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An In Vitro Enrichment Strategy for Formulating Synergistic
Synbiotics

Car Reen Kok,a David Fabian Gomez Quintero,a Clement Niyirora,a Devin Rose,a Amanda Li,a* Robert Hutkinsa

aDepartment of Food Science and Technology, Nebraska Food for Health Center, Lincoln, Nebraska, USA

ABSTRACT Research on the role of diet on gut and systemic health has led to con-
siderable interest toward identifying novel therapeutic modulators of the gut micro-
biome, including the use of prebiotics and probiotics. However, various host re-
sponses have often been reported among many clinical trials. This is in part due to
competitive exclusion as a result of the absence of ecological niches as well as host-
mediated constraints via colonization resistance. In this research, we developed a
novel in vitro enrichment (IVE) method for isolating autochthonous strains that can
function as synergistic synbiotics and overcome these constraints. The method relied
on stepwise in vitro fecal fermentations to enrich for and isolate Bifidobacterium
strains that ferment the prebiotic xylooligosaccharide (XOS). We subsequently iso-
lated Bifidobacterium longum subsp. longum CR15 and then tested its establishment
in 20 unique fecal samples with or without XOS. The strain was established in up to
18 samples but only in the presence of XOS. Our findings revealed that the IVE
method is suitable for isolating potential synergistic probiotic strains that possess
the genetic and biochemical ability to ferment specific prebiotic substrates. The IVE
method can be used as an initial high-throughput screen for probiotic selection and
isolation prior to further characterization and in vivo tests.

IMPORTANCE This study describes an in vitro enrichment method to formulate syn-
ergistic synbiotics that have potential for establishing autochthonous strains across
multiple individuals. The rationale for this approach—that the chance of survival of a
bacterial strain is improved by providing it with its required resources—is based on
classic ecological theory. From these experiments, a human-derived strain, Bifidobac-
terium longum subsp. longum CR15, was identified as a xylooligosaccharide (XOS)
fermenter in fecal environments and displayed synergistic effects in vitro. The high
rate of strain establishment observed in this study provides a basis for using syner-
gistic synbiotics to overcome the responder/nonresponder phenomenon that occurs
frequently in clinical trials with probiotic and prebiotic interventions. In addition, this
approach can be applied in other protocols that require enrichment of specific bac-
terial populations prior to strain isolation.

KEYWORDS bifidobacteria, prebiotic, probiotic, synbiotic, xylooligosaccharide

It is now well accepted that the composition and function of the gastrointestinal
microbiome play a major role in maintaining host health (1, 2). How the human gut

microbiome is affected by diet is one of the most important areas of research in the
food, nutrition, and biomedical sciences (3, 4). In particular, a disrupted or dysbiotic
microbiota has been suggested to contribute to a wide range of gastrointestinal and
systemic diseases (5). Researchers are now especially interested in developing thera-
peutic or dietary approaches to correct or redress these imbalances (6, 7).

A frequent outcome of many biomedical reports and clinical trials is the obser-
vation that a particular treatment may be effective in some individuals but not in
others (8–11). This responder/nonresponder phenomenon is also common in trials
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using probiotics, prebiotics, and other gut health interventions (12, 13). For exam-
ple, while prebiotic supplementations have been shown in numerous clinical
studies to induce a bifidogenic response (14–16), there are often study participants
for whom this expected response does not occur (13, 17, 18). Identifying or
predicting responders and nonresponders based on their resident microbiota
remains a significant challenge (13).

Several explanations may account for the nonresponder phenotype. For prebiotics,
nonresponders may lack the relevant strains that are physiologically or biochemically
equipped to utilize that particular substrate. Alternatively, even if such strains were
present, other members of the microbiota may simply outcompete those strains for the
substrate. Similarly, probiotics are also subject to host-specific effects. To reach
the colon, it is possible that ingested strains may not survive digestion through the
stomach and small intestine (19). In the colon, they may be inhibited or outcompeted
by other gut commensals.

One approach to enrich for beneficial microbes in the gut is to introduce specific
strains in the form of synbiotics. Ideally, these synbiotics would be composed of
prebiotic-probiotic combinations, such that the prebiotic is specifically and preferen-
tially fermented by the probiotic. The rationale for this approach is based on classic
ecological theory. Specifically, Tilman’s resource ratio competition model states that the
dominance of certain taxa is dependent upon the availability and demand for particular
resources along with the rate of nutrient consumption (20, 21). Thus, if the synbiotic
was formulated such that the prebiotic specifically stimulated the growth of the
companion probiotic, the latter would have a greater opportunity to become estab-
lished in the gut. Indeed, previous studies described the possible persistence of
probiotics when administered as a synbiotic (22, 23).

Synbiotics that are appropriately designed also have the potential to increase the
responder rate, by converting nonresponders into responders (12). These so-called
synergistic synbiotics were envisioned more than a decade ago (24), but few successful
formulations of synergistic synbiotics have been reported (25). This is most likely due
to the lack of strategic methods for pairing prebiotics and probiotics that can demon-
strate synergism.

Recently, we described one such approach called in vivo selection, or IVS (25). Briefly,
an autochthonous strain of Bifidobacterium adolescentis was enriched in vivo by the
prebiotic galactooligosaccharide (GOS) and then recovered by cultural methods (13,
26). When the enriched strain (B. adolescentis IVS-1) was recombined with GOS as a
synbiotic and introduced to rodents, the abundance of IVS-1 increased to 37%, which
was significantly higher than those for the prebiotic- and probiotic-only controls (25).
The enhanced abundance of the IVS-1 strain was considered to be due to the ability of
this strain to consume GOS more rapidly than its competitors, including other resident
bifidobacteria. Although the abundance of IVS-1 was not increased when combined
with the prebiotic in human subjects, the strain still reached higher levels of abundance
than an allochthonous strain of Bifidobacterium (12).

Despite the potential of the IVS approach for isolating autochthonous synergistic
strains with putative beneficial properties, this method requires, at minimum, that a
human subject study be conducted. In contrast, if a reproducible in vitro strategy could
be devised to mimic the IVS method, it would be possible to obtain similar strains in a
faster and more cost-effective manner.

This study proposes the concept of in vitro enrichment (IVE) as an alternative
strategy to select for potentially synergistic putative probiotic strains. Autochthonous
strains of Bifidobacterium were enriched through a stepwise batch fecal fermentation
model using a targeted approach. Such strains obtained by IVE would be expected to
be competitive in the gut environment when combined with the cognate prebiotic. In
this study, we used the prebiotic xylooligosaccharide (XOS) and successfully obtained
a Bifidobacterium strain that demonstrated synergism when reintroduced with XOS into
in vitro fecal environments from multiple donors.

Kok et al. Applied and Environmental Microbiology
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RESULTS
Enrichment of XOS-utilizing bifidobacterium strains. A total of 60 bifidobacterial

isolates were initially obtained from enrichment experiments using 3 different fecal
donor samples. A successful enrichment would be predicted by an increase or recovery
of specific species of bacteria after every stepwise 100-fold dilution (Fig. 1A). Strains
that were not enriched would be expected to be present at low abundance or entirely
washed out (below detection levels) at the end of the four fermentation cycles
(approximately 25 generations). From the 60 isolates obtained, identification through
BLASTn of the 16S rRNA Sanger-based sequences resulted in 7 unique bifidobacterial
strains. These included five strains of B. adolescentis and one each of Bifidobacterium
pseudocatenulatum and Bifidobacterium longum. Quantification at the genus level using
quantitative PCR (qPCR) revealed enrichment of total Bifidobacterium in all 3 samples.
Specifically, one B. adolescentis isolate was obtained from a sample displaying enrich-
ment in species of B. adolescentis (Fig. 1B), and this isolate, B. adolescentis CR11, was
chosen for subsequent establishment experiments.

Establishment of B. adolescentis CR11 and discovery of B. longum subsp.
longum CR15. The ability of a strain to become established in an in vitro fecal
environment was assessed in establishment experiments in a manner similar to that for
the XOS enrichment except that the test strain was included along with the prebiotic.
A successful establishment was denoted by persistence of the test strain during the test
period, whereas a failed establishment was indicated by a decrease in abundance or
washout of the test strain over the test period. When B. adolescentis CR11 was
reintroduced in a new fecal sample along with the prebiotic at the start of fermentation,
quantification by genus-specific qPCR revealed that enrichment of Bifidobacterium was

FIG 1 Bifidobacteria were successfully enriched by XOS in fecal environments, whereas strain establishment was
dependent on the strain and the host. (A) Hypothetical trends of successful (green) and unsuccessful (red)
enrichments in fermentation experiments. (B) Enrichment of total Bifidobacterium (●) and B. adolescentis (y) in a
sample from which B. adolescentis CR11 was isolated. (C) Unsuccessful establishment of B. adolescentis (CR11) (y)
with commensurate enrichment of total Bifidobacterium (●) in a sample from which B. longum subsp. longum CR15
was isolated. (D) Establishment of B. longum (CR15) (y) and total Bifidobacterium (●). Horizontal dashed lines
indicate limits of detection (104 CFU/ml).
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initially observed (Fig. 1C). However, based on species-specific qPCR, it was evident that
B. adolescentis had been displaced by other bifidobacteria. Indeed, all of the isolates
(n � 10) subsequently recovered by culturing were identified as B. longum by 16S
Sanger sequencing.

The B. longum strain (identified as and named B. longum subsp. longum CR15) was
subsequently introduced into another fecal sample. Quantification revealed stable
enrichment of B. longum species, with 100% of the isolates (n � 10) identified as B.
longum (Fig. 1D). Growth of B. longum subsp. longum CR15 in modified de Man, Rogosa
and Sharpe medium in which glucose was replaced with 1% XOS (mMRS-XOS) and 1%
XOS fractions (with degrees of polymerization [DPs] 2 to 4 [mMRS-DP2,3,4] and with
DPs 4 and above [mMRS-DP4]) demonstrated that this strain was able to utilize XOS
with a preference for polymers with a low degree of polymerization (Fig. 2A and B).

Genome assembly and annotation of B. longum subsp. longum CR15. Whole-
genome sequence data were generated (a total of 296 Mbp), and a draft genome of 2.4
Mbp was assembled with 96% coverage against a reference genome. Annotation
against the CAZy database identified several proteins associated with XOS utilization,
including the glycosyl hydrolases GH43 and GH120 and carbohydrate binding mole-
cules CBM6 and CBM22. In addition, relevant sugar transport and utilization genes were
annotated with Prokka and TransAAP as D-xylulose 5-phosphate (xfp), xylose isomerase
(xylA), xylulokinase (xylB), �-xylosidase (xynB), xylose import ATP-binding protein (xylG),
xylose transport system permease protein (xylH), and ABC-type xylose transport system
(xylF). Strain-specific primers targeting the adenine-specific methyltransferase PaeR71
gene were subsequently designed from the genome.

Establishment of B. longum subsp. longum CR15 is host microbiota dependent.
Additional establishment experiments with B. longum subsp. longum CR15 and XOS
were performed using 20 individual donor samples (Fig. 3A). Experiments in the
absence of XOS were conducted in parallel and served as controls. In the presence of
XOS, strain-specific qPCR quantification revealed that the CR15 strain was clearly
established in 7 samples; another 11 demonstrated intermediate establishment (Fig. 3B).

FIG 2 Growth of B. longum subsp. longum CR15 in minimal media supplemented with different XOS
fractions. (A) Optical density measurements at a wavelength of 600 nm every 4 h within the first 12 h
and at 24 h using minimal media (}; mMRS) with the addition of the following sugars: MRS
containing equivalent amounts of residual sugars (�; mMRS-res), 1% glucose (Œ; mMRS-glucose), 1%
XOS (●; mMRS-XOS), 1% of an XOS fraction containing DPs 2, 3, and 4 (�; mMRS-DP2,3,4), and 1%
of an XOS fraction containing DPs 4 and above (�; mMRS-DP4). (B) TLC analysis was carried out using
7.5 �l of spent fermentation media and standards including 2.5 �l of 2% xylose and 5 �l of 2% XOS.
The plates were developed twice using a solvent containing 1-butanol/2-propanol/H2O (3:12:4) and
sprayed with 0.5% �-naphthol and 5% H2SO4 in ethanol. Lane 1, xylose; lane 2, XOS; lane 3,
mMRS-XOS; lane 4, 0 h spent medium; lane 5, 24 h spent medium. Growth profiles demonstrated the
strain’s preference to utilize smaller DPs of XOS.
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The latter included samples in which CR15 levels fluctuated between the start and end
of fermentation or decreased by less than 2 log (Fig. 3C). Only in two samples did the
CR15 strain fail to become established (Fig. 3D). B. longum subsp. longum CR15 was
either reduced or completely washed out in the no-prebiotic controls. Individual
establishment curves emphasize the host-specific response (see Fig. S1 in the supple-
mental material).

XOS treatment differentially shifts the fecal microbial community. Next, 16S
amplicon sequencing was performed to investigate changes in community structure in
a subset of 10 samples. This subset of samples was representative of the establishment
phenotype observed for all 20 samples and consisted of 4 demonstrating clear estab-
lishment of B. longum subsp. longum, 5 showing intermediate establishment, and 1
failed establishment. To assess alpha diversity of the samples over time, Shannon index
and observed amplicon sequence variants (ASVs) were computed. There was an initial
significant decrease in diversity (false discovery rate [FDR] � 0.05) from 0 to 24 h for
both treatments (Fig. 4A and B). However, no further changes were observed after the
first 24-h time point. Throughout the fermentation period, the diversity of the XOS-
supplemented samples was significantly lower than that of the no-prebiotic controls
(FDR � 0.05). Beta diversity analysis of the samples at baseline and at the end of
fermentation was visualized using principal-coordinate analysis (PCoA) based on Bray-
Curtis distance. The samples at baseline clustered together, while fermentation samples
at 96 h clearly clustered separately based on treatment (Fig. 4C). Principal-component
analysis (PCA) revealed that B. longum, Bifidobacterium pseudocatenulatum, and Entero-
coccus faecium were drivers in the XOS group (Fig. 4D).

Taxonomic analysis of the 16S rRNA sequences revealed a highly bifidogenic re-
sponse in the presence of XOS as well as significant enrichment of Lactobacillus that

FIG 3 Various trends of establishment of B. longum subsp. longum CR15 were observed across fecal samples. (A)
A summary of the establishment trends of B. longum subsp. longum CR15 in all 20 samples in the presence (Œ) or
absence (●) of XOS. B. longum subsp. longum CR15 was clearly established in 7 samples (B), potentially established
in 11 samples (C), and displaced or washed out in 2 samples (D). In the absence of XOS, the strain could not be
established in any of the samples. Time zero samples were taken prior to inoculation of 107 CFU/ml of the test
strains. Horizontal dashed lines indicate the limits of detection (104 CFU/ml); * indicates the sample from which B.
longum subsp. longum CR15 was isolated.
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was not observed in the no-prebiotic controls (Fig. 5A). Enrichment of Enterococcus was
also observed after 96 h for both the XOS and no-XOS treatments (Fig. 5A and B). Three
specific Bifidobacterium ASVs were investigated for their contribution toward the
bifidogenic response throughout the fermentation duration (see Fig. S2). BLASTn of

FIG 4 Analysis of microbial community composition and diversity across treatments. By two measures of
�-diversity, Shannon index (A) and number of ASVs (B), diversity was lower in the presence of XOS (Œ)
than in the absence of XOS (●). Principal-coordinate analysis (PCoA) (C) and principal-component analysis
(PCA) (D) revealed distinct community profiles between groups at baseline (blue) and at the end of the
fermentation period, with (green) or without (red) XOS (PERMANOVA, P � 0.001). *, significant difference
between 0 and 24 h; †, significant difference between treatments at a particular time point.

FIG 5 Significant changes in taxa driven by XOS in establishment experiments with B. longum subsp. longum CR15. Wilcoxon rank sum test with FDR adjustment
was used to identify significantly different taxa (FDR � 0.05) in the presence (A) and absence (B) of XOS. Nodes in orange indicate greater abundance at baseline
than at 96 h, whereas nodes in green and red indicate greater abundance at 96 h than at baseline.

Kok et al. Applied and Environmental Microbiology
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these specific sequence variants against the NCBI nr database revealed that they
belonged to the species B. longum, B. pseudocatenulatum, and B. adolescentis. These
species were also previously observed from the 16S Sanger sequencing of isolates that
were obtained postfermentation.

Coenrichment of B. longum subsp. longum CR15 and B. pseudocatenulatum.
Additional analyses revealed differences in the mean abundances of the B. longum and
B. pseudocatenulatum ASVs between treatments. In the first 24 h, the mean percentage
relative abundance of the B. longum ASV increased from 4% to 43% in fermentations
with XOS but only to 11% in the no-prebiotic controls (Fig. S2A). While a subsequent
decrease in abundance of the B. longum ASV was observed in both treatments, only 1%
remained at 96 h in the controls compared to 10% in the XOS fermentations (Fig. S2A).
In addition, there was an average increase from 4% to 29% in the B. pseudocatenulatum
ASV in the XOS-supplemented fermentations after 96 h (Fig. S2B). Low abundance of
the B. adolescentis ASV was observed throughout the fermentation in both XOS and
no-XOS treatments (Fig. S2C).

The effect of B. pseudocatenulatum on persistence of CR15 was determined by
species-level qPCR. In most cases (n � 11), when B. pseudocatenulatum was absent (i.e.,
below detection) in fecal samples at baseline, levels remained low throughout fermen-
tation, and successful establishment of B. longum subsp. longum CR15 was observed
(Fig. 6B). In contrast, B. pseudocatenulatum was able to persist and co-occur with CR15
if detectable levels of this organism were present at baseline (n � 9) (Fig. 6A).

To further investigate the persistence potential of B. longum subsp. longum CR15, a
7-day washout experiment was performed using a subset of 4 of the 20 fecal samples.
In 2 samples (subjects 3 and 4), high numbers of B. longum subsp. longum CR15 were
maintained through day 7. However, in the other 2 samples (subjects 14 and 16), B.
longum subsp. longum CR15 was decreased or washed out by day 7, even in the
presence of XOS (see Fig. S3A and B). Subsequent 16S amplicon sequencing of these
day 7 samples revealed high abundance of two ASVs corresponding to B. adolescentis
and B. pseudocatenulatum (Fig. S3C and D).

Acetate is enriched in XOS-supplemented fermentations. Short and branched-
chain fatty acid (S/BCFA) profiles were obtained for all 20 B. longum subsp. longum CR15
establishment experiments in the presence and absence of XOS. At all time points,
acetate levels were highest, followed by lower levels of propionate and butyrate (Table
1). At 24 h, acetate and total SCFA levels were significantly higher in the prebiotic
group, whereas by 48 h, butyrate and propionate levels were significantly higher in the
control group. By 96 h, the BCFAs isobutyrate and isovalerate were significantly higher
in the control group. After 24 h, SCFA production remained generally stable for both
treatments.

FIG 6 Enrichment of B. longum subsp. longum CR15 (Œ) and B. pseudocatenulatum (●) in the presence of XOS. (A)
When present at baseline in most samples (n � 9), B. pseudocatenulatum reached high cell numbers at the end of
fermentation. (B) When B. pseudocatenulatum was below detection at baseline (n � 11), the species remained
throughout. Horizontal dashed lines indicate the limits of detection (104 CFU/ml).
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PICRUSt was used to assess differences in the abundance of predicted metabolic
genes involved in acetate and butyrate production between treatments. Specifically,
butyrate kinase, acetate kinase, and acetyl coenzyme A (acetyl-CoA) transferase genes
were investigated. As expected, metagenome predictions indicated higher levels of
acetate kinase genes in the XOS group. Likewise, higher levels of butyrate kinase and
acetyl-CoA transferase genes in the control group were also predicted (Fig. S4).
Correlation analysis between genus abundance and S/BCFA concentrations revealed a
significant positive correlation between Bifidobacterium and Lactobacillus with acetate
(Fig. S4).

DISCUSSION

In this study, we developed an in vitro enrichment (IVE) platform for isolating
prebiotic-enriched strains that could be combined with the cognate prebiotic to form
synergistic synbiotics. Enrichment was performed using a bifidogenic and highly se-
lective substrate, XOS (27). Overall, 15 unique Bifidobacterium isolates were obtained.
All belonged to one of three species, B. adolescentis, B. pseudocatenulatum, and B.
longum, which are among the predominant resident Bifidobacterium species found in
adults (28, 29). Of these 3 species, B. adolescentis and B. longum have been well studied
for their probiotic properties as well as for their growth potential on XOS (30–32). In
contrast, the probiotic potential of B. pseudocatenulatum has not been well explored.
However, it is known to ferment dietary fibers, including XOS (33, 34).

Strain establishment is a more complex and challenging process than strain enrich-
ment by prebiotics. Indeed, probiotic microbes rarely persist after the supplementation
period has ended (35, 36). This is due, in part, to the individuality and highly compet-
itive nature of the gut microbiome as well as the absence of open ecological niches
(37). These factors likely contribute to the responder/nonresponder phenomenon that
is commonly observed in dietary intervention studies (13, 38). Thus, the absence of an
available ecological or functional niche could inhibit or prevent the establishment of a
particular strain (35).

In contrast, provision of a prebiotic or other specialized nutrient, along with a
suitable probiotic, could provide a new nutrient niche (39), enhance persistence, and
reduce the frequency of nonresponder phenotypes. In this in vitro study, combining the
XOS-enriched B. longum subsp. longum CR15 strain with XOS promoted strain estab-
lishment in most of the 20 unique fecal samples, with steady-state populations main-
tained at approximately 107 CFU/ml. Although variation in the persistence phenotype
was observed, the CR15 strain was unable to persist in only two samples. XOS-
dependent establishment was confirmed by the rapid washout of CR15 in fermenta-
tions in the absence of the prebiotic.

While qPCR was useful for measuring populations of specific genera, species, or
strains, community sequencing provided an independent basis for assessing changes in
microbial composition. Taxonomic results confirmed that enrichment of B. longum

TABLE 1 Concentrations of S/BCFA from fermentation supernatants of establishment experiments with B. longum subsp. longum CR15

Microbial
metabolite

Mean S/BCFA concn (mM) � SEM at:

0 h

24 h 48 h 72 h 96 h

Control XOS Control XOS Control XOS Control XOS

Acetate 8.72 � 3.61 18.65 � 2.35 34.94 � 3.73b,a 11.65 � 2.18 33.64 � 3.69b 8.94 � 1.26 41.25 � 5.03b 11.59 � 1.87 42.24 � 2.85b

Butyrate 0.05 � 0.01 0.69 � 0.21a 0.53 � 0.26 1.04 � 0.21 0.48 � 0.18b 1.07 � 0.23 0.43 � 0.21 0.94 � 0.19 0.35 � 0.18b

Propionate 0.09 � 0.05 0.5 � 0.33 0.39 � 0.19 1.35 � 0.22a 0.06 � 0.03b 1.24 � 0.23 0.04 � 0.02b 1.46 � 0.20 0.05 � 0.02b

Total SCFAc 8.87 � 3.64 19.84 � 2.60a 35.85 � 3.38b,a 14.04 � 2.39 34.18 � 3.67b 11.25 � 1.61 41.72 � 5.04b 13.99 � 1.84 42.64 � 2.85b

Isobutyrate 0.01 � 0.003 0.01 � 0.004 0.02 � 0.01 0.07 � 0.04 0.01 � 0.01 0.05 � 0.02 0.003 � 0.001 0.11 � 0.05 0.01 � 0.004b

Isovalerate 0.02 � 0.003 0.02 � 0.01 0.17 � 0.12 0.21 � 0.09 0.18 � 0.14 0.38 � 0.18 0.29 � 0.25b 0.19 � 0.06 0.04 � 0.02b

Total BCFAd 0.02 � 0.005 0.03 � 0.01 0.18 � 0.12 0.27 � 0.11 0.19 � 0.14 0.43 � 0.19 0.3 � 0.25b 0.3 � 0.11 0.05 � 0.02b

aSignificant difference from the previous time point.
bSignificant difference between XOS and control treatments within a time point.
cSCFA, short-chain fatty acids.
dBCFA, branched-chain fatty acids.
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occurred as a result of XOS supplementation. This observation also suggested that a
specific B. longum ASV that was present in high abundance was representative of the
CR15 strain, although it may be composed of other closely related B. longum strains
that shared high 16S sequence similarity.

Interestingly, community analysis also revealed that the B. longum ASV/CR15 strain
was not always the dominant Bifidobacterium. In some samples, B. pseudocatenulatum
and B. adolescentis, as represented by two other unique ASVs, were prevalent during
the fermentations, and their growth was clearly supported by the presence of XOS. In
particular, B. pseudocatenulatum was present in high abundance across multiple sam-
ples. This was further confirmed by qPCR showing that levels of B. pseudocatenulatum
remained high during the entire fermentation when present at baseline. Both methods
suggested that B. pseudocatenulatum was also enriched by XOS. In some samples, an
observed relative low abundance/absence of B. longum subsp. longum when B. pseudo-
catenulatum abundance was high suggested these two microbes were niche compet-
itors.

The synbiotic treatment led to significantly lower alpha diversity measures, likely
due to the enrichment of bifidobacteria. This was further confirmed in the PCA plot
where Bifidobacterium was a major driver differentiating the two treatments. Reduced
diversity was previously observed in in vitro studies of fiber fermentation (40–43).

When the stepwise fermentations were extended to 7 days, CR15 again persisted in
the presence of XOS for the first 4 days. However, beyond day 4, persistence was more
variable. When CR15 was washed out, increased populations of B. adolescentis and B.
pseudocatenulatum were observed.

SCFAs are beneficial by-products of gut metabolism that are associated with car-
bohydrate fermentation (44, 45). Like other SCFAs, acetate serves as an energy source
for epithelial cells and comprises a high percentage of the total SCFA produced in the
gut (39). In the presence of XOS, the higher concentrations of acetate were likely due
to fermentation by Bifidobacterium. However, the low butyrate levels were unexpected,
as metabolic cross-feeding between acetate-producing bifidobacteria and acetate-
consuming butyrate producers is known to occur (40, 46–50). Targeting of specific
acetate and butyrate genes through gene prediction from 16S sequence data con-
firmed that acetate kinase was present at higher abundance in the in vitro system than
butyrate kinase and acetyl-CoA transferase, and the same trend was observed in the
XOS fermentations compared to that in the no-prebiotic controls (51). Low butyrate
production could be attributed to the effects of pH, which were previously reported to
influence bacterial communities and the production of SCFA in vitro (52, 53). This
implies that improved buffering or pH control should be considered when designing
batch in vitro models to study fecal communities and their metabolic by-products.

Prebiotics are defined, in part, by virtue of their utilization by host microbes (54).
Although a functional demonstration of the specific mechanisms by which XOS trans-
port and utilization occur in bifidobacteria has not yet been established, two models
have been proposed (55–58). In one model, extracellular xylolytic enzymes degrade
XOS, and then xylose monomers are transported into the cell (30). Alternatively, XOS
are transported via an ABC transport system, and intracellular XOS is hydrolyzed (55,
56). The resulting xylose monomers are phosphorylated to form xylulose-5-P which
then enters the Bifidobacterium shunt (55). Gene clusters encoding putative glycosyl
hydrolases have been identified, including GH8, GH43, and GH120 (59–61). These
clusters include genes encoding nonreducing end �-xylosidase, reducing end xylose-
releasing exo-oligoxylanase, and endo-1,4-�-xylanase, each having a preferred oli-
gomer length (59). Based on the current genome annotations, the presence of GH43
and GH120 clusters and genes encoding ABC-type permeases in B. longum subsp.
longum CR15 suggests that the strain was capable of intracellular degradation of XOS.

Like other in vitro models, limitations exist with the IVE method (62). Additional
improvements to be considered include pH control, minimization of the filtering of
fecal slurries, and the use of different substrate concentrations to replicate more
colon-like conditions. However, despite these limitations, the IVE model serves as a
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useful tool to identify potential synergistic pairs and then for testing those pairings
across multiple samples. Such in vitro methodologies can accelerate the process of
strain discovery and synbiotic pairing prior to in vivo trials to validate these formula-
tions. Finally, more sophisticated and controlled in vitro models would provide a basis
for greater throughput and increase the library of strains that can be collected in a short
amount of time.

Other attempts to identify synbiotic combinations have generally relied on pairing
previously isolated probiotic strains with one or more prebiotics (63–66). Indeed, these
and many of the other synbiotic combinations described in the literature would be
considered complementary. While these approaches have the advantage of having
characterized strains as the probiotic component, there is no a priori reason why the
prebiotic would necessarily support growth of the probiotic in vivo. Accordingly, the
enrichment method described in this study provides a basis for identifying putative
probiotic strains that would be predicted to outcompete other resident microbes for
the prebiotic. Provided these probiotic-prebiotic combinations result in a health benefit
to the host, they would satisfy the definition of a synergistic synbiotic. Following this
study, an appropriately designed multiple-arm synbiotic human clinical trial would be
necessary to demonstrate synergistic effects and health benefits of the synbiotic
combination described here.

MATERIALS AND METHODS
Sample collection. A total of 20 fecal samples were collected from volunteers throughout the

duration of the study. Each participant was asked to sign a consent form indicating that the participant
had no known gastrointestinal disease, was 19 years of age or older, had not consumed antibiotics or
probiotic supplements in the last 6 months, was not a regular consumer of yogurt, and was willing to
provide 1 to 3 stool samples over 3 months. Participants were given a commode specimen collection kit
(Fisher Scientific, NH, USA) and detailed instructions for collection and preservation. The study was
approved by the UNL Institutional Review Board (IRB 20160616139).

Samples were collected and processed in an anaerobic chamber (Bactron IV anaerobic chamber;
Sheldon Manufacturing, Cornelius, OR, USA) (5% H2, 5% CO2, 90% N2). Samples were diluted (1:10) in
phosphate-buffered saline (PBS) at pH 7, homogenized, and stored in 2-ml aliquots at �80°C.

Stepwise fecal fermentations. For all enrichment and establishment experiments, XOS95, a 95%
pure prebiotic substrate, was used (Prenexus Health, AZ, USA). For all fermentations, each fecal sample
was treated as an individual experimental unit. In enrichment experiments, stepwise in vitro batch
fermentations were performed. Diluted fecal slurries were homogenized, filtered, and mixed with
fermentation broth (67) in a 6:3 ratio (vol/vol) in a total volume of 9.0 ml. When added, XOS was present
at a concentration of 1%. All fermentations were incubated anaerobically at 37°C. After 24 h, 100-fold
dilutions were performed by transferring 100 �l of sample to 9.9 ml of fermentation broth containing
XOS. Three subsequent transfers were performed every 24 h, for a total of 96 h. Samples at 0, 24, 48, 72,
and 96 h were collected and stored at �20°C for DNA extraction and SCFA analysis. At the end of the four
fermentation cycles (96 h), samples were plated onto Bifidobacterium selective iodoacetate mupirocin
(BSIM) and colonies were picked (68). Each colony isolated was grown in modified de Man, Rogosa and
Sharpe (mMRS) from which glucose was omitted but which was supplemented with 1% XOS (mMRS-
XOS). The isolates were stored at �20°C for subsequent DNA extraction, 16S Sanger sequencing, and
identification.

For the establishment experiments, similar batchwise fermentations were conducted, except that the
XOS-enriched strains obtained as described above were inoculated at the beginning of the fermentation
cycle. Test strains were first incubated in MRS broth for 24 h and used to inoculate (1%) fresh fecal
fermentation media, with or without 1% XOS. Subsequent transfers were carried out as before. Samples
were collected every 24 h for up to 7 days, and isolates were picked from BSIM plates, grown in
mMRS-XOS, and stored. Initial enrichment experiments were performed with 3 fecal samples, and 20
samples were used for subsequent establishment experiments with B. longum subsp. longum CR15.

DNA extraction and 16S Sanger sequencing and analysis. DNA from the samples collected
(fermentation media and isolates) was extracted using phenol-chloroform as described by Martínez et al.
(69), except that incubation times were for 30 min and DNA pellets were resuspended in 100 �l of
DNase-free water. For the isolates, PCR was performed using 16S primers 8F (5=-AGAGTTTGATCCTGGC
TCAG-3=) and 1391R (5=-GACGGGCGGTGTGTRCA-3=), and PCR products were purified using a QIAquick
PCR purification kit (Qiagen, Hilden, Germany) and quantified with a NanoDrop ND-1000 spectropho-
tometer (Thermo Fisher, MA, USA). The purified PCR products were sequenced by the Genomics Core
Facility at Michigan State University. Preliminary identification of potential IVE probiotic isolates was
conducted using NCBI BLASTn. Species were assigned based on an identity threshold of �98.7%
sequence similarity. The BLAST search revealed 3 different species represented by 7 strains that were
each aligned to unique reference sequences.

Quantification of bifidobacteria using qPCR. For all in vitro fermentation experiments, quantifica-
tion of bacterial groups in the fermentation samples was performed by quantitative PCR (qPCR) using a
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Mastercycler Realplex2 (Eppendorf AG, Hamburg, Germany). Each reaction mixture contained 12.5 �l of
qPCR Master Mix (2� Maxima SYBR green; Thermo Fisher Scientific, MA, USA), 0.4 �M specific primers for
each target organism (Table 2), 8.5 �l of water, and 3 �l of template DNA for a final volume of 25 �l.
Duplicate wells were used for each sample. Samples that had a standard deviation of greater than 0.5
were reanalyzed. For each assay, standard curves were made using DNA isolated from pure cultures from
which counts were determined through plate counting. A 10-fold serial dilution of the DNA standards
was made, and the cycle threshold (CT) values of the standards were plotted against log10 CFU/ml values.

Genome sequencing and assembly of B. longum subsp. longum CR15. For whole-genome
sequencing, DNA extraction was performed using a QIAamp DNA Minikit (Qiagen, Hilden, Germany), and
a genomic library was prepared using the Nextera XT DNA Library Prep kit. The genome of B. longum
subsp. longum CR15 was sequenced on an Illumina MiSeq, resulting in 603,691 paired reads that were
assembled de novo using the SPAdes Genome Assembler (ver 3.11) and aligned against a reference
genome using Mauve (70, 71). A draft genome consisting of 63 contigs with 123-fold coverage was
obtained postassembly.

Gene annotation was performed using PROKKA (72). Additionally, the draft genome was annotated
against the CAZy database using dbCAN and the transportDB 2.0 database through TransAAP to identify
carbohydrate active enzyme clusters and sugar transporters, respectively (73, 74).

Strain-specific primer design and validation. Rapid identification of PCR primers for unique core
sequences (RUCS) was used to identify unique targets in the draft genome of B. longum subsp. longum
CR15 and for in silico PCR (75). The unique target sequence was identified through alignment with
complete genomes of 8 closely related B. longum subsp. longum strains that were retrieved from the NCBI
database (see Table S1 in the supplemental material). Primer specificity was confirmed by a BLAST search
against the NCBI RefSeq representative genome database for bacteria with NCBI Primer BLAST. Only 1 hit
for a strain of Gelidibacter algens, a nonresident of the human gut, matched the primer pair. The
adenine-specific methyltransferase PaeR71 gene was subsequently selected as the target amplicon with
a length of 210 bp with the primer pair CCGCATCACAACTGCTATTGG (forward) and CGAAAGCCCCAAT
TTGTTCGT (reverse) (Invitrogen, CA, USA). A gradient PCR was used to determine the suitable annealing
temperature of 58°C. Experimental primer validation with both PCR and qPCR was performed using 11
strains in our culture collection that had a 95% to 100% identity at the 16S rRNA level (see Table S2).

Separation of XOS fractions and growth measurement. To obtain XOS fractions of specific
degrees of polymerization (DPs), XOS was purified through exclusion chromatography using Biogel P-2
fine beads (Bio-Rad Laboratories, Hercules, CA). Fractions were collected and analyzed by thin-layer
chromatography (TLC). Fractions were then pooled based on a DP of �4 and a DP of �4, lyophilized, and
used for growth curves.

The ability of B. longum subsp longum CR15 to grow on XOS and its fractions was determined in
mMRS containing 1% XOS, 1% XOS fraction containing DPs 2, 3, and 4, and 1% XOS fraction containing
DPs of 4 and above. Controls were prepared in mMRS either with 1% glucose (mMRS-glucose) or with
the equivalent amount of residual carbohydrates present in the 95% pure XOS (approximately 0.035%,
final concentration [mMRS-res]). The residual sugars were predicted to be equal proportions of glucose,
fructose, and sucrose based on the manufacturer’s specification sheet. Furthermore, the mMRS medium
was prepared at half strength (i.e., using only half the amount of ingredients present in standard MRS)
in order to minimize growth on background carbohydrates.

The strain was first streaked onto MRS plates from frozen stock cultures and incubated for 48 h
anaerobically at 37°C. Single colonies were isolated and inoculated in MRS broth for 24 h at 37°C. Then,
1% (vol/vol) of the cultures was transferred into fresh MRS. These subcultures were incubated for 12 h
overnight before they were inoculated at 1% (vol/vol) into prewarmed prereduced mMRS, mMRS-
glucose, mMRS-XOS, mMRS-DP2,3,4, mMRS-DP4, or mMRS-res in 200-�l volumes. Cultures were then
incubated anaerobically at 37°C, and growth was determined by measuring the optical density at 600 nm

TABLE 2 Primer sequences and PCR programs used to target different groups of Bifidobacterium

Target organism (reference)

Primera

qPCR programDirection Sequence (5=¡3=)
Bifidobacterium (79) Forward TCG CGT CYG GTG TGA AAG Initial denaturation at 95°C for 5 min, 35 cycles

at 95°C for 15 s, 58°C for 20 s, and 68°C for 30 s.Reverse CCA CAT CCA GCR TCC AC

B. pseudocatenulatum (80) Forward AGC CAT CGT CAA GGA GCT TAT CGC AG Initial denaturation at 95°C for 5 min, 40 cycles
at 94°C for 15 s, 68°C for 15 s, and 72°C for 15 s.Reverse CAC GAC GTC CTG CTG AGA GCT CAC

B. longum (81) Forward TTC CAG TTG ATC GCA TGG TCT TCT Initial denaturation at 95°C for 10 min, 30 cycles
at 95°C for 15 s, 65°C for 1 min, and 72°C for 45 s.Reverse GGC TAC CCG TCG AAG CCA CG

B. adolescentis (81) Forward GGA TCG GCT GGA GCT TGC TCC G Initial denaturation at 95°C for 10 min, 30 cycles
at 95°C for 15 s, 63°C for 1 min, and 72°C for 45 s.Reverse CCC CGA AGG CTT GCT CCC AGT

B. longum subsp. longum CR15
(this paper)

Forward CCG CAT CAC AAC TGC TAT TGG Initial denaturation at 95°C for 5 min, 30 cycles
at 95°C for 15 s, 58°C for 15 s, and 72°C for 20 s.Reverse CGA AAG CCC CAA TTT GTT CGT

aPrimers specific to the bifidobacterial species or strain of interest were used to track bacterial enrichment or establishment.
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every 4 h for the first 12 h and again at 24 h in triplicates using a plate reader (Synergy HTX plate reader;
BioTek, VT, USA).

16S rRNA amplicon sequencing and analysis. 16S rRNA amplicon sequencing was performed on
DNA extracted from fecal fermentations. Samples were sequenced on a 2 � 250 bp MiSeq sequencer,
using primers for the V4 region of the 16S sequence. A total of 4,397,582 sequences were obtained, with
a mean of 36,954 sequences per sample.

Sequences were analyzed using QIIME2. Paired-end sequences were demultiplexed prior to import-
ing into QIIME. FastQC was used to check sample sequence quality. Using the DADA2 workflow
(https://benjjneb.github.io/dada2/), chimeric sequences were removed and forward and reverse reads
were truncated to 240 bp and 200 bp, respectively (76). Sequences were dereplicated into unique
amplicon sequence variants (ASV) with DADA2, and a list of exact representative sequences was created.
ASV refers to the exact sequences that are resolved through the DADA2 pipeline, as described previously
(76). The resulting product is an ASV table recording the number of times by which an ASV was observed
in each sample. A total of 974 features were identified. Taxonomy was assigned using the Greengenes
database with the pretrained classifier based on 99% sequence identity. Alpha diversity measures were
calculated using a sample depth of 5171 sequences.

Statistical analysis for community sequencing data was done in QIIME and RStudio (ver 3.4.3). Two
different alpha diversity measurements, Shannon index and observed ASVs, were computed. Pairwise
comparisons between each treatment and time point were made using the Kruskal-Wallis test. FDR
correction was incorporated for all statistical tests, and significance was determined using a significance
cutoff at 0.05. For beta diversity, principal-coordinate analysis (PCoA) and principal-component analysis
(PCA) plots were prepared to compare community compositions. The vegan (https://github.com/
vegandevs/vegan) package was used to compute Bray-Curtis distance and conduct permutational
multivariate analysis of variance (PERMANOVA). Comparisons of the relative abundances of specific ASVs
between XOS treatments at 96 h were conducted using Wilcoxon rank sum test and visualized using
Metacoder (77). Only taxa that had a relative abundance of greater than 0.1% were included in the
analysis.

Short/branched-chain fatty acid analysis. S/BCFA concentrations were determined for all 20 fecal
samples at all sample times using gas chromatography, similarly to Yang and Rose (67). Briefly, 0.4 ml of
fermentation supernatant was vortexed with approximately 0.16 g of NaCl and 0.2 ml of 9 M sulfuric acid.
Subsequently, 0.5 ml of diethyl ether was added, and tubes were shaken and briefly centrifuged. Then,
1 �l of the extract was injected into a gas chromatograph (Clarus 580; PerkinElmer, Waltham, MA, USA)
with a fused silica capillary column (Nukol, 30 m by 0.25-mm inner diameter by 0.25-�m film thickness;
Sigma-Aldrich, St. Louis, MO, USA). Quantification of S/BCFA was carried out as described previously (67).
Six samples could not be quantified due to insufficient amounts of analyte. Subjects that comprised any
of these samples were removed and S/BCFA concentrations for 14 of 20 subjects were used for the final
statistical analysis. For comparison between treatments at every time point, a Kruskal-Wallis test was
conducted along with Wilcoxon rank sum test with FDR adjustment.

PICRUSt (78) was used to relate taxonomic abundances from 16S data to functional S/BCFA metabolic
genes, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) ontology database. Correlation
analysis between taxa and S/BCFA was also performed using the 16S sequencing data and all available
S/BCFA concentrations. In addition, mean relative abundances of taxa and S/BCFA predicted metabolic
genes were visualized for each treatment.

Data availability. Whole-genome sequence of B. longum subsp. longum CR15 and 16S rRNA
sequencing of fermentation samples were uploaded in the NCBI database and can be found under
accession numbers PRJNA540282 and PRJNA540304, respectively.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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Bifidobacteria strains primer design NCBI accession 

no. 

Bifidobacterium longum subsp. longum KACC 91563, 
complete genome 

CP002794.1 
 

Bifidobacterium longum subsp. longum strain AH1206, 
complete genome 

CP016019.1 

Bifidobacterium longum subsp. longum JCM 1217 DNA, 
complete genome 

AP010888.1 

Bifidobacterium longum subsp. longum strain NCIMB809, 
complete genome 

CP011964.1 

Bifidobacterium longum subsp. longum GT15, complete 
genome 

CP006741.1 

Bifidobacterium longum subsp. longum BBMN68, complete 
genome 

CP002286.1 

Bifidobacterium longum subsp. longum strain CCUG30698, 
complete genome 

CP011965.1 

Bifidobacterium longum subsp. longum JDM301, complete 
genome 

CP002010.1 

 

Table S1. Bifidobacterium genomes used for B. longum subsp longum CR15 primer 

design. Whole genome sequences from closely related strains were used to identify 

unique target sequences in B. longum subsp longum CR15. The adenine-specific 

methyltransferase PaeR71 gene was selected as the target amplicon for B. longum 

subsp longum CR15. 

 

 

 



 

 

 

Table S2. Bifidobacterium strains used for primer validation. Bifidobacterium strains that 

shared a 95-100% identity at the 16S rRNA gene level were used to validate the 

specificity of the B. longum subsp longum CR15 primer. Only DNA extracted from B. 

longum subsp longum CR15 displayed amplification with the primer. 

 

 

 

 

 

 

Bifidobacteria strains for primer 
validation 

% identity at 16S rRNA gene level 

B. longum subsp. longum AH120 100% 

B. longum subsp. longum (ATCC® 
15707™) 

99% 

B. longum longum F8 100% 

B. longum longum JDM301 99% 

B. longum DJO10A 100% 

Bifidobacterium sp. 12_1_47BFAA 100% 

Bifidobacterium sp. 113 95% 

Bifidobacterium sp. HMLN14 96% 

B. adolescentis ATCC 15703 95% 

B. adolescentis L2-32 95% 

B. adolescentis IVS-1 96% 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG S1. Establishment of B. longum subsp. longum CR15 after inoculation into 20 

individual fecal samples in the presence (▲) or absence () of XOS. For each 

experiment, the strain was inoculated at 107 CFU/mL and quantified by RT-qPCR using 

strain-specific primers. B. longum subsp longum CR15 was initially isolated from 

Subject 6. Horizontal dashed lines indicate the limit of detection (104 CFU/mL).  
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FIG S2. Relative abundances of specific species of bifidobacteria in establishment 

experiments. Abundance of ASVs corresponding to B. longum (A), B. 

pseudocatenulatum (B) and B. adolescentis (C) in the presence of XOS displayed as 

relative abundance at each time point. 0; baseline of samples at the start of 

fermentation; NX, fermentation without XOS; X, fermentations with XOS. 
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Fig S3. 7-day fermentation experiment further demonstrates dependency of B. longum 

subsp longum CR15 on XOS along with host-dependent response. Samples were first 

supplemented with XOS and step-wise transfers were carried out for the first 3 days. A 

split was done during day 3 with parallel transfers into XOS-containing fermenters and 

in fermenters without XOS. Subsequent step-wise transfers were conducted from day 4 

to day 7 following the respective treatments at the split. 16S sequencing was carried out 

for samples for Days 0, 3, 4 7. A) qPCR quantification of B. longum subsp longum 

CR15 throughout fermentation with (▲) and without () XOS in the 4 samples tested B-

D) Relative abundance of specific Amplicon Sequence Variants (ASVs) corresponding 

to B. longum, B. pseudocatenulatum and B. adolescentis throughout fermentation. 0 

(yellow), baseline of samples at the start of fermentation; NX (red), fermentation without 

XOS; X (green), fermentations with XOS. Day 4 samples for S14 were not sequenced. 

 

BA

DC



 

 

 

 

 

 

 

 

 

 

 

 

 

FIG S4. Mean relative abundances for taxa and predicted S/BCFA genes and 

correlation of microbial fermentation metabolites with genera identified in the 

fermentation samples. Only genera that had at least one significant correlation with a 

metabolite were mapped.  + significant correlation between genus abundance and 

concentration of metabolite (FDR<0.05). SCFA; short chain fatty acids, BCFA; branched 

chain fatty acids, X; XOS, NX; No XOS. 
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