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(1) Problem Definition: Inspired by new developments in dynamic spectrum access, we study the dynamic

pricing of wireless Internet access when demand and capacity (bandwidth) are stochastic. (2) Academic

/ Practical Relevance: The demand for wireless Internet access has increased enormously. However, the

spectrum available to wireless service providers is limited. The industry has thus altered conventional license-

based spectrum access policies through unlicensed spectrum operations. The additional spectrum obtained

through these operations has stochastic capacity. Thus, the pricing of this service by the service provider has

novel challenges. The problem considered in this paper is therefore of high practical relevance and new to

the academic literature. (3) Methodology: We study this pricing problem using a Markov Decision Process

model in which customers are posted dynamic prices based on their bandwidth requirement and the available

capacity. (4) Results: We characterize the structure of the optimal pricing policy as a function of the system

state and of the input parameters. Since it is impossible to solve this problem for practically large state

spaces, we propose a heuristic dynamic pricing policy that performs very well, particularly when the ratio

of capacity to demand rate is low. (5) Managerial Implications: We demonstrate the value of using a

dynamic heuristic pricing policy compared to the myopic and optimal static policies. The previous literature

has studied similar systems with fixed capacity and has characterized conditions under which myopic policies

perform well. In contrast, our setting has dynamic (stochastic) capacity, and we find that identifying good

state-dependent heuristic pricing policies is of greater importance. Our heuristic policy is computationally

more tractable, and easier to implement, than the optimal dynamic and static pricing policies. It also provides

a significant performance improvement relative to the myopic and optimal static policies when capacity is

scarce, a condition that holds for the practical setting which motivated this research.
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1. Introduction

Wireless networks have revolutionized public life, especially following the invention of

smartphones in 2007. It is estimated that by 2020, mobile data traffic will grow by a factor

of ten, with a 1000−fold increase in demand in certain urban areas (Beltran et al. 2016),

while the number of connected mobile devices is expected to reach 11.6 billion (Cisco
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VNI 2016, Feb. 3). These increased demands place a significant burden on mobile service

providers (SPs) because of the scarcity of available wireless spectrum.

Today’s wireless networks are characterized by a fixed spectrum assignment policy, where

the resource, i.e., the spectrum, is allocated to users, such as government and broad-

casters, in a license-based manner according to national policies, technical characteristics,

and international agreements. While SPs try to utilize their share, a large portion of the

assigned spectrum is used sporadically, and geographical variations in the utilization of

assigned spectrum range from 15% to 85% (FCC Report 2002). This leads to the spectrum

crisis, in which access policies to spectrum are questioned, e.g., Chen (2012, April 17).

The wireless industry has been altering conventional license-based spectrum access poli-

cies through unlicensed spectrum operational approaches. The most prominent solution

has been WiFi, which exclusively operates on unlicensed spectrum (e.g., 2.4 GHz, 5 GHz).

More recently, the spectrum crisis has forced government agencies to adopt unlicensed

spectrum operational approaches for other purposes. This leads to dynamic spectrum access

(DSA), in which resources change dynamically with respect to the usage of the shared,

unlicensed spectrum by several users. Examples of unlicensed spectrum operation are:

TV White Space: TV channels have traditionally been allocated to broadcast companies

throughout the nation. Due to population density dynamics, not all TV channels are used

in all locations, e.g., while broadcast companies use all TV channels in locations such as

Manhattan, few channels are used in less populated cities or rural areas. This leaves unused

TV channels in certain areas, referred to as TV white spaces, which can be repurposed for

other wireless communication. In 2008, the Federal Communications Commission (FCC)

allowed unlicensed devices, i.e., Television Band Devices (TVBDs), to operate in TV white

spaces in the US (FCC-10-174 2010). TVBDs operate on available TV bands based on

information received from TV spectrum databases or local spectrum sensing operations.

Sites such as Google Spectrum and Microsoft Whitespaces have established nation-wide

spectrum databases which dynamically allocate spectrum for unlicensed usage.

TV Black Space: While suitable for rural areas, the FCC’s current approach leaves

populated urban areas, where the spectrum crisis is most significant, with few TV white

spaces (Harrison et al. 2010). For example, 4 out of the 5 largest cities by population

have less than 4 TV white space channels. Thus, recent research studies have focused on

finer-grade DSA schemes. Accordingly, an unlicensed user can access a TV channel if none
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of the TV receivers in its immediate vicinity is watching that channel. Hence, the spectrum

can be accessed based on dynamic behaviors of licensed users, i.e., TV viewers (Zhao et

al. 2014, Zhang and Knightly 2015). Zhao et al. (2014) has shown that spectrum access

based on TV viewership leads to up to a 5-fold increase in available capacity in New York.

3.5 GHz Citizens Broadband Radio Service (CBRS): In 2015, the FCC adopted a spec-

trum sharing policy to make 150MHz of spectrum available for mobile usage in the 3.5 GHz

band previously allocated to the U.S. Department of Defense (FCC-15-47 2015), using a

three-tiered sharing mechanism: At the top tier, incumbent users, e.g., federal operations

and satellite services, have exclusive rights to the spectrum in their vicinity. The priority-

access tier allows use of part of the spectrum in a census track for a limited amount of

time. The general authorized-access tier may use the remaining spectrum at no cost.

LTE Unlicensed: Initially spearheaded by the LTE-U Forum, SPs have begun standard-

izing 4G network operation on the unlicensed 5 GHz band, to provide cellular networks

access to additional unlicensed spectrum by sharing the spectrum with WiFi networks and

other LTE operators. LTE-U would allow 4G networks to utilize the 5GHz WiFi band

when network demand exceeds available licensed resources (LTE-U 2015). LTE-U tries

to utilize unused 5GHz channels, based on WiFi and LTE measurements. This results in

three types of channels: (1) if a channel is unused by WiFi, the full capacity of that channel

may be available to the SP for a certain duration; (2) if a channel is unused by WiFi, the

capacity may be shared by two or more SPs; (3) if a channel is used by WiFi, LTE-U will

share the channel with the WiFi network (Bhattarai et al. 2016).

These emerging DSA solutions result in the following challenges to network operators:

• Non-exclusive use: DSA approaches are characterized by the operator’s use of unli-

censed channels, which, by definition, are not exclusively reserved. As a result, unlicensed

use of the spectrum provides capacity to the operator in a non-deterministic fashion.

• Dynamic Channel Availability: The availability of an unlicensed channel depends on

factors that cannot be controlled by the network operator. For example, in TV white space,

TV black space, and CBRS, the number of available channels changes with time depending

on the behaviors of licensed users (i.e., TV viewers or federal operations).

• Varying Channel Capacity: In DSA solutions, two available channels may not provide

the same capacity. For example, in LTE-U, if an unused 5GHz channel is found, the operator

can utilize the maximum capacity provided by that channel. However, in some cases, the
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channel capacity may need to be shared with a WiFi network, leading to a lower, and

dynamically changing, available capacity. As a result, different types of channel classes

exist due to their available capacity, as well as the amount of time they are available to

the network operator.

These three factors imply that the capacity of the wireless network will vary dynamically.

In addition, it is highly likely that the capacity will not be sufficient to provide a good

quality Internet service to users at the peak hours of demand, especially in urban areas.

To be able to manage the peak-hour demand, we propose to use a dynamic pricing scheme

in which the fees charged for an Internet connection will change in real-time.

To study this problem, we consider a network in which an SP monitors the availability

of unlicensed channels and posts prices to the incoming customers based on the available

bandwidth. If an arriving customer is willing to accept the posted price, he will start his

Internet connection; otherwise, he will depart from the system. We consider a system with

multiple classes of customers, where classes have different bandwidth requirements based

on the type of activity to be performed, e.g., video streaming vs. web surfing vs. checking

email. The connection fee paid by an arriving customer depends on the posted price at

the time of arrival and the connection duration. A key feature of this setting is that the

available bandwidth is a stochastic process due to the fact that unlicensed channels become

available for Internet use if they are not actively used by licensed users, and they become

unavailable when licensed users start using the channel. This implies that the available

bandwidth may decrease at random, and thus customers that are in service may need to be

dropped by the SP. A key challenge in managing the network is to maximize the revenue

earned from admitted customers, while limiting the cost of dropped customers.

For this setting, we develop an optimal dynamic pricing strategy to maximize the revenue

earned by an SP using DSA policies on unlicensed bands, while considering the limited

capacity, as well as the potential losses associated with dropped customers. We model the

system as a Markov decision process (MDP) in which customers arrive as a stochastic

process, with stochastic service times, and unlicensed channels become available (provid-

ing bandwidth) as a stochastic process, with stochastic times until the channel becomes

unavailable. Thus, the state of the system includes both the number of customers of each

class being served and the number of channels of each class available for use by the system.

Due to the high-dimension state, the optimal policy is difficult to compute and impractical
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to implement. Therefore, we develop several heuristic policies in which the customer classes

and/or channel classes are aggregated. We use a comprehensive set of numerical experi-

ments to demonstrate that the proposed heuristic performs well with respect to the optimal

policy. We also compare the performance of the proposed heuristic, which is dynamic (i.e.,

state-dependent), with non-state-dependent (i.e., static) pricing policies. We find that the

proposed heuristic performs best, particularly when the ratio of capacity to demand rate

is low, a condition which holds for the practical setting which motivated this research.

2. Literature Review

The research in this paper has some similarity to the previous literature in two areas:

(1) dynamic pricing in MDP models and (2) admission control in systems with multiple

classes of demand and stochastic service rates. A key distinguishing feature of our model,

compared to this previous work, is that in addition to having stochastic inter-arrival and

service times, our model also has stochastic capacity availability.

The most closely related previous work is that of Gans and Savin (2007), henceforth

GS, who focus on dynamic pricing of rental assets (e.g., cars) when there is stochastic

demand from two classes of customers, i.e., contract customers (who may be admitted at

a pre-negotiated price, or rejected) and walk-in customers (who are quoted dynamic prices

based on the number of customers already in the system). GS focus on characterizing the

conditions under which myopic pricing policies will be optimal for certain customer classes.

While some of our analysis builds on GS, there are a number of key differences:

• In GS, all customers have the same capacity requirement, which is normalized to one

unit (e.g., every customer wants to rent a single car), while the total available capacity

(e.g., rental car fleet size) is fixed and known. In contrast, in our model, the capacity

requirement varies by customer class, but is exogenously specified, while the total available

capacity evolves as a stochastic process as channels become available or unavailable.

• In our model, capacity may decrease, potentially requiring the SP to drop customers

from service, at a cost. Thus, we must determine a drop-off policy, which specifies the set

of customers to be dropped in a given state, in addition to a dynamic pricing policy.

• GS make admission decisions for contract customers, and pricing decisions for walk-in

customers, where the latter is based on the class of the arriving customer and the current

number of customers of each class in the system. In our model, there are no contract
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customers, and our dynamic pricing decision is based on the class of the arriving customer,

the number of customers of each class in the system, and the current available capacity.

• GS focus on characterizing conditions under which preferred customer classes will exist

and for which myopic policies will perform optimally or close-to-optimally. In contrast, we

focus on developing heuristic policies that are not myopic, i.e., which are state-dependent.

Other research considers dynamic pricing and/or admission control for network services

in which an SP has available capacity which may be used to satisfy the demands of cus-

tomers who arrive stochastically and have class-dependent capacity requirements. This

previous work takes the SP’s total available capacity as fixed and known. For example,

Paschalidis and Tsitsiklis (2000) consider dynamic pricing policies in such settings. They

study the case in which the available capacity is large and there are many users with very

small capacity requirements. They demonstrate that a static pricing policy is optimal in

the limit. Mutlu et al. (2009) consider a setting with fixed capacity and two customer

classes (primary and secondary users), where each class has the same service rate and each

customer uses one unit of capacity. The SP makes pricing decisions for arriving secondary

users, where the price depends on the number of customers in the system. Other literature

on network services with stochastic arrivals considers admission control with exogenously-

specified prices (Zhao et al. (2010), Turhan et al. (2012), Yahav et al. (2013)).

Another class of relevant research considers queuing models of admission control prob-

lems in loss systems with multiple classes of demand. In much of this work, the resource

or capacity requirement (e.g., number of servers) is the same (and generally normalized

to one) for all customer classes, e.g., Ulukus et al. (2011), Turhan et al. (2012), and

Carrizosa et al. (1998). Since our model may require the dropping of customers who have

been admitted to the system, the most relevant papers are those that consider preemption

or termination of a customer, including Turhan et al. (2012) and Ulukus et al. (2011).

However, in contrast to these papers, our model allows the bandwidth requirement per

customer to vary by customer class. Thus, it is most similar to the literature on stochastic

knapsacks, in which there are a fixed number of servers, with the number of servers required

per customer varying by customer class, e.g., Altman et al. (2001) and Ross and Tsang

(1989). Our model also has similarities to the literature on loss systems with batch arrivals,

including Örmeci and Burnetas (2004). However, all of the above referenced works assume

that the total available capacity (number of servers) is fixed and known. Further, while
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these papers consider the admission control problem, we manage admission and maximize

expected discounted profit by setting the optimal price for each arriving customer.

There is also recent literature that considers service systems that use self-scheduling

servers, e.g., drivers in ride-sharing companies or agents in work-from-home call centers.

These self-scheduling servers are not employees in the traditional sense and their schedules

are not dictated by the company, i.e., the servers determine their own work schedules. In

such business environments, as in the problem setting that we consider, both customer

demand and service capacity change stochastically. Hence, to better match supply and

demand, dynamic pricing may be used to manage demand (i.e., the customers). Alterna-

tively, dynamic wages can be used to manage supply (i.e., the servers). In particular, surge

pricing is often used as a tool to motivate servers to show up to work at required times.

Cachon et al. (2017), Gurvich et al. (2017), and Ibrahim (2017) study the role of dynamic

wages in such systems. Our paper is different from this line of work in three ways: i) These

works try to match capacity, i.e., the number of self-scheduling servers, to demand while

we try to match demand to capacity using admission control through pricing. ii) In these

works, each customer is served by a single server (i.e., single unit of capacity), while in our

model the customers’ bandwidth (i.e., capacity) requirements vary by customer class. iii)

In these works, a server cannot terminate a customer’s service before service is completed.

Thus, in contrast to our setting, customer drop-off is not a concern. There is also recent

work on time-dependent pricing schemes in wireless networks (Zhang et al. 2014, Chang

et al. 2015, Huang et al. 2016, Tsai et al. 2017). In these schemes, data pricing for the

next day is determined based on information from the previous day(s). Prices are allowed

to vary from one time-slot to another (e.g., hourly) to encourage users to shift demand

from peak to off-peak hours. However, prices are not adjusted in real-time based on the

system state, and the network capacity is assumed to be fixed and known.

3. Problem Formulation

We next introduce our model for the SP’s problem. The notation and model formulation

used in this paper are similar to GS. However, our model and analysis are more complex

due to the fact that capacity is a stochastic process, rather than constant.

3.1. Model Assumptions and Notation

In this section, we first outline our assumptions and notation for the customer and channel

classes. We then describe the overall system state and how it evolves over time.
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3.1.1. Customer Classes There are M customer classes, indexed by i = 1,2, . . . ,M .

Customers in class i arrive according to a Poisson process with rate λi. The service time

for class i customers is exponentially distributed with rate µi. The bandwidth (capacity)

requirement for a class i customer is ri, where 0 < ri < 1. For convenience, we define

µ= (µ1, . . . , µM), r = (r1, . . . , rM), and λ= (λ1, . . . , λM). In general, we use bold to denote

vectors. The customer classes are ordered according to the following assumption.

Assumption 1. rM ≤ rM−1 ≤ · · · ≤ r2 ≤ r1 < 1.

We standardize the total bandwidth provided by a single channel (of any class) to 1. Thus,

since ri < 1, several customers can be simultaneously served by a single channel.

The number of class i customers in the system at time t is denoted by Ni(t). We let

N(t) = (N1(t), . . . ,NM(t)) and we define N(t) =
∑M

i=1Ni(t). We will drop the argument t

when it is not required for clarity.

The SP must select the price to post to each arriving customer. The price set for Internet

usage per unit of time is U = {u1, . . . , uL}, where the prices are ordered such that u1 <u2 <

. . . < uL. Since each customer class has a different bandwidth requirement, ri, we scale the

price set U by ri to find the price set for customer class i. For example, the set of prices

that can be posted to an arriving class i customer, denoted by Ui = {ui1, . . . , uiL}, may be

obtained by setting ui` = riu`, for all `= 1, . . . ,L. These prices are fees to be paid by the

customers of class i per unit of time usage.

A customer from class i accepts the posted price ui` with probability pi`, for l= 1,2, . . . ,L,

where these probabilities are assumed to follow Assumption 2.

Assumption 2. (i) pi1 ≥ pi2 ≥ . . . ≥ piL is a monotone sequence for i = 1, . . . ,M ; (ii)

uiL is defined such that piL = 0 for i= 1, . . . ,M .

Part (i) implies that a customer’s willingness to accept an offered price decreases as the

price increases. Part (ii) implies that the maximum price, uiL, is sufficiently large so that

it is always rejected. The SP can reject an arriving customer by posting this reject price.

The total connection fee of a customer depends on the price he accepts and the length of

his connection time. We let γ denote the continuous-time discount rate, where γ > 0. The

expected discounted revenue from a class i customer that accepts the offered price ui` is

wi` = ui`/(µi +γ), where wi1 < · · ·<wiL. When a class i customer accepts the posted price
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ui`, the present value of his expected total connection fee at the time of his connection is

wi`. In the remainder of the paper, we will refer to wi` as the discounted price.

There may be times when it is necessary to drop a customer who is currently receiv-

ing service. In that case, the realized service time will no longer follow an exponential

distribution, which significantly complicates the analysis. To ensure tractability, we adopt

the following convention: The service times for customer class i follow an exponential (µi)

distribution. When a customer of class i arrives and the SP posts the price, the actual

service time is unobserved. However, after deciding to accept the price, and before entering

into service, the customer realizes her service time, reports this to the SP, and makes the

appropriate payment. Thus, we assume that the customer pays upon admission. If the

customer is later dropped because a channel becomes unavailable, the SP may refund part

of this payment or offer a fixed penalty fee (discussed further below) to the customer.

3.1.2. Channel Classes There are D channel classes, where the classes differ in their

degree of availability to the SP. The number of channels of class d available to be used by

the SP at time t is denoted by Rd(t), where Rd(t)≤Rmax,d, with R(t) = (R1(t), . . . ,RD(t))

and R(t) =
∑D

d=1Rd(t). We refer to R(t) or R(t) as the capacity. We will drop the argument

t when it is not required for clarity. We use Rmax,d to denote the maximum number of

channels of class d that can ever be available to the SP, and we define Rmax =
∑D

d=1Rmax,d.

We refer to Rmax as the maximum capacity. As described in Section 1, Rd(t) is a stochastic

process that increases (decreases) in increments of one unit as channels become available

(unavailable). Once a channel from class d becomes available, it remains available for a

period of time that follows an exponential distribution with rate ωd, and then it becomes

unavailable for a period of time that is exponentially distributed with rate φd. We define

ω= (ω1, . . . , ωD) and φ= (φ1, . . . , φD).

Since the number of available channels can decrease at any time, it is possible that the

total required capacity, i.e., N(t)′r, where N(t)′ denotes the transpose of N(t), may at

some time exceed the capacity, R(t). In that case, some customers currently in service

will need to be dropped, i.e., have their service immediately terminated. In this case, we

assume the SP incurs a fixed drop-off fee, denoted by K, which satisfies Assumption 3.

Assumption 3. The drop-off fee K satisfies wi1 < · · ·<wi,L−1 <K for i= 1, . . . ,M .

The fixed fee, K, incurred by the SP may include a penalty fee or partial refund paid to

the customer, and/or a goodwill cost incurred by the SP due to customer dissatisfaction.
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3.1.3. System State The state of the system at time t, denoted by S(t), is given by

the number of customers of each class currently in the system, as well as the number of

available channels from each class, i.e., S(t) = (N(t),R(t)). An incoming class i customer

can be accepted only if N(t)′r + ri ≤ R(t). Otherwise, that customer must be rejected

by the SP by posting the reject price, uiL. Hence, the state space is S = {(N,R) : N′r≤

R,Rd ≤Rmax,d, d= 1, . . . ,D}.

3.2. Model Formulation

We study a continuous-time model with exponential inter-transition times. Thus, the

embedded stochastic process is a continuous-time Markov chain. The state of the system

changes at each arrival and departure (of customers and channels). The SP must choose

the price to post whenever an arrival occurs, and which customer(s) to drop when capacity

decreases, i.e., a channel becomes unavailable, and the remaining capacity is insufficient

to handle the customers currently in the system. At these decision epochs, the decisions

are based on the state of the system, S(t). This decision process is an infinite horizon,

continuous-time Markov decision process (CTMDP). See Puterman (1994) for details.

By using uniformization, we build the discrete-time equivalent of the system (Lippman

1975). The maximum possible rate out of any state is Γ =
∑M

i=1 λi +
∑M

i=1µib
Rmax

ri
c +∑D

d=1(ωd +φd)Rmax,d + γ. Without loss of generality, we assume that Γ is 1.

The value function, v(N,R), is the total expected discounted stream of future rewards

and penalties given the system is in state (N,R) and is operated optimally. The optimality

equation is as follows.

v(N,R) =

M∑
i=1

λiHi(v(N,R)) +

M∑
i=1

µiNiv(N− eMi ,R) (1)

+

D∑
d=1

φd(Rmax,d−Rd)v(N,R + eDd ) +
D∑
d=1

ωdRdGd(v(N,R)) (2)

+
[ M∑
i=1

µi

(⌊Rmax

ri

⌋
−Ni

)
+

D∑
d=1

(
φdRd +ωd(Rmax,d−Rd)

)]
v(N,R), (3)

where eMi (eDd ) is an M -dimensional (D-dimensional) unit vector with a 1 in the ith spot

(dth spot) and 0 in the remaining spots.
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The function Hi(v(N,R)) represents the SP’s pricing decision when a class i customer

arrives while the system is in state (N,R). We write Hi as follows.

Hi(v(N,R)) =

max`

[
pi`

(
v(N + eMi ,R) +wi`

)
+ (1− pi`)v(N,R)

]
if N′r + ri ≤R,

v(N,R) if N′r + ri >R.
(4)

The pricing decisions are made only at arrival events with rate λi. Hence, rather than

tracking revenues in continuous time, we track expected discounted revenues upon arrival.

The second term in the definition of v(N,R) represents transitions due to customer

departures, where class i customers depart at rate µiNi when there are Ni customers

of class i currently being served. The third term in the definition of v(N,R) represents

transitions due to channels becoming available, where class d channels become available at

rate φd(Rmax,d−Rd) when there are Rd class d channels currently in use.

In the fourth term in the definition of v(N,R), class d channels become unavailable at

rate ωdRd. The function Gd(v(N,R)) represents the SP’s drop-off decision when a class d

channel becomes unavailable while the system is in state (N,R). We write Gd as follows.

Gd(v(N,R)) =

maxN̂

[
v(N̂,R− eDd )−K

∑M
i=1(Ni− N̂i)

]
if N′r>R− 1,

v(N,R− eDd ) if N′r≤R− 1,
(5)

where N̂ = (N̂1, . . . , N̂M), N̂′r≤R− 1, and N̂i ≤Ni, i= 1,2, . . . ,M .

Since the drop-off fee, K, used in the Gd function is fixed per customer, we might

intuitively expect that customers requiring the highest bandwidth would be dropped first.

Hence, in this paper, we will also study a bandwidth-based drop-off function, denoted by GB
d ,

which drops customers according to their bandwidth requirements, i.e., class 1 customers

are dropped first, followed by class 2 customers, etc., until the capacity is sufficient to

satisfy the bandwidth requirements of the remaining customers. In the following section,

we compare the optimal and bandwidth-based drop-off policies in detail. We find that, in

most cases, it is optimal to drop the customers with the highest bandwidth requirements

first. However, in some cases, it is optimal to drop a customer requiring a lower bandwidth

if that customer’s expected service time is relatively long (see Theorem 3 below).

The final term in v(N,R) represents fictitious transitions to the current state (N,R).

The value iteration operator, T , is defined as follows, where f is any arbitrary function:

Tf(N,R) =

M∑
i=1

λiHi(f(N,R)) +

M∑
i=1

µiNif(N− eMi ,R)
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+

D∑
d=1

φd(Rmax,d−Rd)f(N,R + eDd ) +

D∑
d=1

ωdRdGd(f(N,R))

+
[ M∑
i=1

µi

(⌊Rmax

ri

⌋
−Ni

)
+

D∑
d=1

(
φdRd +ωd(Rmax,d−Rd)

)]
f(N,R). (6)

Since T is a contraction mapping, it can be repeatedly applied to find the value function

through successive approximation. If v0 represents an initial estimate of v, then one pass

of the value iteration algorithm (VIA) produces v1 = Tv0, and q applications of T produces

vq = Tvq−1 = T qv0. Since the state space, S, and the one-period payments are finite, there

exists a unique v such that Tv = v and limq→∞vq = v. See Theorem 6.2.5 in Puterman

(1994). Hence, VIA can be used to find the v values. See Section 6.3 in Puterman (1994).

The rewards and transition probabilities are stationary. Since the state space, S, the action

space, Ui for i= 1, . . . ,M , and the one-period payments are finite, there exists an optimal

deterministic stationary policy. See Theorem 6.2.10 in Puterman (1994).

3.3. Dynamic Pricing Policy

The optimal dynamic pricing policy for the SP is found by solving the optimization in

the Hi(v(N,R)) function, which determines the optimal price to offer a class i customer,

given the state of the system. To characterize this pricing policy, define Ai(N,R) to

be the opportunity cost associated with the acceptance of an arriving class i customer

when the system is in state (N,R), where Ai(N,R) = v(N,R)− v(N + eMi ,R) ≥ 0. As

in Gans and Savin (2007), we let gi(wi`|Ai(N,R)) = pi`(−Ai(N,R) + wi`) denote the

expected net gain from offering the discounted price wi` to a class i customer, given the

state (N,R); and let g∗i (N,R) ≡ g∗i (Ai(N,R)) denote the expected net gain from offer-

ing the optimal discounted price to a class i customer. In other words, g∗i (Ai(N,R)) =

maxwi` gi(wi`|Ai(N,R)) = max`[pi`(−Ai(N,R) + wi`)]. Note that finding g∗i (Ai(N,R)) is

equivalent to the optimization in Hi(v(N,R)). Finally, let w∗i (N,R)≡wi`∗i (Ai(N,R)), where

`∗i (Ai(N,R)) = arg max`[pi`(−Ai(N,R)+wi`)], denote the optimal discounted price to offer

a class i customer who arrives while the system is in state (N,R). The optimal discounted

prices are dependent on the state, (N,R), only through the opportunity cost, Ai. There-

fore, for notational simplicity, we suppress the (N,R) notation when it is not required for

clarity, i.e., we write g∗i (Ai) and `∗i (Ai). We can now state the following result.
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Theorem 1. The expected net gain from offering the optimal price to an arriving class

i customer, g∗i (Ai), is nonincreasing in Ai, while the optimal discounted price, wi`∗i (Ai), is

nondecreasing in Ai.

Thus, to prove structural properties for the optimal dynamic pricing policy, it is sufficient

to understand the behavior of Ai, the opportunity cost associated with the acceptance of

an arriving class i customer. The proof of Theorem 1 is given in Appendix A.

When Ai = 0, let mi = arg max`(pi`wi`). The price wimi is the myopic price, i.e., the price

that maximizes the immediate expected revenue from a class i customer. Since the optimal

discounted price, wi`∗i (Ai), is nondecreasing in Ai, the myopic price is a lower bound on the

optimal price in any state.

Corollary 1. The optimal discounted prices satisfy w∗i (N,R)≥wimi for all (N,R).

Theorem 1 and Corollary 1 together imply that if the condition

pimi(−Ai +wimi)≥ pi`(−Ai +wi`) for all `=mi + 1, . . . ,L, (7)

is satisfied, then wimi is the optimal discounted price to offer to a class i customer. Equation

(7) implies that if

Ai ≤ (pimiwimi − pilwi`)/(pimi − pi`) (8)

for all ` = mi + 1, . . . ,L, then wimi is the optimal discounted price to offer to a class i

customer. Hence, when the opportunity cost associated with the acceptance of an arriv-

ing customer is sufficiently small, the myopic price is the optimal price. However, if the

opportunity cost is larger than a threshold, the optimal price will be greater than the

myopic price. Similar results are proven in the literature for various revenue management

problems. See, for example, Bitran and Caldentey (2003).

4. Structural Properties of the MDP

Next, for several different problem settings, we analyze the MDP formulation in order to

derive insights into the structure of the SP’s optimal dynamic pricing policy.

4.1. M Customer Classes and D Channel Classes

For the general setting, the total expected discounted stream of future rewards and penal-

ties decreases as we have more customers in service, and increases as we have more channel

availability. In other words, more congestion leads to lower expected profit. Also, for a
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given set of parameter values, if we only increase the arrival rate to the system, this larger

demand leads to higher expected profit. Specifically, we have the following theorem:

Theorem 2. The optimal value function v(N,R) has the following properties:

1. v(N,R) is nonincreasing in Nj, i.e., v(N + eMj ,R)≤ v(N,R), for j = 1, . . . ,M .

2. v(N,R) is nondecreasing in Rd, i.e., v(N,R + eDd )≥ v(N,R), for d= 1, . . . ,D.

3. v(N,R) is a nondecreasing function of the arrival rates, λj, j = 1, . . . ,M .

The proof of Theorem 2 is given in Appendix B. We next show how the different service

rates and remaining capacity in a given state impact the value function.

Theorem 3. Assume that µj ≤ µk for all j, k= 1, . . . ,M , and j < k, then

v(N + eMj ,R)≤ v(N + eMk ,R). (9)

The proof of Theorem 3 is given in Appendix C. When j < k, Assumption 1 implies

rj ≥ rk. Hence, the remaining (i.e., unused) capacity is smaller in state (N+eMj ,R) than in

state (N + eMk ,R). According to Theorem 3, when µj ≤ µk, admitting a class k customer,

rather than a class j customer, takes the system to a state with relatively larger value due

to the larger remaining capacity in state (N+eMk ,R). However, when µj >µk, the opposite

might hold, i.e., it might be preferable to admit a class j customer with higher bandwidth

requirement, rather than a class k customer with smaller bandwidth requirement. This

is due to the fact that, when µj > µk, the expected service time of a class j customer is

smaller than that of a class k customer, i.e., 1/µj < 1/µk.

This theorem has implications for the optimal drop-off policy, represented by the Gd

function in Equation (5). In most cases, when there is a shortage of resources, i.e., when R>

N′r, it is optimal to drop the customer(s) with the highest bandwidth requirement, which

we refer to as the bandwidth-based drop-off policy. However, when customers requiring lower

bandwidth have longer expected service times than customers requiring higher bandwidth,

the bandwidth-based drop-off policy may not be optimal. Thus, when the turn-over rate

of low bandwidth customers is small, i.e., they stay in the system for a long time, it may

be optimal to drop those low-bandwidth customers first.

In the light of this theorem, we also considered an alternative heuristic drop-off policy

which drops customers based on the magnitude of ri/µi, i.e., customers with the largest

value of ri/µi are dropped first. Our experimental results indicate that this alternative
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drop-off policy does not perform considerably better than the proposed bandwidth-based

drop-off policy.

The following theorem, whose proof is in Appendix D, demonstrates that the bandwidth-

based drop-off policy and the optimal drop-off policy always drop the same number of

customers. However, the classes of the dropped customers may not be the same.

Theorem 4. The total number of customers that will be dropped according to the opti-

mal drop-off function Gd in Equation (5) and the bandwidth-based drop-off function GB
d

are exactly the same.

In the general case of M customer classes and D channel classes, structural properties

for the value function, such as concavity and submodularity, are not provable. Even in

the special case of M = 2 customer classes and D channel classes, the concavity of the

optimal value function in N1 and N2 is not provable. A similar observation can be made

about Gans and Savin (2007) and Ulukus et al. (2011), i.e., these authors are also not

able to prove the concavity of the value function when there are two customer classes with

different service rates. Because we are unable to prove concavity, we cannot prove that

the optimal price, w∗i (N1,N2,R), is nondecreasing in Ni, i = 1,2. In fact, experimental

results presented in Section 6 indicate that, in some states, the optimal prices for class i,

w∗i (N1,N2,R), are decreasing in Ni, a result that may seem counter-intuitive.

Similarly, when M = 2, submodularity of the optimal value function in N1 and N2 is not

provable, and thus we cannot prove that the optimal discounted price for an arriving class

i customer, w∗i (N1,N2,R), is nondecreasing in Nj, i, j = 1,2, i 6= j. However, if we use the

bandwidth-based drop-off function, GB
d , we can show that the optimal value function is

submodular in N1 and N2, and thus w∗i (N1,N2,R) is nondecreasing in Nj, i, j = 1,2, i 6= j.

In other words, the price offered to an arriving class i customer will generally be increasing

in the number of class j customers already in the system. The fact that submodularity

of the value function is dependent on the use of the bandwidth-based drop-off policy can

be explained by Theorem 3. Under the optimal drop-off policy, it is sometimes optimal to

drop the low-bandwidth customer(s) of class 2 first, even when there are high-bandwidth

class 1 customers in the system. However, under the bandwidth-based drop-off policy, class

1 customers are always dropped first.
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4.2. Similar Customer Classes

We next consider the case in which the customer classes are similar, i.e., have a common

service rate and bandwidth requirement, µ1 = . . .= µM = µ and r1 = . . .= rM = r, but their

arrival rates and price sensitivities may differ. In this case, we do not need to distinguish

between the customer classes once they are admitted, which reduces the size of the state

space. Since the bandwidth requirements are the same for all classes, the price sets will be

the same, i.e., U1 = . . .= UM = {ru1, . . . , ruL}. Since the service rates are identical, we have

w1` = . . .=wM` =w`, `= 1, . . . ,L.

4.2.1. M Similar Customer Classes and D Channel Classes In the setting with a

general number of customer classes and channel classes, the state is (N,R), where N is

the total number of customers that are currently in the system. From Theorems 3 and

4, we can conclude that the bandwidth-based drop-off policy is optimal in this case. The

formulation of the bandwidth-based drop-off function in this case is as follows.

GB
d (v(N,R)) =

 v
(⌊

R−1
r

⌋
,R− eDd

)
−K

(
N −

⌊
R−1
r

⌋)
if Nr >R− 1,

v(N,R− eDd ) if Nr≤R− 1,
(10)

for d = 1, . . . ,D. Since it is easier to prove results using the bandwidth-based drop-off

function formulation, GB
d will be used in all of the proofs in this section.

Given this problem formulation, we can derive some important properties for the value

function, which are useful for characterizing the optimal dynamic pricing policy. The prop-

erties proven in Theorem 2 apply to the value function v(N,R) as well.

Theorem 5. The optimal value function v(N,R) has the following properties:

1. v(N,R) is concave in N , i.e., v(N + 2,R)− v(N + 1,R)≤ v(N + 1,R)− v(N,R).

2. v(N,R) is supermodular on S, i.e., v(N + 1,R + eDd )− v(N + 1,R)≥ v(N,R + eDd )−

v(N,R).

The proof of Theorem 5 is analogous to the proof of Theorem 2. Notice that, when the

customer classes are similar, we are able to prove the concavity of the value function. In

the literature, it is not uncommon for the value function to be concave in the number of

customers in the system when the service characteristics of all customer classes are the

same (in our case, the service rates and bandwidth requirements are the same). See, for

example, Miller (1969) and Gans and Savin (2007).
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The supermodularity result in Theorem 5 implies that the value of having an additional

channel of any class is increasing in the number of customers in the system. This property

is different from monotonicity of the value function with respect to the number of servers,

a result that is typically proven in previous literature, e.g., Aktaran-Kalayci et al. (2009).

While monotonicity implies that the value increases as the number of servers increases,

supermodularity considers how that rate of increase in the value function depends on the

number of customers in the system. Further, when the previous literature considers how

a change in the number of servers affects the value function, the change in the number

of servers is permanent (i.e., the literature compares a setting in which the system has s

servers to a setting in which the system has s+ 1 servers). In contrast, in our setting, we

are considering how the value function changes with a change in the system state (i.e., the

available channels R), which is a temporary change (i.e., the number of channels fluctuates

over time as channels become available and unavailable).

We next discuss the optimal dynamic pricing policy. We use A(N,R) to represent the

opportunity cost associated with the acceptance of an arriving customer when the system

is in state (N,R), where A(N,R) = v(N,R)− v(N + 1,R)≥ 0. We drop the subscript on

Ai since we do not need to differentiate by customer class. From Theorem 5, we know that

v is concave in N and supermodular in N and R. Hence, A(N,R) is nondecreasing in N

and nonincreasing in Rd. Therefore, using Theorem 1, we can state the following result:

Corollary 2. The expected net gain from offering the optimal price to an arriving class

i customer, g∗i (N,R), is nonincreasing in N and nondecreasing in Rd, while the optimal

discounted prices are nondecreasing in N and nonincreasing in Rd, i.e.,

w∗i (N,R)≤w∗i (N + 1,R) and w∗i (N,R)≥w∗i (N,R + eDd ).

Similar relationships hold for u∗i (N,R).

Thus, the optimal prices are increasing in the number of customers in the system, N ,

and decreasing in the number of available channels, R=
∑D

d=1Rd. Previous literature, e.g.,

Aktaran-Kalayci et al. (2009), has also found that the optimal prices are decreasing in the

number of servers and in the capacity of the system. However, in that literature, the number

of servers and capacity are exogenously specified parameters. In contrast, in our setting,

the number of available channels is part of the system state and varies stochastically.
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Overall, we have that the prices are decreasing in the remaining capacity, which can be

measured by R−N . Using Corollary 1 and Equation (8), we can also observe that myopic

pricing will be optimal when the remaining capacity is sufficiently large.

We next present some sensitivity analysis results for the optimal pricing policy.

Theorem 6. The optimal pricing policy has the following properties:

1. w∗i (N,R) and u∗i (N,R) are nondecreasing functions of the arrival rates, λj, j =

1, . . . ,M .

2. w∗i (N,R) is a nonincreasing function of the service rate, µ.

3. w∗i (N,R) and u∗i (N,R) are nondecreasing functions of the drop-off fee, K.

The proof of Theorem 6 is given in Appendix E. Theorem 6.1 indicates that an increase in

the arrival rate for any given customer class will cause an increase in optimal prices of all

classes. Intuitively, an increase in the arrival rate for any class will increase the congestion

in the system, requiring higher prices. Theorem 6.2 indicates that when customers can

be cleared from the system more quickly, optimal prices can be reduced. Notice that

the relationship presented in Theorem 6.2 holds only for w∗i (N,R), and is not valid for

u∗i (N,R). Recall that u∗i =w∗i (µ+ γ). When µ increases and w∗i decreases, the behavior of

u∗i is unclear. Theorem 6.3 indicates that an increase in the drop-off fee, K, increases the

optimal prices for all customer classes when the customer classes are similar.

Similar results are common in the literature on pricing of queueing systems. For example,

Aktaran-Kalayci et al. (2009) provide similar monotonicity results for the optimal prices

with respect to the arrival and service rates for anM/M/s/K system with a single customer

class. In addition, for a large class of single-dimension queueing systems, Cil et al. (2009)

discuss structural properties of the value function (and, specifically, for the opportunity

cost, which is analogous to Ai, as defined above) that are sufficient to ensure that the

optimal prices will have similar monotonicity properties with respect to the arrival and

service rates. However, it is important to note that none of the systems studied in these

previous works considers capacity that evolves as a stochastic process, with the potential

for customer drop-offs. Thus, these previous works also do not present analogous results

regarding the monotonicity of the prices with respect to the drop-off fee.

We next consider the impact of customer’s price sensitivity on the optimal prices.
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Theorem 7. For classes j and k, if pj`/pk` is an increasing function of ` for ` =

1, . . . ,L− 1, then w∗j (N,R)≥w∗k(N,R) for all (N,R). A similar result holds for u∗j(N,R)

and u∗k(N,R).

The proof of Theorem 7 is given in Appendix F. The theorem implies that customers who

are more price sensitive will be offered lower prices. Gans and Savin (2007) prove a similar

result for walk-in customers. The condition in Theorem 7, i.e., pjl/pkl is an increasing

function of l, implies that class k customers are more price sensitive than class j customers.

Recall that pil denotes the probability that a class i customer will accept the posted price

rul, where the prices are ordered such that u1 < u2 < · · ·< uL. Assumption 2 implies that

pi1 ≥ pi2 ≥ · · · ≥ piL for all i. Thus, for all customer classes, the probability of accepting a

posted price decreases as the price increases. Hence, in the ratio pjl/pkl, both pjl and pkl

are decreasing in l. The condition that pjl/pkl is an increasing function of l implies that pkl

decreases more rapidly in l than does pjl, which implies that class k customers are more

price sensitive than class j customers.

4.2.2. M Similar Customer Classes and Two Channel Classes In this section, we

consider a setting with M similar customer classes and just D= 2 channel classes in order

to consider how the relative magnitudes of the channel availability (ωd) and unavailability

(φd) rates affect the optimal prices. We present two theorems to demonstrate the results.

Theorem 8. Suppose the two channel classes have the same availability rate and maxi-

mum capacity, i.e., ω1 = ω2 = ω and Rmax,1 =Rmax,2 = 0.5Rmax. However, the unavailability

rates may differ, i.e., φ1 ≥ φ2. Then the optimal pricing policy satisfies w∗i (N,R1 +1,R2)≥

w∗i (N,R1,R2 + 1). A similar relationship holds for u∗i (N,R1,R2).

The proof of Theorem 8 uses Theorem 1 and is analogous to the proof Theorem 5. Under

the conditions of Theorem 8, the probability of a channel becoming unavailable in states

(N,R1 + 1,R2) and (N,R1,R2 + 1) are the same and equal to (R1 +R2 + 1)ω. However,

the probability of a channel becoming available in state (N,R1 + 1,R2) is (0.5Rmax−R1−

1)φ1 +(0.5Rmax−R2)φ2. This is less than or equal to the probability of a channel becoming

available in state (N,R1,R2 + 1), which is (0.5Rmax−R1)φ1 + (0.5Rmax−R2−1)φ2. Hence,

there is relatively less capacity in state (N,R1 + 1,R2) than in state (N,R1,R2 + 1), which

leads to higher optimal discounted prices in state (N,R1 + 1,R2).
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Theorem 9. Suppose the two channel classes have the same unavailability rate and

maximum capacity, i.e., φ1 = φ2 = φ and Rmax,1 = Rmax,2 = 0.5Rmax. However, the avail-

ability rates may differ, i.e., ω1 ≥ ω2. Then the optimal pricing policy satisfies w∗i (N,R1 +

1,R2)≥w∗i (N,R1,R2 + 1). A similar relationship holds for u∗i (N,R1,R2).

The proof of Theorem 9 uses Theorem 1 and is analogous to the proof Theorem 5. Under

the conditions given in Theorem 9, the probability of a channel becoming available in states

(N,R1 + 1,R2) and (N,R1,R2 + 1) are the same and equal to (0.5Rmax −R1 −R2 − 1)φ.

However, the probability of a channel becoming unavailable in state (N,R1 + 1,R2) is

(R1 + 1)ω1 +R2ω2. This is larger than or equal to the probability of a channel becoming

unavailable in state (N,R1,R2 + 1), which is R1ω1 + (R2 + 1)ω2. Hence, there is relatively

less capacity in state (N,R1 + 1,R2) than in state (N,R1,R2 + 1), which leads to higher

optimal discounted prices in state (N,R1 + 1,R2).

5. Heuristic Policies

The optimal dynamic pricing policy can be determined through the VIA when the state

space is reasonably small. However, for realistic problem sizes, solving the VIA is infeasible.

Therefore, we propose three heuristics that approximate the optimal dynamic pricing policy

by aggregating either the customer classes, the channel classes, or both. In these heuristics,

we utilize the VIA in the aggregate state space. Thus, the pricing policy obtained from the

heuristic is suboptimal for the original (non-aggregate) state space. In Section 6, we will

numerically evaluate the performance of these proposed dynamic pricing heuristics, and

compare their performance to both the myopic and optimal static pricing policies.

5.1. N-Heuristic

In the N -heuristic, which is motivated by the optimal policy for the model in Section

4.2.1 with M similar customer classes and D channel classes, we aggregate the customer

classes into a single average class. Let N(t) be the number of customers in the system

at time t, where N(t) =
∑M

i=1Ni(t). The aggregate state is S(t) = (N(t),R1(t), . . . ,RD(t)).

Thus, once a customer is admitted to the system, the heuristic does not keep track of the

customer’s class. Therefore, we model the system using the average bandwidth requirement,

r̄, and average service rate, µ̄, across the customer classes. However, the heuristic does

consider the customer class at the time of a customer arrival to the system, i.e., the price

posted to an arriving customer will depend on that customer’s price sensitivity (through



Batur et al.: Dynamic Pricing of Wireless Internet
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)21

the pi` probabilities). Further, the customer’s bandwidth requirement, ri, is considered

when determining whether or not the customer can be admitted to the system. Thus, an

incoming class i customer can be accepted if N(t)r̄+ ri ≤R(t), where R(t) =
∑D

d=1Rd(t),

and the state space is S = {(N,R) :Nr̄≤R,Rd ≤Rmax,d, d= 1, . . . ,D}.
The VIA for the N -Heuristic can be used to determine a pricing policy. However, since

the heuristic aggregates customers once they are admitted to the system, it cannot be

used to determine a drop-off policy which considers the classes of the customers that are

currently in the system. When the heuristic is implemented, however, it is necessary to have

a drop-off policy to determine how to drop customers when the bandwidth requirement

exceeds the available capacity. Thus, for the implementation of the N -Heuristic, we propose

to use the bandwidth-based drop-off policy presented in Section 3.2. As discussed above,

due to Theorems 3 and 4, this policy is known to be optimal under certain conditions.

5.2. R-Heuristic

In the R-heuristic, in contrast to the N -heuristic, we aggregate the channel classes

into a single average class. We model the system using the average unavailability rate,

φ̄, and average availability rate, ω̄, across the classes. The aggregate state is S(t) =

(N1(t), . . . ,NM(t),R(t)). An incoming class i customer can be accepted if N(t)′r+ri ≤R(t).

Thus, the state space is S = {(N,R) : N′r ≤ R,R ≤ Rmax}. Unlike the N -Heuristic, the

R-Heuristic provides both a pricing policy and a drop-off policy because the customers’

classes can be distinguished while they are in the system. An interesting question, which

will be considered in Section 6, is whether we lose more, relative to the optimal policy, by

aggregating customer classes (the N -heuristic) or channel classes (the R-heuristic).

5.3. (N,R)-Heuristic

In the (N,R)-heuristic, we aggregate both the customer classes and the channel classes.

We model the system using the average bandwidth requirement, r̄; average service rate,

µ̄; and the average channel rates, φ̄ and ω̄. The aggregate state is S(t) = (N(t),R(t)). As

in the N -heuristic, the (N,R)-heuristic does consider the customer class at the time of a

customer arrival to the system. However, once admitted, the customer’s class is no longer

tracked. An incoming class i customer can be accepted if N(t)r̄ + ri ≤ R(t). Thus, the

state space is S = {(N,R) : Nr̄ ≤ R,R ≤ Rmax}. Similar to the N -heuristic, the (N,R)-

heuristic provides a pricing policy, but not a drop-off policy. Hence, in implementation of

the (N,R)-heuristic, we assume that the bandwidth-based drop-off policy will be used.
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The algorithm for the (N,R)-heuristic is:

1. Set v0(N,R) = 0. Specify ε > 0, and set q = 0. Compute the class i price set Ui =

{ui1, ui2, . . . , uiL} from U = {u1, u2, . . . , uL} by ui` = riu` for `= 1, . . . ,L.

2. For each (N,R)∈ S (Nr̄≤R and R≤Rmax), compute vq+1(N,R) by

vq+1(N,R) =
{∑M

i=1 λiHi(vq(N,R)) + µ̄Nvq(N − 1,R) + φ̄(Rmax−R)vq(N,R+ 1)

+ω̄RGB(vq(N,R)) +
[
µ̄
(⌊

Rmax

r̄

⌋
−N

)
+ φ̄R+ ω̄(Rmax−R)

]
vq(N,R)

}/
Γ,

where Γ =
∑M

i=1 λi + µ̄
⌊
Rmax

r̄

⌋
+ (φ̄+ ω̄)Rmax;

Hi(vq(N,R)) =

max`

[
pi`

(
vq(N + 1,R) +wi`

)
+ (1− pi`)vq(N,R)

]
if Nr̄+ ri ≤R,

vq(N,R) if Nr̄+ ri >R,

where wi` = ui`
µi

for all i= 1, . . . ,M and `= 1, . . . ,L; and

GB(vq(N,R)) =

 vq

(⌊
R−1
r̄

⌋
,R− 1

)
−K

(
N −

⌊
R−1
r̄

⌋)
if Nr̄ >R− 1,

vq(N,R− 1) if Nr̄≤R− 1.

3. Set

Mq = max
(N,R)∈S

(
vq+1(N,R)− vq(N,R)

)
and mq = min

(N,R)∈S

(
vq+1(N,R)− vq(N,R)

)
.

If 0≤ Mq−mq
mq

≤ ε, go to step 4. Otherwise increment q by 1 and return to step 2.

4. For each (N,R)∈ S and i, i= 1, . . . ,M :

if Nr̄+ ri ≤R, choose

uεi (N,R)∈ arg max`

[
pi`

(
vq+1(N + 1,R) +wi`

)
+ (1− pi`)vq+1(N,R)

]
;

else write “capacity not available.” Stop.

5.4. Myopic and Optimal Static Pricing Policies

The above heuristics consider state-dependent (or dynamic) pricing policies. We also con-

sider the performance of two static pricing policies, myopic and optimal static pricing,

in which the same price is offered to all customers of a given class, i.e., the price is not

dependent on the system state. Under the myopic policy, the SP determines whether there

is sufficient capacity to admit the arriving class i customer. If not, the reject price (uiL) is

posted. If so, the SP posts the myopic price, which is the price that maximizes the immedi-

ate expected discounted revenue earned from admitting the customer. The myopic policy



Batur et al.: Dynamic Pricing of Wireless Internet
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)23

is a useful benchmark for evaluating the proposed dynamic pricing heuristics because it is

easy to compute and to implement, and has been studied in the previous literature.

In addition, we will evaluate the performance of the optimal static pricing policy, in which

we find the optimal constant price to charge to each customer class. Unfortunately, finding

the optimal static pricing policy is computationally challenging. The previous literature

on optimal static pricing policies (e.g., Gayon et al. (2009)) generally considers just a

single customer class, which requires optimization over a single dimension. In our setting,

however, the static pricing policy must specify a price for each customer class. To find the

optimal static pricing policy, we perform an exhaustive search, where the long-run average

value of a given pricing policy is evaluated using simulation, as described in Section 6.

When searching for the optimal price for customer class i, in order to ensure fair comparison

with the dynamic pricing policies, we start with the price set Ui, and then we exclude from

this set all prices that are less than the myopic price for class i. If we let USi denote the

set of remaining prices for class i, then the optimal static pricing policy has search space

with size |US1 | × |US2 | × . . .× |USM |, which can be quite large.

As for the N - and (N,R)-heuristic policies, the static policies specify only a pricing

policy. Hence, for implementation, we assume the bandwidth-based drop-off policy is used.

6. Experiments

In this section, we present the results of a numerical study, which we conducted in order

to: (1) obtain additional insights, beyond the analytical results provided above, on the

behavior of the optimal prices (Section 6.2); (2) test the performance of the static myopic

pricing policy relative to the optimal policy (Section 6.3); (3) test the performance of the

proposed dynamic pricing heuristics relative to the optimal dynamic pricing policy (Section

6.4) and the optimal static pricing policy (Section 6.5); and (4) evaluate the value of using

the optimal drop-off policy compared to the bandwidth-based drop-off policy (Section 6.6).

The analytical results presented in this paper were derived in the context of a discounted

MDP. However, because our MDP is unichain, all of the results also hold for the analogous

long-run average-value problems. Unichain implies that, given the use of any stationary

policy, there exists a state (N,R) = (0, . . . ,0) to which there is a positive probability of

returning within a finite number of transitions starting from any initial state. When γ = 0

in our MDP formulations, the VIA can be used to determine the optimal long-run average
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value (see Section 8.5 in Puterman (1994)). In the literature, the average-value criterion

is generally preferred when conducting numerical experiments because average value does

not depend on the initial state, and thus the numerical results are easier to interpret.

Therefore, in this section, we present numerical results using the average-value criterion.

To evaluate the value function under the heuristics, we relied on simulation. While the

proposed heuristics can be used to find the dynamic pricing policy for the aggregate state

space (which we use as our heuristic policy), the resulting value function does not represent

the long-run average profit from implementing the heuristic in the complete state-space

setting. Thus, we simulate the implementation of the heuristic dynamic pricing policies in

the full state-space setting to evaluate the value function. We ran each simulation for a

run length of 30 years with 40 replications. We report the simulated average value, which

is the average of the long-run average value estimates across the 40 replications.

6.1. Experiment Configurations

We first describe the three sets of experiments we conducted. In the first, we set the number

of the channel and customer classes such that the state space of the MDP is relatively small

and thus VIA can successfully find the optimal policy. We use this experiment to study

the behavior of the optimal prices and to compare the performance of the optimal policy

and the heuristic policies. In the second, we set the channel and customer classes to larger

values, which results in a larger state space, making it impossible to solve the VIA to find

the optimal policy. We use this experiment to compare the performance of the proposed

dynamic pricing heuristic policy to that of the (static) myopic policy and to determine

when the proposed heuristic offers the most value. In the third, we consider a realistically-

sized problem in which there are 32 distinct customer classes. We use this experiment to

further investigate the performance of the proposed dynamic pricing heuristic.

In all three sets of experiments, the price set is U = {1.0,1.1, . . . ,5.9,6.0}. To model the

price sensitivities, we use the same approach as GS, i.e., we calculate the price acceptance

probabilities as pi`(wi`) =
(

wi,max−wi`
wi,max−wi,min

)βi
, where wi,max = max` wi` and wi,min = min` wi`.

Here, larger βi implies that customer class i is more price sensitive.

6.1.1. Experiment 1 This set of experiments uses configurations with D = 2 channel

classes and M = 2 customer classes. We define three cases for the channel classes, which we

label as I, II and III. As shown in Table 1, the expected availability times of the channels,
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1/ω1 and 1/ω2, are identical for all three cases. However, the expected unavailability time

in channel class 1, 1/φ1, increases from case I to case III, while the opposite holds for 1/φ2.

Also, in all three cases, Rmax,2 is larger than Rmax,1. As a result, the expected capacity

increases from case I to III. This allows us to understand how the performance of the

optimal and heuristic policies changes as the expected capacity increases.

Table 1 Channel characteristics in Experiment 1

Channel class 1 Channel class 2

Cases Rmax,1 1/φ1 1/ω1 Rmax,2 1/φ2 1/ω2

I 1 1 3 5 8 3

II 1 4 3 5 4 3

III 1 8 3 5 1 3

To enable sensitivity analysis, we defined a set of sensitivity parameters, denoted by ∆j,

for j = 1, . . . ,5. In Experiment 1, we considered the ∆j values given in the first column of

Table 2. The parameters for customer class 1 were fixed to the configuration presented in

the second column of the table. The parameters for customer class 2 were varied according

to the formulas given in the third column of the table. Thus, we created a set of configura-

tions by changing the properties of customer class 2, while the properties of customer class

1 remain fixed. The configuration in which the (∆1,∆2,∆3,∆4,∆5) = (0.5,0.5,1.5,1,0.5) is

referred to as the customer base-case configuration.

Table 2 Customer characteristics in Experiment 1

Sensitivity parameters Customer class 1 Customer class 2

∆1 ∈ {0.25,0.5,1} r1 = 0.5 r2 = ∆1r1 ∈ {0.125,0.25,0.5}

∆2 ∈ {0.1,0.25,0.5} λ1 = 10 λ2 = ∆2λ1 ∈ {1,2.5,5}

∆3 ∈ {0.5,1,1.5} µ1 = 5 µ2 = ∆3µ1 ∈ {2.5,5,7.5}

∆4 ∈ {1,2,10} K = max{2nd largest w1j,2
nd largest w2j}+ ∆4

∆5 ∈ {0.1,0.5,1} β1 = 3 β2 = ∆5β1 ∈ {0.3,1.5,3}

A full-factorial design based on the parameter values presented in Tables 1 and 2 gives

729 distinct configurations for Experiment 1. Because the state spaces of these configura-

tions are reasonably small, the VIA can be used to find the optimal policy.
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6.1.2. Experiment 2 These experiments use configurations with D= 3 channel classes

and M = 5 customer classes. The channel class characteristics are shown in Table 3.

Table 3 Channel characteristics in Experiments 2 and 3

Parameters Channel class 1 Channel class 2 Channel class 3

Rmax 1 5 4

1/ω 3 8 4

1/φ 8 3 4

The parameters for the five customer classes are shown in Table 4. We do not vary r in

the experiments. However, the arrival rates, λ, service rates, µ, and price sensitivities, β,

are assigned in either ascending or descending order, as specified in Table 4. For example,

in the ascending setting for λ, class 1 is assigned an arrival rate equal to 16, while class 5

is assigned an arrival rate equal to 20. In contrast, in the descending setting for λ, class 1

is assigned an arrival rate equal to 20, while class 5 is assigned an arrival rate equal to 16.

The overall service rates are also controlled by ∆3 ∈ {4,2,1,0.5}, where smaller values of

∆3 represent a smaller ratio of capacity to demand rate. The drop-off fee is generated in a

similar way as for Experiment 1, except that there are five customer classes, i= 1, . . . ,5,

and we fix ∆4 = 1. We consider a full factorial design for the customer class characteristics.

Thus, in total, Experiment 2 consists of a set of 32 (= 2× 4× 2× 2) configurations.

Table 4 Customer characteristics in Experiment 2

Parameters Ascending Descending

r [0.9,0.7,0.5,0.3,0.1]

λ [16,17,18,19,20] [20,19,18,17,16]

µ ∆3× [1,2,3,4,5] ∆3× [5,4,3,2,1]

β [1,1.5,2,2.5,3] [3,2.5,2,1.5,1]

6.1.3. Experiment 3 In practice, it is likely that the number of customer classes will

be significantly larger than the five classes considered in Experiment 2. Therefore, we

constructed a single configuration with a more realistic number of distinct customer classes.

Customer classes are defined according to the customers’ bandwidth requirement, arrival
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Figure 1 Optimal discounted prices w∗
1 (customer base-case and channel case I configuration in Experiment 1)

rate, service rate, and price sensitivity. We considered ri ∈ {0.0625,0.125,0.25,0.5}, λi ∈

{10,50}, µi ∈ {12.5,37.5}, and βi ∈ {0.9,9}. Our experiment used the M = 32 (= 4× 2×

2 × 2) customer classes that result from considering all possible combinations of these

parameter values. In this experiment, we used the D= 3 channel classes given in Table 3.

6.2. Properties of the Optimal Dynamic Pricing Policies

In Figure 1, we show how the optimal discounted price for customer class 1, w∗1, changes as

the state changes, for the customer base-case configuration and channel case I configuration

in Experiment 1. For example, in Figure 1(a), we see how w∗1 changes as N1 and N2 change

when R1 = 1 and R2 = 4. When N1 and N2 are large relative to R1 and R2, the reject price

is posted. This is because either i) the remaining capacity is not sufficient to admit the

arriving class 1 customer; or ii) the remaining capacity is sufficient, but the optimal policy



Batur et al.: Dynamic Pricing of Wireless Internet
28Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

reserves that remaining capacity for a potentially more profitable future customer. The

lowest price posted is the myopic price, consistent with Corollary 1.

Although Figures 1(a) and 1(c) suggest that the optimal prices are nondecreasing in N1

and N2, the results of other configurations indicate that this does not always hold:

Observation 1. The optimal discounted prices are usually, but not always, nondecreas-

ing in the number of customers that have been admitted to the system.

If we look at all 729 configurations that we tested, we find 486 configurations for which

w∗i , in some states, decreases when Ni increases. These violations occur for configurations

in which r1 > r2, and they always occur for customer class 2. When we look at the specific

violations, we observe that w∗2 in states where, for example, N2 = 0 is sometimes larger than

that in a state with N2 = 1. We believe this is mainly due to the difference in the bandwidth

requirements of the two customer classes, although the different service rates may also play

a role, as explained in Theorem 3. For example, suppose r1 = 2r2. In this case, when N2

is an even number, such as N2 = 0, accepting a customer from class 2 may in the future

take the model to a state in which the remaining capacity is enough only to admit a class

2 customer, but not enough to admit a class 1 customer. A similar issue does not apply

when N2 is odd, such as N2 = 1. Örmeci and Burnetas (2004) find similar violations of

monotonicity for loss systems in which jobs arrive in batches of random size when partial

batch acceptance is not allowed and the number of servers is fixed. Specifically, they find

examples in which the system may reject arriving jobs in order to wait for a job with a

batch size that will just make use of all of the available resources (servers).

Corollary 2 indicates that the optimal discounted prices are nonincreasing in Rd, i.e.,

w∗i (N,R)≥w∗i (N,R + eDd ) for the case of similar customer classes. Our numerical experi-

ments indicate that this result holds in general, as shown in Figures 1(b) and 1(d):

Observation 2. The optimal discounted prices are nonincreasing in the number of

available channels.

Finally, the figures in Appendix G show how the optimal average values change as each

sensitivity parameter, ∆j, changes in Experiment 1. The results are consistent with the

structural results proven in Section 4.
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6.3. Performance of the Myopic Pricing Policy

We next consider the performance of the myopic policy relative to the optimal policy.

Figure 2 presents the simulated average values of the optimal and myopic policies for the

customer base-case configuration in Experiment 1 as the arrival rate of customer class 1, λ1,

decreases and the channel-class case changes. As expected, the average value of the optimal

policy is always larger than the average value of the myopic policy. In addition, Observation

3 provides insights that are critical for the dynamic spectrum access application setting,

in which scarcity of capacity (bandwidth) is likely to be a significant issue.

Observation 3. The myopic policy offers performance similar to that of the optimal

policy when the customer arrival rate is small and capacity is high (recall that the expected

capacity increases from case I to III). Performance degradation from the myopic policy is

largest when the ratio of capacity to demand rate is low.

I II III

0

0.5

1

1.5

Figure 2 Simulated average values across 40 replications (customer base-case configuration in Experiment 1)

Figure 2 shows the customer base-case configuration. When all configurations are con-

sidered, the percentage value loss of the myopic policy with respect to the optimal policy

ranges from 1.1% to 385.3%, with an average of 36.2%.

In order to explain the performance gap between the optimal and myopic policies, we

analyzed the customer rejection ratios for the optimal and myopic policies, as shown in

Figure 3. The customer rejection ratio is the percentage of customers that reject the posted

price when there is sufficient capacity in the system. We have the following observation:

Observation 4. The customer rejection ratios for the myopic policy are always smaller

than those for the optimal policy. The rejection ratios for the myopic policy decrease and
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Figure 3 Rejection ratios averaged across 40 replications (customer base-case configuration in Experiment 1)

deviate more from those of the optimal policy as the customer arrival rate increases and

as capacity decreases (recall that the expected capacity increases from case I to III).

The intuition behind these results is that the myopic policy always posts the myopic

price if capacity exists to admit the arriving customer. This leads to lower rejection ratios,

which ultimately leads to a high rate of customer drop-off, as well as a high rate of no-

capacity rejection, i.e., rejections that occur when there is no capacity available in the

system to accept the arriving customer. In contrast, the optimal policy posts prices that

are higher than the myopic prices when doing so is necessary to prevent congestion and

future customer drop-offs. This leads to higher rejection ratios, but also higher profits.

6.4. Performance of the Proposed Dynamic Pricing Heuristics

We next compare the performance of the three dynamic pricing heuristics, the N -, R-, and

(N,R)-heuristics for Experiment 1. The average value estimated from the simulation of the

heuristic policies is compared with the optimal average value, v̄, obtained from the VIA.

We report two kinds of percentage value losses. When the optimal policy is simulated,

the percentage value loss, X, is defined as X = (v̄− V̄opt)/v̄, where V̄opt is the average

value obtained from simulation of the optimal policy. This percentage value loss shows

the accuracy of the simulation model. In contrast, when one of the heuristic policies is

simulated, the percentage value loss, X, is defined as X = (v̄− V̄heu)/v̄, where V̄heu is the

average value obtained from simulation of the heuristic policy. This percentage value loss

shows the performance of the evaluated heuristic compared to optimal policy. We compute
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the percentage value loss for each of the 729 configurations and use these 729 observed

values to draw an empirical cumulative distribution function (CDF), i.e., Pr(X ≤ x).
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Figure 4 Empirical CDF of percentage value loss in Experiment 1 (across 40 replications)

The empirical CDFs for the optimal policy and the heuristics are shown in Figure 4. For

the optimal policy, the percentage error induced by random simulations is close to zero,

which validates the simulation model. The CDFs of the heuristics are always to the right

of that for the optimal policy. The differences between the CDFs of the heuristics and the

optimal policy show the value loss due to aggregating customer and/or channel classes.

Observation 5. The performance of the R-heuristic is close to that of the optimal

policy, i.e., aggregation of channel classes results in only a slight performance degradation.

The N - and (N,R)-heuristics result in more significant performance degradation. While

they provide similar performance in most configurations, in 10% of the configurations the

(N,R)-heuristic results in larger loss than the N -heuristic due to the fact that it aggregates

channel classes, while the N -heuristic does not. Overall, the results indicate that aggregating

customer classes results in a greater loss in value than aggregating channel classes.

In Appendix H, the CDFs for each of the heuristics are analyzed for six key problem

parameters in order to demonstrate which problem parameters have the greatest impact

on the performance of the heuristics. The following observation summarizes the results:

Observation 6. The performance of the R-heuristic is robust to the changes in the key

parameters. The performance of the N - and (N,R)- heuristics is not affected by the service

rate, arrival rate, and price sensitivity. However, the heuristic performance degrades when

the bandwidth requirement for class 2 customers is small (which implies that there is a
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significant difference in bandwidth requirements for the classes), when the drop-off fee is

large, and in channel-class case I (which represents low expected capacity).

While Observation 5 states that the R-heuristic out-performs the N - and (N,R)-

heuristics, it is also important to consider computational complexity. In practice, it is likely

that there will be many customer classes, which will lead to a high-dimension state space.

In that case, channel-class aggregation may not be sufficient to enable implementation of

VIA, i.e., customer-class aggregation may also be needed to reduce the size of the state

space to a feasible level. Thus, in the remainder of the paper, we focus on the performance

of the (N,R)-heuristic, which combines both customer- and channel-class aggregation.

Table 5 Percentage value gain of (N,R)-heuristic over myopic policy in Experiment 2 (across 40 replications)

∆3 = 4 ∆3 = 2 ∆3 = 1 ∆3 = 0.5

Avg. Std. Err. Avg. Std. Err. Avg. Std. Err. Avg. Std. Err.

0.3% 0.7% 5.2% 2.2% 31.3% 5.5% 998.7% 723.3%

We next evaluate the performance of the (N,R)-heuristic for Experiment 2, which has

a larger state space. For these configurations, it is computationally infeasible to solve VIA

to find the optimal policy. Therefore, to evaluate the performance of the (N,R)-heuristic

in Experiment 2, we compare it to the non-state-dependent myopic policy. We report the

percentage value gain of the heuristic policy over the myopic policy, which is defined as

(V̄heu − V̄myo)/V̄myo, where V̄heu and V̄myo are the simulated average values of the (N,R)-

heuristic and myopic policies, respectively. Table 5 shows the average of this percentage

value gain for each of the four levels of capacity (∆3) in Experiment 2. The table also

reports the corresponding standard errors. Our main results are as follows:

Observation 7. Using the (N,R)-heuristic pricing policy adds the most value relative

to the myopic policy when capacity is scarce (∆3 small), while the value of using the (N,R)-

heuristic is minimal when capacity is abundant (∆3 large).

The dynamic (N,R)-heuristic and the static myopic policy differ significantly in terms

of how they manage capacity. This can be seen by considering the customer rejection ratio,

no-capacity rejection ratio, and drop-off ratio in Experiment 2, as shown in Figure 5. The

figure shows results for customer classes 1 and 5; a similar pattern holds for the other

classes. Figures 5(b), 5(c), 5(e), and 5(f) use a logarithmic scale to clearly show the results.
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Figure 5 Customer rejection ratio, no-capacity rejection ratio, and drop-off ratio averaged across 40 replications

in Experiment 2 (The configuration of all parameters are in descending order in Table 4).

Observation 8. As the ratio of capacity to demand rate decreases (as ∆3 decreases):

• Under the myopic policy, the reject prices are offered more often due to a lack of

capacity. This leads to an increase in no-capacity rejection ratios, a decrease in customer

rejection ratios, and an increase in the drop-off ratios.

• Under the (N,R)-heuristic, higher prices are posted, leading to the higher customer

rejection ratios. Since more customers are rejecting these higher prices at admission, the

no-capacity rejection ratio and the drop-off ratio are less than those for the myopic policy.

Overall, a higher value is achieved.

Observations 7 and 8 demonstrate the importance of dynamically managing pricing and

admission, by using the dynamic (state-dependent) (N,R)-heuristic policy rather than the

static myopic policy, particularly in settings with scarce capacity.

Finally, we also compared the performance of the (N,R)- and myopic heuristics for

Experiment 3, which has a realistically-sized state space. We found that the simulated

average value of the (N,R)-heuristic was 22.3% higher than that of myopic policy.

6.5. Performance of the Optimal Static Pricing Policy

Finally, we evaluate the performance of the optimal static pricing policy. As described in

Section 5.4, finding the optimal static prices is computationally challenging. Therefore, we
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determined the optimal static pricing policy for 27 of the 729 experimental configurations

defined in Experiment 1. For these problems, we found that the percentage value loss for

each heuristic, relative to the optimal average value, was as follows: 1.69% for N -heuristic,

0.51% for the R-heuristic, 2.42% for the (N,R)-heuristic, 30.84% for the myopic policy,

and 10.23% for the optimal static pricing policy. In all 27 configurations, all of the dynamic

pricing heuristics outperformed the optimal static pricing policy. From these experiments,

we have the following observation:

Observation 9. When capacity is scarce, using dynamic pricing to manage admission

of customers becomes essential.

Dynamic pricing adds value relative to static pricing when customers are highly price sen-

sitive because dynamic pricing enables the SP to offer lower prices when the remaining

capacity is sufficiently large. Overall, we conclude that, in practical settings for which

capacity is expected to be tight, the dynamic pricing heuristics provide both better per-

formance and reduced computational time compared to the optimal static pricing policy.

6.6. Comparison of Optimal and Bandwidth-Based Drop-Off Functions

As discussed in Section 4, the optimal drop-off policy is not identical to the bandwidth-

based drop-off policy. However, the latter is easier to compute and to implement than

the former. In addition, the proposed (N,R)-heuristic uses the bandwidth-based drop-off

policy for implementation. Therefore, we used Experiment 1 to study how much the SP

could lose from implementing the bandwidth-based drop-off policy, rather than the optimal

drop-off policy. To do so, we compared the average value when the MDP in Section 3.2 is

solved using the optimal drop-off policy compared to when the MDP is solved using the

bandwidth-based drop-off policy. The results are summarized in the following observation:

Observation 10. The percentage value loss from using the bandwidth-based drop-off

policy, rather than the optimal drop-off policy, is less than 0.4% for each of the 729 con-

figurations in Experiment 1.

7. Conclusion

Inspired by new developments in dynamic spectrum access solutions for improved man-

agement of wireless networks, we study the optimal dynamic pricing policy for a service
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provider who operates in a setting in which both demand (customers wanting to access the

Internet) and capacity (available bandwidth) are stochastic. We characterize the behavior

of the optimal pricing policy as a function of the system state (number of customers in the

system and number of available channels) and of the input parameters. Further, for the

setting in which both customer arrivals and capacity are stochastic, we have demonstrated

the value of using a dynamic, i.e., state-dependent, pricing policy compared to static, i.e.,

non-state-dependent, policies. The previous literature, i.e., GS, has studied systems with

stochastic customer arrivals and fixed capacity. This previous work has focused on ana-

lytically and numerically characterizing the conditions under which static myopic policies

perform optimally or close-to-optimally. Like this previous work, we find that using the

optimal dynamic pricing policy, rather than the myopic policy, becomes more critical when

capacity is scarce. In addition, when capacity is scarce, the optimal pricing policy outper-

forms the myopic policy in terms of the no-capacity rejection ratios and customer drop-off

ratios, which can be viewed as measures of quality-of-service and access.

Compared to the setting studied in GS, our problem setting is more dynamic, i.e., our

setting has dynamic capacity, as channels become available and unavailable for use. There-

fore, identifying good state-dependent heuristic pricing policies, i.e., policies that will adjust

the price based on the actual capacity, as well as the number of customers currently being

served, will be of greater value for our problem setting than for the GS setting with constant

capacity. Thus, we develop and propose the (N,R)-heuristic, in which the pricing policy is

dependent on the aggregate capacity, as well as the aggregate number of customers being

served. While still state-dependent, this policy is computationally much more tractable,

and easier to implement in practical settings, than both the optimal dynamic pricing pol-

icy and the optimal static pricing policy. We find that the (N,R)-heuristic can provide

a significant performance improvement relative to the myopic and optimal static pricing

policies, particularly when capacity is scarce. In the dynamic spectrum access application,

scarcity of capacity (bandwidth) is likely to be a significant issue. Thus, in practice, the

dynamic heuristic pricing policy is likely to provide significantly improved profits for the

service provider, as well as improved quality-of-service (lower drop-off ratios) and access

(lower no-capacity rejection ratios), compared to the static pricing policies.
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Gayon, J.-P., I. Talay-Deḡirmenci, F. Karaesmen, L. Örmeci. 2009. Optimal pricing and production policies

of a make-to-stock system with fluctuating demand. Probability in the Engineering and Informational

Sciences, 23, 205-230.

Gurvich, I., M. Lariviere, A. Moreno-Garcia. 2017. Operations in the on-demand economy: Staffing services

with self-scheduling capacity. Working paper. Retrieved from http://www.kellogg.northwestern.

edu/faculty/lariviere/research/GLM_Revised_WithNames.pdf.

Harrison, K., S. M. Mishra, A. Sahai. 2010. How Much White-Space Capacity Is There? Proc. IEEE DySPAN

2010, 1-10.

Huang, H.-S., S.-C. Hu, P.-H. Lee, Y.-C. Tseng. 2016. An adaptive Paris Metro Pricing scheme for mobile

data networks. International Journal of Network Management, 26, 422-434.

Ibrahim, R. 2017. Managing queueing systems where capacity is random and customers are impatient.

Working paper. Retrieved from http://www.roubaibrahim.com/SelfSchedule.pdf.

LTE-U Forum. 2015. LTE-U Technical Report, Coexistence Study for LTE-U SDL. Retrieved from

http://www.lteuforum.org/uploads/3/5/6/8/3568127/lte-u_forum_lte-u_technical_report_

v1.0.pdf.

Lippman, S. 1975. Applying a new device in the optimization of exponential queueing systems. Operations

Research, 23 (4), 687-710.

Miller, B. L. 1969. A queueing reward system with several customer classes. Management Science, 16 (3),

234-245.

Mutlu, H., M. Alanyali, D. Starobinski. 2009. Spot pricing of secondary spectrum access in wireless cellular

networks. IEEE/ACM Transactions on Networking, 17 (6), 1794-1804.
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A. Proof of Theorem 1

Let Ai1 and Ai2 be two opportunity costs related for customer class i such that Ai1 >Ai2.

Define the index of the optimal price by `∗i (Ai) = arg max`[pi`(−Ai +wi`)]. Then

g∗i (Ai1) = pi`∗i (Ai1)(−Ai1 +wi`∗i (Ai1))≤ pi`∗i (Ai1)(−Ai2 +wi`∗i (Ai1))

≤ pi`∗i (Ai2)(−Ai2 +wi`∗i (Ai2)) = g∗i (Ai2).

Hence, g∗i (Ai) is nonincreasing in Ai.

Next, we want to show that w∗i (Ai) is nondecreasing in Ai. Then we need to show that

`∗i (Ai1)≥ `∗i (Ai2). We prove this result by contradiction, i.e., we assume `∗i (Ai1)< `∗i (Ai2),

which implies pi`∗i (Ai1) > pi`∗i (Ai2). By definition, `∗i (Ai1) and `∗i (Ai2) satisfy the following:

i. pi`∗i (Ai1)(−Ai1 + wi`∗i (Ai1)) ≥ pi`∗i (Ai2)(−Ai1 + wi`∗i (Ai2)) and ii. pi`∗i (Ai2)(−Ai2 + wi`∗i (Ai2)) ≥
pi`∗i (Ai1)(−Ai2 +wi`∗i (Ai1)). These two imply that

Ai1(pi`∗i (Ai1)− pi`∗i (Ai2))≤ pi`∗i (Ai1)wi`∗i (Ai1)− pi`∗i (Ai2)wi`∗i (Ai2) ≤Ai2(pi`∗i (Ai1)− pi`∗i (Ai2)),

which implies Ai1 ≤Ai2 due to pi`∗i (Ai1)− pi`∗i (Ai2) > 0. Thus, we have a contradiction.

B. Proof of Theorem 2

Lemma B1. For c∈ZM+ , f(N + c,R)− f(N,R) + cK ≥ 0, where (N + c)′r≤R.

Proof of Lemma B1. We use induction in this proof. When c= eMi , we get

f(N + eMi ,R)− f(N,R) +K ≥ 0. (B.1)

In the following, we show that Equation (B.1) holds. In the Hi function in Equation

(4), let `1 = arg max`

[
pi`

(
f(N + eMi ,R) + wi` − f(N,R)

)
+ f(N,R)

]
. This implies that

f(N+eMi ,R)+wi`1−f(N,R)≥ 0. We can replace wi`1 by K because wi`1 <K when `1 <L

by Assumption 3. Hence, Equation (B.1) holds.

Now, assume that f(N+c−eMi ,R)−f(N,R)+(c−1)K ≥ 0. holds. Then we get f(N+

c− eMi ,R)≥ f(N,R)− (c− 1)K. From Equation (B.1), we get f(N + c,R)− f(N + c−
eMi ,R)+K ≥ 0. From the previous two inequalities, we get f(N+c,R)−f(N,R)+cK ≥ 0.

This completes the proof by induction.

Proof of Theorem 2.1. From Equation (6), we define the following H function

H(N,R) =
M∑
i=1

µiNif(N− eMi ,R) +
D∑
d=1

φd(Rmax,d−Rd)f(N,R + eDd ) +
D∑
d=1

ωdRd

×Gd(f(N,R)) +
[ M∑
i=1

µi

(⌊Rmax

ri

⌋
−Ni

)
+

D∑
d=1

(
φdRd +ωd(Rmax,d−Rd)

)]
f(N,R). (B.2)
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Consider a function f(N,R) which is nonincreasing in Nj, j = 1, . . . ,M . The image of

this function under T is given in Equation (6). Because λi, i= 1, . . . ,M , are all positive, it

is sufficient to show that Hj(f(N,R)) and Hk(f(N,R)), k= 1, . . . ,M , j 6= k, in Equation

(4); Gd(f(N,R)), d = 1, . . . ,D, in Equation (5); and H(N,R) in Equation (B.2) are all

nonincreasing in Nj, j = 1, . . . ,M . Below, we only show how we study Hj(f(N,R)) and

Gd(f(N,R)). We skip some of the details because the derivations are analogous.

We study Hj(f(N,R)) in the following two cases. i. (N + eMj )′r≤R< (N + 2eMj )′r and

ii. (N + 2eMj )′r ≤ R. In the second case, for example, we let `2 = arg max`

[
pj`

(
f(N +

2eMj ,R) +wj`

)
+ (1− pj`)f(N + eMj ,R)

]
. Then

Hj(f(N + eMj ,R))−Hj(f(N,R))≤ pj`2
(
f(N + 2eMj ,R) +wj`2

)
+ (1− pj`2)f(N + eMj ,R)

−
[
pj`2

(
f(N + eMj ,R) +wj`2

)
+ (1− pj`2)f(N,R)

]
= (1− pj`2)

(
f(N + eMj ,R)− f(N,R)

)
+ pj`2

(
f(N + 2eMj ,R)− f(N + eMj ,R)

)
.

The expression above is less than or equal to zero because f is nonincreasing in Nj.

We study Gd in the following three cases: i. (N + eMj )′r≤R− 1; ii. R− 1< (N + eMj )′r

and N′r≤R− 1; and iii. R− 1<N′r. In the third case, for example, we let

N̂1 = arg max
N̂

[
f(N̂,R− eDd )−K

M∑
i=1,i 6=j

(Ni− N̂i)−K(Nj + 1− N̂j)
]
,

where N′r>R− 1, N̂′r≤R− 1, N̂i ≤Ni, i= 1, . . . ,M , i 6= j, and N̂j ≤Nj + 1. We need to

consider two sub-cases: i. N̂1j =Nj + 1 and ii. N̂1j ≤Nj. When N̂1j =Nj + 1, we get

Gd(f(N + eMj ,R))−Gd(f(N,R))≤ f(N̂1,R− eDd )−K
M∑

i=1,i 6=j

(Ni− N̂1i)−K(Nj + 1− N̂1j)

−
[
f(N̂1− eMj ,R− eDd )−K

M∑
i=1,i 6=j

(Ni− N̂1i)−K(Nj − (N̂1j − 1))
]

= f(N̂1,R− eDd )− f(N̂1− eMj ,R− eDd ).

The expression above is less than or equal to zero because f is nonincreasing in Nj.

When N̂1j ≤Nj, we get

Gd(f(N + eMj ,R))−Gd(f(N,R))≤ f(N̂1,R− eDd )−K
M∑

i=1,i 6=j

(Ni− N̂1i)−K(Nj + 1− N̂1j)



Batur et al.: Dynamic Pricing of Wireless Internet
C.0Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

−
[
f(N̂1,R− eDd )−K

M∑
i=1

(Ni− N̂1i)
]

= f(N̂1,R− eDd )−K
M∑
i=1

(Ni− N̂1i)−K − f(N̂1,R− eDd ) +K
M∑
i=1

(Ni− N̂1i) =−K.

Proof of Theorem 2.2. The proof is analogous to the previous proof.

Proof of Theorem 2.3. The statement can be proven by a sample path argument.

C. Proof of Theorem 3

Consider a function f(N,R) which satisfies Equation (9). The image of this function

under T is given in Equation (6). Because λi are all positive, it is sufficient to show that

Hi(f(N,R)) in Equation (4), Gd(f(N,R)), d= 1, . . . ,D, in Equation (5), and H(N,R) in

Equation (B.2) also satisfy a relationship similar to Equation (9). Below, we only show

how we study H(N,R). We skip some of the details because the derivations are analogous.

H(N + eMj ,R)−H(N + eMk ,R)

=

M∑
i=1,i 6=j,k

µiNi

(
f(N + eMj − eMi ,R)− f(N + eMk − eMi ,R)

)
+

D∑
d=1

φd(Rmax,d−Rd)
(
f(N + eMj ,R + eDd )− f(N + eMk ,R + eDd )

)
+

D∑
d=1

ωdRd

(
Gd(f(N + eMj ,R))−Gd(f(N + eMk ,R))

)
+

M∑
i=1,i 6=j,k

µi

(⌊Rmax

ri

⌋
−Ni

)(
f(N + eMj ,R)− f(N + eMk ,R)

)
+

D∑
d=1

(φdRd +ωd(Rmax,d−Rd))
(
f(N + eMj ,R)− f(N + eMk ,R)

)
+µk

(⌊Rmax

rk

⌋
− (Nk + 1)

)(
f(N + eMj ,R)− f(N + eMk ,R)

)
+µj

(⌊Rmax

rj

⌋
− (Nj + 1)

)(
f(N + eMj ,R)− f(N + eMk ,R)

)
+µkNk

(
f(N + eMj − eMk ,R)− f(N,R)

)
+µjNj

(
f(N,R)− f(N + eMk − eMj ,R)

)
+µj

(
f(N + eMj ,R)− f(N + eMk ,R)

)
+ (µk−µj)

(
f(N + eMj ,R)− f(N,R)

)
.
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In the expression above, µkf(N + eMj ,R) and µjf(N + eMk ,R) are added and subtracted.

The expression above is less than or equal to zero by Equation (9) when µj ≤ µk, Nj + 1≤

bRmax/rjc, and Nk + 1≤ bRmax/rkc.

D. Proof of Theorem 4

Assume that in state (N,R), a channel becomes unavailable. If the bandwidth-based drop-

off policy recommends transitioning to state (N− c,R− eDd ) where c ∈ ZM+ , the following

must hold: i. N′r > R− 1; ii. (N− c)′r ≤ R− 1; and iii. (N− c + eMi )′r > R− 1 for all

i= 1, . . . ,M . These imply that at least c customers must be dropped. If the optimal drop-off

policy recommends transitioning to state (N− ĉ,R− eDd ), then ĉ < c cannot hold.

Next, we will prove by contradiction that ĉ > c cannot hold. Assume that ĉ > c. According

to the optimal drop-off function Gd in Equation (5), v(N− ĉ,R−eDd )−Kĉ≥ v(N−c,R−

eDd )−Kcmust hold. This is equivalent to v(N−c,R−eDd )−v(N− ĉ,R−eDd )+K(ĉ−c)≤ 0.

This result contradicts Lemma B1 when ĉ > c. Hence, ĉ > c cannot hold. As a result of

these, we conclude that ĉ= c must hold.

E. Proof of Theorem 6

Proof of Theorem 6.1. Suppose that the arrival rate for class m is changed from λm

to λ̂m, λ̂m > λm. Define T (λm) and T (λ̂m) as the dynamic programming operators. Let

v(N,R, λm) and v(N,R, λ̂m) be the corresponding solutions to the MDP optimality equa-

tion, so that v(N,R, λm) = T (λm)v(N,R, λm) and v(N,R, λ̂m) = T (λ̂m)v(N,R, λ̂m). We

will show that

v(N + 1,R, λ̂m)− v(N,R, λ̂m)≤ v(N + 1,R, λm)− v(N,R, λm). (E.1)

This would imply that the optimal discounted price for a class i customer, w∗i (N,R), is a

nondecreasing function of the arrival rate λj, j = 1, . . . ,M , due to Theorem 1.

We define the sequence of approximations for the optimal discounted profit func-

tion vq(N,R, λ̂m), q ≥ 0, such that vq(N,R, λ̂m) = T (λ̂m)vq−1(N,R, λ̂m), q ≥ 1, and

v0(N,R, λ̂m) = v(N,R, λm). Given the contracting nature of T (λ̂m), v(N,R, λ̂m) =

limq→∞ vq(N,R, λ̂m). Thus, Equation (E.1) will be proven if we show that vq+1(N +

1,R, λ̂m)−vq+1(N,R, λ̂m)≤ vq(N +1,R, λ̂m)−vq(N,R, λ̂m). This can be proven by induc-

tion for which the details we skip because of space limitations.

The proofs of Theorems 6.2 and 6.3 are analogous to the proof of Theorem 6.1.
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F. Proof of Theorem 7

Suppose by contradiction that w∗j (N,R) < w∗k(N,R) for some (N,R). Let `1 =

arg max`

[
pj`

(
f(N + 1,R) +w`

)
+ (1− pj`)f(N,R)

]
and `2 = arg max`

[
pk`

(
f(N + 1,R) +

w`

)
+ (1− pk`)f(N,R)

]
. Then let w∗j (N,R) = w`1 and w∗k(N,R) = w`2. When w`1 < w`2,

`1 < `2 by definition; and pj`1 > pj`2 and pk`1 > pk`2 by Assumption 2. From the definition

of `1, we get pj`1

(
f(N + 1,R)− f(N,R) +w`1

)
≥ pj`2

(
f(N + 1,R)− f(N,R) +w`2

)
; and

then because pj`1 > pj`2, we have

f(N,R)− f(N + 1,R)≤ (pj`1w`1 − pj`2w`2)/(pj`1 − pj`2). (F.1)

From the definition of `2, we get pk`2(f(N + 1,R)− f(N,R) +w`2)≥ pk`1(f(N + 1,R)−

f(N,R) +w`1); and then because pk`1 > pk`2, we have

f(N,R)− f(N + 1,R)≥ (pk`1w`1 − pk`2w`2)/(pk`1 − pk`2). (F.2)

From Equations (F.1)-(F.2), we get (pk`1w`1 − pk`2w`2)/(pk`1 − pk`2) ≤ (pj`1w`1 −

pj`2w`2)/(pj`1 − pj`2), which implies pj`2/pk`2 ≤ pj`1/pk`1. This contradicts the given condi-

tion in the paper which says pj`2/pk`2 > pj`1/pk`1 when `1 < `2. Hence, w∗j (N,R)≥w∗k(N,R)

for all (N,R) must hold.

G. Sensitivity Analysis of the Optimal Policy

Here, we present sensitivity analysis results for the optimal average values, v̄, obtained

from the VIA in Experiment 1. In Figure G.1, we show how the normalized optimal values

change as each sensitivity parameter, ∆j, changes. We only show 18 representative lines out

of the 729 configurations. The remaining lines show similar behavior. Here, normalization

of the optimal value of a configuration is performed with respect to the optimal value of

the configuration in which the relevant ∆j (i.e., the ∆j shown in the x-axis label) is set

to its smallest value. For example, in Figure 1(a), the normalized v̄ is (v̄c− v̄b)/v̄b, where

∆1 ∈ {0.25,0.5,1} for configuration c and ∆1 = 0.25 for configuration b. The purpose of the

normalization is to have all lines start from the same origin in the same figure. This way,

we can more clearly see how each line behaves as ∆j changes. The results are consistent

with the structural results proven in Section 4.
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Figure G.1 Sensitivity analysis of the normalized optimal average values from the VIA in Experiment 1

H. Sensitivity Analysis of the Proposed Heuristic Policies
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Figure H.1 Empirical CDFs of the percentage value loss of the R-heuristic categorized by r2, µ2, λ2, β2, K, and

channel-class case (across 40 replications in Experiment 1).
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Figure H.2 Empirical CDFs of the percentage value loss of the N- and (N,R)-heuristics categorized by µ2, λ2,

and β2 (across 40 replications in Experiment 1).
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Figure H.3 Empirical CDFs of the percentage value loss of the N- and (N,R)-heuristics categorized by r2, K,

and channel-class case (across 40 replications in Experiment 1).
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