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a b s t r a c t

The delivery of antigen-loaded microparticles to dendritic cells (DCs) may benefit from surface optimiza-
tion of the microparticles themselves, thereby exploiting the material properties and introducing signals
that mimic pathogens. Following in vivo administration microparticle surface characteristics are likely to
be significantly modified as proteins are quickly adsorbed onto their surface. In this work we describe the
chemistry-dependent serum protein adsorption patterns on polyanhydride particles and the implications
for their molecular interactions with DCs. The enhanced expression of MHC II and CD40 on DCs after incu-
bation with amphiphilic polyanhydride particles, and the increased secretion of IL-6, TNF-a, and IL-12p40
by hydrophobic polyanhydride particles exemplified the chemistry-dependent activation of DCs by
sham-coated particles. The presence of proteins such as complement component 3 and IgG further
enhanced the adjuvant properties of these vaccine carriers by inducing DC maturation (i.e. increased cell
surface molecule expression and cytokine secretion) in a chemistry-dependent manner. Utilizing DCs
derived from complement receptor 3-deficient mice (CR3�/� mice) identified a requirement for CR3 in
the internalization of both sham- and serum-coated particles. These studies provide valuable insights
into the rational design of targeted vaccine platforms aimed at inducing robust immune responses and
improving vaccine efficacy.

� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The design of vaccine adjuvants capable of activating innate
immunity is critical for the induction of protective immune re-
sponses [1,2]. A key step in the activation of the innate immune
system is the recognition of pathogen-associated molecular pat-
terns (PAMPs) by pattern recognition receptors (PRRs) on the sur-
face of antigen-presenting cells (APCs), including dendritic cells
(DCs) [1–3]. DCs can internalize and process soluble antigens,
resulting in interactions with other immune cells, such as naïve T
cells [2,4,5]. The use of polymer particles to deliver antigen, either
encapsulated or bound to the surface, has been shown to enhance
antigen presentation compared with the administration of soluble
antigen alone [6–8].

The interaction of antigen-loaded microparticles with DCs may
benefit from engineering the microparticle surface by exploiting
the material properties and introducing motifs that mimic patho-
gens [9]. For example, it has been demonstrated that cationic sur-
faces greatly enhance uptake [10]. On the other hand, the presence
of certain ligands which bind to specific cellular receptors pro-

motes internalization [3,4,11]. After contact with serum the parti-
cles undergo significant changes in their surface properties
because of the rapid adsorption of serum proteins [12,13].

Polyanhydride microparticles have been shown to possess
immunomodulatory properties [14,15] which, when combined
with their ability to stabilize and provide sustained release of pro-
tein antigens [16–20], makes them excellent vaccine adjuvants.
Our previous work has demonstrated that serum protein adsorp-
tion patterns on polyanhydride microparticles are correlated with
their surface characteristics (i.e. hydrophobicity), suggesting that
the adsorption of serum proteins can be tailored by controlling
the particle surface chemistry [13]. Immunoglobulin G (IgG), com-
plement factors, and other proteins (i.e. opsonins) that have been
identified on the surface of microparticles likely influence particle
uptake by APCs [13,21,22]. Indeed, pathogens such as Mycobacte-
rium tuberculosis, Legionella pneumophila, and Mycobacterium leprae
coat themselves with serum proteins [23–26]. Opsonization of the
pathogen facilitates host cell phagocytosis by promoting interac-
tions with specific cell surface receptors, including complement,
Fcc, and mannose receptors [23–28]. Therefore, understanding
the biological consequences of serum protein adsorption onto par-
ticles and its effect on APC activation may provide vital insights for
the rational design of improved biomaterial-based adjuvants.
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This study was designed to investigate the differential adsorp-
tion of mouse serum proteins onto the surface of polyanhydride
microparticles and to understand the effects of protein adsorption
on uptake by and activation of DCs. Polyanhydrides based on seba-
cic acid (SA), 1,6-bis(p-carboxyphenoxy)hexane (CPH), and 1,8-
bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) (Fig. 1) were
evaluated in this work. The profile of serum proteins adsorbed onto
the surface of the polyanhydride particles was indeed found to be
influenced by the polymer chemistry and subsequently promoted
differential effects on DC activation. Moreover, complement recep-
tor 3 (CR3)-mediated pathways were determined to be critical for
the internalization of polyanhydride particles by DCs.

2. Materials and methods

2.1. Materials

The chemicals needed for monomer synthesis and polymeriza-
tion, sebacic acid (99%), p-carboxy benzoic acid (99%), and 1-
methyl-2-pyrrolidinone anhydrous (99%), were purchased from Al-
drich (Milwaukee, WI); 4-p-hydroxybenzoic acid, 1,6-dibromohex-
ane, 1-methyl-2 pyrrolidinone, and triethylene glycol were
purchased from Sigma Aldrich (St Louis, MO); 4-p-fluorobenzoni-
trile was obtained from Apollo Scientific (Stockport, UK); potas-
sium carbonate, dimethyl formamide, toluene, sulfuric acid,
acetic acid, acetonitrile, acetic anhydride, methylene chloride,
and petroleum ether were purchased from Fisher Scientific (Fair-
lawn, NJ). Materials for SDS-PAGE and two-dimensional (2-D) elec-
trophoresis, which included 12% Tris–glycine precast gels,
unstained protein standards, Flamingo gel stain, 11 cm immobi-
lized pH gradient (IPG) strips (pH 3–10, nonlinear), and 4–15%
polyacrylamide gels were purchased from BioRad Laboratories
(Richmond, CA). Phosphatase substrate was purchased from Al-
drich (St Louis, MO). b-Mercaptoethanol, Escherichia coli lipopoly-
saccharide (LPS) O111:B4, and rat immunoglobulin (rat IgG) were
purchased from Sigma Aldrich. Materials required for the DC cul-
ture medium included: granulocyte–macrophage colony-stimulat-
ing factor (GM-CSF), purchased from PeproTech (Rocky Hill, NJ);
HEPES buffer, RPMI 1640, penicillin/streptomycin, and L-gluta-
mine, purchased from Mediatech (Herndon, VA); heat inactivated
fetal bovine serum, purchased from Atlanta Biologicals (Atlanta,
GA). Materials used for flow cytometry included: BD stabilizing fix-
ative solution purchased from BD Bioscience (San Jose, CA); unla-
beled anti-CD16/32 FccR, purchased from Southern Biotech
(Birmingham, AL); unlabeled hamster IgG, fluorescein isothiocya-
nate (FITC)-conjugated anti-mouse MHC II (I-A/I-E) (clone M5/

114.15.2), PE-conjugated anti-mouse MHC Class I (H-2Kd/H-2Dd)
(clone 34-1-2S), allophycocyanin (APC) anti-mouse CD40 (clone
1C10), phycoerythrin-Cy7 (PE/Cy7) anti-mouse CD86 (clone GL-
1), Alexa Fluor� 700 anti-mouse CD11c (clone N418) and the cor-
responding isotypes, FITC-conjugated rat IgG2bj, PE-conjugated
rat IgG2a (clone eBR2a), APC rat IgG2aj (clone eBR2a), PE/Cy7-con-
jugated rat IgG2b (clone KLH/G2b-1-2), Alexa Fluor� 700-conju-
gated Armenian hamster IgG (clone eBio299Arm), all purchased
from eBioscience. Cadmium selenide quantum dots (QDs) (emis-
sion at 630 nm) were a kind gift from Dr. Aaron Clapp of Iowa State
University.

2.2. Monomer and polymer synthesis

Diacids of CPH and CPTEG were synthesized as described previ-
ously [29,30]. SA and CPH prepolymers were synthesized by the
methods described by Shen et al. [31] and Conix [29], respectively.
Subsequently 50:50 CPH:SA and 50:50 CPTEG:CPH co-polymers
were synthesized by melt polycondensation as described by Kipper
et al. [32] and Torres et al. [30], respectively. 1H NMR spectroscopy
was used to characterize the polymer structure, and the resultant
spectra were consistent with previous work [30,32]. The synthe-
sized 50:50 CPH:SA co-polymer had a Mw of 12 kDa with a polydis-
persity index (PDI) of 2.0, while the 50:50 CPTEG:CPH co-polymer
had a Mw of 8 kDa with a PDI of 1.8. These values were obtained
from 1H NMR and corroborated with GPC and are consistent with
previous works [8,30,32].

2.3. Microparticle fabrication and characterization

Cryogenic atomization was used to fabricate 50:50 CPH:SA and
50:50 CPTEG:CPH microparticles, as described elsewhere
[13,16,19,20]. Briefly, 100 mg of the polymer was weighed and dis-
solved in methylene chloride. For QD-loaded microparticles, QDs
were added to the dissolved polymer and dispersed by sonication
at 40 Hz for 30 s. The polymer solution was then pumped through
an 8700–1200 MS ultrasonic atomizing nozzle (SonoTek Corp., Mil-
ton, NY) into 200 ml of frozen ethanol (with an excess of liquid
nitrogen). Microparticles were fabricated at 4 �C. Compositions
were stored at �80 �C for 3 days. For 50:50 CPTEG:CPH, after the
first 24 h 200 ml of cold ethanol was added to reduce aggregation,
the solutions were stirred at 300 r.p.m. for 15 min and placed back
in the freezer at �80 �C. After 3 days vacuum filtration was used to
collect the microparticles and they were dried overnight under
vacuum. Scanning electron microscopy (SEM) (JEOL 840 A, JEOL
Peabody, MA) was used to observe the morphology of the micro-

Fig. 1. Chemical structures of the SA, CPH, and CPTEG repeat units. Upon degradation these polyanhydrides produce dicarboxylic acids in which the anhydride bonds are
replaced by –COOH groups on both ends.
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particles. The particle size distribution was obtained from SEM
images using ImageJ image analysis software (National Institutes
of Health, Bethesda, MD) [13,16,19,20]. An average of 200 particles
per image were analyzed. Quasi-elastic light scattering (QELS) was
used to determine the f-potential of the particles, as described pre-
viously [3]. Particle morphology and size were consistent with pre-
vious works [14,16–20]. An average size of 6 ± 4 lm and 5 ± 3 lm
was obtained for the 50:50 CPH:SA and 50:50 CPTEG:CPH particles,
respectively.

2.4. Mice

C57BL/6 mice were purchased from Harlan Laboratories (India-
napolis, IN) and CR3�/� mice (C57BL/6 background) were a gener-
ous gift from Dr. Mary Ann McDowell of the University of Notre
Dame. All mice were housed under specific pathogen-free condi-
tions where all bedding, caging, and feed were sterilized prior to
use. All animal procedures were conducted with the approval of
the Iowa State University Institutional Animal Care and Use
Committee.

2.5. Adsorption of mouse serum onto microparticles

To facilitate the adsorption of serum proteins, 13.3% w/v sus-
pensions of polymer microparticles were prepared in 0.1 M phos-
phate-buffered saline, pH 7.4 (PBS). Mouse serum was obtained
via cardiac puncture of killed C57BL/6 mice and serum was al-
lowed to clot overnight at 4 �C. Clarified serum was collected by
centrifugation and stored in aliquots at �20 �C until use. Particle
suspensions were incubated with mouse serum in a 4:1 final vol-
ume ratio of particle suspension to serum (i.e. 25% serum) to obtain
serum-coated particles. Control particles were incubated in PBS
without mouse serum (i.e. sham-coated particles). The suspension
was mildly vortexed for 1 min and incubated for 30 min at 37 �C.
After incubation the particle suspension was centrifuged at
12,000g for 10 min to pellet the particle–protein complexes. The
pellet was resuspended in PBS, transferred to a new vial, and cen-
trifuged again (under the same conditions) to pellet the particle–
protein complexes. This procedure was repeated three times. After
the third washing step the supernatant did not contain any detect-
able protein based on a micro BCA assay. Microparticles were dried
under vacuum for at least 2 h.

2.6. Determination of protein adsorption patterns

2-D electrophoresis was used to analyze the proteins adsorbed
onto polyanhydride particles. Similar amounts of serum-coated
particles of the different chemistries were incubated with 250 ll
of elution buffer (10 wt.% SDS and 2.3 wt.% dithioerythritol) to
elute bound proteins from the polyanhydride particles. Samples
of serum-coated particles were heated at 95 �C for 10 min, the par-
ticles were separated from the eluted proteins by centrifugation for
10 min at 12,000g, and the supernatants used to perform 2-D elec-
trophoretic analysis [13,16]. The use of this elution protocol re-
moved most of the adsorbed protein, as verified by micro BCA
and SDS–PAGE analysis of the particles after the elution step. It is
important to note that the particles were only heated to elute
the adsorbed proteins from the particles prior to performing the
electrophoretic analysis. The elution step, including heating of
the serum-coated particles, was only performed to characterize
the patterns of adsorbed proteins and not for the particles used
in cell studies.

To analyze the eluted proteins by 2-D electrophoresis equal vol-
umes of serum protein-containing elution buffers were loaded
onto the gels and the first dimensional separation was performed
in an IPGPhor system (GE Healthcare, Piscataway, NJ) using

11 cm IPG strips (pH 3–10) following a slow voltage ramping pro-
tocol: 50 V for 10 h, 500 V for 1 h, 1000 V for 1 h, and 8000 V for 4 h
[13,33]. For the second dimension of the separation analysis the
IPG strips were loaded on 4–15% polyacrylamide gels and run for
2 h at 140 V. The gels were incubated in fixative solution (40% eth-
anol, 10% acetic acid) at 4 �C for 3 h. Next they were stained with
fluorescent flamingo gel stain (BioRad Laboratories, Richmond,
CA) overnight, and washed with a 0.01% Tween 20 solution to re-
duce non-specific fluorescence [13,16]. A Typhoon 8600 (GE
Healthcare, Piscataway, NJ) fluorescence scanner was used to ob-
tain images of the gels. The experiments were performed in tripli-
cate. A qualitative analysis was performed by comparing the gels of
the eluted proteins with those obtained from mouse sera. Progen-
esis SameSpots software (Nonlinear Dynamics Inc., Durham, NC)
was used to identify the main bands on the gels by comparison
with their molecular weight and isoelectric point position on the
gel. The fluorescence intensity of each protein spot was obtained
using ImageQuantTL (GE Healthcare, Piscataway, NJ) and normal-
ized to the total fluorescence intensity of the proteins in the gel.
Data for each protein spot is presented as a percentage of the total
fluorescence intensity.

2.7. Identification of complement components C3 and C3a

Sandwich ELISA was used to identify specific components in the
protein mix recovered from the microparticle surfaces. A mouse
complement component C3 ELISA kit from Kamiya Biomedical
Company (Seattle, WA) was utilized as per the manufacturer’s rec-
ommendations for quantitative determination of C3 in protein
samples eluted from particle surfaces. Complement activation
was assessed by measuring the concentration of C3a in serum
supernatants after incubation with polyanhydride particles (C3a
ELISA kit, Kamiya).

2.8. DC culture and stimulation

DCs were grown as described previously [3,14,34] and stimu-
lated with either 200 ng ml�1 LPS (positive control), 125 lg ml�1

QD-loaded or blank 50:50 CPH:SA or 50:50 CPTEG:CPH micropar-
ticles, or left untreated (NS) (non-simulated negative control).
Treatments were applied to the DCs incubated in culture medium
(RPMI containing 1% L-glutamine, 1% penicillin/streptomycin solu-
tion, 2% HEPES, 0.5% gentamicin, 0.1% b-mercaptoethanol, and 10%
heat-inactivated fetal bovine serum (FBS) supplemented with GM-
CSF (10 ng ml�1) on day 9 post-harvest and incubated for 48 h. DCs
were >90% positive for the DC marker CD11c. For internalization
studies a QD control (background) was used to account for ‘‘false
positives’’ due to QDs released upon particle degradation [35].
QD-loaded particles were incubated in DC culture medium for
48 h. After centrifugation the supernatants containing the released
QDs were added to DCs. After 48 h the fluorescence registered for
these control groups was considered the background [35]. Fluo-
Spheres� carboxylate-modified polystyrene microspheres (PS)
(2 lm, 580/605 nm, Invitrogen, Carlsbad, CA) were used as controls
for the internalization experiments. It is instructive to note that the
sham-coated particles represent a similar control to using comple-
ment-deficient sera because these particles were not preincubated
with ‘‘fresh’’ mouse serum, but were in contact with heat-inacti-
vated FBS, which forms part of the medium utilized for the culture
of DCs and during the uptake and cell surface marker expression
assays.

2.9. Flow cytometry analysis

Multicolor flow cytometric analysis of surface molecule expres-
sion was performed to assess expression of MHC I, MHC II, CD40,

3620 B.R. Carrillo-Conde et al. / Acta Biomaterialia 8 (2012) 3618–3628



Author's personal copy

and CD86 as previously described [3,14,34,35]. Samples were ac-
quired in a Becton-Dickinson FACSCanto™ flow cytometer (San
Jose, CA) and the data analyzed using FlowJo (TreeStar Inc., Ash-
land, OR).

2.10. Cytokine assays

After stimulation for 48 h with nanoparticles the cell-free
supernatants were assayed for IL-1b, IL-10, TNF-a, IL-6, and IL-
12p40 using a multiplex cytokine assay in conjunction with a
Bio-Plex 200 System (BioRad, Hercules, CA).

2.11. Statistical analysis

The statistical software JMP�7 was used to analyze the cell sur-
face marker, cytokine, and internalization data. One-way ANOVA
and Tukey’s HSD were used to determine statistical significance
among treatments and P < 0.05 was considered significant.

3. Results

3.1. Chemistry-dependent adsorption of immunoglobulin G (IgG) and
complement component C3 on polyanhydride particles

It is known that the surface charge of polymeric particles can
influence their uptake by phagocytic cells [36]. Measurements of
particle f-potential using quasi-elastic light scattering have re-
sulted in similar values (�22 ± 5.5 mV) for all particles regardless
of chemistry and these values are consistent with previous work
[3]. The presence of deprotonated carboxylic groups may account
for the negative surface charge of the polyanhydride particles.
After incubation with mouse serum the average f-potential in-
creased to �5 ± 6 mV, indicative of adsorption of serum proteins
onto the particle surface. This value is consistent with other work
in which BSA adsorbed onto negatively charged polystyrene parti-
cles reduced their highly negative f-potential [22].

A BCA assay was used to quantify the total amount of eluted
proteins from the microparticle surfaces. This analysis revealed
that protein adsorption onto 50:50 CPH:SA particles
(11.5 ± 1.3 lg mg particles�1) was greater than that adsorbed onto
50:50 CPTEG:CPH particles (4.6 ± 0.5 lg mg particles�1). These
findings are consistent with previous work demonstrating that
hydrophobic CPH:SA particles readily adsorb more proteins onto
their surface [13]. In contrast, the presence of ethylene glycol
(EG) motifs in the CPTEG:CPH co-polymer particles leads to re-
duced protein adsorption [13,37]. This differential protein binding
occurs even when both chemistries showed similar initial f-poten-
tial values, indicating that surface charge alone does not dictate
protein adsorption. As indicated in Fig. 1, the EG motifs in CPTEG
are distributed throughout the bulk of the particles (i.e. not simply
on the surface). This distribution influences the hydrophobicity of
the CPTEG:CPH particles without having a direct charge shielding
influence on the electrokinetic potential of the particles, as indi-
cated by the f-potential measurements.

The effect of poly(ethylene glycol)-containing formulations on
the reduction in serum protein adsorption has been demonstrated
previously, with a particular focus on the reduced adsorption of
IgG and C3 [37]. Fig. 2A and B shows representative images of
2-D gels depicting the profiles of proteins eluted from 50:50
CPH:SA and 50:50 CPTEG:CPH particles, respectively. In order to
identify the specific proteins adsorbed onto the microparticles
the 2-D gels were compared with a reference map and databases
of mouse serum [38]. Albumin and IgG were identified as the
most abundant proteins adsorbed onto both 50:50 CPH:SA
(Fig. 2A) and 50:50 CPTEG:CPH (Fig. 2B) particles. Differential pat-

terns of protein adsorption were also observed to be chemistry
dependent. For example, transferrin and several apolipoproteins
bound to and were eluted from 50:50 CPTEG:CPH (Fig. 2B) parti-
cles but not from 50:50 CPH:SA particles (Fig. 2A). Encapsulation
of Ova did not change the chemistry-dependent pattern of pro-
teins adsorbed onto the microparticles (data not shown). A de-
tailed analysis of all the principal proteins eluted from the
surface of polyanhydride microparticles is presented in Table 1
in terms of the percentage of total amount of proteins adsorbed
onto the particles (based on the fluorescence intensity, as de-
scribed in Section 2). This semi-quantitative approach is in con-
trast to an immunoblot analysis in which antibodies are used
for the detection of specific proteins. Our use of a serum protein
database enabled a comparison between the profile of proteins
adsorbed onto the surface of different particle chemistries and
has been previously used to study serum protein adsorption on
a variety of biomaterial surfaces [39,40].

Of particular note, complement component C3 was observed
predominantly on the surface of 50:50 CPH:SA particles
(Fig. 2A) but not on 50:50 CPTEG:CPH particles (Fig. 2B). A protein
with a molecular mass and isoelectric point of 75 kDa and 6.4,
respectively, was identified as the b-chain of C3. A second com-
plement component with a lower molecular weight matched with
a more acidic fragment of C3 (C3e) in the protein database. An
ELISA analysis confirmed that significantly more C3 was adsorbed
onto the surface of 50:50 CPH:SA particles compared with 50:50
CPTEG:CPH particles (Fig. 2C, 0.12 and 0.03 lg cm�2, respec-
tively). To characterize the chemistry-dependent patterns of com-
plement activation C3a was evaluated as evidence of C3 cleavage.
Greater amounts of C3a were detected in the serum supernatants
after incubation with 50:50 CPH:SA particles (Fig. 2D). Together
these data demonstrate that 50:50 CPH:SA particles bind and
activate more C3 than do 50:50 CPTEG:CPH particles.

3.2. Internalization of sham- and serum-coated polyanhydride
particles mediated by complement receptor 3

The data presented in Fig. 2 suggest that 50:50 CPH:SA parti-
cles may have a greater capacity for opsonization, and subsequent
cellular internalization, than 50:50 CPTEG:CPH particles. To that
end we tested the ability of polyanhydride particles in the pres-
ence or absence of serum to be internalized by DCs. When
sham-coated 50:50 CPH:SA particles were incubated with DCs
�20% of cells were observed to contain particles, while incubation
of sham-coated 50:50 CPTEG:CPH particles with DCs resulted in
less than 10% particle-positive cells (Fig. 3). The observation that
DCs internalize CPTEG:CPH particles less readily is consistent
with previous studies in our laboratories [9,35]. When serum-
coated microparticles were added to the DC cultures 20% more
DCs internalized 50:50 CPH:SA particles, presumably because of
the interaction of specific serum proteins with cellular receptors,
including complement receptors [6,41]. To evaluate this hypothe-
sis we tested the internalization of sham- and serum-coated par-
ticles by DCs deficient in complement receptor 3 (CR3), a pattern
recognition receptor that binds various molecules on pathogen
surfaces, including complement-derived opsonins (i.e. iC3b).
Engaging this receptor promotes phagocytosis of the pathogen
by DCs or macrophages. Strikingly, internalization of both sham-
and serum-coated polyanhydride particles was significantly re-
duced, regardless of particle chemistry. Similar levels of internal-
ization of polystyrene (PS) particles (control) by wild type (WT)
and CR3�/� DCs were observed (Fig. 3). These data demonstrate
that CR3 is required for DC internalization of polyanhydride
microparticles, but not PS microparticles of similar size.

B.R. Carrillo-Conde et al. / Acta Biomaterialia 8 (2012) 3618–3628 3621
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3.3. Serum proteins adsorbed onto particle surfaces influence the
expression of MHC II and co-stimulatory molecules on DCs in a
chemistry-dependent manner

We have previously demonstrated chemistry-dependent activa-
tion of DCs by polyanhydride particles [14,35]. The results shown
in Fig. 4A corroborate these findings. Specifically, enhanced expres-
sion of MHC II over non-stimulated DCs was observed when DCs
were co-cultured with sham-coated 50:50 CPTEG:CPH particles,
but not with sham-coated 50:50 CPH:SA particles. Both chemis-
tries equally enhanced the surface expression of the co-stimulatory
molecules CD86 and CD40 (Fig. 4B and C). Compared with sham-
coated microparticles, expression of both MHC II and CD40 was
up-regulated when DCs were incubated with serum-coated 50:50
CPH:SA particles (Fig. 4A and C).

A comparative analysis of WT DCs that had internalized micro-
particles versus those that had not internalized particles showed a
direct correlation between particle internalization and the surface
expression of CD40. In contrast, enhancement of DC MHC II and
CD86 surface expression was not dependent on particle internali-
zation (Supplementary Fig. S1).

3.4. CR3 is required for DC internalization of both sham- and serum-
coated particles as well as up-regulation of MHC II and CD40
expression

The data shown in Fig. 5 demonstrate that CR3�/� DCs present a
different DC activation profile compared with WT DCs. In contrast
to WT DCs, CR3�/� DCs did not up-regulate the expression of either
MHC II or CD40 after stimulation with either sham- or serum-
coated particles (Fig. 5A and C). The expression levels for these
two markers on CR3�/� DCs were not statistically significantly dif-
ferent from the levels obtained for non-stimulated cells. In addi-
tion, the expression of CD86 on CR3�/� DCs was not statistically
significant different from that observed on WT DCs for all the par-
ticle groups, indicating that its expression is independent of CR3-
mediated internalization (Fig. 5B).

3.5. Serum proteins adsorbed onto 50:50 CPTEG:CPH microparticles
enhance secretion of pro-inflammatory cytokines

After 48 h incubation with microparticles of either chemistry
enhanced DC secretion of IL-1b was observed (Fig. 6A). However,

Fig. 2. Chemistry-dependent adsorption patterns of immunoglobulin G (IgG) and complement component C3 on polyanhydride particles. Representative 2-D gels of proteins
adsorbed onto (A) 50:50 CPH:SA and (B) 50:50 CPTEG:CPH particles. (C) Complement component C3 was adsorbed onto the surface of 50:50 CPH:SA microparticles, as
measured via an anti-mouse C3 ELISA. Data are presented as the means ± SEM of three independent experiments. (D) 50:50 CPH:SA microparticles induced C3 cleavage (i.e.
complement activation), as measured by the appearance of C3a in mouse serum supernatants after incubation with the microparticles. Data are normalized to control serum
that was similarly incubated in the absence of any particles (negative control). Data are presented as the means ± SEM of three independent experiments. (C and D)
⁄Statistically significant difference between the two chemistries at P < 0.05.
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only sham-coated 50:50 CPH:SA particles increased the secretion
of IL-6, IL-12p40, and TNF-a over non-stimulated cells compared
with sham-coated 50:50 CPTEG:CPH particles (Fig. 6B–D), which
is consistent with previous observations [14,34]. Interestingly,
the secretion of IL-6, IL-12p40, and TNF-a by DCs co-cultured with
serum-coated 50:50 CPTEG:CPH particles was significantly ele-
vated compared with sham-coated 50:50 CPTEG:CPH particles
(Fig. 6B–D).

In general no differences were observed in the amount of cyto-
kines secreted by WT or CR3�/� DCs. The only exception was a lack
of increase in the production of IL-12p40 by CR3�/� DCs when cul-
tured with serum-coated 50:50 CPH:SA particles, as was observed
for WT DCs (Fig. 7). Previous work has shown that particle internal-
ization is related to enhanced secretion of IL-12p40 [35]; this may
be attributed to the observation that fewer CR3�/� DCs internalized
50:50 CPH:SA particles than WT DCs. However, the enhanced
secretion of IL-12p40 may not be directly proportional to internal-
ization, since similar concentrations of IL-12p40 are secreted by
WT DCs that were stimulated with sham- and serum-coated
50:50 CPH:SA particles, even when greater internalization was ob-
served for the serum-coated particles.

4. Discussion

Biodegradable polymeric particles have been extensively stud-
ied as carriers for the delivery of antigens and drugs
[1,14,15,42,43]. The interaction of the surface of these particles
with membrane-bound receptors on APCs will initiate particle up-

Fig. 3. Internalization of sham- and serum-coated polyanhydride particles was
mediated by complement receptor 3. Percent WT (h) and CR3�/� (j) DCs that
internalized sham- or serum-coated microparticles after 48 h. Data are expressed as
the means ± SEM of three independent experiments performed in triplicate.
⁄Statistically significant difference between WT and CR3�/� DC within a treatment
at P < 0.05. #Statistically significant difference between sham- and serum-coated
particles within a chemistry at P < 0.05.

Fig. 4. Serum proteins adsorbed onto particles influenced the expression of MHC II
and co-stimulatory molecules on DCs in a chemistry-dependent manner. After co-
culture with either sham- or serum-coated microparticles for 48 h wild-type DCs
were harvested and analyzed by flow cytometry for surface expression of (A) MHC
II, (B) CD86, or (C) CD40. LPS-stimulated and non-stimulated cells (NS) were used as
positive and negative controls, respectively. Data are expressed as the means ± SEM
of three independent experiments performed in triplicate. ⁄Statistically significant
difference from NS cells at P < 0.05. #Statistically significant difference between
sham- and serum-coated particles within a chemistry at P < 0.05.

Table 1
Percentages of the most abundant protein species adsorbed onto 50:50 CPH:SA and
50:50 CPTEG:CPH particlesa,b.

Adsorbed protein 50:50 CPH:SA 50:50 CPTEG:CPH

Albumin 24.8 ± 0.5 27.2 ± 0.3
IgG c chain 35.4 ± 1.1 25.0 ± 0.6
IgG light chain 4.5 ± 0.4 4.8 ± 1.0
IgM 7.3 ± 0.2 9.8 ± 0.5
Complement component C3 23.4 ± 1.9 8.4 ± 0.5
Apolipoprotein A-I 1.4 ± 0.1 2.6 ± 0.3
Apolipoprotein E 0.3 ± 0.1 3.5 ± 0.4
Apolipoprotein H 0.0 ± 0.0 7.5 ± 1.1
Transferrin 0.0 ± 0.0 2.3 ± 0.2

a Data for each protein spot are presented as percentage fluorescence intensity.
The fluorescence intensity of each protein spot was quantified using ImageQuantTL
and normalized to the total fluorescence intensity of the gel, which included all
protein spots.

b Data is the average of three independent experiments.
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take and influence the magnitude of the resultant immune re-
sponse [1,2]. Adsorption of specific serum proteins onto the surface
of polymeric particles alters their recognition and uptake by APCs
[12,13,39]. The data presented herein demonstrate that chemistry-
dependent adsorption of serum proteins on polyanhydride
particles (Fig. 2) affects their internalization and the subsequent
activation of murine DCs (Figs. 3–7 and Supplementary Fig. S1).

It is well known that protein adsorption phenomena are time
dependent [13]. As reported before [13], short incubation times
(<30 min) are sufficient to produce an ‘‘irreversible’’ layer of ad-
sorbed proteins and for the displacement of highly abundant pro-
teins by those with higher affinity. In this work we have sought to
understand the role of protein adsorption on the uptake of parti-
cles by APCs during the early stages of the immune response. It
has been previously demonstrated that these particles are rapidly
internalized by APCs within 30 min [8,14,34,35], making the time-
scale of the current experiments consistent with the initial in vivo
interactions between APCs and particles when used as vaccine
adjuvants and/or antigen carriers.

Particle chemistry and hydrophobicity play integral roles in par-
ticle internalization by DCs, as well as DC activation profiles (i.e.
cell surface marker expression and cytokine production)
[3,8,14,34,35]. These characteristics also determine the patterns
of serum protein adsorption onto particles. Specifically, hydropho-
bic 50:50 CPH:SA particles adsorbed more serum proteins,
including IgG and complement component C3, compared with
the EG-containing amphiphilic 50:50 CPTEG:CPH particles

(Fig. 2). The inhibitory effect of EG-containing particles on protein
adsorption has been observed previously [22,37,44,45], and it may
be expected that CPTEG-containing particles will remain extracel-
lular longer than CPH:SA particles.

The identification of C3 adsorption onto polyanhydride parti-
cles is important because fragments of this molecule are known
to mediate phagocytic uptake of particles via complement recep-
tor-mediated mechanisms [37,44]. In particular, the observation
of C3 fragments on the surface of polyanhydride particles is of
especial interest because it demonstrates the potential of using
the complement cascade as a danger signal to stimulate innate
immunity, which is a desirable goal in the design of vaccine adju-
vants [46]. Complement can also promote antigen-specific im-
mune responses by enhancing both antibody-mediated [47] and
T cell-mediated immunity [48]. Just as on the surface of a patho-
gen, deposition of C3 on the surface of polymer particles pro-
motes the formation of biologically active C3a and C3b
fragments [46,49]. This is supported by the observation that the
C3a fragment was detected in serum incubated in the presence
of polyanhydride particles (Fig. 2D). Previous work by Hubbell
and co-workers identified complement activation and subsequent
DC activation and migration by nanoparticles containing hydroxyl
end groups [50]. Hydroxyl groups are exposed when polyanhy-
dride particles degrade and may, therefore, be involved in com-
plement activation by promoting C3 cleavage, which is
qualitatively consistent with the conclusions reported by Reddy
et al. [46].

Fig. 5. CR3 is required for DC internalization of both sham- and serum-coated particles as well as up-regulation of MHC II and CD40 expression. After stimulation with either
sham or serum-coated microparticles for 48 h WT (h) and CR3�/� (j) DCs were harvested and analyzed by flow cytometry for surface expression of (A) MHC II, (B) CD86, or
(C) CD40. The expression levels for these two markers on CR3�/� DCs were not statistically significant from the levels obtained from non-stimulated cells. LPS-stimulated and
non-stimulated cells (NS) were used as positive and negative controls, respectively. LPS was used as a positive control stimulant with mean MFI values of 4828 for MHC II,
4346 for CD86, and 5601 for CD40 for WT DCs and 4739 for MHC II, 3767 for CD86, and 3837 for CD40 for CR3�/� DCs. Data are expressed as the means ± SEM of three
independent experiments performed in triplicate. ⁄Significant difference between WT and CR3�/� DCs within a group at P 6 0.05. #Statistically significant difference between
sham- and serum-coated particles within a chemistry at P < 0.05.
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The molecular mechanisms governing the interactions of these
particulate adjuvants with DCs has been an area of study in our
laboratories [3,9,14,34,35], and we have identified polymer-associ-
ated molecular patterns and descriptors that may be responsible
for the activation of DCs [9,35]. The current work builds upon these
previous studies by investigating the role of serum protein adsorp-
tion and its consequent outcomes (i.e. complement activation) on
the molecular interactions of particles with DCs. Sham-coated
50:50 CPH:SA and 50:50 CPTEG:CPH particles were both internal-
ized by DCs, but a higher percentage of DCs internalized 50:50
CPH:SA particles (�22%), as previously described (Fig. 3)
[8,14,35]. More DCs internalized serum-coated 50:50 CPH:SA par-
ticles (�42% of the cells were particle+ cells) than sham-coated par-
ticles. This result is hypothesized to be a consequence of enhanced
adsorption of the opsonins IgG and C3, which would promote
interactions with the Fcc and complement receptors, respectively
[4,41]. It is known that CR3 binds to iC3b, an inactive form of the
C3b cleavage fragment of C3, fixed on pathogen and particle
surfaces. In addition, co-ligation of both complement and Fcc
receptors can produce cooperative effects that facilitate anti-
body-dependent phagocytosis [51,52]. Our data indicate that C3
deposition on the surface of 50:50 CPH:SA particles promotes the
cleavage of C3 into C3a and C3b fragments (Fig. 2D), suggesting
that the CR3 receptor will likely contribute to the internalization
of serum-coated particles. Compared with WT DCs there were

90% fewer CR3�/� DCs that internalized serum-coated particles
(Fig. 3). This data is consistent with previous work demonstrating
the role of the CR3 receptor in the recognition of opsonized bacte-
ria and zymosan particles [27,53,54].

In addition, CR3�/� DCs had a diminished capacity for uptake of
sham-coated particles regardless of polyanhydride chemistry,
demonstrating a CR3 receptor-mediated uptake pathway for poly-
anhydride particles in the absence of serum proteins (Fig. 3). These
observations are consistent with the pathogen-mimicking charac-
teristics of polyanhydride particles [9,35]. Specifically, certain do-
mains (i.e. lectin sites) of the CR3 receptor facilitate the binding
and phagocytosis of non-opsonized M. tuberculosis, LPS, Leishmania
lipophosphoglycan (LPG), and various particulate saccharides,
including b-glucan and zymosan [27,51,53,55]. Detailed studies
in our laboratories have previously demonstrated similar DC acti-
vation phenotypes between polyanhydride particles and LPS,
which were attributed to pathogen-mimicking molecular descrip-
tors, including hydroxyl end groups and backbone oxygen moieties
[9,35]. These structural descriptors may also affect the CR3-medi-
ated internalization of polyanhydride particles described in this
study, which appears to be specific for these chemistries, as
CR3�/� DCs were able to efficiently internalize PS particles inde-
pendent of serum exposure (Fig. 3).

Up-regulation of the DC antigen presentation machinery and T
cell co-stimulatory molecules as well as cytokine secretion are

Fig. 6. Serum proteins adsorbed onto 50:50 CPTEG:CPH microparticles enhanced secretion of pro-inflammatory cytokines. After co-culture with either sham- or serum-
coated microparticles for 48 h DC culture supernatants were harvested and assayed for (A) IL-1b, (B) IL-6, (C) IL-12p40, or (D) TNF-a. Data are expressed as the means ± SEM
of three independent experiments performed in triplicate. LPS was used as a positive control stimulant with mean cytokine secretion values of 1041 pg ml�1 for IL-1b,
44,329 pg ml�1 for IL-6, and >50,000 pg ml�1 for both IL-12p40 and TNF-a. ⁄Statistically significant difference from NS cells at P < 0.05. #Statistically significant difference
between sham- and serum-coated particles within a chemistry at P < 0.05.
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important and desirable characteristics of vaccine adjuvants that
promote efficient naïve T cell activation and B cell differentiation
[1,2]. A polymer chemistry-dependent enhancement of the expres-
sion of MHC II and co-stimulatory molecules (i.e. CD40 and CD86)
and secretion of cytokines was observed in this study (Figs. 4–6),
and is consistent with previous observations [9,14,34,35]. While
sham-coated 50:50 CPTEG:CPH particles enhanced the expression
of MHC II, CD86, and CD40, sham-coated 50:50 CPH:SA particles
increased the secretion of IL-6, IL12-p40, and TNF-a. Of interest,
adsorption of serum proteins onto hydrophobic 50:50 CPH:SA par-
ticles resulted in greater expression of MHC II and CD40 (Figs. 4
and 5). While the enhanced expression of CD40 was identified to
be directly dependent on particle internalization, as shown in Sup-
plementary Fig. S1, the expression of MHC II was found to not be
dependent on particle internalization. These observations support
previous findings that demonstrated that internalization alone is
not sufficient to enhance DC activation [3]. In contrast, serum pro-
tein adsorption onto amphiphilic 50:50 CPTEG:CPH particles in-
creased the secretion of pro-inflammatory cytokines (i.e. IL-6,
TNF-a, and IL-12p40) in comparison with sham-coated particles
(Fig. 6). Therefore, chemistry-dependent adsorption of serum pro-
teins influences the expression of key surface markers and the pro-
duction of cytokines that are involved in DC maturation and
antigen presentation.

Together these results indicate that polyanhydride particles are
capable of inducing DC activation and, more importantly, that the

polymer chemistry can be rationally chosen to induce a mature DC
phenotype. Induction of this activated DC phenotype may benefit
antigen processing and presentation because DC migration and
interaction with T cells is associated with activated DCs. For exam-
ple, the intrinsic characteristics of the amphiphilic 50:50
CPTEG:CPH particles induced DC maturation in the absence of ser-
um (i.e. enhanced MHC II, CD86, and CD40 expression), while ser-
um proteins uniquely adsorbed onto the hydrophobic 50:50
CPH:SA particles and enhanced their adjuvant properties. These
observations on the effect of protein adsorption phenomena on
particle fate and interaction with immune cells will increase our
understanding of the in vivo performance of these particles as vac-
cine adjuvants and/or antigen carriers. The specific interactions of
particles with serum proteins and the consequences of their
adsorption on the molecular interactions with DCs present an
intriguing opportunity to rationally design efficacious vaccine
delivery platforms.

5. Conclusions

In this study the profile of serum proteins adsorbed onto the
surface of polyanhydride particles was influenced by polymer
chemistry and elicited differential effects on DC activation. We also
observed that complement receptor C3-mediated pathways were
involved in the internalization of polyanhydride microparticles

Fig. 7. Similar cytokine secretion profiles between WT and CR3�/� DCs upon co-culture with polyanhydride particles. After incubation with either sham- or serum-coated
microparticles for 48 h WT (h) and CR3�/� (j) DC culture supernatants were harvested and assayed for (A) IL-1b, (B) IL-6, (C) IL-12p40, and (D) TNF-a. Data are expressed as
the means ± SEM of three independent experiments performed in triplicate. LPS was used as a positive control stimulant with mean cytokine secretion values of 1041 pg ml�1

for IL-1b, 44,329 pg ml�1 for IL-6, and >50,000 pg ml�1 for both IL-12p40 and TNF-a. ⁄Statistically significant difference from NS cells at P < 0.05. #Statistically significant
difference between sham- and serum-coated particles within a chemistry at P < 0.05.
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by DCs regardless of the presence of serum proteins, highlighting
the intrinsic pathogen-mimicking characteristics of these particles.
The receptor-mediated internalization induced by either the direct
interaction of adsorbed opsonins or the inherent pathogen-mim-
icking patterns of polyanhydride particles with CR3 may be
exploited to design efficacious vaccine delivery vehicles.
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