structure and can be

written as

Fp
s= e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γpse1 ⊗ e2. (8.42)
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The left Cauchy stretch tensor Bp
s is therefore given by

Bp
s=(1 + γp2s )e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γps (e1 ⊗ e2 + e2 ⊗ e1) . (8.43)

Volume ratio Jps = 1 and I∗4 =
tr(Bp

s)

J
p2/3
s

= 3 + γp2s . Using the values of J
p
s and I∗4 , the back

stress in shear can be written as

τ b = τ bo tanh

Ã¡
Gb
o −Gb

∞1
¢

τ bo
γps

!
+Gb

∞1γ
p
s +Gb

∞2γ
p3
s . (8.44)

The slope (tangent modulus) from this equation for shear stress is given as

∂τ b

∂γps
=
³
Gb
o −Gb

∞1

´
sech2

Ã¡
Gb
o −Gb

∞1
¢

τ bo
γps

!
+Gb

∞1 + 3G
b
∞2γ

p2
s , (8.45)

where

Lim
γps→0

∂τ b

∂γps
= Gb

o , Lim
γps→∞

γps = Gb
∞1 , if Gb

∞2 = 0. (8.46)

Therefore, as plastic strain γps → 0, the initial slope is given by Gb
o and for very large plastic

strains, if material parameter Gb
∞2 = 0, G

b
∞1 is given as the final slope, but if G

b
∞2 is present

then the slope will tend to infinity at large plastic strains. The plot of stress with respect

to strain for Gb
∞2 = 0 is shown in figure 8.7, where Gb

o is the initial slope, Gb
∞ is a final

slope and τ bo is the stress which gives the transition from Gb
o to Gb

∞.

The model discussed in this section can be combined together with equation 8.36

to give

Tb
s = Tb

stress +
1

J

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
³
Gb
o −Gb

∞1

´ tanh
Ãr

(Gb
o−Gb

∞1)
2

τb2o
[I∗4 (F

p
s)− 3]

!
r
(Gb

o−Gb
∞1)

2

τb2o
[I∗4 (F

p
s)− 3]

(8.47)

+Gb
∞1 +Gb

∞2 [I
∗
4 (F

p
s)− 3]

oµ
Bp
s −

1

3
tr (Bp

s) I

¶
+ pbI.

which will be used to fit the experimental results, where Tb
stress is the terms coming from

the model for stress.
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Figure 8.6: In plane deformation for simple shear
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G∞2 = 0
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8.6 Fitting the model to experimental results from compres-

sion

In last chapter we have calculated the location of stress at equilibrium and for large

strains at different temperatures . The stress at equilibrium corresponding to the uniaxial

tests will be

Teq = σeq33e3 ⊗ e3, (8.48)

where Teq represents stresses at equilibrium and σeq
33 is the component of equilibrium stress

in the direction of compression. If the plastic flow is considered to be incompressible then

the equilibrium stress can be considered to possibly be different from the back stress by

a hydrostatic component. This can be fixed by assuming the model for back stress only

characterizing the deviatoric part of this term. Therefore we take Tb = Sb where Sb is

the deviatoric part of the equilibrium stress and assume Teq = Sb + pbI. In fitting the

model, therefore the deviatoric part of the equilibrium stress is only considered. The slope

Gb
o = 1000 MPa is considered as the initial slope. This is arbitrarily taken since the value

corresponding to the initial slope in shear for PC cannot be evaluated using the proposed

method. The material parameter obtained from fitting the response shown in Figure 8.8

are

τ bo = 17 MPa, (8.49)

Gb
∞1 = 0 MPa, Gb

∞2 = 5 MPa.

To obtain these values, first material parameter τ bo is fitted assuming G
b
∞1 and Gb

∞2 equal

to 0 and then Gb
∞1 and Gb

∞2 are used to fit the response at large strains. Figure 8.8 shows
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Figure 8.8: The experimental (from Goel et al. [11]) and the model for back stress at room
temperature

the results of this fit and its comparison to the measured experimental results.

The model has been extended to higher temperature by including a factor τ bo which

depend upon temperature. By changing the value of τ bo with respect to temperature the

back stress location will be changed. The material parameter got for τ bo as a function of

temperature is

τ bo = −0.119θ + 51.795 MPa, (8.50)

where θ is in K. The results of this fit are shown in Figure 8.9.

8.7 Summary and conclusion

In this chapter we have developed a thermodynamically consistent model for back

stress at different temperatures. For model to be thermodynamically consistent, there will



137

-30

-25

-20

-15

-10

-5

0
-0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

Strain

St
re

ss
 (M

Pa
)

-30

-25

-20

-15

-10

-5

0
-0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

Strain

St
re

ss
 (M

Pa
)

Figure 8.9: Comparison of experiment (from [11]) with model for back stress at different
temperature

be some terms from stress which contribute to the back stress. These terms come from the

terms in the equation for stress that introduce anisotropy in the elastic response as a result

of plastic flow. To calculate the back stress, first the total stress is partition into the contri-

bution from the slow and fast relaxing elements and then the model representing the slow

relaxing element is fitted to the tangent modulus calculated from the cyclic experiments.

The terms calculated in this way are then used for modeling the back stress, assuming that

the incompressibility of the back stress element introduces an indeterminancy in the back

stress model of the form of a hydrostatic stress. As a result, to fit the experimental results

the deviatoric part of the equilibrium stress at different temperatures were considered and

the material parameters were calculated.
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Chapter 9

Heat generation and heat capacity

In the previous chapters we have developed the model for stress and back stress.

These models for stress and back stress will correspond to the terms in free energy which

will contribute to the slow and fast response depending upon the mechanical loading and

are given by ψs(F
e
s,F

p
s, θ) and ψf (F

e
f , θ). The focus of this chapter is to calculate the part

of the free energy which will represent pure thermal behavior and is given by ψθ(θ). To

calculate this free energy term, heat capacity is calculated for a material at zero stress and

zero plastic strain. The free energy was then calculated using the heat capacity results from

Differential Scanning Calorimetry (DSC).
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9.1 Heat capacity for the sample at zero stress and zero elas-

tic and plastic strain

The heat generation and flow at a point can be calculated using the expression of

balance of work and energy given in Chapter 2 by

ρ
·
e = −divx(q) + ρr + tr(TL).

From this we have derived the specific heat capacity c which was given by

c =

·
h
·
θ
=

·
η
·
θ
θ − 1

ρ
·
θ
∆TT : Lp, (9.1)

for a single internal variable and can be written in our case as

c =

·
h
·
θ
=

·
η
·
θ
θ − 1

ρ
·
θ

h
∆TT

s : L
p
s +∆T

T
f : L

p
f

i
. (9.2)

For zero stress and at zero plastic strains, this leads to the expression of c as

c =

·
η
·
θ
θ. (9.3)

As can be seen
·
η is required to calculate c. The equation for

·
η as described in Chapter 2

can be written for the two internal parameters as

·
η =

·
ηL : L+

·
η ·
θ

·
θ+

·
ηLps : L

p
s +

·
ηLpf

: Lpf , (9.4)

where

·
ηL =

1

ρ
∂θ
¡
TT
¢
, (9.5)

·
η ·
θ
= ∂θ (η)−

∙
∂Fθ (ψ)−

1

ρ
FpTFeT∂θ

¡
TT
¢
Fp−TFθ−T

¸
: ∂θ (α) , (9.6)

·
ηLps = −

1

ρ
∂θ
¡
TT
s

¢
. (9.7)
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·
ηLpf

= −1
ρ
∂θ
¡
TT
f

¢
. (9.8)

To calculate
·
η, the values of

·
ηL,

·
η ·
θ
,
·
ηLps and

·
ηLpf

needs to be calculated. That is, we need

to evaluate from the free energy the equations 9.5, 9.6, 9.7 and 9.8. All these terms require

us to calculate ∂θ
¡
TT
s

¢
and ∂θ

³
TT
f

´
at zero elastic and plastic strain. The equations for

Ts and Tf were modeled as

Ts = Equ as

(
Aiso

"
G (Fp

s)
1

JJ
e 2
3

s

µ
Be
s −

tr (Be
s)

3
I

¶
+ κ (Fp

s)
Jes ln (J

e
s )

J
I

#
(9.9)

+Ecomb

"
2

J
e 2
3

s

µ
Be
s −

tr (Be
s)

3
I

¶
ln2 (Jes ) + 2 ln (J

e
s )

Ã
tr (Ce

s)

J
e 2
3

s

− 3
!#)

+Aaniso

∙
ρo

∂ψ

∂I∗7
(Fp

s)
1

J
Fe
s [2(C

p
s − I)−(Ce

sC
p
s +C

p
sC

e
s − 2Ce

s)]

¸
FeT
s ,

and

Tf = (1−Equ as)

⎧⎨⎩Aiso

⎡⎣G³Fp
f

´ 1

JJ
e 2
3

f

⎛⎝Be
f −

tr
³
Be
f

´
3

I

⎞⎠+ κ
³
Fp
f

´ Jef ln
³
Jef

´
J

I

⎤⎦(9.10)
+Ecomb

⎡⎣ 2

J
e 2
3

f

⎛⎝Be
f −

tr
³
Be
f

´
3

I

⎞⎠ ln2 ¡Jef¢+ 2 ln ¡Jef¢
⎛⎝tr(Ce

f )

J
e 2
3

f

− 3

⎞⎠⎤⎦⎫⎬⎭ ,

where G(Fp
s), κ(F

p
s) and ρo

∂ψ
∂I∗7
(Fp

s) are functions evaluated at F
p
s and G(Fp

f ) and κ(Fp
f )

are the same functions but evaluated at Fp
f . In this model only Aiso, Aaniso and Ecomb are

functions of temperatures since the material parameters G (Fp
s), κ (F

p
s), ρo

∂ψ
∂I∗7
,G
³
Fp
f

´
and

κ
³
Fp
f

´
are only a function of plastic strains. Taking the derivatives of Ts and Tf with

respect to θ and evaluating it at zero elastic and plastic strain will give us

£
∂θ
¡
TT
s

¢¤
Fes=I,F

p
s=I

= 0 ,
£
∂θ
¡
TT
f

¢¤
Fef=I,F

p
f=I

= 0. (9.11)

Free energy ψ is independent of Fθ, therefore

∂Fθ (ψ) = 0. (9.12)
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Using the above two equations
·
ηL = 0,

·
ηLps = 0 and

·
ηLpf

= 0 and since
·
η ·
θ
= ∂θ (η), the

expression in 9.4 one can be written as

·
η = ∂θ (η)

·
θ. (9.13)

The specific heat capacity c can thus be calculated as

c =

·
η
·
θ
θ = θ∂θ (η) = −θ

∂2ψ

∂θ2
. (9.14)

The total form of free energy is given as

ψ = ψs (F
e
s,F

p
s, θ) + ψf

¡
Fe
f , θ
¢
+ ψθ (θ) , (9.15)

where

ψs (F
e
s,F

p
s, θ) = ψs1 (F

e
s, θ) + ψs2 (F

p
s, θ) + ψs3 (F

e
s,F

p
s, θ) . (9.16)

The expression of ψs1 (F
e
s, θ) , ψs2 (F

p
s, θ) , ψs3 (F

e
s,F

p
s, θ) and ψf

³
Fe
f , θ
´
have already been

calculated from the two models for stress and the model for back stress in the previous

chapter and are written as

ψs1(F
e
s, θ) = Equ as

∙
Aiso

½
G(Fp

s)

ρo
(I∗1 (F

e
s)− 3) +

κ(Fp
s)

ρo

ln2(Jes )

2

¾
+

Ecomb

ρo
(I∗1 (F

e
s)− 3)

ln2(Jes )

2

¸
,

(9.17)

ψs2 (F
p
s, θ) =

1

2ρo

⎡⎣2 τ b2o
(Gb

o)
ln

⎧⎨⎩cosh
⎛⎝s(Gb

o)
2

τ b2o
[I∗4 (F

p
s)− 3]

⎞⎠⎫⎬⎭+ Gb
∞2
2

[I∗4 (F
p
s)− 3]2

⎤⎦ ,
(9.18)

ψs3(F
e
s,F

p
s, θ) =

Aaniso

ρo

∙
ρo

∂ψ

∂I∗7
(I∗7 (F

e
s,F

p
s)−

1

2
I∗8 (F

e
s,F

p
s))

¸
, (9.19)
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ψf (F
e
f , θ) = (1−Equ as)

"
Aiso

(
G(Fp

f )

ρo

¡
I∗1 (F

e
f )− 3

¢
+

κ(Fp
f )

ρo

ln2(Jef )

2

)
(9.20)

+
Ecomb

ρo

¡
I∗1 (F

e
f )− 3

¢ ln2(Jef )
2

#
.

As can be shown using these expressions, at zero elastic and plastic strains we have

∙
∂2ψs

∂θ2

¸
Fes=I,F

P
s =I

=

"
∂2ψf

∂θ2

#
Fef=I,F

P
f =I

= 0. (9.21)

Therefore, the specific heat capacity can be calculated from

c = −θ∂
2ψθ

∂θ2
. (9.22)

Therefore, knowing the specific heat allows us to calculate ψθ by integrating twice.

9.2 Experimental results and fitting the model

Differential Scanning Calorimetry (DSC) was used to calculate the heat capacity of

the polycarbonate sample at zero stress and before plastic deformation. This was measured

from −46oC to just above the glass transition temperature. The results from DSC are

shown in figure 9.1. For the range of temperature shown in the figure, the specific heat is

increasing linearly with temperature. Therefore, heat capacity can be put in the form

c = c(298K) +
dc

dθ

¯̄̄̄
298K

(θ − 298) , (9.23)

where temperature is in Kelvin, and c(298K) and dc
dθ

¯̄
298K

are respectively, the heat capac-

ities and its derivative at 298oK. For polycarbonate, the constants are given as

c(298K) = 1.2676
J

g −o C ,
dc

dθ

¯̄̄̄
298K

= 0.004017
J

g −o C2 , (9.24)

where J in the units refers to Joules (not the volume ratio). Using equation 9.22 and the
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Figure 9.1: Specific heat for polycarbonate at different temperature (from [12]).

specific heat expression from the experiments one can get

∂2ψθ

∂θ2
= −1

θ

∙
c(298K) +

dc

dθ

¯̄̄̄
298K

(θ − 298)
¸
.

The above equation can be integrated twice to get the free energy term

ψθ(θ) = −
∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
(θ ln (θ)− θ)− dc

dθ

¯̄̄̄
298K

θ2

2
+K1θ +K2, (9.25)

where K1 and K2 are integration constants. At absolute zero, we take the free energy

equal to zero, so that the constant of integration K2 = 0. The constant of integration K1

is arbitrary. As ψθ only depends on temperature, this term will not have any effect on

the calculation of stress and back stress. The other quantity that can be calculated using

this form of free energy is enthalpy resulting from this term. This can be obtained by the

equation

h = ψ + ηθθ. (9.26)
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Using the expression of free energy, entropy can be calculated

ηθ = −
∂ψθ

∂θ
=

∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
ln (θ) + θ

dc

dθ
−K1. (9.27)

Substituting the value of entropy in the enthalpy expression we get

h = ψθ + ηθθ (9.28)

= −
∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
(θ ln (θ)− θ)− dc

dθ

¯̄̄̄
298K

θ2

2
+K1θ

+

∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
θ ln (θ) + θ2

dc

dθ

¯̄̄̄
298K

−K1θ

=

∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
θ +

dc

dθ

¯̄̄̄
298K

θ2

2
.

As can be seen in the equation, the enthalpy does not depend on K1.

9.3 Results and conclusion

In this chapter the free energy contribution from the pure thermal behavior is

calculated. The heat capacity expressions is calculated using thermodynamic process for a

material under zero stress and zero plastic strain. The free energy was then calculated using

DSC experimental results for polycarbonate from 46oC to 150oC. The resulting expression

for this part of the free energy was obtained to be

ψθ(θ) = −
∙
c(298K)− 298 dc

dθ

¯̄̄̄
298K

¸
(θ ln (θ)− θ)− dc

dθ

¯̄̄̄
298K

θ2

2
+K1θ, (9.29)

for an arbitrary K1. As was explained in the calculation of enthalpy, K1 is arbitrary and

for PC

c(298K) = 1.2676
J

g −o C ,
dc

dθ

¯̄̄̄
298K

= .004017
J

g −o C2 . (9.30)
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Chapter 10

Flow rule for glassy polycarbonate

In the previous chapters we have developed the model for stress from ultrasonics

wave speeds at different temperatures and high loads and separated the response of stress

into two parts, one contributes to the slow response and the additional term corresponding

to the fast response. Then we have developed a thermodynamically consistent model for

back stress at different temperatures. We have also discussed constructing a single free

energy that is used to model stress, back stress and heat capacity. In this chapter we will

discuss the evolution equations, also known as flow rules, which describes how the internal

variables Fp
s and F

p
f will change.

10.1 Flow rule and second law of thermodynamics

From the second law of thermodynamics shown in Chapter 2 the flow rule for

plastic flow needs to satisfy the inequality

−∆TT : Lp ≤ 0, (10.1)
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where ∆T is the overstress and Lp is the plastic velocity gradient. The restriction imposed

by the second law of thermodynamics on the two internal variables proposed here can be

satisfied by requiring that

−∆TT
s : L

p
s ≤ 0 , (10.2)

−∆TT
f : L

p
f ≤ 0 , (10.3)

where Lps and L
p
f are, respectively, the plastic velocity gradient corresponding to F

p
s and

Fp
f , and are given by the equations

Lps = Ḟ
p
sF

p−1
s , (10.4)

Lpf = Ḟ
p
fF

p−1
f . (10.5)

Normally the plastic flow is close to incompressible, this seems to also be true for the internal

parameter proposed. To construct the flow rules for the two internal parameters we will

use the associated deviatoric overstress

∆STs = ∆Ts − (∆Tave)s I, (10.6)

∆STf = ∆Tf − (∆Tave)f I, (10.7)

where (∆Tave)s and (∆Tave)f are ,respectively, the hydrostatic part of overstress ∆Ts and

∆Tf . The simplest flow rules that both satisfy the thermodynamic constraints and the

assumption that Fp
s and F

p
f are volume preserving deformations can be written as

Ḟs
p
= βs∆S

T
s F

p
s, (10.8)

Ḟf
p
= βf∆S

T
f F

p
f . (10.9)
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where βs and βf are appropriately selected positive valued scalar functions. These can also

be written in terms of the velocity gradients as

L̇ps = βs∆S
T
s , (10.10)

L̇pf = βf∆S
T
f , (10.11)

10.2 Experimental results on monotonic compression

Uniaxial compression tests were performed on glassy polycarbonate at various

temperatures and strain rates. The experiments from 0.0001 1/s to 0.01 1/s were performed

in our lab at University of Nebraska Lincoln (UNL) by Kyle, the experiments from −40◦C

to 100◦C at strain rates from 0.1 1 /s to 100 1/s were performed by Army research lab(ARL)

and the experiments at strain rates from 500 1/s to 1500 1/s from room temperature to

100◦C were performed at UNL using Hopkinson bar tests by Jason. The experimental results

are shown and summarized in the figures from Figure 10.1 to Figure 10.6. Figure 10.1 to 10.3

shows the results at three different temperatures for different strain rates and Figure 10.4

to 10.6 shows the comparison of the response at different temperatures for one particular

strain rate. All the curves indicate the expected feature of the material response, which as

described in Chapter 1, can be distributed in three regions: initial nonlinear elasticity with

rate dependence, strain softening and hardening which is rate and temperature dependent.
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Figure 10.1: Monotonic compression experiments for different strain rates at room temper-
ature (from [1, 2, 3]).

Figure 10.2: Monotonic compression experiments for different strain rates at 60◦C (from
[1, 2, 3]).
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Figure 10.3: Monotonic compression experiments for different strain rates at 100◦C (from
[1, 2, 3]).

Figure 10.4: Monotonic compression experiments for different temperatures at 0.11s−1(from
[2]).
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Figure 10.5: Monotonic compression experiments for different temperatures at 100s−1(from
[2]).
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Figure 10.6: Monotonic compression experiments for different temperatures at
1120s−1(from [3]).
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10.3 Conversion of plastic work to heat

As discussed in the previous section, like other glassy polymers the response of PC

depends upon the strain, strain rate as well as temperature. It has been known that the

mechanical energy of plastic deformation transform into heat which can cause temperature

rise under adiabatic consideration. Mulliken and Boyce have pointed to this fact in a paper

published in 2006 [95]. The monotonic compression experiments at a very low strain rate

of 0.0001 1/s probably corresponds to an isothermal condition in since the time is sufficient

enough that the heat can move out of the system and one can assume the response to be

isothermal. For a very high strain rate, the response probably corresponds to adiabatic

conditions, that should result in temperature increasing during the experiments. Rittel [77]

and Lerch [13] have performed a compression experiments under high strain rate (103 1/s

and 104 1/s) and have indicated that the temperature can increase as much as 60◦C for 80%

plastic strain. Lerch etal. have performed a dynamic compression tests on PC for strain

rate in the range of 500 to 2000 s−1 using a Split Hopkinson Pressure bar and temperature

measurement was carried out using an infrared optical pyrometer which could measure the

surface temperature rise of a specimen during the tests. The results extracted from the

paper for the temperature in this test are shown in Figure 10.8 for a strain rate of 1800s−1.

To look at the temperature rise from the model at high strain rates, we considered

adiabatic flow and assumed that the majority of heat generated is due to plastic flow. If we

consider this assumption then the balance of energy can be approximately written as

ρcp
·
θ = tr(∆TsL

p
s) + tr(∆TfL

p
f ), (10.12)

where ρ is the density in the current configuration, cp is the specific heat, ∆Ts and ∆Tf are
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the overstress for slow and fast relaxing element, Lps and L
p
f are the plastic velocity gradients

and
·
θ is the temperature rise. The left hand side of the equation gives the amount of heat

generated due to increase in temperature and the right hand side gives the amount of heat

generated due to plastic flow. For this comparison we have considered the experimental

results for monotonic compression at a strain rate of 1200s−1 and assumed adiabatic flow.

We have already measured and modeled the equilibrium stress and the specific heat as

a function of temperature. Having experimental results for the stress and the axial and

transverse strain histories, they can be used to calculate Lps and L
p
f . From the model for

back stress and the model for stress, the overstress can be calculated. The stress and the

backstress are shown in Figure 10.7. For the large deformation considered, we can assume

that both the internal variables have a value approximately the same so that we can write

the balance of energy as

ρcp
·
θ = tr(∆TLp),

when we have assumed Lp = Lps = Lpf . Using this equation the temperature rate
·
θ can

be calculated using the experimental results and the proposed model. This temperature

rise is compared with the experimental results obtained from Lerch in Figure 10.8. As

can be seen from the plot, the results are in close agreement with the experimental results

until 50% strain. The accuracy of the temperature rise primarily depends upon ∆T so

the close agreement of the directly measured temperature rise in the experiment of Lerch

and that calculated through model gives an indication that we are correctly measuring

the equilibrium stress and hence supports the new method which has been introduced in

Chapter 6 to calculate the equilibrium stress. The same procedure is used to calculate the
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Figure 10.7: Schematic of the stress and equilibrium stress.

Figure 10.8: Comparison of model prediction and experimentally evaluated temperature
rise from Lerch et al. [13].
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Figure 10.9: Comparison of temperature rise from model at room temperature for different
strain rates assuming adiabatic deformations.

temperature rise for all the experiments performed at strain rates from 0.1s−1 to 1200s−1

and at different temperature. The plot of temperature rise for different strain rates at 20oC,

60oC and 100oC are shown in the figures.

As can be seen in Figures 10.9 to 10.11, the temperature does not rise significantly

until 10% strain, beyond which it rises considerably. For each starting temperature, the

temperature rise depends upon the strain rate and it increases with the increase in strain

rate. Using this information, the stresses for true isothermal compression can be calculated

by interpolating the stresses between the predicted temperatures. The results of this cal-

culation to obtain the isothermal response at 0.11 1/s is shown in Figure 10.12 The same

method was used to calculate the true isothermal responses for the different strain rates

and temperatures. The results are shown in figures 10.13 and 10.14. As can be seen, due

to the temperature rise in the experiments one observes lower stresses, but corrected by
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Figure 10.13: Experimental (from [2]) and model isothermal monotonic compression results
for 1.21 1/s and at different temperatures.
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Figure 10.14: Experimental (from [2]) and model isothermal monotonic compression results
for 108 1/s and at different temperatures.

knowing the overstress. For very low strain rate response (0.0001 1/s-0.11/s), as the time is

sufficient enough for heat flow out of the system, the experimental results measured proba-

bly correspond to isothermal condition and need to be modified. But, for higher strain rate

response (100-1000 1/s) the response is probably adiabatic, and needs to be corrected to

obtain the corresponding isothermal response.

10.4 Modeling the flow rules

To fit the monotonic compression results, we need to evaluate the flow rules to

calculate the internal parameter Fp
s and F

p
f . According to the mechanical analog the total

deformation gradient is given by

F = Fe
sF

p
s = F

e
fF

p
f . (10.13)
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The total Cauchy stress T can be written as

T = Ts +Tf , (10.14)

where Ts is the stress corresponds to the low strain rates and Tf comes into effect when

strain rates becomes higher. The overstress ∆Ts and ∆Tf can be written as

∆Ts= F
e−1
s TsF

e
s −Tb

s, (10.15)

where Tb
s is the back stress.

∆Tf= F
e−1
f TfF

e
f . (10.16)

A flow rule that satisfies the second law of thermodynamics and does not induce volumetric

changes in the internal variables can be written as

Ḟp
s = βs∆S

T
s F

p
s, (10.17)

Ḟp
f = βf∆S

T
f F

p
f , (10.18)

for strictly positive scalar functions βs and βf .

10.4.1 Models used for stress and back stress

The stress contribution, as discussed in earlier chapters, is splited into two parts,

one part that is related to the slow relaxing element and is given by Ts and the additional

stress which comes from the high relaxation element and is given by Tf such that the total
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stress T = Ts +Tf . These two models are given as
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During slow tests Tf can be taken to be approximately zero. As a result, the tangent

moduli measures at equilibrium will be assumed to be only from Ts.

Back stress contribution is associated with only the slow element. This back stress

is given by

Tb
s = Tb

stress +
1

J

⎡⎢⎢⎢⎢⎣
³
Gb
o −Gb

∞1

´ tanh
Ãr

(Gb
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∞1)
2
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(I∗4 (F

p
s)− 3)

!
r
(Gb
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2
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(I∗4 (F

p
s)− 3)
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+Gb
∞1 +Gb

∞2(I
∗
4 (F

p
s)− 3)

iµ
Bp
s −

1

3
tr (Bp

s) I

¶
,

where the material parameter obtained by fitting the response is given by

τ bo = −0.119θ + 51.795 MPa θ is in K, (10.22)

Gb
∞1 = 0, Gb

∞2 = 5 MPa.

The initial slope Gb
o = 1000 MPa was considered as the initial slope in shear, as the back
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stress calculated from the method is not good for a very small strains. Since the slow

element is active for all rates, the back stress from this element will also be active.

Knowing the stresses and back stresses, the overstress ∆Ts and ∆Tf can be writ-

ten as

∆Ts= F
e−1
s TsF

e
s −Tb

s,

∆Tf= F
e−1
f TfF

e
f . (10.23)

10.4.2 Calculation of plastic flow at low strain rates

Initially let us consider the case for a very low strain rates. For a very low strain

rate it is assumed that the monotonic compression experiments performed are isothermal

since the time during the test is sufficient enough so that heat can move out of the sample.

At room temperature we have considered strain rates from 0.00011/s , 0.11/s and 1.21s−1.

In fitting the response at low strain rates, it is assumed that the stress Tf = 0.

To model the experimental results we assume the conditions are that of homo-

geneous uniaxial compression with zero transverse stresses as shown in Figure 10.15. The

stress under such a condition can be given by

σ =σa e3 ⊗ e3, (10.24)

where σa is the axial stress and the expression for deformation gradient would be

F = λ∗e1 ⊗ e1 + λ∗e2 ⊗ e2 + λe3 ⊗ e3. (10.25)

where λ is the stretch in the axial direction and λ∗ is the stretch in the transverse direction.

Under the same assumptions, a reasonable expression for Fp
s, considering its incompress-
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ibility, is

Fp
s =

Ã
1p
λps

!
e1 ⊗ e1 +

Ã
1p
λps

!
e2 ⊗ e2 + λpse3 ⊗ e3. (10.26)

In the experiments we measure λ, λ∗ and T33 = σa, and we know that T11 = 0. Since

the incompressibility of Fp
s model does not allow to independently calculate both the axial

and transverse plastic stretches, we select to use the measured axial stretch of λ in the two

equations T33 = σa and T11 = 0 to calculate λps and λ∗. In this way we obtain Fe
s and F

p
s

without violating the assumption of incompressibility of Fp
s. The back stress tensor can then

be calculated from these. Subsequently the overstress ∆Ts= F
e−1
s TsF

e
s−Tb

s and deviatoric

part of the overstress ∆Ss=∆Ts − (∆Ts)ave I can be calculated. From the expression of

flow rule we can then calculate βs from

βs =

p
(∆STs F

p
s):(∆STs F

p
s)r³

Ḟp
s

´
:
³
Ḟp
s

´ . (10.27)

In this way we can obtain from the experimental results both a value of Fp
s and the value

of βs using its associated flow rule. To model βs we note that it can be a function of

many different combination of state variable which may include ( Ts, ∆Ts, ∆Ss, F
p
s, TsF

p
s,

∆SsF
p
s, ...etc.). We consider βs to be formed from three parts

βs = βs1βs2βs3, (10.28)

where they can be modeled as follows:

1. We assume βs, comes from the "steady state" large deformation response just

after yielding and that it only depends on the overstress. We select ∆Ss =
√
∆Ss : ∆Ss to

represent this overstress and assume βs1 depends on it. We use the response between strain
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rates of 0.0001 1/s to 1.21 1/s to fit this to the evaluated values of βs for a strain of 20%

(see Figures 10.1 to Figure 10.6). The result of this fit are shown in Figure 10.17.

2. Function βs2 is assumed to characterize the effect of large plastic deformation.

After calculating βs1 as a function of ∆Ss, the measured value of βs is divided by βs1

for each ∆Ss and the value obtained is denoted as βs2. This is plotted with respect to the

invariant εps = tr(Cp
s−3) of the plastic deformation gradient. The value of βs2 as a function

of εps is fit to the large deformation response at the strain rate of 0.11 1/s and the result is

plotted in Figure 10.18.

3. The function βs3 is assumed to capture the effect of temperature. After calcu-

lating material parameters βs1 and βs2 as shown in Figure 10.20, the value of βs3 is then

obtained by scaling the room temperature model Ḟp
s = βs∆S

T
s F

p
s with temperature. The

modeled value of βs3 is shown in Figure 10.19. The expression of βs for PC can be fit as

the product of βs1, βs2 and βs3 given by

βs1 = 7.43E
−10 × e(0.52×∆Ss), (10.29)

βs2 = 25.8× e(−11.66×ε
p
s), (10.30)

βs3 = 2.453E
−16 × e(0.122×θ), (10.31)

where ∆Ss =
√
∆Ss : ∆Ss, ε

p
s = tr(Cp

s − 3) and θ is given in degree Kelvin.

10.4.3 Calculation of plastic flow at high strain rates

As discussed before, high strain rate curve corresponds to an adiabatic deforma-

tion and we thus use response to get the isothermal results. For calculating the material

parameter βf three different strain rates in the range of 23− 1200 1/s are used. Again we
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Figure 10.17: The material parameter βs1 with respect to ∆Ss at 20% axial strain for strain
rates 0.00011/s, 0.11/s and 1.21 1/s.
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s for strain rate 0.11 1/s.



165

Figure 10.19: Change of βs3 with temperature.

Figure 10.20: Comparison between the experimental response (from [2]) and the model
results at 0.11 1/s at different temperatures.
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have considered βf to have three parts : βf1(∆Sf ) where ∆Sf =
p
∆Sf : ∆Sf , βf2(ε

p
f )

where εpf = tr(Cp
f )−3 and βf3(θ). As before, for fitting βf1 the value of ∆Sf at 20% strain

is used for different strain rates. The value of βf2 is fit to the response at strain rate of 1200

1/s for large strains. The function βf3 is then used to fit the results to higher temperature.

Figure 10.21, 10.22 and 10.23 show how βf1, βf2 and βf3 are changing with respect to ∆Sf ,

εpf and θ. The combined expression of βf can then be written as

βf = βf1βf2βf3, (10.32)

where βf1, βf2 and βf3 are given by the expressions

βf1 = 3.5× e(0.154×∆Sf ), (10.33)

βf2 = 1.2× e(−3×ε
p
f ),

βf3 = 0.0634× θ − 17.91, (10.34)

where ∆Sf =
p
∆Sf : ∆Sf , ε

p
f = tr(Cp

f )− 3 and θ is in degree Kelvin.

The models for βs and βf along with the models for Ts, T
b
s and Tf are now

complete and can be used to compare the monotonic compression results. This is done for

strain rates at 0.11 1/s, 23.03 1/s and 1194 1/s at room temperature in Figure 10.25.

There are several conclusions which can be drawn by looking at this figure.

1. Modulus at zero strain from the model will correspond to the ultrasonic modulus

as the initial effect from the load will correspond to the combined effect from both the

elastic springs (see mechanical analog in Figure 8.3), but the tangent modulus at different

strain rates for very small strains (0.3% and 0.5%) is shown in Figure 10.26. For both

of these strains, for very low strain rates the tangent model corresponds to a quasistatic
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Figure 10.21: The material parameter βf1 with respect to ∆Sf at 20% axial strain for strain
rates 23 1/s, 108 1/s and 1120 1/s.
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Figure 10.22: The material parameter βf2 with respect to ε
p
f for strain rate 1120 1/s.
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Figure 10.23: Change of βf3 with temperature.

Figure 10.24: Comparison between the correction of experimental response (from [3]) to get
an isothermal response and the model results at 1194 1/s at different temperatures.



169

Figure 10.25: Comparison between experimental (from [2, 3]) and model results at room
temperature and at different strain rates.

modulus and for very high strain rates modulus corresponds to an ultrasonic modulus and

for intermediate rate there will be a transition between the two modulus values.

2. The region 3, strain higher than 20-25%, for a low strain rate the response

matches the experimental results and to the corrected response to get isothermal response

at a very high strain rates. At the intermediate strain rate the response from the model is

between the experimental and isothermal response, as can be expected.

3. In calculating the value of β region 2 was not considered. This region corre-

sponds to strain softening. Two events are happening in this region, one is strain rate effect

and another is associate with aging. Firstly, care needs to be taken to separate both the

effects and then use region 2 to fit the response. The experiments are in process to separate

these effects, which will give us the idea of modeling region 2.
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Figure 10.26: Tangent modulus from model at different strain rates under monotonic com-
pression at two particular strains (0.3% strain and 0.5% strain).

10.5 Summary and conclusion

This chapter is focused on modeling the rule for the change of the internal variables

Fp
s and F

p
f . As has been described, we have selected a constitutive equation for each that

preserves the volume and has written these two forms as

Ḟp
s = βs∆S

T
s F

p
s, (10.35)

Ḟp
f = βf∆S

T
f F

p
f , (10.36)

where βs and βf are positive scalar valued functions to satisfy the constraint imposed by

the second law of thermodynamics. These factor are selected as a product of three functions

and written as

βs = βs1(∆Ss)βs2(ε
p
s)βs3(θ), (10.37)
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βf = βf1(∆Ss)βf2(ε
p
s)βf3(θ), (10.38)

where ∆Ss =
√
∆Ss : ∆Ss, ∆Sf =

p
∆Sf : ∆Sf , ε

p
s = tr(Cp

s − 3), εpf = tr(Cp
f ) − 3 and θ

is given in degree Kelvin.

Before we could fit these models we needed to take into account that, even though

the slow strain rate tests can be considered close to isothermal, the higher strain rate test

are more close to adiabatic response. To use the higher rate loading results, we needed

to find a method to consider the temperature rise. To do this we first showed that one

can accurately predict the temperature changes observed by Lerch et al. [13] with the

developed model for stress and back stress. Once this was established, we used the models

to predict the temperature rise for the faster, loading rates and used interpolation to predict

the isothermal response. Once this correction to the data was made, we fit the βs and βf

systematically using the experimental results, first extracting the dependence on overstress

(∆Ss or ∆Sf ), then extracting the effect of large plastic deformation ( ε
p
s or ε

p
f ), and finally

the effect of temperature. The results of these fits can be summarized as

βs1 = 7.43E
−10 × e(0.52×∆Ss), (10.39)

βs2 = 25.8× e(−11.66×ε
p
s), (10.40)

βs3 = 2.453E
−16 × e(0.122×θ), (10.41)

βf1 = 3.5× e(0.154×∆Sf ), (10.42)

βf2 = 1.2× e(−3×ε
p
f ),

βf3 = 0.0634× θ − 17.91. (10.43)
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It should be noted that the model should be good for the temperature from −40oC to 100oC,

strain rates from 10−41/s to 1031/s and plastic strain upto 50% compression. It should also

be noted that the effects of aging are not included.
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Chapter 11

Conclusion and scope for future

work

11.1 Conclusion

This dissertation is primarily focused on characterizing the rate dependent me-

chanical behavior for glassy polymers at large strains and different temperatures below the

glass transition temperature. This work uses a diverse set of experiments which includes

monotonic compression experiments at different strain rates and temperatures, ultrasonic

wave speed measurement and uniaxial cyclic tests to develop a large deformation thermody-

namically consistent constitutive model which can potentially capture the response at large

strains and different strain rates and temperatures. The significant contributions made in

this process are listed below.

1. We have studied and modeled the anisotropic elastic response developed in ini-
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tially isotropic polycarbonate as a result of plastic flow. Uniaxial compression was used to

prepare samples with different extents of plastic deformation and then they were ultrasoni-

cally tested to measure wave moduli in longitudinal and shear along the axis of compression

and perpendicular to this axis (The experiments were performed by other people in my

group) . The transverse wave moduli, both longitudinal and shear, increased with plas-

tic compression, while in the axial direction the longitudinal wave modulus decreased and

the shear wave modulus stayed constant. The difference in the wave moduli between axial

and transverse directions for PC is substantial, indicating that ignoring this could result in

substantial error in the predictions of the resulting models. This fact is frequently ignored

and not reflected in the models that are developed. To capture the observed development

of anisotropic elastic moduli, a model for the free energy based on the elastic and plastic

deformation gradients was constructed. Since the PC used was initially isotropic, represen-

tations for this model were provided for an initially isotropic material. This model was then

simplified and fit to the experimental data. The resulting fits were in good agreement with

the experimentally observed moduli, and predicted similar trends to experimental results

reported in tension.

2. A large deformation thermo-elastic model was developed for glassy PC to

capture the thermo-elastic effects of temperature and loads using confined compression

experiments preformed by Masubichi etal. measuring ultrasonic velocity under load in a

PVT machine. This model was then combined with the model developed to predict the

development of anisotropic ultrasonic response after plastic flow.

3. We have introduced a new technique based on cyclic compression to calculate
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the equilibrium stress for temperatures below the glass transition temperature. The method

was evaluated for measuring the response of polycarbonate at different temperatures and

the standard deviation was calculated. This is the first time we believe that the equilibrium

stress has been measured and at the same time the error in the measurement quantified. In

addition, we believe, this is the first time, to our knowledge, that both the tangent modulus

and local Poisson’s ratio at equilibrium have been measured for any material. The method

may be used for other materials showing an equilibrium stress.

4. A coupled free energy is constructed from the model developed for the stress

and the results obtained for the equilibrium stress that provide the two as appropriate

derivatives of the free energy.

5. Noting that the high strain rate tests corresponds to an adiabatic deforma-

tion due to heating in the samples, we evaluated the temperature rise using the model and

obtained isothermal response by interpolation. The calculated temperature rise was sup-

ported by comparison to existing experiments. The calculated isothermal plots were used

to develop flow rules for the internal parameters.

The entire dissertation can be summarized using the experimental protocol shown

in Figure 11.1 and shows that first from the plastic compression followed by ultrasonic wave

moduli evaluation we are calculating the material parameters for the model for stress as

a function of elastic and plastic deformation gradient, then using cyclic compression we

calculate the material parameters in the model for back stress and finally using monotonic

compression at different strain rates we calculate the material parameters in the flow rules.

In addition we have added the effects of temperature for each part and incorporated ultra-
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Figure 11.1: Experimental protocol used to develop a large deformation constitutive model.

sonics under load using published results by Masubichi et al.

11.2 Constitutitve model

The summary of the constitutive model developed in the dissertation is as follows.

11.2.1 Constitutive model for stress

The constitutive model for stress is split into two parts, one corresponding to the

slow relaxation element Ts and the other corresponds to the fast relaxation element Tf
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such that the total stress T can be given as

T = Ts +Tf (11.1)

where Ts and Tf are given by

Ts = Equ as

(
Aiso

"
G (Fp

s)
1

JJ
e 2
3

s

µ
Be
s −

tr (Be
s)

3
I

¶
+ κ (Fp

s)
Jes ln (J

e
s )

J
I

#
(11.2)

+Ecomb

"
2

J
e 2
3

s

µ
Be
s −

tr (Be
s)

3
I

¶
ln2 (Jes ) + 2 ln (J

e
s )

Ã
tr (Ce

s)

J
e 2
3

s

− 3
!#)

+Aaniso

∙
ρo

∂ψ

∂I∗7
(Fp

s)
1

J
Fe
s [2(C

p
s − I)−(Ce

sC
p
s +C

p
sC

e
s − 2Ce

s)]

¸
FeT
s ,

and

Tf = (1−Equ as)

⎧⎨⎩Aiso

⎡⎣G³Fp
f

´ 1

JJ
e 2
3

f

⎛⎝Be
f −

tr
³
Be
f

´
3

I

⎞⎠+ κ
³
Fp
f

´ Jef ln
³
Jef

´
J

I

⎤⎦(11.3)
+Ecomb

⎡⎣ 2

J
e 2
3

f

⎛⎝Be
f −

tr
³
Be
f

´
3

I

⎞⎠ ln2 ¡Jef¢+ 2 ln ¡Jef¢
⎛⎝tr(Ce

f )

J
e 2
3

f

− 3

⎞⎠⎤⎦⎫⎬⎭ .

where Be
s and B

e
f are elastic right Cauchy stretch tensor corresponds to F

e
s and F

e
f and

given by ,respectively, the Be
s = F

e
sF

eT
s and Be

f = F
e
fF

eT
f . The volume ratio J

e
s and Jef are

,respectively, the elastic volume ratio corresponds to Fe
s and F

e
f and given by J

e
s = det (F

e
s)

and Jef = det
³
Fe
f

´
and the total volume ratio J are given by J = JesJ

θ = JefJ
θ since due

to assumption of incompressibility in plastic flow, plastic volume ratio Jps and Jpf is equal

to one. The material parameter Equ as, Aiso, Aaniso,Ecomb, G, κ and ρo
∂ψ
∂I∗7

in the equations

are given by

Equ as = 0.6, (11.4)

Aiso = 2.28× e−(
θ
357) , (11.5)

Aaniso = 6.04× e−(
θ
166) , (11.6)
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Ecomb = 60500 MPa , (11.7)

κ = 4670 + 200× (I∗4 − 3) MPa, (11.8)

G = 1072− 159× (I∗4 − 3) MPa, (11.9)

ρo
∂ψ

∂I∗7
= −283− 150× e−

(I∗4−3)
0.125 + 433× e−

(I∗4−3)
0.004 MPa, (11.10)

where θ are in Kelvin and I∗4 is defined by tr(Cp
s) or tr(C

p
f ) depending upon the model of

stress.

11.2.2 Constitutive model for back stress

In the mechanical analog presented in Chapter 3, there is one back stress ele-

ment corresponding to the standard linear solid. The constitutive model for back stress

corresponding to that element can be summarized as

Tb
s = Sbs = T

b
stress +

1

J

⎡⎢⎢⎢⎢⎣
³
Gb
o −Gb

∞1

´ tanh
Ãr

(Gb
o−Gb

∞1)
2

τb2o
[I∗4 (F

p
s)− 3]

!
r
(Gb

o−Gb
∞1)

2

τb2o
[I∗4 (F

p
s)− 3]

(11.11)

+Gb
∞1 +Gb

∞2 {I∗4 (Fp
s)− 3}

iµ
Bp
s −

1

3
tr (Bp

s) I

¶
.

whereTb
stress corresponds to the terms coming from model of stress and material parameters

Equ as, Aiso,Aaniso, G, κ and ρo
∂ψ
∂I∗7

are given by equations 11.4 to 11.10, Gb
o, G

b
∞1, G

b
∞2 and

τ bo are given as

Gb
o = 1000 MPa, (11.12)

Gb
∞1 = 0, G

b
∞2 = 5MPa, (11.13)

τ bo = −0.119θ + 51.795 MPa, (11.14)

where θ is in K .
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11.2.3 Over stress contribution for low and high strain rates

The overstress ∆Ts and ∆Tf can be related to an appropriate difference between

stress and back stress and are given by

∆Ts= F
e−1
s TsF

e
s −Tb

s,

∆Tf= F
e−1
f TfF

e
f . (11.15)

11.2.4 Flow rule

The flow rule for each element is given by

Ḟp
s = βs∆S

T
s F

p
s, (11.16)

Ḟp
f = βf∆S

T
f F

p
f , (11.17)

where ∆Ss and ∆Sf are the deviatoric part of the overstress ∆Ts and ∆Tf and are given

by

∆Ss = ∆Ts − (∆Ts)ave I, (11.18)

∆Sf = ∆Tf − (∆Tf )ave I, (11.19)

and the material parameters βs and βf are strictly positive functions given by

βs = βs1βs2βs3, (11.20)

where βs1, βs2 and βs3 are given by the expressions

βs1 = 7.43E
−10 × e(0.52×

√
∆Ss:∆Ss), (11.21)

βs2 = 25.8× e(−11.66×tr(C
p
s)−3), (11.22)
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βs3 = 2.453E
−16 × e(0.122×θ), (11.23)

where θ is in K.The material parameter βf is given by

βf = βf1βf2βf3, (11.24)

where βf1, βf2 and βf3 are given by the expressions

βf1 = 3.5× e(.154×
√

∆Sf :∆Sf ), (11.25)

βf2 = 1.2× e(−3×tr(C
p
f )−3), (11.26)

βf3 = 0.0634× θ − 17.91 , (11.27)

where θ is in K.

11.3 Future work

There are some issues which needs to be addressed in future.

1. Modeling the influence of aging: Amorphous glassy polymers pass through

a non equilibrium state when cooled from the rubbery state. This transformation of glassy

polymers with time at temperatures below the glass-transition temperature is known as ag-

ing. This condition is characterized by excess thermodynamic quantities (volume, enthalpy

and entropy etc.) and appears to be a non-equilibrium state of matter. The influence of ag-

ing on the thermomechanical response of glassy polymers is very strong. Therefore, proper

modeling of the thermomechanical response of polymers needs to include the influence of

aging, which was not considered in this work.
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2. Modeling the strain softening: The constitutive model developed does not

capture the strain softening seen in region 2 of the stress strain curve. The effect of aging

on strain softening needs to be studied to separate the aging effect and possibly model the

effects not captured by aging.

3. Incorporation of the model into finite element software: In general,

the solution of boundary value problems in continuum mechanics implies integrating a set

of nonlinear partial differential equations. These boundary value problems, often involve

complex geometries, highly nonlinear material behavior and sophisticated boundary condi-

tions. For such problems, analytical solutions remain exceptional and numerical solutions

are necessary for their solution. The constitutive model developed needs to be incorporated

into finite element software. The model needs to be evaluated for impact conditions and

the response needs to be compared with the experimental results.

4. Development of large deformation constitutive model for other poly-

mers: From the literature it is seen that several commonly used polymers, other than PC,

which exhibits development of elastic anisotropy includes polyvinyl chloride, PDMS and

PET, although PC shows a more significant development of anisotropy. Up to now, accord-

ing to our information, the constitutive models developed for these polymers are assumed

to be isotropic and remain isotropic with plastic flow. The constitutive modeling structure

developed for polycarbonate can also be used for others glassy polymers to develop more

accurate models which then can be used for studying practical applications.

Work is currently in progress in our research group to address some of these issues.
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Chapter 12
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Appendix

12.1 Appendix A: Calculation of derivatives of invariants

Given the invariants I∗1 − I∗10 , the time derivative of these are given by

I∗1 =
Fe:Fe

Je
2
3
→

·
I∗1 =

2Fe:Ḟe

Je
2
3
− 2

3
Fe:Fe

Je
5
3
JeFe−T : Ḟe = 2
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2
3

£
Fe − 1

3 (F
e : Fe)Fe−T ¤ : Ḟe,

I∗2 =
Ce:Ce

(Fe:Fe)2
→

·
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2Ce:Ċe

(Fe:Fe)2
− 4 Ce:Ce

(Fe:Fe)3
Fe : Ḟe = 4

(Fe:Fe)2
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: Ḟe,
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3
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(Fp:Fp)2
− 4 Cp:Cp

(Fp:Fp)3
Fp : Ḟp = 4
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→
·
I∗10 = 2F

e(CeCp2 +Cp2Ce − 2Ce) :Ḟe + 2Fp(Ce2Cp +CpCe2 − 2Cp) :Ḟp.

(12.1)
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12.2 Appendix B: Calculation of stress and its rate

The expression for Cauchy stress derived in Chapter 5 can also be written as

T = ρ
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It should be noted that the terms in the curly brackets “ {}” add to zero at zero elastic

deformation (i.e. Fe = I). This is also true for all the terms in the round brackets “(

)”. Taking the derivative of T and evaluating it at Fe = I , assuming plastic deformation

gradients are constant, and after eliminating terms that are multiplied ∂ψ
∂I∗3

, “ {}” and “(

)” we find
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This shows that the derivative of the free energy with respect to the invariants I∗1 and I∗2

always appear in the same combination. Therefore, measurements that use stress rate at

Fe = I can only be used to evaluate the given combination of these derivatives. Next, let

us consider the term
·
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We now note that if we change the order of the derivatives in the square brackets “[ ]”,

both become zero as a result of the general conditions (11) imposed on the relation between

the derivatives of the free energy. We, thus, conclude that the expression for the stress rate

evaluated at zero elastic deformation is given by
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where we note that

Ċe |Fe=I= Ḟe + ḞeT . (12.7)

In component form this can be written as
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From this we can calculate the tangent modulus at zero elastic strain as
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Reorganizing this yields
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Denoting by
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we note that
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Where A, B, C, and D are functions of the ten invariants evaluated at zero elastic defor-

mation. We note that at zero elastic deformation the invariants take the values

I∗1 = 3, I∗2 =
1

3
, I∗3 = 1, I∗4 =

I4

Jp
2
3

, I∗5 =
I5
I24
, I∗6 = Jp, (12.14)

I∗7 = 0, I∗8 = 0, I∗9 = 0, I∗10 = 0,

so that it can be stated that A, B, C, and D can be considered scalar functions of the three

isotropic invariants of the plastic right Cauchy stretch given by I∗4 , I
∗
5 ,I

∗
6 . It is also noted
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that the equation for stress can be written as

T = 2Aεe +Btr (εe) I+2C (Cpεe + εeCp) + 2D
¡
Cp2εe + εeCp2

¢
, (12.15)

in terms of the infinitesimal elastic strain defined in the standard way by the equation

εe =
1

2

¡
He +HeT

¢
, (12.16)

where He = Fe − I is the elastic displacement gradient and

·
ε
e
=
1

2

³
Ḟe + ḞeT

´
. (12.17)

The four moduli that we have measured are

Ea = E3333 = 2A+B + 4Cp
33C + 4C

p2
33D, (12.18)

Et = E1111 = 2A+B + 4Cp
11C + 4C

p2
11D,

Ga = E1313 = A+ (Cp
11 +Cp

33)C + (C
p2
11 +Cp2

33)D,

Gt = E1212 = A+ (Cp
11 +Cp

22)C + (C
p2
11 +Cp2

22)D.

This can be written in a matrix equation for the four unknowns as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 4Cp
33 4Cp2

33

2 1 4Cp
11 4Cp2

11

1 0 (Cp
11 +Cp

33) (Cp2
11 +Cp2

33)

1 0 (Cp
11 +Cp

22) (Cp2
11 +Cp2

22)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B

C

D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ea

Et

Ga

Gt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12.19)

For uniaxial compression we have Cp
11 = Cp

22 and Cp2
11 = Cp2

22 so that we can write⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 4Cp
33 4Cp2

33

2 1 4Cp
11 4Cp2

11

1 0 (Cp
11 +Cp

33) (Cp2
11 +Cp2

33)

1 0 2Cp
11 2Cp2

11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B

C

D

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ea

Et

Ga

Gt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12.20)
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By examination it can be seen that the coefficient matrix for this system is singular. There-

fore, the solution to the unknowns A,B,C and D cannot be obtained from this expression

for experiments in uniaxial compression.
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