
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Food and Drug Administration Papers U.S. Department of Health and Human Services

2017

Certain Dyes as Pharmacologically Active
Substances in Fish Farming and Other Aquaculture
Products
Eric Verdon
French Agency for Food

Wendy C. Andersen
U.S. Food and Drug Administration

Follow this and additional works at: http://digitalcommons.unl.edu/usfda

Part of the Dietetics and Clinical Nutrition Commons, Health and Medical Administration
Commons, Health Services Administration Commons, Pharmaceutical Preparations Commons, and
the Pharmacy Administration, Policy and Regulation Commons

This Article is brought to you for free and open access by the U.S. Department of Health and Human Services at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Food and Drug Administration Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Verdon, Eric and Andersen, Wendy C., "Certain Dyes as Pharmacologically Active Substances in Fish Farming and Other Aquaculture
Products" (2017). Food and Drug Administration Papers. 13.
http://digitalcommons.unl.edu/usfda/13

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usfda?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ushhs?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usfda?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/662?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/663?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/663?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/747?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/936?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/732?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usfda/13?utm_source=digitalcommons.unl.edu%2Fusfda%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages


�

� �

�

497

9
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1Laboratory of Fougeres at Anses, EU Reference Laboratory for Antimicrobial and Dye Residues in Food, French
Agency for Food, Environmental and Occupational Health Safety, Fougères, France
2Animal Drugs Research Center, U.S. Food and Drug Administration, Denver, Colorado, USA

9.1 Introduction

The last 40 years have brought enormous changes to the aquaculture industry.
The farming of fish and of seafood products has been continuously increasing
from 3.9% by weight in 1970 to 36% in 2006 according to the World Health Orga-
nization (WHO) and Food and Agriculture Organization (FAO) of the United
Nations.1 The global trend of aquaculture development gaining importance in
total fish supply has remained uninterrupted. Farmed food fish contributed a
record 42.2% of the total 158 million tonnes of fish produced by capture fisheries
and aquaculture in 2012 (Figure 9.1). This compares with just 13.4% in 1990 and
25.7% in 2000. Since 2008, Asia has been producing more farmed fish than wild
catch, and its aquaculture share in total production reached 54% in 2012, when
European production rose to 18% and other continents to less than 15%.1 The 15
main producer countries accounted for 92.7% of all farmed food fish and seafood
production in 2012. In the same period, there was a considerable intensification
of seafood trading worldwide.

Fish is the main valued export commodity from the vast majority of the
developing countries before coffee, natural rubber, cocoa, and sugar.1 According
to the seafood trade flows in 2010 from Natale et al.,2 China appears as the
major exporter to the rest of the world with also an increasing importance of
Vietnam, Thailand, Chile, India, and Indonesia. China has also become the
world’s third largest importing country after the United States of America and
Japan (Figure 9.2). The European Union (EU) is the largest market for imported
fish and fishery products, and its dependence on imports is still growing. Such a
food fish farming increase cannot be further intensified without controlling the
zoosanitary aspects of this agri-food industry.
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Figure 9.1 World capture fisheries and aquaculture production per year from FAO (2014).1

A considerable amount of food fish farming, 63% in 2012,1 is now attributed to
extensive and intensive freshwater inland aquaculture and also coastal brackish
water ponds and shore-based mariculture. It is considered easy-to-establish
aquaculture in developing countries. However, some technical barriers to trade,
such as international standards and regional technical regulations in the import-
ing countries aimed at protecting consumers from the presence of chemical
residues and contaminants in traded seafood associated with intensive farming,
may have significant impact on the efforts in these developing countries. For
instance, disease problems have been reducing the farmed shrimp production
and have forced farmers to introduce zootechnical practices and treatments to
combat these diseases.

In contrast to the large therapeutic arsenal to fight against mammalian diseases,
the use of pharmaceutical substances is rather limited in scope in fish and seafood
farming, and it has always been basically limited to some anesthetic substances
and to anti-infective and antimicrobial agents against parasitic and microbial
diseases.3, 4 As a consequence, the unregulated use of dye chemicals from the
family of the triphenylmethane dyes, malachite green (MG), a common commer-
cial and inexpensive fabric dye, has developed and been used as a therapeutic
multi-usage drug to globally reduce parasitic, microbial, and fungal diseases
found in fish and seafood farming.5 MG has, for instance, been used both pro-
phylactically and in the treatment of fungal infections for fish and eggs for more
than 80 years.6 In the course of the 1980s, 1990s, and 2000s, many concerns were
raised in regard to the toxicity of this substance, and different toxicological stud-
ies were carried out for MG and for some other similar dyes applied or potentially
applied for their therapeutic qualities in fish farming. MG has now been banned
in nearly all of the regions of the world, including North America and Europe,
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Figure 9.2 International seafood trade flows from the main importers and exporters by year
and origin of production (aquaculture vs fisheries). The size of the circles is proportional to the
value of the exports. The shading is based on the percentage represented by aquaculture of
the total fish production in the exporting country in contrast to wild catch fisheries (10 equal
intervals between 0% and 100%). The lighter the grey shading, the more aquaculture; the
darker the grey shading, the more product is from wild catch fisheries. Source: Natale 2015.2

Reproduced with permission from Elsevier. CHN, People’s Republic of China; NOR, Norway;
VNM, Vietnam; THA, Thailand; USA, United States of America; CAN, Canada; CHL, Chile; DNK,
Denmark; ESP, Spain; NLD, Netherlands; SWE, Sweden; PER, Peru; IND, India; IDN, Indonesia;
RUS, Russia; JPN, Japan; FRA, France; ITA, Italy; DEU, Germany; KOR, Southern Korea; HKG, Hong
Kong; GBR, Great Britain; PRT, Portugal; POL, Poland; BEL, Belgium; BRA, Brazil.
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but can still be present in various inappropriate fish farming practices around the
world.

Recently, the Joint WHO/FAO Expert Committee on Food Additives (JECFA)
has evaluated the risk for public health of the use of MG7, 8 and crystal (gentian)
violet (CV)9, 10 in fish farming. The Codex Committee on Residues of Veterinary
Drugs in Foods has recommended that competent authorities should not per-
mit their use in food-producing animals including fish/seafood farming.11, 12 This
should therefore lead to an absence of detectable residues in products from this
industry. However, they still appear to be present, probably because they are still
widely used in the textile industry and elsewhere and are commercially avail-
able as inexpensive therapeutic chemicals for ornamental fish. In addition, the
dyes are persistent in the sediment of water sources for aquaculture and will be
absorbed and bioaccumulated in aquaculture tissues over time.13 As a result of
these assessments and recommendations, several countries and the EU since 2004
have assigned a specific food safety concern to these substances and mandated
that they should be actively controlled in food products and food trading derived
from the fish and seafood farming industry.

There have been trade issues associated with certain dye compounds used as
veterinary medicines, particularly with MG and its chemically related congeners
in aquaculture. This chapter is intended to review these pharmacologically
active dyes from their chemistry and toxicological concerns to their regula-
tory monitoring in aquaculture products due to their undesirable presence in
aquaculture-sourced foods.

9.2 Therapeutic Applications and Chemistry of Certain
Dyes Used in Fish Farming

Dyes with pharmacological activity can be categorized into five chemical classes:
triaryl(phenyl)methanes, phenothiazines, xanthenes, acridines, and azo com-
pounds (Figure 9.3). In aquaculture, dyes are primarily used as a treatment for
fungal and external parasite infections in fish and to protect incubating eggs from
fungus. Many of the dyes described from these chemical classes have antiseptic,
antimicrobial, or other medicinal properties with uses in veterinary and human
medicine. Many also have unique affinities for binding to different cellular
components rendering these therapeutic dyes excellent biological stains. Other
dyes and pigment residues have been found in fish from environmental exposure
to textile and manufacturing effluents15 as well as from food additives inten-
tionally added to color seafood products. For example, the carotenoid pigments
canthaxanthin and astaxanthin are used as feed additives to redden the color of
aquacultured salmon and trout flesh.16 Though toxicity and safety concerns have
led to restrictions and discontinuation of therapeutic dye treatments, the long
history, efficacy, and ready availability of inexpensive dyes for infection control
suggest that regulatory monitoring must continue.
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9.2.1 Triarylmethanes

Triarylmethane dyes are cationic and have wide application as colorants for
textiles, papers, plastics, and inks and are used as biological stains. These are
characterized as the structurally simple triphenylmethane dyes and the more
complex triphenylnaphthylmethane structures of the Victoria blue dyes, where
one phenyl ring has been substituted with a naphthyl group (Figure 9.3). The
triphenylmethane dyes have a long history of therapeutic use as fungicide and
ectoparasiticide agents. Gentian violet was noted to have bactericidal properties
in mammalian blood in 1913,17 and it is effective as a human medicine for
the treatment of fungal infections of candidiasis and thrush. In 1933, Foster
and Woodbury6 reported MG to be unusually effective for the treatment of
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Figure 9.3 Structures of pharmacologically active dyes. Source: Tarbin 2008.14 Reproduced
with permission from Elsevier.
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Figure 9.3 (Continued)

fungus infections in trout, bass, and trout eggs. MG is considered to be the most
effective antifungal treatment used in aquaculture.18 Exposure bath treatments
are effective for the control of the external protozoan Ichthyophthirius multifiliis
in fish, and treatments of fish eggs with dilute MG effectively reduce fungal
growth (e.g., Saprolegnia) and ensure viability of live eggs.19 Other studies
indicate additional members of the triphenylmethane class of compounds to
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have similar antiseptic and antifungal properties. Alderman conducted in vitro
studies of cultures of Saprolegnia parasitica against 11 triphenylmethane dyes
and other compounds with antifungal properties.20 Of the 40 compounds stud-
ied, the mercury-containing compound thimerosal and the triphenylmethane
compounds MG, CV, and brilliant green (BG), monophenylrosaniline (Dahlia),
and iodine green were the most effective. In a more recent study, the antifungal
potency of MG, CV, BG, and methyl green was assessed against 36 different
fungal strains and found to have comparable or greater activity when compared
to antifungal reference standards.21

MG and metabolites are susceptible to oxidation/reduction and demethylation
reactions in the presence of air and light. The MG cation has a pK a of 6.9, and
it slowly hydrolyzes to form an equilibrium mixture with the colorless carbinol
base in aqueous solutions. Under acidic conditions (pH 3.5), only the cationic
dye is present in solution. At pH conditions of 6.5, 7.0, and 9.0, after equilibra-
tion, the carbinol accounts for approximately 25%, 50%, and 100% of the material,
respectively.22 The less water-soluble carbinol has greater lipophilicity with higher
potential than the cation to pass through cell walls.23 After absorption, the com-
pound is quickly metabolized to leucomalachite green (LMG). LMG is lipophilic
and has a very long residence time in fatty muscle tissue. In a 14C-labeled study
of catfish treated by a 1-hour MG exposure bath, residues bioconcentrated in the
catfish at higher concentrations than the exposure bath.24 Immediately after expo-
sure, LMG residue concentration was slightly higher than MG in muscle. After 14
days, MG had decreased to the method detection limit, while concentrations of
LMG in muscle were more than 40 times higher. LMG was still quantifiable in
muscle 42 days later. Demethylated metabolites of LMG were also identified in
catfish muscle after treatment by MG exposure bath.25 Metabolized LMG in fish
muscle has been observed to oxidize back to MG when fish muscle is frozen.26 The
complex interconversions that these compounds undergo have led to a wealth
of studies in the literature to better understand the chemistry of the triphenyl-
methanes in aquatic species.

CV and BG are other triphenylmethane dyes with similar properties to MG. CV
is hexamethyl-p-rosaniline (Figure 9.3), whereas the similar dye product, gentian
violet, is a mixture that is primarily composed of CV and also contains methyl
violet, the pentamethyl-p-rosaniline compound. Leucocrystal violet (LCV) is the
metabolic marker residue in fish after treatment bath exposure to CV. Thompson
et al.27 determined the concentration of CV and LCV residues in catfish muscle
following the exposure to a 1-hour treatment bath of CV (100 μg/l). Catfish were
then returned to a pond for withdrawal studies. One hour after exposure, a CV
concentration of 0.5 μg/kg was determined, and residues of LCV in muscle were
12 μg/kg. CV concentration quickly dropped below the detection limit, while LCV
was still present at a concentration of 3 μg/kg 79 days after the treatment bath.
The predominance of the leuco metabolite was also noted after low-concentration
exposure bath treatment (10 μg/l, 1 hour) of salmon and tilapia.28 Chan et al. con-
ducted depletion studies of CV and LCV in salmon.29 One day after bath exposure
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to CV, 98% of the residues were in the form of LCV, and this metabolite was
detected in salmon as long as 91 days after exposure.

Data are more limited for the metabolism of BG, though this compound is
also expected to metabolize to the leuco base in fish muscle. Leucobrilliant green
(LBG) is readily oxidized to BG, limiting the stability of this compound and
resulting in the lack of a commercially available standard. Andersen et al. fortified
catfish muscle with LBG and found it to oxidize to BG during the extraction
process.30 Hurtaud-Pessel et al. identified both BG and LBG residues in samples
of trout treated in a BG bath.31 Immediately after bath exposure, BG and LBG
residues were in equal proportion in the trout muscle. Two hours after exposure,
the LBG residue concentration in muscle was two-thirds of the concentration of
the BG residues. In another study from Schneider et al.,32 LBG was not identified
in incurred samples of salmon, catfish, and tilapia that had been exposed to a
low-concentration bath (10 μg/l) of BG. These studies indicate that the parent
dye is an acceptable marker residue to identify BG treatment, while regulatory
testing for MG and CV must include the contribution of the leuco forms, which
have greater stability and very long residence time in fish muscle.

The triarylmethane dyes Victoria blue B and Victoria pure blue BO were
recently detected at low concentrations in one or two samples of wild freshwater
eel, thought to be the result of dye effluents from textile plants.15 Victoria
pure blue BO residue was found in a sample of white fish as reported in the
2010 annual report of the European Rapid Alert System for Food and Feed
(RASFF).33

9.2.2 Phenothiazines

Methylene blue (MB) is in the phenothiazine dye class of dyes. As the first syn-
thetic drug, it has a long history and numerous applications for human and ani-
mal medical use. MB has been used in ruminant animals as an antidote against
nitrate and cyanide poisoning.34 In human medicine, it has been used to treat
malaria, depression, and methemoglobinemia and is under current investigation
to slow neurodegenerative disease.35 In aquaculture, MB is effective as an anti-
septic and disinfectant, with similar indications for use as MG against I. multi-
filiis and to protect fish eggs from fungal infestation, though with lower efficacy
than MG.

Several studies noted that the uptake of MB residues into fish muscle was
much lower than residues of triphenylmethane dyes under similar exposure
conditions.36, 37 In studies of catfish subjected to MB treatment baths, fish were
exposed to 1 or 5 mg/l of MB for 1 hour. The average concentration of MB found
in the muscle of these catfish was 10 μg/kg or less for the lower exposure group
and 16 μg/kg for the higher exposure.37 Like the triphenylmethane dyes, MB is
expected to quickly metabolize to a colorless leuco form, though it may not be
possible to stabilize and isolate the leuco form from the muscle.38 Turnipseed
et al. documented the instability of this compound in studies of incurred catfish
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muscle, noting that leucomethylene blue (LMB) readily oxidizes back to MB.37

In the metabolic process, MB may also lose one, two, or three methyl groups to
form the demethylated azure dye metabolites or fully demethylate to thionine.
Thionine was reported to be a protein-bound conjugate with a long residence
time in milk from treated dairy cows.34

9.2.3 Xanthenes

Xanthene dyes consist of compounds such as fluorescein, rhodamine, and eosin.
Compounds from this class are commonly used as fluorescent biological stains
and as laser dyes. Rhodamine compounds and fluorescein have been used in tracer
studies to monitor the flow of water in rivers and aquatic systems.39 For example,
these dyes were added to pesticide formulations used in sea lice treatment to fol-
low the dispersion of pesticides to surrounding environmental waters.40, 41 Some
dyes from this class have bactericidal, insecticidal, or fungicidal properties.42 Rho-
damine B and the halogenated derivatives Rose Bengal and phloxine B showed
antifungal action against S. parasitica in culture studies by Alderman.20 Some
dyes from this class act as photosensitizing insecticides. Xanthenes have been for-
mulated for uptake by insects, where they are photoactivated by sunlight to form
cytotoxic singlet oxygen and other reactive species.43 The halogenated eosins (e.g.,
Rose Bengal, erythrosine, etc.) are effective in this regard. Phloxine B has been
commercially developed as a photosensitizing insecticide used to control fruit
flies in animal feed. Blair proposed the use of phloxine B to treat the protozoan
infection I. multifiliis in fish.44 In this application, phloxine B would be added
to an aquaculture pond at night, absorbed by protozoa, and then activated by
sunlight to generate free radical species to kill the protozoans. In another study,
singlet oxygen produced from the irradiation of Rose Bengal was found to be
effective against the virus responsible for white spot syndrome in kuruma shrimp
populations.45 Though there may be potential for xanthene residues to be present
in seafood either by aquaculture or pesticide use or by the use of these compounds
as color additives, reports of their identification in regulated products were not
found.

9.2.4 Acridines

Acridine dyes were originally isolated from coal tars and were introduced as an
antiseptic in 1912. Acridine dyes such as acriflavine, proflavine, and quinacrine
have antiseptic properties with medicinal uses to treat malaria, sleeping sickness,
and giardiasis.46 Reported uses in veterinary medicine are the treatment of mas-
titis, urinary or enterobacterial infections, and parasite infections.34 Though not
as effective as MG, acriflavine is prescribed for use as a mixture with proflavine to
treat external fungal infection in aquarium fish and to disinfect fish eggs.47 Plakas
et al.47, 48 found acriflavine and proflavine to be poorly absorbed into the muscle
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of catfish after bath treatment; Yu et al.49 found similar results for trout. Glu-
curonosyl and acetyl conjugates were identified as the metabolites of proflavine
in trout and catfish, yet the parent compounds were the primary residues present
in muscle. The elimination half-life for catfish muscle was 1.5 days for proflavine
and 5.3 days for acriflavine.47 Residue concentrations in the skin remained largely
unchanged 14 days after exposure bath treatment.

9.2.5 Azo Dyes

While many azo dyes are regulated in foods as illegal color additives (e.g., Sudan
dyes), azo dyes such as Sudan IV (scarlet red) and Congo red are active against
Gram-negative bacteria.34 The azo dye chrysoidine was isolated in 1914 and
found to have high bactericidal activity.50 Chrysoidine was reportedly used to
color lower-quality fish to look like more expensive yellowfin tuna.51 Reyns et al.
reported that chrysoidine has also been used illegally to disinfect fish skin and
residues of this compound should be monitored to detect abuse.52

9.3 Toxicological Issues

The pharmacologically active dyes considered in this chapter are prohibited
from use in food-producing animals due to their toxicity and potential to cause
changes in genetic material. A number of studies have been conducted over
several decades to classify the effects of these compounds on aquatic and mam-
malian species. Not every compound has been studied in depth, but similarities
within the structures may be used as the basis to predict similar toxicological
effects. In some cases, individual study results have been summarized in larger
risk assessment (RA) evaluations. Comprehensive toxicological studies and
summaries by the International Agency for Research on Cancer (IARC), the
US National Toxicology Program (NTP), the JECFA, the European Food Safety
Authority (EFSA), and the European Medicines Agency (EMA) are briefly
summarized in the following text for specific classes of dyes.

9.3.1 Triarylmethanes

The health effect of MG has been studied extensively, with comprehensive
toxicology review articles published,53, 54 several major animal studies, and recent
evaluations by international consortia. The toxicology and carcinogenicity of
MG and LMG were investigated by the NTP and summarized in two technical
reports.55, 56 In vitro studies did not show either compound to be mutagenic.55

However, 2-year feeding studies with rats and mice showed that MG caused
an increase in tumor formation in female rats and that LMG was more potent,
causing an increase in cancer in all rats and female mice56, 57. These results
were consistent with other studies, where tumors were observed in in vivo
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studies,58 but in vitro assays with bacterial and human cell lines showed MG
to be cytotoxic, whereas LMG did not cause mutations.59, 60 In vitro studies
indicated that mammalian and human intestinal microflora efficiently convert
MG to LMG.61 In the livers of treated rats, additional demethylated and N-oxide
metabolic products were observed, indicating that in vivo enzyme activation may
be necessary for more severe genotoxic or mutagenic effects.62

CV toxicology has also been reviewed.63 Littlefield studied mice exposed to
CV and determined a no-observed-effect exposure level that would prevent
formation of liver tumors.64 Safe doses were indicated to be 1–2 μg/kg. Like
MG, human and mammalian intestinal microflora reduced CV to LCV in in
vitro studies.65 Genotoxic and mutagenic effects have been observed for other
triarylmethane dyes as well. In vitro assays of BG, methyl violet, and Victoria
blue indicated mutagenicity with fungal yeast cells.66 Pararosaniline and other
triphenylmethane compounds comprising magenta dye have been designated
class 1 carcinogens by the IARC.67

Trout eggs and pregnant rabbits exposed to MG yielded significant abnormal-
ities to the developing offspring.68 Teratogenicity studies have been conducted
for CV as well.69 In fish, lethal concentration (LC50) values have been determined
for MG in different fish and range from 0.5 to 5.6 mg/l.70, 71 For CV, LC50 was
0.2 mg/l.71

More recently, the JECFA evaluated the risk of using MG and CV in fish farming
on public health.8, 10 After reviewing studies on the genotoxic effects of these dyes
and metabolites, the committee did not support permitting MG or CV use in
food-producing animals and decided it inappropriate to establish acceptable daily
intake (ADI) values for these compounds. Full toxicological evaluations on these
compounds were published recently by the WHO.7, 9

9.3.2 Phenothiazines

In NTP studies,72 MB trihydrate was found to be genotoxic in bacterial assays
and to produce some evidence of carcinogenesis in male rats and mice. Anemia
and a decreased ability of blood to bind oxygen (methemoglobinemia) were also
observed in high-dose groups of rats and mice during the 2-year study. Reproduc-
tive toxicological effects have been noted as well.73 The IARC provided a thorough
summary of MB information and toxicological studies in the 2015 Monograph.74

DNA damage from singlet oxygen or free radicals was observed when MB use was
combined with white light photoactivation, but genotoxic effects have not been
described for in vivo studies without photoactivation.74 MB was designated as
class 3, or not classifiable for carcinogenicity in humans74. The azure dye metabo-
lites of MB were found to be mutagenic in bacterial assays.72

In a study of direct toxicity to fish, the 24-hour LC50 for MB fish exposure
was 25 times higher than the more toxic MG (18 vs 0.6 mg/l).71 MB has been
studied extensively for use in human medicine. With human oral and intravenous
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dosing at much higher than residue concentrations, some toxicity has been
noted, particularly with respect to adverse effects in the blood.35, 74 The EMA
published a report on the safety of MB for use as a human drug to reverse
methemoglobinemia from drug and chemical poisonings.73

9.3.3 Xanthenes

The toxicity of rhodamine dyes has been studied by the IARC and the NTP.
The IARC75, 76 reported that rhodamine B and 6G were carcinogenic to rats in
subcutaneous exposure studies. The NTP77 prepared a technical report based on
rhodamine 6G feeding studies, where equivocal evidence of carcinogenicity was
found in rats, but no evidence was found for mice. EFSA78 concluded that rho-
damine B is potentially genotoxic and carcinogenic. Rowiński and Chrzanowski79

summarized differences in toxicity between two xanthene dyes used as aquatic
tracers – rhodamine B and rhodamine WT – where the latter was designed to
have lower biological adsorption and lower toxicity. In fairy shrimp, the 24-hour
lethal concentration (LC50) of rhodamine WT was approximately 200 times
higher than for rhodamine B.

Phloxine B (D&C Red No. 28) has been approved in the USA as safe to use as
a color additive for some cosmetic products and drugs.80 Due to the potential
of this and other halogenated fluorescein dyes (e.g., Rose Bengal) to form reactive
oxygen species after the dyes are activated with light, additional toxicology evalua-
tions have been performed to investigate genotoxicity after light exposure.81 DNA
damage has been reported for bacteria and human skin cell exposure to phloxine B
and light from a fluorescent bulb.81 Redness and swelling were observed after Rose
Bengal application to damaged skin with exposure to visible light and sunlight.81

Toxicological effects in fish by xanthene dyes were described by Tonogai et al.71

The LC50 for rhodamine B was 25 times higher than the more toxic MG (17 vs
0.6 mg/l), but rhodamine B had a much higher octanol–water partition coeffi-
cient suggesting better efficiency for permeating cell membranes (Kow = 74 vs
5.6). Halogenated xanthene dyes were also evaluated in this study of Himedaka
fish. LC50 values (24 hour) were 130, 280, 710, and 1000 mg/l for Rose Bengal,
phloxine B, erythrosine, and eosin, respectively.71

9.3.4 Acridines

Available information on the acriflavine–proflavine mixture acriflavinium chlo-
ride was reviewed by the IARC82 in 1977, though at the time there was not enough
toxicological data available to draw conclusions about carcinogenicity. Proflavine
salts were evaluated in 1980 and were observed to be genotoxic in viral and bac-
terial assay.83 These planar compounds can intercalate between DNA base pairs
and cause frame shift and other types of mutations.84



�

� �

�

9 Dyes as Pharmacologically Active Substances 509

9.3.5 Azo Dyes

The IARC has reported on the carcinogenicity of several Sudan and azo dyes.85

Sudan I was determined to be carcinogenic based on oral dosing studies in rats
and genotoxic in in vitro studies.86 By their structural similarity to Sudan I,
other Sudan dyes are considered to be potentially genotoxic and carcinogenic.78

Potentially carcinogenic aromatic amine metabolites are formed from the Sudan
dyes when the azo bond is reduced by human intestinal microflora and liver
enzymes.87

Chrysoidine was found to have high acute toxicity to fish with a 24-hour
LC50 of 0.5 mg/l and was predicted to easily permeate gills based on a high
octanol–water partition coefficient.71 Bladder cancer in humans has been
reported after long-term exposure to chrysoidine, though insufficient data are
available to classify chrysoidine as a carcinogen (IARC class 3).88 This dye was
reported to be mutagenic to bacteria and to produce tumors and leukemia in
mice.88

9.4 Regulatory Issues

To prevent the risk for human consumers from unexpected amounts of toxic
chemicals possibly found in traded aquaculture products, a significant number
of countries across the world have introduced regulations into their “food safety”
laws. Toxicologically based limits called maximum residue limits (MRLs) have
been set for approved drugs in seafood as well as in other food products from
animal origin.89–91 These MRLs are based on ADIs established after human food
safety RAs.92, 93

Internationally, the WHO and the FAO have also derived such risk
management (RM) recommendations (MRLs) acknowledged through the
Codex Alimentarius General Standard for Food Additives (GSFA)94 and
posted in the GSFA database: http://www.fao.org/fao-who-codexalimentarius/
standards/gsfa/en/. Over a period of more than 50 years, these internationally
recognized MRLs have been derived for a certain number of food additives. This
includes veterinary drug chemicals as a follow-up of the human food safety RAs
and operated under the auspices of the WHO and FAO by means of the Codex
Committee on Residues of Veterinary Drugs in Foods, acting as the risk manager,
based on RAs prepared by an independent scientific committee, the JECFA.95

Regionally, many countries have aligned their food safety laws with the RA and
RM recommendations of the internationally recognized WHO/FAO. This is the
case for a majority of Asian, African, and Latin American countries. Moreover, a
few countries, in cooperation with the WHO/FAO, have also implemented their
own process of RA and RM by means of funding their own national Food Safety
Agencies and collaborating with their government departments responsible for
public health, agriculture, and fisheries.
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For instance, in the USA, the Food and Drug Administration (FDA) is the
regulatory body having the mandate for both RA and RM issues for veterinary
drug use in seafood.92, 96 For Canada, according to the Food and Drug Act,
Health Canada through its Health Products and Food Branch (HPFB) is the
administration concerned with both RA and RM for all food safety issues.97, 98

In the EU, according to the General Food Law Regulation (EC) No. 178/2002,
it is the Directorate-General of the European Commission for Health and Food
Safety (DG-SANTE) that is in charge of the RM issues in coordination with
the 28 EU Member States’ regulatory competent authorities.99, 100 In addition,
the EMA101, 102 and the EFSA103, 104 are the two EU regulatory bodies in charge
of the RA issues for residues of human and veterinary medicinal products and
for all the other chemical residues and contaminants, respectively.

For Japan, the Pharmaceutical and Food Safety Bureau of the Ministry of
Health, Labour and Welfare (MHLW) is the regulatory body in charge of both
RM and RA issues.105, 106 Since 1991, in Australia and New Zealand, there
has been a bi-national food safety agency called the Food Standards Australia
New Zealand (FSANZ) administration in charge of the joint Food Standards
Code,107, 108 which lists requirements for foods such as additives, food safety,
labeling, and genetically modified foods. They share with the Australian Pes-
ticides and Veterinary Medicines Authority (APVMA) the responsibilities for
setting MRLs. All the RM issues in terms of enforcement and interpretation of
the Code are the responsibility of the state and territory departments and food
agencies within Australia and New Zealand.

For the Russian Federation, to enforce the federal laws on the quality and safety
of food products and the sanitary and epidemiologic rules and regulations (San-
PiN), the Federal Service for Surveillance on Consumer Rights Protection and
Human Well-Being (Rospotrebnadzor)109, 110 is the federal executive authority in
charge of the RAs and other activities linked to the implementation of control
and supervision in the sphere of sanitary and epidemiological well-being of the
population. The Federal Service for Veterinary and Phytosanitary Surveillance
(Rosselkhoznadzor)111, 112 under the Ministry of Agriculture (MoA) is the federal
organization of executive power, carrying out RM functions on control and super-
vision in the field of veterinary science including aquatic biological resources.

For China, the MoA113, 114, the National Health and Family Planning Commis-
sion (NHFPC),115 the General Administration of Quality Supervision, Inspection
and Quarantine (AQSIQ),116, 117 the State Food and Drug Administration
(SFDA),118 and the Commerce Department share the responsibilities for the food
safety RM. However, the RA issues have been covered by the National Center for
Food Safety Risk Assessment (CFSA)119 since 2011.

When specifically looking at seafood safety and considering the veterinary
drugs approved in aquaculture in the various regions of the world, it is obvious
there are very few of these veterinary chemicals that have been effectively
addressed with an RA to finally receive an official authorization with an MRL and
consequently a registered use as a veterinary medicine treatment in aquaculture.
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When the drug has not been approved after its RA or if a drug has not been
assigned an MRL or ADI, then the substance is considered not safe at any
concentration for humans and is prohibited from use in animal production.
There is a “zero tolerance” concern for prohibited veterinary drugs in seafood,
where “zero” is at or near the limit of detection of the analytical equipment
in place for the official control. When referring to the specific internationally
recognized RAs addressing the two triphenylmethane chemical products, MG8

and CV,10 these two substances have entered the group of non-authorized com-
pounds to be avoided in food-producing aquaculture. The national/international
regulations in place for these two pharmacologically active but undesirable
substances in seafood are described in Table 9.1. Currently, the analytical - “zero
tolerance” concentration in national seafood inspection programs for these
two substances and for their respective leucobase metabolites ranges from 1 to
2 μg/kg, depending on the food safety RM enforced in the country of interest.
Apart from these two substances, there is no other dye of concern in most of the
official monitoring programs even though all are also considered undesirable.
Most of the regulations across the world state that non-fully authorized drugs are
thus prohibited for use in food-producing animals. However, recently the interest
in other potential pharmacologically active dyes is starting to be addressed by
several reference laboratories worldwide with the development of analytical
methods for controlling other dye residues in seafood.14 In the early 2010s, for
instance, the competent authorities of a few Member States of the EU and the
USFDA have started introducing analytical procedures capable of monitoring
BG, Victoria blue, or MB in combination with MG and CV monitoring programs.
In the EU, a new RA from EFSA is pending120 for a set of aquaculture dyes with
the objective of reconsidering the need to enforce new toxicologically based
regulatory limits of action called Reference Point for Action (RPA). Also under
consideration is an RM issue to generalize expanding the official monitoring for
the presence of other dyes such as CV and BG at least.

9.5 Analytical Methods for Residue Control

Analytical methods to determine the presence of illegal pharmacological dyes
in edible seafood products must meet a number of requirements for regulatory
food control. Methods must be sensitive enough to permit residue detection at
regulatory performance limits. Methods must be selective enough to provide ade-
quate isolation of the dye residues from the complex and fatty fish matrix. Finally,
methods must permit analysis of the correct metabolic marker for these dyes.
Quantitative determination of residue concentration and the ability to confirm
the identity of detected residues are important features of successful regulatory
analysis, though these features are typically defined within the intended scope of
the method, be it designed for rapid screening of many samples, accurate concen-
tration determination, or identification with mass spectrometry.
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9.5.1 Procedures to Extract and Analyze Triphenylmethane Dye Residues
in Fish and Shellfish Muscle

In 1983, Poe and Wilson26 reported that frozen muscle from fish previously
treated in an MG bath would develop a green surface color on the muscle tissue.
Prior to this, it was believed that MG was not absorbed by fish muscle. These
authors performed the first muscle extraction using methanol and chloroform
with separation of the green color from lipids on a silica column. The green
extract was analyzed by infrared and absorbance spectroscopy and matched the
spectra of MG standards.26 This was the beginning of many studies to understand
tissue uptake, metabolism, and elimination of dye residues from fish muscle.
Many analysis methods for fish were developed in the late 1980s and 1990s for
separation of residues by HPLC and visible absorbance detection of the intensely
colored dyes. The green-blue MG and BG absorb strongly at 618 and 627 nm,
respectively, while purple CV absorbs at 588 nm; all wavelengths are far from
many interfering compounds. Early extraction methods were based on solvent
extraction under acidic conditions to ensure that the dye–carbinol equilibrium
would be shifted to the dye form121–124. Later methods incorporated procedures
to detect the residue contribution of the primary leuco metabolites.

Bauer et al.125 introduced a procedure in 1988 to oxidize half of a trout extract
with lead oxide, sequentially analyze both portions by HPLC-VIS, and then
determine the contribution of LMG by difference. Addition of lead oxide to
acetonitrile–perchloric acid extracts was also used by Dafflon et al.126 Roybal
and Munns127 developed a chromatographic analysis for simultaneous deter-
mination of CV, LCV, demethylated metabolites, and MB with electrochemical
detection rather than by absorbance measurement. This technique was applied to
analyze chicken muscle with acetate buffer (pH 4.5) and acetonitrile extraction,
liquid partitioning into dichloromethane, and subsequent solid-phase clean-up
using alumina and carboxylic acid (CBA) weak cation exchange extraction
cartridges.128 Allen and Meinertz129 demonstrated the feasibility of introducing a
post-separation reaction column based on lead oxide oxidation to permit simul-
taneous HPLC-VIS analysis of MG, LMG, CV, and LCV. The PbO2 post-column
oxidation column formed the basis of dye and leuco analysis by HPLC-VIS for the
next 15 years, with a variety of procedures for dye and leucobase extraction with
acid or acidic buffer and organic solvent. Fink and Auch130 demonstrated the suc-
cess of the PbO2 column to analyze MG, CV, BG, and leuco compounds in trout
extracts. Allen et al.131 mixed ground trout muscle, fry, and eggs with anhydrous
sodium sulfate, prepared a matrix solid-phase desorption column, and extracted
MG and LMG from the column with 1% acetic acid and methanol. The extract
was cleaned up by partitioning into chloroform. Hajee and Haagsma132 extracted
LMG and MG from eel plasma with methanol, citrate buffer (pH 3), and ascorbic
acid followed by SPE with sulfonic acid cartridges.

In 1995, Roybal et al.133 developed a method for LMG and MG in catfish simi-
lar to the researcher’s earlier electrochemical method for CV residues with a few
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additions. Hydroxylamine hydrochloride (HAH) was introduced to the acetate
buffer–acetonitrile extraction solution to prevent conversion of MG to LMG in
the presence of fish enzymes. para-Toluenesulfonic acid (p-TSA) was included to
serve as a counterion for the cationic MG, and alumina was dispersed into the
extraction mixture to adsorb fat from the extract. Residue isolation was achieved
with liquid-phase partitioning into dichloromethane and SPE with alumina and
propylsulfonic acid cartridges. This procedure was used for pharmacokinetic and
metabolism studies of LMG and MG in catfish,24, 134 for CV and LCV residue
determination in catfish135, and also for a combined determination of MG, LMG,
CV, and LCV in catfish and trout,136 forming the basis of many later methods. For
example, confirmatory analyses of dye and leuco compounds in fish were devel-
oped using particle beam LC-MS,137 GC-MS,138 and isotope dilution LC-MS25, 139

to permit selected ion monitoring of molecular and fragment ions.
In another analytical approach to distinguish dye and leuco contributions,

extracts were separated by HPLC with column effluent flowing through an
electrochemical cell, diode array detection cell, and fluorescence cell.140 In
this procedure, MG and CV were detected by visible absorbance at 588 nm
(λmax = 618 and 588 nm, respectively), while LMG and LCV were detected by
fluorescence emission at 360 nm with excitation at 265 nm. To confirm the
identity of the residues, two injections of each extract were made – one with
the electrochemical cell off to yield the expected absorbance and fluorescence
signals and the subsequent injection with the electrochemical cell on to oxi-
dize the leuco compounds to dyes. In the latter case, the fluorescence signal
at the leuco retention time would drop to baseline, and the absorbance signal
at the leuco retention time would increase. Similar analysis procedures were
used by Mitrowska et al.141 for simultaneous determination of MG and LMG
by HPLC-VIS/FL without lead oxide oxidation and by Halme et al.142, 143 for
LC-MS/MS analysis with and without post-column oxidation.

In 2005, the Roybal extraction was simplified, and an in situ oxidation proce-
dure was incorporated into the extraction procedure to convert leucobase to dye
with the addition of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).144 This
permitted sensitive analysis of the sum of MG and LMG in a variety of seafood
products with HPLC-VIS and quantification and confirmation of residue iden-
tity by LC-MSn with no-discharge atmospheric pressure ionization at and below
concentrations of 1 μg/kg for complete regulatory monitoring.145, 146 The method
was later extended to include CV, LCV, and BG residues30 and adapted for other
analytical procedures including LC-MS/MS analysis.147

Though extract clean-up procedures for triphenylmethane compounds
often include similar procedures based on acid/organic solvent extraction
with partitioning into dichloromethane and cation exchange SPE cartridge
clean-up, many variations exist. Tarbin et al.148 developed procedures to
extract trout with citrate buffer (pH 4), sodium chloride, and acetonitrile.
Analysis was by HPLC-VIS and electrospray ionization LC-MS, both following
post-column oxidation with lead oxide. Bergwerff et al.149 extracted trout with
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McIlvaine buffer (pH 3, citric acid/disodium hydrogen phosphate buffer), p-TSA,
N ,N ,N ′,N ′-tetramethyl-1,4-phenylenediamine dihydrochloride (TMPD), and
acetonitrile for LC-MS/MS analysis with electrospray ionization and PbO2
post-column oxidation. TMPD was used in place of HAH in this procedure to
stabilize the dye compounds and prevent demethylation. Though post-column
oxidation is not required for analysis by mass spectrometry, these authors noted
improved sensitivity and reproducibility by converting leuco residues to the
cationic dye compounds. Similar extraction procedures were applied to residue
analysis methods by LC-MS/MS without post-column oxidation150 and for
HPLC-VIS/FL analysis.151

Several methods have been described for triphenylmethane compound analysis
with a simpler extraction procedure using only McIlvaine buffer (pH 3) and
acetonitrile extraction followed by cation exchange SPE clean-up for direct
LC-MS/MS of dye and leuco compounds.152, 153 These procedures did not
include stabilizing compounds (i.e., HAH, TMPD, p-TSA) and eliminated the
dichloromethane partitioning as well. Storey et al.154 developed a procedure to
extract fish with McIlvaine buffer (pH 4.5), EDTA, p-TSA, and TMPD for an
LC-MS/MS residue screening method without additional liquid- or solid-phase
clean-up. Van de Riet et al.155 developed an extraction procedure to permit
sensitive LC-MS/MS determination based on a simple tissue extraction using
acetonitrile and perchloric acid, with dichloromethane and SPE clean-up.

Simple QuEChERS extractions have also been developed for triphenylmethane
dye determinations as well. For example, regulatory methods were developed for
MG and LMG residues in salmon and shrimp using acetic acid-modified ace-
tonitrile for extraction and LC-TOF-MS for analysis. In the first case,156 sodium
chloride assisted the extraction from salmon and the extract was cleaned up with
dispersive Bondesil-NH2 sorbent. In the second,157 anhydrous magnesium sulfate
and sodium chloride were added to the shrimp extract, and the acetonitrile super-
natant was cleaned up with dispersive PSA sorbent and additional magnesium
sulfate. In another procedure,158 fish was extracted with water, acetonitrile, and
formic acid, while phase separation was assisted with anhydrous sodium sulfate
and sodium acetate. A portion of the supernatant was collected and filtered for
analysis by UHPLC-MS/MS. Extraction methods combined with LC-MS analysis
have been recently reviewed in detail.159

Several of the early extraction methods123 included overnight procedures, not-
ing higher dye extraction yields from incurred tissues when overnight extraction
was used. Hall et al.160 studied the equilibrium for extraction of LMG and MG
from incurred salmon muscle using acetonitrile and acetate buffer (pH 4.5). While
LMG was quantitatively extracted by the first time point (1 hour), MG required
approximately 16 hours reaching an equilibrium concentration in the extraction
solvent. This group also studied the interconversion of MG and LMG during the
extraction process. Very little LMG converted to MG, but up to 15% of MG con-
verted to LMG. These results combined with metabolism studies have important
consequences for regulatory analysis of triphenylmethane dyes in fish. Namely,
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effective methods should include analytical procedures to detect the leuco com-
pounds. Moreover, improved quantitative results will be achieved by preventing
interconversion with compounds like HAH and TMPD. It was noted that incor-
porating matrix-matched calibration standards into the method along with iso-
topically labeled internal standards for each of the dye and leuco compounds will
better model the complex extraction processes.

Hurtaud-Pessel et al.31 developed a quantitative and confirmatory method
in 2011 for MG, LMG, CV, LCV, and BG residue determination in trout by
LC-MS/MS. The method was validated according to EU Decision No. (EC)
2002/657161 with retention time matching and two selected reaction monitoring
product ion transitions collected for each dye or leuco compound. In this
simple procedure, fish tissue was extracted with HAH, acetonitrile, and magne-
sium sulfate without additional liquid- or solid-phase extraction step. Residue
quantification required the use of four isotopically labeled internal standards
for MG, LMG, CV, and LCV, and calibration was based on using extracted
matrix-matched calibrants. As predicted by Hall,160 the use of individual internal
standards and matrix-matched calibrants provided excellent normalization of
the complexity of dye residue analysis in fish. For regulatory analysis, the method
performance for MG, LMG, CV, LCV, and BG was characterized by decision
limit and detectability (CCα and CCβ) at and below 0.5 μg/kg, trueness ranging
from 100% to 110% recovery, and precision of 10% RSD. Alternative instrument
parameters were additionally described for the identification of the LBG analyte
in incurred trout by UHPLC-LTQ-OrbitrapTM-MS.31 The method was included in
several proficiency testing studies conducted by the EU Reference Laboratory for
EU Member States162 and was the method suggested in a recent Food Emergency
Response Network proficiency test conducted by the USFDA for state and federal
laboratories in the USA. In 2012, the method was established as AOAC First
Action Method 2012.25 for future consideration as an AOAC Official Methods
of Analysis.163 The method was independently studied and validated for salmon,
catfish, shrimp, and tilapia with the method performance evaluated according
to both USFDA and EU criteria for mass spectrometric confirmation of identity
and method detection limit.28 In 2015, the method was recommended by an
Expert Panel Review for Final Action after review of the results of an AOAC
Collaborative Study with participation from 14 regulatory, private, and academic
laboratories from the USA, Canada, and France.32 The AOAC Official Methods
Board approved 2012.25 for Final Action Official Method status in February
2016.

9.5.2 Analytical Methods for Other Dyes in Seafood

Compared to the triphenylmethane dyes, there are few class-specific dye residue
analysis methods for regulatory seafood monitoring. Some multi-class dye
methods have been introduced in recent years, and these are described in the
following section.
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9.5.2.1 Phenothiazines
Like the triphenylmethane dyes, detection of MB by visible absorbance at 663 nm
provides a sensitive and fairly selective analytical approach for dye residue deter-
mination. Nakagawa et al.36 studied the uptake of MB by eels and found residues
to be undetectable using a spectrophotometric analysis method. In this method,
MB was extracted in n-butanol with zinc sulfate and analyzed spectrophotomet-
rically. Kasuga et al.164 developed a method to extract MB and MG residues from
trout muscle with pH 3 McIlvaine buffer and acetonitrile with HPLC analysis.

In 1997, Turnipseed et al.37 modified the earlier MG/LMG method by Roybal
et al.133 for the extraction of MB from catfish muscle. The procedure was based
on initial tissue mixing with sodium acetate buffer (pH 4.5), p-TSA, and HAH
to stabilize MB and limit demethylation to the azure metabolites. Acetonitrile
was added as the extraction solvent and dispersive alumina added to adsorb fat.
MB residues were partitioned into dichloromethane and then further isolated
by solid-phase clean-up with alumina and weak cation exchange using a CBA
SPE cartridge. The CBA SPE procedure permitted higher recoveries than the
stronger propylsulfonic acid SPE used in the MG/LMG method.133 MB residues
were analyzed in fortified and incurred catfish extracts by HPLC with visible
absorbance monitoring at 660–665 nm to yield 75–90% recovery over the con-
centration range 10–50 μg/kg. Though LMB could not be isolated for detection,
it was converted to MB during the extraction and analysis. Azure B and other
demethylated metabolites were present in the chromatography.37

The MB procedure developed by Turnipseed et al. formed the basis for MB
extraction used in more recent methods for HPLC-VIS165 and LC-MS/MS
analysis.166 For the LC-MS/MS analysis, selected reaction monitoring was used
to monitor product ion transitions from both MB and LMB precursors (m/z 284
and 286, respectively) following electrospray ionization in positive ion mode.
Though the researchers observed that LMB was not stable and easily oxidized
to MB during the analysis, they were able to collect product ion spectra in full
scan mode with weak signal for product 2 m/z units greater than the parent
MB, which was indicative of the presence of LMB. For regulatory analysis, only
the MB residue was validated over the concentration range 1–10 μg/kg for eel,
toasted eel, and shrimp. Recovery ranged from 74% to 99% (%RSD< 17%) and
the method detection limit was 0.1 μg/kg.

9.5.2.2 Xanthenes
Analytical methods for xanthene dyes in fish matrix are described in Section 9.5.3,
“Multi-class Dye Residue Analysis Methods.” No class-specific methods for xan-
thene dye residue determination were found in the literature for fish muscle. One
method described supercritical fluid extraction and solvent extraction from clay
soils.167 In this procedure, uranine, eosin Y lactone, phloxine B, Rose Bengal, and
erythrosine B were separated on a C18 HPLC column with ammonium acetate
and acetonitrile gradient elution and spectrophotometric detection at 493, 525,
and 546 nm.
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9.5.2.3 Acridines
A residue determination method for acriflavine and proflavine was developed by
Plakas et al.48 in 1996 for catfish. Acidic methanol was used as the extraction sol-
vent and residues were isolated with C18 SPE cartridges. Quantitative analysis
was performed by HPLC using a cyano column with absorbance measurement
at 454 nm. The method was validated for fortified muscle over the concentration
range 5–80 mg/kg. Recoveries were 86–95% with less than 6% RSD. This method
was also used to extract metabolite compounds, though chromatographic separa-
tion was improved with a C8 HPLC column.47 Though not applied to fish muscle,
a method was reported to determine acriflavine residue in waste water after iso-
lation on Oasis® HLB SPE cartridges and analysis by LC-ESI-MS/MS in positive
ion mode.168

Park et al.169 recently developed an extraction and analysis procedure by
LC-MS/MS for acriflavine and other veterinary drugs in pork, eggs, and milk. In
this method, matrix was simply extracted with 0.1% formic acid and acetonitrile,
the supernatant defatted with hexane and then evaporated, reconstituted,
filtered, and analyzed by LC-MS/MS using a standard C18 column and formic
acid–acetonitrile elution gradient. This procedure169 yielded significantly
improved recovery compared to QuEChERS sample preparation. Intra-day
recovery for acriflavine in pork matrix was 71% at the 5 μg/kg fortification
concentration with an RSD of 15%. Kaufmann et al.170 recently reported on
the differences in identity confirmation using mass spectrometry with triple
quadrupole or high-resolution techniques. Acriflavine was one of the many
veterinary residues analyzed in beef liver matrix.

9.5.2.4 Azo Dyes
Methods were recently reported for the extraction and analysis of chrysoidine
in fish matrix. Wang et al.51 reported extraction of fish with methanol, solvent
drying with anhydrous sodium sulfate, and clean-up with dispersive C18 sorbent
and magnesium sulfate. Extracts were derivatized and analyzed by GC-MS for
confirmatory analysis and 81% recovery (4% RSD) of residues spiked at 10 μg/kg.
Gui et al.171 developed a method for chrysoidine in yellowfin tuna by LC-MS/MS.
In this method, tuna was extracted with 1 M hydrochloric acid for an hour and
neutralized to pH 7 with sodium hydroxide, and then residues were adsorbed
onto Oasis HLB SPE cartridge for final elution, evaporation, and reconstitution.
Tuna fortified with chrysoidine at 0.5 μg/kg yielded> 85% (<15% RSD). Reyns
et al.52 extracted chrysoidine under basic conditions by adding sodium hydroxide
to pangasius fish matrix and then extracting with ethyl acetate. A portion of the
ethyl acetate was removed, evaporated, and dissolved in acetonitrile with formic
acid and defatted with hexane prior to analysis by UHPLC-MS/MS. The method
was validated according to Council Directive 2002/657/EC161 with a 0.25 μg/kg
limit of quantification.
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In another azo dye analysis method, four Sudan dyes and their two metabo-
lites were extracted from fish muscle, skin, and other animal products with ace-
tonitrile, sodium sulfate, and ultrasound assistance. Extracts were defatted with
hexane, residues collected onto basic alumina SPE cartridges, and the eluted dyes
analyzed by LC-MS/MS.172 Yamjala et al.173 recently reviewed analytical methods
for the determination of azo compounds used as food dyes.

9.5.3 Multi-class Dye Residue Analysis Methods

Many analytical methods to determine therapeutic dye residues in seafood
products are class-specific methods, but as with the trend in veterinary residue
analysis, larger multi-class methods began to emerge in 2008. Tarbin et al.14 devel-
oped a quantitative multi-class LC-MS/MS residue method for triarylmethanes,
phenothiazines, and a few compounds from the xanthene and phenoxazine
classes (rhodamine 6G and Nile blue A) in seafood. This method included the
most common and effective therapeutic dyes used in aquaculture (MG, CV, BG,
and MB) and expanded the list to include other dyes that might be substituted
for these to avoid regulatory detection, including pararosaniline, ethyl violet,
the trinaphthylmethyl Victoria blue dyes, azure B, and new MB. Similar to other
procedures,145 the dyes were extracted from salmon using ammonium acetate
buffer at pH 4.5, acetonitrile, and alumina followed by liquid–liquid extraction
with dichloromethane, oxidation with DDQ, and cation exchange SPE. Because
leuco metabolites are only available for MG and CV, the inclusion of a DDQ
oxidation process drives leuco metabolites of triarylmethane and phenothiazine
dyes to their chromic parent dye for simplified analysis.

Reyns et al.174 recently expanded on this method for the detection of illegal
therapeutic dye use in aquaculture. The 12 dyes included were the same as
in the Tarbin et al. method,14 though the extraction procedure was modified
to extract eel matrix with acetonitrile and sodium acetate and eliminate the
dichloromethane extraction. The DDQ oxidation was included to convert the
leuco metabolites, and an additional CBA cartridge was coupled to the strong
cation exchange solid-phase extraction procedure. This method was validated
over the concentration range 0.25–1.0 μg/kg using UHPLC-MS/MS for analysis.

Xu et al.175 reported a procedure for the extraction of MG, LMG, CV, LCV,
MB, and three azure dye (A, B, and C) residues from silver carp with analysis by
UHPLC-MS/MS. The extraction was based on the Roybal procedure,133 though
the choice of SPE sorbent was optimized. Strong cation exchange adsorbed MB
and the azure dyes too strongly; weak cation exchange did not retain LMG and
MG well. A combined C8-cation exchange cartridge (MCAX, Supelco) was found
to be suitable for the clean-up of all the dye residues. Two product ion ratios were
monitored for each dye to permit residue identification, and residue recovery was
75% or greater at the 0.5 μg/kg fortification concentration with RSD< 15%.175
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Other multi-class methods have been developed with the intention of detecting
dyes primarily used as food product dyes, some of which are also pharmacolog-
ically active dyes with possible aquaculture applications. Kirschbaum et al.176

developed an HPLC-DAD method to test colored fish roe for permitted colorants
from azo, xanthene, and triarylmethane dye classes. The dyes were extracted in
aqueous ammonia, defatted with hexane, acidified to pH 2, and extracted onto
polyamide powder for later elution and analysis. While this method was not
intended to regulate therapeutic use of dyes in fish eggs, the method certainly
is applicable for that purpose. Qi et al.177 developed analyses for a similar group
of permitted food dyes in fatty meat matrix with HPLC-DAD and LC-MS/MS.
In this method, matrix was first extracted with hexane to remove fat and then
extracted with ammoniated methanol with ultrasound assistance. Extracts
were cleaned up with polymeric weak anion exchange cartridges. Sun et al.178

reported a method for microwave-assisted extraction of 21 illegal dyes from
meat and fish sausage. The 21 dyes included azo and xanthene dyes as well
as triphenylmethanes and their leuco bases. Meat products were extracted in
methanol/water with microwave irradiation for 5 minutes and then cooled and
centrifuged. The dyes were absorbed onto C18 SPE cartridges and then eluted
for UHPLC-DAD absorbance analysis. All 21 compounds were separated using
gradient elution with a pH 5 ammonium acetate buffer and acetonitrile and
absorbance measurement at 254 and 600 nm. Limits of detection were 2 μg/kg or
less and recovery ranged from 61% to 105% for the fish products.

9.5.4 Bioanalytical Screening Methods

In addition to chromatographic analyses coupled with spectrophotometric or
mass spectrometric detection, the sensitivity and selectivity of immunoassay
techniques make them useful for quickly screening large numbers of regulatory
samples. Polyclonal antibodies have been reported for MG and LMG179 and
for LMG with cross-reactivity with MG and LCV.180 ELISA test kits are also
commercially available for screening fish products for MG/LMG (Bioo Scientific,
EuroProxima), CV/LCV (Bioo Scientific), and MG or LMG (GlycoNex, Beacon
Kits, Abraxis, Neogen).

Oplatowska et al.181 produced a hybridoma cell line to generate a monoclonal
antibody (mAb) with cross-reactivity for MG, CV, BG, methyl violet, methyl
green, and Victoria blue R. This antibody did not bind the leuco metabolites, but
LMG was effectively detected at 1 μg/kg in the rapid ELISA assay when DDQ
oxidation was used in the extraction procedure for fish tissues. A similar proce-
dure was used to produce a mAb for MG, CV, and oxidized leuco metabolites
against a more effective carrier protein to enhance sensitivity and selectivity of
the ELISA.182 Jiang et al.183 developed a hybridoma procedure to develop an
antibody for LMG. The antibody had 100% cross-reactivity with MG, but did
not bind CV or BG. Dong et al.184 reported a non-competitive immunoassay
based on phage anti-immune complex assay (PHAIA) detection for LMG. In



�

� �

�

9 Dyes as Pharmacologically Active Substances 525

this technique, a specific peptide sequence was selected from a phage library
with specific binding for a mAb–LMG complex. The assay was applied to tilapia
extracts reduced with potassium borohydride to convert all MG residues to the
leuco base. This PHAIA technique was reported to yield a 16-fold sensitivity
enhancement for LMG detection compared to a competitive ELISA method with
the same mAb. ELISA immunoassays have been developed to detect dyes from
other classes including chrysoidine,185 the Sudan azo dyes,186, 187 and rhodamine
B188 residues in food products.

In other screening techniques, Stead et al.189 developed an oligonucleotide RNA
sequence as an aptamer to bind MG and provide a simple and sensitive fluores-
cence assay for the MG–aptamer complex. Xu et al.190 developed a lateral flow
immunoassay based on a colloidal gold-labeled mAb against MG. The assay had
sufficient cross-reactivity with CV to permit rapid and sensitive detection of both
residues on a test strip.

9.5.5 Other Notable Analytical Procedures

A number of analytical procedures have been designed to add extraction selec-
tivity to the analysis of triphenylmethane dyes or concentrate the residues in
the presence of the bulk fish extract. Several researchers191–193 have developed
molecularly imprinted polymer (MIP) materials for cartridge extraction to
selectively adsorb dye compounds from fish extracts. One procedure pro-
vided sensitive detection for combined LMG/MG residues based on direct
electrochemiluminescence analysis of the extract, where the highly selective
MIP extraction was required to reduce matrix interference prior to analysis.192

Dispersive sorbents for dye residues have been demonstrated using magnetic
nanoparticles, where the dye-bound sorbent can be easily separated from the
bulk fish extract by holding a magnet to the side of the extraction tube.194 In
recent research, MIPs were generated on the surface of magnetic nanoparticles
for enhanced selectivity for MG extraction.195, 196

In other examples of the application of new solid sorbent materials for dye
extraction, graphene oxide nanosheets were used for solid cartridge extraction
of MG and LMG from fish extracts.197 Magnetic graphene oxide nanocomposite
material was used as a dispersive sorbent to concentrate MG residues extracted
from trout for sensitive spectrophotometric analysis.198 A graphene oxide sorbent
was developed with an MIP coating for phloxine B residue extraction.199

Many novel sorbent materials based on graphene oxide have been studied for
their ability to remove dyes from environmental effluents. Materials designed for
effective adsorption of CV, MB, rhodamine B, acriflavine, and other dyes may have
applications for fish extraction procedures as well.200–203

Liquid micro-extraction techniques have also been applied to concentrate
dye residues from fish extracts prior to analysis. Dispersive liquid–liquid
micro-extraction (DLLME) techniques were developed to concentrate triphenyl-
methane residues from fish and shrimp matrix into small volumes of immiscible
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solvent204 and ionic liquids.205 In this research, DLLME permitted direct spectro-
scopic analysis of the dye residues from an optical cell without chromatographic
separation. Direct analysis of MG, CV, and MB residues in fish extracts have been
studied by surface-enhanced Raman scattering (SERS) as well.206–209 Sorbent and
liquid micro-extraction techniques were described in greater detail in Chapter 2.

9.6 Recent Trading Issues with Dye Alerts

In line with the countries’ food laws, seafood inspection programs have been
established across the world. These programs have been in place for more than
20 years in the largest seafood importing countries such as the Member States
of the EU, the USA, Canada, and Japan. Regulatory agencies/administrations of
importing countries (Table 9.1) are responsible for inspection of both the domes-
tic farmed fish production and the imported aquaculture products. The veteri-
nary drug residue content of this production and imports is carefully monitored
in order to mitigate unintentional human exposures that may pose health risks.
Seafood inspections also have to include checks for proper labeling and docu-
mentation, sensory evaluations, and laboratory screening for contaminants such
as heavy metals, PCBs, toxins, and microbial pathogens.

The enforcement for the non-authorized dyes in aquaculture began in the early
2000s for the control of MG/LMG and was extended to CV/LCV soon after. They
are still today the main officially controlled d-ye substances.

Love et al.210 recently acquired sets of interesting data from the official inspec-
tion programs of several large seafood importing countries: EU members, the
USA, Canada, and Japan. Through the extraction of data from several govern-
mental websites, from published literature, and also from direct queries to gov-
ernmental bodies, they examined the trends in the alerts for seafood contaminant
violations over the period 2000–2009.

The records for EU seafood violations from domestic and imported products
were available online from the RASFF portal.211 USA seafood inspection data
were acquired through a Freedom of Information Act (FOIA) request to the
USFDA and included all tests for domestic and imported seafood from 1999
to 2006. Canada’s Fish, Seafood and Production Division of the Canadian Food
Inspection Agency (CFIA) provided non-compliant test results for seafood
products containing veterinary drugs from 2000 to 2009. Japan’s Ministry of
Health, Labour and Welfare provided yearly totals for seafood inspections and
violations online from 2004 to 2009 and positive tests for veterinary drugs from
2007 to 2009.212

Love et al.210 examined the sets of non-compliant data collected from 2000 to
2009 in the major importing countries as a function of species of aquatic animals,
exporting countries, drug types, and concentrations. The triphenylmethane
dyes were one of the families of drugs included in their evaluation, considering
primarily MG and CV, as these started to be controlled in the mid-2000s. Results
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of their evaluation (Table 9.2) showed that fin-fish was the major species for
violations with MG residues as reported by the EU (n= 65), the USA (n= 62),
and Canada (n= 296). However, a few cases of MG violative contamination were
reported as well in shrimp and prawns in Canada (n= 7) and Japan (n= 2) and
also in “molluscan shellfish” (n= 1) and crabs (n= 2) in Japan. A few cases of
violations with CV residues were found in imported fin-fish in the EU (n= 6) and
the USA (n= 5). According to Love et al.,210 it was not systematically reported in
the data extracted whether the violation was derived from a domestic sample or
from an import sample.

A more recent survey was undertaken by the authors of this chapter through
the EU RASFF portal.213 The objective was to focus on the alerts exclusively
derived from the dye residue violations in aquaculture products, that is, shrimp
and prawns, fin-fish and “molluscan shellfish,” and cephalopods, respectively.
Table 9.3 shows there were a total of 129 alerts that confirmed the presence of
dye residues in these various aquaculture product consignments. This number
was obtained from a long period spanning from 2002 to 2016. The alerts for
dye residues accounted for more than 50% of the 247 fin-fish alerts in the EU
(imports and domestic production altogether). According to the same table, very
few of the 672 alerts derived from shrimp and prawn aquaculture were triggered
due to the presence of MG residues (<1%). Finally, none of the four alerts in
molluscan shellfish/cephalopod seafood imports/production were derived from

Table 9.3 Percentage of veterinary drugs (dyes) violations by seafood type aquaculture.
Extracted from the EU RASFF website over the period 2002–2016.213

Seafood types Inspecting body: European Union
RASFF period 2002–2016

Shrimp and prawns 0.3% malachite green
99.7% other drugsa)

n* 672

Fin-fish 48.2% malachite green
3.6% crystal violet
0.4% Victoria blue
47.8% other drugs

n* 247

Molluscan shellfish and
cephalopod seafood

0.0% dyes (MG, CV, VB)
100% other drugs

n* 4

n*: number of violations recorded over the mentioned period.
a) “Other drugs” include violations for chloramphenicol and nitrofurans.
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Figure 9.4 EU alerts for dye residues in fin-fish aquaculture. Extracted from the EU RASFF
website over the period 2002–2016.213

the presence of dye residues. Overall, the major dye substance found is MG. This
is perhaps not unexpected because MG was the first dye to be used for antifungal
and antimicrobial treatments in fish farms. It was also the first dye to be con-
trolled in aquaculture production, whereas the official monitoring of CV actually
started after the mid-2000s. It is worth highlighting one rather unexpected alert
in Table 9.3 arising from the presence of Victoria blue residues in fin-fish fillets
imported from Vietnam in 2010. In fact from the 129 alerts, 119 indicated MG
contamination and 9 alerts showed CV contents. Over the 2002–2016 period,
after a peak of alerts in the years 2005–2007 (73 MG alerts), the data displayed
in Figure 9.4 clearly demonstrate that the dyes have not disappeared yet from the
fin-fish farming industry and continue to potentially enter the food chain with
two or three RASFF alerts per year in the more recent years as well.

Having now a closer look at the countries of origin of the fin-fish products
subjected to the 129 alerts (Figure 9.5), the top three countries accounting for
more than 10 alerts each are three Asian countries with quite large volumes of
fish exports to the EU. Vietnam is the source for nearly 50% of the 129 alerts fol-
lowed by Indonesia (15 alerts) and China (12 alerts). There are also a significant
number of countries (n= 20) that have been alerted (between 1 and 7 alerts each)
due to the presence of MG or CV in their exported or domestic fin-fish products.
Approximately half of these countries (n= 12) are Member States of the EU which
have been facing some safety issues with regard to their domestic fish farming pro-
duction (i.e., Denmark, Germany, Poland). The other roughly half of the countries
(n= 8) are non-EU countries from Latin America and Asia (i.e., Japan, Thailand,
Chile) which have been assigned a marketing authorization to export into the EU
market in recognition of their implementation of an annual national residue mon-
itoring plan demonstrating their ability to control their fish farming production
in accordance with the EU regulations.99, 214
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It can also be clearly seen from Figure 9.6 that the larger number of alerts
arises from the EU-imported products as compared to the EU domestic fin-fish
production. It is clear that food safety and public health is still a big issue in
aquaculture trading. Aquaculture products sold worldwide must be kept under
sufficient control considering the various non-authorized chemical substances
still available for fish/seafood farmers, including the dye substances and should
start with serious control of MG itself.

9.7 Conclusions

The control of dye residues together with other regulatory prohibited/
non-authorized or regulated chemicals in farmed fish and seafood prod-
ucts accounts for one of the public health concerns for this new century. The
continuous rise of intensive and integrated aquaculture systems has to be seri-
ously accompanied by appropriate controls and the various farming practices to
be fully supported especially in developing countries. This area is acknowledged
by the FAO to be one of the key elements to meet the urgent need worldwide to
increase the efficiency and the volumes of food protein production in view of the
ever faster growth of the human population.1

Facing this issue, most of the regulatory agencies in charge of food safety
have developed programs to control these toxic chemicals in the food products
derived from aquaculture. The ever-growing trading of food and in particular of
fishery and farmed fish products has required governments to endorse adapted
food laws in order to manage the risk of contaminated aquaculture and seafood
products. Regulatory agencies of large exporting countries have been compelled
to implement stricter conditions of use and even sometimes prohibition of these
veterinary treatments in the intensive aquaculture practices developed in their
countries over the past 20 years. As a result, there has been significant control
deployed all around the world over the past 15 years. MG remains one of the
key first issues to deal with for dye residue control in aquaculture around the
world, together with a few other veterinary drugs of abuse such as nitrofuran and
chloramphenicol, which are widely prohibited antibiotics.
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