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The understanding of finite temperature behavior of magnetic materials is of

vital importance for spintronic applications. In this dissertation different theoretical

techniques for studying magnetic thermodynamics of various materials are discussed.

Cr2O3 is an antiferromagnetic insulator that was proposed to be a key component

of new spintronic devices. The magnetic properties of Cr2O3 were studied using the

LDA+U method. Magnetism was found to be very well described by the Heisenberg

model. Subsequently, magnetic thermodynamics was explored using quantum pair

cluster approximation. Overall, very good agreement with experiment was found for

the ground state and thermodynamics properties.

The magnetism at the (0001) surface of Cr2O3 was investigated using first prin-

ciples. The description of magnetic properties required a detailed knowledge of the

surface structure that was found to be very nontrivial. In particular, an order-disorder

structural phase transition was shown to exist at the surface. In addition, the ex-

istence of the reentrant phase transition due to a magneto-structural coupling was

hypothesized. The magnetic properties of the Cr2O3 (0001) surface were found to be

very unique; an uncompensated magnetic moment exists at the surface and persists

even with surface roughness. The finite temperature behavior of this surface mag-

netism was studied using the Heisenberg model and the mean-field approximation.

The surface magnetization was found to exist up to almost room temperature. This



effect makes Cr2O3 a very promising material for exchange bias applications.

In itinerant magnets both transverse and longitudinal spin fluctuations are very

important for thermodynamics. A classical model containing both types of fluctu-

ations was introduced with a single parameter controlling the degree of itinerancy,

i.e., relative importance of longitudinal and transverse spin fluctuations. The ther-

modynamics was studied using the Monte Carlo method, mean-field approximation,

and Onsager method. In general, magnetic short-range order was found to be weak

even for strongly itinerant systems and Monte Carlo was in a good agreement with

mean-field approximation. The Onsager cavity field method was extended to models

with longitudinal spin fluctuations and was shown to be in excellent agreement with

Monte Carlo. The ambiguity of the choice of the phase space measure for longitudinal

spin fluctuations for classical models was emphasized.

In magnetic metals the resistivity has an additional contribution due to scattering

on the thermally induced spin fluctuations. This spin-disorder resistivity was studied

from first principles for Fe and Ni. Various models of thermal spin disorder were

considered, including the mean-field approximation and the nearest-neighbor Heisen-

berg model. In general, spin-disorder resistivity was found to depend very weakly

on magnetic short-range order. For local moments frozen to their zero-temperature

values, a good agreement with experiment was obtained for Fe, but for Ni the resis-

tivity at elevated temperatures was significantly overestimated. This overestimation

of spin-disorder resistivity for Ni was attributed to the reduction of the local moment

due to longitudinal spin fluctuations.
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Chapter 1

Introduction

Magnetic materials have been a subject of conspicuous interest and intensive re-
search in the history of science. For one, this is due to tremendous challenge the
description of magnetism has posed to theoretical physics. Secondly, the interest
in magnetic systems has been recently boosted by the invention of the concept of
spintronics. This new technology hopes to exploit the spin of the electron and the
associated magnetic moment, in addition to its charge. Consequently, magnetic ma-
terials are key components of spintronic device architectures. Since these devices
must work at or even above room temperature, the understanding of magnetic ther-
modynamics is crucial. However, the general description of the finite temperature
magnetism is an extremely complex problem whose solution is still not complete. In
fact, besides the existence of many models and techniques for description of magnetic
thermodynamics, their applicability to particular magnetic systems is often not clear.

In this dissertation the behavior of different magnetic materials, particularly
Cr2O3, at finite temperatures is studied. In Chapter 1, the basic background on finite
temperature magnetism is provided and computational methods used in subsequent
chapters are described. In Chapter 2, we use ab initio methods to investigate bulk
Cr2O3 with particular emphasis on its magnetism. We obtain a very good description
of the magnetic thermodynamics which is in excellent agreement with experiment. In
Chapter 3, we explore the (0001) surface of Cr2O3 which has a very unusual prop-
erty of having a surface magnetization that is stable against roughness. The finite
temperature description of this surface magnetism is complicated due to nontrivial
surface structure and existence of structural surface phase transitions. In fact, we
found that the coupling between magnetism and structure is responsible for unusual
features of these phase transitions. In Chapter 4, we study the thermodynamics of
itinerant magnets by introducing a simple classical model with one parameter that
characterizes the degree of itinerancy. We found that longitudinal spin fluctuations
are of great importance in the finite temperature description of itinerant magnets.
Nevertheless, the magnetic short-range order is always weak and the mean-field ap-
proximations works well. We also derive the generalization of the Onsager method to
the itinerant magnets. Finally, in Chapter 5, we investigate the spin disorder resistiv-



ity of Fe and Ni using first principles electronic structure calculations. We show that
if magnetic moments in the disordered state are kept to its zero temperature values,
a very good agreement with experiment is obtained for Fe but for Ni the resistivity
at elevated temperature is strongly overestimated. This overestimation is attributed
to the significant reduction of local moment in the disordered Ni. We also find that
magnetic short range order has a very mild effect on spin disorder resistivity.

1.1 Finite temperature magnetism

The modern theory of magnetism started with the concept of an atomic local
magnetic moment. For a set of classical magnetic moments with a fixed magnitude µ
under external magnetic field H the magnetization (total magnetic moment per site)
at temperature T is given by [1]

m = µL(x) x =
µH

kBT
(1.1)

where L(x) = coth(x)− 1
x

is the Langevin function. This model explains the observed
Curie law for magnetic susceptibility of paramagnetic substances

χ ≡
(

dm

dH

)

H=0

=
C

T
(1.2)

where C = µ2

3kB
is called Curie constant. Subsequently, Weiss [2] assumed that in

ferromagnetic materials there is an interaction between atomic magnetic moments and
approximated its effect by a mean molecular field proportional to the magnetization,
HW = Γm. Adding this molecular field to the external field in Equation (1.1) we
obtain

m = µL(y) y =
µ(H + Γm)

kBT
(1.3)

It follows from Equation (1.3) that for temperatures below the Curie temperature

TC = µ2Γ
3kB

there is a spontaneous magnetization even for zero magnetic field and
above TC the susceptibility follows the Curie-Weiss law

χ =
C

T − TC

(1.4)

where C is the same Curie constant as in Equation (1.2). A similar theory can be
also formulated for antiferromagnetic or ferrimagnetic materials (see for example Ref.
[3]).

While the above phenomenological Langevin-Weiss theory has quite successfully
explained the essential properties of magnetic materials, it cannot be justified by the
classical theory of physics. In particular, it is difficult to justify the existence of atomic

14



local magnetic moments. On the contrary, there is the Bohr van Leeven theorem that
showed that magnetism is not consistent with classical statistics [4]. Moreover, the
classical physics has not been able to explain the nature of the Weiss molecular field.
The magnetic dipole-dipole interaction gives the value of Γ which is about two or
three orders of magnitude smaller than estimated from the observed values of TC .
Both these problems were resolved with the advent of quantum mechanics and are
discussed below.

According to quantum mechanics electrons in atoms have quantized orbital and
spin angular momenta ~l and ~s, and the associated magnetic moment (l + 2s)µB.
The total angular momentum of an atom J is a sum of the total orbital angular
momentum L =

∑
i li and the total spin S =

∑
i si. Except for some heavy atoms,

the Russell-Saunders scheme is valid and the eigenstates are specified by the quantum
numbers S, L, and J . The relative energies of the eigenstates satisfy Hund’s rules,
i.e., the lowest energy have the states with the largest S and among them the state
with the largest L has the lowest energy. This lowest energy state has a degeneracy
since J can take integral or half odd integral values between L + S and |L−S|. This
degeneracy is lifted by spin orbit coupling λL · S where the coupling constant λ is
positive when a given shell is less than half occupied and is negative when it is more
than half occupied. Finally, each state with a given J has a (2J + 1)-fold degeneracy
that can be lifted by an external magnetic field.

When the lowest energy state with given S, L, and J is well separated from
other states, i.e., the energy separation is much larger than kBT , we can regard
the atom as having a fixed magnitude magnetic moment µ = gJµBJ where gJ =
1+ J(J+1)+S(S+1)−L(L+1)

2J(J+1)
is the Lande g-factor. The paramagnetic response of a system

of atoms can be therefore evaluated by generalizing Equation (1.1) to the case of
discrete spectrum

m = gJµBJBJ(x) x =
gJµBJH

kBT
(1.5)

where BJ(x) = (1 + 1
2
J) coth(1 + 1

2
J)x − 1

2
J coth( x

2J
) is the Brillouin function that

reduces to the Langevin function in the classical limit J → ∞. The susceptibility is

still given by Equation (1.2) with C =
g2

Jµ2
BJ(J+1)

3kBT
.

When atoms form a solid the situation becomes more complicated since electronic
states may significantly differ from atomic orbitals. Only in the case of ionic insulators
and the f states of rare-earth metals the description in terms of atomic orbitals
remains valid1. Still however, the crystal field may lead to the splitting of atomic
shells into subshells. Moreover, for ionic compounds the charge transfer changes the
occupation of atomic states. In particular, it may fill or empty originally partially
occupied electronic shells or subshells destroying magnetic moment. The d and f
shells or subshells however often remains partially filled and exhibit a local magnetic
moment µ = gµBS. This expression for the local magnetic moment emphasizes

1Only for empirical analysis; even in this case the atomic orbitals cannot be used for quantitative
description.

15



the fact that the orbital angular momentum is usually quenched by the crystal field
induced splitting and therefore magnetic moment is only associated with the total
spin of the subshell (in this case g = 2). Sometimes however, the orbital angular
momentum is not totally quenched and in addition it can be partially restored by
the spin-orbit coupling. In this case S and g should be regarded as effective angular
momentum and g-factor for a given shell or subshell.

Using the concept of the Weiss molecular field, the magnetization of a ferromagnet
with atomic local moments is

m = gµBSBS(y); y =
gµBS(H + Γm)

kBT
(1.6)

The spontaneous magnetization exist for temperatures below TC =
g2µ2

BS(S+1)Γ

3kB
and

above TC the susceptibility follows the Curie-Weiss law (1.4) with C =
g2µ2

BS(S+1)

3kBT
.

A similar formalism can be derived for antiferromagnetic and ferrimagnetic materials
[3].

For solids with atomic magnetic moments the origin of the Weiss molecular field
was attributed by Heisenberg [5] to the quantum-mechanical exchange interaction be-
tween neighboring atoms. Based on the Heitler-London model, Heisenberg expressed
this interaction in terms of the spin or effective angular momentum operators

Ĥ = −1

2

∑
i,j

JijŜi · Ŝj (1.7)

where i, j specify atomic sites in the crystal, and Jij are the interatomic exchange
constants. By applying the mean-field approximation to Hamiltonian (1.7) we can
obtain the Weiss molecular field with Γ = (gµB)−2J0 where J0 =

∑
i,j Jij.

For magnetic insulators the exchange interaction is short ranged and its dominant
mechanism is the kinetic exchange that involves hopping between neighboring atoms.
We distinguish the direct kinetic exchange due to hopping between magnetic atoms
and the indirect exchange, also called superexchange, involving hopping through non-
magnetic atom, usually oxygen. In each case the sign of the exchange interaction can
be easily found by analyzing the occupation of the atomic states and the geometry
of the solid [6]. On the other hand, for the rare-earth metals the long-range indirect
exchange interaction via conduction electrons dominates.

The exchange parameters can be calculated for specific materials from first prin-
ciples. There are many available calculational schemes. The most straightforward
method consists in total energy calculations for a set of collinear magnetic structures
obtained by the reversal of directions of some magnetic moments and fitting them to
Equation (1.7). Other techniques involve the spin spiral approach [7] and the method
of Liechtenstein [8].

There are many magnetic metals, like 3d transition metal magnets, for which the
electronic states responsible for magnetism cannot be even qualitatively derived from
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atomic orbitals and thus the concept of atomic magnetic moments is not adequate.
These systems are called itinerant magnets. For itinerant magnets a completely dif-
ferent approach to magnetism based on the picture of electronic bands was proposed
by Slater [9] and Stoner [10]. Consider a metal in the paramagnetic state, with
the density of states (DOS) per spin N(E), and analyze the stability of the sys-
tem with respect to a small exchange splitting ∆ and the associated magnetization2,
m = ∆N(EF ) where EF is the Fermi energy. The total energy of the system can be
then written as

Etot(m) =
1

2
χ−1

P m2 − 1

4
Im2 −Hm (1.8)

The first term in the above equation represents the band energy and χP = 2N(EF )
is the Pauli susceptibility; the second term describes the mean exchange interaction
whose strength is described by the Stoner parameter I; and the last term is due to
the interaction with the external magnetic field H. Note that here H and I have
units of energy and m is dimensionless. Minimizing Equation (1.8) with respect to
m we can find the susceptibility of the system

χ =
χP

1− IN(EF )
(1.9)

As seen, the exchange interaction enhances the noninteracting Pauli susceptibility by a
factor (1−IN(EF ))−1 and the system becomes unstable with respect to magnetization
if the Stoner criterion is satisfied

IN(EF ) > 1 (1.10)

The Stoner parameter is a quasi-atomic property with a very weak k-vector depen-
dence [12]. It was calculated from first principles for variety of materials [13, 14].
Using these values together with N(EF ) the Stoner model was very successful in
prediction of magnetism in itinerant magnets.

The Stoner model can be also generalized to finite magnetizations which however
requires a detailed knowledge of the band structure of a given material. Instead, one
usually uses the spin polarized electronic structure methods that can be regarded as
modern version of the Stoner theory. This approach not only provides correct values
of ground state magnetic moment in magnetic metals [14] but is also able to describe
the ground state of magnetic insulators.

While the Stoner theory gives usually an adequate description of the magnetic
ground state, its straightforward generalization to finite temperatures fails miserably:
TC is too high by a factor of five, and there is no Curie-Weiss law above TC , to
mention but a few of its shortcomings. The reason is that this theory assumes that
the magnetization in each unit cell points in the same direction and therefore the
transverse spin fluctuations, that cause the direction of the magnetization to vary

2The Stoner model can be generalized to other than ferromagnetic orderings (see for example
Ref. [11]).
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from unit cell to unit cell, are neglected. Under this circumstances the magnetiza-
tion can disappear only if the exchange splitting goes to zero. In most of magnets
however the transverse spin fluctuations are of primary importance for magnetic ther-
modynamics since their excitation energy is much lower. For this reason the classical
Heisenberg Hamiltonian (the spin operators in Equation (1.7) are replaced by classical
unit vectors) is very often used as a phenomenological model for a finite tempera-
ture description of itinerant magnets. In fact, this approach in some cases, like for
example in Fe, gives surprisingly good description of the magnetic thermodynamics.
This unexpected agreement led to the idea that a local moment actually exists in
itinerant magnets. Indeed, based on Anderson model [15] one may argue that the
intra- and inter-atomic exchange can lead to creation of a well defined local magnetic
moment in metals3. This local magnetic moment however doesn’t have an origin in
a atomic moment and consequently its magnitude is usually a noninteger multiple of
µB. Magnetic metals for which the inter-atomic exchange has a small contribution
to formation of local moment are said to be close to the local moment limit since in
this case the local moment can be regarded as almost fixed. Heisenberg model is then
expected to provide a reasonable description of finite temperature properties. More
general approach is based on adiabatic approximation [16] that involves the separa-
tion of fast and slow degrees of freedom corresponding to transverse and longitudinal
spin fluctuations, respectively. In particular, the first principles single site disorder
local moment method was proposed by Gyorffy et. al. [16]. Furthermore, Antropov
et. al. [17] developed the ab initio spin dynamics method that doesn’t use single site
approximation and, in particular, allows to study the magnetic short range order in
itinerant magnets.

The adiabatic approximation is valid only for materials close to the local moment
limit, for example for Fe. However, for more itinerant systems where the inter-atomic
exchange has significant contribution to the formation of the local moment, it is not
justified and the longitudinal spin fluctuations must be treated on the same footing
as the transverse spin fluctuations [11]. The effect of longitudinal spin fluctuations
on magnetic thermodynamics of itinerant systems have been studied using classical
Hamiltonians in which variable local moments play the role of dynamical variables
and the parameters are found from first principles calculations [18, 19, 20].

1.2 Monte Carlo

The magnetic properties of materials can be very often described by lattice models
with classical Hamiltonians. For example, the magnetism of local moment systems
with strong uniaxial anisotropy can be well represented by the particularly simple

3In the magnetic insulators and rare-earth metals only the intra-atomic exchange, that leads to
Hund rules, causes creation of a local moment.
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Ising Hamiltonian

H = −1

2

∑

i,j

Ji−jsisj −H
∑

i

si (1.11)

Here parameters Ji−j are called exchange constants and H is the magnetic field. The
Ising variable, si, can be either +1 or −1 and it describes the direction of the spin
at the site i of the lattice. The Ising model is also widely used to describe phase
separation and ordering in binary alloys. A different model, appropriate for the
magnetic metals close to the local moment limit, is the Heisenberg model

H = −1

2

∑

i,j

Ji−jSi · Sj −H
∑

i

Sz
i (1.12)

It has a similar form to the Ising Hamiltonian, but the Ising variables are replaced by
classical unit vector Si since in the absence of anisotropy the spins can point in any
direction.

Monte Carlo method is a powerful tool to study thermodynamics of the above
models. In fact, despite of the simplicity of the Hamiltonians, the analytic solution
is usually not available while various approximation schemes necessarily introduce
errors and often are not able to correctly describe physical phenomena especially
for description of phase transitions. On the other hand, the Monte Carlo method
can provide numerically exact answers of thermodynamic problems posed by above
Hamiltonians. In this approach, instead on the original infinite lattice, we work on a
finite system with some boundary conditions4. However, by performing the finite-size
scaling analysis we can extrapolate results to the thermodynamic limit.

The usual goal in the thermodynamical description of the system is to calculate
the expectation value 〈A〉 of some observable quantity A, such as the energy or the
magnetization. According to the statistical mechanics, such an expectation value can
be found by averaging over all states µ of the system weighted by the Boltzman factor

〈A〉 =

∑
µ Aµe

−βEµ

∑
µ e−βEµ

(1.13)

However, such direct evaluation of the expectation value is intractable for large sys-
tems due to huge number of terms in above summations. In fact, for the Ising system
with N spins each summation has 2N terms. Since this number grows exponentially
with the size of the system, it quickly becomes too large for even relatively small
lattices. The situation is even worse for the Heisenberg model since we have infinite
number of states for each spin. In the Monte Carlo method we go around this problem
by choosing from all possible states of the system only a random subset with some
specified probability distribution pµ. Suppose we choose n such states µ1, ..., µn. We

4Usually periodic boundary conditions are used.
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then estimate 〈A〉 by so called estimator given by

(A)n =

∑n
i=1 Aµi

p−1
µi

e−βEµi∑n
i=1 p−1

µi
e−βEµi

(1.14)

(A)n has the property that as n increases, it becomes a more and more accurate
estimate of 〈A〉. If the probability distribution pµ is chosen in such a way that only
the states that make the largest contribution to the sums in Equation (1.14) are picked
to the subset, (A)n provides a good approximation for 〈A〉 even for n much smaller
than the total number of states. The states that make the largest contributions are
those with the highest probability of occupation at a given temperature. Therefore,
it is natural to choose pµ to be equal to the probability of occupation of state µ in
thermal equilibrium that is given by the Boltzman probability distribution

pµ ∝ e−βEµ (1.15)

In this case the estimator becomes

(A)n =
1

n

n∑
i=1

Aµi
(1.16)

A nontrivial part of Monte Carlo calculations is to generate an appropriate ran-
dom set of states according to the Boltzman probability distribution. Note that we
cannot simply choose states at random and accept or reject them with probability
proportional to ∝ e−βEµ ; we would end up rejecting virtually all states because the
probabilities for their acceptance would be exponentially small. Instead, almost all
Monte Carlo schemes rely on Markov processes as the generating engine for the set
of states used.

A Markov process is a mechanism that for a given state µ generates another
state ν with probability P (µ → ν) called transition probability. If Markov process is
run repeatedly for some time, it generates a Markov chain of states. The transition
probabilities are constant in time and depend only on properties of states µ and ν.
They also satisfy normalization constraint

∑
ν P (µ → ν) = 1 since Markov process

must generate some state µ when a handed a system in state ν. Note however, that
the transition probability P (µ → µ) is in general nonzero so the system may just stay
in the same state. In the Monte Carlo method the Markov process is chosen specially
in such a way that if run for a sufficient amount of time starting from any state, it
will eventually produce a succession of states that appear with Boltzman probability
distribution. In order to achieve this we require Markov process to be ergodic i.e.
it should be possible to reach any state of the system from any other state if we
run Markov process long enough. This requirement is necessary since each state has
nonzero probability in the Boltzman probability distribution. In addition, we put on
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transition probabilities the detailed balance condition

pµP (µ → ν) = pνP (ν → µ) (1.17)

As shown for example in Ref. [21] these conditions ensure that if Markov process is
run for a sufficient amount of time it will eventually generate states with Boltzman
probability distribution. It is convenient to break the transition probability down
into two parts

P (µ → ν) = g(µ → ν)A(µ → ν) (1.18)

where g(µ → ν) is called the selection probability, which is the probability that given
initial state µ the Markov process will generate a new target state ν, and A(µ → ν)
is the acceptance ratio which is the probability that the target state ν is accepted
and the system moves to this state. Then using Equation (1.15) the detailed balance
condition (1.17) becomes

g(µ → ν)A(µ → ν)

g(ν → µ)A(ν → µ)
= e−β(Eν−Eµ) (1.19)

Note that the ergodicity requirement and the above constraint still leave a lot of
freedom for choosing selection probabilities and acceptance ratios. Different choices
correspond to different Monte Carlo algorithms. In general, in order to have an
efficient algorithm the acceptance ratios should be as close to unity as possible.

We focus now on a specific example of Ising or Heisenberg model. We consider
an algorithm with a single-spin dynamics, i.e., we chooses transition probabilities
to be nonzero only for states differing by direction of a single spin. The selection
probabilities between all such states are assumed to be equal

g(µ → ν) =
1

N
(1.20)

where N is the number of spins in the lattice. From Equation (1.19) we then have

A(µ → ν)

A(ν → µ)
= e−β(Eν−Eµ) (1.21)

A very efficient choice of acceptance ratio that satisfy (1.21) is provided by the famous
Metropolis algorithm [22]

A(µ → ν) =

{
e−β(Eν−Eµ) ifEν − Eµ > 0

1 otherwise
(1.22)

In the Monte Carlo calculations we start with the system in some initial state5 and in

5Common initial states include the perfectly ordered state with all spins aligned and the totally
disordered state with random directions of spin. There many possible types of the latter state
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each Monte Carlo step we run the Markov process. The number of Monte Carlo steps
after which the system is equilibrated (i.e., the Markov process produces states with
Boltzman distribution) for any initial state of the system is called the equilibration
time. Since the equilibration time increases with the lattices size, it is convenient
to measure it in Monte Carlo steps per site. Usually the equilibration time for a
given temperature can be estimated by calculating some quantities like energy or
magnetization every some Monte Carlo steps and plotting them as a function of time
(measured in Monte Carlo steps) from the beginning of the simulation. When these
quantities reach approximately constant values, we then deduce that the system has
equilibrated6.

After the system has equilibrated, different quantities of interest can be measured
(calculated) every ∆t Monte Carlo steps and their estimators can be found from
Equation (1.16). Here ∆t is some arbitrarily chosen interval; usually few Monte
Carlo steps per site. The estimate of the deviation of the estimator from the true
expectation value for the same lattice size is given by [23]

σA =

√
1 + 2τ/∆t

n− 1
(∆A2)n (1.23)

where (∆A2)n = (A2)n− (A)2
n is the estimator of the fluctuation of quantity A and τ

is the correlation time that is a measure of how long it takes the system to go from one
state to another one which is significantly different from the first. The correlation
time can be rigorously found from the time-displaced correlation function of some
quantity (see for example Ref. [21]). In most cases however it is safe to assume that
the correlation time is equal to the equilibration time.

While estimators of many quantities can be calculated directly from Equation
(1.16), the response functions are most conveniently found from fluctuations of the
corresponding quantities using the fluctuation-dissipation theorem. The estimation
of the error of such calculated response functions cannot be done by straightforward
generalization of Equation (1.23) and therefore different techniques like blocking,
bootstrap, or jackknife methods are usually employed (see for example Ref. [21]).

In the Monte Carlo simulations of the ferromagnetic Ising or Heisenberg model
without external field there is an ambiguity in calculation of magnetization7. Indeed,
for the Ising case there are two degenerate ordered states differing by sign of the
magnetization. Therefore, even below the Curie temperature, for a sufficiently long

corresponding to different choice of the seed for random number generator.
6In many cases it is possible for the system to get stuck in a metastable state producing roughly

constant values of all the observed quantities and so appearing to reach equilibrium. In order to
avoid this pitfal one should determine equilibration time starting from few different initial states
and check whether they agree. Since for different initial states the system takes different paths to
the equilibrium, it is very unlikely it will get stuck in the same metastable state.

7In general, the problem of vanishing order parameter in the ordered state appears whenever
this state is degenerate. In this case one usually defines root mean square order parameter and its
susceptibility.
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Monte Carlo run, the system can switch from one ordered state to the other and
the resulting estimator of the magnetization, (M)n is zero. The situation is even
worse for the Heisenberg case where we have continuum of degenerate ordered states
differing by direction of magnetization and it costs no energy to to go from one state
to another. The usual solution of this problem is to calculate instead the magnitude
of magnetization, (|M |)n or its root mean square (rms) value,

√
(M2)n because they

are the same for all degenerate states. Correspondingly, the magnetic susceptibility
is defined as

χ =

{
β
N

((M2)n − ((|M |)n)2) for T < TC

β
N

(M2)n for T > TC

(1.24)

While the magnitude or rms of magnetization differ from the actual magnetization
and, in particular, they are always nonzero even in the paramagnetic state, for large
large lattices and away from the critical point the error between all these quantities
is of the order of 1/N .

For all temperatures, except those close to the phase transition, the properties of
the system quickly converge with the size of the lattice supercell. The reason is that
in this case the correlations in the system are short range and can be well described
by even relatively small supercells. On the other hand, close to the critical point the
length scale of the fluctuations, called the correlation length, anomalously increases
and diverges at the critical point itself. Because of this divergence it is impossible
to represent the properties of the system at the critical temperature for any finite
lattice. Fortunately, the scaling behavior for different quantities of interest in the
critical region as the lattice increases is known (see for example Refs. [24]). This
finite size scaling theory allows to find the critical properties of the system on the
infinite lattice like for example critical exponents by considering different supercell
sizes. The details of the finite size scaling methods on Monte Carlo calculations are
described in many books, for example [21, 24]. Here we just mention the scaling
behavior of the fourth order cumulant of magnetization

UM = 1− (M4)n

3(M2)2
n

(1.25)

As size of the lattice goes to ∞ we have UM → 0 for T > TC and UM → 2/3 for
T < TC [25]. For large enough lattices, curves of UM as a function of temperature for
different lattice sizes crosses at the critical temperature8 [25]. This property allows
for a simple determination of the critical temperature.

When the Hamiltonian has a long range interaction it may be unsuitable to solve
the problem in the real space because it would require too large supercells. In this
case one can treat the problem in the Fourier space. Consider for simplicity the Ising
model with the Hamiltonian (1.11) defined on a hypercubic lattice9 with side L. In

8The same properties have fourth order cumulants of other types of order parameters.
9The generalization of the results to the Heisenberg system or to different lattices is trivial.
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each Monte Carlo step we evaluate the first term of the Hamiltonian (1.11) in the
Fourier space. More specifically, we define the discrete Fourier transform of the Ising
variables

si =
1

Ld

Ld∑
q=0

sqe
−2πii·q/L (1.26)

sq =
Ld∑

i=0

sie
2πii·q/L (1.27)

where d is the number of dimensions. The first term of the Hamiltonian (1.11) can

be then written as −1
2

1
Ld

∑Ld

q=0 Jq |sq|2 where we defined the Fourier transform of the
exchange constants

Jq =
Ld∑

i−j=0

Ji−je
2πi(i−j)·q/L (1.28)

Note that Jq can be calculated once and for all for each q allowed by a supercell.

1.3 Ab initio methods

Material specific properties can be studied theoretically using first principles elec-
tronic structure calculations. These techniques are often called ab initio methods
since they attempt to directly solve the Schrödinger equation for a given system with
no free parameters.

1.3.1 Density functional theory

Density functional theory is a basis of a majority of first principles methods. It is
based on two fundamental theorems [26]. Consider a system of N interacting electrons
in the external potential10 Vext(r).

H =
N∑

i=1

[
− ~

2

2m
∇2

i +
1

2

N∑

j 6=i

e2

|ri − rj| + Vext(ri)

]
(1.29)

The first theorem states that Vext(r) , and therefore also the Hamiltonian, is implicitly
determined by the ground state electron density ρ(r). Consequently, the ground state
energy, as any other property of the system, is a unique functional of the ground state

10The external potential usually represent the interaction of electrons with nuclei that are treated
in the Born-Oppenheimer approximation.
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density and can be written as

E[ρ] = T [ρ] +

∫ ∫
ρ(r)ρ(r′)
|r− r′| + Wee[ρ] +

∫
Vext(r)ρ(r)d3r (1.30)

The first and the second terms are kinetic and Hartree energies, respectively. Wee

represents the remaining (nonclassical) part of the electron-electron interaction and
the last term describes interaction of electrons with the external potential. According
to the second theorem this energy functional is minimized by the ground state density.

Kohn and Sham [27] proposed an ansatz that there exists an auxiliary noninter-
acting system of electrons in an effective potential Veff (r) that has exactly the same
ground state density as the original interacting system11. In terms of eigenstates of
the noninteracting system, ψi(r) we have

ρ(r) =
occ∑
i=1

|ψi(r)|2 (1.31)

Minimizing the energy (1.30) with respect to the density (1.31), we obtain Kohn-Sham
equation

HKSψi(r) =

[
− ~

2

2m
∇2 + Veff (r)

]
ψi(r) = εiψi(r) (1.32)

with the effective potential given by

Veff (r) = Vext(r) +

∫
2ρ(r′)
|r− r′|d

3r′ + Vxc(r) (1.33)

Here Vxc(r) = δExc[ρ]
δρ(r)

is the exchange-correlation potential and Exc[ρ] is the exchange-

correlation energy that is formally defined as Exc = Wee[ρ]+T [ρ]−Ts[ρ] where Ts[ρ] is
the kinetic energy of the noninteracting system. In principle, the eigenvalues εi don’t
correspond to the elementary excitations of the interacting system. Nevertheless,
in practice this correspondence is often assumed which basically has a meaning of
the mean-field approximation that replaces the original interacting system by the
noninteracting electrons in the effective potential.

The above equations can be easily generalized to the case of a collinear spin polar-
ized systems if the total energy is considered to be the functional of separately spin up
and down densities, ρ↑ and ρ↓. From the Kohn-Sham ansatz ρσ =

∑occ
i=1 |ψσ

i (r)|2 where
ψσ

i (r) are the solutions of the Kohn-Sham equation with spin dependent exchange-

correlation potential V σ
xc(r) = δExc[ρ↑,ρ↓]

δρσ(r)
. For the noncollinear case the energy is a

functional of the spin density matrix that from the Kohn-Sham ansatz is given by
ραβ(r) =

∑occ ψα∗
i (r)ψβ

i (r) where ψα
i is α component of the spinor eigenstate of the

spin matrix Kohn-Sham equation with the exchange-correlation potential V αβ
xc (r) =

11This assumption can be actually lifted, see Ref. [28]
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δExc[{ραβ}]
δραβ(r)

.

The exact functional form of Exc[{ραβ}] is unknown and approximations must
be made to proceed. The most commonly used is the Local Density Approximation
(LDA) [27]

Exc[{ραβ}] =

∫
ρ(r)εxc[ρ

↑(r), ρ↓(r)]d3r (1.34)

Here εxc[ρ
↑, ρ↓] is the exchange-correlation energy per particle of the homogenous

electron gas which was calculated to great accuracy with the Quantum Monte Carlo
method [29] for different spin up and down densities. At each point ρ↑ and ρ↓ are
found by diagonalizing the spin density matrix ραβ and then εxc[ρ

↑, ρ↓] is obtained
using some possible parameterizations of the Quantum Monte Carlo results [30, 31].

The LDA has been remarkably successful in describing the properties of many
different materials. There are however a lot of well known failures of LDA such
as underestimation of band gaps in semiconductors and insulators, or incorrect de-
scription of transition metal compounds and rare-earth systems. Number of different
generalizations of LDA has been proposed (see for example Ref. [32]). Here we
just describe the LDA+U method [33] that significantly improves the description of
strongly correlated systems. In this approach we separate electrons into two subsys-
tems: localized (usually d or f) electrons for which Coulomb interaction is strong
and cannot be described by LDA and delocalized electrons (usually s or p) that are
well described by LDA. The idea is to correct LDA errors by adding an additional
orbital dependent Hubbard-like interaction between the localized electrons. More
specifically, we define spheres around atomic cores for which the atomic character-
istics of the localized electrons have largely survived. Within these atomic spheres
we expand in a localized orthonormal basis |inlmσ〉 (i denotes the site, n the main
quantum number, l the orbital quantum number, m the magnetic quantum number,
and σ the spin index12). Let us assume that the localized electrons belong to a single

nl-shell. The m-resolved density matrix is nσ
mm′ = − 1

π

∫ EF =Gσ
inlm,inlm′(E)dE where

Gσ
inlm,inlm′(E) are the elements of the Green’s function in the localized representation.

The LDA+U energy functional is defined by

ELDA+U [{ρσ}, {nσ
mm′}] = ELDA[{ρσ}] + EU [{nσ

mm′}]− Edc[{nσ
mm′}] (1.35)

The first term is the LDA energy functional, the second term represents the additional
Hubbard-like interaction between localized electrons, and the last term corrects for
double-counting (it is the part of EU that is already present in ELDA). In the full
spherically symmetric form of LDA+U [34] we have

EU [{nσ
mm′}] =

1

2

∑

σ,{m}

[
Umm′′

m′m′′′nσ
mm′n−σ

m′′m′′′ −
(
Umm′′

m′m′′′ − Jmm′′
m′′′m′

)
nσ

mm′nσ
m′′m′′′

]
(1.36)

12For simplicity we assume here collinear system; the generalization to the noncollinear case can
be done in the spirit of above discussion.
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Here Umm′′
m′m′′′ = 〈m,m′′|Vee|m′,m′′′〉 and Jmm′′

m′′′m′ = 〈m,m′′|Vee|m′′′,m′〉 (Vee is the
screened Coulomb interaction among nl-electrons) can be expressed in terms of renor-
malized Coulomb and exchange parameters U and J [34]. In the fully localized
(atomic) limit13 the double counting term is given by

Edc[{nσ
mm′}] =

1

2
UN(N − 1)− 1

2
J

∑
σ

Nσ(Nσ − 1) (1.37)

where Nσ = Tr(nσ
mm′) and N =

∑
σ Nσ. By minimizing the energy functional (1.35)

with respect to {ρσ} and {nσ
mm′} we obtain a generalized Kohn-Sham Hamiltonian

with additional orbital dependent nonlocal potential

HLDA+U
KS = HLDA

KS +
∑

mm′
|inlmσ〉V σ

mm′〈inlm′σ| (1.38)

with

V σ
mm′ =

∑

m′′,m′′′

[
Umm′′

m′m′′′n−σ
m′′m′′′ −

(
Umm′′

m′m′′′ − Jmm′′
m′′′m′

)
nσ

m′′m′′′

]
− U(N − 1

2
) + J(Nσ − 1

2
)

(1.39)
The above formalism can be simplified if we perform a spherical averaging of Equation
(1.36). The energy functional in this spherically averaged LDA+U method is [37]

ELDA+U [{ρσ}, {nσ
mm′}] = ELDA[{ρσ}] +

U − J

2

∑
σ

[∑
m

nσ
mm −

∑

mm′
nσ

mm′nσ
m′m

]

(1.40)
The corresponding Kohn-Sham Hamiltonian is given by Equation (1.38) with

V σ
mm′ = (U − J)(

1

2
δmm′ − nσ

mm′) (1.41)

The LDA+U method involves two parameters U and J (the spherically averaged form
has only one parameter U − J) that can be found using the constrained occupation
method [38] (see also Section 2.2). While this approach provide a good approximation
for the value of J , the parameter U is not well defined [39]. For this reason U is often
treated as an empirical parameter in the LDA+U calculations. Another ambiguity of
the LDA+U method is that, as seen from Equation (1.38), the Hamiltonian depends
on the choice of the localized basis. However, the experience in using LDA+U in
various electronic structure calculations shows that results are not sensitive to the
particular form of the localized orbitals [40].

13Alternative forms for the double counting term exist in literature, see Refs. [35, 36]
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1.3.2 Solving Kohn-Sham equation

Solving the Kohn-Sham equation (1.32) can be greatly simplified if the external
potential is due to a periodic lattice of nuclei, i.e. the effective potential (1.33) obeys
the periodicity condition Veff (r + T) = Veff (r) where T is an arbitrary translation
vector of the lattice. In this case the Bloch theorem states that the solutions of the
Kohn-Sham equation have the form

ψνk = uνk exp(ik · r) (1.42)

where k is the wavevector from the first Brillouin zone of the lattice, ν is a band
index14, and the function uνk satisfies uνk(r + T) = uνk(r). Bloch theorem allows
us to consider each k point separately that considerably simplifies the calculations.
Unfortunately, there are many important situation for which the external potential
is not periodic, such as surfaces or disordered systems. In this case however, one
can artificially create periodicity by introducing a large supercell. In particular, for
surfaces the supercell contains a finite slab several atomic layer thick and the vacuum
region such that periodic images of the slab don’t interact with each other. On the
other hand, for disordered systems different disorder configurations can be simulated
by large supercells.

Typically, we expand the solution of the Kohn-Sham equation in some complete
basis of functions χik that satisfy the Bloch condition (1.42).

ψνk(r) =
∑

i

ci,νkχik(r) (1.43)

From Equation (1.32) we then obtain

∑
j

[Hij(k)− ενkOij(k)] cj,νk = 0 (1.44)

where Hij(k) =
∫
Ω

χ∗ik(r)HKSχjk(r) and Oij(k) =
∫
Ω

χ∗ik(r)χjk(r) with Ω being the
volume of the unit cell. The energies ενk can be found from the secular equation

det [Hij(k)− ενkOij(k)] = 0 (1.45)

There are many possible choices of basis functions that correspond to different elec-
tronic structure methods. The better we chose the basis functions, the smallest
number of them is needed for a description of ψνk. Plane waves provide a particularly
simple basis. they are, however, not very suitable for description of strong oscillations
of the wave function in the core region. For this reason plane wave expansion is only
used together with the pseudo-potential method (see for example Refs. [41, 42]). An
alternative approach is to construct an efficient basis from the solution of the radial

14For simplicity spin is neglected here; the generalization that includes spin is straightforward.
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Schrödinger equation for each atomic sphere. Even though such constructed basis is
energy dependent, it can be made energy independent by the linearization procedure
[43]. A particular example of such approach is, described below, linear muffin-tin
orbitals method [43].

1.3.3 Tight-binding linear muffin-tin orbitals

In this subsection we briefly describe the tight-binding linear muffin-tin orbitals
(LMTO) method. The more detailed description may be found in Refs. [44, 45, 46].

For most of solids the effective potential has an approximate muffin-tin form, i.e.
it is spherically symmetric in the spheres around atomic cores and constant in the
interstitial region between the spheres. The TB-LMTO method is based on the atomic
sphere approximation (ASA) in which the interstitial region is made volumeless by
extending the atomic spheres radii such that they fill the whole space. Consequently,
the kinetic energy can be neglected in the interstitial region and the Kohn-Sham
equation reduces there to the Laplace equation. Note that ASA necessarily leads to
the overlap between the spheres. For close packed systems, the overlap is relatively
small and ASA is justified in this case. The general solution of the Laplace equation
is a linear combination of the regular JL(r) and irregular KL(r) solution; L = (l,m)
where l and m are orbital and magnetic quantum numbers, respectively. The regular
and irregular solutions satisfy the following expansion theorem

KL(rR) = −
∑

L′
SRL,R′L′JL′(rR′) (1.46)

Here rR denotes the position vector with respect to origin at R and SRL,R′L′ are
called canonical structure constants [44] that decay with distance |R − R′| as an
inverse power law.

In order to construct the LMTO basis, we first consider the Taylor expansion of
the solution of the Kohn-Sham equation in the atomic sphere R with the free atom
boundary conditions, φRL(E, r), up to first order around some arbitrarily chosen
energy El. Linear muffin-tin orbitals (LMTO) χRL(r) are then obtained starting from
KL(rR) defined in the whole space and using Equation (1.46) for all spheres R′ 6= R,
and then replacing JL(r) and KL(r) in all atomic spheres by this Taylor expansion
requiring simultaneously continuous matching across the spheres boundaries. The last
condition fixes the energy in the first term of the Taylor expansion making χRL(r)
energy independent.

χRL(r) =





−{K, φ̇}RLφRL(rR) + {K, φ}RLφ̇RL(rR) rR ≤ sR∑
L′ SRL,R′L′ [{J, φ̇}R′L′φR′L′(rR′)−
{J, φ}R′L′φ̇R′L′(rR′)] rR′ ≤ sR′(R

′ 6= R)

KL(rr) r ∈ I

(1.47)
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where sR is the sphere radius, φRL = φRL(El), φ̇RL denotes energy derivative of
φRL(E, r) evaluated at E = El, and {f, g}RL is the Wronskian of functions fRL and
gRL. The LMTO basis is obtained by taking the Bloch sum of LMTO orbitals. Note
that due to its construction the error between solutions of Kohn-Sham equation and
the LMTO basis functions is of the order of E−El and thus the eigenvalues obtained
from variational method (1.45) are correct up to third order in E−El. Therefore, by
the appropriate choice of El we can obtain a very accurate description of electronic
structure with a minimal basis15.

From Equation (1.47), it is seen that χRL(r) are very extended due to long-range
nature of SRL,R′L′ . This is inconvenient for many applications such as transport.
However, it turns out that the choice of LMTO orbitals is not unique due to freedom
in choosing the normalization of φRL(E) [45]. Different normalizations correspond to
different representations of LMTO and lead to screening of SRL,R′L′ . In particular,
for TB-LMTO representation the structure constants, and therefore χRL(r), become
short-range and usually extend only up to next nearest neighbors.

15Usually good results are obtained for the angular momentum cutoff lmax = 2 except for the f
systems for which lmax = 3 should be used.
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Chapter 2

Magnetism of Cr2O3

Here we used first principles electronic structure calculations to study the mag-
netism of antiferromagnetic Cr2O3. The strong electronic correlations between the d
electrons on Cr atoms are taken into account using LDA+U method. The band gap
was found to be of the Mott-Hubbard type and a very good agreement with exper-
iment was obtained for ground state properties for values of U and J close to those
obtained from the constrained occupation method. Since Cr2O3 is an antiferromag-
netic insulator, its local magnetic moment is expected to be of atomic nature. Indeed,
we found that the local moment is close to 3µB and is associated with the total spin
S = 3/2 that comes from the filled majority and empty minority t2g orbitals. In
addition, we found that magnetic energies can be very well fitted to the Heisenberg
Hamiltonian with strong exchange interaction with two nearest neighbors and addi-
tional weak interaction up to the fifth neighbor shell. These energies are insensitive
to the position of the oxygen states, indicating that the magnetism in Cr2O3 is domi-
nated by the direct kinetic exchange. The Néel temperature was calculated using the
pair-cluster approximation applied to the spin-3/2 quantum Heisenberg model and
was found to be in a very good agreement with experiment.

2.1 Introduction

Corundum-type Cr2O3 is one of the antiferromagnetic transition-metal oxides
which present a challenge for electronic band theory due to the correlated charac-
ter of the partially filled, spin-polarized 3d shell. It also has numerous applications
in steel surface coatings [17] and heterogeneous catalysis [16]. It is therefore very
desirable to establish whether electronic correlations can be reliably included in first-
principles calculations in a way that would accurately predict structural, electronic,
and magnetic properties.

As expected for a transition-metal oxide, conventional density-functional theory
(DFT) studies of bulk Cr2O3 [3, 4, 5] have shown that the local density approximation
(LDA) or the generalized-gradient approximation (GGA) for the exchange-correlation



potential are unable to reproduce the electronic and magnetic properties of bulk
Cr2O3. Rohrbach et al. [6] performed a GGA+U calculation for Cr2O3 using the
simplified (spherically averaged) U − J correction [7] and obtained more reasonable
results for the band structure. However, this approach is inaccurate for structural
and magnetic properties. First, as is typical for transition-metal compounds, both
GGA and the LDA+U corrections reduce the LDA overbinding problem in Cr2O3

and increase the equilibrium volume which becomes close to the experimental value.
However, the use of both GGA and Hubbard U in the GGA+U method [6] results in
an overcorrection, so that the equilibrium volume becomes 7% too large. Second, the
magnetic energies found by Rohrbach et al. within this method are incompatible with
the experimental Néel temperature of about 308 K; they are too small roughly by a
factor of five. Mosey et al. [8] obtained better overall agreement with experiment for
structural and spectral properties using the spherically averaged LDA+U method [7]
with U − J = 3.2 eV, but the magnetic properties were not considered.

Here we analyze the magnetic properties of Cr2O3 using the LDA+U method.
Computational techniques and the choice of the U and J parameters are explained
in Section 2.2. The results are presented and discussed in Section 2.3. In particular,
we calculate the exchange parameters, show that the magnetic interaction is dom-
inated by direct exchange between Cr atoms, and find the Néel temperature using
the pair cluster approximation for the quantum spin-3/2 Heisenberg model. Overall,
the LDA+U method provides very good agreement with experiment for the structural
and spectral properties and the Néel temperature. The results are briefly summarized
in Section 2.4. Finally, the Appendix gives the technical details of the pair cluster
approximation.

2.2 Computational details

The first-principles calculations were carried out using the projected augmented
wave (PAW) method [9, 10] implemented within the Vienna ab initio simulation
package (VASP) [11, 12]. The valence basis included 3d and 4s states on Cr and 2s and
2p states on O. We used the rhombohedral primitive cell for the corundum structure in
all calculations except those involving complicated magnetic configurations (Section
2.3.1), where the hexagonal unit cell was adopted (see Fig. (2.1)). The Monkhorst-
Pack scheme [13] based on the 4×4×4 k-point grid was employed for the Brillouin zone
integrals, which were calculated using the tetrahedron method with Blöchl corrections
[14]. The cutoff energies for the plane-wave and augmentation charge were 520 and
676 eV, respectively. These parameters ensured the total energy convergence to 24
meV/atom. Densities of states (DOS) were calculated using the 8 × 8 × 8 k-point
grid.

We employ the LDA+U method in its full spherically symmetric form [15]. This
extension is important for Cr2O3 where correct representation of crystal field and
exchange splittings within the partially filled 3d shell is critical. The double-counting
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term is taken in the fully localized limit. [15, 17] The underlying LDA functional of
Perdew and Zunger [16] is used.

Reasonable values of U and J can usually be obtained within DFT using the con-
strained occupation method [18]. We calculated U and J using the full-potential linear
augmented plane-wave (FLAPW) method implemented in the FLEUR package [19].
In these calculations the GGA approximation was used. We took the rhombohedral
primitive cell of Cr2O3 (see Fig. (2.1)) containing four Cr atoms and set all the struc-
tural parameters to their experimental values [20]. The 3d electrons on one or two Cr
sites in this cell were treated as “open core” shells, i.e. an integer occupation of these
orbitals (for each spin projection) was enforced, and their hybridization with all other
electrons was turned off. The U and J parameters were then found by comparing the
LDA total energies for different charge and spin occupations of the 3d orbital(s) with
their Hartree-Fock expressions (the latter are equal to the “double-counting” terms
in LDA+U).

The constrained occupation method is somewhat ambiguous because the U pa-
rameter depends on the charge state of the ion1 [21]. Although the formal charge
state of the chromium ion is Cr3+, we find U and J with respect to the 3d4 state.
The reason is that the 3d wave functions and the screening properties of the valence
electrons depend primarily on the charge density distribution in the crystal, which is
typically very close to the superposition of atomic charge densities. Indeed, the formal
occupancy of the Cr 3d orbital within the 2.5 a.u. muffin tin sphere is about 4.2 in
FLAPW. The exchange parameter J = 0.58 eV was found by treating 3d electrons on
one Cr atom as open core and considering the energy differences between the 3d2

↑3d
2
↓,

3d3
↑3d

1
↓ and 3d4

↑3d
0
↓ configurations. The Hubbard parameter U = 3.3 eV was found

by treating the 3d shells on two Cr sites as open cores and considering the energy
difference between the 3d4

A3d4
B and 3d5

A3d3
B configurations, where A and B refer to the

two different sites2; the contribution of J to the energy differences was subtracted.
Since the total number of electrons in the cell is the same for both configurations,
there is no need to include the Fermi level correction. Using direct calculations of
Coulomb and exchange integrals averaged over then filled molecular orbitals in the
unrestricted Hartree-Fock method, Mosey et al. [8] obtained the values of U = 3.3
eV and J = 0.1 eV for Cr2O3. Their value of U − J is thus very close to ours, but
the J value is much smaller. In the following calculations, we fixed J at its calculated
value of 0.58 eV and varied U with the expectation that the optimal results should
be found for U ∼ 3− 4 eV.

1On the contrary, the J parameter is usually very well defined.
2These two sites are selected so that they are not nearest neighbors along the z axis, which makes

the shortest distance between them in the crystal as large as possible.
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Figure 2.1: Rhombohedral primitive cell of Cr2O3 (left) together with the hexagonal
unit cell (right). Smaller gray spheres represent Cr atoms; larger red spheres display
the O atoms.

2.3 Results and discussion

The dependence of the equilibrium volume, magnetic moment, and band gap on
U for the ground antiferromagnetic state (denoted as + − +−)3 is shown in Figure
2.2. The electronic structure was calculated for relaxed structural parameters. We
see that the volume and the band gap agree quite well with experimental data at
U = 4 eV. Other structural parameters also agree with experiment. The calculated
angle between the rhombohedral unit vectors is 55.11◦ compared to the measured [20]
angle of 55.13◦. The shortest distance between Cr atoms along the [111] axis is 2.646
Å vs the measured 2.650 Å.

The magnetic moment at U = 4.0 eV is 2.86 µB, i.e. it is somewhat reduced
compared to the “ideal” ionic value4 of 3 µB corresponding to a fully localized spin
3/2. Experimentally, the most recent neutron polarimetry measurement gives the
sublattice magnetization of 2.48 µB [22], which is notable lower compared to an older
estimate of 2.76 µB [23]. The magnetic moment is smaller than 3µB due to two
effects: (1) hybridization with oxygen, which is included in our calculation, and (2)
the quantum “zero-point spin deviation”5, which is absent in DFT. The zero-point

3This notation indicates the direction of spins of the Cr atoms along the z axis (from the top to
the bottom) of the rhombohedral unit cell shown in Figure 2.1a. The plus (minus) sign corresponds
to spin up (down).

4Refs. [6] and [8] concluded that there is a large disagreement with experiment in the magnetic
moment, but they used an incorrect experimental value of 3.8µB .

5This comes from the fact that the perfect antiferromagnetic order is not a ground state of
the antiferromagnetic spin Hamiltonian (for example, of the Heisenberg Hamiltonian that is valid
for Cr2O3, see below). In the real ground state there is a finite probability for direction of each
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Figure 2.2: Atomic volume (a), magnetic moment (b), band gap (c) and Néel temper-
ature (d) as functions of the Coulomb U parameter for the antiferromagnetic +−+−
state. The value of J is fixed at 0.58 eV. The horizontal lines denote experimental
values; those in panel (b) are from both Refs. [22, 23].

deviation in Cr2O3 was estimated [24] to be about 8%, which amounts to 0.24 µB.
Thus, keeping in mind the uncertainties related to the definition, measurement, and
calculation of the magnetic moment, its calculated value at U ≈ 4.0 eV is completely
reasonable. Of course, the poorly defined reduction from 3 µB can not be used as an
indicator of the quality of agreement with experiment. We also note that the local
magnetic moment depends very weakly on the magnetic configuration of Cr2O3. In
the ferromagnetic state the local moment within the muffin-tin sphere is 2.94 µB,
while the magnetization is exactly equal to 3 µB per Cr site, as expected. The orbital
moment in the calculation with spin-orbit coupling is small (about 0.04 µB) and
antiparallel to the spin moment, in agreement with the experimental [25] g-factor of
1.97 and with the general rule for atomic shells that are less than half filled.

The band gap of 3.07 eV is somewhat smaller than the experimental value of 3.4
eV, but greater than that found in Ref. [6] using GGA+U with U − J = 4 eV.
Underestimation of the addition energy is a common feature of the LDA+U method,
which is well known, for example, for Gd and other 4f elements. Further, the density
of states shown in Figure 2.3 is in excellent agreement with X-ray photoemission data
[26, 27]. Namely, the sharp and narrow peak at low binding energies separated by a
(pseudo)gap from the rest of the valence band is very well reproduced. Figure 2.3 also
shows the partial DOS decomposition into O and Cr contributions from t2g and eg

spin to deviate from the perfect antiferromagnetic order even at zero temperature. These quantum
fluctuations effectively reduce the value of measured local magnetic moment.
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Figure 2.3: Orbital projected DOS for the antiferromagnetic +−+− ground state of
bulk Cr2O3, calculated within the LDA+U with U = 4.0 eV, J = 0.58 eV. (a) O-2p,
(b) Cr-eg and (c) Cr-t2g. Majority and minority-spin DOS are plotted with different
signs.

states6. As seen from Figure 2.3, the peak at low binding energies corresponds to the
filled Cr t2g spin subband with some admixture of oxygen p orbitals. At least some
of this admixture is fictitious, because the Cr d orbitals extend into oxygen’s projec-
tion spheres. (The same ambiguity is involved in the definition of the Cr magnetic
moment.) Since non-magnetic Cr2O3 is metallic with the Fermi level lying inside the
t2g subband which is separated by a gap from the oxygen p band, the insulating gap
forms by the Mott-Hubbard mechanism.

Thus, the structural and spectral properties of Cr2O3 are well reproduced by the
spherically symmetric LDA+U method with U ≈ 4.0 eV and J = 0.58 eV. This value
of U is reasonably close to that given by the constrained occupation method.

2.3.1 Exchange parameters

We now focus on the magnetic energetics which provides another stringent test
of the validity of the LDA+U method for Cr2O3. We calculated the total energies of
12 different magnetic configurations including the ferromagnetic state, three simple
antiferromagnetic orderings (+− +−, + +−−, and +−−+), and eight additional,
arbitrarily chosen spin configurations in the hexagonal unit cell (see Figure 2.1) which
contains six formula units. The ground antiferromagnetic state has +−+− ordering
in agreement with experiment; its relaxed structure was fixed for other magnetic or-
derings. The calculated total energies were well fitted by the conventional Heisenberg

6The t2g and eg subbands are well defined because the ligand field of the Cr site is approximately
octahedral.
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Table 2.1: The exchange parameters Jn fitted using the total energies of 12 magnetic
configurations calculated for different values of U with J fixed at 0.58 eV. Each pair
of sites contributes Jijeiej to the total energy, where ei is the unit vector parallel to
the direction of the local moment at site i. The last column ∆ shows the mean-square
misfit in the fitting of the total energy. Jn and ∆ are given in meV.

U J1 J2 J3 J4 J5 ∆
2.5 −30.9 −21.9 0.60 1.83 −4.92 0.91
3.0 −23.9 −17.3 1.26 2.36 −3.72 0.62
3.5 −18.6 −13.8 1.74 2.72 −2.84 0.43
4.0 −14.6 −11.1 2.11 2.96 −2.16 0.30
4.5 −11.1 −9.04 2.41 3.11 −1.64 0.20

Hamiltonian with exchange interaction in five coordination spheres. The exchange
parameters fitted by the least squares method for different values of U are listed in
Table 2.1. The first, second and fifth nearest-neighbor interactions are antiferromag-
netic, whereas the third and fourth ones are ferromagnetic. All exchange parameters,
except the third exchange parameter, reinforce the ground state. Also, we see that
the magnitudes of the first and second exchange parameters are significantly larger
than those for more distant neighbors; this behavior is natural for an insulator. In
Cr2O3 the parameter J1 corresponds to the short bond along the z axis, and J2 to
the nearest neighbor bond within the buckled Cr layer. Each Cr atom has one J1

neighbor and three J2 neighbors. As the value of U is increased, the magnitudes
of all antiferromagnetic exchange parameters systematically decrease, while of the
ferromagnetic parameters systematically increase.

Let us compare our results with those derived from the spin wave dispersion
measured by inelastic neutron scattering [24]. The exchange parameters fitted to
those dispersion curves are also dominated by antiferromagnetic J1 and J2. However,
more distant neighbors in that fitting [24] are much less important. For example,
J5/J1 ≈ 1/40 in Ref. [24] vs 1/7 found here. Also, there is a notable disagreement
in the J2/J1 ratio: Ref. [24] found J2/J1 ≈ 0.45 versus 0.76 for U = 4 eV in Table
2.1. We have verified that the anisotropy J2/J1 is almost unchanged if only the
lowest-lying spin configurations are included in the fitting.

We also considered the possibility that the exchange parameters may be affected by
lattice distortions below the Néel temperature due to magneto-structural coupling. In
order to study this possibility, we need to know how the exchange parameters depend
on the structural parameters, and how the latter change between room temperature
and liquid nitrogen temperature where the spin wave spectrum was measured. We
found that the magnitudes of J1 and J2 are very sensitive to the lattice parameters; a
1% increase or decrease in the first or second neighbor bond length leads to a 25−50%
decrease or increase of the magnitude of the corresponding exchange parameter (this
was roughly established by varying the Bravais lattice parameters of the rhombohedral
cell and fitting the four simple magnetic orderings to the Heisenberg model). Thus,
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the J2/J1 ratio is very sensitive to the c/a ratio (or any lattice distortion that changes
the ratio of th first and second bond lengths R2/R1).

To our knowledge, no experimental data are available on the thermal contraction
of Cr2O3 below room temperature. In order to assess the degree of magnetostructural
coupling, we have fully relaxed the structure for all the 12 magnetic configurations
that were included in the fitting of exchange parameters. The magnetostructural cou-
pling is, in general, quite appreciable; the R2/R1 ratio varies between the minimum of
1.072 in the +−−+ configuration (where the nearest-neighbor pairs are all parallel,
and next-nearest antiparallel) and the maximum of 1.103 in the + + −− configura-
tion (where the situation is reversed). The overall trend, as expected in general for
antiferromagnetic coupling, is for each of these bonds to shorten when the correspond-
ing spins are antiparallel and lengthen when they are parallel. Although this effect
seems to be rather large, the actual +−+− state has both first and second-neighbor
pairs antiparallel, so that both should lengthen somewhat in the paramagnetic state.
Among our 12 configurations, five have the same ratio N

(i)
P /N

(i)
AP of the number of

parallel and antiparallel pairs in the i-th coordination sphere for i = 1 and i = 2,
i.e., these five configurations approximately represent the change of structure as a
function of the antiferromagnetic order parameter. The R2/R1 ratio for these five
structures varies between 1.088 in the + − +− state and 1.084 in the ferromagnetic
state. The three intermediate states, all of which have twice as many parallel pairs
than antiparallel ones, all have R2/R1 = 1.087. The bond lengths themselves change
by about 0.7% between the +− +− state and these three intermediate states. This
variation is obviously too small to explain the disagreement with experiment in the
J2/J1 ratio.

Thus, in spite of the overall agreement with experiment for most properties, a
discrepancy in the J2/J1 ratio remains. It is possible that our Heisenberg model fit-
ting is not fully applicable to small deviations from the ground state, for which the
linear response technique should be a better fit. Further, spin waves are more sensi-
tive to distant couplings compared to the energy fits or thermodynamic properties,
which makes the fits from spin wave data and from the overall energetics statisti-
cally inequivalent. Finally, many-body effects beyond LDA+U may play a role in
renormalizing the exchange parameters. We also note that impurities and thermal
spin disorder should be more effective in destroying distant couplings compared to
nearest-neighbor ones; this may explain the larger role of couplings beyond J2 in our
fitting compared to experimental spin wave results.

2.3.2 Mechanism of magnetic interaction

The mechanisms of exchange interaction in Cr2O3 are not well understood. Com-
plicated crystal structure with the presence of many electronic orbitals of different
symmetry and many Cr-O-Cr links at different angles greatly complicates the empiri-
cal analysis. Both superexchange and direct exchange interactions have been invoked
to explain the magnetic structure of Cr2O3 [28, 29, 30, 31]. Direct exchange interac-
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tion may be interpreted in terms of hopping of electrons from one Cr ion to another
across the insulating gap; the energy denominator involved in this process is the Mott-
Hubbard splitting. The hopping can only be effective between the orbitals that are
able to hybridize. From the DOS decomposition shown in Figure 2.3 it is clear that
the t2g orbitals very weakly hybridize with eg orbitals on the neighboring Cr atoms.
Therefore, the contribution of eg orbitals to direct exchange can be neglected. The t2g

subband is split off by crystal field and exactly half-filled, therefore direct exchange
should be antiferromagnetic. The superexchange involves hopping between Cr and O
ions; the energy denominator involves the gap between the oxygen p states and the
unoccupied Cr states.

In order to reveal the mechanism responsible for exchange interaction in Cr2O3,
we use the following procedure. A fictitious external potential V is coupled to the
oxygen p orbitals, which adds the term EV = V Tr nσ

mm′ to the total energy, where
the trace is taken over orbital and spin indices, and nσ

mm′ is the density matrix of the
oxygen p states defined inside the muffin tin sphere of 1.2 a.u. This density matrix
is calculated using the standard LDA+U machinery. When V is set to a negative
value, the filled oxygen p states are pushed down to lower energies, which suppresses
superexchange, but not direct exchange. Weak hybridization between the filled t2g

states and the oxygen p states pushes them apart at V = 0. When the p states are
pushed down by increasing the magnitude of V , this repulsion is reduced and the t2g

states also move down, thereby increasing the band gap. Since direct exchange is
sensitive to the band gap, for better comparison we compensate this increased band
gap by reducing U on Cr. This is done in such a way that the distance between
the center of mass of the filled t2g band and the conduction band minimum (CBM)
remains the same as at V = 0.

Starting from the state with U = 3.5 eV, we added V of −12 eV and −24 eV and
calculated the energies of four magnetic states in the rhombohedral primitive cell of
Cr2O3. These calculations were performed using the FLAPW method [19]; the results
are listed in Table 2.27. The self-consistent downward shift of the p states is much
smaller than V nmm because V is strongly screened. The distance ∆ from the oxygen
p band maximum to CBM is also listed in the table.

The results listed in Table 2.2 clearly show that the magnetic energies are in-
sensitive to the position of the oxygen p band. The reduction of magnetic energies
produced by adding negative V at constant U is due to the fact that the t2g band
gap increases due to dehybridization from oxygen. Once U was decreased to bring
the band gap to its original value, the magnetic energies were essentially unchanged
compared to their values at V = 0; in fact, they even increase somewhat. On the
other hand, we’ve seen above that the magnetic energies are very sensitive to the
value of U which is responsible for the band gap. This behavior leads us to a striking
conclusion that, contrary to the common belief, superexchange plays no role in mag-
netism of Cr2O3. Antiferromagnetism is exclusively due to direct exchange, which, as

7Those for V = 0 are within 10% of VASP results.
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Table 2.2: Energies of three simple magnetic configurations relative to the ground
+ − +− state (in meV per formula unit) as a function of the fictitious external
potential V applied to the oxygen p orbitals (in eV). Reduced values of U on Cr
compensate for the increased band gap (see text for details). ∆ is the distance from
the oxygen band top to CBM in eV.

V U ∆ + + ++ + +−− +−−+
0 3.5 4.5 130 124 66
−12 3.5 5.8 115 102 59
−12 2.5 5.6 154 128 74
−24 3.5 7.9 102 80 51
−24 2.15 7.7 145 110 71

mentioned above, is antiferromagnetic because the magnetically active t2g subband
is half-filled. It is likely that superexchange in Cr2O3 is highly ineffective because
the Cr-O-Cr angles are close to 90◦, while the overlap between O states and Cr t2g

states is small. On the other hand, the overlaps between t2g states on neighboring Cr
atoms are quite large; the t2g bandwidth in the ferromagnetic state at V = −24 eV
is approximately 1.5 eV.

2.3.3 Néel temperature

We calculated the Néel temperature TN . We saw above that the local moments
on Cr atoms are well localized, and the energies of spin configurations are well rep-
resented by the Heisenberg spin Hamiltonian. We therefore adopted the quantum
Heisenberg model for localized spins of magnitude 3/2 with the exchange parame-
ters listed in Table 2.1. Since each spin is strongly coupled only to four neighbors
(one with J1 and three with J2), the mean-field approximation can not be reliably
used. However, the antiferromagnetic interaction is not frustrated. The important
spin correlations should be generated by the dominant exchange interaction with four
nearest neighbors. The network of bonds corresponding to J1 and J2 is very weakly
connected; the shortest closed path on this network is 6 bonds long. Therefore, it is
sufficient to capture the pairwise spin correlations. In this situation, the pair cluster
approximation appears to be an obvious choice. This approach is a special case of the
cluster variation method when the set of clusters includes only pairs of sites. Here
we follow the formulation of Ref. [32] which can be directly applied to our case. The
details of this technique are described in the Appendix.

The calculated TN is shown in Figure 2.2 as a function of U . We see that the
best agreement with experiment for TN is obtained at the same value of U ≈ 4 eV
as for the structural and spectral properties explored above. This overall agreement
is a strong indication that the essential details of the electronic structure of Cr2O3

are very well captured by the LDA+U approximation. Physically, this success of
LDA+U is explained by the presence of fully filled and empty subbands which are
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strongly split by crystal and exchange fields; LDA+U usually reproduces such closed
atomic-like subshells very well.

2.4 Conclusion

In conclusion, we found that the spherically symmetric LDA+U method provides a
very good description of structural, spectral, and magnetic properties of chromia with
J = 0.58 eV found from the constrained occupation method and U ≈ 4 eV, which
is also close to the calculated value. We found that the magnetic energies are well
represented by the Heisenberg model with strong exchange interaction with nearest
neighbors both in the plane and along the z axis and much weaker interaction with
more distant neighbors. The Néel temperature was subsequnelty calculated using the
pair cluster approximation for the spin-3/2 quantum Heisenberg model resulting also
in a very good agrement with experiment for above values of U and J . Furthermore,
we found that the artificial downward shift of the filled oxygen p states has almost no
effect on the magnetic energies, which proves that the direct exchange is the dominant
mechanism of magnetic interaction.

2.A Appendix

Here we describe the application of the pair cluster approximation to Cr2O3 fol-
lowing a similar formalism of Ref. [32]. The energy of a quantum Heisenberg magnet
(per unit cell) can be written as

E = −1

2

∑
i,j

minijJij〈Ŝi · Ŝj〉 −
∑

i

miHi〈Ŝz
i 〉, (2.1)

where the summations are over the inequivalent sites in the unit cell, Ŝi are quantum
spin operators, mi is the number of sites of type i in the unit cell, nij the number of
neighbors of site i that are of type j, and Hi the external magnetic field applied to
site type i. All the thermodynamic properties can be obtained from the free energy
which may be calculated by integrating the Gibbs-Helmholtz relation:

F =
1

β

∫ β

0

E(β′)dβ′, (2.2)

To proceed we need to find the expectation values appearing in Equation (2.1). In
the pair-cluster approximation they are calculated by introducing one- and two-site
clusters with the following cluster Hamiltonians:

Ĥi
1 = −hiŜ

z
i

Ĥij
2 = −JijŜi · Ŝj − h

(j)
i Ŝz

i − h
(i)
j Ŝz

j , (2.3)
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where hi = Hi + φi is the one-site “cluster field,” h
(j)
i = hi − φ

(j)
i is the cluster field

at site i for the pair cluster (i,j). The one-site and two-site cluster fields are related

through φi =
∑

j nijφ
(j)
i . The quantities φ

(j)
i are treated as variational parameters

and found by minimizing the free energy, i.e. requesting that ∂F/∂φ
(j)
i = 0. It can

be shown that this variational condition ensures that the expectation value 〈Ŝz
i 〉 is

the same in all one-site and all two-site clusters containing site i. The expectation
values 〈Ŝi · Ŝj〉 are calculated from the pair cluster (i,j). Performing the integration
in (2.2), we find

F = − 1

2β

∑
ij

minij ln Zij
2 +

1

β

∑
i

mi(ni − 1) ln Zi
1, (2.4)

where ni =
∑

j nij is the total number of neighbors of site i, while Zi
1 = Tr exp(−βĤi

1)

and Zij
2 = Tr exp(−βĤij

2 ) are the one-site and two-site cluster partition sums. Eval-
uation of Zi

1 is trivial; to find Zij
2 one first needs to diagonalize Ĥij

2 .
Our goal here is to find the transition temperature; therefore we may assume

that all h
(j)
i are small. The free energy is developed in these parameters, and then

the parameters φ
(j)
i are found by requiring that the variation of the free energy F

vanishes. (The resulting equations are too cumbersome to be included here.)
For Cr2O3 we assumed the actual magnetic ordering + − +−. All Cr sites are

related by magnetic symmetry, which reduces the number of independent variational
parameters. The transition temperature is found by setting S = 3/2 and searching
for the pole of the magnetic susceptibility which is found from the one-site cluster:

χij =
∂〈Sz

i 〉
∂Hj

=
S(S + 1)

3
β

∂hi

∂Hj

. (2.5)

The resulting equation for the transition temperature has two solutions. The greater
solution is TN , while the lower one is the fictitious “anti-Néel point” below which
〈Ŝz

i 〉 = 0. The existence of an anti-Néel point for antiferromagnets is a well-known
shortcoming of the pair-cluster approximation, [33, 32] which fails at low temper-
atures. However, in our case the anti-Néel point is much smaller than TN which
indicates that the pair cluster approximation has a wide range of validity. Therefore,
this method is expected to provide a very good approximation for TN .
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Chapter 3

Magnetism and structural phase
transitions at the Cr2O3 (0001)
surface

In this chapter we continue to study the magnetism of Cr2O3. However here,
instead of bulk as in the previous chapter, we focus on the surface. More specifically,
we investigate the (0001) surface. This surface exhibits many interesting effects. In
particular, the (0001) surface of Cr2O3 has a very unique feature of having an uncom-
pensated magnetic moment that is stable against surface roughness. This remarkable
effect of Cr2O3 is due to its special crystal and magnetic structure and makes it a very
promising material for exchange bias applications. In addition, the (0001) surface of
Cr2O3 exhibits a very unusual series of structural phase transitions [1] whose nature
is poorly understood. In this chapter, we use first principles electronic structure cal-
culations to explore the thermodynamics of the surface magnetism of Cr2O3 as well
as the surface structural phase transitions. We find that there is a nontrivial coupling
between these two effects that is responsible for the unusual features of the structural
phase transitions.

3.1 Introduction

The (0001) surface of Cr2O3 has been extensively studied both experimentally and
theoretically [1-15] due to its applications as catalysts [?] and wear- and corrosion-
resistant coatings [?]. It is well established that the Cr2O3 (0001) surface is terminated
with a semilayer of positively charged Cr ions [1, 2, 6, 9]. Even though this surface
is polar, it doesn’t lead to a divergence of the electrostatic potential. Consequently,
the massive surface reconstruction, that appears for typical polar surfaces, in order to
avoid the polar catastrophe (e.g. NiO [18]), is not needed here. Low-energy electron
diffraction (LEED) measurements [2] together with theoretical studies [2, 9, 13] have
shown that the top layer of Cr ions exhibits a significant inward relaxation. This



decreases the electrostatic energy of the polar surface and makes this termination
stable.

A peculiar series of structural phase transitions on the (0001) surface of a thin film
of Cr2O3 grown on Cr substrate has been observed by means of temperature depen-
dent LEED: at room temperature (1× 1) structure was observed; if the temperature
is lowered, there is a phase transition to a (

√
3×√3) superstructure at about 150 K; if

temperature is lowered further, at about 100 K we have another phase transition back
to the (1 × 1) structure [1]. Recent measurements by Takano et. al. [8] have shown
that these transitions exist only for thin films of Cr2O3 of about 5 nm and for films
thicker than 10 nm the (

√
3×√3) phase is not seen. Despite some speculation [1, 5],

the origin of these phase transitions remains unknown. While the first transition from
(
√

3 × √3) at 150 K to (1 × 1) at room temperature might be, as suggested by the
LEED data [1], an order-disorder transition, the second transition from the low- to
the high-symmetry structure as temperature decreases is very unusual. In fact, from
the ordinary knowledge of the phase transitions one usually expects a low-symmetry
phase to appear at low temperatures. Clearly, the mechanism behind this transition
is nontrivial.

Recently, new interesting applications of Cr2O3 in spintronic devices have been
proposed [19]. They utilize the fact that Cr2O3 is an antiferromagnetic insulator ex-
hibiting a magnetoelectric effect. The proposed device architectures involve magnetic
tunnel junctions and spin valves in which Cr2O3 plays a role of a tunneling barrier and
a pinning layer, respectively [19]. The idea is that application of electric field leads
to a net magnetization in the Cr2O3 film that is proportional to the field. Since the
magnetized Cr2O3 film is exchange-coupled to the magnetization of the neighboring
ferromagnetic layer, one can effectively control the direction of this magnetization,
and therefore the magneto-resistance of the device, by applying an electric field [19].
Since the magnetoelectric effect in Cr2O3 is rather small, very large electric fields are
required to produce non-negligible effects. A different approach has been proposed
by Borisov et.al. [20]. Here Co/Pt multilayer were grown on the (0001) Cr2O3 and
the hysteresis loop was measured after the sample was cooled down below the Néel
temperature of Cr2O3 in the simultaneous presence of electric and magnetic fields.
They found that the sign of the exchange bias field depends on the direction of the
electric field [20]. This effect is explained by the fact that cooling of Cr2O3 in the
presence of electric and magnetic fields favors the single antiferromagnetic domain
whose structure depends on whether electric and magnetic fields are parallel or an-
tiparallel to each other [21]. Therefore, by changing the direction of the electric field
for the fixed magnetic field one chooses a particular antiferromagnetic domain. This
allows for an efficient control of the antiferromagnetic interface magnetization whose
sign is decisive for the exchange bias field [20]. The need of simultaneous annealing
of the sample in order to switch the exchange bias field is unpractical for applications
of this effect. However, recently the switching was achieved at room temperature
without annealing [22].

Another interesting experiment that can trigger applications of Cr2O3 in spintron-
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ics has been recently reported by Sahoo and Binek [23]. They found that the thin
film of (0001) Cr2O3, grown on Al2O3 substrates, is ferromagnetic up to almost room
temperature [23] but the origin of the ferromagnetism was unknown.

In this work we explored the (0001) surface of Cr2O3 from first principles. We
demonstrated that due to the unique combination of the crystal and magnetic struc-
ture of Cr2O3 its (0001) surface possesses an uncompensated magnetic moment that
persists even if the surface is rough. The magnetization was found to persist up to
room temperature and is responsible for the observed ferromagnetism of the thin film
of Cr2O3 [23]. In addition, structural phase transitions at the Cr2O3 (0001) surface
were studied. We found that there was an order-disorder transition from (

√
3×√3)

to (1 × 1) as temperature increases due to dynamics of surface Cr atoms between
two competing surface sites: above and below oxygen layer. In addition, we proposed
an explanation for the low temperature phase transition observed in LEED [1, 8] as
being a reentrant transition due to magneto-structural coupling.

3.2 Method

We investigated the (0001) surface of Cr2O3 from first principles by means of
the supercell method; we considered a symmetric slab of eight layers of Cr2O3 that
periodically repeats in the (0001) direction and is separated from its image by 15 Å
of vacuum. The lateral dimensions of the supercell were fixed to the calculated bulk
values [28] and ions allowed to relax. We considered the (1×1), (1×2), and (

√
3×√3)

surface supercells with respect to the hexagonal cell of Cr2O3. Electronic structure
calculations are performed using the frozen-core all-electron projected augmented
wave method [24], as implemented in the VASP code [25, 26]. We employed LDA+U
method in its full spherically symmetric form [27] with J = 0.58 eV as found from
the constrained occupation calculations for bulk Cr2O3 [28]. Two different values for
the Hubbard parameter U were used: U = 3.5 eV and U = 4 eV. The former value
is close to the U found from the constrained occupation calculations for bulk Cr2O3

[28] while the latter value of U provides the best description of the bulk properties of
Cr2O3 [28]. The plane-wave energy cutoff was fixed to 520 eV and the Brillouin zone
integration is performed using Monkhorst-Pack grids [29]. For relaxation we used a
Gaussian smearing [30] of 0.2 eV and applied 4 × 4 × 1, 4 × 2 × 1, and 2 × 2 × 1
k-point meshes for the (1×1), (1×2), and (

√
3×√3) surface supercells, respectively.

All the Hellmann-Feynman forces were converged to be less than 0.01 eV/Å. These
parameters assured a total energy convergence of 0.01 meV per atom. For calculations
of the density of states (DOS), we used the modified tetrahedron method [31] and
8×8×1, 8×4×1, and 4×4×1 k-point meshes for the (1×1), (1×2), and (

√
3×√3)

surface supercells, respectively.
The energy barriers and paths for hopping of Cr ions between different surface

sites were calculated using the nudged elastic band method [32]. In this approach
a series of initial images between two potential minima was chosen, and each image
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was only allowed to move into the direction perpendicular to the hypertangent, which
was calculated as the normal vector between the two neighboring images. Hence the
energy was minimized in all directions except for the direction of the reaction path.
A quasi-Newton algorithm was used to relax ions until the forces in each image were
less than 0.01 eV/Å

3.3 Surface structure

Bulk Cr2O3 has a corrundum crystal structure that is shown in the hexagonal
lattice in Figure 3.1a. It can be viewed as a stacking of buckled double layers of Cr
along the (0001) direction with quasi-hexagonally close-packed layers of O in between.
In the Cr double layer there are three possible octahedral positions and two of them
are occupied by Cr ions that form a (buckled) honeycomb lattice (see Figure 3.1b).

Figure 3.1: Bulk crystal structure of Cr2O3. (a) Hexagonal unit cell. Gray and red
spheres represent Cr and O ions, respectively. (b) Schematic sideview of the crystal
structure along (0001) direction. Full and empty circles denote occupied and empty
octahedral sites in the Cr double layer, respectively.

Different (0001) surface terminations can be imagined. For example, the surface
can be terminated with either O layer or Cr double layer. Such polar surfaces are,
however, electrostatically unstable due to divergence of the electrostatic potential.
In order to avoid this polar catastrophe, the surface must undergo a significant re-
construction that is however energetically expensive. From the Figure 3.1b one can
envisage an alternative surface termination that cuts in the middle of double Cr layer
such that only half of Cr ions from this layer remain at the surface. Even though
this surface is also polar, for stoichiometric systems it doesn’t lead to divergence of
the electrostatic potential and thus is expected to be energetically favorable. Low
energy electron diffraction (LEED) [2] and scanning tunneling microscope (STM) [6]
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studies of the Cr2O3 (0001) surface have shown that this is indeed the stable surface
termination and therefore only this surface is considered here.

It is not at all clear that the surface Cr ions occupy the position corresponding
to the bulk structure. In fact, the three nonequivalent sites on which surface Cr
ions can reside correspond to the three different bulk octahedral sites from Figure
3.1b. The surface site corresponding to the bulk structure is denoted by A while two
other surface sites are denoted by C and D (see Figure 3.2). Early quantum-chemical
cluster calculations indicated that in the ground state site, C is occupied [1]. However,
subsequent theoretical works showed that surface Cr ions occupy site A [2, 9]. The
occupation of site A allows also for a better fit of LEED data as compared to the
other two surface sites [2].

Gloege et. al. [5] has pointed out that there is another possible surface site in
addition to A, C and D. Namely, the surface Cr ion can hop below the oxygen layer
and occupy the empty octahedral site within the double layer of Cr. This interstitial
site is directly underneath surface site A and we denote it by B (see Figure 3.2). It
was found that the best fit of room temperature surface X-ray diffraction (SXRD)
data can be obtained if we assume disordered arrangement of surface Cr ions with 2

3

probability of occupation of site A and 1
3

probability of occupation of site B [5]. This
finding suggests the importance of site B in the structure of (0001) surface of Cr2O3.

In order to better understand the structure of the (0001) surface of Cr2O3 we
performed total energy calculations as described in Section 3.2. We focused on surface
terminated with a half-layer of Cr and studied different surface models. At first, we
assume that all surface Cr ions are in equivalent positions and consider occupations
of sites A, B, C, and D. Figure 3.2 presents corresponding slab geometries. Note
that these surface models have (1× 1) structure with respect to the hexagonal cell of
Cr2O3.

Figure 3.2: Slab geometries for four considered surface models with (1× 1) structure.
Gray and red spheres represent Cr and O atoms, respectively.
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Table 3.1: Ground state and paramagnetic surface energies for different surface mod-
els.
Model Es [eV]

ground state paramagnetic state
U = 3.5 eV U = 4 eV U = 3.5 eV

A 2.8755 2.9065 2.9748
B 2.9793 3.0149 3.1203
C 5.7471 5.8434
D 4.9507 4.9992
AB 2.8177 2.8550 2.9161
AAB 2.8113 2.8431 2.9101
ABB 2.8387 2.8775 2.9368

A useful quantity for characterizing the surface stability is the surface energy that
we define as

Es =
1

2

(
Eslab − Nslab

Nbulk

Ebulk

)
/N (3.1)

Here N is the number of surface Cr ions at one side of the slab, Eslab and Ebulk are the
total energies of the slab and a bulk cell, respectively; Nslab and Nbulk are the number
of atoms in the slab and the bulk cell, respectively. Surface energies calculated for
ground state magnetic configuration for each surface model1 are presented in Table
3.1. In general, surface energies for U = 4 eV are slightly higher than for U = 3.5 eV
but the overall trend is the same for both values of U .

The lowest surface energy among (1 × 1) structures is for model A. Models C
and D have much higher surface energies so the corresponding surface sites can be
excluded from subsequent analysis. This is in agreement with [2, 9]. However, we find
that the surface energy of model B is only slightly higher than the one from model
A. We have therefore two competing surface sites and it is natural to expect that
surface energy can be lowered if some surface Cr atoms occupy site A and some B
sites. Note that in this case surface Cr atoms form a triangular lattice and at each
site of the lattice Cr ion can be either above (site A) or below (site B) the O layer.
We consider different surface supercells containing more than one surface Cr ion. In
particular, we calculated surface energies for AB, AAB, and ABB surface models (see
Figure 3.3). The first model has two surface Cr ions in the surface supercell; one in
position A and the other one in position B. This model has (2 × 1) structure. The
other two models have (

√
3×√3) structure and three surface Cr ions in the surface

supercell; AAB model has two atoms at site A and one atom at site B while ABB
model has one atom at site A and two atoms at site B. As seen from Table 3.1,
surface superstructures have in general lower surface energies than model A. This can

1The bulk-like antiferromagnetic spin configuration was found to be the ground state for each
surface model except for model B for which the lowest energy is for the ferromagnetic arrangement
of three closest to the surface atomic layers of Cr (see Section 3.6).
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Table 3.2: Surface relaxation for surface models A and B. The relaxations for first
seven atomic layers are given in % of the bulk interlayer distances. M(n) denotes nth
layer from the surface with M being the type of atom in the layer.

A B
U = 3.5 eV U = 4 eV U = 3.5 eV U = 4 eV

Cr(1)-O(2) −56.1 −56.3 −182.6 −190.0
O(2)-Cr(3) +7.0 +7.3 −13.2 −13.0
Cr(3)-Cr(4) −41.1 −41.3 −25.8 −25.9
Cr(4)-O(5) +10.4 +10.8 +17.4 +17.5
O(5)-Cr(6) +0.7 +0.7 +16.1 +16.6
Cr(6)-Cr(7) −2.7 −2.2 −40.9 −42.2
Cr(7)-O(8) +0.7 0.6 +9.0 +9.6

be understood from purely electrostatic considerations since putting some surface Cr
ions below the oxygen layer partly deals with the energetically unfavorable situation
of an array of positively charged Cr ions located at the surface. In particular, the
Coulomb energy is minimized for the (

√
3×√3) ordering. Since from the total energy

calculations of (1× 1) structures we found that locally site A is more favorable than
B, we can expect that AAB is the most favorable ordering. As seen from Table 3.1,
this is indeed the case and AAB model has the lowest surface energy. While it is
in principle possible that some more complicated ordering of surface Cr atoms can
have lower energy than AAB model, this situation is very unlikely since, as we know
from the theory of ordering in alloys, the ground state is usually for high symmetry
structures. Therefore, we conclude that AAB structure is the ground state.

Figure 3.3: Different orderings of surface Cr.

The changes in the interlayer distances of the relaxed slabs for models A and B
are presented in Table 3.2. For model A we observe a significant inward relaxation of
the surface Cr ions in agreement with other theoretical predictions [2, 9, 13, 15]. This
is an expected behavior because there is no negatively charged oxygen layer above
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the surface so the surface Cr ions are electrostatically attracted into the surface. The
strong inward relaxation of the surface Cr ions significantly decreases the Coulomb
energy of the polar surface leading to the surface energy similar to that of nonpolar
surfaces. As mentioned above, for the AAB model the Coulomb energy is already
strongly decreased by putting 1

3
of surface Cr ions below the O layer and therefore one

doesn’t expect such strong relaxations of surface Cr ions being in position A. Indeed,
for the two Cr ions occupying site A we found smaller inward relaxation of 49% and
47%. For model B the surface Cr ion is below the O layer. This reconstruction leads
to the surface region extended up to the sixth atomic layer of Cr as opposed to model
A where surface extends only up to the third atomic layer of Cr.

3.4 Structural surface thermodynamics

In the previous section we found that there are two competing surface sites: A
and B. For the ground state surface model (AAB) we calculated the energy profile
for hopping of the surface Cr ions between sites A and B along the (0001) direction
using the method described in Section 3.2 (see Figure 3.4). We found a reasonable
agreement between two values of U ; the energy barrier for the hopping, Eb, is 0.3 eV
and 0.26 eV for U = 3.5 eV and U = 4 eV, respectively. This result can be used to
estimate the frequency of thermally activated hopping between sites A and B

γ ∼ γ0e
− Eb

kBT (3.2)

Here γ0 is the attempt frequency that is of the order of a typical phonon frequency
(1013 s−1). It follows that at the room temperature the characteristic hopping time
is of the order of 10−8 s. On the other hand, the blocking temperature, below which
the hopping is essentially frozen, is about 100 K. For temperatures above the block-
ing temperature we can thus expect that the surface reaches the thermodynamic
equilibrium with respect to the occupations of sites A and B on the time scale of
typical experiments. In order to investigate the equilibrium surface structure at finite
temperatures we introduce a configurational Hamiltonian

H = Vint({si})− h
∑

i

si (3.3)

Here si is the Ising variable of the ith site of the triangular lattice. If the surface
Cr ion at site i is at position A (B) then si is equal to +1 (−1). The first term is
responsible for interaction between surface Cr ions and the second term describes the
local preference for the occupation of surface sites. Since the surface energy for model
A is lower than for model B, locally occupation of site A is preferable and h is positive.
In order to proceed we need to assume some particular form of Vint({si}) and then fit
the Hamiltonian to the surface energies of different surface supercells. Due to large
size of the system the calculations are feasible only for relatively small supercells and
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consequently we are restricted to rather simple (i.e. with not too many parameters)
forms of Vint({si}). We consider two alternative models. In the first model we simply
assume that Vint({si}) contains only two-body interactions with first two shells of
neighbors. From Equation (3.3) we then obtain Ising-like Hamiltonian

H = −1

2

∑
ij

Jijsisj − h
∑

i

si (3.4)

where exchange constants Jij are equal to J1 for nearest neighbors, J2 for next near-
est neighbors, and 0 otherwise. This two-exchange model contains three parameters
(J1,J2,h) that were found by fitting the surface energies from Table 3.1 to Hamiltonian
(3.4). In order to analyze the effect of magnetic order on the structural thermodynam-
ics, we used both ground state and paramagnetic (see Section 3.6) surface energies.
The results are presented in Table 3.3. For the ground state a reasonable fit was
obtained for both values of U . On the other hand, for the paramagnetic state the
quality of fit is much worse resulting in large uncertainties of parameters. For both
values of U the parameters are similar. The parameter h is positive which reflects
the fact that model A has a lower surface energy than model B. Interestingly, in the
paramagnetic state h is larger indicating that magnetism favors occupation of site B.
The first exchange constant, J1 is strong and negative; it prefers nearest neighbors
to occupy the opposite surface sites. Since the surface Cr ions lie on the triangular
lattice, it leads to frustration. For the ground state the second exchange constant,
J2 is also negative but it is significantly weaker than J1; for U = 3.5 the magnitude
of J2 is of the order of its uncertainty. For the paramagnetic state the fitted value of
J2 is also negative but its magnitude is smaller than its uncertainty. The large rel-
ative uncertainty of J2 introduces a problem in studying the thermodynamics since,
as shown below, the results are very sensitive to J2 despite its smallness.

Figure 3.4: The energy profile for hopping of surface Cr atom between site A and B
along (0001) for AAB model.

In the second model we found the specific form of Vint({si}) based on physical
arguments. As discussed in the previous section, most of characteristics of the (0001)
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Table 3.3: Parameters for the two-exchange model obtained from the ground state
paramagnetic surface energies. ∆ is the mean-square misfit of the fitting. The esti-
mate of the transition temperature for order-disorder transition is also given.

ground state paramagnetic state
U = 3.5 eV U = 4 eV U = 3.5 eV

h [eV] 0.0509± 0.0032 0.0539± 0.0008 0.0695± 0.0098
J1 [eV] −0.0256± 0.0012 −0.0251± 0.0003 −0.0310± 0.0037
J2 [eV] −0.0018± 0.0014 −0.0013± 0.0004 −0.0018± 0.0045
∆ [eV] 0.0047 0.0012 0.0146
J ′1 −0.5039± 0.0388 −0.4653± 0.0086 −0.4465± 0.0821
J ′2 −0.0354± 0.0284 −0.0246± 0.0066 −0.0264± 0.0646
Tc [K] 150− 350 270− 320 0− 680

surface of Cr2O3 can be explained just from electrostatics. It is therefore reasonable
to assume that interaction between the surface Cr atoms is purely electrostatic in
origin. In the electrostatic model, we consider an array of point charges q (measured
in units of the proton charge e) located at the sites of a triangular lattice with the
same lattice parameter as for surface Cr ions. The vertical coordinate of the point
charge at site i can be either 0 or −z. The corresponding Ising variable si takes value
+1 and −1 in the former and latter case, respectively. The value of z is the difference
in the vertical coordinate of sites A and B as found from relaxation data for surface
model AAB. We then assume that Vint({si}) is equal to the Madelung energy of this
system scaled by a dielectric constant ε that represents the screening that is absent
in the electrostatic model but is included in the ab initio calculations.

Vint({si}) =
EMAD({si})

ε
(3.5)

The Madelung energy may be written as

EMAD({si}) =
1

2
q2

∑
ij

1

|Ri(si)−Rj(sj)| ≡ −1

2
ε
∑
ij

Jijsisj + const (3.6)

Here Ri(si) is the position vector of the point charge at site i. Thus, Hamiltonian
(3.3) again takes the Ising-like form of Equation (3.4). Here, however, exchange
parameters Jij’s are defined by Equation (3.6) and can be found by noting that

|Ri(si) − Rj(sj)| = dij for si = sj and |Ri(si) − Rj(sj)| =
√

d2
ij + z2 for si = −sj
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Table 3.4: Parameters for the electrostatic model obtained from the ground state
and paramagnetic surface energies. ∆ is the mean-square misfit of the fitting. The
estimate of the transition temperature for order-disorder transition is also given.

ground state paramagnetic state
U = 3.5 eV U = 4 eV U = 3.5 eV

h [eV] 0.0509± 0.0032 0.0536± 0.0008 0.0695± 0.0098
q2

ε
[e2] 0.3492± 0.0146 0.3380± 0.0082 0.4211± 0.0450

∆ [eV] 0.0048 0.0027 0.0148
α 0.1996± 0.0152 0.2174± 0.0090 0.2262± 0.0404
Tc [K] 100− 150 130− 170 140− 180

where dij is the in-plane distance between sites i and j. Thus we obtain

Jij = −q2

4ε

2

dij


1− 1√

1 +
(

z
dij

)2


 (3.7)

For distant neighbors for which dij >> z we obtain an asymptotic dipolar form

Jij = −q2

4ε

z2

d3
ij

(3.8)

The electrostatic model contains just two parameters: h and q2

ε
. Similarly as in the

case of the two-exchange model the parameters can be found by fitting the ground
state and paramagnetic surface energies to Equation (3.4). The values of fitted param-
eters are given in the Table 3.4. The quality of fit is comparable to the two-exchange
model even though we have one parameter less. The parameter h is exactly the same
as in the two-exchange model since it describes a local site preference and it doesn’t
depend on the form of the interaction between the surface Cr ions.

For each model by setting the convenient scale for the temperature we can ef-
fectively reduce the number of free parameters by one. For the two-exchange model
we have then two parameters: J ′1 = J1/h and J ′2 = J2/h, while for the electrostatic
model we have just one parameter which we define as α = 4aεh

(qe)2
where a is the in-plane

lattice constant. The values of these parameters are given in Tables 3.3 and 3.4.
Before studying thermodynamics it is instructive to analyze the possible ground

states for each model. In Refs. [33, 34] the ground state analysis for the two-exchange
model was performed and the resulting phase diagram is shown in Figure 3.5. Among
possible ground states for the two-exchange models we have A, AB, AAB surface
models, the complex AAAB phase with (2 × 2) structure, and two other orderings
denoted as I and II [33, 34] that are not considered here. For J ′1 and J ′2 found from
ground state surface energies we are in the AAB region but close to the boundaries
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with AB and AAAB phases. However, for the paramagnetic state, due to large
relative uncertainty of J ′2, in addition to AAB we can be as well in AB or even in
AAAB regions.

Figure 3.5: The ground state phase diagram of the two-exchange model. Adapted
from Refs. [33, 34].

For the electrostatic model there is no available ground state phase diagram which,
in fact, would be difficult to obtain due to long-range interaction of the model. How-
ever, it is reasonable to consider only the phases appearing in the two-exchange
model as possible ground state structures. Making this assumption we found that
the ground state was AB for α smaller than 0.11, AAB for α ∈ (0.11, 0.46), AAAB
for α ∈ (0.46, 0.67), and A for α larger than 0.67. As seen from Table 3.4, the fitted
values of α correspond to the AAB ground state.

For both the two-exchange and electrostatic models, the configurational Hamilto-
nian has the Ising-like form (see Equation (3.4)). Since the lattice is triangular and
in both cases the first exchange constant is negative, we expect strong frustration.
Consequently, mean-field-like approaches are inapplicable and we studied the thermo-
dynamics using the Monte Carlo method. In the two-exchange model the interaction
has a finite range and therefore conventional Monte Carlo in real space can be used.
On the other hand, for the electrostatic model we have a long range interaction de-
caying as a power law and it is not clear where it should be cutoff. Therefore, in this
case we use Monte Carlo method in the Fourier space. The details of Monte Carlo
simulations are described in Section 1.2.

In order to define the order parameter for the AAB model with (
√

3×√3) struc-
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ture we decompose the original triangular lattice into three interpenetrating (also
triangular) sublattices made of sites connected by next nearest neighbors bonds. We
define the magnetization of sublattice α by

Mα =
3

N

∑
i∈α

si (3.9)

where N is the total number of sites. AAB ordering corresponds to negative magne-
tization of one sublattice and positive magnetization of two other sublattices. Since
all three sublattices are equivalent, we have threefold degeneracy. For each of these
three AAB orderings we can define order parameter that changes from 1 at zero
temperature to 0 in the disordered state.

m1 =

(
M2 + M3

2
−M1

)
/2 (3.10)

m2 =

(
M1 + M3

2
−M2

)
/2 (3.11)

m3 =

(
M1 + M2

2
−M3

)
/2 (3.12)

During the Monte Carlo simulations the system can go from one AAB orderings to
other. We therefore define a square root order parameter that remains the same as
the system switches between degenerate orderings.

η =

√
6

3

√
m2

1 + m2
2 + m2

3 (3.13)

Correspondingly, we define the susceptibility of the order parameter that has a peak
at the transition temperature

χ =
1

NkBT

(〈
η2

〉− 〈η〉2) (3.14)

and the fourth order cumulant

Uη = 1− 〈η4〉
3 〈η2〉2 (3.15)

From the Monte Carlo simulations for the two-exchange and electrostatic models
we found that there is a second order phase transition from the ordered (

√
3 × √3)

superstructure of AAB model to disordered (1×1) structure in which Cr ions randomly
occupy surface sites A of B. In the wide range of temperatures around the room
temperature the probability of occupation of site B is 0.35 − 0.4. The disordered
state is in a good agreement with the room temperature X-ray diffraction data [5]
and was not seen in the scanning tunneling microscope studies [6] due to very short
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hopping time at the room temperature. This phase transition was postulated earlier
by Gloege et. al. [5] to explain the high-temperature phase transition observed in
LEED [1].

The transition temperature was found using the fourth order cumulant method
(see Section 1.2). For the two-exchange model the transition temperature decreases
as the magnitude of either J ′1 or J ′2 increases. However, we found that the value of the
transition temperature is very sensitive to even small changes in J ′2. In particular, the
uncertainty of J ′2 leads to huge uncertainties of the transition temperature, as seen
in Tables 3.3. This strong dependence of the transition temperature on the value of
J ′2 is due to proximity of the phase boundaries to the AB and AAAB ground state
ordering. Note that for the paramagnetic state this phase transition may even not
occur since, as mentioned above due to uncertainty of J ′2, the AAB structure may
not be a ground state.

Within the electrostatic model, the dependence of the transition temperature on
α is shown in Figure 3.6. As seen, in the region of fitted values of α, the dependence
is smooth. For lower values of α, the transition temperature strongly decreases with
α since the system gets closer to the ground state phase boundary. In particular,
for α = 0.11 the transition temperature is 0 and for even lower values of α the AB
ordering appears.

Transition temperatures for the electrostatic model for the ground and paramag-
netic states are given in Table 3.4. The values of transition temperatures are similar
to the transition temperature of the (

√
3×√3) to (1× 1) phase transition observed

in LEED [1]. Note, however, that in Ref. [1] the measurements were done on the thin
film of Cr2O3 grown on Cr substrate. Thus, the value of α and transition temperature
may be different than for the surface of the single crystal of Cr2O3 that is considered
here. In particular, the fact that in the Ref. [8] the (

√
3 × √3) structure was not

seen for the 10 nm film of Cr2O3 can be caused by the fact that in this case α is
smaller than for thinner films and therefore the transition temperature is below the
considered range of temperatures.

Overall, the electrostatic model seems to more appropriate for studying the struc-
tural thermodynamics of the (0001) surface of Cr2O3. Its main advantage lies in the
fact that, on contrary to the two-exchange model, it was derived based on physical
considerations. The assumption that electrostatics alone is responsible for the interac-
tion between surface Cr atoms seems to be justified since a very good fit was obtained
despite the fact that the model contains just two parameters. This last feature makes
interpretation of thermodynamics for the electrostatic model much simpler. On the
other hand, the instability of the transition temperature with respect to small changes
of J ′2 makes the two-exchange model unsuitable for determination of transition tem-
perature.

Finally, let us discuss the possible mechanism for the low-temperature phase tran-
sition from (1× 1) to (

√
3×√3) observed in LEED [1]. As emphasized above, since

the LEED measurements were made for the thin film of Cr2O3 grown on Cr substrate
[1] rather than on the surface of a single crystal of Cr2O3, the value of α may be
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Figure 3.6: The phase diagram for the electrostatic model. The red line shows the
reduced transition temperature (tc = kBTC

|J1| ) of the phase transition from the AAB
ordering to the disordered structure for the electrostatic model as a function of α.
The patterned rectangular shows schematically the values of α found by fitting. The
dashed line shows schematically the boundary between AB structure and disordered
state.

different. The existence of the low-temperature phase transition may be explained if
we assume that α for the thin film is slightly above 0.11. In this case even though
the ground state is still AAB with (

√
3×√3) structure, it undergoes a phase transi-

tion to the disordered (1 × 1) structure already for very small temperatures. As we
increase the temperature further the magnetic disorder is introduced which, as seen
from Table 3.4, increases the value of α. We propose that this increase of α causes
a reentrant transition back to the (

√
3 ×√3) phase that is observed experimentally

[1]. Note that similar mechanism may formulated for the two-exchange model. If we
assume that J ′2 for the thin film is close to the phase boundary to AB or AAAB phase,
then the disordered (1×1) structure appears already for small temperatures. Further
increase of temperature leads to magnetic disorder that decreases the magnitude of
J ′2 (see Table 3.3) and can cause reentrant transition to the (

√
3 × √3) phase. Low

temperature LEED measurement od the (0001) surface of the single crystal and thin
films of Cr2O3 are desirable to confirm this scenario.
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3.5 Surface electronic structure

In order to analyze the electronic properties of the (0001) surface of Cr2O3, we
calculated the partial density of states (DOS) for surface Cr ions for the AAB model.
We found that all features of DOS are similar for both values of U . In Figure 3.7 we
show DOS of the d orbitals for surface Cr ions in positions A2 and B, as well as for
Cr ion in the center of the slab for U = 3.5 eV. The DOS for Cr ion in the middle of
the slab agrees with the corresponding DOS for bulk Cr2O3 (see Section 2.3). This
confirms that in the middle of the slab the system is bulk-like. For both types of
surface Cr ions valence and conduction majority d bands enter the bulk gap forming
spin polarized surface states. This leads to decrease of the band gap at the surface to
1.70 eV and 1.85 eV for U = 3.5 eV and U = 4 eV, respectively. The bulk band gap
is 2.80 eV and 3.04 eV for U = 3.5 eV and U = 4 eV, respectively (see Section 2.3).
On the other hand, the exchange splitting at the surface is similar to the bulk case.
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Figure 3.7: DOS for Cr d states for U = 3.5 eV. (a) for surface Cr ion at position A,
(b) for surface Cr ion at position B, (c) for bulk-like Cr ion in the middle of the slab.
Majority and minority-spin DOS are plotted with different signs.

2For AAB model there are two different surface Cr ions in position A but their DOSs are very
similar.
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3.6 Surface magnetism

Figure 3.8: The comparison of magnetic structures of the (0001) surface of Cr2O3

and surfaces of most antiferromagnets. Full and empty back circles denote magnetic
ions with spin up and down, respectively.

As emphasized in the Introduction, the (0001) surface of Cr2O3 has very unique
magnetic properties. Namely, Cr2O3 possesses an uncompensated magnetic moment
that, unlike other known antiferromagnet surfaces, is stable against surface roughness.
This feature is illustrated in Figure 3.8 where we compare magnetic structures at the
(0001) surface of Cr2O3 and at surfaces of most antiferromagnets. As seen in Figure
3.8, for most antiferromagnets (e.g. NiO) there are two possible equivalent surface
terminations. Depending on the termination we have at the surface an uncompen-
sated magnetic moment either up or down. In the ideal case we have thus a surface
magnetization. However, in reality we have surface roughness and therefore there are
areas of the surface with magnetic moments up and with magnetic moments down.
Since both terminations are equally probable, on average surface magnetization disap-
pears - it is destroyed by roughness. On the other hand, for the Cr2O3 (0001) surface
the stable surface terminations are in the middle of double Cr layer. Therefore, for a
single domain Cr2O3 (0001) surface, no matter where we terminate the surface, the
direction of the magnetic moment is the same (see Figure 3.8). Consequently, we
have a surface magnetism even for a rough surface.

The above discussion is based on the idealized picture in which we assume that
surface atoms behave as for bulk. As discussed in the previous sections however,
both atomic and electronic structure changes significantly at the surface. Therefore,
in order to check the above prediction, we studied the surface magnetism of the (0001)
surface of Cr2O3 using first principles calculations. Since in the previous section we
obtained similar results for two different choices of U , in this section we use only
U = 3.5 eV.

The magnitude of the local magnetic moment for three closest to the surface
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Table 3.5: Magnetic moment per Cr atom for three closest the surface atomic layers
of Cr for different surface models. M(n) denotes nth layer from the surface with M
being the type of atom in the layer. The unit is µB

A B AAB
Cr(1) 2.829 2.828 2.795
Cr(3) 2.772 2.848 2.743
Cr(4) 2.841 2.901 2.837

atomic layers of Cr for different surface models are shown in Table 3.5. As seen,
moments are close to 3µB as expected from the ionic picture. We found that the
bulk-like antiferromagnetic spin structure has the lowest energy for all surface models
except for model B for which the lowest energy has the state with the ferromagnetic
arrangement of three closest to the surface atomic layers of Cr. Therefore, for each
surface model there is a surface magnetization that is stable against surface roughness
and for model B the magnitude of the magnetization is about three times larger than
expected. As discussed in Section 3.4, as temperature increases we have a phase
transition from the ground state (

√
3×√3) phase to the disordered (1× 1) structure

where surface Cr ions sits either in the position A or B with approximate probabilities
2
3

and 1
3
, respectively. Based on the results for each surface model we expect that the

lowest energy for this disordered structure is also for the bulk-like antiferromagnetic
spin arrangement. Therefore, in agreement with above predictions, the (0001) surface
of Cr2O3 has a surface magnetization that is stable against roughness.

The knowledge of the temperature dependence of the surface magnetization is of
great importance. In particular, if the surface Cr ions are only weakly magnetically
coupled to the bulk, the thermal fluctuations can destroy the surface magnetism al-
ready at low temperatures. In order to study magnetic thermodynamics we calculated
surface magnetic energies for surface models A and B for eight different spin config-
urations of three closest to the surface atomic layers of Cr3. The magnetic energies
were fitted to the Heisenberg Hamiltonian

H = −1

2

∑
i,j

JijSi · Sj −
∑

i

HiS
z
i + Nc (3.16)

Here N is the number of surface Cr atoms and c is a constant that in the mean-field
approximation has a meaning of the paramagnetic surface energy. The summation in
Equation (3.16) runs over the Cr atoms in the three sites closest to the surface layer.
For (1× 1) structures (models A and B), we have three nonequivalent Cr atoms: the
surface Cr atom, the upper, and the lower Cr atoms from the Cr double layer below
the surface. They are denoted as 1, 2, and 3, respectively. We assume that each type
of atom interacts by the exchange constants, Jij, only with nearest neighbors atoms

3We found that changing the spin configuration also in the fourth Cr layer leads to much higher
energy.
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Table 3.6: Parameters of the Heisenberg Hamiltonian for models A and B. ∆ is the
mean-square misfit of the fitting. The last column shows corresponding parameters
obtained from the values of the bulk exchange constants J b

i (see Section 2.3). The
units are eV.

A B bulk
J12 0.0038 0.0118 J b

3 = 0.0017
J13 0.0109 0.0040 J b

4 = 0.0027
J23 −0.0115 −0.0012 J b

2 = −0.0138
h1 0.0009 0.0895 J b

5 = −0.0028
h2 −0.434 −0.0215 J b

1 + 3J b
4 = −0.0105

h3 −0.0007 0.0061 J b
5 + 3J b

3 + 3J b
4 = 0.0105

c 2.9748 3.1203
∆ 0.0005 0.0004

of the two other types. In addition, each atom interacts with magnetic field, Hi, that
represents the interactions with the bulk. The values of the exchange constants and
magnetic fields were found by fitting the surface magnetic energies to the Heisenberg
Hamiltonian (3.16) and are presented in Table 3.6. As seen, they are different from the
values derived from the bulk exchange constants J b

i (see Section 2.3). The latter were
calculated under the assumption that exchange interactions at the surface are exactly
the same as in the bulk which was clearly an oversimplifications. This is the expected
behavior since magnetic interactions are very sensitive to interatomic distances which
are different at the surface compared with the bulk. In fact, the deviations between
values of fitted parameters and those obtained from the bulk exchange constants are
correlated to the change of the interalyer distances from Table 3.2.

For analysis of magneto-structural effects described in Section 3.4 we need the
paramagnetic surface energies for superstructures AB, AAB, and ABB. For these
superstructures we have four nonequivalent Cr atoms in the three closest to the sur-
face atomic layers of Cr: surface Cr atom in the position A, surface Cr atom in the
position B, the upper, and the lower Cr atom from the double Cr layer below the
surface4. These site positions are denoted as 1A, 1B, 2, and 3, respectively. Simi-
larly, as in the case of (1 × 1) structures, in addition to interactions with magnetic
field, we include only nearest neighbor interactions between atoms 2 and 3 as well as
interaction between surface Cr atoms with their nearest neighbors of type 2 and 3.
We assumed that the parameters describing these interactions can be found from the
corresponding parameters from models A and B5. This approximation was checked

4For model AB, there are actually two types of upper and lower Cr atoms from double Cr layer
below the surface. However, it doesn’t matter whether we treat them as equivalent or not as long
as the exchange constants and magnetic field for this model are taken from models A and B.

5J1A2, J1A3, H1A (J1B2, J1B3, H1B) are equal to corresponding parameters for model A (B); J23,
H2, H3 are equal to appropriately weighted average of the corresponding parameters for models A
and B.
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for the AAB model for which the exchange constants and magnetic fields were found
by fitting the magnetic surface energies of all 16 spin configurations to the Heisenberg
Hamiltonian (3.16). In the Table 3.7, we compare the values of the fitted parame-
ters with those found from models A and B. While there are some differences, the
overall trend is preserved so parameters derived from the A and B models provide
a reasonable estimate of the actual parameters. The paramagnetic surface energies
for superstructures AB, AAB, and ABB were obtained starting from ground state
surface energies (for bulk-like antiferromagnetic spin structure) and subtracting the
magnetic part by using found above parameters of Heisenberg Hamiltonian for these
superstructures.
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Figure 3.9: Reduced surface magnetization as a function of temperature for AAB
surface model. Total magnetization (solid black line) and magnetizations of site A
(solid blue line) and B (solid red line) are shown. In addition the bulk sublattice
magnetization is plotted (dashed black line).

Having found the basic parameters of the Heisenberg Hamiltonian we can study
the temperature dependence of the surface magnetization. We use the mean-field
approximation for the quantum spin-3/2 Heisenberg Hamiltonian. Since the magnetic
fields in Equation (3.16) represent the interactions with the magnetic structure of
the bulk, they depend on temperature. In the spirit of mean-field approximation we
assume that the magnetic fields are proportional to the bulk sublattice magnetization
that is calculated from mean-field approximation and normalized to the experimental
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Table 3.7: Parameters of the Heisenberg Hamiltonian for AAB model obtained from
fitting to magnetic surface energies and from parameters of models A and B. The
units are eV.

fitted from A and B
J1A2 0.0072 0.0038
J1B2 0.0042 0.0118
J1A3 0.0095 0.0109
J1B3 0.0027 0.0040
J23 −0.0122 −0.0081
h1A 0.0004 0.0009
h1B 0.0746 0.0895
h2 −0.0340 −0.0361
h3 0.0013 0.0016

Néel temperature. The temperature dependence of surface magnetization for AAB
surface model is shown in Figure 3.9. Even though at finite temperatures the surface
magnetization is reduced as compared to the bulk sublattice magnetization, it remains
appreciable up to room temperature. The reason for this reduction is that the site
A is weakly coupled to the bulk (see Table 3.7) and therefore the magnetization of
site A can be easily diminished by thermal fluctuations. On the other hand, site B is
strongly coupled to the bulk and consequently as temperature rises the magnetization
of site B remains large.

3.7 Conclusions

The (0001) surface of Cr2O3 terminated with a single Cr layer was studied using
first principles electronic structure calculations. We found two competing surface
sites: site A corresponding to the continuation of the bulk and site B corresponding
to the octahedral void below the O layer. By considering different surface supercells
the ground state was identified for the AAB model with the (

√
3 × √3) structure.

The energy barrier for hopping between sites A and B was calculated to be 0.26− 0.3
eV and therefore the hopping can be driven by thermal fluctuations. Two different
configurational Ising-like Hamiltonians for occupation of the two surface sites were
constructed. Parameters of the Hamiltonians were found by fitting energies of differ-
ent surface supercells. Very good fit was achieved for the Hamiltonian derived under
assumption that the interaction between surface Cr atoms is mainly of electrostatic
nature. In this electrostatic model the interactions have a long-range dipolar form.
The structural thermodynamics was studied using Monte Carlo method in Fourier
space. With increasing temperature, we found a phase transition from (

√
3×√3) of

AAB model to (1× 1) disordered structure with ∼ 0.3 probability of site B occupa-
tion. The transition temperature was found to be about 150 K in good agreement
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with low energy electron diffraction (LEED) data [1]. We found that the parameters
of the Hamiltonian depends on magnetic state making Hamiltonian temperature de-
pendent. We proposed that this feature may cause reentrant phase transition that
corresponds to low temperature phase transition from (1 × 1) to (

√
3 ×√3) seen in

LEED [1] when the Cr2O3 (0001) lattice is strained (as may occur in the reported
experiments [1, 8]).

We demonstrated that the single-domain (0001) surface of Cr2O3 posses an un-
compensated magnetic moment of about 3µB per surface Cr atom that is stable
against surface roughness. This effect is unique for Cr2O3 and it is a consequence
of its special atomic and magnetic structure. The Heisenberg Hamiltonian describ-
ing this surface magnetism was found by fitting surface magnetic energies for AAB
model. The temperature dependence of the surface magnetization was then studied
using the mean-field approximation for this Heisenberg Hamiltonian and assuming
spin 3/2. We found that surface magnetism persists up to room temperature. This
effect makes Cr2O3 a promising material for exchange bias applications.
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Chapter 4

Thermodynamics of itinerant
magnets in a classical spin
fluctuation model

In this chapter we describe the thermodynamics of itinerant magnets using a clas-
sical model that includes both transverse and longitudinal spin fluctuations. The
Hamiltonian is described by a single parameter that characterizes the degree of itin-
erancy, i.e the relative importance of transverse and longitudinal fluctuations. Monte
Carlo simulations for bcc and fcc lattices are compared with the mean-field approx-
imation and with the Onsager cavity field approximation extended to itinerant sys-
tems. The qualitative features of thermodynamics are similar to the known results of
the functional integral method. It is found that magnetic short-range order is weak
and almost independent on the degree of itinerancy, and the mean-field approxima-
tion describes the thermodynamics reasonably well. Ambiguity of the phase space
measure for classical models is emphasized. The Onsager cavity field method was
extended to itinerant systems, which involves the renormalization of both the Weiss
field and the on-site exchange interactions. The predictions of this approximation are
in excellent agreement with Monte Carlo results.

4.1 Introduction

The thermodynamics of magnetic materials is often described using the Heisen-
berg model in which the spins are attached to lattice sites. Real magnets are much
more complicated, because the magnetization is due to band electrons whose degree
of localization varies between different materials. This so-called itinerancy manifests
itself in the fluctuation of the magnitudes of the local moments, which may be de-
fined in a muffin tin sphere or using a projection in an appropriate basis. Thus, the
degree of itinerancy may be characterized by the relative importance of longitudinal
and transverse (rotational) fluctuations of the local moments [1]. In the localized



(Heisenberg) limit the longitudinal spin fluctuations have a large energy scale and
are suppressed. This limit is approached in some magnetic insulators. Metals, on the
other hand, are often quite far from this limit, because the exchange splitting and the
bandwidth are typically of the same order. Experimentally, itinerancy is most clearly
revealed in the paramagnetic susceptibility by the deviation of the effective moment
found from the Curie-Weiss constant from the true local moment, as well as by the
deviations from the Curie-Weiss law.

A large amount of work has been devoted to the thermodynamics of itinerant
magnets using phenomenological Ginzburg-Landau models for weak ferromagnets [2,
3, 1] or the Hubbard model and the functional integral methods [4, 5, 6, 1]. These
studies have clarified the role of longitudinal spin fluctuations in thermodynamics
and explained the observed behavior of the paramagnetic susceptibility. However,
these methods are unsuitable for quantitative studies of realistic materials. Ginzburg-
Landau expansions, as is well known, correctly describe only the contribution of
long-wave fluctuations and must always be rigged with a wavevector cut-off. Such
models are useful in the studies of critical phenomena, but they are irrelevant to
the determination of the critical temperature itself, which is determined by short-
range fluctuations [7]. An unsatisfactory signature of Ginzburg-Landau models is the
absence of any information on the short-wave components of the exchange interaction
in the resulting expressions for the Curie temperature [2, 3, 8]. In our opinion, the
neglect of short-wave fluctuations in these models makes their predictions for magnetic
short-range order also unreliable. The functional integral method, on the other hand,
suffers from the necessity to make severe and ambiguous approximations [9].

Magnetic thermodynamics has also been studied using density functional theory
(DFT) by treating spin fluctuations within the adiabatic approximation [10] assuming
that the relevant fluctuations are well represented by constrained [11] noncollinear
ground states. The most widespread approach is the disordered local moment ap-
proximation [12, 10] which relies on the single-site approximation and is designed to
approximate the DFT ground state of a system with random directions of the local
moments. The longitudinal spin fluctuations have been neglected in all implementa-
tions of this approach so far, restricting its application to magnets which are close to
the localized limit. In particular, the disordered local moment method neglecting lon-
gitudinal spin fluctuations fails for (strongly itinerant) nickel where it finds vanishing
local moment in the paramagnetic phase [13].

Other authors studied itinerant thermodynamics by mapping the results of first-
principles energies for various spin configurations (including both transverse and lon-
gitudinal fluctuations) to a classical Hamiltonian in which variable local moments
play the role of dynamical variables, and then exploring the thermodynamics of this
Hamiltonian using either the variational principle in reciprocal space [14] or Monte
Carlo simulations in real space [15, 16, 17]. These calculations clearly show that lon-
gitudinal spin fluctuations, as expected, are very important in nickel. Moreover, they
revealed only weak magnetic short-range order above the Curie temperature Tc for
both Fe and Ni, which is similar to the Heisenberg model. These results are consistent
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with the fact that in any lattice model with no frustration all correlation corrections
to the mean-field approximation (outside of the critical region) should be small in
the parameter 1/z, where z is the number of neighbors within the interaction range
[18]. On the other hand, very strong magnetic short-range order above Tc was found
[19] in Ni using the ab initio spin dynamics method, which, similar to disordered
local moment, is based on the adiabatic approximation and neglects longitudinal spin
fluctuations.

Classical models with variable local moments seem to capture the important qual-
itative features of the thermodynamics of itinerant magnets which are similar to the
predictions of the functional integral method. However, these models have been built
and studied only for a few particular materials, and a general study of their thermo-
dynamic properties has not been undertaken. Such a study is useful as a step to more
refined models with the advantage that numerically exact results for a classical model
are easily accessible through Monte Carlo simulations. Therefore, in this chapter we
explore the thermodynamics of a classical spin fluctuation model as a function of the
degree of itinerancy using Monte Carlo simulations and simple analytic approxima-
tions. We emphasize that here we were not concerned with the “mapping” procedure
(i.e., finding the magnetic Hamiltonian for specific materials) but rather focused on
the other separate part of the program, i.e. on the determination of the magnetic
thermodynamics once the Hamiltonian has been defined. We therefore restrict our-
selves to the simplest possible realization of this model which includes only one free
parameter characterizing the degree of itinerancy.

4.2 Model

Our model is a lattice version of the phenomenological model of Murata and
Doniach [2] written with a vector order parameter [1]:

H =
1

2

∑
q

χ−1(q)mqm−q +
B

4

∑
i

m4
i

=
∑

i

[
1

2

(
χ−1

00 − I
)
m2

i +
B

4
m4

i

]
− 1

2

∑

i6=j

Jijmimj. (4.1)

Here mi denotes the magnetic moment at site i whose length is unrestricted, and I the
Stoner exchange-correlation parameter. We have separately written the local χ−1

00 =
∂Bi/∂mi and nonlocal Jij = −χ−1

ij parts of the unenhanced inverse susceptibility. This
model involves a number of simplifying assumptions: (1) It is classical in the sense
that mi are dynamical variables and not operators. (2) Both local and nonlocal parts
of the inverse susceptibility are considered to be independent of the magnetic state
and isotropic. In general, χ−1

ij is a Cartesian tensor which depends on the magnetic
state and reduces to a scalar only in the paramagnetic state. (3) Nonlinear effects
are included only through a local fourth-order term, similar to the Murata-Doniach
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model.
Model (4.1) is somewhat similar to that used to represent the unified spin fluctu-

ation theory [4] classically (see Ref. [1], Ch. 7, and also Ref. [20]), with an important
difference: the energy of the longitudinal spin fluctuations was included as a function
of the local dynamical variables mi, rather than that of one global parameter 〈m2

i 〉.
This difference is similar to that between the Heisenberg model and the spherical
approximation to it.

In the ground state all local moments are parallel and we recover the Stoner model
which is ferromagnetic if IN(EF ) > 1, where N(EF ) = χ(0) is the density of states
at the Fermi level in the nonmagnetic state. This Stoner criterion can also be written
as (I + J0) > χ−1

00 where J0 =
∑

j Jij. On the other hand, in the paramagnetic or

non-magnetic matrix, local moments exist in the Anderson sense only if I > χ−1
00

which is stricter than the Stoner criterion. We will call this the Anderson criterion.
(Note that χ−1

00 6= 1/χ00.)
Introducing the reduced local moments xi = mi/m0, where m0 is the value of all

mi at T = 0, the Hamiltonian (4.1) can be conveniently parameterized:

H ′ ≡ H

J0m2
0

=
∑

i

E(xi)− 1

2

∑

i6=j

Jij

J0

xi · xj (4.2)

where E(x) = [ax2/2 + bx4/4]/J0 with a = χ−1
00 − I and b = Bm2

0 = J0 − a. For the
nearest neighbor model with coordination number z we have Jnn/J0 = 1/z, and for
the given lattice H ′ contains only one parameter, which we define as α = arctan b/a.
Note that b > 0 is equivalent to the Stoner criterion, and a < 0 is equivalent to the
Anderson criterion.

To understand the meaning of the parameter α, consider the ground state of
Hamiltonian H with a single-site excitation, i.e. the state with mi = m0 for all i
except i = c. The energy of this state has a minimum at mc = m0 and its curvature
with respect to the longitudinal fluctuation of mc is K‖ = J0 +2b, while the curvature
with respect to transverse fluctuations is K⊥ = J0. Their ratio K‖/K⊥ = 1 + (2b/J0)
characterizes the relative importance of longitudinal and transverse fluctuations. If
b À J0, the fluctuations are mainly transverse, and we have the localized (Heisenberg)
limit for which a ≈ −b and α ≈ 3π/4. If b ¿ J0, the transverse and longitudinal spin
fluctuations are equally important; this limit corresponds to α = 0. The Anderson
criterion is equivalent to α > π/2. Thus, the parameter α characterizes the degree
of itinerancy and is similar to those appearing in other theories [4, 1]. Note that
we always have K‖/K⊥ > 1, even though the macroscopic longitudinal stiffness is
proportional to b and tends to zero at α → 0.

Evaluation of the thermodynamic properties involves taking a trace over the quan-
tum states, or a functional integral over the classical degrees of freedom. To our
knowledge, in all classical models reported so far and based on ab initio calculations,
the uniform measure in the space of mi was used [14, 15, 16, 17]. However, our
dynamical variables are not canonical, and therefore the phase space measure is not
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known. In the case when longitudinal spin fluctuations are important, the phase space
measure has to be supplied along with the Hamiltonian as an additional phenomeno-
logical ingredient. Strictly speaking, it is not possible to disentangle the measure
from quantum statistics; for example, in the atomic limit only integer moments with
atomic multiplet degeneracies should be present. Ambiguity of phase space measure
is intrinsic to all microscopic classical spin fluctuation models including the classical
version of the “unified theory” of Moriya and Takahashi (Ref. [1], Sec. 7) and its
extensions, [20] as well as the functional integral approach combined with the static
approximation which destroys the correct quantum operator properties. In the latter
case, the Hubbard-Stratonovich transformation can be applied with the interaction
term written in different ways, which produced different results after the static ap-
proximation was made [5, 9]. Two particular choices discussed by Hubbard [5] result
in different measures in the space of fluctuating fields vi: uniform in one case, and
involving the weighting factor

∏
i v
−2
i in another. To explore the influence of phase

space measure on the thermodynamics, we considered these two measures in the space
of the local moments mi.

4.3 Thermodynamic properties: Monte Carlo and

mean-field results

Monte Carlo simulations for model (4.2) were performed using the Metropolis
algorithm for bcc and fcc lattices with nearest neighbor exchange. At each step, a
new random direction and magnitude of the moment on one site was applied, and
sampling of the moment magnitude was performed according to the chosen phase
space measure. We used supercells with up to 3456 or 6912 sites for bcc or fcc
lattices (12×12×12 unit cells with periodic boundary conditions). The reduced Curie
temperature tc = Tc/(J0m

2
0) was found using the fourth-order cumulant method [21],

and the paramagnetic susceptibility was calculated using the fluctuation-dissipation
theorem.

In the mean-field approximation the magnetization is found from the self-consistency
condition 〈xz〉 = ∂ ln Z1/∂(βHW ), where

Z1 =

∫ ∞

0

g(x)x
2 sinh(βHW x)

βHW

e−βE(x)dx (4.3)

is the single-site partition sum, HW = 〈xz〉 the reduced Weiss field, and g(x) is the
weighting factor, which is either 1 or x−2 for the two chosen phase space measures.
E(x) is defined after Equation (4.2), and β = 1/t is the inverse reduced temperature.

Figure 4.1 shows the temperature dependence of magnetization, the average square
of the local moment and the paramagnetic susceptibility using the reduced variables
according to Equation (4.2). Results are shown for two values of α: 0.48π and 0.69π.
In both cases, the agreement between Monte Carlo and mean-field approximation
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results is very good for all properties (mean-field approximation overestimates Tc by
20% or less which is typical for the Heisenberg model). The results strongly depend on
phase space measure, especially in the more itinerant case α = 0.48π. In particular,
for the uniform phase space measure a second-order phase transition occurs for both
values of α, but for the phase space measure with g(x) = x−2 the phase transition is
of first order for α = 0.48π, and Tc is nearly 2.8 times smaller compared to that for
g(x) = 1.
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Figure 4.1: (a-b) Reduced magnetization 〈xz〉, (c-d) mean squared local moment
〈x2〉, and (e-f) inverse paramagnetic susceptibility χ−1 as a function of the reduced
temperature t = T/(J0m

2
0). Mean-field approximation with g(x) = 1 (solid blue

(grey) lines) or with g(x) = x−2 (dashed black lines), Monte Carlo with g(x) = 1
(black circles, filled for fcc and empty for bcc lattice), Monte Carlo with g(x) = x−2

(red (grey) squares, filled for fcc and empty for bcc lattice). The inset in panel (e)
highlights the region close to tc for the bcc lattice with g(x) = 1 and also shows the
results of the generalized Onsager method (black line connecting the Monte Carlo
points).

As seen in Figure 4.1, below Tc the average 〈x2〉 declines with temperature due to
the decrease of the Weiss field, which in turn causes the maximum of the distribution
function to shift to smaller moments. This is in agreement with earlier results [1,
5, 6, 14, 15, 17]. The width of the distribution function increases with temperature,
which counteracts the decrease of the local moment. The phase space measure with
g(x) = x−2 puts less weight on the states with large moments, and hence 〈x2〉 drops
much faster compared to the uniform phase space measure. If the Anderson criterion
is not satisfied (α < π/2) then the most probable moment in the paramagnetic state
is zero. In this case, 〈x2〉 increases with temperature above Tc as seen in Figure
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4.1c. On the other hand, if the Anderson criterion is satisfied, the local moment may
slightly decrease in a range of temperatures above Tc, as seen for g(x) = x−2 in Figure
4.1d.

The inverse paramagnetic susceptibility, χ−1 is shown in Figures 4.1e,f. In Monte
Carlo simulations it is calculated using fluctuation-dissipation theorem, while in
mean-field approximation we directly consider the response of the system to the ex-
ternal magnetic field. Excellent agreement between mean-field approximation and
Monte Carlo is observed except for the small error in Tc. In mean-field approxima-
tion, one obtains above Tc

χMFA =
1
3
〈x2〉

t− 1
3
〈x2〉 (4.4)

This formula looks similar to the Curie-Weiss expression in the Heisenberg model,
but here 〈x2〉 depends on temperature, which leads to a renormalization of the Curie-
Weiss constant and deviations from the Curie-Weiss law. The Curie-Weiss constant
C = dχ−1/dt (for a second-order phase transition) is now given by

C =
3

〈x2(tc)〉
[
1− d log〈x2〉

d log t

∣∣∣∣
tc

]
(4.5)

Thus, in addition to the usual Heisenberg term, the Curie constant has a contribution
due to the temperature dependence of 〈x2〉 (the second term in square brackets in
(4.5)). As a result, the effective moment squared x2

eff = 3/C deviates from 〈x2〉. As
discussed above, 〈x2〉 usually increases with temperature above Tc, which, according to
Equation (4.5), reduces C and increases x2

eff . Moreover, for the uniform phase space
measure, 〈x2〉 increases faster with temperature compared to phase space measure
with g(x) = x−2, and hence the Curie-Weiss constant is much smaller (see Figure 4.1f
and also 4.1e, where the transition is however of first order).

In Figure 4.2 some thermodynamic properties of the system are plotted as a
function of the itinerancy parameter α. From Equation (4.4) it follows that the
mean-field approximation value of tc for the second-order phase transision is found
by solving the equation 3tc = 〈x2(tc)〉, where 〈x2(t)〉 is fully determined by E(x) in
Equation (4.2). This is an easy way to estimate Tc for an itinerant system using first-
principles data for E(x), J0m

2
0, and the assumed phase space measure. However, for

phase space measure with g(x) = x−2 the transition is of first order except for a small
region close to the local moment limit (in mean-field approximation the tricritical
point where the order of the phase transition changes is at αtr = 0.632π). Therefore,
in general one must consider the minima of the free energy as a function of the
magnetization, which can also be easily done in mean-field approximation. Note that
the order of the phase transition depends on the details of the model and can change
if, for example, the dependence of the exchange parameter on the magnetization is
taken into account. In particular, the phase transition for the model of Ni is of first
order in Ref. [14] (as seen from the abrupt drop of M(T ) and Ms at Tc in their Fig.
2) and in Ref. [17] (as seen from the abrupt drop of m in their Figure 6), even though
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Figure 4.2: (a) Reduced Curie temperature tc and (b) magnetic short-range order
parameter 〈cos θnn〉 at T = 1.1Tc as a function of the itinerancy parameter α for
the bcc lattice. Solid black line, red (grey) squares, and blue (grey) circles denote
mean-field approximation, Monte Carlo, and the generalized Onsager method for
g(x) = 1, respectively. Dashed black line and empty black squares denote mean-
field approximation and Monte Carlo for g(x) = x−2. Green (grey) triangles show the
results of the incomplete Onsager reaction field correction with the on-site interaction
left unrenormalized. The blue (grey) dash-dotted line in the upper panel: effective
moment x2

eff found from the Curie constant for g(x) = 1 in mean-field approximation.
Very similar results were obtained for the fcc lattice (not shown).

the uniform phase space measure was used in both of these models.
From Figure 4.2 we see that when the transition is of second order, mean-field

approximation overestimates Tc by about 20%, which is typical for the Heisenberg
model. When the transition is of first order, mean-field approximation gives an almost
exact Tc. It is important that even for the second-order transition the overestimation
of Tc in mean-field approximation does not depend on the degree of itinerancy. This
is consistent with the fact that the degree of magnetic short-range order, which is
shown in Figure 4.2b for T = 1.1Tc, is quite small and stays essentially constant in
the whole range of α. Thus, in our model itinerancy does not lead to strong short-
range order. This result agrees with Refs. [15, 17] where weak short-range order was
found for the models of Fe and Ni. Note that if the exchange interaction extends
to more than one shell of neighbors and stays mainly ferromagnetic, the mean-field
approximation validity criterion is satisfied even better, and the magnetic short-range
order parameter should further decrease. Similar to the Heisenberg model, the strong
magnetic short-range order may only be expected in low-coordination lattices or in
the presence of frustration when for some pairs Jij/kTc are not small.

The square of the effective moment x2
eff is also shown in Figure 4.2 for the uniform

phase space measure (dash-dotted line). In the local limit xeff naturally tends to 1.
However, as α decreased towards zero, the ratio x2

eff/〈x2(tc)〉 increased and eventually
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became much larger than 1. Similar behavior was found in functional integral theories
[1].

4.4 Generalized Onsager correction for itinerant

systems

Onsager introduced the concept of a cavity field in the theory of polar liquids,
which was designed to go beyond the molecular field approximation by including
short-range order effects [22]. The cavity field is the effective internal field which ori-
ents polar molecules in the ferroelectric phase. Onsager observed that each molecule
polarizes the surrounding liquid and thereby generates a reaction field acting back on
the molecule. However, this field is always parallel to the molecule’s dipole moment
and hence does not affect orientation. Therefore, for a liquid with permanent dipoles
the reaction field must be subtracted from the mean molecular field, the result be-
ing the cavity field. Onsager also noted that the reaction field enhances the dipole
moments of real molecules due to their polarizability.

The cavity field method was successfully applied to Ising [23] and Heisenberg [24]
magnets which have permanent magnetic moments. Cyrot [25] noted that Moriya-
Kawabata’s self-consistent renormalization theory for the Hubbard model may be
essentially reproduced by using Onsager-like arguments; more recently this method
was implemented numerically [26]. However, the actual physics there is very different;
Cyrot’s approach seeks the correlation correction with respect to the Hartree-Fock
solution, which is unrelated to short-range order. Onsager’s method was also applied
to itinerant nickel [13], but, as we will see below, correct generalization to itinerant
systems with longitudinal spin fluctuations requires an additional ingredient which
was missed in Ref. [13].

We generalized Onsager’s method to magnets with longitudinal spin fluctuations,
described by Hamiltonian (4.1). Consider model (4.1) above Tc in a small external
collinear magnetic field Hext

i ez. We pick site 0 and integrate out the degrees of freedom
from all the other sites in the partition function to obtain the effective Hamiltonian
in the form of a generating functional for the lattice with a cavity [18]. Expanding
this functional around the atomic limit to order 1/z we obtain

H0
eff = E(m0)−m0

(
Hext

0 +
∑

i

J0i〈mc
i〉

)

−m2
0

2

∑
ij

J0iJ0jχ
c
ij (4.6)

where the superscript c refers to the lattice with a cavity, i.e. with site 0 removed, and
we used the fluctuation-dissipation theorem to express the pair correlator through the
susceptibility.
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In order to find the magnetization and susceptibility of the lattice with a cavity, we
need to solve the “impurity problem.” Using the linked-cluster expansion technique
[27], the longitudinal susceptibility of the original lattice may be written as follows:

χ̂ = Π̂ + Π̂Ŵ Π̂ (4.7)

where Ŵ is the effective interaction that satisfies the equation Ŵ = Ĵ + ĴΠ̂Ŵ , and
Π̂ is the 1-bond-irreducible “polarization operator” which may be shown to be local
to first order in 1/z [28] (All quantities in Equation (4.7) are matrices in site indices).
Removal of site 0 may be formally represented by a perturbation ∆Π̂ = −Π00δ0iδ0j to

Π̂. (The renormalization of Πjj for j 6= 0 due to removal of site 0 is at least of order

1/z2.) Thus, denoting the effective interaction matrix for the cavity lattice as Ŵc, we
may write Ŵ−1

c − Ŵ−1 = −∆Π̂. Using (4.7) and the fact that Π̂ is diagonal, we find

χc
ij = χij − χi0χ0j

χ00

. (4.8)

The average local moments Mc
i = 〈mc

i〉 for the lattice with a cavity are:

M c
i =

∑
j

χc
ijH

ext
j = Mi − χi0

χ00

M0, (4.9)

where Mi are the average local moments of the complete lattice without the cavity.
The value of Hext

0 does not affect M c
i (as expected), therefore in the right-hand side

of (4.9) we may take Mi and M0 for the actual field distribution.
From the effective Hamiltonian (4.6) we can find the magnetization at site 0:

M0 = χ̃0H̃W (4.10)

where

H̃W = Hext
0 +

∑
i

J0i

(
Mi − χi0

χ00

M0

)
(4.11)

is the renormalized effective field (cavity field), and χ̃0 is the renormalized bare
(atomic-limit) susceptibility. The latter may be written as χ̃0 = 〈m2〉λ/3T , where
the average paramagnetic squared local moment 〈m2〉λ was calculated using a renor-

malized on-site exchange Ĩ = I + λ with λ =
∑

ij J0iJ0jχ
c
ij. This renormalization of

the bare susceptibility is the essential ingredient needed to extend Onsager’s theory
to itinerant magnets. It has no effect in the localized limit where m2 is constant.

As usual, we now obtain the Fourier transform of the susceptibility:

χq =
χ̃0

1− χ̃0(Jq − λ)
, (4.12)

where λ =
∑

q Jqχq/χ00. We used the same symbol λ as above in the definition
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Table 4.1: Reduced Curie temperature tc for bcc and fcc lattices for phase space
measure with g(x) = 1: Results of the mean-field approximation (MFA), Horwitz-
Callen approximation (HC), generalized Onsager method (GO) and Monte Carlo
(MC).

α/π bcc fcc
MFA HC GO MC MFA HC GO MC

0.032 0.621 0.449 0.451 0.462(1) 0.621 0.465 0.466 0.480(2)
0.148 0.660 0.484 0.486 0.504(2) 0.660 0.501 0.502 0.520(5)
0.250 0.681 0.503 0.504 0.525(2) 0.681 0.519 0.520 0.540(5)
0.352 0.699 0.518 0.520 0.543(2) 0.699 0.535 0.536 0.562(2)
0.422 0.712 0.529 0.530 0.553(1) 0.712 0.546 0.547 0.570(5)
0.483 0.723 0.539 0.541 0.568(1) 0.723 0.557 0.558 0.584(2)
0.553 0.745 0.555 0.557 0.585(2) 0.745 0.572 0.574 0.600(1)
0.602 0.765 0.570 0.573 0.600(2) 0.765 0.589 0.590 0.617(2)
0.687 0.834 0.619 0.622 0.654(3) 0.834 0.640 0.642 0.672(6)
0.735 0.942 0.683 0.688 0.732(2) 0.942 0.708 0.711 0.753(6)
0.750 1 0.713 0.718 0.770[30] 1 0.740 0.743 0.788(3)

of Ĩ, because these expressions are identical, as can now be shown with the help of
Equations (4.12) and (4.8). Equation (4.12) with the definitions of λ, χ̃0 and Ĩ form
a closed set of equations for the paramagnetic susceptibility. Note that (4.12) auto-
matically leads to a sum rule χ00 = χ̃0, which agrees with the fluctuation-dissipation
theorem.

At the Curie temperature, χq diverges at q = 0. Therefore, from (4.12) we obtain
Tc = 1

3
J0〈m2(Tc)〉λ/G where G =

∑
q(1 − Jq/J0)

−1 is the diagonal element of the

lattice Green’s function [24]. Note that the value of λ at Tc is equal to J0(1 − G−1)
and independent of the degree of itinerancy α.

The reduced Curie temperature tc and the magnetic short-range order parameter
〈cos θnn〉 at T = 1.1Tc calculated in this way are shown in Figure 4.2 for the bcc lattice
and the phase space measure with g(x) = 1. The agreement with the Monte Carlo
results is excellent in the whole range of α. We repeated these calculations for the
fcc lattice and found excellent agreement with the Monte Carlo simulations as well.
The accuracy of the predicted tc may be seen from Table 4.1. Similar performance
for bcc and fcc lattices suggests that this approximation is not very sensitive to the
connectivity of the lattice. The paramagnetic susceptibility is also shown in Figure
4.1e for α = 0.48π, bcc lattice, and uniform phase space measure. The agreement
with Monte Carlo results is essentially perfect outside of the narrow critical region.

The first-order terms in the 1/z expansion derived above introduce two corrections
to mean-field approximation. The first one is the subtracted mean reaction field;
this correction reduces the magnetization. This is the only correction in Onsager’s
method for systems with permanent moments. The second correction described by
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the last term in Equation (4.6) adds back the fluctuating reaction field which is always
parallel to the moment on the central site. For the Heisenberg (or Ising) model this
second correction has no effect, but in itinerant systems it always increases the local
moments and hence the Curie temperature. There is a strong cancelation between
these two corrections in itinerant systems, and improvement compared to mean-field
approximation may be achieved only if both of them are included. Indeed, if the
renormalization of the Stoner parameter is not taken into account (i.e. if the last
term in Equation (4.6) is dropped), we find a spurious strong suppression of Tc for
itinerant systems, as shown in Figure 4.2a.

It is interesting to compare the generalized Onsager method with the Horwitz-
Callen (HC) approximation which is based on the “ring subset” of diagrams for the
generating functional Φ in the linked-cluster technique [29, 27]. In this method, the
second-order self-field G2 is found by differentiating Φ with respect to the renormal-
ized second cumulant M2, while M2 is represented by an integral containing G2 as a
parameter. This technique does not assume any particular form for the atomic limit,
and therefore it can be used in our case including longitudinal spin fluctuations as
well. In the HC method, the on-site correlator may be found as K00 = M2 + 2M2

2 G2,
and the sum rule K00 = 1 is not satisfied in the paramagnetic Heisenberg magnet.
However, it is easy to check that the value of K00 at Tc is smaller than 1 by less than
a percent in bcc and fcc lattices. In Onsager’s method for the Heisenberg model, the
sum rule K00 = 1 is used to fix M2 instead of the integral representation as in the
HC method. The results for Tc are therefore very close. We found that this close
similarity remains in the entire range of α, as seen from Table 4.1. The generalized
Onsager’s method is, however, technically much simpler.

4.5 Conclusions

We have studied the thermodynamics of a simple classical spin fluctuation model
allowing for a variable degree of itinerancy. This model was qualitatively similar to
those used before to study the thermodynamics of Fe and Ni using first-principles
data [14, 15, 17]. It is worth emphasizing that the main drawback of using classical
spin models of this type is the ambiguity of the phase space measure. As we showed
above, the thermodynamics is very sensitive to this measure for systems with even
intermediate degree of itinerancy. While the energetics of constrained spin configu-
rations may, at least in principle, be accurately mapped using DFT calculations, it
is not known (to our knowledge) how and whether the phase space measure can be
supplied in a realistic way.

In the present work, we focused on the general features of the model rather than
on the determination of its parameters from principles. We found that the ther-
modynamic properties are similar to the results of the functional integral approach
[1, 4, 5, 6]. Further, we found that the mean-field approximation is qualitatively valid,
and short-range order is weak and almost independent on the degree of itinerancy up
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to the strongly itinerant limit where the paramagnetic susceptibility is dominated by
longitudinal fluctuations. This is in agreement with earlier results for the models of
Fe and Ni [15, 17]; it is clear that this is a general feature of the classical model with
no frustration.

Further, we generalized the Onsager cavity field method to itinerant systems us-
ing an expansion around the atomic limit to first order in 1/z. Both the interatomic
exchange constant and the Stoner parameter are renormalized by short-range order.
When both these corrections are included, the Curie temperature is in excellent agree-
ment with Monte Carlo results. However, simple subtraction of the Onsager reaction
field is a very poor approximation.
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Chapter 5

First principles analysis of
spin-disorder resistivity

In this chapter spin-disorder resistivity of Fe and Ni and its temperature depen-
dence are analyzed using noncollinear density functional calculations within the super-
cell method. Different models of thermal spin disorder are considered, including the
mean-field approximation and the nearest-neighbor Heisenberg model. Spin-disorder
resistivity is found to depend weakly on magnetic short-range order. If the local
moments are kept frozen at their zero-temperature values, very good agreement with
experiment is obtained for Fe, but for Ni the resistivity at elevated temperatures is
significantly overestimated. Agreement with experiment for Fe is improved if the lo-
cal moments are iterated to self-consistency. The overestimation of the resistivity for
paramagnetic Ni is attributed to the reduction of the local moments down to 0.35µB.
Overall, the results suggest that low-energy spin fluctuations in Fe and Ni are better
viewed as classical rotations of local moments rather than quantized spin fluctuations
that would require an (S + 1)/S correction.

5.1 Introduction

Electron scattering off of spin fluctuations in magnetic metals results in an “anoma-
lous” contribution to electric resistivity [1, 2, 3]. The analysis of this spin-disorder
resistivity is of interest because it can provide material-specific information on the
character of spin fluctuations which is not easily accessible by other means. Scat-
tering on spin disorder is also an important factor degrading the performance of
magnetoresistive nanostructures in spintronic devices.

The magnitude of the spin-disorder contribution to resistivity is comparable to the
phonon contribution near and above the Curie temperature Tc [1]. (The magnetic
scattering amplitudes have no small parameter unless the local moments are small.)
It is usually assumed that the spin-disorder resistivity is constant well above Tc. In
this region, Matthiessen’s rule is valid, and the phonon contribution can be fitted



to the Bloch-Grüneisen formula. The excess resistivity in the whole temperature
range may be attributed to spin disorder [4], although one may expect deviations
from Matthiessen’s rule at low temperatures where transport is carried by weakly
interacting spin channels [5]. In addition, it was argued that in some cases (such as
Ni) spin disorder may change the character of states on the Fermi level and thereby
appreciably change the phonon contribution itself [1, 2].

Many authors have studied spin-disorder resistivity theoretically using the s-d
model Hamiltonian [6, 7, 8, 9]. In this approach the 3d shells in transition metals (or
f shells in rare earth metallic magnets) are assumed to be localized at atomic sites
and partially filled, forming magnetic moments Ŝi that are coupled to the current-
carrying conduction electrons by exchange interaction Hsd = −Jsd

∑
i Ŝiŝi, where Jsd

is the local s-d exchange coupling constant and ŝi the spin-density operator of the
conduction electrons at site i. Thermal fluctuations of the d-electron spins generate
an inhomogeneous exchange potential; in the Born approximation the spin-disorder
resistivity is then determined by the conduction electron band structure and the spin-
spin correlation functions of d-electron spins [9]. If the scattering is approximated as
being elastic, only equal-time spin correlators have to be considered. Further, if the
mean-field approximation is used for 3d spin statistics, the spin-disorder resistivity
behaves as ρmag(T ) = ρ0[1−M2(T )/S(S + 1)], where M(T ) = 〈S(T )〉 is the magne-
tization at temperature T and ρ0 ∝ J2

sdS(S +1) [6]. Note that above Tc spin-disorder
resistivity is constant and equal to ρ0. The shape of the Fermi surface of conduction
electrons is immaterial to this prediction as long as the scattering is elastic [9].

The effects of magnetic short-range order on the spin-disorder resistivity have
also been investigated within the s-d model [7,8,10-15]. This problem has attracted
considerable attention in connection with a “bump” in the resistivity that is observed
near Tc in some magnetic metals (although it is usually quite small) [1]. The analysis
of critical magnetic short-range order effects showed that a cusp may appear near
Tc due to long-wave critical fluctuations [7], although it should usually be strongly
suppressed by finite mean-free path and cancelations due to Fermi surface integration
[10]. It was also found that the effect of magnetic short-range order and even its sign
are sensitive to such details of the model as the conduction band occupation and the
form of the scattering (pseudo)potential [12, 13, 14].

Although the s-d model provided physical insight into the mechanism of spin-
disorder resistivity, it suffers from serious limitations. First, the distinction between
localized and conduction electrons is not justified in transition metals where 3d elec-
trons are itinerant and form the Fermi surface. Even if the current is dominated by
light s-like bands that can be distinguished from heavy d-like bands, the relaxation
rate is dominated by interband (s-d) scattering [16]. Second, at elevated tempera-
tures the scattering potential generated by spin disorder is of the order of the exchange
splitting, which is not small compared to the bandwidth. This invalidates the Born
approximation which is usually made in model calculations. Third, the s-d model does
not properly take into account the change of electronic structure due to disorder.

The first-principles approach to the spin-disorder resistivity is free from all these
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limitations and can be used for quantitative calculations of spin-disorder resistivity.
This is of particular interest for the theory of itinerant magnets, because, as mentioned
above, spin-disorder resistivity depends on spin-spin correlation functions. Different
theories of itinerant magnetism make conflicting predictions for such properties as the
degree of magnetic short-range order, the mean-squared magnetic moment, and their
temperature dependence [17-21]; these quantities are quite hard to measure directly.
By calculating spin-disorder resistivity for a particular model of spin fluctuations
and comparing the results with experiment, one can attempt to validate or rule out
different spin-fluctuation models.

5.2 General approach and methods

Our approach is based on noncollinear density functional theory (DFT). All the
valence electrons are treated on the same footing, while the scattering potentials are
determined by the self-consistent electron charge and spin densities. We used the
TB-LMTO method [23], which represents the electronic density of the crystal as a
superposition of overlapping atomic spheres; the electronic density inside each sphere
is spherically symmetric. This method is known to work very well in close-packed
materials, and it allows us to introduce spin disorder in various ways. In this work
we used the rigid spin approximation which assumes that the spin density in each
atomic sphere remains collinear, while the spin densities of different atomic spheres
become noncollinear at finite temperatures. In the simplest model the electron charge
and spin densities in all atomic spheres were taken from the ground state and frozen,
while the directions of the spin moments in different spheres are randomized with
the angular distribution function taken from mean-field approximation at the given
temperature. This model is expected to work reasonably well for Fe which has a fairly
stable local moment [24]. In Section 5.3 we show that this is indeed the case; however,
for Ni the paramagnetic spin-disorder resistivity calculated in this way is about twice
too large. In order to explain this discrepancy, the dependence of the spin-disorder
resistivity on the degree of magnetic short-range order and on the magnitude of the
local moment is studied in Sections 5.4 and 5.5.

We use the supercell approach and calculate the areal conductance of a layer of
spin-disordered metal FM(D) sandwiched between fully ordered semi-infinite leads
FM(O) made of the same metal (see Figure 5.1). The resistivity is then propor-
tional to the slope of the inverse conductance as a function of the disordered layer
thickness, once the Ohmic limit is reached. For the given thickness of the FM(D)
layer, the conductance of the system was averaged over several disorder configura-
tions (typically 15). The planar system is represented by a laterally periodic prism
with an axis along the [001] crystallographic direction, and care is taken to make
sure that the conductance scales as the cross-section of the prism. To calculate the
conductance, we used the principal-layer Green’s function technique [25, 26] and the
Landauer-Büttiker formalism [27] in the implementation allowing for noncollinearity
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in the active region [28]. This technique was employed before to study the effects of
substitutional disorder on transport in magnetic multilayers [29]; it is similar to the
supercell Kubo-Greenwood method used to calculate the residual resistivity of binary
alloys [30]. We used experimental lattice constant both for Fe (a = 2.8665Å) and Ni
(a = 3.524Å). For N × N lateral supercell we used 60/N × 60/N uniform k-point
mesh for conductance calculations both for Fe and Ni.

Figure 5.1: The schematic picture of the system used in the calculations. Vertical
lines indicate the embedding planes.

If the atomic potentials in the supercell are not converged to self-consistency with
the given spin disorder configuration, care needs to be taken to ensure local charge
neutrality. Indeed, FM(D) and FM(O) materials have different Fermi levels that must
normally be matched by the contact voltage. In order to enforce charge neutrality
in the FM(D) region, a constant potential shift was introduced in this region so that
the charge in the central part of FM(D) averaged over disorder realizations was zero.
This potential shift plays the role of the contact voltage. Note that no matter how
the FM(O)/FM(D) interfaces are treated (self-consistently or not), they add contact
resistances to the circuit. However, since the resistivity of the FM(D) material is
extracted from the thickness dependence of the resistance in the Ohmic limit, the
simplified treatment of interfaces has no effect on the results.

5.3 The spin-disorder resistivity in the mean-field

approximation

5.3.1 The paramagnetic state

In this section we analyze the temperature dependence of spin-disorder resistiv-
ity for iron and nickel using mean-field approximation for thermal spin disorder; the
spin-spin correlator is purely local in this approximation. First we consider the para-
magnetic state where the angular distribution function is isotropic, and the resulting
spin-disorder resistivity is temperature-independent.

We needed to make a physically reasonable choice of atomic potentials for the
conductance calculations. It is known that the local moments in Fe are quite stable
[17]; in particular, the disordered local moment method, which employs the coherent
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potential approximation for spin-disordered states, shows only a small reduction of the
local moment in paramagnetic Fe compared to its ground-state value [24]. As shown
below, the direct averaging of self-consistent local moments in the paramagnetic states
gives a similar result. Therefore, for Fe it is reasonable to use frozen atomic potentials
taken from the zero-temperature ground state in all calculations. We also checked the
effect of self-consistency on spin-disorder resistivity in Fe and found it to be small (see
below). The situation is entirely different for Ni, where the local moment depends on
the magnetic state; in particular, it vanishes altogether in the paramagnetic disordered
local moment approximation [34]. Since longitudinal spin fluctuations (that are absent
in our approach) can at least partially restore the local moments [17], a priori it is
not clear how the atomic potentials should be modified for Ni. In this section we use
frozen atomic potentials; the necessary corrections are discussed later.

Figure 5.2 shows the inverse areal conductance for paramagnetic Fe and Ni as a
function of the disordered FM(D) region thickness. Here, we used the frozen ground-
state atomic potentials and the LMTO basis including s, p, and d orbitals (lmax = 2).
The supercell cross-sections contained 4 × 4 (for Fe) and 3 × 3 (for Ni) cubic unit
cells with edges oriented along the [100] directions. Almost perfect Ohmic behavior
is apparent for both Fe and Ni, which establishes the validity of our approach.
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Figure 5.2: The area-resistance product AR of the FM(O)/FM(D)/FM(O) systems
as a function of the FM(D) layer thickness for bcc Fe (black filled symbols) and fcc
Ni (red empty symbols) obtained with lmax = 2. Circles and squares correspond,
respectively, to the paramagnetic state and to the lowest temperature for which the
calculations were made (T = 0.27Tc for Fe and T = 0.58Tc for Ni). 4 × 4 and
3 × 3 supercells were used for Fe and Ni, respectively, with edges along the [100]
directions. Straight lines show the linear fitting; error bars are smaller than the size
of the symbols.

Table 5.1 lists the values of spin-disorder resistivity found for paramagnetic Fe
and Ni using different supercell cross-sections, LMTO bases truncated at lmax = 2
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Table 5.1: Spin-disorder resistivity in µΩ·cm for paramagnetic bcc Fe and fcc Ni.
The calculated values are given for basis sets with lmax = 2 and 3, as well as for
different lateral cell sizes with edges along the [100] directions. SC denotes calculations
with self-consistent potentials. Standard deviations of spin-disorder resistivity due to
limited disorder sampling are included.
Metal and basis M , µB 2× 2 3× 3 4× 4 Exp.[4]
Fe: lmax = 2 2.29 106± 1.8 101± 1.3 102± 1.0 80
Fe: lmax = 3 2.22 86± 1.6 87± 7.1 85± 7.4 80
Fe: lmax = 2, SC 2.21 88± 3.7 80
Ni: lmax = 2 0.66 34± 0.6 35± 0.4 15
Ni: lmax = 3 0.63 29± 0.6 15

and lmax = 3 (the latter includes f orbitals), as well as the value found using self-
consistent (rather than frozen) atomic potentials for Fe. It is seen that the results are
well converged with respect to the supercell cross-section, and even 2 × 2 supercells
provide sufficient accuracy. This is reasonable because the mean-free path in the
paramagnetic state is small.

The calculations with self-consistent atomic potentials were performed as follows.
In order to reduce the statistical error, the averaging of the conductance was per-
formed using the same sets of random spin disorder configurations as in the calculation
with frozen potentials. For each individual spin configuration the atomic potentials
were iterated to self-consistency using the Fermi distribution function corresponding
to the experimental Tc of Fe. For a 2 × 2 lateral cell for Fe, we used a 6 × 6 × 1
k-point grid. The resulting distribution of the sites over the magnitude of the local
magnetic moment is shown in Figure 5.3; the distribution is Gaussian with a rather
small width. The average local moment is only reduced by 3 − 4% from its ground
state value. This small reduction appears to be similar to the disordered local mo-
ment calculations of Ref. [20], while Ref. [24] obtained a somewhat larger reduction.
The self-consistent density of states (not shown) is very similar to the one generated
by the frozen ground-state atomic potentials (see Figure 5.4e below).

The addition of f orbitals to the LMTO basis reduces the calculated spin-disorder
resistivity by approximately 15% for both Fe and Ni. Self-consistency in the para-
magnetic state of Fe results in a similar reduction. This similarity suggests that the
main reason for this spin-disorder resistivity decrease is the reduction of the local
moment, which is, incidentally, very similar in both cases. In order to check this,
we performed additional calculations for Fe in which the f channel was added to
the basis while the charge density was kept unchanged from the self-consistent one
with lmax = 2. For the frozen potential case, spin-disorder resistivity reduced slightly
from 106 to 100 µΩ·cm; for the self-consistent paramagnetic case, it only reduced
from 88 to 86 µΩ·cm, which is within the error bar. Thus, the effect of lmax per se
on spin-disorder resistivity is very small for Fe. This is somewhat different from the
binary alloy systems considered by other authors using both TB-LMTO and KKR
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Figure 5.3: Distribution of the local magnetic moment in self-consistent fully spin-
disordered bcc Fe. The Fermi temperature is equal to the experimental Tc. The
vertical line shows the local moment at T = 0. The red (solid) curve shows the
Gaussian fit to the data.

(Korringa-Kohn-Rostocker) methods, where a larger effect of adding f states was
found [31, 32]. In view of the weak dependence of spin-disorder resistivity on lmax,
below we use lmax = 2 in all calculations for T < Tc.

The experimental estimates of the spin-disorder resistivity in the paramagnetic
state [4] are listed in the last column of Table 5.1. The agreement with experiment for
Fe is quite satisfactory, and it is in fact improved if the reduction of the local moment
is included. In Ni the spin-disorder resistivity calculated with frozen atomic potentials
is overestimated by a factor of 2. This is not surprising, because, as mentioned above,
the use of frozen atomic potentials is not justified for Ni. In order to understand the
origins of the disagreement with experiment for Ni, possible modifications of the
statistical model for the paramagnetic state must be considered; this is done below
in Sections 5.4 and 5.5.

Recently, Buruzs et al. [33] calculated the spin-disorder resistivity for Fe and
Co using the disordered local moment approach within the Korringa-Kohn-Rostocker
method and found that their method significantly overestimates the paramagnetic
spin-disorder resistivity in these metals. The source of disagreement with our supercell
method for Fe is unknown to us.

5.3.2 The temperature dependence in the ferromagnetic state

In this section we consider ferromagnetic state of Fe and Ni. We use frozen ground-
state potentials and the basis with lmax = 2. As mentioned above, this approximation
is reasonable for Fe, while for Ni it is not applicable at high temperatures; nevertheless,
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comparison of these two systems will allow us to draw important conclusions. For
the ferromagnetic state the spin configurations were generated using the mean-field
distribution function

p(θ) ∝ e−Heff ·µ/T , Heff(T ) =
3M(T )Tc

µM(0)
(5.1)

where θ is the angle between the local moment µ and the magnetization axis, M(T )
is the magnetization at temperature T in mean-field approximation, and Heff is the
Weiss field. This distribution function depends only on T/Tc.
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Figure 5.4: Spin-resolved density of states (solid lines) for bcc Fe averaged over ran-
dom spin configurations with the mean-field distribution function (5.1); (a) T = 0,
(b) T = 0.25Tc, (c) T = 0.5Tc, (d) T = 0.75Tc, and (e) T = Tc. Dashed lines show
the mean-square deviation of the DOS on a given site from its ensemble average.

Before we turn to the temperature dependence of spin-disorder resistivity, let us
look at the electronic structure of Fe and Ni with spin disorder. The spin-resolved
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Figure 5.5: Same as in Fig. 5.4 but for fcc Ni.

DOS of Fe and Ni is shown in Figures 5.4 and 5.5 for several temperatures. These data
were obtained by projecting the site-resolved DOS onto local spin-up and spin-down
states (in the local reference frame where the z axis is parallel to the local moment)
and subsequent averaging over bulk-like sites and spin disorder configurations gen-
erated according to Equation (5.1). The paramagnetic DOS of Fe is very similar to
the KKR disordered local moment results [24]. As the temperature is increased from
0 to Tc, the spin-up and spin-down states randomly hybridize with each other, the
peaks broaden, and the van Hove singularities are washed out. The mean-squared
deviation of the DOS from its average (shown by dashed lines) is quite small, which
is a direct consequence of the large coordination number. In Fe the spin splitting is
almost independent on temperature, while in Ni it is much reduced as T gets close
to Tc. Note that the frozen atomic potentials in Ni are very far from self-consistency
at elevated temperatures, but a self-consistent treatment neglecting longitudinal spin
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fluctuations would be meaningless. We will return to this issue in Section 5.5.
Let us now discuss the temperature dependence of the spin-disorder resistivity.

While we found above that 2 × 2 supercells were sufficiently large for the param-
agnetic state, additional care needs to be taken at lower temperatures where the
mean-free path becomes longer. We found that 4 × 4 supercells for Fe and 3 × 3
for Ni demonstrate linear dependence of the conductance on the length of the super-
cell for all temperatures down to about Tc/3 (see Figure 5.2). This behavior agreed
with a simple mean-free path estimate using the free-electron formula l = 3

4
ARbal/ρ,

where ARbal is the ballistic area-resistance product; l does not exceed the lateral
cell size in this temperature range. Another indication of the Ohmic behavior comes
from the distribution of the current over the spin channels. The conductance of the
FM(O)/FM(D)/FM(O) system is a sum of four partial conductances, G↑↑, G↓↓, G↑↓,
G↓↑ (the latter two are equal). Spin-conserving and spin-flip scattering have similar
rates in our spin-disorder problem (as long as the temperature is not too low), and
therefore the electrons “forget” their spin over their mean-free path. Therefore, in the
Ohmic limit the partial conductances must be proportional to the number of channels
in the left and right leads for the corresponding spin channels: Gσσ′ ∝ ML

σ MR
σ′ . This

implies that in this regime we should have G↑↑G↓↓ = G↑↓G↓↑. This relation does
indeed hold down to T ∼ Tc/3 unless the thicknesses of the FM(D) region is very
small.
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Figure 5.6: Dependence of spin-disorder resistivity on the magnetization for (a) Fe,
and (b) Ni. Black circles denote experimental data combining Ref. [4] for ρmag(T )
and Ref. [40] for M(T ). Blue squares show mean-field calculations, filled red triangles
denote Monte Carlo results, and green diamonds show reverse Monte Carlo calcula-
tions. The empty red triangles show Monte Carlo results with larger cells: 6 × 6
for Fe and 4 × 4 for Ni. The upper axis shows temperatures corresponding to the
given magnetization in mean-field approximation. The error bars a show statistical
uncertainties where they exceed the size of the symbols. All results are for lmax = 2.
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The dependence of the calculated spin-disorder resistivity for Fe and Ni on the
magnetization is plotted in Figure 5.6 along with the experimental data [4] (those
plots for M(T ) were taken from Ref. [40]). The results for Fe agree rather well with
experiment (see also Table 5.1, especially at lower temperatures where the magnetic
excitations are dominated by spin waves and our classical approach is, strictly speak-
ing, invalid. This surprising finding is due to the fact that spin-disorder resistivity in
Figure 5.6 is plotted as a function of the long-range order parameter and that, as we
show below in Section 5.4, the spin-disorder resistivity in Fe is insensitive to magnetic
short-range order. The calculated spin-disorder resistivity exhibits linear dependence
on M2(T ) up to Tc, while the experimental data deviate downward from the straight
line. This deviation may be attributed to a small reduction of the local moment at
elevated temperatures, as discussed in the previous section.

For Ni the low-temperature region could not be accessed due to the increased
mean-free path. Still, the agreement with experiment at lower temperatures is good,
while at higher temperatures the calculated spin-disorder resistivity strongly deviates
upwards from experimental data. This deviation indicates the inadequacy of our spin
fluctuation model; its possible modifications are studied in the following sections.

The qualitative features of the calculated temperature dependence of spin-disorder
resistivity (with frozen atomic potentials) are different for Fe and Ni. It is seen in
Figure 5.6 that for Fe the spin-disorder resistivity is proportional to 1−M2(T )/M2(0)
in agreement with the predictions of the s-d model if spin fluctuations are treated
classically. On the other hand, for Ni this relation does not hold. As mentioned in
the Introduction, the change of electronic structure due to spin disorder may lead to
deviations from s-d model predictions.

As seen in Figures 5.4 and 5.5, the densities of states change quite appreciably
with temperature for both Fe and Ni. Therefore, it may seem surprising that for Fe
the temperature dependence of spin-disorder resistivity agrees with the s-d model.
Still, one can understand the difference between Fe and Ni using the following consid-
erations. First, as seen in Figure 5.5, the exchange splitting in Ni is strongly reduced
at elevated temperatures, which results in the lifting of the heavy majority-spin 3d
bands up to the Fermi level. Scattering into these final states from the light bands
becomes possible, which decreases the lifetime of the latter. This mechanism was
invoked by Mott [2] to argue that the reduction of the spin splitting in Ni can result
in an anomalous temperature dependence of the phonon resistivity. The same ar-
gument applies to spin-disorder resistivity considered here. According to Figure 5.5,
this happens approximately at T = 0.75Tc, which roughly corresponds to the upturn
of spin-disorder resistivity seen in Figure 5.6b. On the other hand, for Fe, as seen
in Figure 5.4, the exchange splitting is constant and no new bands appear at the
Fermi level. Consequently, no additional temperature dependence is introduced and
spin-disorder resistivity scales as 1−M2(T )/M2(0).

While plausible, the above arguments are not conclusive, because they assume
without proof that the scattering matrix elements between the light and heavy bands
are large. On a more subtle level, one may speculate that the difference between
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Fe and Ni can be understood based on the relation between disorder broadening
and spin splitting. At the given wavevector, the spectral function consists of delta-
function peaks corresponding to majority and minority-spin states. In the presence of
spin disorder, the spin states on neighboring sites are allowed to hybridize with ran-
dom matrix elements, and the delta-function peaks broaden. At low temperature the
broadening is small, and the peaks corresponding to different spins are well separated
in energy from each other. However, at higher temperatures some of these peaks can
merge and form common, “virtual-crystal-like” bands. Calculations of the paramag-
netic spectral functions using the disordered local moment method indicate that in
Fe the majority and minority-spin states remain separated through large portions of
the Fermi surface even above Tc [35]. On the other hand, in Ni the majority and
minority-spin states are mixed in the paramagnetic state [35]. Therefore, at certain
temperature below Tc there is a crossover from separated to mixed-spin bands. The
lifetime is expected to decrease as the bands merge, which again explains the upturn
of spin-disorder resistivity from the straight line in Figure 5.6b.

5.4 Effect of magnetic short-range order

As mentioned above, short-range order can sometimes have a significant effect on
resistivity. In this section we analyze the effect of the magnetic short-range order
on the spin-disorder resistivity in Fe and Ni. In particular, it is important to check
whether the large disagreement with experiment for Ni found in Section 5.3 can be due
to the use of the mean-field approximation which neglects the magnetic short-range
order. This is especially interesting because a strong magnetic short-range order in
Ni has been suggested by some experiments [36, 17] and theories [18, 19].

We studied the effect of the magnetic short-range order on the spin-disorder resis-
tivity using the Monte Carlo method for the classical Heisenberg model with nearest-
neighbor exchange interaction on bcc and fcc lattices (for Fe and Ni, respectively).
For a given temperature we built a Monte Carlo supercell of the size of the disordered
region (FM(D)) . For Fe the lateral size of the FM(D) was mainly 4 × 4 while for
Ni we used both 4 × 4 and 3 × 3 lateral sizes. On the other hand, the thickness of
FM(D) was varied in order to determine the resistivity as described above. Monte
Carlo simulations were performed on such created supercells using periodic boundary
conditions and standard Metropolis algorithm [37, 38]. Care was taken to equilibrate
the system (usually 20000 Monte Carlo steps per site was discarded for equilibration)
and subsequently several independent spin configurations (the spin configurations
were usually 10000 Monte Carlo steps per site apart) were produced. These spin con-
figurations, which contain magnetic short-range order, were then used to calculate
the spin-disorder resistivity as described above. In order to reduce FM(O)/FM(D)
interface resistance (and thus the variance of the resistance) we rotated the magneti-
zation of the disordered spin structures to have the same direction as in the ordered
region (FM(O)). Similarly as in the case of the mean-field approximation the linear
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Table 5.2: Spin-spin correlators C0i for the first three shells of nearest neighbors
(i = 1, 2, 3), the local correlator (i = 0), and the effective temperature are shown
for Fe and Ni for each considered temperature in Monte Carlo (MC) simulations and
for reverse Monte Carlo (RMC) method. The values of spin-disorder resistivity are
compared with mean-field approximation (MFA) results corresponding to the same
M2. The listed uncertainties are due to the limited disorder sampling.

Metal, T/Tc Teff/Tc C0i = 〈e0ei〉 − 〈e0〉〈ei〉 ρmag, µΩ·cm
cross-section i = 0 i = 1 i = 2 i = 3 MC or RMC MFA

Fe, 4× 4 ∞ ∞ 1 0 0 0 101.9± 1.0 101.9± 1.0
Fe, 4× 4 1.217 1.177 1.000 0.184 0.110 0.073 96.6± 1.9 101.9± 1.0
Fe, 4× 4 0.974 0.958 0.871 0.206 0.144 0.111 81.6± 2.1 88.1± 0.5
Fe, 6× 6 0.974 0.965 0.882 0.209 0.144 0.112 81.4± 2.3 88.9± 0.5
Fe, 4× 4 0.852 0.848 0.703 0.156 0.107 0.079 69.6± 1.8 71.3± 0.4
Fe, 4× 4 0.730 0.724 0.564 0.126 0.087 0.066 54.6± 1.8 57.5± 0.3
Fe, 4× 4 0.487 0.482 0.352 0.083 0.059 0.045 33.8± 0.7 35.8± 0.2
Fe, 4× 4 RMC RMC 1.000 0.309 0.167 0.060 88.2± 1.3 101.9± 1.0

Ni, 3× 3 ∞ ∞ 1 0 0 0 34.9± 0.4 34.9± 0.4
Ni, 3× 3 1.269 1.234 1.000 0.146 0.071 0.052 33.1± 0.8 34.9± 0.4
Ni, 4× 4 1.269 1.262 1.000 0.140 0.064 0.045 33.6± 0.7 34.9± 0.4
Ni, 3× 3 1.110 1.063 1.000 0.205 0.129 0.104 29.5± 1.3 34.9± 0.4
Ni, 4× 4 1.110 1.089 1.000 0.190 0.110 0.087 30.8± 1.2 34.9± 0.4
Ni, 3× 3 0.952 0.943 0.833 0.172 0.104 0.086 22.9± 0.9 22.4± 0.6
Ni, 4× 4 0.952 0.947 0.841 0.175 0.106 0.085 19.9± 1.3 22.7± 0.6
Ni, 4× 4 RMC RMC 1.000 0.335 0.140 0.114 25.8± 0.8 34.9± 0.4

dependence of resistance as a function of thickness of FM(D) was observed.
In order to study the effect of the magnetic short-range order on the spin-disorder

resistivity we needed to compare the results obtained in mean-field approximation
with those found from Monte Carlo, for the same values of the long-range order pa-
rameter (M2(T )/M(0)). However, since relatively small supercells were used in the
Monte Carlo simulations, the corresponding magnetization is not well defined. In par-
ticular, it changes quite appreciably as we increase the thickness of FM(D) keeping
the same temperature. There are two reasons for this behavior. First, by varying the
length of the supercell we essentially change the cut-off for correlations which change
the behavior of the system. Second, in the case of Heisenberg model in zero magnetic
field the average magnetization is actually zero and instead we calculate square root
of average magnetization square [37]. It can be shown that this root mean square
magnetization differs from the actual magnetization by the term of the order of 1/N
where N is the number of atoms in the supercell. Consequently, M2(T )/M(0) deter-
mined from Monte Carlo simulations changes with length of the supercell. Due to
above ambiguities we follow a different route to determine a long-range order param-
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eter from Monte Carlo simulations. We made an ansatz that for any temperature,
the spin-disorder resistivity is entirely determined by the first few disconnected corre-
lators 〈e0 · ei〉. This is a very plausible assumption because long-distance correlation
between spins are suppressed due to finite mean-free path and cancelations in Fermi
surface integration [10]. Since disconnected correlators are local quantities, as far as
we are away from the critical region, they don’t change significantly as we increase
the length of the supercell which makes them well defined quantities. The long-range
order parameter can be then found from value obtained from the infinite lattice limit
corresponding to the same disconnected correlators. More specifically, for a L × L
lateral size of the supercell and for a given temperature we found first three discon-
nected correlators from the Monte Carlo simulations on a L× L× L cubic supercell.
For all considered temperatures we found that these correlators were very close to
the ones obtained for the same temperature from supercells of different lengths from
spin configurations that were actually used in transport calculations. This is due
to the fact that none of the considered temperatures were in immediate proximity
of the critical point. For the same reason these correlators were just slightly larger
from the infinite lattice correlators corresponding to the same temperature (both for
bcc and fcc lattices the infinite lattice correlators were obtained from 12 × 12 × 12
supercell for which we found that correlators are already saturated for all considered
temperatures). Nevertheless, we accounted for this small difference by defining an
effective temperature for which first three correlators calculated from 12 × 12 × 12
supercell are equal to the corresponding correlators obtained from a L × L × L su-
percell for the actual temperature (the effective temperature obtained from different
correlators in most cases agreed, if there was small difference we chose the effective
temperature as obtained from the first correlator). In all cases the effective temper-
ature was just slightly smaller than the actual temperature. Finally, we found the
value of M2(T )/M(0) corresponding to the effective temperature. First we found Tc

using the fourth order cumulant method [38]. If the effective temperature is above Tc

then the magnetization was set to zero, otherwise we found the value of magnetization
using finite-size scaling. Since we are away from the critical region, we assumed in
most cases a simple scaling form M2

L(T )/M(0) = M2
∞(T )/M(0) + A/N where N is a

number of atoms and A is some constant. Using L = 8, 10, 12, 14 for both bcc and
fcc lattices we found that this scaling form holds.

Figure 5.6 shows the dependence of the spin-disorder resistivity as a function
of the onsite correlator (1 −M2(T )/M(0)) obtained using Monte Carlo method. In
addition, the magnitude of magnetic short-range order is illustrated in Table 5.2 where
the connected spin-spin correlators for the first three shells of nearest neighbors are
shown. In general, Monte Carlo results for spin-disorder resistivity are very close
to mean-field approximation results corresponding to the same magnetization, in
spite of the presence of magnetic short-range order in the Monte Carlo model. This
is especially true for Fe where the effect of magnetic short-range order is almost
negligible and only at higher temperature where magnetic short-range order is larger
we can observe slight decrease of spin-disorder resistivity due to magnetic short-range
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order. In the case of Ni magnetic short-range order also leads to rather small decrease
of spin-disorder resistivity which is however noticeably larger than for Fe. Note that
in general magnetic short-range order in nearest-neighbor Heisenberg model is weaker
for fcc lattice than for bcc (see Table 5.2) due to larger coordination number of fcc
lattice. This indicates that while the effect of magnetic short-range order on spin-
disorder resistivity remains small in Ni it is stronger than in the case of Fe. We
also performed additional calculations for Fe with larger cell cross-sections (6× 6) in
order to check whether there are any other effect due to relatively small size of the
supercells. In this case the effective temperature is equal to the actual temperature
and magnetization doesn’t change so strongly as we vary the thickness of FM(D)
region. The results is shown as an empty triangle in Figure 5.6a. Since in this point
is very close to the critical temperature, the magnetization was determined assuming
M ∝ N−β/ν where critical exponents were taken from Ref. [39]. Even though in this
case, the magnetic short-range order is quite large as seen in Table 5.2, its effect on
the spin-disorder resistivity remains small.

These results clearly show that the magnetic short-range order characteristic for
the nearest-neighbor Heisenberg model has very small effect on the spin-disorder
resistivity in Fe and Ni. While the magnetic short-range order in the nearest-neighbor
Heisenberg model for the close-packed lattices considered here is not strong, it is seen
that its effect on the spin-disorder resistivity is much smaller even compared with
the values of the nearest-neighbor spin-spin correlators. This insensitivity is likely
due to the averaging over all the electronic states on the Fermi surface [10], which
should be very effective in destroying the interference from scattering at different sites
in transition metals with complicated Fermi surfaces. In fact, this averaging is also
responsible for the small standard deviation of the local DOS from its mean (Figure
5.4) and justifies the disordered local moment approach for transition metals.

The spin-spin correlation function in real materials may be more complicated than
in the nearest-neighbor Heisenberg model. However, if the interaction has a longer
range while remaining mainly ferromagnetic, the magnetic short-range order must
be weaker compared to the nearest-neighbor model [41]. First-principles calculations
for both ferromagnetic and paramagnetic nickel show that the exchange parameters
beyond nearest neighbors, while being much smaller than the dominant the nearest-
neighbor exchange, stay mainly ferromagnetic [42, 20]. Interaction of this kind can
not support stronger a magnetic short-range order compared to the nearest-neighbor
Heisenberg model.

Nevertheless it is of interest to study whether the magnetic short-range order that
is stronger than in nearest-neighbor Heisenberg model can have more pronounced
effect on the spin-disorder resistivity. For this purpose we used the reverse Monte
Carlo method [43] to produce a set of spin configurations with zero magnetization and
deliberately targeting strong the magnetic short-range order in the nearest-neighbor
shell. Due to geometrical constraints, the spin-spin correlators in different neighbor
shells are not independent. We found it quite difficult to produce strongly correlated
nearest neighbors and at the same time avoid unphysical artifacts in the long-range
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behavior of the correlation function. The spin-spin correlators for the first three
shells of neighbors in our reverse Monte Carlo model are listed in Table 5.2. The
corresponding values of the spin-disorder resistivity calculated for Fe and Ni with
this set of spin configurations are also listed in Table 5.2 and shown by full and
empty diamonds in Figure 5.6. Here we used 4× 4 supercells for both Fe and Ni and
checked for finite-size effects using 6×6 supercells for Fe (essentially no difference was
observed compared to 4×4 cells). As seen in Table 5.2, the magnetic short-range order
in this model is significantly stronger compared to the nearest-neighbor Heisenberg
model. The effect of this strong magnetic short-range order leads to larger decrease
of spin-disorder resistivity as compared with Monte Carlo results however it is still
relatively small; the spin-disorder resistivity is reduced compared to its mean-field
approximation values by 12% for Fe and 22% for Ni.

5.5 The effect of the local moment reduction

Reduction of the local moment is a universal feature of itinerant magnets as re-
vealed by spin fluctuations theories [17]. As discussed in Section 5.3, the local moment
in Fe is very stable and changes only slightly in the paramagnetic state compared to
zero temperature. Therefore, our calculations based on the ground-state value of the
local moment agree well with experiment for Fe. Still, the spin-disorder resistivity is
sensitive to the local moment, and a small reduction of it noticeably improved the
agreement with experiment at higher temperatures. Since the spin-disorder resistivity
was found to be insensitive to magnetic short-range order, it is reasonable to attribute
the large overestimation of the high-temperature spin-disorder resistivity in Ni to the
neglect of the local moment reduction. Here we study this issue in detail.

In the paramagnetic disordered local moment state the local moment in Ni van-
ishes [34], but it is partially restored by longitudinal spin fluctuations [17, 20]. Fol-
lowing the idea of separation of low and high-energy fluctuations, we assume that the
current-carrying quasiparticles near the Fermi level experience the averaged exchange-
correlation field generated by fast longitudinal spin fluctuations, and that this “mean
field” is adequately represented by noncollinear DFT with disordered local moments
constrained to their square-averaged values. The atomic potentials are therefore ob-
tained using the fixed spin method [44] with the value of the constrained local moment
treated as an adjustable parameter, which has a physical meaning and can be mea-
sured experimentally. Other approximations are, in principle, possible; for example,
the longitudinal spin fluctuations can be explicitly included in the same noncollinear
DFT approach, i.e., they can be considered to be “slow” rather than “fast.” Since the
separation in slow and fast degrees of freedom is not well defined, we did not attempt
to study the role of these additional fluctuations.

The calculated paramagnetic spin-disorder resistivity of Ni, as a function of the
local moment, is shown in Table 5.3. As seen, the spin-disorder resistivity is very
sensitive to the value of the local moment. Comparison with the experimental spin-
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Table 5.3: Spin-disorder resistivity in µΩ·cm for paramagnetic Ni as a function of
the fixed local moment. 2 × 2 supercells and basis sets with lmax = 2 and lmax = 3
were used. Standard deviations of spin-disorder resistivity due to limited disorder
sampling are included.
Local moment, µB 0.66 0.5 0.4 0.3 Exp.[4]
lmax = 2 34± 0.6 27± 0.5 21± 0.4 15
lmax = 3 29± 0.61 23± 0.5 18± 0.4 12± 0.3 15

disorder resistivity shows that our predicted value of the square-averaged local mo-
ment in paramagnetic state of Ni is equal to 0.35µB (using the more accurate basis
set with lmax = 3). Unfortunately, we are not aware of experimental measurements
suitable for comparison with this prediction.

5.6 Discussion and conclusions

Numerous previous studies [6, 7, 8, 9, 10] based on the s-d model concluded
that spin-disorder resistivity in the paramagnetic state is essentially proportional to
J2

sdS(S + 1) where S is the spin of the partially filled 3d shell. This dependence is
easy to understand based on the Fermi golden rule with averaging over the initial
states of the 3d spin. In our treatment based on noncollinear DFT, the exchange-
correlation field with randomized directions on different sites plays the role of the s-d
Hamiltonian. However, contrary to the s-d model, the 3d spin is treated classically,
i.e., S is just a classical vector and not an operator. The Fermi golden rule in our case
would give a paramagnetic spin-disorder resistivity proportional to J2

sdS
2. Thus, if the

S(S +1) factor were correct, noncollinear DFT calculations would underestimate the
paramagnetic spin-disorder resistivity by a factor (S + 1)/S. This factor is close to 2
for Fe and more than 3 for Ni. In reality, the calculated spin-disorder resistivity agrees
well with experiment for Fe and is overestimated for Ni (if the local moment reduction
is not included). We believe that these results provide clear evidence against the
S(S + 1) factor which appears if the local moments are treated as local atomic spins.
Instead, the classical description of the local magnetic fluctuations in the spirit of the
disordered local moment approach is supported by our results. We suggest that the
itinerancy of the3d electrons is crucial for this behavior. Qualitatively, one can argue
that the low-energy fluctuations in Fe or Ni on the scale of kT (which the resistivity
is most sensitive to) are similar to classical rotations of the local moments rather than
quantum fluctuations of localized spins. It would be interesting to investigate this
issue for magnets with a varying degree of localization, including rare-earth systems.

Some poorly controlled assumptions are involved in the extraction of ρmag from
the experimental data [4]. First, it is assumed that ρmag is constant in the wide
temperature range above Tc where the total resistivity is linear in T . This assumption
implies that the local moments (or at least their mean-squared average) are constant in
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this range. Spin fluctuation theories for itinerant metals show that the local moments
may change with temperature above Tc [17, 20, 21]. Such change will contribute to the
slope of ρ above Tc, and hence the separation of ρmag from the phonon contribution
would be inaccurate.

On the other hand, it has been argued that the phonon contribution to the resis-
tivity may be sensitive to spin disorder, because the latter may change the character
of states at the Fermi level [1, 2]. In particular, in Ni the filled majority-spin d states
may be lifted up to the Fermi level by spin disorder, thereby facilitating interband
s-d scattering by phonons.This effect may therefore introduce an unusual tempera-
ture dependence of the phonon contribution, which makes spin disorder and phonon
effects non-additive, even if the scattering rates themselves obey Matthiessen’s rule.
Since we have not studied this effect here, our comparison of spin-disorder resistiv-
ity with experiment for Ni is incomplete. However, the phonon contribution can be
expected to follow the Bloch-Grüneisen form above Tc with the electron-phonon scat-
tering renormalized by spin disorder; therefore, the influence of spin disorder on the
phonon contribution should not invalidate the procedure used for subtracting this
contribution above Tc.

In conclusion, we have calculated the spin-disorder resistivity of Fe and Ni in the
whole temperature range up to Tc using both the mean-field approximation and the
nearest-neighbor Heisenberg model to represent the canonical ensemble of classical
spin configurations. We found that spin-disorder resistivity is insensitive to the mag-
netic short-range order in Fe and Ni. The spin-disorder resistivity in Fe depends
linearly on M2(T ) which implies that the main effect of spin disorder is to introduce
scattering, which is proportional to the variance of the random potential. For Ni the
calculated temperature dependence is more complicated; at elevated temperatures
close to Tc the spin-disorder resistivity grows faster than expected. This faster in-
crease of spin-disorder resistivity may be explained by the reduction of the exchange
splitting which lifts the heavy bands up to the Fermi level, thereby increasing the
scattering rate. The results for Fe are in very good agreement with experiment if the
atomic potentials are taken from zero temperature and frozen, but for Ni the spin-
disorder resistivity calculated in this way is strongly overestimated. This disagreement
is attributed to the reduction of the local magnetic moment in Ni. Comparison with
experimental spin-disorder resistivity leads to a value of 0.35µB above Tc, which may
be compared with experiment.

104



105

Bibliography

[1] B. R. Coles, Adv. Phys. 7, 40 (1958).

[2] N. F. Mott, Adv. Phys. 13, 325 (1964).

[3] S. V. Vonsovskii, Magnetism (Halsted Press, New York 1974).

[4] R. J. Weiss and A. S. Marotta, J. Phys. Chem. Solids 9, 302 (1959).

[5] A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968); J. Phys. F: Met.
Phys. 6, 849 (1976).

[6] T. Kasuya, Progr. Theor. Phys. 16, 58 (1956).

[7] P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71 (1958).

[8] I. Mannari, Progr. Theor. Phys. 26, 51 (1961).

[9] S. V. Vonsovskii and Yu. Izyumov, Sov. Phys. Uspekhi 5, 547 (1963).

[10] M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 667 (1968).

[11] J. B. Gibson, J. Phys. Chem. Solids 1, 27 (1956).

[12] P. L. Rossiter, P. Wells, J. Phys. C: Solid St. Phys. 4, 354 (1971).

[13] S. Alexander, J. S. Helman, and I. Balberg, Phys. Rev. B 13, 304 (1976).

[14] M. Kataoka, Phys. Rev. B 63, 134435 (2001).

[15] K. Akabli and H. T. Diep, J. Appl. Phys. 103, 07F307 (2008).

[16] D. A. Goodings, Phys. Rev. 132, 542 (1963).

[17] T. Moriya, Spin fluctuations in itinerant electron magnetism (Springer, Berlin,
1985).

[18] V. P. Antropov, Phys. Rev. B 72, 140406 (2005).

[19] C. S. Wang, R. E. Prange, and V. Korenman, Phys. Rev. B 25, 5766 (1982).



[20] A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Phys. Rev. B 75,
054402 (2007).

[21] A. L. Wysocki, J. K. Glasbrenner, and K. D. Belashchenko, Phys. Rev. B 78,
184419 (2008).

[22] A. L. Wysocki, K. D. Belashchenko, J. P. Velev and M. van Schilfgaarde, J. Appl.
Phys. 101, 09G506 (2007).

[23] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

[24] B. L. Gyorffy, A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter, J. Phys.
F: Met. Phys. 15, 1337 (1985).

[25] I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic
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