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Spin superfluidity in noncollinear antiferromagnets

Bo Li and Alexey A. Kovalev
Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska,

Lincoln, Nebraska 68588, USA

(Received 26 November 2020; accepted 8 February 2021; published 22 February 2021)

We explore the spin superfluid transport in exchange interaction-dominated three-sublattice antiferromagnets.
The system in the long-wavelength regime is described by an SO(3) invariant field theory. Additional corrections
from Dzyaloshinskii-Moriya interactions or anisotropies can break the symmetry; however, the system still ap-
proximately holds a U(1)-rotation symmetry. Thus, the power-law spatial decay signature of spin superfluidity is
identified in a nonlocal-measurement setup where the spin injection is described by the generalized spin-mixing
conductance. We suggest iron jarosites as promising material candidates for realizing our proposal.

DOI: 10.1103/PhysRevB.103.L060406

I. INTRODUCTION

Spintronics has been extremely successful in combining
advanced theoretical concepts with practical applications and
experiment [1]. Materials with antiferromagnetic ordering are
a focus of active research in spintronics due to many desirable
properties such as spin dynamics in the terahertz range [2],
the absence of stray fields, and insensitivity to the presence of
magnetic fields [3]. In addition, antiferromagnetic insulators
are characterized by long spin diffusion length associated
with transport of magnons, making them particularly suitable
for spintronics applications such as low dissipation electronic
devices [4].

Magnetic insulators can also transport spins in a regime
in which the transport can be described as spin superfluidity
[5,6]. In easy-plane magnets, the spin is then transported over
large distances by the coherent order parameter precession
[7–9]. The power-law decay of spin current can enable spin
transport over longer distances compared to the diffusive
regime [7–15]. Nevertheless, in ferromagnets the dipole inter-
action can limit the range of spin superfluid transport [9]. On
the other hand, collinear antiferromagnetic insulators could
provide a viable platform for realizing the spin superfluidity
[8,16,17] as demonstrated in experiments on Cr2O3 [14] and
antiferromagnetic ν = 0 quantum Hall state of graphene [15].

Noncollinear antiferromagnets (nAFM) are yet another
viable platform for realizing spin flows [18–20]. The non-
collinear conducting magnets can exhibit a multitude of
phenomena associated with topology of electronic bands
[21], e.g., Mn3X (X = Ge, Sn, Ga, Ir, Rh, or Pt) magnets
exhibit the anomalous [22] and spin [23] Hall responses.
Various magnon-mediated responses relying on magnon
spin-momentum locking, topology of magnonic bands, and
coupling to phonons have been studied theoretically, promis-
ing observation of spin-related phenomena in insulating
antiferromagnets [24–32].

In this work, we analytically study viability of spin su-
perfluid transport in insulating nAFM. In general, the U(1)
symmetry of magnetic ordering can be hampered by various

anisotropies. The highly symmetric hexagonal environment
considered in this work can be beneficial for realizing spin
superfluid transport. Hexagonal nAFM can exhibit relevant
phenomena, e.g., the appearance of domain walls [33,34] and
Goldstone modes [35]. Furthermore, spin superfluid transport
has been studied numerically in a triangular nAFM [36]. In
this work, we offer analytical results with a detailed discussion
of the generalized spin-mixing conductance and spin current
injection into nAFM. We identify the power-law decay feature
of the spin superfluid transport in a nonlocal experimental
setup. Our simple results can help in designing and interpret-
ing experiments on spin superfluidity in nAFM.

II. LONG-WAVELENGTH HAMILTONIAN

In nAFM, the exchange interaction is often dominant,
which approximately endows the system with an SO(3) sym-
metry given that all other interactions, e.g., anisotropy and
Dzyaloshinskii-Moriya interaction (DMI), are very weak. We
start with constructing a long-wavelength SO(3) field theory
to describe the nAFMs and regard other weak terms as addi-
tional perturbations. In a two-dimensional nAFM with three
sublattices (e.g., kagome, triangular), the exchange interac-
tions favor fully compensated spin configurations, which in
the presence of other interactions may acquire a very small
net magnetization. Therefore, we parametrize the spins Si of
length S in each triangular plaquette as [37]

Si = SR̂(ni + L)/(1 + 2L · ni + L2)1/2, (1)

where ni (i = 1, 2, 3) sets a reference ordered state allowed
by exchange interactions with

n1 = (0, 1, 0), n2 =
(

−
√

3

2
,−1

2
, 0

)
,

n3 =
(√

3

2
,−1

2
, 0

)
; (2)

R̂ ∈ SO(3) is a rotation matrix which generates degenerate
states by acting on the reference state; L describes small
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deviation from the compensated spin structure with the mag-
nitude L � 1. R̂ and L together generate all possible spin
configurations on three sublattices. To the leading order in L,
Si = SR̂[ni + L − ni(L · ni )], and the net angular momentum
density,

m = h̄/Auc

∑
i

Si = 3sR̂(T̂ L), (3)

where s = Sh̄/Auc, Tab = δab − 1
3

∑
i na

i nb
i , and Auc is the area

of a unit cell.
With the forgoing parametrization, the system is generally

described by a Lagrangian [37],

L = m · �t − m2

2�
− tr[P̂i j∂iR̂

T ∂ j R̂], (4)

where (�t )i = − 1
2 Riαεαβγ (R̂T ∂t R̂)βγ . Here, the first term is

derived from the spin kinetic energy; the second term orig-
inates from the exchange interaction, e.g., for the nearest
exchange J , we obtain � ∝ h̄2/(JAuc); the last term describes
the second-order gradient expansion of exchange coupling
with tensor P̂i j encoding the exchange interactions and lattice
geometry. From the Euler-Lagrange equation [33], we obtain

m = ��t , (5)

from which the field m can be removed from Eq. (4), i.e.,

L = �

4
tr[∂t R̂

T ∂t R̂] − tr[P̂i j∂iR̂
T ∂ j R̂]. (6)

This is the so-called nonlinear σ model [37,38].
To determine the tensor P̂i j for a hexagonal-symmetry lat-

tice, kagome or triangular, when exchange is the dominant
interaction, we explore the spin wave behavior by following
Ref. [35]. We consider small fluctuations on the reference
state by using R̂ = exp[−iθ · Ĵ ], where (Ji ) jk = −iεi jk with
εi jk is the Levi-Civita tensor and a vector θ describes the
small deviation with |θ| � 1. The spin-wave energy is ob-
tained from the leading-order expansion of the second term
in Eq. (6),

U = tr[P̂i jĴkĴl ]∂iθk∂ jθl = ∂iθk∂ jθktr[P̂i j] − Pi j,kl∂iθk∂ jθl . (7)

Due to the highly symmetric hexagonal environment, θz acts
as a scalar and θx, θy act as two components of a vector under
symmetry transformations. Using the symmetry constraints,
we recover the form of P̂i j tensor

Pi j,kl = ηδi jδkl + λδikδ jl + μδilδ jk for k, l = 1, 2,

Pi j,zz = κδi j, (8)

where the arbitrary coefficients κ , η, λ, and μ scale as the
exchange strength J . For triangular and kagome lattices with
the nearest exchange interaction, their values are summarized
in Table. I.

From Eq. (6), the spin-wave Lagrangian reads L =
(�/2)(θ̇)2 − U . By using Eq. (8), we can obtain three
linearly dispersive Goldstone modes [35] ωi = vik with
v1 = √

2(2η + λ + μ)/�, v2 = √
2(κ + η + λ + μ)/�, v3 =√

2(κ + η)/�. Here, ω1 corresponds to the scalar mode θz, and
ω2,3 comes from the vector modes θx, θy [35].

TABLE I. Parameters describing spin-wave excitations in trian-
gular and kagome lattices with only the nearest exchange interaction.
Here, a is the lattice constant.

Lattice � Auc κ η λ μ

Triangular 2h̄2

9
√

3Ja2
3
√

3a2

2 0
√

3JS2

8 0 0

Kagome h̄2

4
√

3Ja2 2
√

3a2 0 0
√

3JS2

16

√
3JS2

16

III. DMI AND ANISOTROPY

In nAFMs, the field theory used to describe exchange
interactions should be modified by the aforementioned weak
interactions that remove the SO(3) symmetry and gap out the
Goldstone modes. To take these interactions into account in
centrosymmetric crystals, we first consider their microscopic
expressions.

In a kagome lattice (see Fig. 1), we consider the DMI term,
e.g., typical to jarosites [39],

HD =
∑
i, j

Di j · (Si × S j ), (9)

where Di j = Dz ẑ + D‖, D‖ = Dpn̂i j with n̂12 = (
√

3
2 ,− 1

2 , 0),

n̂23 = (0, 1, 0), and n̂31 = (−
√

3
2 ,− 1

2 , 0). We first consider
DMI to the leading order in spatial gradients and obtain the
energy density,

HD ≈ −itr[X̂ · (R̂T Ĵ R̂)], (10)

where (X̂k )ab = ∑3
i, j=1 S2Dk

i jn
a
i nb

j and Dk
i j = Dk

i j/Auc. By us-
ing Eq. (10) and the representation of the rotation matrix,
R̂ = exp[−iθ · Ĵ ] exp[−iφĴz], the leading correction of the
DMI term is obtained by expanding Eq. (10) to the lowest
order of θi (i = x, y, z),

δU = �

2

(
θ2

x + θ2
y

)
, (11)

where � = −3
√

3DzS2 > 0. The out-of-plane DMI sup-
presses spin rotations other than those with respect to the z

1

2 3

1

2 3

FIG. 1. Noncollinear kagome (left) and triangular (right) anti-
ferromagnets. The red arrows indicate the spin directions of the
reference state. The blue arrows (left) indicate the out-of-plane and
in-plane DMI vectors; the in-plane DMI vectors are defined for
anticlockwise direction in each triangular plaquette.
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axis, reducing the SO(3) symmetry to a U (1) rotation sym-
metry. Furthermore, the DMI in Eq. (9) constrains the ground
state of the system and gaps out the Goldstone modes ωi =√

v2
i k2 + �/� for i = 2, 3, while the ω1 mode is intact [40].
To capture a small gap in the ω1 mode, we expand Eq. (1) to

the first order in L and substitute it in Eq. (9). The contribution
proportional to m can be written in a compact form,

H(1)
D = B · m, (12)

where B is a “magnetic field”

Bl = −itr[Ẑkl R̂
T ĴkR̂], (13)

with (Zkl )ab = (S/6h̄)
∑

i, j

∑
c Dk

i j (n
a
i δ

bc − na
i nb

jn
c
j + δacnb

j −
na

i nb
jn

c
i )(T̂ −1R̂T )cl . Combing this term with Eqs. (4) and (10)

and eliminating m, the effective Lagrangian becomes

L = �

2
(�t − B)2 − U [R̂], (14)

where U [R̂] = tr[P̂i j∂iR̂T ∂ j R̂] + HD. The B term breaks the
rotation symmetry and gaps out the ω1 mode.

In a triangular lattice (see Fig. 1), the intrinsic DMI is
forbidden by the lattice symmetry, while the ground state can
be stabilized by the energy density,

HA =
∑

i=1,2,3

−K(n̂i · Si )
2 + Kz(ẑ · Si )

2, (15)

where K = K/Auc, Kz = Kz/Auc, with K, Kz being the easy-
axis and easy-plane anisotropy constants, respectively. By
substituting Si ≈ R̂ni in Eq (15), the anisotropy term gives a
correction,

δU = �

2

(
θ2

x + θ2
y

) + 3KS2θ2
z , (16)

where � = 3(Kz + K)S2. When K � Kz, we can approxi-
mately neglect the easy-axis term, and thus the system ap-
proximately respects U(1) symmetry. The Goldstone modes,
ω2,3, acquire a gap,

√
�/�. A small gap in the ω1 mode is

described by K.

IV. SPIN SUPERFLUIDITY

In the following, we focus on the spin transport facilitated
by approximate U (1) symmetry. We assume that the system
is driven by a weak perturbation when compared to the gap
of the ω2 and ω3 modes, while large enough to overcome the
barrier corresponding to the gap of the ω1 mode. By adding
HA or HD to the Lagrangian (6) and neglecting the hard
modes, the Lagrangian of the soft mode becomes

L = �

2
φ̇2 − A

2
(∇φ)2, (17)

where A = 2(2η + λ + μ). On the other hand, the third com-
ponent of Eq. (5) is reduced to mz ≈ �∂tφ. Therefore, we
arrive at a continuity equation,

∂t mz − A∇2φ = 0, (18)

where a spin current density with polarization along the z axis
can be identified as

js = −A∇φ. (19)

FIG. 2. A nonlocal measurement setup containing normal
metal/nAFM/normal heterostructure. A charge current in the left
layer generates a spin accumulation μs via spin Hall effect, which
injects a spin current into nAFM layer. The spin current mediated
by the collective modes in the middle layer passes the second inter-
face by virtue of spin pumping effect. The pumped spin current is
measured in the right layer via the inverse spin Hall effect.

The spin superfluidity in nAFM will be affected by dissi-
pation effects. Within the Lagrangian formalism, we can add
dissipation using the Rayleigh dissipation function [41]

R = 1
2 Qi j Ṡi · Ṡ j, (20)

where Q̂ is a symmetric matrix with nonnegative eigenval-
ues [42,43]. From symmetry considerations applied to three
equivalent sublattices, we obtain that Qi j = r1 for i = j and
Qi j = r2 for i 	= j where r1 and r2 are real parameters.
The Rayleigh function can be approximately written as R =
tr[Q̂∂t R̂T ∂t R̂] with Qab = 1

2

∑
i j Qi jna

i nb
j to describe dissipa-

tion of the soft mode, i.e.,

R = αsφ̇2/2, (21)

where α = 3(r1 + 2r2)/s is a dimensionless dissipation
parameter.

To activate spin dynamics in a magnetic insulator, a spin
Hall current can be induced in a neighboring normal metal
layer (see Fig. 2). A buildup of spin accumulation in a nor-
mal metal will then lead to injection of spin current into the
magnetic insulator layer. The boundary condition on the inter-
face can be derived via the magnetoelectronic circuit theory
[44–48]. When exchange interactions dominate, the spin in-
jection and pumping together give the total spin current across
the interface (see details in Supplemental Material [40])

Is = 1

4π
Ĝm · (μs − h̄ω), (22)

where ω is the instantaneous angular velocity for slow dy-
namics of the order parameter and Ĝm is the generalized
spin-mixing conductance tensor [48]. Under assumption of C3

symmetry (or axial symmetry with respect to the l axis), the
tensor Ĝm takes the following form

Ĝm(l ) = 2G↑↓
r (1 − l ⊗ l ) + 2G↑↓

i (l×) + 2G‖l ⊗ l, (23)

where G↑↓
r(i) = ∑

mn Re(Im)(δnm − r↑↑
mnr↓↓∗

mn ), G‖ = ∑
mn

(|r↑↓
mn |2 + |r↓↑

mn |2), and l is the unit vector normal to the plane
spanned by three-sublattice spins (cf. Eq. (59) in Ref. [48]).
Here, rσσ ′

mn stands for reflection amplitudes for electrons
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TABLE II. Relevant material parameters for iron jarosites taken
from Refs. [52,53].

Material J(meV) Dp/J Dz/J ms
√

�/�

KFe3(OH)6(SO4)2 3.18 0.062 −0.062 0.088
AgFe3(OH)6(SO4)2 3.18 0.057 −0.053 0.088
AgFe3(OD)6(SO4)2 3.18 0.075 −0.053 0.115

reflected from channel n into channel m in the normal metal
and l is the quantization axis for σ, σ ′ =↑,↓.

By writing the Euler-Lagrange equation with Rayleigh dis-
sipation for Eqs. (17) and (21), the dynamic equation for φ

reads,

�φ̈ − A∂2
x φ + αsφ̇ = 0. (24)

We use a steady-state ansatz [7,8], φ(x, t ) = ϕ(x) + �t ,
where � is a constant frequency. For almost in-plane spin or-
der, the angular velocity is ω ≈ φ̇ẑ and l = ẑ. We also assume
spin accumulation along z direction, μs = μẑ. Equations (19),
(22), and (23) then lead to the boundary conditions on the left
(x = 0) and right (x = L) interfaces

−A∂xϕ(0) = − gL

4π
(h̄� − μ), (25a)

−A∂xϕ(L) = gR

4π
h̄�, (25b)

where ga = G‖,a/V (a = L, R) with V being the area of inter-
face. Combining the boundary condition and the steady-state
ansatz, we obtain,

� = μgL

h̄(gL + gR + gα )
, js

R = μ

4π

gLgR

(gL + gR + gα )
, (26)

where gα = 4παsL/h̄.
Above approximations need to be revisited when weak

in-plane DMI or easy-axis anisotropy is present. We obtain
a Lagrangian describing the soft mode

L[φ] = �

2

[
(∂tφ)2 − c2

s (∇φ)2 + m2
s cos 2φ

]
, (27)

where cs = √
A/� and ms is the mass term due to weak in-

plane DMI or easy-axis anisotropy. To activate spin transport,
the gradient needs to overcome the barrier induced by the
gap, i.e., |∇φ| � ms/cs. The spirallike phase supporting spin
superfluid will become energetically unstable when the field
φ varies faster than 1/ξ where ξ = √

�c2
s /� is the charac-

teristic length associated with the gap of ω2 and ω3 modes,
i.e., |∇φ| � ξ−1. Thus, the spin-superfluid transport is only
possible under the assumption,

ms

√
�/� � 1. (28)

We first discuss the kagome lattice nAFM with in-plane
DMI in which case ms = √

3/2DpS/h̄. As estimated in
Table II, we find that different iron jarosites fulfill criteria
(28) very well and hence are very promising for experimental
realization of spin superfluidity. In a triangular lattice, the
easy-axis anisotropy hinders ideal spin superfluidity leading

to the last term in Eq. (27) with ms = 3S
√

KJ/h̄. Equation
(28) leads to the condition

√
K/Kz � 1.

The spin-superfluid transport can be measured in a nonlo-
cal setup in Fig. 2 [49]. The spin Hall current builds up an
effective spin accumulation, μs = (4π/gL )Js

SH, where Js
SH =

ϑSH(h̄/2e)Jc
L is the spin current induced by the charge cur-

rent Jc
L , and ϑSH is the spin Hall angle in the leads [49–51].

The spin current mediated by the collective dynamics of
nAFM passes across the second interface by virtue of the
spin pumping effect, and it is converted into a charge cur-
rent in the right lead, Jc

R = (ϑSHσ/d )(h̄/2e)�, where σ and
d are, respectively, the conductivity and thickness of the
right metal layer. The nonlocal transport is characterized
by a drag coefficient, D = Jc

R/Jc
L = D0/(1 + L/Lα ), where

D0 = πϑ2
SHσ h̄/(2e2gd ), g = gL = gR, and Lα = h̄g/(2παs).

Assuming ϑSH = 0.1, σ = 0.1 μ�−1 cm−1, d = 1 nm, g ∼
1019 m−2, α = 10−3, s ∼ h̄/a3, and a lattice constant a ∼
1 nm, we obtain D0 ∼ 0.1 and Lα ∼ 1 μm. These results are
similar to collinear systems [7,8] and show that the long
crossover length Lα can be used as a key signature of spin
superfluidity.

It is worthwhile to remark that at a finite temperature, a
two-fluid theory may be required to describe the spin transport
and dissipation [12,54]. In particular, the equilibration be-
tween condensate and thermal magnons may need to be taken
into account. Our phenomenological treatment of dissipation
may be amended by including spin-conserving relaxation;
this correction, however, is expected to be small at low
temperatures [12].

V. CONCLUSIONS

We have used an SO(3)-invariant field theory to describe
three-sublattice antiferromagnets with hexagonal lattice in an
exchange interaction-dominated limit. When weak interac-
tions, such as DMI or anisotropy, are added, the symmetry is
approximately reduced to U(1). We have shown that in this
limit, three-sublattice antiferromagnets can facilitate a spin
superfluid transport. Using generalized spin-mixing conduc-
tance, we have also described the injection of spin current
and its power-law decay in a nonlocal experimental setup.
Our results indicate that the magnitude of spin current is
constrained by parasitic DMI or anisotropies, which can help
in finding suitable materials. In particular, we estimate that
iron jarosites can be promising for realizing spin superfluidity
in nAFMs. nAFMs hold promise for realizing spin flows with
low dissipation and the theoretical framework presented here
can be useful for exploring the interplay between transport
phenomena [55,56] and topological defects, i.e., domain walls
[33,34], or skyrmions [57].
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