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increased electrode potential, the grain sizes were finer (Fig. 4.25, 4.26, and 4.27). The 

trend of decreasing grain size with increasing current-on time can best be explained by an 

increased number of nucleation sites caused by the higher overpotentials at longer 

current-on times. In pulse plating, there is no applied current during the pulse off-time, 

and fine-grained deposits were obtained during longer off-times as observed in Fig.4.25a.   

   

            (a) 2.5 A/dm2                            (b) 5 A/dm2                            (c) 10 A/dm2  

     Fig. 4.25 (a, b, & c) Grain structure in plated samples with DF 20% and PF 50 Hz 

 

   

(a)  2.5 A/dm2                            (b) 5 A/dm2                            (c) 10 A/dm2 

      Fig. 4.26 (a, b, & c) Grain structure in plated samples with DF 50% and PF 50 Hz    

   
 

  (a) 2.5 A/dm2                        (b) 5 A/dm2                             (c) 10 A/dm2 

      Fig. 4.27 (a, b, & c) Grain structure in plated samples with DF 80% and PF 50 Hz   
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4.7 COMPARISON OF PULSE AND CONTINUOUS CURRENT (DC) PLATING 

Considering the findings of this experimentation, the best parametric 

combinations were a short on time (duty factor 50% at pulse frequency 100Hz) and a 

current density of 5 A/dm2. Comparing the coating achieved with this condition with that 

of a DC plated one at the same current density plated for 5 minutes, it was seen that the 

pulseplated sample had lower roughness (33.408 nm) than its DC counterpart (68.717 nm) 

and grain size was also finer in the pulse plated one. Therefore the surface morphology of 

the coated samples was superior when coated with pulseplating. The improved coating 

surface quality in pulseplated specimen can be well differentiated in the Fig. 4.28 (a, b, c, 

&d).   
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                                 (a)                                                                        (b)                                    

   
 

(c) (d) 
 

Fig. 4.28 Pulseplated sample (a) and (b), and DC plated sample (c) and (d) 
 

 
4.8 SUMMARY 

The objective of the experiments conducted in this study was to prepare the 

nickelcoated tungsten microtools to be used in electrochemical machining applications. It 

was also essential to study the effect of various controlled parameters on the coating 

quality in the DC and pulseplated nickel plated tungsten microelectrodes. The results of 

these analyses are summarized as follows. 
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Table 5.1   Workpiece (SS303) composition 

MATRIAL PERCENTAGE 

Carbon 0.15 

Chromium 17-19 

Nickel 8-10 

Silicon 1.0 

Manganese 2.0 

Phosphorous 0.2 

Sulphur 0.03 

Iron Rest 

 

The nickel coated tungsten microelectrodes prepared by pulse electrodeposition 

(described in the previous chapter) were used as tools for ECM experiments. Also for 

comparison, the uncoated tungsten electrode of 300 microns diameter was used in some 

of the experiments.   

 

5.5 CONTROLLING INTERELECTRODE GAP 

Machining accuracy and dimensional control are greatly influenced by the gap 

between microtool and workpiece. The smallest possible gap should be maintained for 

best results. However, factors such as stiffness of the machines, electrolyte boiling, 

process instability, and tool positioning errors limit the minimum gap size [88]. Other 

methods attempted to achieve better accuracy include: insulating parts (side walls) of the 

tool-electrode, using passivating electrolytes, using pulsed power, and lowering 
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electrolyte concentration. Pulsed ECM enables the recovery of the gap conditions during 

pulse-off times giving improved dissolution efficiency [89]. Use of inter-electrode gaps 

(<50µm) have resulted in improved dimensional accuracy of the order of 0.05 mm 

without the risk of electrolyte boiling [90]. In ECM, the pulse condition, one of the 

factors that determines the machining gap, is dependent on the pulse voltage, pulse on-

time, and machining time [Butler–Volmer equation].  

 The workpiece in this work was held in a clamping device that can hold samples 

of about 15 mm x 15 mm in size. The tool electrode was fixed inside a mandrel similar to 

that in WEDG. The tool mandrel rested on V-shape bearing was rotated by a DC motor. 

The relative positions of the microtool electrode and the clamped workpiece were 

determined through contact sensing function of the experimental equipment for 

microECM, and then tool electrode was withdrawn about 10μm to form a reasonable 

machining gap. To detect a short circuit in the process, a digital continuity device similar 

to a multimeter was used. During the process, the tool electrode was given the feed 

movement while the workpiece was stationary. Tool feed rate, the velocity of tool 

traveling toward the workpiece, was decided by prior experience and judgment and 

machining speed was set in advance through numerically controlled (NC) system. 

Uniform machining speed was maintained throughout a single machining process. In case 

of a short circuit, when the tool electrode touched the workpiece surface or the distance 

between tool electrode and workpiece was only several microns, the machining current 

would jump up instantly and so would the voltage of the sampling resistance. At such 

incidence, the pulsed power was switched off immediately and the tool electrode was 

retracted several micrometers promptly to avoid short circuit damage. When the tool 
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electrode was gradually moved away from the workpice, there was a sudden drop in 

current in around a gap width of 10 μm.  Adopting this sudden current variance signal 

gap control strategy, the interelectrode gap could be controlled in about 10 μm. The 

scheme of the experiment is shown in Fig. 5.2 along with the gap control strategy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Fig. 5.2 Scheme of experiment and gap control strategy 
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5.6 EXPERIMENTAL CONDITIONS 

Table 5.2 lists all the conditions set for the experiments in this work.  

Table 5.2 Experimental conditions 

FACTORS TYPE CONDITIONS/SIZE 

Electrolyte Sodium chloride 0.5 M 

Workpiece Stainless Steel (SS303) 15 mm X 15mm X 1.5 mm 

 

Tool 

Nickel coated tungsten Dia  310 µm 

Uncoated tungsten Dia 300 µm 

 

Pulse Parameters 

Voltage 3, 5, 7, 10 Volts 

Duty Factor 20% (on-time 20 ns, off-time 80 ns) 

Pulse Frequency 10 KHz 

Feed Rate Numerically controlled 0.1, 0.5, 1.0 µm/sec 

 

5.7 RESULTS AND DISCUSSION 

In electrochemical machining with high frequency short-pulse current, the major 

factors influencing the machining accuracy are applied voltage, feed rate, and electrolyte 

concentration [89]. The material removal rate and shape accuracy of the machined 

surface by both coated and the uncoated electrode were analyzed. The effects of supplied 

voltage and tool feed rate on the process output using both type of tools were also studied. 

The coated tool behavior was studied in the experimental conditions and compared with 

that of the uncoated tool in terms of electrochemical stability and corrosion resistance.  

 

5.7.1 MATERIAL REMOVAL RATE (MRR) 
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As per Faraday’s law, the material removal rate increased with the increased 

current density. An increase in supply voltage led to an increase in electrical conductivity 

of electrolyte which resulted in more current density. This phenomenon was observed in 

all our experiments; MRR went on rising with rise in the supply voltage for both types of 

tools. However, the material removed by the nickel coated tungsten tool was noticed to 

be higher at almost all supply voltages (Fig. 5.3). Although this phenomenon is not 

clearly understood, it could be explained by the corroded surface of the uncoated tungsten 

tool during the machining process which might have increased its electrical resistance 

and led to a net decrease in the amount of current flowing through the electrochemical 

cell. The surfaces of both tools were compared before and after machining. It was seen 

that the some kind of deposition and pitting corrosion has taken place on bare (uncoated) 

tungsten tool (W) (Fig. 5.4) where as the texture of the nickelcoated tungsten tool (Ni-W) 

has undergone very little change (Fig. 5.5).   

 

Fig. 5.3 Material Removal Rate (MRR) Vs Applied Voltage 
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Fig. 5.4 Surface of the uncoated tool before (left) and after machining (right) at 
different magnifications 
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Fig. 5.5 Surface of the coated tool before (left) and after machining (right) 

 

5.7.2 SIDE MACHINING GAP OR OVERCUT 

Side machining gap or overcut is defined as the gap produced on both sides of the 

tool while machining and is measured as half the difference in width of the cut and the 

diameter of the tool. It increases with the rise in applied voltage and leads to poor 

machining quality. As material removal rate increases with the increase in current density, 

the capacity of localized dissolution is reduced leading to an increase in removal of 

material in the stray current region. For both type of tools used for the experiments, the 

side machining gap went on increasing with rise in supply voltage and the gap was found 

to be slightly more in case of the uncoated tool (Fig. 5.6).   
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Tool feed rate, defined as the velocity of the tool traveling towards the workpiece, 

has a significant impact on the machined surface quality. At lower feed rates, machining 

time is more and that results in a larger over cut and thereby poor surface quality. If feed 

rate was too high, material removal rate increased and interelectrode gap had to be too 

small and micro spark and short-circuit were frequent. Micro-sparking could cause 

uncontrolled material removal and possibly lead to larger overcut, relatively poor profile 

accuracy and tool damage. It was observed that at different tool feed rates, the over cuts 

generated by coated tool were comparatively smaller than overcut by the uncoated tool 

(Fig. 5.7). The SEM pictures of machined surface generated by both the tools are shown 

in Fig. 5.8. It can be easily marked that the coated tool has produced a better cut in terms 

of shape accuracy than the uncoated tool.  
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          Fig. 5.6 Supply voltage vs. side machining gap 
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Fig. 5.7 Tool feed rate vs. side machining gap 

 

       Machined surface by coated tool              Machined surface by uncoated tool    

            

                           Voltage: 5 V, Feed Rate: 1 µm/s, and Pulse on/off: 20/80 ns 

            

Voltage: 7 V, Feed Rate: 1 µm/s, and Pulse on/off: 20/80 ns 

           

Voltage: 10 V, Feed Rate: 1 µm/s, and Pulse on/off: 20/80 ns 

Fig. 5.8 SEM pictures of the machined surfaces using both types of tools 



 111 
5.7.3 SURFACE ROUGHNESS 

The uncoated tungsten tool generated a surface with lower roughness than the 

coated tool at the beginning of the machining process, but after a couple machining 

activities, the surface quality started to deteriorate with the uncoated tool. Initially, 

because of the good surface quality of the uncoated tungsten microtool, the surface 

generated was good, but as some kind of deposition and pitting took place on the 

uncoated tool surface, making the tool surface rougher, the produced machined surface 

quality worsened with subsequent machining trials. However, the roughness of the 

surface machined by the nickel coated tungsten microtool was somewhat consistent as 

evident from the SEM pictures (Fig. 5.9).   

 

  

Fig. 5.9 Surface generated by Ni coated tungsten (left) and  
by uncoated tool after a couple of machining operations (right) 

 

5.7.4 CORROSION TEST 

Sodium Chloride (NaCl) has been found to be an appropriate electrolyte for ECM 

and microECM applications and the tool used in such a solution is prone to attack such as 

pitting. It has been found that tungsten is more prone to corrosion when deionized water, 

chloride ions, or both are present. The chloride ions have particularly a significant role in 
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the corrosion and pitting of tungsten [91]. So it is logical to test the corrosion 

performance of the nickel coated tungsten tool against the uncoated tungsten microtool.  

The corrosion resistance of the nickel coatings was investigated by the normal salt 

test by an in-house testing apparatus. The normal salt testing as per ASTM B117 

conditions subjects the test samples to conditions that are actually more corrosive than 

actual machining conditions. The test uses sodium chloride in deionized water and 

usually lacks the moderating effects of other dissolved salts such as those containing 

calcium and magnesium, which tend to be somewhat protective. The duration of the test 

can typically range from 8 to over 3000 hours. In this work, testing was carried out over 

16 hours.  A 5% sodium chloride solution containing than 200 parts per million (ppm) 

total solids and with a pH of 6.5 was used. The temperature of the salt spray chamber was 

maintained at 35oC [92].  

The corrosion resistance of pulseplated nickel coatings and the uncoated tungsten 

sample was assessed in the salt environment. The surfaces of both types of samples after 

the test are shown in the SEM pictures below. It can be seen that the uncoated specimen 

was attacked more by the corrosive solution than the coated microtool. Severe pitting was 

found to have taken place on the bare specimen and along with some rust formation (Fig. 

5.10 a). The pulseplated samples were not completely unaffected, but showed enough 

resilience to the corrosive environment and their surface were lot better than that of the 

uncoated specimen (Fig. 5.10 b).   
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Fig. 5.10 (a) Surface of the uncoated tungsten microtool after the corrosion test 

    

Fig. 5.10 (b) Surface of the nickel coated tungsten microtool after the corrosion test 

   

5.8 DIFFICULTIES 
 
The following is a summary of experimental challenges. 
 
• The electrolyte can be easily boiled by the high current density in the inter- electrode 

gap. Sometimes the residue produced during machining process adhered to the 

workpiece surface and that made the machining difficult to continue. Using suitable 

pulse voltage with high pulse off-time this problem could be overcome.  

• Although supply voltage of 3V and 5V were high enough for uniform dissolution, the 

machining rate was too slow and the electrodes often came into contact leading to 

short-circuiting. At higher tool feed rates with short pulse on-time, higher voltage was 

required for uniform dissolution. 
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• The pH of the electrolyte was difficult to control during the machining process and 

continuous measurement of conductivity of the solution was also problematic. It is 

apprehended that the variations in MRR readings could be for of this reason.   

• It was extremely difficult to determine the appropriate interelectrode gap due to lack 

of automatic gap detection system and was managed by judgment and manual 

adjustment.  

 
5.9 CONCLUSION 

The chapter presented the comparative performance of the nickel coated tungsten 

microtool with that of the uncoated tool. It was observed that in terms of MRR, shape 

accuracy, and corrosion resistance, the coated tool exhibited better performance than its 

counterpart.   
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CHAPTER 6 

SUMMARY, FINDINGS, AND RECOMMENDATIONS 

 

This chapter summarizes the results of the experimental work relating to 

development of coated microtool for pulse electrochemical machining applications, 

parametric optimization, and lists out some of the keys findings. Few recommendations 

for future research in this direction are also presented here. 

 

6.1 SUMMARY OF THIS WORK 

The goal of this research was to explore the feasibility of using nickel coated 

tungsten electrode in pulse electrochemical machining and to evaluate the performance of 

the coated tool in terms of the process output. The main objectives were: 

• To prepare nickelcoated tungsten microtool by electrodeposition for 

electrochemical machining applications 

• To evaluate the performance of coated microtool in pulse electrochemical 

machining (PECM)  

The specific tasks included, designing and developing an in-house electroplating setup 

for preparing the nickel coated tungsten microelectrode, conducting plating trials, and 

determining the optimum plating parameters for best coating quality. Another important 

task was to conduct pulse electrochemical machining experiments and compare the 

coated microtool performance with that of an uncoated tungsten electrode. As a part of 

the second objective, a comparative analysis of the behavior of the coated tool in an 
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environment similar to that of an ECM by a corrosion test was also conducted and 

presented.  

For preparation of coated microelectrodes, an electroplating setup was developed 

by in-house resources. The tungsten microtool was nickelcoated by pulse and DC 

electroplating. The effects of different controlled parameters on the coating 

characteristics were studied. The components of the plating set up were again used for 

building the pulse electrochemical machining experimental setup. The developed system 

met the basic experimental requirements of micromachining.  

 
6.2 FINDINGS 

Some of the key findings of this investigation are listed here. 

• Ni coating of thickness in the range of 2.6 - 8.6 µm and 2.1 - 11.9 µm was applied 

to the tungsten microelectrode by DC and pulse plating respectively. Most of the 

coatings obtained were thick, dense, and adhered well to the substrate. The 

combination of 5 A/dm2

• Under the conditions used in this study, pulse electroplating produced more 

uniform and fine grained nickel deposits with grain size down to about 220 nm. 

, DF 80%, and PF 100Hz could plate the thickest coating 

in the trials (11.9 µm). 

• Plating at lower mean current densities (2.5 A/dm2

• The lowest roughness achieved in DC plated samples was about 41 nm and the 

maximum was 110 nm; whereas the range of roughness readings were 13 -128 nm 

) and DF 50% was found to 

produce smallest grain size in the range of 220 - 310 nm. PF of 100Hz at DF 50% 

produced the lowest grain sized coating for all the three mean current densities 

tried in this work. 



 117 
for the pulseplated samples. The best of the parametric combinations tried for 

repeatable lowest roughness were 5 A/dm2

• Pulseplating resulted in smoother and homogeneous coatings of lower porosity 

than the coatings produced by DC plating. The variation in composition of 

coatings at DF 50% with all mean current density and pulse frequency 

combinations was lowest (>99%-100).  

, DF 50%, and PF 100Hz. 

• Based on the coating characterization, the optimum conditions for producing best 

nickel coating in terms of coating thickness, uniformity, grain fineness, and 

surface roughness, with the deposition conditions chosen in this work, could be 

proposed as: a mean current density 5 A/dm2

• The nickel coated microelectrode was found to be capable of removing more 

material (about 28%) than the uncoated tungsten microelectrode. The difference 

in MRR of two types of tools decreased with increased supplied voltage.  

, DF 50%, and PF 100Hz.  

• The dimensional and shape accuracy of machined surface (slot in this work) was 

better when the coated microtool was used as compared to that of the uncoated 

tungsten microelectrode. This was evident from the lower side machining gap of 

the generated surface.   

• The nickel coated tungsten microtool exhibited higher electrochemical stability 

and almost retained its original surface topography during the machining process, 

where as the surface of the uncoated Tungsten microtool had some kind of 

deposition similar to corrosion that might have affected its machining 

performance.  
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• In the corrosion test for both type of tools, the nickel coated microelectrode 

showed higher chemical resistance than the bare uncoated tungsten tool.  

 

6.3 CONCLUSIONS 

• Considering the above findings, it could be concluded that nickel coated tungsten 

microelectrode can be prepared in situ with the optimized parameters mentioned 

above. 

• The results presented here suggest a definite, consistent relationship between the 

input process parameters and the characteristics of the nickel coating on tungsten 

microelectrode. Detailed understanding of this relationship can be applied to 

improve and tailor properties of coated microelectrodes. 

• Different coating materials with desirable ECM tool properties can widen the 

range of ECM tool materials that are currently in use. 

• The coated tool could have higher material removal rate and produce better shape 

accuracy in ECM applications. More importantly, the nickelcoated tungsten 

microtool because of its higher electrochemical stability and greater corrosion 

resistance could be used as an effective microECM tool for a longer period in an 

ECM environment. That might result in reduced tool cost and improved reliability 

of the ECM system and process output. 

 

6.4 RECOMMENDATIONS 

• In this work nickel was used as coating material for improving the 

electrochemical stability of the tungsten microtool. Other materials of superior 
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electrochemical properties can be tried as coating. Also materials other than 

tungsten can be experimented as base materials. 

• It has been reported that the grain size of the coating is affected by change in the 

bath temperature and bath agitation. All the plating trials in this work were 

conducted at room temperature without agitation because of hardware limitations 

and hence effects of these factors on the coating quality could not be studied. 

Future works may focus on studying this effect.  

• The bath used in this work did not use any additives which could have improved 

the grain fineness of the nickel coating. Any subsequent work may include use of 

suitable additives to achieve better effects. 

• The plating experiments were based on a 3X3 full factorial design with two 

replicates. However, it is felt that more electrochemical experiments are still 

required to reveal the exact dependence of grain size of the coating on various 

experimental conditions and details of the mechanisms that leads to unusual 

results (outliers). 

• To limit the scope of this work, pulse reverse plating was not considered. 

However, this can be considered for continuation of this research. 

• A theoretical approach is needed to predict the dimensional, grain size, and 

composition of the coating on the microelectrode.  

• The coating method in this work was chosen to be electroplating because of its 

convenience and the apparatus proximity. Any other suitable, inexpensive method 

may be explored depending on the coating and substrate material.  
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• The pulse electrochemical machining set up used in this work lacked the facility 

of auto detection system of short circuiting and on-line assessment of machining 

status. For efficient use of the equipment and time, further investigation in terms 

of machine configuration is utterly desired.  

• Due to hardware limitations, a duty factor below 20% could not be chosen. In 

recent works, as small as a duty factor of 1-2% is being used to produce features 

of very small dimensions (5 microns). This issue may be addressed in any 

subsequent PECM work.  
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