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Group testing, where groups of individual specimens are composited to test for 

the presence or absence of a disease (or some other binary characteristic), is a 

procedure commonly used to reduce the costs of screening a large number of 

individuals. Statistical research in group testing has traditionally focused on a 

homogeneous population, where individuals are assumed to have the same 

probability of having a disease. However, individuals often have different risks of 

positivity, so recent research has examined regression models that allow for 

heterogeneity among individuals within the population. This dissertation focuses 

on two problems involving group testing regression models.  

For the first problem, we examine group testing regression models when 

identification of the positive and negative statuses for individuals is performed. 

The identification aspect leads to additional tests, known as “retests,” beyond 

those performed for initial groups of individuals. We show how regression models 

can be fit in this setting while also incorporating the extra information from these 

retests. Through Monte Carlo simulations, we present evidence that significant 

gains in efficiency occur by incorporating retesting information. Furthermore, we 

demonstrate that some group testing protocols can actually lead to more efficient 

estimates than individual testing when diagnostic tests are imperfect. Finally, we 



 

 

show that halving and matrix testing protocols are the most efficient to use in 

application.  

For the second problem, we consider situations when individuals are tested in 

groups for multiple diseases simultaneously. This problem is important because 

assays frequently screen for more than one disease at a time. When these assays 

are used in a group testing setting, the individual positive/negative statuses 

consist of unobserved, correlated random variables. To estimate models in this 

setting, we develop an expectation-solution based algorithm that provides 

consistent parameter estimates and natural large-sample inference procedures. 
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Chapter 1: Introduction 
 

1.1 Background 

When performing individual testing for an infectious disease, a specimen (e.g., 

blood, urine) is obtained from each subject and tested to determine the positive 

or negative disease status of the subject. When there are a large number of 

specimens and/or testing costs are high, this can result in excessive time and 

expenditures to complete the screening process. In these situations, group testing, 

where individual specimens are composited into pools for testing, has become 

standard practice. If a pool tests negative, all individuals within it are diagnosed 

as being negative. If a pool tests positive, there is at least one positive individual 

within it; further retesting of those individuals can be completed to determine 

individual diagnoses. As long as the overall prevalence of the disease is low and 

appropriate group sizes are chosen, group testing can considerably reduce the 

number of tests and associated costs when compared to individual testing. 

The use of group testing in screening people for low-prevalence diseases has a 

long history dating back to detecting syphilis among World War II soldiers 

(Dorfman 1943). Subsequently, group testing has been successfully adopted in 

many infectious disease applications, including blood donation screening by the 

American Red Cross (American Red Cross 2012), opportunistic chlamydia and 

gonorrhea testing in medical clinics (Gaydos 2005), and Bovine Viral Diarrhea 

virus detection for the cattle industry (Munoz-Zanzi et al. 2006). Group testing 

has also proven to be beneficial in areas outside of infectious disease prevalence 

estimation and detection, including drug discovery experiments (Remlinger et al. 
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2006), plant pathology (Tebbs and Bilder 2004), genotyping (Chi et al. 2009), 

and food contamination testing (Fahey, Ourisson, and Degnan 2006). 

1.2 Group Testing Regression Models 

Group testing is generally used for two purposes: case identification and 

prevalence estimation. In the context of infectious diseases, the goal of case 

identification is to identify all individuals having a disease. In contrast, the goal 

of prevalence estimation is to estimate the prevalence of a disease in a population. 

The focus of this dissertation is prevalence estimation, and most research in this 

area has examined estimating an overall prevalence in a homogeneous population 

(e.g., Swallow 1985; Biggerstaff 2008; Hepworth and Watson 2009). However, 

populations are frequently heterogeneous, where covariates, such as gender, 

behavior, education level, …, may influence individual disease status. For this 

reason, it is important to estimate covariate-specific probabilities of positivity. In 

the remainder of this section, we review the two seminal works in this area – one 

by Vansteelandt et al. (2000) and one by Xie (2001) – that have been proposed 

to estimate these probabilities through group testing regression models.  

Define 1ikY   if the ith individual in the kth group is positive and 0ikY   

otherwise, for i = 1, …, Ik, k = 1, …, K. We assume that each individual is 

assigned to exactly one group and that ikY  are independent Bernoulli random 

variables. Denote the observed group response for the kth group as Zk. If group 

tests are perfectly accurate, a group tests positive (Zk = 1) if and only if 

1
0kI

iki
Y


   and a group tests negative (Zk = 0) if and only if 

1
0kI

iki
Y


  . The 

group responses Zk are also independent Bernoulli random variables with mean k 

≡ P(Zk = 1).  
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Because assays are usually subject to testing errors, the sensitivity and 

specificity of a test are defined as ( 1 | 1)k kP Z Z     and ( 0 | 0),k kP Z Z     

respectively, where kZ  denotes the true response of group k. Vansteelandt et al. 

(2000) and Xie (2001) both assumed that the sensitivity and specificity are 

known and do not depend on pool size; these assumptions are reasonable with 

properly calibrated modern diagnostic assays. Using the total probability 

theorem, one can express k in terms of the true individual probabilities 

( 1)ik ikp P Y 

  as 

( 1 | 1) ( 1) ( 1 | 0) ( 0)k k k k k k kP Z Z P Z P Z Z P Z           

1
(1 ) (1 ).

kI

ik
i

p  


                                                                (1) 

To incorporate risk factors that may influence an individual’s response, our goal 

is to estimate ikp  as a function of the covariates for each individual. The model 

of interest is 

0 1 1 1 1,( ) ... ,ik ik p p ikf p x x                                                           (2) 

where f(×) is a known, monotonic, differentiable link function and x1ik, …, xp-1,ik are 

the p – 1 covariates for the ith individual in the kth group. 

As mentioned earlier, Vansteelandt et al. (2000) and Xie (2001) present two 

different ways to find the maximum likelihood estimates for  = (0, 1, …, p-1). 

Using Equation (1), Vansteelandt et al. (2000) writes the likelihood function in 

terms of observed group responses zk: 

1
1

1
1

1 1 1

(1 )

 (1 ) (1 ) 1 (1 ) (1 )

k k

k k
k k

K
z z
k k

k
z z

I IK

ik ik
k i i

L

p p

 

     






  

 

   
              
      

 
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for the model in (2). Maximizing L1 directly results in the parameter estimates 

ˆ.  The covariance matrix for ̂  can be obtained from the inverse of the observed 

Fisher information matrix. 

Alternatively, Xie (2001) expresses the likelihood function in terms of the 

unobserved individual responses 1
2 1 1: (1 ) ,ik ikk y yK I

ik ik ikk iy L p p 
     

    and  

proposed the use of an EM algorithm in maximizing the likelihood function. The 

algorithm works by replacing the unobserved outcomes 
ik

y  in log(L2) by 

( | )ik ikE Y     where  denotes all information obtained by group tests and 

retests under a particular group testing protocol. The expectation and 

maximization steps of the EM algorithm are alternated between in an iterative 

manner until convergence is reached. Formally, the following EM algorithm can 

be used to obtain to obtain the maximum likelihood estimate of , denoted by ̂ : 

1) Select a starting point (0) of . 

2) E-step: For a given ( )b , b = 0, 1, 2, …, calculate ( ) ( )( | , )b b
ik ikE Y   , for i 

= 1, …, Ik and k = 1, …, K. 

3) M-step: Maximize the following function  

( ) ( ) ( )
2 1

1 1
log( ) | ,..., , log( ) (1 )log(1 )

kIK
b b b

K ik ik ik ik
k i

E L z z p p
 

          

 

for  to update the parameter estimates at the (b + 1)th 

iteration. 

4) Repeat Steps 2 and 3 until ( 1) ( )b b    is very small; denote the final 

solution by ̂ . 

To estimate the covariance matrix of ̂ , Louis’s (1982) method can be applied to 

obtain the Hessian matrix: 
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2 2

1
log [log(1 )]

1

( ) log log
1 1

N
j

n j j
j j

j j
jj j j

j j

p
H p

p

p p

p p



  




 



                            
                                            

   

 







 

 1 1
,

N N

j j  


  

 

where we have re-indexed the subjects to be j = 1, …, N, 1 ,K
kkN I   

( | ),j jE Y     and ( | ).jj j jE YY       The inverse of ˆ
nH , which is Hn 

evaluated at ̂ , is used as the covariance matrix estimate. 

Xie (2001) remarks that closed form expressions for ωik are not possible for 

some group testing protocols (algorithm used for the initial testing and 

subsequent retesting). In these cases, a Gibbs sampling approach can be 

employed to estimate them; we will illustrate such technique in Section 2.2.4. 

Because  can include information from any group or individual tests, Xie’s 

(2001) method is very flexible and can deal with a wide range of complex group 

testing protocols. 

Several very recent papers have expanded on the work of these two seminal 

papers in this area. Specifically, Bilder and Tebbs (2009) provide a thorough 

comparison of individual and group testing regression model estimates. Chen et al. 

(2009) examine mixed-effects models, and Delaigle and Meister (2011) and 

Delaigle and Hall (2012) discuss a nonparametric modeling approach. 

1.3 Group Testing Protocols Used for Identification 

In this sub-section, we introduce group testing protocols that are commonly used 

for case identification. In each of the protocols described next, there may be 

multiple responses involving each individual due to retests, which makes a direct 

evaluation of a likelihood function difficult. In later chapters, we will investigate 
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how to incorporate the additional retest information from these protocols into 

estimating the model given in (2). 

1.3.1 Dorfman 

Although group testing had been used earlier (see Hughes-Oliver (2006) for a 

review), Dorfman (1943) is largely regarded as the seminal paper in the area. 

Dorfman proposed screening pooled blood samples of US Army soldiers for 

syphillis, followed by retesting all soldiers individually within positive pools. 

Individuals within negative testing groups were declared negative. Due to its 

simplicity, Dorfman’s protocol is the most widely adopted protocol for case 

identification, and its applications include screening blood donations (Stramer et 

al. 2004), chlamydia screening (Mund et al. 2008), and potato virus detection 

(Liu et al. 2011). 

1.3.2 Halving 

The halving protocol is an alternative to Dorfman’s protocol, where positive 

testing groups are successively split into two equal sized subgroups. If a subgroup 

tests negative, no further splitting is needed and its members are declared 

negative; if a subgroup tests positive, it is further split and tested until all 

subgroups test negative or until individual testing occurs. For example, the first 

step of a 3-stage halving protocol with a group of size I = 8 is to test the whole 

group. If the group tests positive, it is split into two subgroups of size 4. If either 

subgroup tests positive, all individuals within a positive subgroup are tested. If a 

4-stage halving protocol is used instead, we would have one more round of 

splitting the subgroups before individual testing. For simplicity, we only consider 
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the 3-stage halving protocol in this dissertation. The early use of halving protocol 

dates back to Sobel and Groll (1959). More recently, Litvak et al. (1994) 

proposed the use of halving protocol and its variations in detection of HIV 

infections in blood donations. 

1.3.3 Array testing 

The array testing protocol, first proposed by Phatarfod and Sudbury (1994), 

assigns individuals to overlapping groups arranged into a two-dimensional array 

structure. Specimens are pooled within each row and within each column for 

testing. Intersections of positive testing rows and columns indicate where positive 

individuals may exist. When more than one row and more than one column test 

positive, ambiguities arise on which of these individuals at the intersections led to 

the positive row and column test results. We may also have one or more rows 

testing positive and no columns testing positive (or vice versa) when testing 

errors are present. To clear these ambiguities, additional testing (usually on each 

individual) can be used to complete the decoding. The array testing protocol has 

found much success in high throughput screening applications, such as infectious 

disease testing (Tilghman et al. 2011), DNA screening (Berger et al. 2000), and 

systems biology (Thierry-Mieg 2006). 

1.4 Motivation and Objectives 

The Centers for Disease Control and Prevention and the Office of Population 

affairs support the Infertility Prevention Program (IPP) in order to reduce the 

prevalence of chlamydia and gonorrhea in the United States, while also to better 

understand factors affecting prevalence (Centers for Disease Control and 
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Prevention, 2012). Each state participates in the IPP. In Nebraska, health care 

clinics across the state obtain urine and swab specimens to test for the diseases. 

These specimens are sent to the Nebraska Public Health Laboratory (NPHL) for 

testing where in total approximately 25,000 tests are performed yearly for these 

diseases. Along with the specimens, each individual screened contributes a set of 

information, such as age, gender, symptoms, and past history of risky behavior. 

Clinical observations are made as well on each individual, including cervical 

friability, pelvic inflammatory disease, cervicitis, and urethritis statuses.  

All current testing at the NPHL is performed individually on each specimen; 

i.e., group testing is not used. Due to the large number of specimens screened 

annually and the high cost associated with these tests (approximately $11 for a 

swab test and $16 for a urine test), group testing could be very efficient and 

beneficial if employed by the NPHL. In particular, in order to understand how 

certain risk factors influence the disease statuses, one can fit a group testing 

regression model that estimates an individual’s probability of having chlamydia or 

gonorrhea at a largely reduced cost, as compared to testing specimens 

individually. In later chapters, we will detail how group testing could be used by 

the NPHL and the benefits associated with its use.  

In many applications, prevalence estimation and case identification are 

simultaneous goals. For example, the goals of the IPP involve not only the 

identification of positive individuals, but also to evaluate risk factors closely 

related to infection. Even in public health studies where prevalence estimation is 

the primary goal and only the initial group tests are needed, retests on 

individuals are frequently performed for ethical reasons. Although Xie (2001) 

proposed the general EM algorithm framework for group testing regression 
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problems, details on how to implement his proposal for specific group testing 

protocols were not given for any of the commonly used protocols described in 

Section 1.3. Furthermore, it is unknown which protocol results in the more 

efficient estimators. In Chapter 2, we examine how the general EM algorithm of 

Xie (2001) can be applied to these three group testing protocols introduced in 

Section 1.3 and develop recommendations on their use. 

In practice, there are many cases where testing is done not only for one 

disease, but for multiple diseases at the same time. For example, one assay is 

used at the NPHL to test for chlamydia and gonorrhea simultaneously. Also, the 

American Red Cross screens blood donations for HIV, hepatitis B, hepatitis C, 

and West Nile Virus through using group testing (American Red Cross 2012; 

Dodd et al. 2002; Stramer et al. 2004). With respect to group testing, Hughes-

Oliver and Rosenberger (2000) is the lone paper that addresses the multiple-

disease problem, and they only examined the homogeneous population situation. 

The purpose of Chapter 3 then is to take advantage of covariate information to 

model individual statuses of multiple diseases simultaneously in a group testing 

setting. In general, we are proposing a regression model for unobserved correlated 

binary responses. 

1.5 Organization of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 is a paper 

under review by Biometrical Journal. The paper shows how regression models 

can be fit to group testing data from three commonly used group testing 

protocols: Dorfman, halving, and array testing, as described in Section 1.3. 

Simulation evidence is presented to show significant efficiency gains from 
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incorporating retests into the estimation process, as compared to using the initial 

group test results alone. We also discover that group testing with retests can 

result in more efficient estimators than individual testing when testing error is 

present. Thus, not only will group testing lead to a smaller number of tests, but 

more information can be gained by using group testing. Finally, we investigate 

which group testing protocol leads to the most efficient estimators overall.  

Chapter 3 contains almost all of a paper that is under review at Statistics in 

Medicine (an additional example, set of simulations, and parts of the paper’s 

discussion section were completed by my advisor, so they are omitted from the 

dissertation). In this paper, we propose the first regression techniques for 

multiple-disease group testing data. We develop an expectation-solution based 

algorithm that takes into account the correlation structure of unobserved 

individual disease statuses. Simulation studies show the consistency of our 

estimators as well as efficiency gains in parameter estimates when compared to 

single-disease group testing models. 

Chapter 4 includes additional research completed that did not fit into 

Chapters 2 and 3. We show how to generalize the model-fitting procedure of 

Chapter 3 to incorporate individual retesting information. We also present 

alternative approaches to the methods proposed in Chapters 2 and 3. To 

conclude, we present a discussion of future directions for research involving group 

testing regression models. 

Both Chapters 2 and 3 contain the references as given in their corresponding 

papers. We also include all references cited throughout the dissertation in a 

separate references section toward the end of the dissertation. All appendices are 
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located at the end of the dissertation. These include appendices that were “web 

appendices” for the paper submissions. 
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Chapter 2: Paper #1 - Group Testing 
Regression Model Estimation when Case 
Identification is a Goal 

 

Abstract 

Group testing is frequently used to reduce the costs of screening a large number 

of individuals for infectious diseases or other binary characteristics in small 

prevalence situations. In many applications, the goals include both identifying 

individuals as positive or negative and estimating the probability of positivity. 

The identification aspect leads to additional tests being performed, known as 

“retests,” beyond those performed for initial groups of individuals. In this paper, 

we investigate how regression models can be fit to estimate the probability of 

positivity while also incorporating the extra information from these retests. We 

present simulation evidence showing that significant gains in efficiency occur by 

incorporating retesting information. Furthermore, we demonstrate that some 

group testing protocols can actually lead to more efficient estimates than 

individual testing when diagnostic tests are imperfect. Finally, we examine which 

protocols are the most efficient to use in application. Our methods are illustrated 

using chlamydia screening data from the Infertility Prevention Project. 

 

Key words: Binary response; Generalized linear model; EM algorithm; Latent 

response; Pooled testing; Prevalence estimation. 
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2.1 Introduction 

Pooling specimens to screen a population for infectious diseases has a long history 

dating back to Dorfman’s (1943) proposal to screen American soldiers for syphilis 

during World War II. Today, testing individuals in pools through group testing 

(also known as “pooled testing”) has been successfully adopted in many 

additional areas, including entomology (Gu et al. 2004), veterinary medicine 

(Muñoz-Zanzi et al. 2000), DNA screening (Berger et al. 2000), and drug 

discovery (Kainkaryam and Woolf 2009). When compared to testing specimens 

individually, group testing can provide considerable savings in time and costs 

when the overall prevalence of the disease (or some other binary characteristic of 

interest) is low. This makes the use of group testing particularly desirable in 

applications where there are limitations in resources.  

Group testing is generally used for two purposes: case identification and 

prevalence estimation. The goal of case identification is to identify all individuals 

as being positive or negative. Individual specimens are initially pooled into 

groups, and these groups are tested. Individuals within positive testing groups are 

then retested in some prior specified way to distinguish positive individuals from 

those that are negative. The goal of prevalence estimation is to estimate the 

prevalence of positivity in a population. Retesting is not needed in this case 

because initial group test responses alone can be used to estimate the prevalence. 

However, when prevalence estimation and case identification are simultaneous 

goals, the additional retesting information can be used for estimation as well. 

Intuitively, one would expect statistical benefits (e.g., in terms of efficiency) from 



14 

 

 

including retest outcomes as part of the estimation process. Our paper examines 

how to include retests while also quantifying the benefits from their inclusion.  

The majority of group testing estimation research has focused on inference for 

an overall prevalence p using only the results from the initial group tests (e.g., 

Swallow 1985; Biggerstaff 2008; Hepworth and Watson 2009). A few papers, such 

as Sobel and Elashoff (1975) and Chen and Swallow (1990), discuss including 

retests to estimate p, but under the restriction of perfect testing and without 

positive case identification. More recently, estimation research has focused on 

regression modeling to obtain an estimate of individual positivity, given a set of 

risk factors. The seminal papers in this area, Vansteelandt et al. (2000) and Xie 

(2001), both propose likelihood-based estimation and inference using binary 

regression models, but their approaches differ. Vansteelandt et al. (2000) use a 

likelihood function written in terms of the initial group responses, and standard 

techniques for generalized linear models are used to find the parameter estimates 

that maximize this function. Xie (2001) uses a likelihood function written in 

terms of the true latent individual statuses and then employs the EM algorithm 

to maximize the likelihood function. The main advantage of Xie’s approach is 

that it allows for the inclusion of retests. 

Given the large number of ways to retest individuals within positive groups 

(see Hughes-Oliver (2006) for a review), it is important to determine if there are 

benefits from including retest outcomes when estimating a group testing 

regression model. The purpose of our paper is to determine if benefits truly exist, 

and, in particular, determine which group testing protocol (algorithm used for the 

initial testing and subsequent retesting) is the most efficient. This is especially 

important because group testing is typically applied in settings where cost and 
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time considerations are a primary concern. Ideally, one would want to apply a 

protocol that results in the fewest number of tests while also producing the most 

efficient regression estimates. Also, model estimation plays a significant role in 

the application of informative retesting procedures for case identification (e.g., see 

Bilder et al. (2010) and Black et al. (2012)). These identification procedures rely 

on group testing regression models to identify which individuals are most likely 

to be positive, so having the best possible estimates is crucial.  

The order of our paper is as follows. Section 2.2 reviews three commonly used 

group testing protocols. Note that each of these protocols are not specifically 

examined in Xie (2001), so this is the first time that the EM algorithm details 

have been formally presented for them. In Section 2.3, we use simulation to 

investigate the benefits from including retests and determine which protocol is 

the most efficient. This section also shows that group testing can actually be 

more efficient than individual testing when estimating regression parameters. In 

Section 2.4, we apply these protocols to chlamydia screening data from the 

Infertility Prevention Project, where both identification and prevalence 

estimation are important. Finally, Section 2.5 summarizes our findings and 

discusses extensions to this research. 

2.2 Estimation of Group Testing Regression Models 

Define 1ikY   if the ith individual in the kth initial group is truly positive and 

0ikY   otherwise, for i = 1, …, Ik and k = 1, …, K. Our goal is to estimate 

( )ik ikE Y p

 , conditional on a set of covariates x1ik, …, xp1,ik, using the regression 

model 

0 1 1 1 1,( ) ... ,ik ik p p ikf p x x                                                      (3) 
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where f(×) is a known monotonic, differentiable function. The log-likelihood 

function can be written as 

1 1

log[ ( )] log( ) (1 )log(1 ),
kIK

ik ik ik ik
k i

L y p y p
 

                                        (4) 

where 
0 1

( , , )
p

  
   and we assume that the ikY  are independent 

Bernoulli( )ikp  random variables. If the true individual statuses ikY  were 

observed, likelihood-based estimation for the model would proceed in a 

straightforward manner. 

In group testing applications, the individual statuses ikY  are unknown because 

only group responses may be observed and because groups and/or individuals 

may be misclassified due to diagnostic testing error. To fit the model, Xie (2001) 

proposed the use of an EM algorithm to find the parameter estimates that 

maximize the likelihood function. The algorithm works by replacing the 

unobserved outcomes ik
y  in Equation (4) by ( | )ik ikE Y    , where  denotes all 

information obtained by group tests and retests under a particular group testing 

protocol. The expectation and maximization steps of the EM algorithm are 

alternated between in an iterative manner until convergence is reached to obtain 

the maximum likelihood estimate of , denoted by ̂ . The estimated covariance 

matrix of ̂  is obtained by standard methods; e.g., see Louis (1982) and Xie 

(2001, p. 1960). 

The most difficult aspect of the EM algorithm application is to obtain the 

conditional expectations ik. Xie (2001) provides derivation details only for the 

protocol outlined in Gastwirth and Hammick (1989), which involves testing 

individuals in non-overlapping groups and performing one confirmatory test on 

groups that test positive. While this protocol can be extremely useful for 
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estimation purposes, it can not be used to identify positive individuals. In this 

paper, we consider three group testing protocols commonly used in practice for 

case identification. The following subsections elaborate on how to calculate the 

conditional expectations ik for each protocol. Given these details, the EM 

algorithm for fitting Equation (3) becomes straightforward to implement. 

2.2.1 Initial Group Tests from Non-Overlapping Groups 

Initial tests from groups that are non-overlapping (i.e., each individual is within 

only one group) do provide enough information to estimate Equation (2), 

although not as efficiently as other case identification protocols to be discussed 

shortly. We begin by describing how models can be fit under this setting to 

motivate model fitting when retests are included.  

Define Zk as the response for initial group k, where Zk = 1 denotes a positive 

test result and Zk = 0 denotes a negative test result. Because diagnostic tests are 

likely subject to error, we define the true status of a group by kZ  where a 1 (0) 

again denotes a positive (negative) status. The sensitivity and specificity of the 

group test are given by ( 1 | 1)k kP Z Z     and ( 0 | 0),k kP Z Z     where we 

assume these values are known and do not depend on group size. These 

assumptions are consistent with most research for group testing regression, 

including Vansteelandt et al. (2000) and Xie (2001). When only the initial group 

responses are observed, ik is easily found as 

( 1 | 0) (1 ) / (1 ), if 0

( 1 | 1) / , if 1,
ik k ik k k

ik
ik k ik k k

P Y Z p Z

P Y Z p Z

 


 

           









                      

(5)

 

where 
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1

( 1 | 1) ( 1) ( 1 | 0) ( 0)

(1 )
k

k k k k k k k

I

ik
i

P Z Z P Z P Z Z P Z

p



 


       

  

   



 

is the probability that group k tests positive and  = 1 −  − . 

2.2.2 Dorfman 

After initially testing individuals in non-overlapping groups, Dorfman (1943) 

proposed to individually retest all specimens within the positive testing groups. 

Individuals within negative testing groups are declared negative. Because of its 

simplicity, Dorfman’s protocol is the most widely adopted protocol for case 

identification, and its applications include screening blood donations (Stramer et 

al. 2004), chlamydia testing (Mund et al. 2008), and potato virus detection (Liu 

et al. 2011). 

Because specimens are retested, ik is no longer the same as given in Equation 

(5) when a group tests positive. Let Yik denote the retest outcome for individual i 

in group k and assume that the same assay for group tests is also used for 

individual retests (thus,  is the sensitivity and  is the specificity for properly 

calibrated tests). For observed positive groups ( 1),kZ   we have calculated 

1 1

1

0

1

( 1 | ,..., , 1)

( | 1) ( | ) ( )

( | 0)(1 )

( | ) ( )

k k

i k

k

ik ik k k I k I k k

ik ik ik ik i k i k i k i k i k i k
i i y

I

i k i k i k i k
i

i k i k i k i k i k i k

P Y Y y Y y Z

p P Y y Y P Y y Y y P Y y

P Y y Y p

P Y y Y y P Y y











     
 

   


     

    

    


    

  







  

  





 

 

1

1 0

.

k

i k

I

i y  

 

 

Derivation details are provided in Appendix A. 
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2.2.3 Halving 

As its name suggests, halving works by first splitting a positive testing initial 

group into two equally (or as close to as possible) sized subgroups for retesting. 

Whenever a subgroup tests negative, all of its individuals are declared negative 

and no further splitting is performed. Whenever a subgroup tests positive, 

continued splitting occurs in the same manner until only individuals remain. 

Early origins of the halving protocol go back as far as Sobel and Groll (1959). 

More recently, halving and its close variants have been used in a number of 

infectious disease screening applications, including Litvak et al. (1994) and 

Priddy et al. (2007). Halving has even been described in the product literature for 

high throughput screening platforms (Tecan Group Ltd. 2007). 

For a group of size Ik = 2s, there are s possible hierarchical splits that contain 

a particular individual specimen, where the last split results in individual testing. 

For practicality reasons, all possible hierarchical splits are rarely implemented. 

Instead, individual testing is performed on subgroups at a pre-determined tth 

split, where t  s. For this reason, we will only consider the t = 2 case, so that 

an individual can be tested at most three times.   

To find ik under halving, we continue to define Zk as the initial group 

response for group k, k = 1, …, K. If the initial group tests positive (Zk = 1), it is 

split into two subgroups that we denote by k1 and k2. The two subgroups are 

subsequently tested and provide the corresponding binary responses Zk1 and Zk2. If 

either subgroup tests positive, the third and final step is to individually test all 

members within a subgroup, where we continue to define Yik as the individual 

retest outcome for individual i from initial group k. To denote the true statuses 
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for the groups, subgroups, and individual tests under halving, we again use a 

tilde over the respective letter symbol. We also continue to assume a constant 

sensitivity and specificity for each test regardless of the group size. 

For the halving protocol outlined above, there are five possible testing 

scenarios involving the initial group and its two subgroups. These scenarios are: 

1) Zk = 0: Group k tests negative, 

2) Zk = 1, Zk1 = 0, Zk2 = 0: Group k tests positive, but both subgroups test 

negative, 

3) Zk = 1, Zk1 = 1, Zk2 = 0: Group k tests positive, subgroup k1 tests positive 

leading to individual testing for its members, and subgroup k2 tests 

negative, 

4) Zk = 1, Zk1 = 0, Zk2 = 1: Group k tests positive, subgroup k1 tests negative, 

and subgroup k2 tests positive leading to individual testing for its 

members, 

5) Zk = 1, Zk1 = 1, Zk2 = 1: Group k tests positive and both subgroups test 

positive leading to individual testing for members of both subgroups. 

In Table 2.1, we provide expressions for ik in each of these scenarios. Derivations 

are similar to those given in Section 2.2.2, but they are much more tedious due to 

the additional split in the testing process. We present the derivations in 

Appendix B. 

2.2.4 Array Testing 

Both Sections 2.2.2 and 2.2.3 describe protocols where individuals are initially 

tested in non-overlapping groups. Phatarfod and Sudbury (1994) proposed a 

fundamentally different protocol where specimens are arranged into a two-



21 

 

 

dimensional array. Samples from specimens are combined within rows and within 

columns so that each individual is tested twice in overlapping groups. Specimens 

lying outside of any positive rows and columns are classified as negative. 

Specimens lying inside a positive row and/or column are potentially positive. 

This protocol is known as array (matrix) testing, and it is widely applied in high 

throughput screening applications, such as infectious disease testing (Tilghman et 

al. 2011), DNA screening (Berger et al. 2000), and systems biology (Thierry-Mieg 

2006). 

Because individuals are initially tested within one row and one column, we 

must modify our notation to reflect this. Define ijY  as the true binary status (0 

denotes negative, 1 denotes positive) for the individual whose specimen is located 

within row i and column j, for i = 1, …, I and j = 1, …, J. With this slight 

change in notation, our group testing regression model now can be rewritten as  

0 1 1 1 1,( ) ... ,ij ij p p ijf p x x         

where the ijY  are independent Bernoulli( )ijp  random variables, and the full-data 

log-likelihood function can be rewritten as  

1 1

log[ ( )] log( ) (1 )log(1 ),
I J

ij ij ij ij
i j

L y p y p
 

         

if the true individual statuses were observed. In most screening applications, 

there will be more than IJ individuals, so more than one array will be needed. In 

those cases, we could add a third subscript to ijY  to denote the array and include 

a third sum over the arrays in log[L()]. We avoid doing this for brevity. 

As before, because the individual statuses are not observed directly, the EM 

algorithm is used to fit the regression model. Define R = (R1, …, RI) and C = 

(C1, …, CJ) as vectors of row and column binary responses, respectively, for one 
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array. If identification of positive individuals is of interest, specimens lying at the 

intersections of positive rows and columns are retested individually. Additionally, 

specimens in positive testing rows without any positive testing columns in the 

array, which can occur when there is testing error, should be retested as well. 

The same is true when columns test positive without any rows testing positive. 

Without loss of generality, we denote the collection of all potentially positive 

individual responses by ( , )( )Q ij i j QY Y  where Q is the index set pertaining to the 

individual tests, that is 

1

1

{( , ) | 1, 1, 1 , 1  

or 1, 0, 1

or 0, 1, 1 }.

s t

s J

I t

Q s t R C s I t J

R C C s I

R R C t J

      
     
     





 

If there are no individual tests performed at all, we simply let Q = Æ, the empty 

set.  

Using all available test responses, we need to obtain the conditional expected 

value ( | )ij ijE Y    ; however, when array testing is used as described above, 

there is no longer a closed form expression for it. Therefore, as suggested by Xie 

(2001), we implement a Gibbs sampling approach to estimate ij. This involves 

successive sampling from the univariate conditional distribution of ijY  given R = 

r, C = c, YQ = yQ, and all of the other true individual binary statuses in the 

array, and this sampling is performed for each i and j. After a large set of 

samples, all of the simulated ijy  values for each i and j can be averaged to find 

an estimate of ij. Implementation details are described next. 

For a given row and column combination (i, j), define ,i j  Y  

,{ : 1,..., , 1,..., ,( , ) ( , )}i jY i I j J i j i j        ; i.e., all possible true individual 

statuses excluding ijY . The conditional distribution for ,| , , ,ij i j QY  


y r c y  is 
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Bernoulli( )ij , where  

, ,( 1 | , , , )ij ij i j i j Q QP Y =        Y y R r C cY y 

  which we derive in 

Appendix C. With these conditional distributions, we generate samples 

( ) ( )
11 , ,b b

IJy y 
  for b = 1, …, B, using the most updated ,i j y . The estimate for ij 

is then taken to be 1 ( )
1ˆ ( ) ,bB

ij ijb aB a y 
      where a is a sufficiently large 

number of burn-in samples. The EM algorithm proceeds as usual where îj  

replaces ij in each E-step. The negative information matrix can be estimated 

using these B Gibbs samples (e.g., see Xie (2001, p. 1961)). 

2.3 Simulation Study 

We use simulation to evaluate the regression estimates resulting from the group 

testing protocols described in Section 2.2. To begin, we consider the model 

0 1logit( )ik ikp x   , which is equivalently 0 1logit( )ij ijp x    for the array 

testing protocols. We let 0 = -7 and 1 = 0.1 and simulate covariates from a 

gamma(17, 1.4) distribution. The regression parameters and covariate 

distribution are chosen to produce a realistic group testing setting where most 

individuals have low risks of being positive and a few individuals having higher 

risks. Appendix D provides a histogram of the true individual probabilities for 

one simulated data set under these settings. Note that the overall mean 

prevalence is approximately 0.01.  

Based on the logit model, we obtain the true probability of positivity ikp  ( ijp  

for array testing), which in turn is used to simulate a true individual status ikY  

( ijY  for array testing). Individuals are then randomly assigned to groups of size I 

(II arrays are used for array testing). Group, subgroup, and individual test 

responses for each protocol are simulated next by using  and  as Bernoulli 
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success probabilities. Group testing regression models are fit to these resulting 

responses. For comparison purposes, we also fit a model to individual testing data 

when testing error is present using the methodology outlined in Neuhaus (1999). 

We repeat the same simulation process for each simulated data set of size 5000 

individuals. Large sample sizes such as this are common in group testing 

applications, including the example in Section 2.4. 

2.3.1 Estimator Accuracy and Variance Estimation 

Table 2.2 presents results on the accuracy of the parameter estimators and their 

standard errors for group sizes I = 4, 12, 20 and  =  = 0.99. The mean rows 

give each regression parameter estimate averaged over 1000 simulated data sets. 

The SE/SD rows examine the accuracy of the standard error estimates, where SD 

denotes the sample standard deviation of estimates across all simulated data sets, 

and SE denotes the corresponding averaged standard errors. Thus, a SE/SD ratio 

close to 1 suggests that the true standard errors are being estimated correctly. 

Note that because Gibbs sampling is used for array testing, the EM algorithm is 

much slower, so our array testing results are based on 300 simulated data sets. 

We see from Table 2.2 that using the non-overlapping initial groups (IG; 

Section 2.2.1) results in comparatively poor estimates of the parameters and their 

standard errors. These estimates and standard errors become increasingly worse 

as the group size grows. In contrast, all of the other protocols perform similarly 

to individual testing, where averaged parameter estimates are close to 

corresponding true values and SE/SD ratios are close to 1. As these results show, 

there are important benefits from including retesting information from the 

Dorfman and halving protocols. 



25 

 

 

2.3.2 Improvements in Variance Estimation from Including Retests 

As the results in Section 2.3.1 demonstrate, parameters and their corresponding 

standard errors can be estimated well when retests are included. In this 

subsection, we investigate directly the benefits of including retest information and 

how this extra information affects the slope estimator precision. Define the 

relative efficiency for 1̂  as  

1, ,No retest
1,Retest 1,No retest

1 1, ,Retest

ˆ( )1ˆ ˆRE(  to ) ,ˆ( )

B
b

b b

Var

B Var


 


                                        (6) 

where B denotes the number of simulations, 1, ,Retest
ˆ

b  denotes the estimator for 1 

when retests are included in the bth simulated data set, and 1, ,No retest
ˆ

b  is defined 

similarly when retests are not included. Note that we use the true variances in 

Equation (6), rather than estimated variances, due to the length of time it takes 

to fit a model for array testing. For Dorfman and halving, we compare their 

variances to IG. For array testing, we compare variances with and without 

retests. 

Figure 2.1 displays the relative efficiencies from B = 500 new simulated data 

sets for group sizes I = 4, 6, …, 20 when  =  = 0.99 and  =  = 0.95. Overall, 

we see very large efficiency gains from including retesting information. Using 

retests with array testing provides the smallest gain (but still noteworthy), which 

is likely due to each individual already being part of two groups even if no retests 

are performed. Halving results in larger gains than Dorfman, where the 

differences between them are more pronounced for smaller  and . This occurs 

because halving generally will always result in a lower classification error rate 

than Dorfman (e.g., see Black et al. 2012), which then leads to less uncertainty in 

the parameter estimates under halving. Overall, the efficiencies for all protocols 
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grow as the group size does. This is explained by the fact that protocols without 

retests observe less information as the group size increases. In contrast, retesting 

will moderate the amount of information lost for larger group sizes. 

Figure 2.2 provides plots of the averaged 1̂( )Var   for all simulated data sets. 

One will note that the averaged 1̂( )Var   for the two testing protocols without 

retests increases as the group size increases. This is similar to Figure 2.2 where it 

was shown that 1,Retest 1,No retest
ˆ ˆRE(  to )   increases as a function of the group size. 

Conversely, when retests are included in a protocol, the averaged 1̂( )Var   

changes very little across the group sizes because positive individuals are still 

identified (subject to testing error). 

Ordered by their averaged 1̂( )Var  , we can informally write Dorfman > 

halving > array testing with retests. Interestingly, each of these protocols (and 

also array testing without retests for smaller sensitivity, specificity, and group 

size levels) has a smaller variance than that found through individual testing, 

while also resulting in a smaller number of tests (see Appendix E). In other 

words, not only do these protocols have the potential to drastically reduce the 

costs needed for classification, but these protocols provide better regression 

estimates! Note that Liu et al. (2012, Theorem 2) has recently observed this same 

phenomenon in the absence of covariates. Through additional simulations (not 

shown), we have seen that the gains from group testing in estimation efficiency 

(over individual testing) do diminish as the assay sensitivity and specificity both 

approach 1. This is an expected result because both individual and group testing 

are likely to find all positive and negative individuals when assays are perfect or 

nearly perfect. 
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2.3.3 Average Number of Tests per Unit of Information 

Each protocol uses a different number of tests to estimate the regression 

parameters. To take this aspect into account, we define the average number of 

tests per unit of information for 1 to be 

1,
1 11,

1 1 ˆ( ),ˆ1 / ( )

B B
b

b b
b bb

n
nVar

B BVar
 

 
                                               (7)                  

where nb is the total number of tests performed for a protocol and 1,
ˆ

b  is the 

estimated 1 for the bth simulated data set. The smaller that  is, the fewer the 

number of tests are needed comparatively to obtain the same amount of 

information about 1. A similar measure was used by Chen and Swallow (1990, p. 

1037) when evaluating the benefits of retesting for overall prevalence estimation. 

Figure 2.3 plots values of  for all group testing protocols for the same 

simulations as in Section 2.3.2. Individual testing results in  = 3.53 for  =  = 

0.99 and  = 8.80 for  =  = 0.95; these values were excluded from the figure to 

avoid distorting the plots. Comparing between the plots, we see that  is larger 

for  =  = 0.95 than for  =  = 0.99, which is a byproduct of increased 

uncertainty when  and  are smaller. Within each plot, we again see the benefits 

of including retests in the estimation process. Dorfman, halving, and array testing 

with retests have smaller  values than their corresponding protocols that do not 

include retests. Among those that include retests, halving always provides a 

smaller  than Dorfman’s protocol. Also, array testing with retests provides 

values of  close to that of halving for larger group sizes. 
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2.3.4 Additional Simulations 

To determine if our findings in this section remain in other situations, we have 

performed a number of additional simulations. These simulations include using a 

different covariate distribution and different regression parameter values, which 

also allows us to examine different overall prevalence levels. In summary, we have 

found that the same conclusions hold in these other situations, and some of these 

results are included in Appendix F. 

2.4 Infertility Prevention Project 

The purpose of the Infertility Prevention Project (IPP) in the United States is to 

prevent complications from chlamydia and gonorrhea infections that lead to 

infertility. Annually, over 3 million screenings for these infections are reported to 

the IPP program. Due to the large number of tests, some states, including Idaho 

and Iowa, already use group testing to reduce costs. For this dissertation, we will 

examine data from Nebraska, where individual testing is performed at the 

Nebraska Public Health Laboratory (NPHL) for the entire state. In order to 

reduce costs, the laboratory has an interest in adopting group testing – not only 

to reduce the number of tests, but also to estimate risk factor specific 

probabilities of infection. Thus, both case identification and estimation are 

important goals for the NPHL.   

We focus on the 6,139 test results from males who had their urine tested for 

chlamydia in 2009. To examine how group testing would have worked with these 

individuals, we artificially construct group, subgroup, and individual retest 

responses for each group testing protocol by treating the known individual test 
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results as the true statuses. Each test response is simulated by taking into 

account assay sensitivity and specificity at the NPHL ( = 0.93,  = 0.95). Initial 

groups are formed chronologically based on when specimens arrived at the 

NPHL. The “optimal” sizes for these initial groups are found by minimizing the 

expected number of tests (e.g., see Kim et al. (2007) for expected value formulas) 

as a function of the 2008 overall prevalence of 0.077. These optimal group sizes 

are 5 for IG and Dorfman and 8 for halving and array testing. 

A first-order logit regression model is fit to the responses from each protocol 

with the following covariates: age, race (represented by three indicator variables), 

symptoms, urethritis, and risk history variables (multiple partners, new partner 

in the last 90 days, contact with someone who has a sexually transmitted 

disease). All covariates are dichotomous (0 and 1) except for age. For comparison 

purposes, we again fit the same model to the original individual responses while 

incorporating testing errors using the methodology of Neuhaus (1999). 

Table 2.3 gives the parameter estimates from all fitted models and the number 

of tests required for each protocol. Overall, all estimates are close to each other 

for the same corresponding covariates. Each group testing protocol that includes 

retests has smaller standard errors than those for the individual testing model, 

consistent with our findings in Section 2.3. Using a level of significance of 0.05 

with Wald tests, individual testing and group testing protocols with retests agree 

on the same set of important covariates. These results illustrate the potential 

advantages of using group testing at the NPHL–both in terms of estimation and 

the resulting large-sample inference, but also because of the opportunity to 

drastically reduce the number of tests needed. For example, halving requires 2898 

tests overall, which is a 52.7% reduction from individual testing. Even the 
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simpler Dorfman protocol requires only 3458 tests overall, a 43.7% reduction in 

tests when compared to individual testing. 

2.5 Discussion 

In this chapter, we have outlined how to estimate a group testing regression 

model when retesting information is available from three commonly used 

protocols. Functions to fit the models are available in R’s binGroup package 

(Bilder et al. 2010). Including retests leads to large reductions in estimator 

variability while also improving estimator accuracy. Overall, halving and array 

testing with retests are the best protocols when taking into account the number 

of tests as well as the estimator variability. We also showed that group testing 

can lead to more efficient estimates of regression parameters than individual 

testing. This is an extremely important finding, because it shows that more 

information can be gained from a statistical analysis by actually doing less in 

terms of testing.  

Group size selection is an important consideration in most applications where 

group testing is used (e.g., see Swallow (1985)). Aside from assay considerations, 

the optimal group size is the one that leads to the smallest number of tests while 

still providing as much information as possible. Our research shows the average 

number of tests per unit of information stays relatively stable over a large range 

of group sizes when retests are included. Thus, protocols with retests are 

somewhat robust to the group size used, which makes its choice not as critical as 

when retesting is omitted.  

The EM algorithm proposed by Xie (2001) can be used to fit models for data 

arising from any group testing protocol. While our paper focused on three 
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commonly used protocols for case identification, other protocols exist. In 

particular, array testing can be implemented with a master group for each array 

and/or in more than two dimensions (Kim et al. 2007; Kim and Hudgens 2009). 

Future research could examine these other protocols to determine if more 

estimation benefits result from their implementation. In the case of array testing, 

all protocols will likely need to use the Gibbs sampling approach outlined in 

Section 2.2.4 to estimate a conditional expectation for every cell within an array. 

This can be time consuming depending on the size of the arrays and how many 

arrays there are. Potentially, parallel processing could be used with one core 

processor per array to reduce the model fitting time. 
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Table 2.1. The numerator and denominator for ik for the halving protocol in Section 2.2.3. To simplify the expressions, 
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Table 2.2. Parameter estimates and their standard errors based on 1000 (300 for 

array testing) simulated data sets with 0 = -7, 1 = 0.1, and  =  = 0.99. The 

mean row includes the averaged estimate across all simulated data sets. The 

SE/SD row gives the averaged standard error over all simulated data sets (SE) 

divided by the sample standard deviation of the estimates across all data sets 

(SD). 

 

   
I = 4 

 
I = 12 

 
I = 20 

Protocol 
  0

̂  
1

̂   
0

̂  
1

̂  
 0

̂  
1

̂  

Individual Mean 
 

-7.003 0.099 
 

-7.013 0.099 
 

-7.016 0.099 

 
SE/SD 

 
0.983 0.977 

 
0.970 0.966 

 
1.002 0.987 

IG Mean 
 

-6.918 0.096 
 

-6.840 0.091 
 

-6.628 0.081 

 
SE/SD 

 
0.961 0.948 

 
0.886 0.854 

 
0.861 0.840 

Dorfman Mean 
 

-6.995 0.099 
 

-7.013 0.100 
 

-6.983 0.099 

 
SE/SD 

 
1.002 1.008 

 
0.982 0.982 

 
0.978 0.980 

Halving Mean 
 

-7.000 0.099 
 

-7.015 0.099 
 

-7.021 0.098 

 
SE/SD 

 
1.016 1.020 

 
0.982 0.982 

 
0.978 0.973 

Array w/o retesting Mean 
 

-7.024 0.099 
 

-6.984 0.099 
 

-7.023 0.099 

 
SE/SD 

 
1.007 1.044 

 
0.981 0.997 

 
0.989 0.991 

Array w/ retesting  Mean 
 

-7.022 0.100 
 

-7.010 0.100 
 

-7.018 0.099 

 
SE/SD 

 
0.982 1.017 

 
1.001 1.011 

 
0.979 0.979 
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Table 2.3. Parameter estimates and estimated standard errors for the chlamydia 

screening data. The “p-value” column gives Wald test p-values for testing 

whether or not a regression parameter is equal to 0. Note that an overall test is 

performed for all levels of the variable Race. The number of tests performed by 

each protocol is in parenthesis after the protocol name. 

 

  Individual (6139)  IG (1228)  Dorfman (3458) 

Term  Estimate
 

SE p-value  Estimate
 

SE p-value  Estimate
 

SE p-value 

Intercept  -2.46 0.24 <0.001  -2.52 0.36 <0.001  -2.16 0.20 <0.001 

Age  -0.03 0.01 <0.001  -0.03 0.01 0.061  -0.04 0.01 <0.001 

Race level #1  0.79 0.15 <0.001  0.79 0.26 0.017  0.67 0.12 <0.001 

Race level #2  0.80 0.32   0.88 0.50   1.08 0.25  

Race level #3  0.44 0.26   0.43 0.50   0.37 0.22  

Symptoms  0.45 0.16 0.004  0.32 0.30 0.285  0.69 0.14 <0.001 

Urethritis  1.29 0.33 <0.001  1.40 0.51 0.006  0.95 0.33 0.004 

Multiple partners  0.44 0.19 0.019  0.56 0.33 0.090  0.53 0.16 0.001 

New partner  0.17 0.20 0.407  0.11 0.40 0.782  0.10 0.18 0.567 

Contact to a STD  1.04 0.15 <0.001  1.12 0.27 <0.001  1.10 0.14 <0.001 

  

  
Halving (2898)  

Array w/o retesting 

(1541)  Array w/ retesting (3097) 

Term  Estimate
 

SE p-value  Estimate
 

SE p-value  Estimate
 

SE p-value 

Intercept  -2.39 0.22 <0.001  -2.56 0.34 <0.001  -2.11 0.21 <0.001 

Age  -0.04 0.01 <0.001  -0.03 0.01 0.013  -0.05 0.01 <0.001 

Race level #1  0.64 0.14 <0.001  0.94 0.23 <0.001  0.73 0.12 <0.001 

Race level #2  0.47 0.34   0.28 0.59   0.39 0.33  

Race level #3  0.68 0.22   0.24 0.44   0.49 0.21  

Symptoms  0.63 0.15 <0.001  0.64 0.23 0.005  0.71 0.14 <0.001 

Urethritis  1.07 0.34 0.002  0.61 0.53 0.254  0.96 0.35 0.006 

Multiple partners  0.35 0.16 0.029  0.56 0.30 0.062  0.45 0.17 0.008 

New partner  0.11 0.20 0.600  0.22 0.36 0.549  0.29 0.18 0.100 

Contact to a STD  1.16 0.15 <0.001  1.26 0.21 <0.001  1.04 0.14 <0.001 
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Figure 2.1. Relative efficiencies calculated by Equation (6) based on 500 

simulated data sets. Dorfman and halving protocols are compared to IG. Array 

testing is compared with and without retests. 
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Figure 2.2. Averaged 1̂( )Var   for 500 simulated data sets. The dashed horizontal 

line corresponds to 1̂( )Var   from individual testing. The right-side plots are the 

same as those on the left-side except we omit IG in order to reduce the y-axis 

scale. 

  

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

Group size

V
ar

(̂
1)

4 6 8 10 12 14 16 18 20

IG
Dorfman
Halving
Array w/o retesting
Array w/ retesting
Individual

0.
00

04
0.

00
06

0.
00

08
0.

00
10

0.
00

12

Group size

V
ar

(̂
1)

4 6 8 10 12 14 16 18 20

Dorfman
Halving
Array w/o retesting
Array w/ retesting
Individual

 =  = 0.99

0.
00

2
0.

00
4

0.
00

6
0.

00
8

Group size

V
ar

(̂
1)

4 6 8 10 12 14 16 18 20

IG
Dorfman
Halving
Array w/o retesting
Array w/ retesting
Individual

0.
00

05
0.

00
10

0.
00

15
0.

00
20

Group size

V
ar

(̂
1)

4 6 8 10 12 14 16 18 20

Dorfman
Halving
Array w/o retesting
Array w/ retesting
Individual

 =  = 0.95



40 

 

 

 

 

Figure 2.3. Average number of tests per unit of information calculated by 

Equation (7) based on 500 simulated data sets.  
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Chapter 3: Paper #2 - Regression Analysis for 
Multiple-Disease Group Testing Data 

 

Abstract 

Group testing, where groups of individual specimens are composited to test for 

the presence of a disease (or other binary trait), is a procedure commonly used to 

reduce the costs of screening a large number of individuals. Group testing data 

are unique in that only group responses may be observed, but inferences are 

needed at the individual level. A further methodological challenge arises when 

individuals are tested in groups for multiple diseases simultaneously, because the 

unobserved individual disease statuses are likely to be correlated. In this paper, 

we propose the first regression techniques for multiple-disease group testing data. 

We develop an expectation-solution based algorithm that provides consistent 

parameter estimates and natural large-sample inference procedures. Our proposed 

methodology is applied to chlamydia and gonorrhea screening data collected in 

Nebraska as part of the Infertility Prevention Project.  

 

KEY WORDS: Correlated binary data; Expectation-solution algorithm; Generalized 

estimating equations; Latent response; Pooled testing; Unobserved response. 
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3.1 Introduction  

Researchers are often interested in modeling the disease infection status of 

individuals to identify important risk factors and to estimate subject-specific risk 

probabilities. In many cases, pooling specimens (e.g., blood, urine, swabs, etc.) 

through group testing offers a novel approach to significantly reduce the number 

of tests, the time expended, and the overall costs. These practical benefits have 

led to the adoption of group testing in a number of infectious disease 

applications, including blood donation screening by the American Red Cross 

(American Red Cross, 2012), opportunistic chlamydia and gonorrhea testing in 

medical clinics (Gaydos, 2005), and Bovine Viral Diarrhea virus detection for the 

cattle industry (Munoz-Zanzi et al., 2006). Group testing has also proven to be 

beneficial in other areas including pharmaceutical drug discovery (Remlinger et 

al., 2006), plant pathology (Tebbs and Bilder, 2004), genotyping (Chi et al., 

2009), and food contamination testing (Fahey, Ourisson, and Degnan, 2006).  

Statistical research in group testing has traditionally focused on estimating the 

prevalence of disease in a homogeneous population. More recently, research has 

shifted towards incorporating individual covariate information to produce 

individual-specific estimates in a regression context. Vansteelandt, Goetghebeur, 

and Verstraeten (2000) and Xie (2001) are commonly regarded as the seminal 

papers in this area. Vansteelandt et al. (2000) provides a generalized linear model 

regression approach that uses only the initial group responses for estimation. 

Xie’s (2001) approach is more flexible by allowing for different classes of 

regression models and the inclusion of additional information from retesting 

subsets of positive groups. Several very recent papers have expanded on the work 
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of Vansteelandt et al. (2000) and Xie (2001). Specifically, Bilder and Tebbs (2009) 

provide a thorough comparison of individual and group testing regression model 

estimates, Chen, Tebbs, and Bilder (2009) examine mixed-effects models, Delaigle 

and Meister (2011) and Delaigle and Hall (2012) formulate a nonparametric 

modeling approach. Group testing regression models even have been used to 

diagnose model misspecification with individual response data, as illustrated by 

Huang (2009). 

When viewed collectively, research in group testing regression modeling has 

one notable shortcoming; namely, the available methodology involves only single-

disease models. However, in many screening applications, testing is performed not 

for one disease but for multiple diseases at the same time – often using the same 

assay. For example, the American Red Cross uses group testing to screen millions 

of blood donations per year for HIV, hepatitis B, and hepatitis C with a single 

assay (Stramer et al., 2004; American Red Cross, 2012). Also, as part of the 

nationally implemented Infertility Prevention Project, the Nebraska Public 

Health Laboratory (NPHL) uses the GenProbe Aptima Combo 2 assay to test 

thousands of individual specimens each year for chlamydia and gonorrhea 

simultaneously. Despite the ubiquity of multiple-disease screening in practice, 

Hughes-Oliver and Rosenberger (2000) is the only paper that has addressed the 

multiple-disease problem in the group testing literature, and they do so assuming 

that the population is homogeneous and that diagnostic tests are perfect.  

The purpose of our paper is to develop new group testing regression models for 

multiple-disease screening data in heterogeneous populations with imperfect 

diagnostic tests. In essence, our research deals with modeling correlated binary 
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data, but with the unique aspect that the underlying disease responses are 

unobserved for each individual. Broadly speaking, our paper can be viewed as a 

generalization of Vansteelandt et al. (2000) and Xie (2001) to model multiple-

disease statuses and, at the same time, a generalization of Hughes-Oliver and 

Rosenberger (2000) to incorporate covariate information and imperfect diagnostic 

tests. 

The remainder of this paper is organized as follows. Section 3.2 describes the 

notation and states the model of interest. Section 3.3 shows how the expectation-

solution (ES) algorithm of Elashoff and Ryan (2004) can be used to model 

multiple-disease statuses with group testing responses. Due to the complicated 

relationship between the unobserved individual and observed group responses 

when diagnostic testing error is present, we develop new ways to approximate the 

true correlation structure among the unobserved individuals. Section 3.4 presents 

simulation evidence demonstrating that parameter estimates are consistent and 

that Wald confidence intervals achieve their stated confidence levels in realistic 

settings. Section 3.5 applies this work to the chlamydia and gonorrhea screening 

data from the NPHL. Finally, Section 3.6 summarizes this work and suggests 

future areas of research. 

3.2 Notation and Model 

Define ijkY  as the true unknown individual status of disease j for the ith individual 

in group k, where i = 1, …, Ik, j = 1, …, J, k = 1, …, K, and suppose that these 

random variables are independent across i and k. The value for ijkY  is 0 for a 

negative response and 1 for a positive response; we use this standard convention 
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for all subsequently defined binary random variables. For each individual i, 

1( ,  ...,  )ik i k iJkY Y Y    contains J unobserved disease statuses that are likely 

correlated.  

Define Zjk as the observed group binary response for the jth disease and the kth 

group. We assume that all groups are non-overlapping and that each individual is 

within one group. If group tests are perfectly accurate, as assumed in Hughes-

Oliver and Rosenberger (2000), Zjk = 1 if and only if 
1

0kI

ijki
Y


   and Zjk = 0 if 

and only if 
1

0kI

ijki
Y


  . Of course, assays are unlikely to be perfect in practice, 

so one must account for this uncertainty. For disease j, define the group test 

sensitivity and specificity as ( 1 | 1)j jk jkP Z Z     and ( 0 | 0),j jk jkP Z Z     

respectively, where jkZ  denotes the true group binary response for disease j and 

group k. We assume the sensitivity and specificity are known for each disease and 

are not dependent on pool size; these assumptions are analogous to those made 

by Vansteelandt et al. (2000) and Xie (2001) for single-disease group testing 

regression models and by Neuhaus (1999, 2002) for individual testing regression 

models. We can then express jk ≡ P(Zjk = 1) in terms of the true individual 

probabilities ( 1)ijk ijkP Y p 

  as 

( 1 | 1) ( 1) ( 1 | 0) ( 0)jk jk jk jk jk jk jkP Z Z P Z P Z Z P Z           

1
(1 ) (1 ).

kI

j j j ijk
i

p  


                                                              (8) 

With covariates 1 1,( , ..., )ik ik p ikx x  x
 
collected on each individual, our goal is to 

estimate ijkp  when only the observed group responses Zjk are available, similar to 

Vansteelandt et al. (2000) with single-disease models. In all subsequent 

expectations written in this chapter, we condition on the full set of covariates xik 
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as we did for ijkp , but we suppress this specification for notational simplicity. We 

consider models of the form 

0 1 1 1, 1,( ) ,ijk j j ik p j p ikf p x x       
                                                  (9) 

where f(×) is a known monotonic, differentiable function and rj (r = 0, …, p – 1, 

j = 1, …, J) is a regression parameter. Using a joint model, as in Equation (9), 

not only enables one to analyze group testing data as they naturally arise from 

multiple-disease screening assays, but it also allows one to incorporate the within-

individual correlation across the J diseases. We demonstrate in Section 3.4 that 

our joint modeling approach in realistic settings provides more efficient regression 

estimators than using J separate single-disease group testing models. This is 

because separate modeling discards important information about how the J 

disease statuses are related. 

3.3 Expectation-Solution Algorithm 

The ES algorithm, introduced by Elashoff and Ryan (2004), is a generalization of 

the expectation-maximization (EM) algorithm given by Dempster et al. (1977). 

The algorithm iterates between two steps: the E-step, which computes the 

expectation of the complete data given the observed data, and the S-step, which 

substitutes the expected values into the complete-data estimating equations and 

solves the equations for the model parameters. The generalization given in 

Elashoff and Ryan (2004) allows these estimating equations to take on a variety 

of forms, including generalized estimating equations. We utilize the ES algorithm 

by treating the unobserved individual responses in group testing as “missing” and 

modify the algorithm to estimate Equation (9) using the observed group 
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responses. Our application of the ES algorithm requires additional work to 

estimate the correlation among the unobserved individual responses, as shown in 

Section 3.3.2. 

3.3.1 Estimating Equations 

To explain our model fitting approach, consider the hypothetical situation where 

the true individual responses ijkY  are observed and standard generalized 

estimating equation (GEE) methodology is used to estimate the model in 

Equation (9). Let R(), where  = (1, 2, …, S), denote the J  J working 

correlation matrix for the true individual responses. Define 

1/2 1/2( ) ( )ik ik ik ikCov  Y V B R B

 where  (1 ) .ik ijk ijkDiag p p B    The estimating 

equations are 

1( , ) ( , ) ( ) ,ik ik ik ik ik
k i k i

         0 D V y p                               (10) 

where 01 1,1 02 1,( ,  ...,  , ,  ...,  ) ,p p J       ( / ) ,ik ik  D p  1( ,  ...,  ) ,ik i k iJkp p p    

iky  is a realization of ,ikY  0 is a pJ × 1 vector of 0’s, and 

1( , ) ( )ik ik ik ik ik
  D V y p     is the contribution of the ith subject in the kth group 

to the estimating equations. If realizations of the individual responses ijkY  were 

available, parameter estimates would be found by successively estimating  and 

solving Equation (10) for  in an iterative manner until convergence. 

Because the individual responses ijkY  are not observed in group testing, we can 

not use standard GEE methodology as stated above. However, analogous to the 

use of the expectation-maximization (EM) algorithm approach described in Xie 

(2001) for a single disease, we can replace the individual responses in Equation 

(10) by their expected values, conditional on the group responses Z = (Z1k, …, 
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ZJK). Because a conditional expectation involving ijkY  depends only on its 

corresponding group response, it suffices to calculate ( | 1) /ijk jk j ijk jkE Y Z p  



 and ( | 0) (1 ) / (1 )ijk jk j ijk jkE Y Z p    

 . Replacing ijky  with ( | )ijk jkE Y z , 

Equation (10) becomes 

obs obs 1( , ) ( , ) ( ) ,ik ik ik ik ik
k i k i

         0D V p                            (11) 

where 1 1( ( | ),  ...,  ( | ))ik i k k iJk JkE Y z E Y z     and obs 1( , ) ( ).ik ik ik ik ik
  D V p     

The symbol obs  indicates that Equation (11) no longer involves any unknown 

individual responses. The ES algorithm successively estimates  and solves 

Equation (11) for  in an iterative manner to obtain parameter estimates. The 

initial estimate of  can be found by estimating separate models for each disease 

with the methodology in Xie (2001). Note that the expectations ( | )ijk jkE Y z  are 

updated at each iteration to correspond to the current estimate of . Estimating 

 at each iteration is not straightforward, so we discuss it thoroughly in the next 

subsection. The final iterative solution to Equation (11) at convergence is the 

estimate of , which we denote by ̂ . 

3.3.2 Correlation Estimation 

To estimate , we need to first identify the relationship between ( , )jk j kCov Z Z  , 

which we can estimate from the observed group responses, and ( , )ijk ij kCorr Y Y 
  , 

which involves the unobserved individual responses. This relationship is given in 

the following theorem. 

THEOREM 1: Assuming that the observed group responses are independent given 

the true group statuses, the covariance between jkZ  and j kZ  , when written as a 

function of the correlation of the unknown individual responses, is 
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 
1

( , ) ( , ) ( ) ( ) (1 )(1 )
kI

jk j k jj ijk ij k ijk ij k ijk ij k
i

Cov Z Z Corr Y Y Var Y Var Y p p    



     


   

 

1
(1 )(1 )

kI

ijk ij k
i

p p 



 


 

                                                             

(12)

 for 1  ≤ j, j ≤ J and k = 1, …, K, where ( 1)( 1)jj j j j j           . 

The proof of Theorem 1 is given in Appendix G. The importance of Theorem 1 

is that it provides a convenient way to obtain method of moments estimates for 

( , )ijk ij kCorr Y Y 
  . Suppose an estimate of the model given in Equation (9) is 

available so that we can then estimate jk, denoted by ĵk , through Equation (8). 

Define ˆ
ĵk jk jkr z    as residuals from the model’s fit, where zjk is the realization of 

Zjk. After replacing ( , )jk j kCov Z Z   with ˆ ˆjk j kr r   in the left-hand side of (12), we 

create one equation for each s (s = 1, …, S). We argue in Appendix H that one 

unique solution ŝ  can be found in each equation and that 1ˆ ˆ ˆ( ,  ...,  )S   is a 

consistent estimator of  when  is known. 

To illustrate this approach, suppose that there is an exchangeable correlation 

structure between ijkY  and ,ij kY 
  say, ( , )ijk ij kCorr Y Y    , so that S = 1. The 

estimate of  is obtained by solving 

 
11 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ (1 ) (1 ) (1 )(1 )
kIK K

jk j k jj ijk ijk ij k ij k ijk ij k
ik j j k j j

r r p p p p p p    
     


           


     

1

ˆ ˆ(1 )(1 )
kI

ijk ij k
i

p p 



 


 

               

                                             (13)

 for , where ˆ
ijk

p  is the model’s estimate of 
ijk

p . Alternatively, if one specifies an 

unstructured correlation matrix so that ( , )ijk ij k jjCorr Y Y    , for j  j, we 

obtain J(J – 1)/2 equations of the form 

 
11 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ (1 ) (1 ) (1 )(1 )
kIK K

jk j k jj jj ijk ijk ij k ij k ijk ij k
ik k

r r p p p p p p     
 


         


     

1

ˆ ˆ(1 )(1 )
kI

ijk ij k
i

p p 



 


          
                                            

        (14)
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The (j, j)th element of R() can be estimated by solving Equation (14) for .jj   

Estimation for other correlation structures is performed in a similar manner. 

Because ( , )jk j kCov Z Z   is a polynomial function of ( , )ijk ij kCorr Y Y 
   of degree Ik, 

obtaining the coefficients for this function can be computationally expensive 

when the group size Ik is large. Fortunately, we have found that the higher order 

(≥ 3) coefficients of ( , )ijk ij kCorr Y Y 
 

 are almost always negligible. As a result, it 

usually suffices to use the linear and quadratic terms to estimate . For example, 

for an unstructured working correlation matrix, the linear and quadratic 

coefficients of jj   in (13) are computed as 

,
1 1

ˆ ˆ
ˆ ˆˆ (1 )(1 ) ˆ ˆ(1 )(1 )

kk II
ijk ij k

jj k jj ijk ij k
i i ijk ij k

p p
c p p

p p


  
  

             

 

 

 

 

and 

,
1

ˆ ˆ ˆ(1 )(1 )
kI

jj k jj ijk ij k
i

d p p  


           
 

1 1 2 2

1 2 1 1 2 2
1

ˆ ˆ ˆ ˆ
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    


   

   

   

 

respectively. The estimate ˆjj   solves  

,
1 1
ˆ ˆ ˆ ˆ

K K

jk j k jj k jj
k k

r r c   
 

   

using a first-order approximation or 

2
, ,

1 1 1

ˆˆ ˆ ˆ ˆ ˆ
K K K

jk j k jj k jj jj k jj
k k k

r r c d     
  

     

using a second-order approximation. More details on these approximations, 

including their derivations and accuracy, are available in Appendix I. 
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3.3.3 Model Fitting Algorithm 

We propose the following ES algorithm to obtain parameter estimates when 

modeling multiple diseases with group testing data: 

1) Select initial values (0)  of . 

2) E-Step: For a given ( )b , b = 0, 1, 2, …, calculate 

( ) ( ) ( )
1 1( ( | , ),  ..., ( | , ))b b b

ik i k k iJk JkE Y z E Y z     , i = 1, …, Ik and k = 1, …, K. 

3) S-Step: Estimate  using the methods in Section 3.3.2 with the current 

estimate ( )b , and denote it as ( )ˆ( ).b   Solve 

obs ( ) 1 ( )ˆ( , ( )) ( )b b
ik ik ik ik

k i

     0D V p     

for  to update the parameter estimates at the (b + 1)th iteration, where 

( )ˆ( )b   within Vik and ( )b
ik  are treated as fixed and known. 

4) Repeat Steps 2 and 3 until ( 1) ( )b b    is very small; denote the final 

solution by ̂ . 

3.3.4 Variance Estimation  

Elashoff and Ryan (2004) showed that under certain regularity conditions, 

regression parameter estimators obtained from the ES algorithm are consistent 

and are asymptotically normal. Consistency and asymptotic normality also hold 

in our setting but with a small change to the form of ˆ( )Cov  . Note that for each 

group k, the expectations 
1

( | ), ..., ( | )
kjk jk I jk jk

E Y Z E Y Z   are all functions of Zjk; 

thus the ( , )ik    expressions in the same group are dependent. It is therefore 

necessary to modify the middle part of the sandwich variance estimator in 

Elashoff and Ryan (2004) to incorporate this within group dependence. 

Specifically, the covariance matrix of ̂  is 
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  
1

obs
obs obs( , )ˆ( ) ( , ) ( , )ik
ik ik

k i k i i
Cov

                     

 
    



1
obs( , )

,ik

k i

        

 


                   

                                      (15)

 
where , Dik, Vik, ik, and ikp  are all functions of . An estimate of this 

covariance matrix, which we denote by  ˆ( )Cov  , arises from evaluating Equation 

(15) at ̂  and ̂ . Our simulation evidence in Section 3.4 shows that standard 

errors are well estimated by the corresponding entries in  ˆ( )Cov   and that 

resulting Wald confidence intervals confer the nominal level in realistic settings.  

3.4 Simulation Evidence 

We have extensively examined via simulation the performance of our proposed 

methodology in realistic group testing settings. For illustration, consider a logistic 

regression model for two diseases and two covariates: 

0 1 1 2 2logit( )ijk j j ik j ikp x x                                                         (16) 

for j = 1, 2, where the between-disease correlation is 1 2( , ) .i k i kCorr Y Y  

 We 

simulate the first covariate x1ik from a Uniform(0, 1) distribution and the second 

covariate x2ik from a gamma(17, 1.4) distribution. The true regression parameters 

chosen are 01 = -6, 02 = -7, 11 = 0, 12 = 1, 21 = 0.1, and 22 = 0.1. These 

covariate and parameter configurations provide a mean prevalence of 

approximately 3% for the first disease and 2% for the second disease, which are 

at typical prevalence levels where group testing would be used. In Appendix J, 

we provide histograms of the true individual probabilities for a simulated data set 

under this model. 
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We employ the following strategy to simulate the group responses Zjk for j = 1, 

2 and k = 1, …, K. With the individual probabilities from Equation (16) and a 

given value of , we use the correlated binary data generation procedure of 

Emrich and Piedmonte (1991) to simulate the 1 2( , )i k i kY Y  

 responses. These 

responses are then randomly assigned to groups. The true, unobserved group 

responses jkZ  are obtained using 1jkZ   if 
1

0kI

ijki
Y


   and 0jkZ 

 if 

1
0kI

ijki
Y


   for disease j and group k. Allowing for testing error, the observed 

group test responses Zjk are then simulated from the appropriate Bernoulli 

distribution with success probability j = j = 0.95 for j = 1, 2. 

The ES algorithm with a second-order approximation is used to estimate  

and Equation (16) for each of B = 1000 simulated data set, where we estimate 

only one parameter, say 2, for both 21 = 22 because these two parameters are 

assumed to be equal. This is motivated by our analysis of the NPHL data in 

Section 3.5, in which the hypothesis of sharing parameters across diseases for a 

certain covariate (i.e., across the levels of j) is not rejected. Table 3.1 gives the 

parameter estimates averaged over 1,000 simulated data sets for various 

combinations of , K, and Ik (“Mean” row). The use of large samples sizes (K > 

500) is motivated by our experience with the NPHL (see Section 3.5). As 

expected, the regression parameter estimates on average approach their 

corresponding parameters as K increases. We also calculate the standard 

deviation (SD) for each regression parameter estimate across the 1,000 simulated 

data sets and compare this to the corresponding averaged estimated standard 

error (SE) that would be obtained from (15). Also as expected, the SE/SD ratio 

given in Table 3.1 approaches 1 as K increases, although the SE is slightly 
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underestimated for smaller K. Lastly, in Table 3.1, we give the estimated 

coverage levels of 95% Wald confidence intervals for each regression parameter. 

These levels are all between 0.94 and 0.96, which indicate the intervals are 

performing as expected. 

It is often of interest to see how the standard errors of joint modeling of all 

diseases using the ES algorithm compare to fitting separate group testing models 

to each disease using the method of Vansteelandt et al. (2000). To explore this, 

we calculate the relative efficiency as 





,
, ,

1
,

ˆ( )1ˆ ˆRE(  to ) ,
ˆ( )

MLB
b rjES ML

b rj b rj
ESb
b rj

Var

B Var


 


                                                     (17) 

where ,
ˆML
b rj  and ,

ˆES
b rj  denote the rth regression parameter estimate for the jth 

disease using the Vansteelandt et al. (2000) approach and ES algorithm, 

respectively. Table 3.2 displays the relative efficiencies for the same simulated 

data in Table 3.1. Note that we calculate the relative efficiency using  ,2
ˆ( )ES
bVar   

when r = 2 because the single parameter 2 replaces 21 = 22. For relative 

efficiencies involving ,2
ˆES
b , dramatic increases in efficiency are seen in Table 3.2 

with levels at times greater than 2. In addition, even when parameters are not 

shared for r = 1, we still see valuable gains in efficiency ranging from 1.4% to as 

high as 17.2%. To compare all regression estimators for each j, we also include in 

Table 3.2 the relative efficiency as in Equation (17), but now involving 

 ˆ(logit( ))bVar p  where p̂  denotes the estimated probability of disease positivity at 

the mean values of the two covariates in Equation (16). Again, we see the 

benefits of joint modeling with gains in efficiency ranging from 16.3% to 43.1%. 
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We have performed a number of additional simulations using different models, 

different prevalence levels, and different levels of correlation among diseases. 

Details for these simulations are provided in Appendix J. For example, 

corresponding to Equation (17), we have also calculated the relative efficiencies 

where 21 and 22 are estimated separately. It is not surprising that the relative 

efficiencies in this situation are smaller, but they are still as large as 11%. 

3.5 Applications 

Chlamydia and gonorrhea are the two most prevalent sexually transmitted 

diseases reported in the United States (Centers for Disease Control and 

Prevention, 2010). This is true in Nebraska as well, and these diseases even have 

been characterized as being at epidemic levels in Omaha (Zagurski, 2006). As 

part of the Centers for Disease Control and Prevention funded Infertility 

Prevention Project (IPP), the NPHL uses a single assay to test for chlamydia 

and gonorrhea simultaneously. Due to the high cost incurred by their use of 

individual testing (approximately $11 for a swab test and $16 for a urine test) 

and the large numbers of individuals tested (approximately 25,000 per year), the 

NPHL is interested in using group testing for screening. A few other laboratories, 

such as the State Hygienic Laboratory at the University of Iowa, already use 

group testing as part of their participation in the IPP. Our goal is to fit models 

that can estimate an individual’s probability of having chlamydia or gonorrhea 

using group testing responses. This would enable our medical colleagues at the 

NPHL to understand how these disease statuses are related to certain risk factors 

at a fraction of the cost when compared to testing subjects individually. 
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Furthermore, the models could also provide additional insight on how to retest 

individuals in positive groups if identification of positive and negative individuals 

was our goal (Bilder, Tebbs, and Chen 2010a).  

We focus on the 14,530 female swab specimens that were tested individually 

by the NPHL in 2009. The overall prevalence for chlamydia and gonorrhea 

during this year was approximately 0.069 and 0.013, respectively (unadjusted for 

potential testing error). We construct groups of size 5 with the observed data by 

assigning individuals to groups based on specimen arrival date. Groups of this or 

of similar size are used elsewhere for chlamydia and gonorrhea screening; see 

Morre et al. (2001) and Butylkina et al. (2007). The NPHL’s assay for female 

swabs has a sensitivity of 0.928 for chlamydia and 0.966 for gonorrhea and a 

specificity of 0.960 for chlamydia and 0.980 for gonorrhea. We use these same 

levels in our analysis here. In addition to the testing outcomes for both infections, 

the NPHL collects additional covariate information on each individual. 

Specifically, we use the following covariates in our models: age, race (represented 

by three indicator variables), symptoms, clinician observation variables (cervical 

friability, pelvic inflammatory disease, cervicitis), and risk history variables 

(multiple partners, new partner in the last 90 days, contact with someone who 

has a sexually transmitted disease). All covariates are dichotomous (0 and 1) 

except for age. 

Table 3.3 displays the results from fitting a first-order model using our 

methodology in Section 3.3 with a logit link function. The estimated value of  is 

0.27, which is obtained through using a second-order approximation for it (see 

Section 3.3.2). For comparison purposes, we also fit the same regression model 
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using the individual observations with standard GEE methodology. This is why 

we use data that were originally collected on each individual; otherwise, it would 

not be possible to make this type of comparison. When we fit the individual 

testing model, we assume that the assay sensitivity and specificity are equal to 1. 

We attempted to fit this model using the GEE methodology of Neuhaus (2002), 

which allows for imperfect sensitivity and specificity, but many of the parameter 

estimates associated with gonorrhea infections did not converge. A further 

investigation on our part revealed that this is caused by a low gonorrhea 

prevalence at the given specificity level. In fact, the maximum likelihood estimate 

for the overall gonorrhea prevalence is actually negative. 

The parameter estimates given in Table 3.3 for the group and individual 

testing models are often in close agreement. The estimated standard errors 

associated with individual testing are lower than those of the group testing 

models. This is expected because there are five times more observations used to 

fit the individual testing model; see Vansteelandt et al. (2000) and Bilder and 

Tebbs (2009) for a similar discussion with single-disease group testing models. 

However, it is interesting to note that the group testing standard errors are only 

1.3 to 3.2 times more than the individual testing standard errors. 

Using a 0.05 level of significance with the group testing models, Wald test p-

values (not shown) are less than 0.05 for the covariates: 

• Race, symptoms, multiple partners, and contact to a STD 

corresponding to gonorrhea, and 

• Age, race, symptoms, cervicitis, and contact to a STD corresponding to 

chlamydia. 
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In this assessment, we perform one test jointly for the four race levels. These 

results largely agree with those from fitting the individual testing model, 

although the individual testing analysis finds some additional parameters 

significant at the 0.05 level (age, pelvic inflammatory disease, and cervicitis for 

gonorrhea).  

Using our group testing model, it is possible to perform hypothesis tests of the 

form 0 1 2: r rH    versus 1 2:a r rH    for r = 0, 1, …, p – 1; i.e., we can test 

for a common parameter across diseases. It is important to emphasize that these 

tests can not be performed using single-disease group testing regression models, 

because parameters are estimated separately for each infection. The following 

covariates have large Wald test p-values using the group testing model: pelvic 

inflammatory disease (p-value = 0.642), new partner (p-value = 0.533), cervicitis 

(p-value = 0.516), and cervical friability (p-value = 0.466). In the light of these 

findings, it may be reasonable to consider a more parsimonious model with a 

shared parameter across both diseases for these covariates. When we estimate 

this model (see Appendix K), we find that Wald test p-values are generally less 

than 0.05 for the same covariates as before. The only difference is that the 

significant parameter for cervicitis is now shared across the infections. 

3.6 Discussion 

In this chapter, we have developed a group testing regression model based on the 

ES algorithm for correlated multiple-disease data. Specifically, our proposed 

method takes advantage of covariate information in estimating individual 

statuses of multiple diseases simultaneously in a group testing setting. Also, our 
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methods are especially useful when comparisons of model parameters across 

diseases are desired. R functions are created for implementing this procedure and 

are available at www.chrisbilder.com/grouptesting/multiple. In the 

future, we intend to include the functions in R’s binGroup package (Bilder et al. 

2010b; R Development Core Team 2012). 

We also derived another approach (called “GEE-group”) for modeling 

correlated multiple-diseases, where we focus on the observed group responses 

1
( , , )

k k jk
Z Z  Z

 
and solve the estimating equations written in terms of Z = 

(Z1, …, ZK). This method can be viewed as a direct generalization of the 

Vansteelandt et al. (2000) approach for single-disease group testing models. GEE-

group produces estimates close to those given by the ES algorithm. However, this 

method has a couple of clear drawbacks that would keep us from using it. First, 

the working correlation structure must be specified in terms of group responses, 

which is far less natural than being specified through individual responses like in 

the ES algorithm. Second, the GEE-group approach cannot be generalized to 

incorporate any retesting information while we expect the ES algorithm-based 

method could be generalized (see the last paragraph). More details on our 

investigation into the GEE-group approach can be found in Section 4.5. 

If we let the j subscript in our notation represent time points rather than 

different diseases, our proposed method is directly applicable to a single-disease 

longitudinal testing setting. This modeling approach restricts individual subjects 

to be within the same groups over time. We tried to relax this restriction by 

allowing individuals to appear in different groups at different time points, but we 



60 

 

 

 

found it is mathematically quite difficult because Zjk now could be correlated with 

j k
Z    for any k (i.e., responses are correlated across groups). 

Using only the group responses, our proposed method can estimate covariate-

adjusted individual probabilities with reduced cost. When further identification of 

positive individuals is needed, retesting individuals (or subsets of individuals) 

from positive groups is often performed. Future research should examine how to 

incorporate the individual retest outcomes into the estimation process. We expect 

these additional responses will lead to improved parameter estimates. Our ES 

algorithm-based approach most likely could accommodate these situations by 

taking into account the retests in the conditional expectations of the E-step. For 

some retesting schemes, these conditional expectations may not be available in 

closed form, but the Gibbs sampling technique could be employed to approximate 

them. One complication of including the retest results is that for different 

diseases we will likely have different positive groups, leading to different groups 

of individuals being retested for j = 1, 2, …, J. Consequently, how to effectively 

make use of different individual subjects in estimating the within-subject 

correlation is challenging and remains a good future research topic. 
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Table 3.1. Simulation results from using the ES algorithm to estimate the model 

in Equation (16) with 01 = -6, 02 = -7, 11 = 0, 12 = 1, and 2 = 0.1. A second-

order approximation is used to estimate  as described in Section 3.3.2. 

Estimated parameters and standard errors are averaged over 1000 simulated data 

sets. Estimated coverage probabilities are for nominal 95% Wald confidence 

intervals. 

 

   = 0.6, Ik = 5, K = 1000   = 0.6, Ik = 10, K = 500 

  01 02 11 12 2   01 02 11 12 2  

Mean  -5.99 -7.03 -0.03 1.00 0.10 0.61  -6.14 -7.20 0.00 1.07 0.10 0.61 

SE/SD  0.96 0.96 0.98 0.95 0.96 -  0.99 0.97 0.94 0.93 0.95 - 

Coverage  0.95 0.94 0.95 0.95 0.95 -  0.94 0.94 0.95 0.95 0.94 - 

               
   = 0.2, Ik = 5, K = 1000   = 0.2, Ik = 10, K = 500 

  01 02 11 12 2   01 02 11 12 2  

Mean  -6.02 -7.03 0.03 1.02 0.10 0.20  -6.12 -7.21 0.01 1.13 0.10 0.21 

SE/SD  0.95 0.95 0.94 0.95 0.96 -  0.97 0.98 0.96 0.96 0.98 - 

Coverage  0.94 0.95 0.95 0.95 0.94 -  0.94 0.94 0.95 0.95 0.95 - 

               
   = 0.6, Ik = 5, K = 2000   = 0.6, Ik = 10, K = 1000 

  01 02 11 12 2   01 02 11 12 2  

Mean  -6.00 -7.02 0.00 1.02 0.10 0.60  -6.01 -7.04 0.04 1.06 0.10 0.60 

SE/SD  0.98 1.00 0.95 0.99 1.00 -  0.99 1.00 0.96 0.98 0.99 - 

Coverage  0.94 0.94 0.94 0.96 0.95 -  0.95 0.96 0.95 0.95 0.95 - 

               
   = 0.2, Ik = 5, K = 2000   = 0.2, Ik = 10, K = 1000 

  01 02 11 12 2   01 02 11 12 2  

Mean  -6.02 -7.05 0.01 1.04 0.10 0.20  -6.05 -7.06 0.03 1.03 0.10 0.20 

SE/SD  0.97 0.96 1.01 1.00 0.96 -  0.97 1.00 0.96 0.99 0.97 - 

Coverage  0.94 0.94 0.96 0.96 0.94 -  0.95 0.94 0.95 0.95 0.95 - 
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Table 3.2. Relative efficiency of the variance estimates for the model in Equation 

(16). A single parameter 2 is estimated for both 21 = 22 by the ES algorithm. 

 

           ˆlogit( )p  

 K Ik  
01

̂
 02

̂
 11

̂
 12

̂
 21

̂
 22

̂
 

 j = 1 j = 2 

0.6 
1000 5  1.249 1.669 1.085 1.067 1.290 2.229  1.211 1.279 

500 10  1.287 1.737 1.113 1.172 1.335 2.358  1.287 1.431 

0.2 
1000 5  1.409 1.828 1.049 1.088 1.573 2.598  1.174 1.326 

500 10  1.469 1.897 1.079 1.136 1.718 2.817  1.264 1.404 

0.6 
2000 5  1.197 1.575 1.050 1.014 1.237 1.984  1.163 1.224 

1000 10  1.242 1.584 1.061 1.074 1.312 1.999  1.218 1.264 

0.2 
2000 5  1.373 1.733 1.016 1.032 1.521 2.411  1.173 1.275 

1000 10  1.462 1.758 1.038 1.070 1.655 2.455  1.241 1.340 
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Table 3.3. Parameter estimates and estimated standard errors (in parentheses) 

for the NPHL data. The GEE column corresponds to a model fit to the 

individual testing responses using GEE methodology. 

Term Disease ES algorithm GEE 

Intercept 
Gonorrhea -5.722(0.605) -4.553(0.327) 

Chlamydia -0.520(0.419) -0.976(0.147) 

Age 
Gonorrhea -0.031(0.021) -0.040(0.013) 

Chlamydia -0.113(0.019) -0.088(0.007) 

Race level #1 

Gonorrhea 2.020(0.359) 1.319(0.173) 

Chlamydia 0.591(0.120) 0.392(0.096) 

Race level #2 
Gonorrhea 0.771(1.080) 0.715(0.336) 

Chlamydia 1.062(0.243) 0.691(0.136) 

Race level #3 
Gonorrhea 0.782(0.857) -0.113(0.425) 

Chlamydia 0.036(0.401) 0.057(0.151) 

Symptoms 
Gonorrhea 1.092(0.384) 0.930(0.175) 

Chlamydia 0.385(0.175) 0.287(0.082) 

Cervical friability 
Gonorrhea -0.194(0.648) 0.325(0.312) 

Chlamydia 0.309(0.305) 0.056(0.170) 

Pelvic inflammatory disease 
Gonorrhea 0.283(0.963) 1.158(0.524) 

Chlamydia 0.788(0.627) 0.400(0.387) 

Cervicitis 
Gonorrhea 0.293(0.349) 0.550(0.200) 

Chlamydia 0.534(0.199) 0.591(0.107) 

Multiple partners 
Gonorrhea 1.167(0.311) 1.046(0.171) 

Chlamydia 0.279(0.221) 0.468(0.100) 

New partner 
Gonorrhea 0.292(0.332) -0.086(0.186) 

Chlamydia 0.064(0.197) -0.044(0.092) 

Contact to a STD 
Gonorrhea 1.381(0.286) 1.170(0.181) 

Chlamydia 0.591(0.212) 0.935(0.101) 
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Chapter 4: Additional research 
 

4.1 Introduction 

In this chapter, we include additional research performed for this dissertation 

that did not fit into previous chapters. For single-disease group testing models, 

we derived the explicit form of the likelihood function for the Dorfman and 

halving protocols, and evaluated the small-sample performance of the likelihood 

ratio tests through simulation. We then discuss how to extend the ES algorithm 

in Chapter 3 to allow for the presence of individual retests that would arise from 

a group testing protocol as mentioned for Section 2.2. For multiple-disease group 

testing data, we also consider two alternative approaches other than the ES 

algorithm to estimate the model. The first approach uses random effects to 

account for the correlation between disease statuses. The second approach 

constructs a set of generalized estimating equations in terms of the observed 

group responses Zk = (Z1k, Z2k, …, ZJk), rather than in terms of the unobserved 

individual responses as shown in Chapter 3. Finally, we provide directions for 

future research on group testing regression models. 

4.2 Likelihood Function for Dorfman and Halving Protocols 

This sub-section derives the likelihood function for the Dorfman and halving 

protocol so that a direct maximization of the function can be carried out. A 

benefit from direct maximization is that deviance statistics can be formed, which 
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subsequently leads to the construction of likelihood ratio tests (LRTs) and 

Akaike’s information criterion (AIC) statistics for model comparisons. 

For Dorfman’s protocol, using the same notation as defined in Section 2.2, the 

joint probability for all observed responses can be written as 

1 1( , ,..., )K KP Z z Z z  Y y , where y is the vector of individual retests within 

positive pools. Because groups are independent of each other, the above 

probability can be further written as 

1 1

1 1
: 1 : 0

( , ,..., )

( ,..., , 1) ( 0).
k k

k k

K K

k k I k I k k k
k Z k Z

P Z z Z z

P Y y Y y Z P Z
 

  
      

Y y
 

Hence, the log-likelihood function is 

1 1
: 0 : 1

log(1 ) log ( ,..., , 1),
k k

k k

k k k I k I k k
k z k z

P Y y Y y Z
 

     
             

        (18)
 

where k is given by Equation (1). Note that 1 1( ,..., , 1)
k kk k I k I k kP Y y Y y Z    is 

the denominator of Equation (23) in Appendix A, where we showed it can be 

written as
 
1

1 10
( | ) ( ) ( | 0)(1 ).

k k

i k

I I

i k i k i k i k i k i k i k i k i k i k
i iy

P Y y Y y P Y y P Y y Y p 


         
  

       


  

  

                                                                                                (19) 

Substituting Equation (19) and Equation (1) into Equation (18), the log-

likelihood function for Dorfman’s protocol can be explicitly expressed. A Newton-

Raphson procedure can be employed to maximize the log-likelihood with respect 

to . The inverse of the observed information matrix can serve as the estimated 

covariance matrix of ̂ . 

Similarly for the halving protocol, the joint probability for all observed 

responses is a product of P(Zk = 0), P(Zk = 1, Zk1 = 0, Zk2 = 0), P(Zk = 1, Zk1 = 

1, Yk1 = yk1, Zk2 = 0), P(Zk = 1, Zk1 = 0, Zk2 = 1, Yk2 = yk2), and P(Zk = 1, Zk1 = 
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1, Yk1 = yk1, Zk2 = 1, Yk2 = yk2). Each of the above probabilities can be written as 

a function of the individual probabilities ikp , as shown in Appendix B. We can 

then maximize the log-likelihood to obtain the MLE. 

We have verified that for the same data set, the direct maximization of the 

log-likelihood gives practically the same estimates to those given by the EM 

algorithm (any differences are due to the convergence criteria). However, we still 

prefer to use the EM algorithm to estimate parameters. This is because the log-

likelihood (especially for halving) is a very complicated function of . When the 

number of predictors in the model is large, the Newton-Raphson procedure can 

be very slow. Also, the log-likelihood for array testing protocols does not have a 

closed form solution, and consequently the EM algorithm is necessary for array 

testing protocols.  

We performed a small simulation study to examine the asymptotic distribution 

of a LRT statistic. In our study, we simulate 1000 data sets, where each contains 

5000 individual responses generated with an overall prevalence p. The covariates 

are simulated from a Gamma(17, 1.4) distribution and the group responses are 

formed with group size of I. Group, subgroup, and individual test responses for 

Dorfman and halving are simulated using  and  as Bernoulli success 

probabilities. For each data set, we fit the group testing model 

0 1logit( )ik ikp x    to the responses, and calculate the LRT statistic for testing 

H0: 1 = 0. A Kolmogorov-Smirnov test is performed on the simulated test 

statistic values to determine if they follow a χ2(1) distribution. The results 

showed that for different combinations of I, ,  and p, the χ2(1) approximation 

works well for Dorfman and halving. 
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4.3 ES Algorithm when Retesting Information is Available 

When retests of individuals or groups of individuals are performed for a group 

testing protocol, we can incorporate the retest results into the estimation process 

for the ES algorithm developed in Chapter 3. Similar to our work in Section 2.2 

for single-disease models, we can reformulate the conditional expectations in 

Section 3.3.1 by taking into account the specific group testing protocol used. 

When it is not possible to obtain a closed-form expression for these conditional 

expectations, one can use Gibbs sampling, as demonstrated in Section 2.2.4, to 

approximate them.  

The expressions for the conditional expectations ijk can be easily found for 

each group testing protocol by adding the extra subscript j to each term in the 

expressions derived in Section 2.2. We demonstrate this here for Dorfman’s 

protocol. If a group tests positive for disease j (Zjk = 1), then all individuals 

within it will be individually retested. Denote these binary retest outcomes as 

Yijk. We need to find the conditional means of the true individual responses given 

the group responses. For observed negative groups where Zjk = 0 so that no 

retests are performed, the conditional mean is 

( | 0) (1 ) / (1 )ijk jk j ijk jkE Y Z p    

 . For observed positive groups where Zjk = 1, 

the conditional mean ijk can be expressed as 

1 1

1 ( )(1)

0

1 ( )(0)

1 1 0

( 1 | ,..., , 1)

( )
.

(1 ) ( )

k k

i jk

i jk

k k
i jk

i jk

ijk ijk jk jk I jk I jk jk

y
ijk j ijk i jk i jki jk

i i y

I I
y

j i jk j i jk i jki jk i jk
i i y

P Y Y y Y y Z

p P Y y

p P Y y



  

   









 
 

   
   

    
       


   









 



 

 

where ( ) ( | )ijky
ijk ijk ijk ijk ijkP Y y Y y   



  and 1j j j     .
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With potentially multiple responses for each group (e.g., group responses Zjk 

and individual retests Yijk), it is not clear what residuals represent from a model’s 

fit. This is important because the residuals are needed to estimate the individual 

correlations used in the ES Algorithm. If residuals based on the individual retests 

are available, we can derive a similar relationship to Equation (12) between 

( , )ijk ij kCorr Y Y   and ( , )ijk ij kCorr Y Y 
  . However, some groups do not have any 

retesting. Also, individual retests are not always performed for all diseases being 

tested for a group, so we may not have both Yijk and 
ij k

Y   for .j j   Thus, it is 

usually not possible to estimate ( , )ijk ij kCorr Y Y   by including the retesting 

information. As a result, we generally can use only the initial group responses to 

estimate the correlation between diseases statuses. The estimation process is then 

the same as described in Section 3.3.  

4.4 Group Testing Model with Random Effects for Multiple-Disease 

Data 

The inclusion of random effects within a model is a standard technique used to 

account for within-subject correlations in situations such as longitudinal data 

analysis. In group testing contexts, Chen et al. (2009) is the only paper that has 

incorporated random effects into a group testing regression model, and this 

research was for the single-disease setting only. This sub-section proposals two 

ways to estimate a model that includes a random effect to account for the within 

subject correlation that occurs when multiple disease responses are observed. 

Thus, this model could serve as an alternative to the methods described in 

Chapter 3. Note the proposals given here have not been implemented due to 
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expected computational difficulties. We present these two proposals as a record of 

our research activities, and we hope that these proposals could serve as guidance 

for future research in the area. 

We continue to use the same notation as defined in Section 3.2. Regarding 

each individual subject’s responses as a cluster, our model has the form: 

logit( ( 1 | ))ijk ik ik j ikP Y u u  X   

where Xik = (x1ik, …, xp-1,ik) ′are the covariates, j is a p×1 vector of fixed effects 

parameters, and uik are i.i.d. ~ N(0, 2). We assume that each ijkY  are 

independent across the subjects i = 1, …, Ik within each group k, and we allow 

for each ijkY  to be independent for j = 1, …, J given uik. Note that ijkY  are not 

observed, and we use only the observable group responses Zjk to obtain parameter 

estimates (no retests are performed). Within this setting, we can write the 

probability of a group testing positive as 

1

1

( 1 | ) (1 ) (1 ( 1 | ))

1
(1 ) .

1 exp( )

k

k

I

jk k j j j ijk ik
i

I

j j j
i ik j ik

P Z P Y u

u

  

  





      

    
 

u

X 



 

Let Zk = (Z1k, Z2k, …, ZJk) denote a random vector of the trait responses for 

group k = 1, …, K. We can concatenate these vectors as 1 2( ,  ,  ,  )K   Z Z Z Z  

to form a vector of all group responses. We can write the joint density for Z as 

1( ) ( )K
kkf f z z  where f(×) denotes a probability distribution function. Note the 

equality above is due to the independence of Z1, Z2, …, ZK (responses are 

independent across groups). The joint density function for Zk is 

( ) ( , ) ( | ) ( ) ,
I Ik k

k k k k k k k kf f d f f d
 

  z z u u z u u u  
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where 1 2( ,  ,  ,  )
kk k k I ku u u u   is the vector of random effects for all individuals 

in group k. In the above equation, 1( ) ( )kI
k ikif f u u  due to the independence of 

random effects across individuals. To find ( | )k kf z u  in the above equation, let 

1( ,  ...,  )
kjk jk I jky y y    so that we can write the joint density of the individual 

responses as  

1
1 1

( ,  ...,  | ) ( | )
kIJ

k Jk k ijk ik
j i

f f y u
 

  y y u    

for each group k. We can express ( | )k kf z u  then as 

 
1

1

1

1 1
,...,

1
1 1,...,

1 1 1,.

( | )

( | , ,..., ) ( ,..., | )

( | , ,..., ) ( | )

( | ) ( | )
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 

 

 

In the above derivation, we make use of the assumption that 

1 1( | ,  ,  ...,  ) ( | ,  ...,  )k k k Jk k k Jkf f z u y y z y y    1 ( | )J
jk jkj f z y . This assumption 

follows due to constant sensitivity and specificity levels once the true individual 

responses are known and the Litvak et al. (1994) discussion that the test 

outcomes are conditionally independent given the true outcomes. Summarizing, 

we obtain 

1 1

( ) ( | ) ( )

( | ) ( ) .

Ik

k

Ik

k k k k k

IJ

jk k ik k
j i

f f f d

f z f u d



 

 

  
          

z z u u u

u u
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The log likelihood function 2( | )l  z  can be written as  

 2

1 11 1
( | ) ( )( | ) log( ( )) log

k

Ik

IJK K

jk k ik kk
j ik k

f z f u dl f
   

                      
u uz z

           
(20) 

where 1 2( ,  ,  ,  )J      
 is the vector of all fixed effects, 

1

1

1

1
( | ) (1 )

1 exp( )

1
               1 (1 ) ,

1 exp( )
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k

jk
k

z
I

jk k j j j
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j j j
i ik j ik

f z
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  

  







            
           

u
X

X





 

and 

2

2

1
( ) exp .

22

ik
ik

u
f u



        

To maximize the log-likelihood function and find the corresponding maximum 

likelihood estimates (MLEs), one could approximate the integral in Equation (20) 

by using adaptive Gauss-Hermite quadrature (Pinheiro and Bates 1995). We 

expect this method to work when the group size Ik is small, but it would become 

computationally expensive when the group size gets large. This is because the 

likelihood function 2( | )l  z  involves K different Ik dimensional integrals. 

Therefore, when the group size Ik is large, evaluating the likelihood function 

directly may be difficult or even intractable. 

An alternative way to find maximize the likelihood function and find the 

corresponding MLEs is through a modified version of the Monte Carlo expected 

maximization (MCEM) algorithm described in Chen et al. (2009). First, the 

complete joint log-likelihood function can be expressed as 
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where 1

K
kkN I   is the total number of individuals and we treat uik as missing. 

To simplify the notation, define 

1
1 1

2

2 2
1 1

log ( | ; )

log( 2 ) ,
2

k

K J

jk k
k j

IK
ik

k i

I f z

u
I N 



 

 

  

    

u 
 

where we include  in ( | ; )jk kf z u   now to emphasize the fixed effect only 

appears in I1. Also, notice that the variance component  appears only in I2. 

Therefore, we can maximize both parts separately in the M-step to obtain ̂  and 

2̂ . Given an initial estimate of the parameters, say, ( ) ( )( , )b b , we could use the 

Metropolis-Hastings algorithm to estimate E(I1|z) and E(I2|z) in the E-step 

because ( ) ( )( | ; , )b b
k kf u z   can not be expressed in a closed form. The algorithm 

generates a large number of samples from ( ) ( )( | ; , )b b
k kf u z  , and then use the 

sample means to estimate E(I1|z) and E(I2|z). The MCEM algorithm is formally 

given here: 

1) Choose starting values (0) (0),    of    . 

2) (E-step). For a given ( ) ( ),  b b , b = 0, 1, 2, …, approximate E(I1|z) and 

E(I2|z) by 
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     
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respectively, where ( )m
ku , m = 1, …, M, are M draws from the conditional 

distribution ( ) ( )( | ; , )b b
k kf u z  , k = 1, …, K, using the Metropolis-Hastings 

algorithm. 

3) (M-step). Update the parameter estimates to the (b + 1)th iteration by 

maximizing ( )
1̂
bI  with respect to  and maximizing ( )

2̂
bI  with respect to s. 

4) Repeat steps 2 and 3 until ( 1) ( )b b    and ( 1) ( )b b    are very small. 

As Chen et al. (2009) pointed out, the MCEM algorithm is computationally 

intensive, but is more flexible and can allow for other random effect distributions 

and different pooling strategies. 

4.5 GEE-group Approach for Multiple-Disease Data 

The purpose of this sub-section is to illustrate how to formulate generalized 

estimating equations in terms of the observed group responses so that standard 

GEE methodology can be adapted to group testing problems. This would be 

analogous to the approach taken by Vansteelandt et al. (2000) for single-disease 

group testing models, and is an alternative to the ES algorithm fitting approach 

to account for the correlation among disease responses.  

To account for the correlation among different traits within each group, let 

R() be the working correlation for Zk = (Z1k, Z2k, …, ZJk), where the matrix 

depends on a vector of parameters . The working covariance matrix of Zk is 

then 1/2 1/2( ) ,k k kV B R B  where Bk is a J × J diagonal matrix with diagonal 

elements jk(1  jk). The GEE for the multiple-disease group testing model is 
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1

1
( )

K

k k k k
k




   DV z 0 ,                                                                  (21) 

where /k k  D   , k = (1k, …, Jk), and 0 is a pJ × 1 vector of 0’s. Equation 

(21) differs from the GEE as defined in Liang and Zeger (1986) by only the form 

of Dk, which is more complicated now due to the relationship between jk and ijkp  

given in Equation (8). 

To solve the estimating equations in (21) for , we need to estimate  first. 

The Pearson residuals of the group responses are given as 

ˆ ˆ ˆˆ ( ) / (1 ),jk jk jk jk jkr z       where ĵk  is the model’s estimate of jk. We can 

calculate ̂  using these Pearson residuals in the moment estimators proposed by 

Liang and Zeger (1986). For example, assuming the exchangeable correlation 

structure where ( , )jk j kCorr Z Z    for all j j  , we have 

1

( 1)
ˆ ˆ ˆ .

2

K

jk j k
k j j

J J
r r K Jp 

 

       
 

Parameter estimation and large sample normality of the estimators follow from 

Liang and Zeger (1986). Parameter estimates can be found by iterating between a 

modified Fisher scoring algorithm for  and estimating  based on the current 

estimates of . Large sample properties then follow with ̂  having a large sample 

normal distribution with mean  and covariance matrix 

    
1 1

1 1 1 1

1 1 1
( ) .

K K K

k k k k k k k k k k k
k k k

Cov
 

   

  
    DV D DV Z V D DV D

 

Replacing  with ̂ ,  with ̂ , and Cov(Zk) with ˆ ˆ( )( )k k k k  z z   in the above 

formula gives us the estimated covariance matrix of ˆ.  

Table 4.1 provides the GEE-group simulation results corresponding to the first 

set of simulations given in Section 3.4. The GEE-group and ES algorithm do 

provide similar results, despite the potential problems with the GEE-group 
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approach outlined in Section 3.6. To further explore these potential problems, we 

calculated Corr(Z1k, Z2k) for each group using Theorem 1 and a select subset of 

our simulations. From Figure 4.1, we see that the correlation between Z1k and Z2k 

varies somewhat over the groups; however, it appears that this variation is not 

large enough to have a substantial effect on performance of the GEE-group 

method. 

We find it interesting that the GEE-group method can attain similar results as 

the approach using the ES algorithm. This could occur because of the well-known 

robustness properties of GEE in general. This finding does not void the merit of 

our ES algorithm approach because 1) the ES algorithm allows one to specify a 

working correlation structure on the individual scale, and 2) a direct 

generalization of the ES algorithm that allows one to incorporate retesting 

information, as described in Section 4.3, is possible. It is also worth noting that 

our ES algorithm formulation for group testing data may be applicable in other 

contexts involving latent correlated binary response data. 

4.6 Future Research for Group Testing Regression Models 

Section 4.2 provides the likelihood function for the Dorfman and halving protocol, 

and preliminary simulation results suggest that the likelihood ratio tests for the 

model parameters follow a chi-square distribution with degree of freedom 1. With 

the likelihood function available, the residual deviance can be easily obtained, but 

the degree of freedom associated with it is unknown because each individual is 

observed multiple times (in a group and by itself) with these protocols. If the 

degrees of freedom for the residual deviance can be determined, the deviance can 



79 

 

 

 

serve as a goodness-of-fit (GOF) statistic for the model. Further, it would be 

interesting to investigate how to generalize the GOF tests proposed by Chen et al 

(2009) to incorporate retest results from Dorfman, halving, and other group 

testing protocols. We expect that the test statistics for the GOF tests in Chen et 

al (2009) could be modified accordingly. However, because the observed responses 

will no longer be independent from each other, the asymptotic distributions of 

the test statistics could be challenging to obtain. 

In addition to Wald tests and likelihood ratio tests, score tests may also be 

developed for group testing regression models. The EM algorithm theory implies 

that (e.g., see Heyde and Morton (1996)) 

log ( ; ) log ( ; )
,

L L
E

 
 

        

y x
y

                                                     
(22) 

where x denotes the complete data, y denotes the observed incomplete data, L is 

the likelihood function based on either x or y. Note that the right hand side of 

Equation (22) is the conditional score function, which is easily obtainable from 

the M-step of the EM algorithm. The Louis’s (1982) method gives

2 2[ log ( ; ) / ]E L    y . As a result, the score test can be easily constructed 

from the EM algorithm, and it is a very natural way of testing the parameters for 

single-disease group testing models. Moreover, it is readily applicable to group 

testing protocols whose likelihood function can not be explicitly expressed (e.g., 

array testing). Future work should examine the finite-sample performance of 

these tests and compare the score tests to Wald and likelihood ratio tests. 

Delaigle and Meister (2011) and Delaigle and Hall (2012) proposed a local 

polynomial regression model for group testing data. They mainly illustrated their 
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method with a single-covariate model. In the last section, the authors briefly 

discussed how the kernel-based estimator can be generalized to the multivariate 

setting. However, in a standard regression context, local regression models are 

often less useful in higher dimensions (>2), unless we are willing to make simple 

structure assumptions (e.g., additive models). This is because multidimensional 

kernel estimators often require burdensome computations. We believe this is also 

the case for group testing data. In group testing applications, there are often 

many potential covariates for each individual subject, so the use of their method 

is somewhat limited in practice. On the other hand, regression splines can be 

easily extended to non-additive models. In particular, multivariate adaptive 

regression splines (MARS) is a popular non-parametric regression technique for 

modeling of high dimensional data. In the future, it would be of great practical 

interest to investigate how to apply MARS to the group testing setting. 

We have also briefly explored a Bayesian approach for group testing regression 

models. The advantage of the Bayesian approach is that due to the use of 

Markov Chain Monte Carlo (MCMC) methods, no complex algorithm is needed 

for parameter estimation as long as enough MCMC samples are generated and 

the model is correctly specified. This approach can be implemented directly in 

standard statistical software (e.g., WinBUGS, R2WinBUGS package in R). For 

example, we consider the following model for multiple-disease data (notation 

follow from Section 4.4): 

logit( ( 1 | )) ,ijk ijk ik j ijkP Y u u  X   

where 
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1( ,..., )ik i k iJku u u , and  i.i.d. ~ ( , )ik JN u 0 , for i = 1, …, Ik, k = 1, …, K. The 

model here is a little different from the one in Section 4.4. More parameters are 

introduced to allow for a more flexible correlation structure of the disease 

statuses. We could use non-informative priors on the parameters: 

 ~ ( ,1000 )j p jiid N I0  for j = 1, …, J, and 1
2~ (2, )JW I  where W is the 

Wishart distribution. A simple simulated data set was fit by the above model in 

WinBUGS, and estimated posterior densities for j and  were obtained. As 

mentioned earlier, the Bayesian approach does not require a complex algorithm 

for parameter estimation, and thus is highly flexible and suited for group testing 

regression models. We believe it is worthwhile to explore this approach 

extensively for various group testing protocols in the future. 
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Table 4.1. GEE-group simulation results corresponding to the model in Equation 

(16) and to the simulations in Table 3.1. The true parameters are 01 = -6, 11 = 

0, 02 = -7, 12 = 1, and 2 = 0.1. Estimated coverage is given for 95% Wald 

confidence intervals. 

   = 0.6, I = 5, K = 1000  = 0.6, I = 10, K = 500 

  01 02 11 12 2  01 02 11 12 2  

Mean  -5.98 -7.01 -0.03 0.99 0.10  -6.13 -7.20 0.00 1.08 0.10  

SE/SD  0.96 0.96 0.99 0.95 0.94  0.99 0.96 0.93 0.91 0.94  

Coverage  0.95 0.94 0.96 0.94 0.94  0.95 0.94 0.95 0.95 0.94  

              
   = 0.2, I = 5, K = 1000  = 0.2, I = 10, K = 500 

  01 02 11 12 2  01 02 11 12 2  

Mean  -6.02 -7.03 0.03 1.02 0.10  -6.12 -7.22 0.02 1.14 0.10  

SE/SD  0.95 0.95 0.94 0.95 0.95  0.97 0.97 0.95 0.95 0.98  

Coverage  0.94 0.95 0.95 0.95 0.94  0.94 0.94 0.95 0.95 0.95  

              
   = 0.6, I = 5, K = 2000  = 0.6, I = 10, K = 1000 

  01 02 11 12 2  01 02 11 12 2  

Mean  -6.01 -7.02 0.00 1.02 0.10  -6.01 -7.05 0.04 1.07 0.10  

SE/SD  0.99 0.99 0.97 0.98 1.00  0.99 0.99 0.95 0.96 0.99  

Coverage  0.95 0.94 0.94 0.95 0.96  0.94 0.96 0.94 0.95 0.95  

              
   = 0.2, I = 5, K = 2000  = 0.2, I = 10, K = 1000 

  01 02 11 12 2  01 02 11 12 2  

Mean  -6.02 -7.05 0.01 1.05 0.10  -6.05 -7.07 0.03 1.03 0.10  

SE/SD  0.97 0.96 1.01 0.99 0.96  0.97 1.00 0.95 0.99 0.97  

Coverage  0.94 0.94 0.96 0.95 0.94  0.95 0.94 0.96 0.94 0.94  

. 
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Figure 4.1. True correlation between disease responses plotted over the groups. 

The left-side plot is for the first generated data set from the  = 0.6, I = 5, and 

K = 1000 simulations. The right-side plot is for the first generated data set from 

the  = 0.6, I = 10, and K = 1000 simulations. The horizontal line is the 

estimated working correlation found for that data set by using the GEE-group 

method. Note that other simulated data sets gave very similar results. 
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Appendix A 
 

This appendix shows how to find ik for Dorfman’s protocol when Zk = 1. We 

first express the conditional mean ik as 
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where 1( ,  ...,  )
kk k I kY Y Y  

 and ,i k
Y  is the same as k

Y  but without ,i kY 
 . 

Examining the numerator in (23) before the summation symbol, we have 
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where we use the standard assumption that test outcomes are conditionally 

independent given the true outcomes (Litvak et al. 1994). Similarly, from the 

denominator of (23), we have 
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Substituting (24) and (25) into (23) results in 
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Equation (26) is very difficult to compute for large group sizes, because the 

number of summands within it increases exponentially as the group size increases 

(e.g., there are 2 kI  terms to sum in the denominator for group k). Fortunately, 

we can reformulate the numerator and denominator to make Equation (26) 

computationally feasible for large group sizes. The denominator can be written as  
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where  = 1 −  −  and we make use of the relation 
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Using the same technique, the numerator of (26) can be re-written in a similar 

manner leading to 
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The denominator (numerator) of Equation (27) is the product of Ik (Ik – 1) terms, 

rather than the sum of 2 kI  terms. Therefore, this formula makes finding ik 

possible even for large group sizes. 
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Appendix B 
 

This appendix is a web appendix for the Chapter 2 paper submission. We show 

here how to find ik for scenarios 1) to 5) of the halving protocol. The derivation 

is very similar to that of Dorfman’s protocol.  

 

1) Zk = 0: 

This is the same as given in Section 2.2 for Dorfman’s protocol. 

 

2) Zk = 1, Zk1 = 0, Zk2 = 0: 

We need to find 
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For the denominator, we begin by including 1 1 2( ,  ...,  ) ( ,  )
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expression to obtain 
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where we let i kj  denote those individuals within the jth subgroup (j = 1, 2) 

and we again use the standard assumption that test outcomes are conditionally 

independent given the true outcomes (Litvak et al. 1994). 
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Without loss of generality, we assume here and throughout this appendix that 

individual i is within the first subgroup ( 1i k ). The numerator can be written 

as 
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where , ,{ : 1,..., , }i k i k kY i I i i    Y   is the vector of all true individual statuses 

excluding the ith subject in group k and , 1 , 1{ : 1, }i k i kY i k i i    Y   is the vector 

of all true individual statuses excluding the ith subject in subgroup k1. 

 

3) Zk = 1, Zk1 = 1, Zk2 = 0: 

We need to find  
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The numerator can be expressed as 
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4) Zk = 1, Zk1 = 0, Zk2 = 1: 

We need to find 
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The denominator follows immediately from previous result by interchanging k1 

and k2: 
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We can show the numerator has the following form: 

,

,

1 2 2 2

1 2 2 2 , ,

, ,

2 2 2 , ,
2

( 1, 1, 0, 1, )

( 1, 0, 1, | 1, )

( 1, )

(1 ) ( | ) ( 1 | ) ( )

(1

i k

i k

ik k k k k k

k k k k k ik i k i k

ik i k i k

i k i k i k i k k k k i k i k ik
i k

P Y Z Z Z

P Z Z Z Y

P Y

P Y y Y y P Z P p 







 

 

     


    
       

 
       



y

y

Y y
Y y Y y

Y y
Y y Y y







 



 



  

  

,

, 1

2

2 2 2 , ,
2

, 1 , 1

2 2 2 2 2
2

)

( | ) ( 1 | ) ( )

(1 ) ( )

( | ) ( 1 | ) ( )

i k

i k

k

ik

i k i k i k i k k k k i k i k
i k

ik i k i k

i k i k i k i k k k k k k
i k

p

P Y y Y y P Z P

p P

P Y y Y y P Z P



 




     


 

   


 
          

   

          

y

y

y

Y y Y y

Y y

Y y Y y









  

 





  

 

 

1

2 0

2

(1 ) ( | ) ( )

( | 0)(1 ) ,

i k

ik i k i k i k i k i k i k
i k y

i k i k i k i k
i k

p P Y y Y y P Y y

P Y y Y p

  





     
 

   


            


   




 

  





 

where  = 1 −  − . 

 

5) Zk = 1, Zk1 = 1, Zk2 = 1: 

We need to find  
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The denominator can be written as: 
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and the numerator can be expressed as: 
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Appendix C 
 

This appendix includes the derivations of the expression for ij for the array 

testing protocol. We can write ij as 

, ,( 1 | , , , )ij i j i j Q QP Y =       
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                            (28) 

First, to find the numerator of Equation (28), we have 
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where we use the same conditional assumptions as in Appendix A and 
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denotes the product is taken over all combinations of i = 1,…, I and j = 1, …, J 

except the (i, j) combination. Then 
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st st st st ij ij

s t Q i j

P R r Y y Y y P C c Y y Y y

P Y y Y y p p

 



  

   
                

             

 

   

   
 



  

 

(29)

 

due to the independence among row responses and among column responses.  

Define  
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1 1
1

1
1 1

1 1 1
{ , }

( | , , )

( | , , ) (1 )i j i j

I

i i i i i J i J
i
i i

J I J y y
j j j j Ij Ij i ji j

j i j
j j i i j j

P R r Y y Y y

P C c Y y Y y p p



   

     




        

    
    

 
     

 
  
   

        
   
      

 

 

 


 

   


 

for notational simplicity. Noting that 1ijY   is in the numerator of Equation 

(28) and if (i, j)  Q, we find that Equation (29) becomes 

, ,

( , ) \{( , )}

( 1, , , , )

 ( | ) ( | 1) ( | 1)

( | 1) ,

ij i j i j Q Q

st st st st i i i j j j
s t Q i j

ij ij ij ij

P Y =

P Y y Y y P R r R P C c C

P Y y Y p


   



   
          

 

Y y R r C cY y 



  







 

where ( , ) \ {( , )}s t Q i j  means all indices in Q except for (i, j) and iR  and jC  are 

the true values for Ri and Cj, respectively. When (i, j)  Q, Equation (29) 

becomes 

, ,

( , )

( 1, , , , )

( | ) ( | 1) ( | 1) .
ij i j i j Q Q

st st st st i i i j j j ij
s t Q

P Y =

P Y y Y y P R r R P C c C p
   



   
         

 



  

 

Y y R r C cY y

 

The above equation helps to show the contributions that the individual retests 

have on the probabilities. Simply, for large sensitivities and specificities, they 

contribute values close to 0 or 1. 

Second, to find the denominator of Equation (28), note that  

, ,

, ,

, ,

( , , , )

( 0, , , , )

( 1, , , , ).

i j i j Q Q

ij i j i j Q Q

ij i j i j Q Q

P =

P Y =

P Y =

   

   

   

  
     

   

Y y R r C cY y
Y y R r C cY y
Y y R r C cY y





 



 



 

Using results from Equation (29), we can write the probability for (i, j)  Q as 



, ,

( , ) \{( , )}

1 1

( , , , )

( | )

( | , , 0, , )

i j i j Q Q

st st st st
s t Q i j

i i i i ij iJ iJ

P =

P Y y Y y

P R r Y y Y Y y


   



  
      

    

Y y R r C cY y







  

 
 
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
1 1( | , , 0, , ) ( | 0)(1 )

( | 1) ( | 1) ( | 1)
j j j j ij Ij Ij ij ij ij ij

i i i j j j ij ij ij ij

P C c Y y Y Y y P Y y Y p

P R r R P C c C P Y y Y p

       

     

   

  
 

  



 

and for (i, j)  Q: 





, ,

1 1
( , )

1 1

( , , , )

( | ) ( | , , 0, , )

( | , , 0, , )(1 )

( | 1) ( | 1) .

i j i j Q Q

st st st st i i i i ij iJ iJ
s t Q

j j j j ij Ij Ij ij

i i i j j j ij

P

P Y y Y y P R r Y y Y Y y

P C c Y y Y Y y p

P R r R P C c C p


   



   

       

     

   

Y y R r C cY y



   

  
 

  

  
 

 



 

Combining all the results, we have for (i, j)  Q: 

1 1

1 1

( | 1) ( | 1) ( | 1)

{ ( | , , 0, , )

( | , , 0, , ) ( | 0)(1 )

( | 1) ( | 1) ( |

i i i j j j ij ij ij ij
ij

i i i i ij iJ iJ

j j j j ij Ij Ij ij ij ij ij

i i i j j j ij ij i

P R r R P C c C P Y y Y p

P R r Y y Y Y y

P C c Y y Y Y y P Y y Y p

P R r R P C c C P Y y Y


     


    

       
    

  



  

 
 

   

  
 

   1) }j ijp 

 

and for (i, j)  Q: 

1 1

1 1

( | 1) ( | 1)
.

{ ( | , , 0, , )

( | , , 0, , )(1 )

( | 1) ( | 1) }

i i i j j j ij
ij

i i i i ij iJ iJ

j j j j ij Ij Ij ij

i i i j j j ij

P R r R P C c C p

P R r Y y Y Y y

P C c Y y Y Y y p

P R r R P C c C p


   


    

     
   

 



  

 
 

  

  
 

 



 

Note that for the case of no individual retests, the formula for ( , )i j Q  should be 

used for all i and j. 
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Appendix D 
 

This appendix is a web appendix for the Chapter 2 paper submission. We show 

here a histogram of the true individual probabilities for one simulated data set in 

Section 2.3. 

 
Figure D.1. Histogram of the true individual probabilities for one simulated data 

set in Section 2.3. 
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Appendix E 
 

This appendix is a web appendix for the Chapter 2 paper submission. Below are 

the average number of tests performed by each protocol for 500 simulated data 

sets, each containing 5000 individuals, with  =  = 0.99 in Section 2.3.2. 

 

Table E.1. Average number of tests performed by each protocol for 500 simulated 

data sets in Section 2.3.2. 

 

Group Size IG Dorfman Halving 

Array w/o  

retesting 

Array w/  

retesting 

4 1250 1522 1500 2502 2652 

6 834 1214 1129 1669 1812 

8 625 1111 968 1254 1398 

10 500 1087 891 1000 1144 

12 417 1107 857 837 993 

14 358 1149 848 720 897 

16 313 1196 844 633 831 

18 278 1251 854 564 790 

20 250 1321 875 510 771 
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Appendix F 
 

This appendix is a web appendix for the Chapter 2 paper submission. We discuss 

here additional simulations used to reinforce the findings in Section 2.3. We 

simulate data for each testing protocol according to the model 

0 1logit( )ik ikp x    ( 0 1logit( )ij ijp x    for the array testing protocols), where 

0 = -6 and 1 = 4.7. The covariates are generated from a Uniform(0, 1) 

distribution. These configurations provide an overall mean prevalence of about 

0.05. The sensitivity and specificity are set to be  =  = 0.99. Each simulated 

data set contains 5000 individuals. The range of the group sizes included in this 

study is reasonable given the prevalence level. 

Figures F.1-F.3 give the results. Overall, we see that the results from Chapter 

2 continue to hold true here. Note that  of IG begins to increase with the group 

sizes in Figure F.3, which it did not for the simulations in Chapter 2. This occurs 

due to the larger overall prevalence that leads to some of the larger group sizes 

not being ideal for IG. 

Note that Figure F.4 provides a histogram of the true individual probabilities 

for one simulated data set under the simulation settings. 
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Figure F.1. Estimated relative efficiencies calculated by Equation (6) based on 

500 simulated data sets. Dorfman and halving are compared to IG. Array testing 

is compared with and without retests. 
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Figure F.2. Averaged 1̂( )Var   for 500 simulated data sets. The horizontal dashed 

line corresponds to 1̂( )Var   from individual testing. The right-side plot is the 

same as on the left-side except we omit IG in order to reduce the y-axis scale. 
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Figure F.3. Average number of tests per unit of information calculated by 

Equation (7) based on 500 simulated data sets. Note that  = 903 for individual 

testing. 

 

 
Figure F.4. A histogram of the true individual probabilities for one simulated 

data set. 
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Appendix G 
 

This appendix is a web appendix for the Chapter 3 paper submission. In this 

appendix, we give the proof of Theorem 1 in Section 3.3.2. The covariance 

between jkZ  and j kZ   is 

( , ) ( 1, 1) ( 1) ( 1),jk j k jk j k jk j kCov Z Z P Z Z P Z P Z          

where 

( 1, 1)

( 1, 1 | , ) ( , )
j k jk

jk j k

jk j k jk jk j k j k jk jk j k j k

P Z Z

P Z Z P




    

 
       

y y
Y y Y y Y y Y y

 

   

   

( 1 | ) ( 1 | ) ( , )
j k jk

jk jk jk j k j k j k jk jk j k j kP Z P Z P


           
y y

Y y Y y Y y Y y
 

   

    (30) 

and 1( ,  ...,  ) .
kjk jk I jkY Y Y  

 In Equation (30), we write the joint probability 

( 1, 1 | , )jk j k jk jk j k j kP Z Z       

 Y y Y y  as the product of the marginal 

conditional probabilities ( 1 | )jk jk jkP Z  

Y y  and ( 1 | )j k j k j kP Z    

Y y  

using a conditional independence assumption (see Litvak, Tu, and Pagano (1994) 

for justification).  

Categorizing with respect to the possible values of jky  and j ky , we split the 

summation in Equation (30) into four parts. The first part corresponds to the 

case where jky  and j ky  are vectors of 0’s, which leads to 

1

( 1 | ) ( 1 | ) ( , )

(1 )(1 ) ( 0, 0).
k

jk jk jk j k j k j k jk jk j k j k

I

j j ijk ij k
i

P Z P Z P

P Y Y 

    

 


     

    

Y y Y y Y y Y y   

   

 

  

The second part corresponds to the case where j ky  is a vector of 0’s and at least 

one ijky  for 1 ≤ i ≤ Ik is not 0. Defining 

= { | at least one  for 1  is not 0}j jk ijk kQ y i I y  , we obtain 
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( 1, 1 | , ) ( , )
jk j

jk j k jk jk j k jk jk j k
Q

P Z Z P  


     
y

Y y Y Y y Y0 0


   

 

(1 ) ( , ).
jk j

j j jk jk j k
Q

P   


   
y

Y y Y 0


 

                                         

     

(31) 

Because ( , ) ( , ) ( ),
jk j jk jk j k jk j k j kQ P P P         y Y y Y Y Y Y0 0 0 0


    

  Equation (31)

can be further written as 

1 1
(1 ) (1 ) ( 0, 0) .

k kI I

j j ij k ijk ij k
i i

p P Y Y    
 

            
 

  

Similar to the second part, the third part of the summation in Equation (30)

corresponds to the case where at least one of ij ky   for 1 ki I   is not 0 while jky  

is a vector of 0’s. This results in 

1 1

( 1, 1 | , ) ( , )

(1 ) (1 ) ( 0, 0) .

j k j

k k

jk j k jk j k j k jk j k j k
Q

I I

j j ijk ijk ij k
i i

P Z Z P

p P Y Y 

 

    


 
 

     

             

y
Y Y y Y Y y0 0



   

 

 



 

Finally, the fourth part corresponds to the case where there is at least one 

positive individual for both disease j and j′. We find that 

( 1, 1 | , ) ( , )

( , )

1 ( , ) ( , )

  ( ,

jk j j k j

jk j j k j

jk j

jk j k jk jk j k j k jk jk j k j k
Q Q

j j jk jk j k j k
Q Q

j j jk j k jk jk j k
Q

jk

P Z Z P

P

P P

P

 

 

 

 

    
 

  
 

  


      

   

      

 

y y

y y

y

Y y Y y Y y Y y

Y y Y y

Y Y Y y Y

Y

0 0 0

0

 

 



   

   

 

 

   





1 1 1

1 1

)

1 ( 0, 0) (1 ) ( 0, 0)

  (1 ) ( 0, 0)

1 (

j k j

k k k

k k

j k j k
Q

I I I

j j ijk ij k ij k ijk ij k
i i i

I I

ijk ijk ij k
i i

j j ijk

P Y Y p P Y Y

p P Y Y

P Y

 

 

 

 


   
  


 



 
                   

            

 

y
Y y







   



 





1 1 1
0, 0) (1 ) (1 ) .

k k kI I I

ij k ijk ij k
i i i

Y p p 
  

              


 

 

Combining the above results, we have 
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1

1 1

1 1

( 1, 1)

(1 )(1 ) ( 0, 0)

  (1 ) (1 ) ( 0, 0)

  (1 ) (1 ) ( 0, 0)

  1

k

k k

k k

jk j k

I

j j ijk ij k
i

I I

j j ij k ijk ij k
i i

I I

j j ijk ijk ij k
i i

j j

P Z Z

P Y Y

p P Y Y

p P Y Y

P

 

 

 

 



 


  
 

 
 



 

    

             
             

 

 

 



 



1 1 1
( 0, 0) (1 ) (1 ) .

k k kI I I

ijk ij k ijk ij k
i i i

Y Y p p 
  

              
 

 

 

Shifting focus to ( 1) ( 1)jk j kP Z P Z    in Equation (30), we notice that 

1 1

( 1) ( 1 | ) ( )

(1 ) (1 ) 1 (1 ) .

jk

k k

jk jk jk jk jk jk

I I

j ijk j ijk
i i

P Z P Z P

p p 
 

    

             

y
Y y Y y



 

 

 

 

Thus, 

1 1

1 1

1

( 1) ( 1)

(1 ) (1 ) 1 (1 )
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 



 

   
 

 


 
                  
                

         

 

 

 

1 1

1 1

1 1 1
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 

 

 

  
 

 
 

  
  


             
             

        

  

  

    .
kI       

 

Subtracting ( 1) ( 1)jk j kP Z P Z    from ( 1, 1)jk j kP Z Z   , the covariance 

becomes 
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( , )

(1 )(1 ) ( 0, 0) (1 )(1 )

  (1 ) ( 0, 0) (1 )(1 )
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

  
 

  
 

 

               
              
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 
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 
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 

          
             

            

 

 

 

 

  .


 

Because ( 0, 0) ( 0) ( 0)ijk ij k ijk ij kP Y Y P Y P Y          = (1 ,1 )ijk ij kCov Y Y     = 

( , ),ijk ij kCov Y Y 
   we can write 

 

 

1 1

( , )

( 1)( 1)

( , ) (1 )(1 ) (1 )(1 )
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  

     
             

     
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 
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









  


 

 

for 1  j, j′  J, ,j j   and k = 1, …, K. 
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Appendix H 
 

This appendix is a web appendix for the Chapter 3 paper submission. The 

purpose hereis to illustrate the existence of a unique solution ŝ  and the 

consistency of ̂  when  is known, as discussed in Section 3.3.2. For generality, 

we examine an unspecified working correlation structure. More refined arguments 

for specific correlation structures follow analogously. 

For the same group, but different disease, Theorem 1 gives the covariance 

between two group responses as  

( , )

( 1)( 1)
jk j k

j j j j

Cov Z Z

   


      

 
1

1

(1 ) (1 ) (1 )(1 )

(1 )(1 ) ,

k

k

I

jj ijk ijk ij k ij k ijk ij k
i

I

ijk ij k
i

p p p p p p

p p

    






     



  


     

 
                      

        (32)
 

which is a function of ( , ) ,ijk ij k jjCorr Y Y     for j j  . It is obvious that this 

function passes through the origin and has positive coefficients. Therefore, 

( , )jk j kCov Z Z   is an increasing function of jj   when 0jj   . 

For 1 0,jj     notice that (1 ) (1 ) (1 )(1 )jj ijk ijk ij k ij k ijk ij kp p p p p p             

 
is an 

increasing function of ,jj   for each i = 1, …, Ik. When ijkp  and ij kp   are less 

than or equal to 0.5, we have 

 

(1 )(1 ) (1 ) (1 )

(1 )(1 ) (1 ) (1 )

(1 )(1 ) (1 )(1 )

0

ijk ij k jj ijk ijk ij k ij k

ijk ij k ijk ijk ij k ij k

ijk ij k ijk ij k ijk ij k

p p p p p p

p p p p p p

p p p p p p

   

  

  

    

     

     



     

     

     
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Hence, (1 ) (1 ) (1 )(1 )jj ijk ijk ij k ij k ijk ij kp p p p p p               is non-negative in this 

situation, and the product 

 
1

(1 ) (1 ) (1 )(1 )
kI

jj ijk ijk ij k ij k ijk ij k
i

p p p p p p    


            

is an increasing function of ,jj   for 1 0jj    . Thus, ( , )jk j kCov Z Z   is an 

increasing function of jj   for 0jj    and also for 1 0jj     when ijkp  and ij kp   

are less than or equal to 0.5. The right hand side of Equation (14) is the sum of 

( , )jk j kCov Z Z   terms over k = 1, …, K, and thus will also be monotonic increasing 

in .jj   The existence of a unique solution in Equation (14) immediately follows. 

When some ijkp  and ij kp   are greater than 0.5 and 1 0jj    , ( , )jk j kCov Z Z   

may not be monotone, which could lead to more than one solution in Equation 

(14). However, this would be unlikely to occur for the following reasons: (a) 

Disease statuses most likely will have a non-negative correlation, i.e., 0jj   , (b) 

Most individual probabilities will be less than 0.5 in realistic settings; otherwise, 

we would not use group testing, and (c) The estimate of jj   comes about 

through solving Equation (14), where we sum over all groups rather than 

examine only one group. Because most ijkp  and ij kp   are less than 0.5 within 

groups, we postulate that the right hand side of (14) will still be a monotonic 

function, which leads to a unique solution for .jj   

To prove the consistency of ̂ , we define 

 
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1

( ) ( )( ) ( 1)( 1)

(1 ) (1 ) (1 )(1 )
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   
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


        

     
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
  
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 
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for k = 1, …, K, j j  , and 1 /K
K kkg g K   for a fully unspecified working 

correlation structure. Due to the independence of group responses across groups, 

each gk is independent of each other. Furthermore, clearly E(gk) = 0 from 

Equation (32), so that E(gK) = 0 as well. It is obvious that ( )kVar g    and 

2 2
1 1lim ( ) / lim ( ) / .K K

k kk k
K K

Var g K Var g K 
 

     

By the Chebyshev law of large numbers (e.g., see Serfling (1980, p. 27)), 

( ) 0K jjg     in probability. Similar to Liang and Zeger (1995, p. 163), 

1ˆ (0)jj K jjg 
    provided that gK is continuous and one-to-one. Thus ̂  is a 

consistent estimator for  when  is known.  
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Appendix I 
 

This appendix is a web appendix for the Chapter 3 paper submission. The 

purpose here is to show how to derive the linear and quadratic coefficients in 

Section 3.3.2 and explain why using the first and second order terms give close 

estimates to the exact solution in Equation (14). To find the linear term in 
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1

(1 ) (1 ) (1 )(1 ) ,
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jj ijk ijk ij k ij k ijk ij k
i

p p p p p p    


            

we choose a (1 )(1 )jj ijk ij k ijk ij kp p p p         term and multiply it with the other Ik – 1 

remaining (1 )(1 )ijk ij kp p     terms to obtain  
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            

   

 

 
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Similarly for the quadratic term, from the Ik products we pick two 

(1 )(1 )jj ijk ij k ijk ij kp p p p         terms and multiply them with the other Ik – 2 

remaining (1 )(1 )ijk ij kp p     terms. The product can be written as 

1 1 2 2

1 2 1 1 2 2
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1 1
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             

   

 

   

 

We can obtain the coefficient of the lth order term as 

11 11 ...
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for l = 1, …, Ik. Because the ijkp  are generally small for group testing 

applications, we expect that 1 / {(1 )(1 )}
m m m m

l
i jk i j k i jk i j km p p p p         becomes 

extremely small rather quickly as l increases. For example, in the simplified case 

of ijkp p  , one can show that the ratio of the l th to the (l – 1)th term is  

   
1 1

.
1

1

k
jj

k
jj

k

I p
l p I l p

l pI

l








        


       









                                               (33) 

Because ( 1) /kI l l   is a decreasing function of l, p  is generally small, and 

1 1jj    , Equation (33) is close to 0 and decreases as l increases. For 

example, if p  = 0.03, Ik = 5, and jj   = 0.6, then the quadratic term is 3.7% of 

the linear term and the cubic term is only 1.9% of the quadratic term. 

To examine the approximation more closely, we performed the following 

simulation study. Consider the model 

0 1 1logit( ) ,ijk j j ikp x                                                                               

where j = 1, 2 and 1 2( , ) .i k i kCorr Y Y  

 The covariate x1ik is generated from a 

gamma(17, 1.4) distribution. The true parameters of the model are 01 = -7, 11 

= 0.13, 02 = -6, and 12 = 0.1. We simulate 5 data sets and estimate  using 

Equation (14) (we refer to this as “exact”) and using first- and second-order 

approximations as outlined in Section 3.3.2. Table I.1 gives the estimates, and it 

shows that the second-order approximation works especially well at 

approximating the exact result. 
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Table I.1. Comparison of  estimates averaged over 5 simulated data sets. The 

average time in minutes that our R function took to estimate each model is 

shown for a computer with a 2.2GHZ processor and 3GB of memory. 

 

      Exact  First-order  Second-order 

 j j K I 
 

a ̂ a Time  a ̂ a Time  a ̂ a Time 

0.6 

1 1 
1000 5 

 
0.6262 1.25  0.6486 0.47  0.6264 0.70 

500 10 
 

0.6072 4.53  0.6551 0.47  0.6087 0.75 

0.95 0.95 
1000 5 

 
0.5700 1.68  0.5899 0.65  0.5701 0.86 

500 10 
 

0.5684 4.76  0.6026 0.52  0.5695 0.85 

0.2 

1 1 
1000 5 

 
0.1715 1.20  0.1733 0.43  0.1715 0.69 

500 10 
 

0.1767 4.58  0.1807 0.51  0.1768 0.79 

0.95 0.95 
1000 5 

 
0.2190 1.38  0.2217 0.57  0.2191 0.83 

500 10 
 

0.1835 4.88  0.1883 0.60  0.1836 0.91 
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Appendix J 
 

This appendix is a web appendix for the Chapter 3 paper submission. 

 

1. Histograms of the true individual probabilities for one simulated data set  

 
Figure J.1. Histograms of the true individual probabilities for one Section 3.4 

simulated data set using the model in Equation (16) with  = 0.6, K = 1000, and 

Ik = 5. 
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2. Simulation results from estimating 21 and 22 separately  

Table J.1. Relative efficiency of the variance estimates for the model in Equation 

(16). Note that each 21 and 22 is estimated separately by the ES algorithm. 

  

           ˆlogit( )p  

 K Ik  01
̂  

02
̂  

11
̂  

12
̂  

21
̂  

22
̂   j = 1 j = 2 

0.6 
2000 5  1.053 1.039 1.054 1.038 1.041 1.047  1.093 1.015 

1000 10  1.064 1.069 1.060 1.068 1.061 1.072  1.110 1.061 

0.2 
2000 5  1.016 1.025 1.014 1.027 1.014 1.025  1.011 1.011 

1000 10  1.043 1.043 1.031 1.056 1.041 1.035  1.024 1.030 
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3. Additional simulations 

Additional simulations were performed to support the findings in Section 3.4 with 

different models. We used the model 0 1 1logit( )ijk j j ikp x    with 01 = -6.3, 02 

= -6.6, 11 = 4.0, 12 = 4.7, where xik ~ uniform(0, 1) and 1j j    for j = 1, 2. 

These covariate and parameter configurations lead to a mean prevalence of 

approximately 0.02 for disease j = 1 and 0.03 for disease j = 2. The results are 

given in Table J.2, and they are very similar to Table J.1 for the two-covariate 

model. Specifically, the ES algorithm leads to more efficient estimators than 

those from separate models; also, further benefits are realized by estimating the 

correlation between the disease responses. As would be expected, the benefits 

from estimating the correlation decrease as a function of . 

 

Table J.2. Relative efficiency of the variance estimates for 0 1 1logit( )ijk j j ikp x   . 

The relative efficiency involving ˆlogit( )p  is calculated at values of xik = 0.1, 0.2, 

…, 0.9, and the maximum and minimum relative efficiencies are reported in the 

table. 

         ˆlogit( )p  

 K Ik  
01

̂
 02

̂
 11

̂
 12

̂
 

 max min 

0.8 
1000 5  1.060 1.052 1.059 1.052  1.059 1.025 

1000 10  1.056 1.058 1.048 1.055  1.111 1.036 

0.5 
1000 5  1.048 1.044 1.048 1.044  1.048 1.011 

1000 10  1.033 1.021 1.031 1.021  1.037 1.017 

0.2 
1000 5  1.043 1.036 1.043 1.037  1.043 1.004 

1000 10  1.027 1.018 1.026 1.018  1.027 1.009 
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Appendix K 
 

This appendix is a web appendix for the Chapter 3 paper submission. 

 

Table K.1. Parameter estimates and estimated standard errors (in parentheses) 

for the parsimonious model described in Section 3.5. The GEE column 

corresponds to a model fit to the individual responses using GEE methodology. 

Term Disease ES 

 

GEE 

Intercept 
Gonorrhea -5.76(0.61) -

 Chlamydia -0.53(0.42) -

 
Age 

Gonorrhea -0.03(0.02) -

 Chlamydia -0.11(0.02) -

 
Race level #1 

Gonorrhea 1.84(0.34) 1.31(0.17) 

Chlamydia 0.58(0.20) 0.40(0.10) 

Race level #2 
Gonorrhea 0.75(0.98) 0.71(0.34) 

Chlamydia 1.06(0.24) 0.69(0.14) 

Race level #3 
Gonorrhea 0.45(0.93) -

 Chlamydia 0.04(0.40) 0.06(0.15) 

Symptoms 
Gonorrhea 1.24(0.42) 0.95(0.17) 

Chlamydia 0.40(0.17) 0.28(0.08) 

Cervical friability Both 0.27(0.28) 0.10(0.16) 

Pelvic inflammatory 

 

Both 0.63(0.55) 0.62(0.34) 

Cervicitis Both 0.50(0.18) 0.58(0.10) 

Multiple partners 
Gonorrhea 1.22(0.30) 1.04(0.17) 

Chlamydia 0.27(0.22) 0.47(0.10) 

New partner Both 0.11(0.18) -

 
Contact to a STD 

Gonorrhea 1.33(0.29) 1.17(0.18) 

Chlamydia 0.59(0.21) 0.94(0.10) 

 


