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(1) Problem Definition: Inspired by new developments in dynamic spectrum access, we study the dynamic

pricing of wireless Internet access when demand and capacity (bandwidth) are stochastic. (2) Academic

/ Practical Relevance: The demand for wireless Internet access has increased enormously. However, the

spectrum available to wireless service providers is limited. The industry has thus altered conventional license-

based spectrum access policies through unlicensed spectrum operations. The additional spectrum obtained

through these operations has stochastic capacity. Thus, the pricing of this service by the service provider has

novel challenges. The problem considered in this paper is therefore of high practical relevance and new to

the academic literature. (3) Methodology: We study this pricing problem using a Markov Decision Process

model in which customers are posted dynamic prices based on their bandwidth requirement and the available

capacity. (4) Results: We characterize the structure of the optimal pricing policy as a function of the system

state and of the input parameters. Since it is impossible to solve this problem for practically large state

spaces, we propose a heuristic dynamic pricing policy that performs very well, particularly when the ratio

of capacity to demand rate is low. (5) Managerial Implications: We demonstrate the value of using a

dynamic heuristic pricing policy compared to the myopic and optimal static policies. The previous literature

has studied similar systems with fixed capacity and has characterized conditions under which myopic policies

perform well. In contrast, our setting has dynamic (stochastic) capacity, and we find that identifying good

state-dependent heuristic pricing policies is of greater importance. Our heuristic policy is computationally

more tractable, and easier to implement, than the optimal dynamic and static pricing policies. It also provides

a significant performance improvement relative to the myopic and optimal static policies when capacity is

scarce, a condition that holds for the practical setting which motivated this research.
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1. Introduction

Wireless networks have revolutionized public life, especially following the invention of

smartphones in 2007. It is estimated that by 2020, mobile data traffic will grow by a factor

of ten, with a 1000−fold increase in demand in certain urban areas (Beltran et al. 2016),

while the number of connected mobile devices is expected to reach 11.6 billion (Cisco
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VNI 2016, Feb. 3). These increased demands place a significant burden on mobile service

providers (SPs) because of the scarcity of available wireless spectrum.

Today’s wireless networks are characterized by a fixed spectrum assignment policy, where

the resource, i.e., the spectrum, is allocated to users, such as government and broad-

casters, in a license-based manner according to national policies, technical characteristics,

and international agreements. While SPs try to utilize their share, a large portion of the

assigned spectrum is used sporadically, and geographical variations in the utilization of

assigned spectrum range from 15% to 85% (FCC Report 2002). This leads to the spectrum

crisis, in which access policies to spectrum are questioned, e.g., Chen (2012, April 17).

The wireless industry has been altering conventional license-based spectrum access poli-

cies through unlicensed spectrum operational approaches. The most prominent solution

has been WiFi, which exclusively operates on unlicensed spectrum (e.g., 2.4 GHz, 5 GHz).

More recently, the spectrum crisis has forced government agencies to adopt unlicensed

spectrum operational approaches for other purposes. This leads to dynamic spectrum access

(DSA), in which resources change dynamically with respect to the usage of the shared,

unlicensed spectrum by several users. Examples of unlicensed spectrum operation are:

TV White Space: TV channels have traditionally been allocated to broadcast companies

throughout the nation. Due to population density dynamics, not all TV channels are used

in all locations, e.g., while broadcast companies use all TV channels in locations such as

Manhattan, few channels are used in less populated cities or rural areas. This leaves unused

TV channels in certain areas, referred to as TV white spaces, which can be repurposed for

other wireless communication. In 2008, the Federal Communications Commission (FCC)

allowed unlicensed devices, i.e., Television Band Devices (TVBDs), to operate in TV white

spaces in the US (FCC-10-174 2010). TVBDs operate on available TV bands based on

information received from TV spectrum databases or local spectrum sensing operations.

Sites such as Google Spectrum and Microsoft Whitespaces have established nation-wide

spectrum databases which dynamically allocate spectrum for unlicensed usage.

TV Black Space: While suitable for rural areas, the FCC’s current approach leaves

populated urban areas, where the spectrum crisis is most significant, with few TV white

spaces (Harrison et al. 2010). For example, 4 out of the 5 largest cities by population

have less than 4 TV white space channels. Thus, recent research studies have focused on

finer-grade DSA schemes. Accordingly, an unlicensed user can access a TV channel if none
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of the TV receivers in its immediate vicinity is watching that channel. Hence, the spectrum

can be accessed based on dynamic behaviors of licensed users, i.e., TV viewers (Zhao et

al. 2014, Zhang and Knightly 2015). Zhao et al. (2014) has shown that spectrum access

based on TV viewership leads to up to a 5-fold increase in available capacity in New York.

3.5 GHz Citizens Broadband Radio Service (CBRS): In 2015, the FCC adopted a spec-

trum sharing policy to make 150MHz of spectrum available for mobile usage in the 3.5 GHz

band previously allocated to the U.S. Department of Defense (FCC-15-47 2015), using a

three-tiered sharing mechanism: At the top tier, incumbent users, e.g., federal operations

and satellite services, have exclusive rights to the spectrum in their vicinity. The priority-

access tier allows use of part of the spectrum in a census track for a limited amount of

time. The general authorized-access tier may use the remaining spectrum at no cost.

LTE Unlicensed: Initially spearheaded by the LTE-U Forum, SPs have begun standard-

izing 4G network operation on the unlicensed 5 GHz band, to provide cellular networks

access to additional unlicensed spectrum by sharing the spectrum with WiFi networks and

other LTE operators. LTE-U would allow 4G networks to utilize the 5GHz WiFi band

when network demand exceeds available licensed resources (LTE-U 2015). LTE-U tries

to utilize unused 5GHz channels, based on WiFi and LTE measurements. This results in

three types of channels: (1) if a channel is unused by WiFi, the full capacity of that channel

may be available to the SP for a certain duration; (2) if a channel is unused by WiFi, the

capacity may be shared by two or more SPs; (3) if a channel is used by WiFi, LTE-U will

share the channel with the WiFi network (Bhattarai et al. 2016).

These emerging DSA solutions result in the following challenges to network operators:

• Non-exclusive use: DSA approaches are characterized by the operator’s use of unli-

censed channels, which, by definition, are not exclusively reserved. As a result, unlicensed

use of the spectrum provides capacity to the operator in a non-deterministic fashion.

• Dynamic Channel Availability: The availability of an unlicensed channel depends on

factors that cannot be controlled by the network operator. For example, in TV white space,

TV black space, and CBRS, the number of available channels changes with time depending

on the behaviors of licensed users (i.e., TV viewers or federal operations).

• Varying Channel Capacity: In DSA solutions, two available channels may not provide

the same capacity. For example, in LTE-U, if an unused 5GHz channel is found, the operator

can utilize the maximum capacity provided by that channel. However, in some cases, the
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channel capacity may need to be shared with a WiFi network, leading to a lower, and

dynamically changing, available capacity. As a result, different types of channel classes

exist due to their available capacity, as well as the amount of time they are available to

the network operator.

These three factors imply that the capacity of the wireless network will vary dynamically.

In addition, it is highly likely that the capacity will not be sufficient to provide a good

quality Internet service to users at the peak hours of demand, especially in urban areas.

To be able to manage the peak-hour demand, we propose to use a dynamic pricing scheme

in which the fees charged for an Internet connection will change in real-time.

To study this problem, we consider a network in which an SP monitors the availability

of unlicensed channels and posts prices to the incoming customers based on the available

bandwidth. If an arriving customer is willing to accept the posted price, he will start his

Internet connection; otherwise, he will depart from the system. We consider a system with

multiple classes of customers, where classes have different bandwidth requirements based

on the type of activity to be performed, e.g., video streaming vs. web surfing vs. checking

email. The connection fee paid by an arriving customer depends on the posted price at

the time of arrival and the connection duration. A key feature of this setting is that the

available bandwidth is a stochastic process due to the fact that unlicensed channels become

available for Internet use if they are not actively used by licensed users, and they become

unavailable when licensed users start using the channel. This implies that the available

bandwidth may decrease at random, and thus customers that are in service may need to be

dropped by the SP. A key challenge in managing the network is to maximize the revenue

earned from admitted customers, while limiting the cost of dropped customers.

For this setting, we develop an optimal dynamic pricing strategy to maximize the revenue

earned by an SP using DSA policies on unlicensed bands, while considering the limited

capacity, as well as the potential losses associated with dropped customers. We model the

system as a Markov decision process (MDP) in which customers arrive as a stochastic

process, with stochastic service times, and unlicensed channels become available (provid-

ing bandwidth) as a stochastic process, with stochastic times until the channel becomes

unavailable. Thus, the state of the system includes both the number of customers of each

class being served and the number of channels of each class available for use by the system.

Due to the high-dimension state, the optimal policy is difficult to compute and impractical
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to implement. Therefore, we develop several heuristic policies in which the customer classes

and/or channel classes are aggregated. We use a comprehensive set of numerical experi-

ments to demonstrate that the proposed heuristic performs well with respect to the optimal

policy. We also compare the performance of the proposed heuristic, which is dynamic (i.e.,

state-dependent), with non-state-dependent (i.e., static) pricing policies. We find that the

proposed heuristic performs best, particularly when the ratio of capacity to demand rate

is low, a condition which holds for the practical setting which motivated this research.

2. Literature Review

The research in this paper has some similarity to the previous literature in two areas:

(1) dynamic pricing in MDP models and (2) admission control in systems with multiple

classes of demand and stochastic service rates. A key distinguishing feature of our model,

compared to this previous work, is that in addition to having stochastic inter-arrival and

service times, our model also has stochastic capacity availability.

The most closely related previous work is that of Gans and Savin (2007), henceforth

GS, who focus on dynamic pricing of rental assets (e.g., cars) when there is stochastic

demand from two classes of customers, i.e., contract customers (who may be admitted at

a pre-negotiated price, or rejected) and walk-in customers (who are quoted dynamic prices

based on the number of customers already in the system). GS focus on characterizing the

conditions under which myopic pricing policies will be optimal for certain customer classes.

While some of our analysis builds on GS, there are a number of key differences:

• In GS, all customers have the same capacity requirement, which is normalized to one

unit (e.g., every customer wants to rent a single car), while the total available capacity

(e.g., rental car fleet size) is fixed and known. In contrast, in our model, the capacity

requirement varies by customer class, but is exogenously specified, while the total available

capacity evolves as a stochastic process as channels become available or unavailable.

• In our model, capacity may decrease, potentially requiring the SP to drop customers

from service, at a cost. Thus, we must determine a drop-off policy, which specifies the set

of customers to be dropped in a given state, in addition to a dynamic pricing policy.

• GS make admission decisions for contract customers, and pricing decisions for walk-in

customers, where the latter is based on the class of the arriving customer and the current

number of customers of each class in the system. In our model, there are no contract
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customers, and our dynamic pricing decision is based on the class of the arriving customer,

the number of customers of each class in the system, and the current available capacity.

• GS focus on characterizing conditions under which preferred customer classes will exist

and for which myopic policies will perform optimally or close-to-optimally. In contrast, we

focus on developing heuristic policies that are not myopic, i.e., which are state-dependent.

Other research considers dynamic pricing and/or admission control for network services

in which an SP has available capacity which may be used to satisfy the demands of cus-

tomers who arrive stochastically and have class-dependent capacity requirements. This

previous work takes the SP’s total available capacity as fixed and known. For example,

Paschalidis and Tsitsiklis (2000) consider dynamic pricing policies in such settings. They

study the case in which the available capacity is large and there are many users with very

small capacity requirements. They demonstrate that a static pricing policy is optimal in

the limit. Mutlu et al. (2009) consider a setting with fixed capacity and two customer

classes (primary and secondary users), where each class has the same service rate and each

customer uses one unit of capacity. The SP makes pricing decisions for arriving secondary

users, where the price depends on the number of customers in the system. Other literature

on network services with stochastic arrivals considers admission control with exogenously-

specified prices (Zhao et al. (2010), Turhan et al. (2012), Yahav et al. (2013)).

Another class of relevant research considers queuing models of admission control prob-

lems in loss systems with multiple classes of demand. In much of this work, the resource

or capacity requirement (e.g., number of servers) is the same (and generally normalized

to one) for all customer classes, e.g., Ulukus et al. (2011), Turhan et al. (2012), and

Carrizosa et al. (1998). Since our model may require the dropping of customers who have

been admitted to the system, the most relevant papers are those that consider preemption

or termination of a customer, including Turhan et al. (2012) and Ulukus et al. (2011).

However, in contrast to these papers, our model allows the bandwidth requirement per

customer to vary by customer class. Thus, it is most similar to the literature on stochastic

knapsacks, in which there are a fixed number of servers, with the number of servers required

per customer varying by customer class, e.g., Altman et al. (2001) and Ross and Tsang

(1989). Our model also has similarities to the literature on loss systems with batch arrivals,

including Örmeci and Burnetas (2004). However, all of the above referenced works assume

that the total available capacity (number of servers) is fixed and known. Further, while
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Figure H.2 Empirical CDFs of the percentage value loss of the N- and (N,R)-heuristics categorized by µ2, λ2,

and β2 (across 40 replications in Experiment 1).
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(e) N -heuristic, channel-class case
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(f) (N,R)-heuristic, channel-class case

Figure H.3 Empirical CDFs of the percentage value loss of the N- and (N,R)-heuristics categorized by r2, K,

and channel-class case (across 40 replications in Experiment 1).


