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 The University of Nebraska – Lincoln Doctor of Plant Health program requires 

each student to fulfill a professional internship over the last summer of the program.  For 

my internship, I worked as a Barley Scientist Intern for MillerCoors and Golden Malting 

in Golden, Colorado.  During this internship I gained a fundamental understanding of 

malting barley production with a significant emphasis on grain quality.  Barley produced 

for malting must fulfill strict industry quality standards before it is accepted by the head 

maltsters.  These quality standards include: a high germination rate, low moisture 

content, protein content within an acceptable range and the grain must be free from 

disease and insect damage.  Malting barley quality attributes are directly correlated with 

the conditions in which the barley was produced. 

 This paper provides a brief history of barley domestication and describes why 

barley became the grain of choice for malting and the subsequent making of beer.  The 

three main steps of malting (steeping, germination, and kilning) are outlined to emphasize 

the role quality plays in the malting process.  A description of farming practices that 

contribute to these quality attributes is presented, along with recommendations that may 

enhance crop production.   This document has a special emphasis on the management of 

the Russian Wheat Aphid (Diurpahis noxia Mordvilko) as well as the fungal diseases 

Fusarium Head Blight (Fusarium graminearum Schwabe) and Ergot (Claviceps purpurea 



(Fr.) Tul.).  This pest and these pathogens can, under ideal environmental conditions, 

compromise crop yield and diminish grain quality. 
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CHAPTER 1 

BARLEY: THE GRAIN OF CHOICE FOR MALT  

 

 Barley (Hordeum vulgare L.) belongs to the grass family (Poaceae) and is 

a very important global food and economic cereal grain crop. Between 2010 and 

2013 barley ranked fifth worldwide in crop production, averaging over 134 

million tons per year, following maize (Zea mays L.), rice (Oryza sativa L.), 

wheat (Triticum spp. L.), and soybean (Glycine max L. Merr.)(FAO 2014).  

Currently, 60-70% of the barley that is produced is used for animal feed, 30-40% 

is used in malting to make beer and whiskey, and only 2-4% is directly consumed 

by humans (Newman and Newman 2008).   

 Barley is a short season, early maturing crop that is tolerant to drought, 

alkali, and saline soils.  There are cultivars of barley that are planted in the spring 

and there are winter cultivars that are planted in the fall.  Winter cultivars need to 

undergo a vernalization (cold exposure) period before they can complete their life 

cycle and flower in the spring.  Most cultivars (spring and winter) can germinate 

in under five days provided temperatures are conducive to plant growth and 

development (12 – 24 ˚C) (Stark 2003b).  After emerging, spring barley matures 

within 60-90 days, making it a desirable crop in regard to water and nutrient use 

efficiency (Shewry and Ullrich 2014, Anderson et al. 2015).  Barley is self 

pollinating.  Both the pollen and the ovary mature at the same time to ensure 

fertilization.  Spring cultivars generally do not open their florets while undergoing 
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fertilization (cleistogamy); whereas, winter cultivars are chasmogamous and open 

their florets during this time (OGTR 2008).  

 Barley used for animal feed is grown in regions where adverse climatic 

conditions limit cultivation of more popular feed grains (e.g. maize).  Feed barley 

is generally not irrigated, and minimal inputs are invested into the crop because 

crop value is much lower than malting barley.  Cultivars grown for malting are 

expected to produce grain that adheres to specific quality standards.  Therefore, 

they are generally produced under more intensive management practices that 

include irrigation, fertility amendments, and the implementation of pest/pathogen 

mitigation strategies.   

 

Domestication and Malt History 

 Barley is believed to be one of the first eight Neolithic founder crops 

(primary domesticates) domesticated over 10,000 years ago in the Fertile Crescent 

of Mesopotamia (Zohary et al. 2012).   Modern cultivated barley (H. vulgare 

subsp. vulgare) is a direct descendant of the wild subspecies progenitor H. 

vulgare subsp. spontaneum.  Primitive domesticates of H. vulgare subsp. 

spontaneum had three spikelets per node along the axis of the floral rachis, but 

only the central spikelet was fertile, resulting in the inflorescence having two 

rows of fertile grain (Figure 1.1) (Zohary et al. 2012).  Through domestication 

humans selected for desired traits, and by 6000 B.C. six-row (three fertile 

spikelets) cultivars begin to show up in archeological excavation sites (Figure 

1.1) (Simpson and Ogorzaly 2001).  As domestication progressed, other desirable 
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traits were selected, such as, a non-brittle rachis in which the spikelets did not 

shatter on maturity and hull-less kernels that are easier for human consumption.  

 Dried barley grains are very hard and require processing prior to human 

consumption.  It is believed that prehistoric people experimented with preparation 

techniques that made the grain easier to eat.  They initially ate the grain raw after 

removing the husk or they ground the grain into a powder and mixed it with water 

to make pastes and porridges (Piperno et al. 2004).  As time went on, it was 

discovered that toasting the grains on hot stones would make them easier to grind 

and provided a more appetizing flavor.  As civilizations developed, barley became 

an integral part of daily life.  Early people learned that soaking and sprouting the 

grain before drying made the grain easier to grind into flour.  This flour was used 

in making barley breads.  The dough made from this flour provided a hospitable 

environment for yeast to thrive, and it was often left to ferment (Simpson and 

Ogorzaly 2001).  Through fermentation, yeast would digest available sugars, 

reducing the amount of tannins that cause irritation to the stomach and digestive 

tract.  Fermentation also liberates nutrients and amino acids from the starchy 

dough (Katz and Maytag 1991).  The practice of soaking and sprouting the barley 

prior to use became the precursor to the malting process and the production of 

beer.     

 The earliest documented use of barley to make beer is from Sumerian 

cuneiform tablets that date back to the third millennium BCE (3000–2001 BCE) 

(Damerow 2012). Around 1800 BCE, the “Hymn to Ninkasi” was carved into 

clay tables and preserved.  Ninkasi was the Sumerian goddess of brewing, and the 
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hymn provided a detailed recipe for beer.  The recipe describes making “bappir” 

(Sumerian bread) from barley, spreading it out on a mat, soaking the resultant 

“malt” in a jar, and ending up with beer (Katz and Maytag 1991).  Although this 

process can be achieved using other small grains (e.g. wheat, corn, emmer, or 

rice) as malts, barley has historically been preferred because it has desirable 

characteristics that are lacking or deficient in other grains.  

 One such characteristic is that the grain retains its husk during malting.  

This is important at the end of the brewing process because the husks collect at 

the bottom of the mashing tank forming a filter bed through which the wort (sugar 

water extracted from the grain) passes before going on to the brew kettle 

(Simpson and Ogorzaly 2001).  This process in which the wort is separated from 

the residual grain is called lautering.  The husks also contribute to the flavor 

profile of the beer. Another desirable characteristic is the quantity of enzymes 

produced within a germinating barley grain.  These enzymes sufficiently convert 

starches into sugars making them available for fermentation.  Other grains 

produce the same enzymes but not to the extent of barley and often require the 

addition of supplemental enzymes during fermentation (Simpson and Ogorzaly 

2001).   

 

Seed Characteristics 

 The barley seed contains the necessary resources to initiate a barley plant.  

These resources include carbohydrates, proteins, and lipids.  These raw materials 
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are packaged in a quiescent state until imbibition takes place and stimulates 

germination.   

 A barley seed is a dry indehiscent fruit called a caryopsis.  The outermost 

protective layers of the caryopsis are the lemma and palea that make up the husk.  

The husk accounts for approximately 10-15% of the dry weight of the grain and is 

made up of cellulose, arabinoxylan (a hemicellulose), lignin, and silica (Höije et 

al. 2005).  These sturdy cellular structures are resistant to enzymatic degradation 

during mashing and provide a structurally sound filter bed during lautering.  

Beneath the husk is the pericarp and testa that are fused and form the seed coat of 

the grain.  Together, the husk and seed coat protect the grain from desiccation and 

decomposition via microorganisms.   

 Directly beneath the testa is the aleurone layer.  This layer constitutes 

approximately 5% of the total dry weight of the kernel (Newman and Newman 

2008).  As the grain matures, the aleurone layer accumulates lipids and becomes 

desiccation tolerant.  This enables the cells to remain alive but in a quiescent state 

after seed maturation and through dormancy (Shewry and Ullrich 2014).  Upon 

imbibition, the embryo produces hormones that stimulate aleurone cells to release 

enzymes, including amylases, glucanases, and proteases.  These enzymes catalyze 

the mobilization of stored energy reserves within the endosperm.  Unlike maize 

and wheat, where the aleurone is only one cell layer thick, barley has three cell 

layers (Shewry and Ullrich 2014). A larger aleurone layer enables barley to 

produce enough hydrolytic enzymes to achieve sufficient modification of 



6 
 

endosperm cells, and this capability forms the basis for its use in brewing 

(Buttrose 1963, Walbot 1994). 

 The endosperm is made up of inactive starch granules and constitutes 70 -

80% of the dry kernel weight (Newman and Newman 2008, Shewry and Ullrich 

2014).  Two size fractions of starch granules are embedded within a protein 

matrix within the endosperm (Figure 1.2).  The first fraction includes large starch 

granules (A-type) that measure approximately 10-48µm in diameter and make up 

90% of the starch within the grain.  The second fraction includes small starch 

granules (B-type; 1-10µm) that constitute the additional 10% (Figure 1.2) 

(Goering et al. 1973).  At the onset of germination these proteins and starches 

become degraded by the enzymes that are released from the aleurone layer.  These 

raw materials (e.g. sugars, amino, and fatty acids) are transported to the embryo 

where they are utilized to nourish the developing plant.      

 The scutellum is a layer of specialized tissue that separates the endosperm 

from the embryo.  This region, often referred to as a modified cotyledon, is the 

initial site of protein synthesis.  These specialized carrier proteins, embedded in 

the epithelial cells of the scutellum, transport liberated glucose, peptides, and 

amino acids from the endosperm to the developing embryo (Waterworth et al. 

2000).  As modification continues and products are transferred to the embryo, the 

scutellum increases in size to maintain contact with the dissolving endosperm 

(Tillich 2007). 

 The embryo is located at the proximal end of the barley grain.  It is 

relatively small and only contributes 4% of the total dry weight of the kernel 
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(Mallett 2014).  The first step toward germination is initiated when the seed is 

exposed to water.  The embryo becomes hydrated, resumes metabolic function, 

and releases hormones that stimulate the reanimation of the scutellum and 

aleurone layer.  All of the genetic information that determines the morphology 

and physiology of the future plant is packaged within the embryo.  The plant 

genome directs and coordinates cell proliferation so that primordial tissues 

develop into organs.  The synchronization of these organs produces a functioning 

seedling which emerges from the soil.   

 The objective of malting is to exploit the physiological processes that the 

germinating seed undergoes on its way to becoming a seedling.  These processes 

liberate sugars, proteins, and amino acids, which brewers use to nourish the yeast 

in fermentation. 
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Figure 1.1 – Barley Rachis Morphology:  2-row barley head (left) and 6-row barley head 
(right).  Note the single fertile floret on the 2-row variety and the three fertile florets on the 
6-row.  Adapted from the French Botanical Network. www.tela-botanica.org. 
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Figure 1.2 – Scanning electron micrograph of barley endosperm.  Depicting both large (A-
type) and small (B-type) starch granules embedded within the protein matrix.  Micrograph 
provided courtesy of John L. Black.  http://www.regional.org.au/au/abts/2001/m3/black.htm.  
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CHAPTER 2 

MALTING 

 

 The function of the barley seed is to produce a growing barley plant.  In 

malting, the processes of germination and growth are exploited to liberate and 

obtain a bounty of fermentable products that can be used for making beer. Malting 

begins with the acquisition of quality grain.  As the grain arrives at the malt 

house, the moisture content should not exceed 12% (UK Malt 2011).  This 

prevents the growth of mold and decreases the likelihood of mycotoxin build up 

within the stored grain.   The grain must also retain its viability and have a 

germination rate of 98% before being approved for the malting process (UK Malt 

2011).  This ensures uniform germination so that grain modification is consistent 

throughout the batch.  Nitrogen and protein content are also important attributes 

in assessing gain quality.  Bamforth and Barclay (1993) indicate that acceptable 

nitrogen and protein levels in six-row malting barley are between 1.8–2.0% 

nitrogen and 11.3–12.5% protein.  Low nitrogen content may not fulfill the needs 

of yeast during fermentation, while high protein content decreases the volume of 

starch within the endosperm cavity (Shewry and Ullrich 2014).  The grain must 

also be free from disease, pre-harvest sprout damage, chemical damage, and 

insect damage.  If these grain quality standards are satisfied, the grain is approved 

by the head maltster and allowed to begin the three stages of malting:  steeping, 

germination, and kilning.  
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Steeping 

 Steeping is the first step in malting and involves submerging dried grain in 

water to increase the moisture content to stimulate germination.  In modern 

industrialized malt houses, the grain is mixed with water into slurry at 

temperatures between 14 -16 °C (Schwarz and Li 2011).  The slurry is then 

transferred to flat-bottom steeping vessels with perforated floors (Figure 2.1).  

Over the course of 24 - 40 hours, the steep will undergo a minimum of two or 

three water changes that are interspersed with ventilated air rests between tank 

refills.  When the grain is submerged, air is often pushed up through the slurry to 

aerate the mixture.  Depending on the style of the steeping vessel, air is drawn 

down (can be pushed up) through the grain bed during air rests to replenish 

oxygen that is needed by the respiring grain and remove built up carbon dioxide 

(Schwarz and Li 2011).   

 The length of time between immersion and air reset cycles varies among 

malt houses, grain variety, seasonal changes, and crop year, but it is generally 

between 4-12 hours (Schwarz and Li 2011). Barley varieties that have starch 

granules that are loosely packed into the protein matrix of the endosperm have 

more open spaces in which water can diffuse more freely (Bamforth and Barclay 

1993).  This hydrates the grain more expeditiously than varieties that have 

compacted endosperm.  This increased rate of hydration (i.e. less compacted 

endosperm) decreases the length of the steeping period, and is considered a 

desirable characteristic in malting (Palmer and Harvey 1977).     
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 During the first immersion, the dry outer grain layers rapidly take up water 

but minimal metabolic activity occurs (Kunze et al. 2004).  The grain tends to 

take up water quickly while submerged, but internal distribution through the 

endosperm occurs during the air rests.  Despite the grains initial uptake of water, 

the first immersion is considered to be a cleaning cycle.  As the steep tank fills 

with water, dirt and debris float to the top, and the tank is overflowed to eliminate 

these impurities (Schwarz and Li 2011).    

 Over the course of the steep tank immersions and air rests, the grain 

reaches 35% moisture content, and the embryo resumes metabolic activity and 

begins to synthesize gibberellic acid (GA) (Fincher 2010, Schwarz and Li 2011).  

Water and GA diffuse through the seed from the proximal end of the grain toward 

the distal tip, gradually activating the aleurone layer.  Once activated, the aleurone 

layer releases hydrolytic enzymes (glucanases, proteases, and amylases) into the 

endosperm cavity, and modification commences.  Although 35% moisture content 

is enough water to stimulate germination, steeping continues until the grain 

reaches a final moisture content of 42-48% (Schwarz and Li 2011).  This higher 

moisture level is required for uniform enzyme diffusion throughout the 

endosperm, promoting adequate modification of resources to support germination.   

 

Germination 

 Maltsters visually inspect the grain and know when it has reached the 

appropriate moisture content by the emergence of the coleorhizae, referred to as 

the “chit” (Shewry and Ullrich 2014).   Once the chit has emerged and the grain 
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has been moved to the germination beds (Figure 2.2), it is imperative that the 

grain remains moist and has adequate air circulation.  Modern germination beds, 

such as a Saladin box (Figure 2.3) or circular germination chambers (Figure 2.4), 

are designed to maintain temperature and provide aeration and moisture to the 

developing grain.  Both the Saladin box and the circular chamber are constructed 

of stainless steel and have perforated floors to allow humidified air to be drawn 

through the grain bed.  The air is often heated to maintain temperatures at 16-

20˚C (Bamforth and Barclay 1993).  The Saladin box is rectangular in shape and 

has large vertical open augers attached to a carriage that moves across the top of 

the grain bed (Figure 2.5). The circular germination beds use the same auger 

mechanism with the carriage moving around the compartment on a center pivot.   

These augers turn the grain bed every 8-12 hours to keep the rootlets from matting 

together (Shewry and Ullrich 2014).  This ensures that air and moisture reach all 

of the germinating seed throughout the profile of the grain bed. 

 The goal of germination in malting is to synthesize enzymes that initiate 

the modification of endosperm components to make them available for brewing.  

The quiescent barley grain is composed of stabilized raw materials, including 

carbohydrates, proteins, and lipids.  Through germination, these raw materials are 

modified by enzymatic activity into smaller components, such as sugars, amino, 

and fatty acids (Shewry and Ullrich 2014).  These smaller components are 

generally utilized by the developing embryo.  In brewing, these components are 

essential to the proper nourishment of yeast during fermentation (White and 

Zainasheff 2010).   
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 During modification, the cell walls of the endosperm become degraded, 

the protein matrix surrounding starch granules breaks down, and some of the 

starchy complexes are hydrolyzed.  The rate of modification is dictated by the 

ease with which the endosperm becomes hydrated, the time it takes the aleurone 

layer to undergo protein synthesis, and the availability of substrates in relation to 

their respective enzymes.   

 The endosperm cell walls are the first physical structures that enzymes 

come into contact with after they are released from the aleurone layer.  These cell 

walls are composed of up to 75% beta (β)-glucan, hemicellulose (arabinoxylan) 

(20%), and a small amount of cellulose (2%) (Fincher 2010).  Beta-glucans are 

made of strings of β-glucose molecules that are linked by β-13 and β-14 

bonds (Burton et al. 2010).  If high levels of these long chains of sugars are left 

intact, they lead to an increase in viscosity of the wort and can “gum” up filtration 

systems (Loi et al. 1987, Burton et al. 2010, Mallett 2014).  The amount of β-

glucan remaining after malting indicates the level of modification that was 

achieved.  Malt with lower levels of β-glucan generally achieved a higher level of 

modification.  Measures of β-glucan dictate malt quality.  Maltsters will use these 

values as indicators to determine adjustments that can be made during steeping 

and germination.   

 To ensure embryo survival, endosperm cell walls need to be rapidly 

hydrolyzed during germination so essential components within the endosperm can 

be liberated.  One of the suite of enzymes released by the aleurone layer is Beta 

(β)-glucanase.  β-glucanase hydrolyzes the β-glucan that is woven into the 
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endosperm cell walls and loosens the barriers between the aleurone layer and the 

internal structure of the endosperm (Burton et al. 2010).  With the cell walls 

degraded, the protein matrix and starch granules within the endosperm are 

available for additional enzyme activity.   

 The most prevalent storage proteins in the endosperm are a class of 

proteins called hordeins.  Hordeins account for 30-50% of the total nitrogen 

content within the grain (Shewry and Tatham 1990).  When these proteins are 

hydrolyzed by proteolytic enzymes that have been released from the aleurone 

layer, they provide peptides and amino acids for the growing embryo.  For 

brewers, the amount of free amino nitrogen (FAN) is a measure of amino acids 

and small peptides that are available in the malt to support yeast during 

fermentation (White and Zainasheff 2010).       

 As mentioned above (Chapter 1), the starch contained in the endosperm 

cavity is divided into two size fractions, the A-type (large 10-48µm) and B-type 

(small 1-10µm) (Goering et al. 1973).  Both sizes of these granules are composed 

of amylose and amylopectin.  Amylopectin is made up of many short (6-20 

glucose units) clusters of glucose molecules connected by α-14 (the number 1 

carbon [glucose 1] binds to oxygen which binds with the number 4 carbon 

[glucose 2] in α position) and α-16 glycosidic bonds (Shewry and Ullrich 

2014).  These molecules are highly branched and can be as large as one million 

glucose units in size (Shewry and Ullrich 2014).  Amylose is a much smaller 

compound being made up of approximately 2000 glucose units (Mallett 2014). 

Glucose linkages in amylose molecules are linearly connected by α-14 
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glycosidic bonds, and therefore, are un-branched in nature.  In both the A and B-

type starch granules, amylopectin constitutes approximately 80% of the starch 

granule, and amylose makes up the additional 20% (Jane et al. 1992).  

 During starch modification, the aleurone layer synthesizes both alpha (α)-

amylase and beta (β)-amylase.  These enzymes attack the long chains of 

amylopectin and amylose.  Alpha-amylase can hydrolyze any α-14 glycosidic 

bond along the glucose chain, provided the bond is not within one glucose 

molecule of an α-16 bond (Mallett 2014). Alpha-amylase is considered the 

starch molecule “chopper”, because it chops the molecule in various places along 

the chain of glucose units (Mallett 2014).  This results in chains of glucose that 

are variable in length.  Beta-amylase can only hydrolyze α-14 bonds at the ends 

of the glucose chains that are within three glucose molecules of an α-16 bond 

(Mallett 2014).  Beta amylase “nibbles” on the ends of the chains and generally 

results in the liberation of the disaccharide, maltose (Mallett 2014).  For brewing, 

the malt starches need to be broken down to glucose, maltose, and in some cases 

maltotriose for yeast utilization in fermentation.  Most of the starch hydrolysis 

occurs in the first stage of the brewing process, known as mashing.  Larger sugars 

cannot be fermented and will carry over into the beer, resulting in a “sweeter” 

flavor profile.   

 As modification proceeds, the resultant malt extract (simple sugars, 

dextrins, amino acids, and proteins) becomes increasingly more available for 

embryo utilization.  If allowed to continue, fermentable material can be lost and 

the malt is considered to be overmodified.  To prevent this, maltsters visually 
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inspect this “green malt” to determine how modified the endosperm components 

have become.  Ideal modification has occurred when the acrospire (the first shoot) 

has grown to approximately 75% of the grains length (Schwarz and Li 2011).  In 

the malting process, germination generally takes between four and five days, at 

which point the green malt is moved to the kiln and modification is discontinued 

(Bamforth and Barclay 1993, Papazian 2003).   

 
Kilning 

 
 Once it has been determined that the green malt has reached ideal 

modification it is transferred to a kilning chamber.  Like germination beds, 

modern kilns are constructed of stainless steel, have perforated floors, and can be 

circular or rectangular in shape.  During kilning, the green malt is evenly spread 

across the floor, and hot air is blown through the grain bed (Figure 2.6).  This 

process kills the embryo and terminates germination while preserving the malt 

extracts and retaining its enzyme activity. 

 Over the course of approximately 24 hours, the green malt undergoes two 

major phases. The grain is dried (withering) and then cured.  Withering takes 

place over the first 10 hours of kilning at temperatures ranging from 50-75˚C 

(Schwarz and Li 2011).  The purpose of withering is to slowly remove the 

moisture from the grain so that modification is arrested and the enzymes stop 

working but are not denatured.  As hot air passes through the grain bed, the air 

cools as it picks up moisture from the grain and the grain begins to dry.  

Eventually the moisture is dissipated and hot air permeates through the grain bed.  
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This is called a “breakthrough”, and once this is uniform throughout the kiln, 

curing can commence (Mallett 2014).   

 Curing entails gradually increasing the temperature to between 80-110˚C 

(depending on malt style) over the remainder of the kilning time (Bamforth and 

Barclay 1993).  This enables the maltsters to develop the desired malt color and 

aroma for the particular malt they are creating.  When kilning is completed, the 

dried rootlets are removed and the malt is relocated to a storage facility.  Often 

malt is aged for up to 28 days to allow residual moisture to become uniformly 

distributed throughout the grain (Mallett 2014). 

 After the ageing process, the finished malt has reached a moisture content 

of approximately 3-5% (Bamforth and Barclay 1993).  This moisture content 

keeps enzymatic activity dormant and the malting process (steeping, germination, 

and kilning) has decreased the likelihood of spoilage.  The malt is then stored in 

climate controlled storage bins prior to being transferred to the brew house.  

These storage bins maintain a climate that is low in humidity (less than 10.5%) 

and temperatures of 10 - 20˚C (Queensland 2015).  Breweries do not generally 

store more than a few days worth of malt at the brew house because malt storage 

increases the brewer’s expenses.  Therefore, malt is stored onsite at the malt 

house until the brewery calls in an order.   
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Figure 2.1 – Filling Steep Tank with slurry (water and barley). Photograph taken by Haley Oser 
at Golden Malting in Golden, CO. 
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Figure 2.2 – Steeped grain being transferred to the germination bed.  Photograph taken by 
Haley Oser at Golden Malting in Golden, CO. 
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Figure 2.3 – Saladin Box (germination bed).  Photograph taken by Haley Oser at Golden 
Malting in Golden, CO. 
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Figure 2.4 – Circular construction germination bed.  Photograph courtesy of Mont Stuart.   
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Figure 2.5 – Saladin box demonstrating large vertical open augers. Carriage moves across the 
top of the grain bed turning the grain.  Photograph taken by Haley Oser at Golden Malting in 
Golden, CO. 
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Figure 2.6 – Kiln drying down green malt.  Green malt is evenly spread across the floor, and 
hot air is blown up through the grain bed.  Photograph taken by Haley Oser at Golden Malting 
in Golden, CO. 
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CHAPTER 3 

BARLEY PRODUCTION 

  

 Barley produced for the malting industry is generally limited to selected cultivars 

approved by the American Malting Barley Association (AMBA).  The AMBA’s mission 

is “to encourage and support an adequate supply of high quality malting barley for the 

malting, brewing, distilling, and food industries and increase understanding of malting 

barley” (AMBA 2011a).  Barley varieties approved by the AMBA are selected on the 

basis of their agronomic characteristics (e.g. yield, disease resistance, etc.) and their malt 

quality attributes (e.g. germination efficiency, plumpness, low protein, etc.) (AMBA 

2011a).  In malting barley production, malt quality factors are more important than yield; 

therefore, these cropping systems are managed more intensely than fields producing feed 

grade barley.  In executing these practices, producers pay special attention to planting 

times and conditions, nutrient management, growth stages, irrigation and harvest. 

 

Planting 

 Malting barley in the United States is primarily grown in the temperate regions of 

Colorado, Montana, Idaho, Wyoming, and North Dakota (AMBA 2011b).  These states 

have an ideal climate for barley production.  Barley is a cool season crop that will yield 

the best under conditions in which the vegetative and early reproductive growth coincide 

with moderate temperatures.  

 In the spring, barley should be planted as soon as soil temperatures ensure 

uniform germination and emergence.  Barley will germinate when soil temperatures are 
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above 5˚C, but optimum temperatures for emergence and growth are 12 - 24˚C (Stark 

2003b, McVay et al. 2008).  Planting in the northwestern regions of the United States 

begins mid-February and can continue through mid-April.  Early planting reduces the risk 

from drought stress, high temperatures later in the season, diseases, and insect 

infestations (McVay et al. 2008).  Delayed planting increases the risk of high protein 

content in the grain and can result in decreased yields.  Reduced grain quality can 

ultimately lead to rejection at the elevator.  

 Fukai et al. (1990) conducted a study in Australia on the effect of planting density 

on biomass accumulation and yield.  They found that higher planting densities (120 

plants/m2) resulted in increased tiller production per unit area, higher rates of biomass 

accumulation, earlier heading, and higher yields when compared to lower planting 

densities (36 plants/m2) .  With more tillers per meter squared and higher biomass 

accumulation, canopy closure occurred sooner resulting in less water loss from the soil 

surface.  This resulted in a reduction in overall evapotranspiration and more water for 

plant utilization through the season (Fukai et al. 1990).  In Montana and Idaho, barley 

producers use planting population rates that range from 75-240 plants/m2 (7-23 plants/ft2) 

which is approximately 68–90 lbs (seed)/acre (Stark 2003b, McVay et al. 2008).  These 

rates vary depending on cropping system, growing region, management tactics, soil type, 

plant variety, and irrigation practices.  If growers plant a variety that does not tiller well, 

production may benefit from a higher planting rate; whereas, lower densities might be 

employed under dryland conditions, such as pivot corners.      

 Germination and emergence proceed more readily when the seed is planted in a 

fine textured but firm seedbed (Stark 2003b).  Seeds should be planted at a depth of 1-1.5 
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inches with row spacing of 6-8 inches (Stark 2003b, McVay et al. 2008).  Growers 

generally plant barley using grain drills.  Modern grain drills provide precision planting, 

even seed spacing, uniform depth, and ensure adequate seed-soil contact.   

 

Fertility Management 

 Although barley can grow in alkaline, saline, and nutrient deprived soils, malt 

quality barley requires optimum fertility management.  To characterize nutrient 

availability in a field, soil samples should be taken one to two weeks prior to planting.  

Provided the field has a uniform soil type, samples should be taken from various 

locations and mixed together into a subsample that represents the major soil 

characteristics (i.e. texture, structure, and nutrient content) across the field.  Samples 

taken from fields with variable soil types should be kept separate so site-specific nutrient 

content can be quantified.  Soil tests can also provide information about the amount of 

soil organic matter (SOM) and pH. These soil attributes can indicate the availability of 

minerals and nutrients within the soil and can elucidate the effects of fertility 

amendments.  Soil texture also plays a role in nutrient availability.  Coarse-textured soils 

often leach easily and do not retain nutrients for long periods of time.  Fine-textured soils 

have more surface area and higher cation exchange capacity, and thus, they can better 

retain nutrients (Singer and Munns 2006).  It is important to keep soil characteristics in 

mind when establishing a fertility management plan. 
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Nitrogen  

 To obtain grain protein levels between 11.3%-12.5% (malt quality standard), the 

amount of available nitrogen (N) in the soil should be carefully monitored through 

regular soil testing.  Soil N content is influenced by the current crop, previous fertilizer 

applications, previous year’s crop, soil type, level of organic matter, irrigation, and other 

management practices.  To determine the amount of N that needs to be applied to a field 

(or field section in a site-specific scenario), the grower should determine a reasonable 

estimated yield for the crop.  This estimate is generally based on historical yield values or 

can be provided by the seed distributor.  Next the grower should convert the 

concentrations of inorganic N (NO3-N and NH4-N) from the soil test to pounds of N per 

acre.  From a N recommendation table, take the amount of available inorganic N present 

and subtract it from the recommended amount needed to reach the target yield potential 

(Figure 3.1) (Brown and Stark 2003, Jacobsen et al. 2005).  These values usually take 

into account the amount of SOM and the rate it mineralizes, making nitrogen available to 

the plant.  For example, in the Fertilizer Guidelines for Montana Crops, they assume a 

regional average organic matter level of 2% which is incorporated into their N 

recommendation values (Jacobsen et al. 2005).  McVay et al. (2008) suggest that malting 

barley needs 1.2 lb N per target yield bushel to ensure vigorous plant growth and 

maintain protein content within quality standards.  If the protein content of previous 

barley crops were in excess of the malt quality standards it has been suggested to reduce 

the recommend N application amount by 20 lbs/acre across all target yields (Jacobsen et 

al. 2005).   
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Phosphorus and Potassium  

 Phosphorus (P) and Potassium (K) are needed to achieve optimum tillering and 

plant growth.  The amount of P and K in the soil can be determined through soil sampling 

and testing.  If soil test levels are below the “critical level” of 16 ppm P, and 250 ppm K, 

amendments should be made (McVay et al. 2008).  After identifying the concentration of 

P and K (ppm) in the soil, growers can determine how much needs to be applied by 

referencing regional nutrient recommendation tables similar to the one provided by 

Montana State University in Fertilizer Guidelines for Montana Crops (Figures 3.2 and 

3.3).  It is recommended that starter applications of 10-20 lbs. per acre of P and K be 

applied at planting because cool, wet soils generally limit their availability (Jacobsen et 

al. 2005).  Amendments should be placed up to 2 inches below the seed so that the 

emerging roots will readily come into contact with the nutrients (McVay et al. 2008).  

 

Sulfur and Micronutrients 

 Sulfur (S) requirements for barley are generally 1/15th (7%) that of N (Brown and 

Stark 2003).  If the soil test indicates that S content is less than 10 ppm, it is 

recommended to apply 15-20 pounds per acre (Mahler and Guy 2007).  Irrigation water 

often contains a sufficient amount of S and should be tested before making an 

application.  Soil pH should be taken into account when deciding which form of S is 

applied.  Elemental S can lower the pH of a soil and should be used cautiously on neutral 

and acidic soils (McVay et al. 2008). 

 Micronutrient deficiencies are generally rare in barley production but should not 

be excluded as a culprit if symptomology appears.  Dell (1981) found that barley grown 
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in copper deficient soils often had underdeveloped lignifications in the endothecia (inner 

wall of a pollen grain), and this resulted in sterile pollen grains.  If a deficiency is 

detected, liquid amendments can be made foliarly or granule amendments can be applied 

in furrow at planting (McVay et al. 2008).  

 

Development and Growth Staging 

 Barley production has become increasingly more intensive over the years.  Many 

management decisions regarding the application of fertilizers, pesticides, and growth 

regulators are dependent on the developmental stage of the crop.  To accurately schedule 

management inputs and employ tactical control measures (i.e. insect or pathogen) it is 

essential for the producer to know the specific growth stages of the crop.  A number of 

cereal grain staging systems have been employed for describing the developmental stages 

of barley.  Currently, the Zadoks system is the most universally recognized system that is 

used for describing growth stages of cereal grains (Figure 3.4) (Anderson et al. 2015).  

The Zadoks system is a two-digit code where the first number designates the principal 

stage of development.  The principal stages include; 0) germination, 1) Seedling growth, 

2) Tillering, 3) Stem extension, 4) Booting, 5) Heading, 6) Anthesis, 7) Milk 

development, 8) Dough development, and 9) Ripening.  The second number of the code 

(also 0-9) divides each principal group into incremental development stages.  For 

example, a plant that is in growth stage Z23 is tillering (2nd primary stage) and has the 

main shoot plus 3 tillers (3rd secondary stage).  Fertility amendments and herbicide 

applications are generally completed during tillering, and disease management is critical 

from stem extension through heading (OMAFRA 2013).  It is also important to 
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understand the critical times during plant growth that the plant should not undergo water 

stress.   

 

Irrigation 

 Irrigation management is one of the most important factors affecting malting 

barley yield and quality.  Morgan and Riggs (1980) found that drought induced yield 

reduction was greatest when the drought stress was imposed at heading.  Drought stress 

at this developmental stage significantly reduced the amount and size of grains along the 

developing rachis (Morgan and Riggs 1981).  They also determined that the quality of 

malt extracts was compromised when the plants experienced drought stress during grain 

development (Morgan and Riggs 1981).  It has been demonstrated that cereal grains that 

undergo drought stress during development tend to accumulate higher quantities of 

storage proteins during seed fill (Parchin and Shaban 2014).  Growers are encouraged to 

monitor soil moisture throughout the season to ensure their crop has sufficient water.  

Monitoring can be conducted using soil moisture sensors, such as neutron probes, time 

domain reflectometry (TDR), tensiometers, or gypsum blocks (McVay et al. 2008).  

These instruments enable the grower to easily determine the soil moisture in many 

locations across the field.  With this information, irrigation strategies can be developed to 

ensure the crop has adequate water during critical growth and developmental stages.   

 Evapotranspiration (ET) is the loss of water from the soil via plant transpiration 

and evaporation from the soil surface.  This value can be translated into the amount of 

water required by a crop at any given time.  Spring barley, grown in southern Idaho, has a 

seasonal ET of 15-19 inches (Stark 2003a).  In mid-June to mid-July barley is generally 
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flowering and water demands can be as much as 0.30 inches per day (Stark 2003a, 

McVay et al. 2008).  It is important to monitor the amount of available water in the soil 

profile and irrigate when levels fall below the amount needed by the crop during specific 

growth stages.    

 The amount of water a soil can hold is called the water holding capacity (WHC) 

and is represented in inches of water per foot of soil (in/ft).  The soil profile is made up of 

layers that differ in their soil characteristics (i.e. texture, structure, SOM, etc.).  Each of 

these layers has a different WHC and the sum of the WHCs of all layers is the total 

available soil moisture (ASM). Soil properties vary by depth; therefore, when 

determining the ASM, measurements should be taken from a three foot profile (McVay et 

al. 2008).  If the amount of water applied to the soil exceeds the ASM, water will move 

beyond the root zone and vital minerals and nutrients will be lost to leaching (McVay et 

al. 2008).  Stark (2003a) recommends not allowing the ASM to drop below 50% at any 

point during the growing season, especially during tillering and flowering.  By 

maintaining the ASM at 50%, water use efficiency can be achieved and crop quality and 

yield can be ensured. 

 

Harvest and Storage 

 Maltsters will pay premiums for barley that meets all of the quality standards and 

has been harvested in good condition and properly stored.  Malting barley reaches 

physiological maturity at 35% moisture and must be dried down to less than 12% for 

proper storage (McVay et al. 2008).  After maturity some yield losses can occur due to 

pre-harvest sprout damage or shattering.  It is important to know when the crop reaches 



33 
 

moisture levels suitable for harvesting to mitigate these pre-harvest losses.  Some 

varieties are more susceptible to pre-harvest sprout damage than others; therefore, variety 

selection can help minimize this loss.  Cutting and windrowing the barley at 20-30% 

moisture content and allowing it to dry in the field can also decrease losses (AMBA 

2011b). Growers can also directly harvest the grain and put it into drying storage bins but 

this has its own set of risks that should be assessed.  Grain that is too moist (greater than 

18%) when harvested has the potential to be damaged in the thresher, and grain that is too 

dry can potentially shatter (AMBA 2011b).  At harvest the ideal moisture content of the 

grain is dependent on harvesting strategy (e.g. direct combine, windrow, etc.) and storage 

facilities.   

 Arinze et al. (1994) conducted a study on grain that was directly harvested and 

dried in storage bins.  Their research addressed the effects of harvesting at different 

moisture contents and drying the grain using different air temperatures.  They found that 

grain viability decreased when malting barley was dried in bins under temperatures 

exceeding 30-40˚C (Arinze et al. 1994).  They recommend not harvesting the grain until 

it reaches at least 22% (no more) and ventilating it with air that does not exceed 25˚C to 

maintain grain quality (Arinze et al. 1994).   

 Maintaining quality in malting barley is the primary criteria in which growers 

base their production decisions.  Decisions regarding planting times, fertility 

management, irrigation schedules, and harvesting all contribute to the quality of the 

grain.  In addition to making good production decisions, growers often face challenges in 

managing insect pests and pathogens.  These pests and pathogens can have deleterious 

effect on the both grain quality and yield.  The next chapter (Chapter 5) discusses some 
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of these pest/pathogen challenges and presents some management strategies that may 

help mitigate reductions in quality and yield.      
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Figure 3.1 – Nitrogen Recommendation Table.  Amended from:  Fertilizer Guidelines for 
Montana Crops – Jacobsen et al. 2005. 
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Figure 3.2 – Phosphorus Recommendation Table.  Amended from:  Fertilizer Guidelines for 
Montana Crops – Jacobsen et al. 2005. 
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Figure 3.3 – Potassium Recommendation Table.  Amended from:  Fertilizer Guidelines for 
Montana Crops – Jacobsen et al 2005. 



38 
 

 

 
 

  

 

Figure 3.4 – Zadok’s scale for cereal growth and development stages. Figure courtesy of 
©Queen’s Printer for Ontario, 2013. 
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CHAPTER 4 

PEST AND PATHOGEN MANAGEMENT CHALLENGES THAT IMPACT 

MALTING BARLEY PRODUCTION 

 

A Common Pest 

 In barley production, insects are generally not a major factor, although 

environmental conditions favoring an increase in populations can lead to significant 

damage (McVay et al. 2008, OGTR 2008).   Some insect pests that have been reported to 

cause periodic economic losses in barley include:  Haanchen mealybug (Trionymus 

haancheni McKenzie), Cereal leaf beetle (Oulema melanopus L.), Russian wheat aphid 

(Diuraphis noxia Mordvilko), Pale Western Cutworm (Agrotis orthogonia Morrison), 

and the Army cutworm (Euxoa auxiliaries Grote) (McVay et al. 2008).  This section will 

provide an overview of the Russian wheat aphid, a pest that has a life history and 

behavioral characteristics that make detection difficult and management challenging. 

Severe infestations of Russian wheat aphid can compromise plant health, diminish barley 

yield, and reduce grain quality. 

 

Russian Wheat Aphid  

 The Russian wheat aphid (RWA) (Diurpahis noxia Mordvilko) (Hemiptera:  

Aphididae) can be a serious pest of wheat and barley.  In North America, it was first 

identified in Texas in 1986 and quickly spread through the western Great Plains and 

intermountain regions of the United States and into Canada (Mornhinweg et al. 2006).  

Cumulative economic losses since its introduction are estimated to be in the billions of 
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dollars (Mirik et al. 2009).  The injury incurred to host plants from the RWA is a 

complex domino effect of developmental, morphological, physiological, and biochemical 

responses.   

 The aphid feeds within the leaf whorl where leaves are young and a high 

concentration of photosynthate is present (Macedo et al. 2003).  The insect taps into the 

phloem with its proboscis and injects a toxin into the plant that prevents the leaf from 

unfurling (Smith et al. 1991).  Continued feeding results in leaf purpling, the 

development of yellowish-white streaks, and prostrate growth of the tillers (Figure 4.1) 

(Macedo et al. 2003).   Plants eventually become stunted, and at heading, the awns 

become trapped in the rolled leaves and cause the rachis to become curved or “fish-

hooked” upon emergence (Hein et al. 2005).  When heads become fish-hooked, grain fill 

is compromised causing a decrease in yield potential and grain quality.   

 The RWA is a small insect, measuring 1.6-2.1 mm in length (Hodgson and Karren 

2008).  They are light green in color, have an elongated spindle-shaped body, and short 

antennae (Hein et al. 2005, Hodgson and Karren 2008).  Distinctive characteristics 

include the lack of visible cornicles (siphunculi) and the presence of both a cauda and a 

supracaudal process which gives the appearance of a “double tail” (Figure 4.2) 

(Aalbersberg et al. 1987b).  Females reproduce parthenogenetically (asexual 

reproduction), are viviparous (live birth), and give birth to both winged (alate) and 

wingless (apterous) young.  The alate morphology occurs when the host plant is under 

stress and is no longer suitable to sustain the colony.  One female can produce 72-81 

nymphs provided temperatures remain between 5-20 ˚C (Aalbersberg et al. 1987a, 

Tolmay 2006).  After 10 days, nymphs can reach maturity and begin reproducing.  This 
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rapid rate of reproduction increases the difficulty of management if infestations go 

unidentified. 

 Barley and wheat are the main economic hosts of the RWA in which the insect 

can complete its entire life cycle.  Alternate hosts can also support aphid populations 

during seasonal changes when barley and wheat are not being grown.  Alternate hosts 

include several grass species such as Crested wheatgrass (Agropyron cristatum (L.) 

Gaertn), Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & 

Dewey), and Canada wild rye (Elymus cnandensis L.) (Hodgson and Karren 2008).  The 

RWA will survive on alternate host plants until suitable barley and wheat host plants are 

available.  In winter wheat and barley production, the aphids will move into the newly 

emerging crop in the fall.  Heavy infestations compromise the plants, making them more 

susceptible to winter kill (Hein et al. 2005).  Plants that survive and sustain aphid 

colonies through the winter become reservoirs for population increase in the spring.  

When the winter cultivated host crops are harvested in the spring, aphids move into 

spring wheat or barley cultivars, and/or onto alternate hosts, where they will feed for the 

rest of the summer.   

 Often producers will see symptomology on the plants, but will not detect the 

presence of the aphid infestation because the colony is within the immature rolled leaves.  

This enclosure not only protects the aphids from detection but also prevents biological 

control agents from gaining access to the colony (Carver 1989).  The protective rolled 

leaf also protects the colony from contact insecticide treatments, making management of 

this cereal grain pest challenging.  
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Crop Resistance 

 Because of the limited cost effectiveness of insecticides and biological control 

agents against RWA, plants exhibiting resistant characteristics are being sought.  A 

substantial amount of research is underway to develop resistant cultivars of both wheat 

and barley.  Wheat has received the majority of the attention as a number of RWA 

resistant genes have been identified (e.g. Dn1 to Dn9 and Dnx) (Liu et al. 2005).  

Resistant barley cultivars have been identified but the mechanisms that confer this 

resistance are not well understood. Gutsche et al. (2009) investigated the physiological 

response of resistant and susceptible barley cultivars to RWA feeding.  Their research 

indicated that RWA feeding has an impact on the plants ability to assimilate carbon, 

hence affecting the physiology of the Calvin Cycle (dark reactions) within the plant.  

They found that the resistant cultivar was able to compensate for this deficiency for a 

longer period of time as compared to the susceptible cultivar.   

 Although there is a tremendous amount of work going into developing resistant 

varieties, different biotypes of RWA have been identified (Haley et al. 2004).  When 

deploying resistance in a RWA management plan, it is important to understand that 

available resistant varieties may not be resistant to all RWA biotypes.  The identification 

of resistant characteristics and utilization of resistant germplasm coupled with appropriate 

chemical use and cultural practices can greatly reduce RWA populations and enhance 

long-term control measures.    
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Chemical Control 

 The use of insecticides to effectively control the RWA has presented a significant 

challenge to producers.  Due to the feeding habit of these insects, chemical control 

measures have been limited to systemic insecticides (e.g. disulfoton and dimethoate), 

insecticides with vapor action (e.g. chlopyriphos), and some insecticidal seed treatments 

(e.g. imidacloprid) (Tolmay 2006).   

 Pest management strategists recommend refraining from chemical use until RWA 

populations have reached economic thresholds.  Fields that have 5-10% infested tillers 

prior to boot, 10-20% after boot, and greater than 25% after flowering would benefit from 

an insecticide application (McVay et al. 2008).  Often infestations are isolated to discrete 

areas within a field.  In this case, thresholds should still be utilized, but spot treatments of 

the infested area are advised (Hein et al. 1989, Peairs et al. 2012).  This enables the 

producer to limit aphid populations while ensuring natural enemy populations are 

maintained.    

 RWAs often move in from infested host plants along the borders of field and can 

often be detected in these areas prior to an epidemic.  The immigration of flying RWA in 

both the spring and fall can be unpredictable, therefore scouting fields regularly will aid 

in identifying potential threats.  Producers that detect RWA in their fields should monitor 

infestation density and use appropriate economic thresholds to make treatment decisions.  

Advantages of early detection include minimizing crop damage and maintaining 

effectiveness of chosen control methods.  Under continued infestation pressures that 

warrant insecticide use, it is important to rotate modes of action in order to prevent the 

evolution of chemical resistance.        
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Cultural Practices        

 Cultural practices can be very useful and effective in reducing population size and 

spread of the RWA. Tactics that include the use of resistant cultivars can limit the rate 

that RWA populations can increase.  This, coupled with crop rotations that alternate 

between host and non-host species, will greatly reduce insect pressure.  Controlling 

volunteer wheat and barley will eliminate refuges between rotations (McVay et al. 2008).  

Managing the presence of alternate hosts on the edges of fields can also reduce RWA 

populations.   

 Adjusting planting dates can reduce the severity of the impact of RWA 

infestations.  Planting spring grains as early as possible enables the plant to reach a more 

mature growth stage before immigration of RWA.  This enables the plant to better 

withstand an infestation and deters the aphids from establishing colonies (Hein et al. 

1989, Hodgson and Karren 2008).  It is also recommended to avoid early planting of 

winter cultivars to extend RWA oversummering period.  This will allow the crop to 

become established and achieve maximum vigor going into the winter with decreased 

insect pressure (Peairs et al. 2012).  Selecting cultivars that are well-suited for the 

growing area and maintaining plant health by reducing water and nutrient stress will 

make the plant less susceptible to RWA damage. Combining cultural techniques can 

significantly reduce RWA densities and preserve crop health and yield potential.    

 

Biological Control 

 A number of different RWA natural enemies have been detected.  These natural 

enemies include predators such as: ladybird beetles (Coccinella magnifica Redtenbacher), 
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green lacewings (Chrysoperla spp. L.), parasitic wasps (Diaeretiella rapae M’Intosh, 

Alloxysta spp., Asaphes spp., and Aphelinus spp.), and syrphid fly larvae, and parasitic 

fungal pathogens (Entomophthora chromaphidis Burger & Swain, Pandora neoaphidis 

Remaudiere & Hennebert, and Conidiobolus obscures Hall & Dunn) (Carver 1989, 

Wraight et al. 1993).  Although there are many biological agents that feed on or parasitize 

RWA they are generally not effective in controlling populations.  This is in part due to 

their low numbers and inability to gain access to colony because of the protection of the 

rolled leaf.  Current research is underway to find better ways of implementing these 

natural enemies into an integrated management program. 

 Although insects are rarely responsible for major economic losses in barley 

production, they can cause serious damage under favorable conditions.  When favorable 

conditions result in increased pest populations it is advantageous to have an integrated 

pest management (IPM) plan already in place.  An effective IPM plan is an ecologically 

based strategy that reduces populations below levels that cause economic damage.  This 

reduction in population density is achieved by incorporating multiple management tactics 

such as the use of resistant varieties, cultural practices, biological control, and selective 

pesticides.  Utilizing an ecologically based IPM plan reduces pest pressure while 

maintaining environmental quality.   

 

Fungal Pathogens 

 Plant diseases can severely impact malting barley quality and yield. Disease 

control is largely based on preventative measures because chemical controls are often 

ineffective or not economical after an infection has begun.  There are a number of 
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pathogens that cause disease in barley.  Many of them infect the root system and prevent 

the uptake of water and nutrients.  Others infect seedlings, preventing them from 

emerging or becoming established.  Some diseases cause foliar damage that compromises 

the plants ability to efficiently conduct photosynthesis.  This paper will cover two fungal 

pathogens that infect the floral rachis of barley.  Both of these pathogens compromise 

grain quality and produce mycotoxins that are harmful if consumed by humans.  In 

malting barley production there is very little tolerance for these diseases and if they are 

detected the grain is likely to be rejected at the elevator.      

 

Fusarium Head Blight 

 Fusarium head blight (FHB) (Fusarium graminearum Schwabe (anamorph)) 

(Gibberella zeae (Schwein) Petch (teleomorph) (Ascomycota), also known as scab, is a 

plant disease caused by the pathogen Fusarium graminearum.  This pathogen is a 

destructive disease of barley that is most severe in growing regions that exhibit high 

temperatures and relative humidity during heading.  These regions include the states of 

the upper Midwest (Minnesota, North and South Dakota, Illinois, Indiana, and Ohio), 

Montana, and into Canada (Manitoba) (Agrios 2005, Burrows 2012).  This pathogen 

decreases yield, reduces grain quality, and produces a mycotoxin that makes grain 

unusable.  Prior to 1993, brewers in the United States had obtained 75% of their malting 

barley from North Dakota, South Dakota, and Minnesota.  In 1993 these states 

experienced a FHB epidemic that has since diminished their ability to grow malting 

barley in the region.  Between 1993 and 1998 barley producers lost a total of $406 



47 
 

million in net revenue due to this disease.  These states have collectively lost 73% of the 

nationwide malting barley market (Windels 2000). 

 The primary symptom exhibited as a result of FHB infection is bleaching of the 

floral rachis accompanied with a pinkish mold (sporodochia) growing at the base of the 

spikelets (Figure 4.3).  The pathogen infects the spikelets making the developing kernels 

shrivel and turn white (scabby).  These scabby kernels are rarely viable, resulting in poor 

malt performance, and therefore, the grain is rejected at the elevator.   F. graminearum 

produces deoxynivalenol (DON), a harmful mycotoxin if consumed by human or 

livestock.  This mycotoxin, often referred to as “vomitoxin”, causes nausea (vomiting), 

gastroenteritis, diarrhea, immunosuppression, and fever (Sobrova et al. 2010).  The U.S. 

Food and Drug Administration (FDA) has imposed strict regulations on the amount of 

DON that can be present in grain.  Products that are directly consumed by humans cannot 

have more than 1ppm DON; whereas, grain that is going for animal feed cannot have 

more than 5-10 ppm (Burrows 2012).  Malting barley has even tighter industry standards, 

requiring DON levels to be under 0.5 ppm (Windels 2000).  Beer brewed from grain with 

elevated DON levels is susceptible to spontaneous “gushing” (Mallett 2014).  It is 

undesirable at the bar, and generally frowned upon in the industry, to have a vomitoxin in 

your beer that makes it gush upon opening.     

 Fusarium head blight spores are introduced into a field via wind or through 

infected seed.  Once in the field, this pathogen overwinters on infested crop residue from 

the previous year.  Infectious spores reside on the residue within either asexual 

sporodochia or sexual (G. zeae) perithecia (Tekauz et al. 2000).  Under favorable 

conditions, macroconidia or ascospores are forcibly ejected from the sporodochia or 
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perithecia, respectively.  Infection can occur any time from floral anthesis through the 

soft dough stage of kernel development.  Spores enter the plant through natural openings 

(e.g. stomata) and need to be in contact with soft tissues such as the pistil or stamen to 

elicit an infection (Leonard and Bushnell 2003).  Once the spores make contact with 

receptive tissues, they germinate, and hyphae invade the developing seed.  Successful 

infection entails hyphal penetration of the seed coat, endosperm colonization, and 

eventual seed death (Leonard and Bushnell 2003). 

 The success of this pathogen is dependent on extended periods of high relative 

humidity (>90%) and warm temperatures (between 15-30˚C) before, during, and after 

anthesis.  If inoculum is present, chances of infection increase if there has been three or 

more rain/irrigation events from anthesis until 3-5 days post-anthesis (Burrows 2012).  

To maintain profitability, it is important for a grower to scout fields regularly to identify 

infection early on.  If an infection is identified, management strategies to reduce 

inoculum or prevent future outbreaks can be employed.  These strategies include an 

integrated approach that utilizes the adoption of less susceptible cultivars, fungicides, 

cultural practices, and forecasting.   

 

Crop Resistance 

 Unlike wheat, identifying sources of resistance to FHB has been challenging in 

barley.  One cultivar, ‘Quest’, has been released from the University of Minnesota 

(UMN) (McMullen et al. 2012).  Breeders at UMN identified resistant traits that trace 

back to China and Switzerland and were able to introduce these characteristics into Quest 

(McMullen et al. 2012).  Although Quest has been developed there is generally a lack of 
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resistant varieties for growers to choose from.  Without having varieties that are resistant 

to FHB, growers have discontinued barley production in regions where environmental 

conditions perpetuate disease.   

 

Cultural Practices 

 Most cultural practices are focused on avoiding or limiting exposure of vulnerable 

tissues to F. graminearum infection.  This pathogen survives saprophytically on the 

residue of plants, such as corn and other small cereal grains (Leonard and Bushnell 

2003).  One method of avoiding infection is to manage infected plant debris.  This can be 

achieved by mechanically chopping residue to expedite the decomposition rate, or 

employing tillage practices that bury infested residue (McMullen et al. 2012).  Crop 

rotations that incorporate the use of non-host species can significantly reduce inoculum 

load.  Combining crop rotations with residue management practices has been shown to 

decrease FHB infestations up to 30% (McMullen et al. 2012). 

 The spores of F. graminearum are disseminated from the source of primary 

inoculum via wind and water.  Burrows (2012) recommends ensuring the crop is 

adequately watered prior to anthesis and suspending irrigation practices immediately 

before and throughout the time period during anthesis.  Other growers have spread the 

risk from FHB by staggering planting dates or using cultivars with different maturation 

times.  This ensures variable flowering dates, reducing the chance that weather conditions 

favoring F. graminearum infection would affect their entire crop (McMullen et al. 2012).   

 Although cultural practices can reduce the amount of local inoculum, F. 

graminearum spores can be carried by wind currents for long distances.  If the 
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atmospheric inoculum load is high, the reliance on long distance predictive models and 

the preventative use of fungicides become increasingly more important when managing 

FHB.   

 

Fungicide Intervention 

 The U.S. Wheat and Barley Scab Initiative established research plots across 

multiple states where Fusarium head blight was a problem.  Through the Uniform 

Fungicide Trials, researchers found that locally systemic demethylation inhibitor  

fungicides (i.e. triazole, prothioconazole, and metconazole) were the most effective in 

suppressing outbreaks of F. graminearum infection (52% control compared to untreated 

check; (Mueller 2006, McMullen et al. 2012).  The timing of application and coverage of 

vulnerable tissues was critical in achieving control.  Barley undergoes anthesis while the 

head is still in the leaf sheath (boot).  If a field has a history of FHB or long distance 

predictive models indicate that FHB risk is high, it is recommended that fungicides be 

applied before the head emerges from the boot (McMullen et al. 2012).  The locally 

systemic fungicide will penetrate the floral tissues and provide added protection in the 

event of high inoculum loads.    

 

Ergot 

 Ergot (Claviceps purpurea (Fr.) Tul.)  (Ascomycota) is a plant disease caused by 

the fungal pathogen Claviceps purpurea.  This pathogen infects the floral spikelets of 

cereal grains and grasses.  Upon infection, the florets become replaced by the 

development of fungal masses called sclerotia (Figure 4.4).  These sclerotia produce 
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toxic alkaloids that cause ergotism if consumed by humans or animals.  Symptoms of 

ergotism include seizures, spasms, psychosis, and vasoconstriction resulting in 

insufficient blood flow to the extremities (Peraica et al. 1999).  Often the lack of blood 

supply to these tissues results in the loss of limbs.  Under severe disease pressure, ergot 

infections can cause 5-10% crop yield loss and severely impact the quality of the grain 

(McMullen and Stoltenow 2002, Wegulo and Carlson n.d.).  Malting barley is considered 

“ergoty” when more than 0.1% by weight of the grain are sclerotia (McMullen and 

Stoltenow 2002).  Grain containing excessive amounts of sclerotia is subject to rejection, 

rendering the entire crop worthless.  

 C. purpurea ascospores are dispersed by wind and must come into contact with 

open florets in order to initiate infection (McVay et al. 2008).  Chasmogamous (open 

florets) varieties are more susceptible to ergot infection than cleistogamous (closed 

florets) varieties.  Under environmental stress, such as drought and excessive heat, barley 

pollen can become sterile.  Cleistogamous florets that do not become fertilized as a result 

of sterile pollen often open to increase the chances for pollination, and this makes them 

more susceptible to ergot infection (Barkley 2008).  Barley grown in copper deficient 

soils has shown to have a decrease in pollen fertility which increases the propensity of the 

florets to open (Dell 1981).  Increased ergot infection has been strongly correlated with 

soils that are copper deficient (Barkley 2008). 

  C. purpurea infection begins with the ascospores being dispersed by wind, rain 

splash, or insects and deposited on spikelets.  The spores land on the stigma, hydrate, and 

germinate.  The germ tube releases the enzyme catalase, which catalyzes the 

decomposition of hydrogen peroxide, suppressing the host defenses (Agrios 2005).  
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Infection ensues as the germ tube grows down the pistil tissue and into the ovary.  Within 

seven days the pathogen has established a mycelial mass (sphacellum) and formed 

sporodochia that begin to ooze honeydew (sticky sweet liquid) impregnated with conidial 

spores (Agrios 2005).  The honeydew drips out of the spikelets and onto other open 

florets perpetuating secondary infection. Insects are attracted to the honeydew to feed.  

As they feed conidia adhere to their abdomen and are then transferred to uninfected 

spikelets (Lemon 1992).  As the sphacellum matures, it becomes a hard, purplish-black, 

mycelial mass called sclerotia.  Sclerotia mature within the same time frame as the 

developing grain.  At harvest, the sclerotia remain on the rachis and end up mixed in the 

harvested grain.  If the grain is intended for seed stock, the infested seed will act as 

inoculum the following year.  Sclerotia that fall to the ground go dormant and overwinter 

until ideal conditions stimulate germination. 

 Spring moisture triggers the sclerotia in the soil to germinate.  Multiple 

mushroom-shaped fruiting bodies grow from the fungal mass.  The stromatic 

(“mushroom” cap) heads of these fruiting bodies are covered with perithecia that are 

packed with ascospore filled asci (Agrios 2005).  As the fruiting bodies mature, and take 

up water, turgor pressure builds within the asci.  Eventually ascospores are discharged 

from the asci and are disseminated by wind, water, or insects and the disease cycle starts 

over (Kirby 1998).   

 The success of this fungal pathogen is dependent on host susceptibility, 

environmental conditions, and timing of infection.  The manipulation of any of these 

elements by the use of fungicide intervention, resistance varieties, cultural practices, and 

biological control can disrupt the disease cycle and eliminate future ergot infestations.  
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Fungicide Intervention 

 Fungicides are not generally an economically feasible management option in 

ergot infested fields.  Puranik and Mathre (1971) conducted a study that looked at foliar 

fungicide applications as well as soil drench systemic fungicide applications.  They 

identified that the foliar applied fungicides have to be in direct contact with the surface of 

the ovary prior to infection to be effective.  Barley varieties that open their florets 

generally hold them open for 10-15 days, at which time protective fungicides should be 

applied (Puranik and Mathre 1971).  This becomes difficult, and increasingly expensive, 

if multiple applications are needed.  Additionally, spray applications do not effectively 

penetrate the florets yielding potentially wasted chemicals without achieving the desired 

protection.  Puranik and Mathre (1971) did observed a 35-56% decrease in infection 

when 1-2 lbs/acre was diluted with 100 gallons of water and sprayed three different times 

over a period of 18 days (Puranik and Mathre 1971).  Although disease pressure was 

decreased, it is important to consider whether the cost of fungicide, coupled with 

application expenses, economically warrants fungicide use. It is recommended that 

alternative management strategies including the utilization of resistant varieties and 

cultural practices be employed when controlling ergot.  

 

Crop Resistance 

 Most commercially grown barley cultivars have been bred for improved 

agronomic performance and quality attributes, and this has resulted in the reduction of 

genetic diversity across elite lines (OGTR 2008).  Pageau et al. (1994) conducted a study 

comparing the level of resistance to ergot across thirteen different commercially grown 
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barley cultivars.  The results indicated that genetic variation in ergot resistance may be 

attributed to morphological and physiological characteristics (Pageau et al. 1994).  

Susceptibility may decline after pollination due to biochemical changes that alter 

stigmatic acceptance after the ovary has been fertilized (Pageau et al. 1994).  Other 

resistance mechanisms include physical attributes such as chasmogamy or fertilization 

that occurs while the head is still in the leaf sheath.   Chasmogamy provides resistance 

protecting the ovary with the floral structures and avoiding infection.  Currently there are 

no barley varieties that are rated as being ergot resistant (McMullen and Stoltenow 2002).   

 

Cultural Practices  

 Cultural practices have shown to be the most economic and effective strategies for 

managing ergot.  These tactics include the utilization of clean seed stock, cultivars with 

resistance characteristics, management of alternate hosts, crop rotation, and tillage.   

 Ensuring that the seed stock is free of ergot sclerotia eliminates the threat of 

introducing ergot to a field that does not have a previous history of infestation (USASK 

n.d.).  Using barley varieties that exhibit uniform heading, and do not open their florets 

can decrease chances of infection and reduce the establishment of secondary infections 

over the course of a growing season (Barkley 2008, USASK n.d.).   

 Careful management of secondary host weed species can reduce inoculum 

reservoirs.  Annual bluegrass, meadow foxtail, tall fescue, and wild rye are common 

weed species that are susceptible to ergot infection (McMullen and Stoltenow 2002).   

 Ergot sclerotia can only undergo dormancy once and do not survive after one 

year.  Crop rotational schemes that incorporate non-host species in the year following 
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heavy ergot infestation are recommended.  It is important to control volunteer host 

species during this time (McMullen and Stoltenow 2002).  Additionally, sclerotia do not 

survive if buried deeper than one inch.  McMullen and Stoltenow (2002) suggest deep 

plowing fields that have had severe ergot infestations.   

 

Biological Control  

 The shining flower beetle (Acylomus pugetanus Casey) has been identified as a 

potential ergot biological control agent.  This beetle’s life cycle is directly dependent on 

ergot sclerotium.  A. pugetanus seeks out developing ergot sclerotia, feeds on the 

honeydew, and lays its eggs on the surface of the mycelial mass (Steiner Jr and Singh 

1987).  The larvae develop inside the mycelial mass, consume the fungal tissue, and 

render the mature sclerotium unviable.  Sclerotia that are no longer viable do not 

sporulate the following season and the inoculum load is significantly reduced.    

 There are a number of plant pathogens that can compromise malting barley yield 

and quality.  Management strategies that prevent the occurrence of disease or decrease 

inoculum load are preferred over treatment.  Often crop rotations that incorporate non-

host species can break the disease cycle and prevent future infection.  Changing watering 

regimes or methods (e.g. drip vs. overhead pivot), can reduce the moisture within the 

canopy making the environment less hospitable for pathogens.  Managing infected plant 

debris can have a substantial impact on the amount of inoculum that is present within a 

field.  When disease does occur, prompt identification is critical so that alternative 

methods of management, such as selective fungicides, can be employed.  In regard to 
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disease management, the efficiency at which the disease is identified and managed will 

mitigate major epidemics.  
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Figure 4.1 – Russian wheat aphid infestation:  Demonstrating leaf symptomology – leaf 
curling, purpling of tissue, and the development of yellowish-white streaks.  Photograph taken 
by Frank Peairs, Colorado State University, Bugwood.org. 
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Figure 4.2 – Russian wheat aphid:  Demonstrating the lack of visible cornicles and the 
presence of the “double tail” (cauda and supracaudal process).  Photograph taken by Frank 
Peairs, Colorado State University, Bugwood.org. 
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Figure 4.3 – Fusarium Head Blight (Fusarium graminearum Schwabe) symptomology on 
barley.  Photograph courtesy of North Dakota State University Plant Pathology Department.  
http://www.ag.ndsu.nodak.edu/aginfo/barleypath/fhbdisease.html 
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  Figure 4.4 – Ergot (Claviceps purpurea (Fr.) Tul.) sclerotia on barley.  Photograph courtesy of 

the Pilzegalerie http://www.pilzepilze.de/galerie/v/Lateinisch/C/claviceps/purpurea/3.html 
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CHAPTER 5 

DOCTORAL INTERNSHIP 

 

 The University of Nebraska – Lincoln Doctor of Plant Health program requires 

each student to fulfill a professional internship over the last summer of the program.  For 

my internship, I worked as a Barley Scientist Intern for MillerCoors and Golden Malting 

in Golden, Colorado.  

 MillerCoors is a joint venture between SABMiller and Molson Coors that began 

operating as a combined entity in 2008.  This union made MillerCoors the second-largest 

beer company in the USA, offering brands such as:  Miller Genuine Draft, Miller Lite, 

Miller High Life, Coors, Coors Light, Killian’s, Blue Moon, Molson Canadian, 

Leinenkugel’s, and many more (MillerCoors 2015).  These beers are brewed in nine 

breweries scattered throughout the United States.  Breweries are supplied with all of the 

raw materials needed to make the various beers through a large network of barley and 

hop growers that make up the MillerCoors supply chain (MillerCoors 2015). 

 MillerCoors focuses on procuring the highest quality raw materials for making 

their beer.  This pursuit of quality ingredients was the basis for the establishment of the 

MillerCoors Grower Direct Program. Through this program the company contracts with 

864 independent barley growers in Colorado, Idaho, Montana, and Wyoming 

(MillerCoors 2015).  These growers produce as much as 75% of the barley that is used in 

the MillerCoors breweries across the United States.  Farmers grow barley varieties that 

have been developed through the MillerCoors Barley Variety Development Program, and 

their barley is expected to meet the highest quality standards (MillerCoors 2015). Quality 
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standards for barley include plumpness, color, protein, and moisture, and it also must be 

damage and disease free (Rockhold n.d.).  After harvest each year, grain that has met 

these quality standards, is stored in one of the seven MillerCoors owned grain elevators 

or one of seven secondary partner receiving stations.  After reaching these facilities, 

barley is stored between 1-8 months until it is requested for processing.    

 Upon request, the barley is transferred via truck or railcar to the Golden Malting 

facility, located in Golden, Colorado.  This malt house is the fourth largest in the nation 

and produces approximately 250,000 metric tons of malt per year (Mallett 2014).   

 At multiple points throughout the process of making malt, barley/malt samples are 

submitted to the barley quality lab which is located within the malt house in Golden, CO.  

Here, barley scientists and chemists quantify the germination potential of the seed and 

determine the chemical composition of the malt (e.g. diastatic power, alpha amylase, free 

amino nitrogen, and enzyme activity).  These elements of malt are of primary interest so 

that processing consistency can be maintained and ultimate performance in the brew 

house can be predicted.  

 During the four months I worked for Golden Malting, I had the opportunity to 

participate in four research projects that involved lipoxygenase (LOX) activity: 1) 

through germination while making green malt (germinated seed); 2) in malted barley over 

the 28 day aging period; 3) across malted barley varieties; 4) in malted barley from the 

breeding program.   

 LOX is an enzyme that catalyzes the oxygenation of polyunsaturated fatty acids in 

germinating barley seed.  This enzyme is of much interest in the brewing industry 

because it oxidizes the available linoleic acid, which is 54 percent of the unsaturated fatty 
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acid present in the geminating grain, and forms conjugated hydroperoxides (Youssef et 

al. 2012).  Some of these hydroperoxide products further degrade, yielding the compound 

trans-2-nonenal (T2N).  T2N is attributed to cause the cardboard, or papery, off flavors 

described in ‘stale’ beer (Barker et al. 1983). 

 The first LOX assay was conducted to determine LOX activity over the course of 

germination as it becomes green malt.  Here, we measured LOX activity every 24 hours 

up to 96 hours during germination.  We observed LOX activity increase up to 86% across 

tested varieties (Figure 5.1).  Due to proprietary restrictions the specifics of these trials 

will not be discussed. 

 The second trial involved observing LOX activity in malted barley over a 28-day 

aging period.  Samples were taken and assayed every seven days after the malt had been 

removed from the kiln.  The data suggested that over the 28-day aging period, LOX 

activity decreased up to 40% across all surveyed varieties (Figure 5.2).  Again, further 

investigation will be needed to determine a definitive outcome of the data.  

 After conducting the first two portions of this project, we wanted to see the trend 

in LOX activity over the course of the entire malting process.  Here, I conducted LOX 

analysis on the quiescent barley grains of each of the selected varieties.  I plotted the 

LOX activity of the quiescent grain along with the increase in LOX activity during 

germination and the decrease in LOX activity over the aging process.  Combining these 

graphs enabled us to visually observe the trend in LOX activity over the entire malting 

process. There was an increase in LOX activity during germination, a sharp drop (~90%) 

in LOX activity as a result of kilning, and a continued gradual decline over the 28 day 

aging process (Figure 5.3).  
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 The third project was a survey of LOX activity in aged malt from different barley 

varieties grown across growing regions.  Preliminary data revealed that some varieties 

have higher LOX activity than others, but statistically significant differences were not 

observed, and it could not be determined if differences were correlated with growing 

region.  Without further investigation and increased sample size, the information was 

valuable, but inconclusive. 

   The last project entailed surveying barley lines that had been derived through the 

MillerCoors breeding program.  Fifty different samples were micro-malted (malted in 

small batches) and analyzed for LOX activity.  The samples fell within one of three 

defined LOX activity categories (low, medium, and high) (Figure 5.4).  Due to the 

diverse response of theses samples, green malt samples were tested to see if high LOX 

activity could be determined prior to the completion of the malting process.  LOX 

activity in green malt was found to be equally high across all barley lines.  These results 

indicated that lines with high LOX activity after micro-malting had enzymes that were 

more thermostable, and persisted to a greater extent through kilning.  This information 

was relayed to the breeder to provide more information for barley parental line selection.  

The breeder has since initiated a more detailed genetic study on one of the lines that were 

determined to have low LOX activity after malting.   

 In addition to conducting the enzyme assays, I also obtained an in depth 

understanding of barley production with MillerCoors.  Annually, MillerCoors hosts 

“Barley Days” in appreciation of their barley growers.  Barley Days are held at 

MillerCoors owned grain elevators and are rotated on a year to year basis across growing 

regions.  These events are community oriented, fun, and informative.  MillerCoors 
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obviously provides beer for everyone, but there is also food, and informational booths to 

educate farmers on the importance of grain quality in the malting process.  I had the 

opportunity to engage with growers and talk to them about their production practices.  

We discussed various management strategies and talked about sustainable production 

practices (e.g. crop rotations, tillage practices, etc.).   

 I also had the opportunity to visit the barley breeding research farm in Burley, 

Idaho where I met with the breeder and discussed variable aspects of the MillerCoors 

breeding program (Figure 5.5).  From Idaho we traveled back to Colorado where I went 

to the agronomic research farm in Monte Vista.  On this farm, they conduct various trials 

that contribute to the MillerCoors Sustainable Agriculture Program.  Here, they identify 

the best management practices by employing sustainable options, and disseminate this 

information to their contract growers.  Overall my summer internship with 

MillerCoors/Golden Malting was an excellent experience where I was able to obtain a 

complete understanding about malted barley, literally from the ground up!    

  

Synthesis  

 The objective of the Doctor of Plant Health program is to produce plant 

practitioners with broad expertise and experience across the various disciplines (plant 

science, entomology, plant pathology, soil science, and agronomy) that impact plant 

health and production.  The goal of the final internship experience is to enable the student 

to utilize their academically derived expertise in an applied setting.  The doctoral 

document provides the student with an opportunity to take the information that was 
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gained over the course of the final internship, synthesize it, and elaborate on aspects of 

the experience that the student wants to more fully understand. 

 Working at MillerCoors/Golden Malting provided me with the opportunity to 

learn about malting barley production with an emphasis on the importance of grain 

quality.  I was able to visit the various growing regions where malting barley is produced.  

Here, I had the opportunity to engage with barley growers and establish a fundamental 

understanding of barley production and learn about the challenges growers face on an 

annual basis.  The time I spent working in the barley quality lab enlightened me to the 

importance of grain quality to the malting industry.  Overall, this internship provided me 

with further insight into the influence production practices have on grain quality.  

 Through this doctoral document, I have synthesized the information I gained from 

my summer internship, and elaborated on some of the more finite aspects of production.  

Additionally, I addressed some of the seasonal challenges growers experience in regard 

to pest and pathogen management.  The malting industry is dependent on barley that 

meets all of the industry quality standards.  These quality attributes are directly correlated 

with production practices and pest/pathogen management.   

 By having a complete understanding of how production practices contribute to the 

quality of malting barley, future efforts can be made toward resource management and 

sustainable production.  Water is often a limited resource in regions where malting barley 

is grown.  Management practices that maintain the available soil moisture, such as 

reduced tillage, precision irrigation, and eco-fallow may be options to investigate in the 

future.  Implementing crop rotational schemes can often enhance the soil profile and 

contribute to nutrient retention.  Cover cropping has the potential to reduce soil erosion 
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and prevent weed species from becoming established.  To ensure a continual supply of 

high quality barley for years to come, an integrated approach to sustainable production 

should be pursued. 
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Figure 5.1 - LOX activity over 96 hour germination process.  Depicting ~ 86% increase across 
tested varieties.    
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Figure 5.2 - LOX activity over 28 day aging process.  Depicting ~ 40% decrease across all 
surveyed varieties.   



70 
 

 
 
 
 
 
 
  

Figure 5.3 – Overall trend in LOX activity in tested varieties over the entire malting process. 
LOX is present in quiescent barley grain, increases during germination, drops ~90% over 
kilning, and continues to decrease during aging.   
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Figure 5.4 – LOX activity of different barley lines derived from the MillerCoors barley 
breeding program.   Samples fell within one of three defined LOX activity categories (low, 
medium, and high). 
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Figure 5.5 – MillerCoors breeding program Burley, Idaho.  Photograph taken by Haley Oser. 
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