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EFFECTS OF FEEDING DISTILLERS GRAINS ON BEEF QUALITY 

 

Amilton Souza de Mello, Jr., Ph. D. 

University of Nebraska, 2010 

 

Advisor: Chris Calkins 

 This research was conducted to understand the effects of feeding finishing diets 

containing distillers grains on beef quality. In the first and second studies, effects of feeding 

levels up to 30% of wet distillers grains plus solubles (WDGS) were studied on beef from calf-

fed and yearling steers, respectively. In both experiments, feeding WDGS increased proportions 

of PUFA, omega 6, omega 6/omega3, and trans fatty acids when compared to corn (P ≤ 0.05). 

Additionally, a smaller proportion (P ≤ 0.05) of cis vaccenic acid (18:1, n 7) was observed in 

beef from animals fed WDGS. Lipid oxidation was higher in muscles from animals fed WDGS 

when compared to corn in both experiments (P ≤ 0.05). The third study examined the effects of 

feeding levels up to 50% of modified distillers grains plus solubles (MDGS) on fatty acid 

composition in beef. Linear increase (P ≤ 0.05) was observed for PUFA and total trans as levels 

of MDGS increased in the diet. In the fourth experiment, effects on fatty acid profile of feeding 0 

or 40% of WDGS and vitamin E (500 I.U.) were studied in cooked and raw muscles. Increased 

proportions of PUFA, trans, and omega 6 fatty acids were observed in beef from animals fed 

WDGS. The fifth study examined effects of feeding 35% of WDGS with vitamin E 

supplementation on lipid and color stability, sensory attributes, and WBSF. Additionally the 

effect of modified atmosphere packaging (MAP) of permeable film, high O2, and low O2 was 

also studied. Steaks from steers fed WDGS with no vitamin E had higher discoloration and lipid 

oxidation when compared to steaks from animals supplemented with 1000 I.U. of vitamin E. 
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Lipid oxidation and WBSF values were higher in steaks displayed under high O2 when compared 

to permeable film and low O2. Feeding WDGS and MDGS increased PUFA, lipid oxidation and 

decreased color stability of beef. However, supplementation of 1000 I.U. of E  mitigated the 

detrimental effects of feeding distillers grains on color and oxidation. High O2 MAP improved 

color stability, but a significant decrease in tenderness was observed when compared to the other 

MAP methods. 

 

Key Words: Beef, Distillers Grains, Vitamin E, Modified Atmosphere Packaging. 
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INTRODUCTION 

Crude oil or petroleum is a fossil fuel considered a non-renewable resource. The use of 

oil to produce automotive gasoline has been a common practice since the beginning of the 19th 

century.  In the last 40 years, the production and the use of fossil fuels raised environmental 

concerns due to limited reserves and high emission of carbon dioxide. Hence, society sought a 

renewable and less polluting fuel such as ethanol.  

 Over the last 20 years, the U.S. ethanol industry significantly developed. A large increase 

in ethanol production, competition for corn and higher availability of co-products were observed. 

Consequently, cattle feeders adopted distillers grains plus solubles (DGS) as a source of protein 

and energy when feeding cattle prior to slaughter. When compared with corn, DGS have superior 

protein and fat concentration, which also can bypass the rumen providing higher energy. DGS 

provide unique benefits such as improved cost of production and better cattle performance.  

Finishing diets usually contain levels varying from 15 to 40% DGS (DM basis). 

 Research developed at the University of Nebraska have shown that distillers grains have 

greater feeding value than corn (Klopfenstein et al., 2008). Additionally, when used in 

intermediary amounts (20-30% DM basis) DGS led to better average daily gain and gain-to-feed 

ratio. Although important work has been published regarding the nutritional aspect of using 

DGS, little research has studied the effects of feeding DGS on beef quality attributes such as 

color, flavor, and tenderness. 

 The objectives of this research were to examine the effects of finishing diets containing 

different levels of DGS on marbling attributes, beef color and surface discoloration, lipid 

oxidation, proximate and mineral composition, fatty acids profile, sensorial attributes, and 

Warner-Bratzler shear force. Additionally, the effects of vitamin E supplementation and 



2 
 

modified atmosphere packaging were studied to verify the effects on fatty acids profile, color, 

and lipid stability of beef from animals fed wet DGS. 
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REVIEW OF LITERATURE 

ETHANOL AND DISTILLERS GRAINS PRODUCTION IN THE U.S. 

Ethanol has been successfully used since the 1980’s as an alternative fuel source 

in other countries such as Brazil.  In the U.S., ethanol production significantly increased 

in the last decade. Over the past 8 years, ethanol production increased from 1.6 billion 

gallons in 2000 to 9 billion gallons in 2008 whereas the number of plants jumped from 50 

in 1999 to 170 in 2009 (RFA, 2010). Although different grains may be used for ethanol 

production, corn and sorghum are the most important grains used by the ethanol industry 

and their use is geographically characterized by where the plant is located (Depenbush et 

al., 2009). Plants concentrated in the Midwest predominantly use corn as the main grain 

due to the large corn inventory in the Midwest states (Raush and Belyea, 2006). 

According to the USDA (2006), a bushel of corn can be converted into 2.7 gallons of 

ethanol and the industry will need more than 3.5 billion bushels of corn to achieve the 

expectations of 10 billion gallons of ethanol previously estimated for 2010 (USDA, 

2006). This continuing increase in ethanol production has changed the animal feeding 

systems due to the large supply of byproducts originating from the milling process 

(Robinson et al., 2008).   

CORN MILLING 

According to Raush and Belyea (2006) the conversion of corn into ethanol can be 

made by three commercial methods: wet-milling, dry-grinding, and dry-milling. In wet-

milling, sulfuric acid is used to steep the grain, softening the kernel and leaching solubles 

from the germ.  After steeping, germ and fiber are separated by differences in density and 

particle size and the remaining solids are separated into a starch and protein portions by 
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centrifuging (Raush and Belyea, 2006).The dry-griding process is primarily adopted by 

plants that produce human consumption products, contributing a small amount of total 

ethanol production. The dry-milling process is usually erroneously used to describe the 

dry-grinding process. In dry-milling, the moisture of the kernel is increased from 15 to 

22% to increase the resiliency of the germ whereas in the dry-grinding process the 

moisture of the kernel is not altered.  

 After separation, starch is converted to ethanol by enzymes and yeast species 

(Davis, 2001). However, after fermentation, many byproducts may be created such as 

distillers grains, dried germ, corn gluten feed, and corn gluten meal. Distillers grains are 

obtained by centrifuging the whole stillage. The solubles (S) fraction may be added later 

originating wet DG, which can also be dried (dried DG) (Stock et al., 2000). Generally, 

levels of protein, fiber, and fat are concentrated 3 times more in DG when compared to 

corn (Klopfestein et al., 2008). Consequently, this byproduct has been used for cattle 

feeding as an alternative protein source (Robinson et al., 2008). Additionally, fuel-ethanol 

plants offer DG with a substantial lower cost when compared to corn. On January 7th of 

2010, prices per ton of dried DG, modified DG, and wet DG were $100.00 to $160.00, 

$50.00 to $73.00, and $35.00 to $40.00, respectively (University of Missouri, 2010), 

whereas the Chicago Board of Trade (CBT) priced a corn bushel at $4.18 (CME, 2010). 

With all the advantages, cattlemen have seen DG as a means to decrease production costs 

elevated by corn prices. Nowadays, DG with solubles (S) (DGS) are common 

components in beef cattle finishing diets due to the great availability, price, and excellent 

nutrient profile. 
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DISTILLERS GRAINS AS FEEDSTUFF 

Distillers grains are usually commercialized with three different levels of 

moisture. According to Wilken et al. (2009) dry distillers grains plus solubles (DDGS) 

and modified distillers grains plus solubles (MDGS) are dried from wet distillers grains 

plus solubles (WDGS) (30-35% DM) to achieve 90% DM and 46-48% DM, respectively. 

Moisture levels of byproducts are important regarding transportation, storage, and 

handling (Rasco et al., 1989). Although the use of DDGS are associated with advantages 

such as easier transportation and longer storage, costs of drying may represent an extra 

cost to producers when using this byproduct instead of WDGS or MDGS in animal diets 

(Firkins et al., 1985). Additionally, dehydration and extensive heating may form 

indigestible complexes involving proteins and carbohydrates, reducing energy levels and 

efficiency of nitrogen utilization (Depenbush et al., 2009). Advantages of MDGS include 

lower cost when compared to DDGS and better DM intake levels when compared to 

WDGS.  When wet, distillers grains may provide the best option for decreasing the 

production costs since this feedstuff has more energy per kilogram of DM when 

compared to corn (Klopfentsein et al., 2008). Overall, independent of moisture levels, 

distillers grains are a versatile feed component which may be combined with other 

protein and energy sources (Anderson et al., 2009; Corrigan et al., 2009; May et al., 

2009). Inclusion levels of byproducts have been studied for years to achieve optimum 

levels and consequently improved cattle performance. When replacing corn with distillers 

grains, type of production must be considered. Concentrations adopted for dairy may not 

be the most adequate for beef cattle. Also, different energy levels are required from 

animals in growing or finishing phases. This may imply different costs when choosing 

the moisture level of distillers grains (dry, modified, or wet). Advantages of using 
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distillers grains also include enhanced feed efficiency due to the ability of reducing 

acidosis. Diets which contain high levels of corn may cause rumen acidosis since starch is 

rapidly fermented by microorganisms reducing feed intake and gain (Schwartzkopf-

Genswein et al., 2003). Additionally, low quality roughage may be used in diets 

containing WDGS without altering responses in DMI, ADG, and G:F (Benton et al., 

2007). This is due to the high levels of protein and moisture that counterbalance the 

nutrient levels of standard roughage such as alfalfa (Klopfenstein et al., 2008). 

EFFECTS OF DISTILLERS GRAINS ON BEEF PRODUCTION 

Research has demonstrated that feeding 30% of WDGS improved efficiency of 

gain, HCW, fat thickness, and USDA yield grade when compared to corn (Al-Suwaiegh 

et al., 2002). Lodge et al. (1997) documented that including levels varying from 20 to 

40% of WDGS in finishing diets did not compromise cattle performance. Likewise, 

Larson et al. (1993) and Vander Pol et al. (2006) showed that including 40% and 50% of 

WDGS in the diet, respectively, increased feed efficiency when compared to corn. 

Studies conducted at the University of Nebraska compared responses of feeding up to 

50% of WDGS on ADG, DMI, and G:F (Klopfentsein et al., 2008) and results showed 

that feeding 30% resulted in best ADG and DMI whereas feeding 30 and 50% resulted in 

the best G:F. Therefore, it seems that best results of feeding WDGS occur when levels 

vary from 20 to 40%. 

When feeding DDGS, levels up to 30% in steam flaked corn-based diets led to 

best DMI, ADG, and G:F when compared to higher levels (Depenbush et al., 2009a). 

Similar results were found by Larson et al. (1993), Ham et al. (1994), and Al-Suwaiegh et 

al. (2002) regarding those attributes in corn based diets. When fed in higher levels (60 – 
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70%), DDGS led to lower ruminal digestibility and lower acetate proportions (Leupp et 

al., 2009a). However, Leupp et al. (2009b) showed that feeding DDGS at 30% in 

finishing diets did not alter cattle performance, longissimus muscle area, 12th-rib fat 

thickness, KPH, yield grade, or marbling. Therefore, research suggested that optimal 

levels of DDGS vary from 15 to 30% in finishing diets. 

Although several studies have performed feeding trials to determine the best 

inclusion levels of distillers grains in finishing diets, the effects on beef quality are not 

completely understood. Some years ago, rumors about lower USDA quality and yield 

grade were associated with feeding distillers grains after this practice became common in 

feedlots. However, adding levels up to 30% of WDGS into dry-rolled corn-based, high-

moisture corn-based, and steam-flaked corn based diets improved or did not alter 

longissimus muscle area, marbling score, and yield grade (Corrigan et al., 2009). Similar 

results were observed by Vander Pol et al. (2009) who did not observe detrimental effects 

in marbling score, yield grade, and observed higher numerical values fat thickness and 

longissimus muscle area. Regarding DDGS, feeding levels up to 40% did not alter 

marbling score, fat thickness, longissimus muscle area, and significantly improved yield 

grade (Klopfenstein et al., 2008). Depenbusch et al. (2009b) compared the effects of 

feeding corn, sorghum DGS, or corn DGS. Both DGS were tested wet and dry at 15% 

DM. No differences in percentage of carcasses graded USDA Choice or USDA Select, in 

number of carcasses USDA yield graded from 1 to 5, nor  marbling score were detected. 

However, when increasing levels up to 75%, a linear decrease of fat thickness at the 12th 

rib and a linear increase of carcasses graded USDA Select were observed (Depenbusch et 

al., 2009a). In the same study, best marbling scores were detected when steers were fed 
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45% DDGS. Regarding beef attributes, Shand et al. (1998) fed steers with barley-based, 

conventional wet brewers or wet distillers grains diets and observed no significant effects 

for fat and moisture content of the logissimus muscle, fatty acid composition, and sensory 

attributes. Roeber et al. (2005) documented that adding high levels of WDG did not lead 

to negative effects on sensory attributes, however, detrimental effects on color of strip 

steaks were observed when WDG was included at 40-50% dry matter basis. Likewise, 

addition of 15% of corn or sorghum DG into steam-flaked corn diets led to lower a* 

values (redness) in strip loin steaks and increased values of PUFA, omega 6 fatty acids 

and omega 6:omega 3 (Gill et al., 2008). Including 30% of DDGS in corn-based growing 

diets reduced L* (lightness) and b* (yellowness) whereas inclusion in finishing diets 

decreased values of a* (Leupp et al., 2009b). Depenbusch et al. (2009a) reported that 

adding high levels of DDGS (up to 75%) resulted in linear increase of subjective 

tenderness, PUFA, and omega6:omega 3. Conversely, their findings regarding a* did not 

agree with Roeber et al. (2005) and Gill et al. (2008). When combining DDGS with 

barley-based diets, Aldai et al. (2010) analyzed strip steaks displayed for 4 days and  

showed that corn and wheat DDGS improved flavor intensity and flavor desirability 

when included in the diets at levels varying from 20 to 40%. 

COLOR, FLAVOR, AND TENDERNESS AS MAJOR FACTORS THAT INFLUENCE BEEF 

QUALITY 

 Meat quality traits play an important role in purchase decisions. The appearance 

of beef at the retail display is an important factor regarding beef shelf life (Warren et al., 

2007; Grobbel et al., 2008). Shelf life is defined as the length of time which a beef 

product remains acceptable under expected conditions of temperature and light exposure 

(Stolzenbach et al., 2009). At the retail, consumers look for fresh beef with a desirable 
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bright red color and also consider discoloration a decisive factor when selecting beef 

products. Numerous extrinsic factors such as microbial contamination, storage 

temperature, packaging systems, additives, light, and time of exposure can affect shelf 

life (Smith et al., 1996; Paulsen et al., 2006). Estimated retail case-life is 1 d and 3 d for 

tenderloin and strip loin, respectively; if those muscles are discolored before the end of 

the case life, they should be marked down in price or ground (Smith et al., 1996). 

Normally, 5.4% of fresh meat is lost during retail display, leading to potential economic 

losses (Smith et al., 1996). 

 According to Killinger et al. (2004), flavor, juiciness, and tenderness also 

contribute to the quality of beef. After cooking, flavor and tenderness may play important 

roles in purchase decisions due to eating satisfaction. Research conducted during the 

1980’s and 1990’s showed that tenderness was the most important sensorial attribute for 

consumers regarding eating experience (Grobbel et al., 2008). However, a beef customer 

satisfaction survey showed that flavor and tenderness equally contributed to overall like 

ratings of top round, top sirloin, and top loin steaks (Calkins and Hodgen, 2007). 

Therefore, consumers use fresh beef color as an indicator of visual quality and flavor and 

tenderness as indicators of eating quality. 

MEAT COLOR 

 Important contributors to beef color are protein pigments. Although different 

pigments such as hemoglobin, catalase, and cytochrome enzymes are minimal in well-

bled muscle tissue, myoglobin constitutes 90% of total pigments (Aberle et al., 2001). 

Myoglobin is a globular protein with a mineral portion consisting of Iron (Fe), called a 

heme ring (Liu et al, 1995). The ability of the myoglobin molecule to combine with other 
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molecules depends of the Fe state. When Fe of the heme group is oxidized (ferric), 

myoglobin is not able to combine with oxygen and in the reduced state (ferrous), Fe 

combines with water (Liu et al., 1995; Aberle et al., 2001). In normal conditions, the 

muscle uses oxygen for regular enzymatic reactions (Aberle et al., 2001). Therefore, in 

intact meat without contact with oxygen, myoglobin combines with water forming a 

purple pigment called deoxymyoglobin. When exposed to air, reduced myoglobin 

combines with oxygen forming a stable pigment called oxymyoglobin. This process is 

called blooming, and oxymyoglobin is associated with bright red color (Lanari et al., 

1995). When myoglobin is oxidized (Fe state changed to the ferric state), it forms a 

pigment called metmyoglobin (Grobbel et al., 2006).  This pigment is responsible for 

brown color and is associated with consumers’ rejection at the retail due to undesirable 

color (Smith et al., 1996). Oxygenation of deoxymyoglobin is usually rapid and can also 

be reversed. However, the reduction from metmyoglobin to deoxymyoglobin is very slow 

and enzyme dependent. When oxidized, the iron in the heme group changes to the ferric 

state, which gives an undesirable brown color. 

MEAT FLAVOR 

 Flavor and aroma are determined by many compounds such as hydrocarbons, 

aldehydes, ketones, alcohols, furans, triphenes, pyrrols, pyridines, pyrazines, oxazols, 

thiazols, sulfurous, and others (Calkins and Hodgen, 2007). Those compounds are altered 

by different factors, including cooking which gives the final flavor. During heating, a 

nonenzymatic reaction, know as the Maillard reaction, condenses amino compounds with 

the carbonyl group of reduced sugars producing glycosylamine. Glycosylamine forms 

furfural, furanone, hydroxyketones, and dicarbonyl compounds after being rearranged 
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and dehydrated (Van Boekel, 2006). All of these products may interact with amines, 

amino acids, aldehydes, hydrogen sulfide, and ammonia through different pathways and 

generate flavor (Calkins and Hodgen, 2007).  

 Meat flavor results predominantly from carbonyl and sulfurous compounds 

whereas desirable beef aroma is associated with 2-methyl-3-furanthiol and bis (2-methyl-

3-furyl) disulfide. Additionally, lipid products such as linoleic and arachidonic fatty acids 

contribute to meat smell and flavor. After autoxydizing, these fatty acids form different 

products that provide the characteristic meaty flavor (Mottram and Madruga, 1994).  

 Other compounds such as hexanal and 2,4-decadienal are positively associated 

with beef flavor. However when present in higher concentration due to oxidation of 

linoleic acid during cooking, they may contribute to undesirable flavors (Gasser and 

Grosch, 1988).  

 Lipid oxidation in meat depends also on the amount of PUFA, concentrations of 

metal ions, and other pro-oxidants. When peroxides are formed by the free radical chain 

mechanism between an oxygen and a polyunsaturated fatty acid, products such as 

aldehydes, ketones, lactones, furans, and hydrocarbons create rancid off-flavors (Calkins 

and Hodgen, 2007). 

The specific flavor of each specie is directly associated with different types of 

fatty acids in the tissue. This happens because of differences in the digestive systems. 

Therefore, fatty acid profile of meat from different species differs as well as flavor 

(Calkins and  Hodgen, 2007). 
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MEAT TENDERNESS 

 During the conversion of muscle to meat, muscle stiffening is observed due to 

formation of cross-bridges between the two major myofibrilar proteins in the sarcomere, 

actin and myosin (Swatland, 1997). This phenomenon is called rigor mortis and is similar 

to what happens in vivo. However, after death there is no supply of oxygen, which forces 

the muscle to enter an alternative anaerobic pathway (Bate-Smith, 1948). Consequently a 

decrease in pH is observed due the incapability of removing lactic acid from the tissue 

after exsanguination. Early postmortem, creatine phosphate (CP) is used to transform 

ADP to ATP (Aberle et al., 2001). However, because CP is limited after death and can 

not provide continuous re-phosphorylation, there is not enough energy to maintain the 

muscle in a relaxed state due to formation of actomyosin bridges (Perry, 1995; Aberle et 

al., 2001). This phase is often called the onset phase of rigor mortis. Following the onset 

phase, the completion phase is characterized by the shortening of sarcomeres and 

increasing in muscle tension (Jeacocke, 1984). This happens due to the exhaustion of 

ATP. Without ATP, actomyosin cannot be broken; therefore the muscle reaches the 

maximum tension. Following completion, the resolution phase is responsible for a 

decrease in the tension pre-established by the formation of actomyosin bonds 

(Koohmaraie et al., 1996). However, this tenderization does not happen due to the 

breaking of actomyosin. The decrease in tension is a result of proteolytic degradation of 

structural proteins located at the Z disc of the sarcomere (Taylor et al., 1995). Therefore, 

although myosin and actin are not affected, degradation of proteins such as desmin, 

troponin-T, titin, and nebulin is observed (Boyer-Berri and Greaser, 1998). Although 

scientists suggest that other enzymes are involved in this tenderization process, the 

calpain system accounts for most of the proteolytic changes (Koohmaraie, 1992). This 
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system is composed by two calcium dependent enzymes, m-calpain and µ-calpain, which 

require milimolar and micromolar calcium concentrations for activity, respectively 

(Boehm et al., 1998). Additionally, these enzymes are antagonized by calpastatin, an 

inhibitor, which may vary in amount among different breeds. Thus, reduced activity of 

calpastatin potentially improves tenderness (Koohmaraie, 1992). 

  Another important factor that contributes to meat tenderness is the amount and 

solubility of the collagen of the muscle. Muscles that show less collagen and higher 

collagen solubility are tenderer than muscles with high amount of low solubility collagen 

(Stolowski et al., 2006).  

FATTY ACID DEPOSITION IN THE TISSUE 

 Generally, the factor that alters the fatty acid composition of meat is the amount 

of fat supplied in the diet (Houben et al. 2000). Most fatty acids that reach the animal 

intestines have 16 and 18 carbons. These fatty acids are esterified forming triglycerol, 

phospholipids and cholesterol esters which combine with apolipoproteins (Doreau and 

Ferlay, 1995). Later on, they are transported through the blood stream with lipoproteins 

bound to albumin. The transference of lipids from the blood stream to organs and muscle 

tissue occurs when lipoproteins pass through the capillaries and later on are sequestered 

by an enzyme called triglyceride acyl hydrolase (lipoprotein lipase), which is made by 

muscle, mammary, adipose and other tissues (Vernon, 1980). Emery (1979) showed that 

supplemental fat in the diet increases the activation of the lipoprotein lipase. Wood et al. 

(2008) found that although adipose issue has higher fatty acid content than muscle, the 

composition of both is similar in all animal species. Regarding the digestion of fatty acids 

in ruminants, fatty acids are biohydrogenated in the rumen, generating monounsaturated 
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and trans fatty acids (Jenkins et al., 2008). When lipids reach the rumen, they are 

esterified and hydrolyzed by bacterial lipases producing fatty acids (Jenkins, 1993). 

Therefore, fatty acids reaching the duodenum are microbial or diet-originated (Jenkins et 

al. 2008). After hydrolyzation, unsaturated fatty acids are converted to SFA by 

isomerization resulting in trans fatty acid intermediates including conjugated linoleic 

acids (CLAs), which have their double bonds hydrogenated (Harfoot and Hazlewood, 

1988). It has been known that linoleic (18:2, n-6) and linolenic (18:3, n-3) acids are the 

main UFA in ruminat diets (Woods and Fearon, 2009). During biohydrogenation, linoleic 

acid is converted to stearic (46%), oleic or elaidic (33 to 50%), and 3 to 6% remains as 

linoleic (Wood et al., 1963). Linolenic acid is rapidly hydrogenated (85-100%) in the 

rumen generating linoleic, oleic and stearic acids (Ward et al., 1964). Additionally, 93% 

of all intermediate linoleic acid is converted to stearic and into a small proportion of 

elaidic acid. The absorption of fatty acids depends of the area of bile salt micelles. In 

order to improve the absorption of all fatty acids, unsaturated fatty acids are needed to 

form more micelles (Zinn et al., 2000).  In grains diets, the predominant fatty acid is 

linoleic acid (18:2, n-6) (Duckett et al., 2002). This fatty acid also represents more than 

50% of the total PUFA found in beef (Laborde et al., 2001). Due to oxidation, PUFA are 

the most important fatty acids due to their association with meat oxidation and color 

stability. Wood et al. (2008) showed that only 10% of dietary linoleic acid is transferred 

to tissues. In ruminants, the incorporation of linoleic acid is higher in muscle than in 

adipose tissue (Griswold et al., 2003). Regarding long chain fatty acids (C20 -22), Lock 

et al. (2005) affirmed that the digestibility of fatty acids decreases as chain length and 

number of double bonds increase. However, muscle tissue contains relevant levels of 
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long chain fatty acids formed from linoleic and linolenic acids by ∆5 and ∆6 desaturase 

and enlogase enzymes through the Omega 6 and 3 pathways (Or-Rashid et al., 2007).  

 Adipose tissue corresponds to approximately 90% of total lipid and it is primarily 

composed of triglycerols or neutral lipid. In muscle tissue, phospholipids are integrated in 

higher amount in membranes than intracellular, and PUFA are the major fatty acids that 

perform function as a membrane constituent (Hidiroglou, 1987). Phospholipids 

incorporated in muscle membranes remain constant or increase little as the animal fattens. 

Additionally, this class of lipids is basically composed by n-6 and n-3 PUFA, which are 

more easily oxidized than saturated fatty acids (Zhang et al., 2007).   

OXIDATION OF LIPIDS AND PROTEINS 

Oxidation of lipids leads to many beef quality losses such as detrimental effects 

on palatability and color attributes (Zerby et al., 1999). Lipid oxidation follows three 

steps: initiation, propagation, and termination (Scislowski et al., 2005). During the 

oxidation of unsaturated and polyunsaturated fatty acids, a hydrogen atom located at 

double bond is removed from the chain forming an alkyl free radical (Trindade et al., 

2010). Usually, formation of free radicals are initiated by a singlet oxygen (O2) in the 

excited state showing 2 electrons with different spin located in one orbital. This singlet 

oxygen may be derived from enzymatic reactions, endoperoxides, and another reactive 

oxygen species (ROS) (Wu et al., 2008). Lipid oxidation also can be initiated by 

lipoxygenases and metal ions. During propagation, the free radicals react with molecular 

oxygen creating more radicals which interact with other fatty acids producing new 

radicals and lipid peroxides (Scislowski et al., 2005). This is a continuous cycle that 

repeats when radicals react with new fatty acids. Lipid oxidation is terminated when the 
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concentration of free radicals is high enough to allow the interaction of two radicals 

which react producing non-radical species. 

 Reactive oxygen species and oxidative compounds such as hydroxyl and peroxyl 

radicals, superoxide anions, and hydrogen peroxide can also interact with proteins 

(Scandalios, 2002). Protein oxidation mechanisms are similar to those for lipids. 

However, free radicals attack proteins on the amino acid chains and peptide backbone 

resulting in protein polymerization or fragmentation (Headlam and Davies, 2004). 

Oxidation of the side chains results in loss of sulfhydryls and sulfoxide derivatives 

(Fagan et al., 1999). Additionally, when amino acids have reactive side chains such as 

sulfhydryl, thioether, amino group, imidazole ring, and indole, they can be oxidized by 

oxidizing lipids and their co-products (Spydevold and Hokland, 1981). Amino acids such 

as cysteine, methionine, lysine, arginine, histidine, and tryptophan may be attacked by 

ROS through lipid oxidation (Rowe et al., 2004). At the backbone, the cleavage of 

peptide is initiated following the attack of the hydroxyl group on the glutamic and 

aspartic acids located at the side chain. Removing one hydrogen ion from the side chain 

carbons of these amino acids leads to peptide fragmentation (Headlam and Davies, 2002). 

The peptide scission can also be performed by ROS, which generates hydroxyl groups by 

water radiolysis or metal-catalyzed cleavage of hydrogen peroxide (Ershov and Gordeev, 

2008). After removing hydrogen atoms from the α-carbon of the peptide backbone, alkyl 

radicals are formed and react with oxygen forming an alkylperoxy radical. This radical is 

converted to alkyl peroxide through reactions with peroxy radicals, Fe2+, or by removing 

a hydrogen atom from another molecule. Subsequently, the protein alkyl peroxide is 

converted to alkoxy protein derivatives by dismutation, reaction with free peroxy 
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radicals, or Fe2+ (Headlam and Davies, 2002). The alkoxy radical is converted to 

hydroxyl derivatives that promote peptide cleavage by α-amidation or diamide pathways. 

As a result, proteins change physically and chemically due to decrease in solubility, 

amino acid damage, loss of enzyme activity and formation of forming carbonyls. 

Lowering in beef tenderness is associated with the formation of protein aggregates 

through non-covalent and covalent intermolecular bonds, which causes meat protein 

polymerization and degradation (Xia et al., 2009). 

MODIFIED ATMOSPHERE PACKAGING 

 The use of modified atmosphere packaging (MAP) in the beef industry was to 

improve color stability and avoid microbial spoilage when meat is displayed at the retail 

case (Smulders et al., 2006). As previously mentioned in this review, the estimated case-

life of fresh beef is limited to 1 to 3 days. Surface browning represents a risk that 

increases economic losses. When selecting fresh beef at the retail, consumers consider 

color as an indicator of freshness and use this attribute to judge if they will purchase a 

product or not (Grobbel et al., 2008).  

Over the past 20 years, the industry has been using vacuum packaging as an 

excellent way to provide anaerobic conditions to the meat. Many fresh beef products are 

packaged under vacuum, which delays microbial growth and avoids lipid oxidation 

(Jayasingh et al., 2001). On the other hand, residual oxygen that remains in the package 

may oxidize deoxymyoblobin or oxymyoglobin forming metmyoglobin, which creates a 

thin brown layer in the meat surface (Carpenter et al., 2001). Therefore, although minimal 

lipid oxidation and microbial growth can be found, the browning on beef surface 

compromises the visual aspect of the beef (Jeremiah and Gibson, 2001). Consumers 
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associate the brown color with beef stored long term, which may lead them to avoid the 

purchase of the product. 

 Modified atmosphere packaging consists of replacing all gases of the package 

with a different and specific mixture of gases. The main goal is to provide conditions for 

extending shelf life and maintain the fresh appearance of beef during display time. When 

packaging beef, a very low gas permeability film is required. For meat products, high 

barrier films are often used to maintain the gas mixture inside the package (Behrends et 

al., 2003). However, new methods using two films are also practiced by retailers. In this 

mechanism, a tray has two films. The bottom film is permeable and the top film is a high 

barrier film. When fresh beef is deposited in the tray, the atmosphere is removed, 

including the oxygen (Nussinovitch, 2009). To display, the top high barrier film is 

removed, allowing the O2 to be carried in through the permeable film. Therefore, the 

meat blooms and acquires the desirable bright red color due to formation of 

oxymyoglobin. 

 It is estimated that 40% of all fresh meat displayed in retail cases in the U.S. is 

under three packaging formats (PMT, 2010). The first one is the traditional rigid barrier 

tray overwrapped with shrinkable non-barrier film. The second is a non-barrier tray and 

lidding packed three or four to a mother bag, or barrier pouch, which has been gas 

flushed to remove O2 from the package. Removing trays from the bag allows the meat to 

bloom, acquiring red color. The third format is the use of a barrier shrink film completely 

encasing a non-barrier tray (PMT, 2010). 

 When selecting the packaging system, different gases and films provide different 

results regarding time of display. It is important to the retailer to choose an adequate 
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combination of gas and film according to the purpose of the product. Films traditionally 

used in MAP are polyvinyl chloride (PVC), low density polyethylene (LDPE), EVA 

(Ethylene-vinyl acetate), and OVP (oriented propylene). Gases traditionally used are O2, 

CO2, CO, N2, or a combination of at least two of them (Grobbel et al., 2006).  

 As stated before, oxygen provides desirable red color to fresh beef due to the 

formation of oxymyoglobin. However, disadvantages such as higher lipid oxidation and 

promotion of bacterial growth can be seen. When using higher concentration of oxygen, 

lipid oxidation may lead to off-flavor development, which affects consumer’s eating 

satisfaction (Campo et al., 2006). Although the high concentration of O2 ions affects 

lipids, the high partial pressure of O2 provides more stability to oxymyoglobin and does 

not allow the oxidation of iron (Beherends et al., 2003). Therefore, bright red color lasts 

longer in highO2 MAP. On the other hand, the aerobic environment may promote the 

growth of bacteria which in may have a detrimental effect on case life. 

 Levels of CO2 used in packaging vary according to the type of MAP. Normally, 

levels vary from 15 to 40% when packaging meat products, however concentrations up to 

100% can also be used (Phillips, 1996). Carbon dioxide reduces the growth of bacteria 

and decrease lipid oxidation (Mancini et al., 2005). Gram-negative bacteria are more 

sensitive to CO2 than gram-positive. This is because gram-positive bacteria are 

facultative or strict anaerobes, whereas the most gram-negative microorganisms are strict 

aerobes (Ramamoorthi et al., 2009). Aerobic bacterial growth is reduced 25-30% with 

CO2. A similar percentage change is observed in increased shelf life. (Gill and Tan, 

1980).  
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 Although some countries allow CO in meat MAP, the use of CO is controversial 

due to its toxicity and due to the possibility of masking bacteria growth. The most 

important benefit for the beef industry, when using CO, is the extended color stability 

during retail display. Eilert et al. (2005) showed that MAP containing CO provides 

acceptable appearance, adequate flavor, and optimal case life at the retail (Jayasingh et 

al., 2001).  When CO reacts with myoglobin, it forms a pigment called 

carboxymyoglobin. Carboxymyoglobin is a pigment with similar color characteristics of 

oxymyoglobin, however, it has a higher stability (Mancini et al., 2009). Research has 

demonstrated that the CO levels used in MAP (0.4%, approved by the USFDA, 2004) do 

not represent any risk to human health (Jayasingh et al., 2001). Disadvantages regarding 

the use of CO is its association with the ability of masking spoilage since color is an 

indicative of freshness, and the carboxymyoglobin complex can be stable beyond the 

microbiological shelf life of beef.  However, color is not only the indicator of spoilage. 

Although bacterial growth leads to losses in color attributes, offensive odors and flavors 

are also indicative of spoilage. According to FDA (2004), color does not mask spoilage. 

Therefore, although color is stable in packaged containing CO, undesirable odors and 

flavors may reveal bacterial spoilage.  

As we previously described in this review, the use of CO in packaging systems is 

regulated by the United States food and drug administration (FDA) and levels must not 

exceed more than 0.4%. Commonly, when using CO, different concentrations of O, CO2, 

and N2 may be added to the mixture. Grobbel et al. (2008) tested different gas mixtures in 

MAP including N2, CO2, O2 combined with 0.4 % of CO. Results showed that strip 

steaks displayed in atmospheres containing 0% of O2 and 0.4% of CO, either combined 
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with 65% of N2 and 35% of CO2 or 99.6% of N2 had better redness (a*) when compared 

with high O2 atmospheres. Higher values of a* are associated with desirable visual 

appearance (Zerby et al., 1999). 

 When using a mixture of gases, N2 is usually used as a filler gas. This gas is inert 

and does not affect either bacterial growth or color (Lambert et al., 2001). Mixtures of 

two or three gases are commonly used by the industry. A high oxygen MAP normally 

consists of 80% of O2 and 20% of CO2 (Groebbel et al., 2008). In this MAP, oxygen 

combines with myoglobin producing oxymyoglobin and consequently providing a stable 

red color in shelf life characterized by an intense bloom (Behrends et al., 2003). 

Faustman et al. (1998) showed that the high partial pressure of O2 in the package 

stabilizes oxymyoglobin. The combination with CO2 also improves the control of 

bacterial growth since this gas has antibacterial properties. Disadvantages of using this 

combination include the higher lipid oxidation caused by free oxygen ions, 

rancid/oxidized off-flavor, premature browning, decreased tenderness, bone 

discoloration, and limited color life (Tørngren, 2003; Rowe et al., 2004; Sørheim et al., 

2004). The decrease in tenderness may be associated with the oxidation of calpains 

(Rowe et al., 2004). Although the activity of this group of enzymes decreases within 1 to 

3 days after cattle harvest (Veiseth et al., 2001), Rowe et al. (2004) showed that  the 

inactivation of µ-calpain 24 h postmortem by oxidation decreased the extent of 

tenderization of strip steaks.  

 Low oxygen MAP normally consists of 100% of CO2 in the package (or 100% 

N2).  Because no oxygen is added into the gas mixture, very low or no lipid oxidation is 

detected in the beef. Additionally, flavor and aroma profiles are preserved (McMillin, 
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2008). The disadvantage of this package is the purple color of beef, resulted from the 

formation of deoxymyoglobin, which may be discriminated by consumers (McFarlane, 

2006). Additionally, Faustman et al. (1998) showed that very low O2 partial pressure in 

the package favors the oxidation of oxymyoglobin, generating metmyoglobin. When 

using 100% of CO2 in the package it is also important to use oxygen scavengers to 

eliminate residual oxygen to avoid metmyoglobin formation and consequently surface 

browning.  

VITAMIN E AS AN ANTIOXIDANT 

 Managing color in retail fresh beef sales has been a challenge for the beef industry 

for decades. It is estimated that retailers annually loose 1 billion dollars of revenue due to 

discoloration (Shaefer, 2007). For years, a lot of efforts were made to avoid lipid 

oxidation through the use of antioxidants. In normal aerobic conditions, there is a 

relationship between lipid oxidation and surface discoloration. Historically, the use of 

antioxidants has been practiced a lot for poultry and pork production. This is because of 

the fatty acid profile of these types of meat. Poultry and pork are richer in PUFA such as 

the linoleic acid  (Enser et al., 1996; Raes et al., 2004). As we have discussed before, 

fatty acids containing double bonds are more easily oxidized, compromising color and 

flavor of meat.  

 Vitamin E is an essential, lipid-soluble nutrient found in seeds oils which has 

antioxidant properties when incorporated in animal membranes (Van Acker et al., 1993).  

Active vitamin E can be found in eight molecules where four are tocopherols and four 

tocotrienols-organic compounds consisted of methylated phenols (Traber and Atkinson, 

2007). Among those compounds, the α-tocopherol has the highest antioxidant activity 
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when applied in biological systems. This type of tocopherol can also be chemically 

synthesized in a version containing a mixture of eight stereoisomers denominated all-rac 

or dl-α-tocopherol.  Among all stereoisomers, only one (RRR-α-tocopherol) can be found 

in plants (Schaefer, 2007). This isomer has the highest vitamin E potency when compared 

to other stereoisomers and it is stored and distributed by the liver to different organs and 

tissues (Faustman et al., 1999). Because α-tocopherol can be easily degraded, when 

commercialized as a supplement for animal feeding, α-tocopherol must be esterified into 

an acetate or succinate molecules. These molecules are stable and cannot be degraded by 

atmosphere oxygen or metal ions (Faustman and Cassens, 1990). When supplementing 

vitamin E, 1 mg of all-rac-tocopherol acetate is equivalent to one international unit. 

VITAMIN E SUPPLEMENTATION, DIGESTION, ABSORPTION, AND DISTRIBUTION 

 In cattle diets, vitamin E is normally supplemented as all-rac-α-tocopherol acetate, 

which is very stable during storage and when it passes through the stomach (Schaefer, 

2007). However, in acetate form, α-tocopherol does not show any antioxidant activity. 

Although ester acetates do not have antioxidant properties, they are cleaved by intestinal 

esterases releasing the α-tocopherol, which is immediately absorbed in the intestines 

(Slots et al., 2007). Tocopherol molecules are distributed through the mesentery by 

chylomicrons and reach the lymphatic system. Subsequently they are carried throughout 

the blood stream and deposited in tissues and organs by chilomicrons and lipoproteins 

synthesized by the liver. Vitamin E is lipid soluble; therefore, when reaching tissues, α-

tocopherol is embedded in hydrophobic and lipid-rich areas of cell membranes 

(Abdulrahman and Senaidy, 1996).  
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THE ANTIOXIDANT EFFECT 

In muscle, cell membrane phospholipids are susceptible to oxidation by oxygen 

and other radicals. When incorporated to the membrane, α-tocopherol intercepts the free 

radicals when the oxidation process starts taking place (Palozza et al., 1992). The 

neutralization of the free radical occurs by the donation of one of the α-tocopherol 

electrons to the radical. As a result, there is formation of two new molecules, α-

tocopheroxyl and α-tocopherolquinones (Botsoglou et al., 2003). These radicals have no 

oxidative properties; therefore, they are not able to damage lipid molecules. Lanari et al. 

(1996) suggested that when α-tocopherol interacts with radicals, oxymyoglobin does not 

react with them, avoiding the formation of metmyoglobin and consequently brown color. 

Shaefer et al. (1995) showed that without integration of α-tocopherol in the membranes, 

lipids migrate into the sarcoplasm. In the sarcoplasm, they are oxidized and form radicals, 

which react with oxymyoglobin. Thus, lipid oxidation products are able to react with 

oxymyoglobin leading the formation of metmyoglobin, compromising beef color. 

Biochemical advantages of α-tocopherol are not only its antioxidant effect, but also its 

wide protection spectrum. Small amounts of α-tocopherol protect a very large number of 

fatty acids and when incorporated to the membranes, it minimizes the inititation step of 

oxidation. (Schaefer, 2007).  

The rate of α-tocopherol deposition in muscle membranes is dose and time 

dependent different. To achieve an efficient concentration, it is necessary to supplement 

vitamin E at least 100 d before animal harvesting (Arnold et al., 1993). Faustman et al. 

(1989) showed a significant increase in shelf life as α-tocopherol concentration increases 

in the muscle. Additionally, there is also a variation of α-tocopherol position among 

muscles. Chan et al. (1996) showed that the order of accumulation in muscle is: psoas 
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major, gluteus medius, semimembranosus, and logissimus; where the first muscle 

accumulates more α-tocopherol than the last. A study about accumulation rates was 

conducted by Liu et al. (1996). They showed a similar order of accumulation: gluteus 

medius, semimembranosus, and longissimus.  It seems that muscle chemistry is another 

important factor which may determine the final concentration of vitamin E after 

supplementation. However, when Liu et al. (1996) analyzed the shelf life, the order of 

muscles that showed higher color stability during display was inverted.  Longissimus and 

semimembranosus muscles showed higher color stability when compared with gluteus 

medius muscle. Therefore each muscle has a particular characteristic of accumulation and 

color stability independent of accumulation rate during animal feeding of α-tocopherol. 

CONCLUSIONS 

 Altering chemical composition may imply in further effects on beef quality. Diet 

plays an important role regarding nutrient deposition into the tissues. Important attributes 

may be altered when feeding distillers grains. Although some research had described the 

effects of feeding this co-product on cattle performance, a better understanding is needed 

regard its effects on visual appearance and eating satisfaction of beef.  
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MATERIAL AND METHODS 

STUDY 1- BEEF QUALITY OF CALF-FED STEERS FINISHED ON VARYING LEVELS OF 

CORN-BASED WET DISTILLERS GRAINS PLUS SOLUBLES 

SAMPLING.  In this study 94 calf-fed crossbred steers were randomly allocated to three 

different treatments (0%, 15% or 30% wet distillers grains plus solubles - WDGS – DM 

basis) where WDGS replaced a mixture of high-moisture/dry rolled corn (1:1 DM basis). 

Steers were fed for 167 d prior to slaughter and were harvested in September, 2006 at a 

commercial abattoir (Greater Omaha Packing Co., Inc., Omaha , NE).  At 48 h 

postmortem, 48 carcasses, 16 from each treatment (8 USDA Choice and 8 USDA Select), 

were randomly selected from the 94 and their respective short loins (IMPS #174, NAMP, 

2007) and shoulder clods (IMPS #114, NAMP, 2007) were removed, vacuum packaged, 

and shipped to the Loeffel Meat Laboratory at the University of Nebraska. Short loins 

and shoulder clods were aged for 7 d at 5 ± 2 °C. Strip loins (longissimus lumborum) and 

tenderloins (poas major) were excised from the short loins and the top blades 

(infraspinatus) from the shoulder clods. After grading by an USDA grader, a 7 mm thick 

ribeye slice (longissimus thoracis) was excised from each carcass (n = 94) at the 12th/13th 

rib interface and transferred under refrigeration to the Loeffel Meat Laboratory at the 

University of Nebraska. Ribeye slices were trimmed of subcutaneous fat and epimysial 

connective tissue, submerged in liquid N, pulverized and stored at -80°C. For ribeye 

slices, total lipid content, fatty acid profile and proximate composition were evaluated. 

After fabrication, four 2.54 cm thick steaks were cut from each strip loin, tenderloin and 

top blade. The first and second steaks (anterior end) were vacuum packaged, frozen (-

16°C), and used for sensory, and objective tenderness analyses, respectively. The third 

steak was vacuum packaged and frozen immediately until the sample could be pulverized 
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in liquid nitrogen with a blender (Waring Commercial, model 51BL32, Torring, CT). 

Lipid oxidation, fatty acid profile, and mineral composition were then evaluated. The 

fourth steak was divided in two. The halves were placed on Styrofoam trays and wrapped 

in oxygen-permeable film to be exposed to retail display for lipid oxidation analysis.  

LABORATORY ANALYSES. Moisture and ash values were quantified using a LECO 

Thermogravimetric Analyzer (LECO Corporation, model 604-100-400, St. Joseph, MI) 

(Appendix I).  Total fat was determined by ether extraction using the Soxhlet procedure 

(AOAC, 1990). For fatty acids, total lipid was extracted following the chloroform-

methanol procedure of Folch et al. (1957). After extraction, the lipids were converted to 

fatty acid methyl esters according to Morrison and Smith (1964) and Metcalfe et al. 

(1966), and analyzed by gas chromatography (Hewlett-Packard Gas Chromatograph - 

Agilent Technologies, model 6890 series, Santa Clara, CA). Fatty acids were identified 

by comparison of retention times with known standards (Appendix II). Mineral 

composition (mg/kg) was determined by atomic absorption at Ward laboratories, Inc. in 

Kearney, NE. Minerals quantified included Ca, P, K, Mg, S, Na, Zn, Fe, Mn and Cu. 

Lipid oxidation was measured by the thiobarbituric acid assay (TBA) according to the 

protocol of Buege and Aust (1978), modified by Ahn et al. (1998), at 0, 3 and 7 days of 

display (Appendix III). 

RETAIL DISPLAY. Two display retail cases cases (Tyler Refrigeration Corporation, model 

LNSC5, MI, USA) maintained at 2 ± 2°C were used for retail display. Samples were 

randomly placed in the cases and exposed to continuous fluorescent lightning cases 

(Lamp type = F32T8/TL850 ALTO; Phillips, Inc., New Jersey, USA) with intensity of 

1614 lx. Objective color measurement was recorded for L* (psychometric lightness; 
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black = 0, white = 100), a* (red = positive values; green = negative values) and b* 

(yellow = positive values; blue = negative values) using a HunterLab colorimeter (45/0-

LAV Miniscan XE Plus, Hunter Associates Laboratory, Inc., Virginia, USA.) with a 35 

mm diameter measurement area, a D65 illuminant and 10º standard observer. The 

colorimeter was calibrated daily using black and white ceramic titles provided by the 

manufacturer. Color measures were obtained at 1 (day after steaks were cut), 3, 4, 5, 6 

and 7 d of display by averaging three readings from different areas of the steak surface. 

SENSORIAL ANALYSIS AND WARNER-BRATZLER SHEAR FORCE (WBSF). Steaks for 

trained taste panel and WBSF analysis were thawed for 24 h at 5°C and grilled to 70°C at 

a electric grill (Hamilton Beach, model 31605A, Washington, NC). Sensorial and WBSF 

analysis were performed 1 mo after they were cut. Steaks were flipped after reaching 

35°C at the geometric center. A seven-member beef attributes panel was screened, 

selected, and trained to evaluate all muscles. Panelists were trained according Meilgaard 

et al. (1991) to evaluate tenderness, connective tissue amount, juiciness, and off-flavor 

intensity on 8-point hedonic scales. Attributes were rated from 1 = extremely tough to 8 = 

extremely tender (tenderness); 1 = abundant amount to 8 = no connective tissue 

(connective tissue amount); 1 = extremely dry to 8 = extremely juicy (juiciness); and 1 = 

extremely off-flavor to 8 = no off-flavor (off-flavor intensity) (Appendix IV). To avoid 

visual differences, samples were served under a red fluorescent light and unsalted 

crackers and double distilled, deionized water were available to the panelists to cleanse 

their palates between the samples. For WBSF, after cooking, steaks were cooled for 1 h at 

4°C and cores were removed with a drill press parallel to muscle fiber orientation. At 

least 6 cores (1.27 cm in diameter) from each steak were sheared on an Instron Universal 
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Testing Machine (model 55R1123, Instron Corp., Canton, MA) with a Warner-Bratzler 

blade and the average of the cores represented the shear force for a given steak. The 

crosshead speed was 250 mm/min with a 500 kg load cell. 

STATISTICAL ANALYSIS. Oxidation data (TBA values) were analyzed as a split plot 

where diet was the whole plot and day the split plot. Effects of diet and day were 

considered main effects. Animal (whole muscle) within diet was considered the whole 

plot and day by diet the split plot error terms, respectively. Color data were analyzed as a 

split plot repeated measures design. The compound symmetry covariance matrix was 

used due to smaller Akaike's information criterion (AIC) and Bayesian information 

criterion (BIC) coefficients. Sensory data were also analyzed as a split plot whereas diet 

was considered the whole plot and panelist the split plot. Diet was considered the main 

effect, and panelist and panelist by diet were considered random effects. Animal (whole 

muscle) within diet was considered the whole plot error term and panelist by diet the split 

plot error term. The Kenward-Rogers degrees of freedom approximation was used. 

Mineral, fatty acid profile and fat content data were arranged on a complete randomized 

design. For fatty acids and TBA values, response curves were also used to detect linear 

and quadratic relationships. Data were analyzed using the GLIMMIX procedure of SAS 

(Version 9.1, Cary, N.C., 2002). When significance (P ≤ 0.05) was indicated by 

ANOVA, means separations were performed using the LSMEANS and DIFF functions of 

SAS. 
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STUDY 2- FINISHING DIETS CONTAINING WET DISTILLERS GRAINS PLUS SOLUBLES 

AFFECT BEEF QUALITY OF YEARLING STEERS 

SAMPLING. In this study conducted in January 2007, yearling steers (n = 96) were 

randomized in three groups and assigned to one of three dietary treatments identical to 

study 1. Sampling procedure was also performed identically to study 1. However, in this 

study, two aging periods were studied. The muscle longissimus lumborum and muscle 

infraspinatus were re-vacuum packaged after slicing the steaks at day 7 and aged until 42 

d postmortem. Sample preparation, retail display, and proximate, fatty acid profile, 

sensorial, WBSF, and lipid oxidation analyses were performed similarly as described for 

study 1.  

STATISTICAL ANALYSIS. Data were analyzed using the SAS® 9.2 package, SAS Institute, 

Inc., USA. Lipid oxidation was analyzed as a split-split-plot design where dietary 

treatment was the whole plot, aging the split plot and day the split-split-plot. Color data 

were analyzed as a split plot with repeated measures where dietary treatment was the 

whole, aging the split, and day the repeated measure. For repeated measures, the smallest 

AIC and BIC coefficients indicated best model fitting when the compound symmetry 

covariance matrix was used. Additionally, to determine the correct degrees of freedom 

for the estimates, the Kenward-Rogers approximation method was used. Color panelists 

were considered a random effect when analyzing subjective discoloration.  For sensory 

evaluation, a split plot design was used. Fixed effects of dietary treatment and aging were 

the whole and split plots respectively, and panelist was considered a random effect. For 

fatty acids, a completely randomized design with a 3 x 2 factorial (3 dietary treatments 

and 2 USDA grades) was used.  Marbling and proximate analysis were analyzed as a 

completely randomized design where dietary treatment was the main effect. Linear and 
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quadratic relationships were detected by response curves. Data were analyzed using the 

GLIMMIX procedure and when significance (P ≤ 0.05) was indicated by ANOVA, 

means separations were performed using the LSMEANS and DIFF functions. 

STUDY 3. EFFECTS OF FEEDING MODIFIED DISTILLERS GRAINS PLUS SOLUBLES ON 

MARBLING ATTRIBUTES, PROXIMATE COMPOSITION AND FATTY ACIDS PROFILE 

OF BEEF 

SAMPLING. Yearling (n = 268) Angus crossbred steers were randomly allocated to six 

dietary treatments containing high moisture, dry rolled corn, and different levels of 

MDGS (0, 10, 20, 30, 40, and 50% MDGS - DM basis). Steers were fed 176 d prior to 

slaughter and harvested in May 2007 at a commercial facility (Greater Omaha Packing 

Co., Inc., Omaha , NE).  Fourty-eight h postmortem, marbling attributes (score, texture, 

and distribution) were evaluated by a United States Department of Agriculture (USDA) 

beef carcass grading supervisor. After grading, a 7 mm-thick slice of the longissimus 

lumborum muscle was collected at the 12th/13th rib region from each carcass to analyze 

the fatty acid profile and proximate composition. Samples were transferred under 

refrigeration to the University of Nebraska Meat Laboratory trimmed of subcutaneous fat 

and connective tissue, vacuum packaged and stored at -35°C.  

LABORATORY ANALYSIS. Sample preparation, fatty acid and proximate analyses were 

performed using the same procedures from the studies 1, and 2. 

STATISTICAL ANALYSIS. Marbling, fatty acids and proximate analysis were analyzed as a 

completely randomized design where dietary treatment was the main effect. Linear and 

quadratic relationships were detected by response curves. Linear relationships between 

marbling and fat content were analyzed using the REG and data were analyzed using the 
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GLIMMIX procedure of SAS® (Version 9.2, Cary, N.C., 2007). When significance (P ≤ 

0.05) was indicated by ANOVA, means separations were performed using the 

LSMEANS and DIFF functions. 

STUDY 4. FATTY ACID PROFILE AND PROXIMAL COMPOSITION OF COOKED 

INFRASPINATUS AND TERES MAJOR MUSCLES FROM ANGUS CROSSBRED STEERS 

FED WET DISTILLERS GRAINS PLUS SOLUBLES AND VITAMIN E 

SAMPLING. In this study yearling steers (n = 32, 8 per treatment) were allocated to four 

dietary treatments consisting in Corn, Corn + vitamin E (E), 40% WDGS, or 40% WDGS 

+ E, and fed for 140 d prior to slaughter. Vitamin E dose was 500 I.U. /head/d. The corn 

diet contained 41.25 % of dry rolled corn (DRC), 41.25 of high moisture corn (HMC), 

7.5 % alfalfa hay, and 5 % of molasses (DM basis). The 40% WDGS diet contained 

23.625 % of DRC, 23.625 % of HMC, 40 % of WDGS, and 5 % of molasses (DM basis). 

Animals were harvested in August, 2008, at a commercial slaughter plant (Greater 

Omaha Packing Co., Inc., Omaha , NE) and 48 h postmortem, both shoulder clods (IMPS 

# 174, NAMP, 2007) were transferred to the Loeffel Meat Laboratory at the University of 

Nebraska and aged for 7 d at 5 ± 2°C. Two teres major were excised from the shoulder 

clods (one muscle per clod) whereas only one infraspinatus was randomly excised from 

one clod, right or left. All clods used in this experiment were graded as Choice by the 

USDA. Muscles were trimmed of subcutaneous fat and epimysial connective tissue, and 

frozen (-16°C) until cooking, fatty acid, and proximate analyses could be made (2 mo 

later).  

COOKING AND SAMPLE PREPARATION. One whole teres major muscle was used raw and 

the other one was broiled. The infraspinatus was cut in three steaks which were used raw, 

broiled and grilled, respectively. Muscles were thawed to 5°C overnight and cooked until 
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the internal temperature at the geometric center of each muscle reached 70°C. Broiling 

was performed on an electrical oven (Mayatag Electrical Schematic, model FP860-910A, 

Benton Harbor, MI) where samples were flipped when reached 34°C and removed from 

the oven when reached 68°C. Grilling was performed on a electric grill (Presto Series, 

model 0702 griddle, eau Claire, WI) where steaks were flipped after reached 38°C and 

cooked until reached 68°C. For both cooking procedures, the final temperature (70°C) 

was reached 5 min after removing from the oven or grill. Raw and cooked samples were 

pulverized with liquid nitrogen (- 174°C) using a blender (Waring Commercial, model 

51BL32, Torring, CT), and stored at -80°C. 

LABORATORY ANALYSIS. Fatty acid and proximate analyses were performed using the 

same procedures from the studies 1, 2, and 3. 

 STATISTICAL ANALYSIS. Data from this experiment were analyzed using the SAS® 9.2 

package, SAS Institute, Inc., USA. For the teres major muscle, data were analyzed as a 

split-plot design where dietary treatment was the whole plot, and sample state (raw or 

broiled, one muscle per method) the split-plot. Additionally, a 4 x 2 factorial design was 

used to verify the interaction between dietary treatment and cooking method. A similar 

design was used for the infraspinatus muscle, however, for the split-plot, the whole 

muscle was divided in three steaks and each one was assigned to one out of three cooking 

methods (raw, broiling, or grilling). Similarly, a 4 x 3 factorial design was used to verify 

the interactions. Data were analyzed using the GLIMMIX procedure and when 

significance (P ≤ 0.05) was indicated by ANOVA, means separations were performed 

using the LSMEANS and DIFF functions. 
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STUDY 5. IMPACT OF VITAMIN E AND WET DISTILLER’S GRAINS PLUS SOLUBLES ON 

SHELF-LIFE OF BEEF UNDER DIFFERENT PACKAGING SYSTEMS 

SAMPLING. Ninety yearling steers were randomized in five dietary treatments containing 

35% of WDGS (DM-basis) plus different levels of vitamin E (0E, 100E, 300E, 500E, or 

1000E I.U. daily) or a control corn-based dietary treatment with no vitamin E and fed for 

128 days prior to slaughter. Animals were transferred to a commercial slaughter plant 

(Cargill Meat Soulutions, Schyuler, NE) and harvested in October, 2008.   Strip loins 

(Longissimus muscle) were excised from short loins (IMPS #174, NAMP, 2007) and 

transferred under refrigeration to a research and development facility (Cargill Meat 

Solutions, Wichita, KS). One strip loin was randomly selected from each animal and aged 

for 7 d. The remaining muscle was aged for 21 days. After aging, seven 2.54 cm steaks 

were cut from each longissimus muscle. After packaging, one steak was immediately 

vacuum packaged whereas other steaks were displayed for 4 days (3 for WBSF analysis 

and 3 for sensorial tenderness analysis; d 4 steaks) under three different atmospheres. 

Atmospheres (MAP) used in this experiment were permeable film, low O2 (0 - 382 ppm 

O2), or high O2 (80-85% O2). Four display cases (Hussmann Climate Control 

Technologies, Bridgeton, MO) were set at 2 ± 2°C and light intensity varied from 60 to 

200Lx (lamp type= F32T8/TL730 Phillips, Inc., New Jersey, USA). 

COLOR ANALYSIS. Objective color measurement was recorded using a Minolta CR-400 

colorimeter (Konica Minolta Sensing Americas, Inc, New Jersey, U.S.A.) with an 8mm/ 

11mm measurement/illumination area, a D65 illuminant, and diffuse illumination/0° 

viewing angle (d/0). The colorimeter was calibrated daily using a ceramic title provided 

by the manufacturer. Color readings were taken from steaks displayed for sensorial 

analysis at 1, 2, 3, and 4 d of display by averaging three readings from different areas of 
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the steak surface. Subjective color was assessed using a four-member panel that scored 

visual discoloration from 0% red (not discolored) to 100% brown (completely discolored) 

every day during all four days (Appendix V). 

SENSORIAL, WBSF, AND OXIDATION ANALYSES. These analyses were performed using 

the same procedures from the studies 1, and 2. 

STATISTICAL ANALYSIS. Data of this experiment were analyzed as a split split plot design 

where dietary treatment was the whole plot, aging the split, and MAP the split split plot. 

Muscle within diet was considered the whole plot, aging by diet the split plot and MAP 

by aging by diet the split split plot error terms. Color data were also designed as repeated 

measures where the smallest Akaike and Bayesian information criteria (AIC and BIC, 

respectively) indicated best model fitting when the compound symmetry covariance 

matrix was used. Additionally, the Kenward-Rogers degrees of freedom approximation 

method was used. Regarding subjective color, panelists were considered a random effect. 

A response curve was used to detect linear relationships as levels of vitamin E increased 

in the diets. Data were analyzed using the GLIMMIX procedure of SAS (Version 9.1, 

Cary, N.C., 2002). When significance (P ≤ 0.05) was indicated by ANOVA, means 

separations were performed using the LSMEANS and DIFF functions of SAS.
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ABSTRACT 

The objective of this work was to study the effects of feeding wet distillers grains 

plus solubles on beef quality. Ninety-four, calf-fed crossbred steers were randomly 

allocated to three different dietary treatments (0%, 15% or 30% wet distillers grains plus 

solubles - WDGS – DM basis) and fed for 167 d to test the influence of different levels of 

WDGS on quality attributes of beef.  At 48 h postmortem, marbling score, marbling 

texture, and marbling distribution were assessed by a USDA grader. After grading, one 

ribeye slice (Longissimus thoracis) about 7 mm thick was excised from each carcass, 

trimmed of subcutaneous fat, and analyzed for fatty acid profile and lipid content. At 7 d 

postmortem, 48 top blades (Infraspinatus), strip loins (Longissimus lumborum) and 

tenderloins (Poas major) (16 per treatment) were removed from shoulder clods and short 

loins and two steaks were obtained for measurement of mineral content, fatty acid profile 

(except strip loins), trained sensory analysis, objective color and lipid oxidation. 

Finishing diet did not influence the content of total lipid (P = 0.19) or marbling, marbling 

texture, or marbling distribution (P = 0.46, P = 0.84 and P = 0.40, respectively).  Feeding 

WDGS created a linear increase (P < 0.01) of PUFA in all three muscles (Longissimus 

thoracis showed: 4.90, 5.91, and 6.23 % for 0, 15 and 30%, respectively). Similar 

responses were observed for 18:2(n-6) and total omega 6 fatty acids. Conversely, lower 

proportions of 18:1(n-7) fatty acid were observed in beef from animals fed 30% WDGS 

(P < 0.01). Total trans fatty acids increased linearly in strip loin and top blade steaks (P < 

0.01) whereas proportions of 16:0 and 14:1(n-5) fatty acids decreased in all muscles (P < 

0.01) as levels of WDGS increased.  Diet did not affect mineral content of top blades or 

strip loins. For tenderloin steaks, sulfur concentration was lower when 30% of WDGS 

was fed (P = 0.05). No effects on sensory attributes and Warner Bratzler shear force were 
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observed, except a minimal effect on strip loin juiciness. Top blade and tenderloin steaks 

from cattle fed 30% WDGS were significantly less red (lower a* values) on day 3 of 

retail display (P < 0.04).  Inclusion of 30% WDGS in the diet resulted in higher levels of 

oxidation after 7 d of retail display for top blade and strip loin steaks (P < 0.01).  No 

effects of WDGS on oxidation of tenderloin steaks (P = 0.19) during the display period 

were observed. Feeding WDGS to calf-fed steers altered fatty acid profile, increased 

oxidation and decreased color stability during retail display. 

Key words: beef, distillers grains, fatty acids, sensory traits.
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INTRODUCTION 

Wet distillers grains plus solubles (WDGS) have been using widely in beef cattle 

finishing diets. Distillers grains are obtained as ethanol co-products after screening and 

pressing or centrifugation (Larson et al., 1993). The advantages of feeding WDGS to 

cattle include reduced production costs and improved ADG, greater 12th rib fat depth, 

increased marbling score, and improved feed conversion when compared with other 

protein sources (Bremer et al., 2008). Vander Pol et al. (2005) reported that feeding up to 

50% of WDGS in finishing diets improved ADG and G:F when compared to feeding high 

moisture/dry rolled corn. Shand et al. (1998) reported that carcass traits, proximate 

composition and fatty acid composition were unaffected by wheat-based WDGS diets. 

This may be due to the lower fat concentration of wheat-based WDGS when compred to 

corn-based. However, diet formulation may affect beef quality, composition and 

ultimately shelf life due to increases in polyunsaturated fatty acids (PUFA) (Nelson et al., 

2004).  

Roeber et al. (2005) showed that inclusion of distillers grains in finishing diets at 

high rates (40 to 50%, DM basis) had negative effects on beef color but levels up to 25% 

were not detrimental to color during retail display. Gill et al. (2008) reported lower L* 

values of beef (darker color) from animals fed 15% corn-based distillers grains when 

compared to animals fed the same amount of sorghum-based wet distillers grains (WDG). 

Alteration in fatty acid composition of beef has been shown to affect beef quality. 

High levels of PUFA are associated with higher values of oxidation and compromised 

beef color (Wood and Enser, 1997). Beef from animals fed dry distillers grains possessed 

higher concentrations of omega 6 fatty acids and omega 6:omega 3 ratios when compared 
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to steam-flaked corn (Gill et al., 2008). In addition, oxidation of fatty acids results in 

products like ketones and aldehydes which negatively affect beef flavor and color shelf-

life (Liu et al., 1995; Jakobsen and Bertelsen, 2000).  

In this study we hypothesized that feeding levels up to 30% of WDGS would not 

alter marbling, lipid content, objective, and subjective tenderness. Additionally, we also 

hypothesized that feeding WDGS would increase proportions of PUFA, lipid oxidation, 

and cause detrimental effects on beef color. Therefore, the objectives of this study were 

to identify the effects of finishing diets containing WDGS on fatty acids and color. 

MATERIALS AND METHODS 

ANIMALS  

 Ninety-four, calf-fed crossbred steers were randomly allocated to three different 

treatments (0%, 15% or 30% wet distillers grains plus solubles - WDGS – DM basis; 

Table 1) and fed for 167 d. The base diet consisted of dried rolled corn, high moisture 

corn and alfalfa hay. Steers were implanted on d 1 with Synovex Choice (14 mg E2, 100 

mg TBA; Fort Dodge Animal Health, Overland Park, KS) followed by Revelor-S (24 mg 

E2, 120 mg TBA; Schering-Plough/Intervet Inc., Somerville, N.J.) on d 67. Details of 

feeding methods and cattle performance were reported by Luebbe (2009). 

CARCASS AND FABRICATION 

Steers were harvested at a commercial plant (Greater Omaha Packing Co. , 

Omaha, NE) and at 48 h postmortem, marbling score, marbling texture and marbling 

distribution were assessed by a USDA grading supervisor. Forty-eight carcasses, 16 from 

each treatment, were randomly selected from the 94 and their respective short loins 

(IMPS #174, NAMP, 2007) and shoulder clods (IMPS #114, NAMP, 2007) were 
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removed, vacuum packaged, and shipped to the Loeffel Meat Laboratory at the 

University of Nebraska. After 7 d aging (7 d postmortem) at 5 ± 2 °C, the strip loins 

(Longissimus lumborum) and tenderloins (Poas major) were excised from the short loins 

and the top blades (Infraspinatus) from the shoulder clods. 

SAMPLE PREPARATION 

Forty-eight h postmortem, carcasses were graded and a 7 mm thick ribeye slice 

(Longissimus thoracis) was excised from each carcass (n = 94) at the 12th/13th rib 

interface and transferred under refrigeration to the Loeffel Meat Laboratory at the 

University of Nebraska. Ribeye slices were trimmed of subcutaneous fat and epimysial 

connective tissue, submerged in liquid N, pulverized and stored at -80°C. For ribeye 

slices, total lipid content, fatty acid profile and proximate composition were evaluated. 

After fabrication, four 2.54 cm thick steaks were cut from each strip loin, 

tenderloin and top blade. The first and second steaks were vacuum packaged, frozen (-

16°C), and used for sensory, and objective tenderness analyses, respectively. The third 

steak was vacuum packaged and frozen immediately until the sample could be pulverized 

in liquid nitrogen with a blender (Waring Commercial, model 51BL32, Torring, CT). 

Lipid oxidation, fatty acid profile, and mineral composition were then evaluated. The 

fourth steak was divided in two. The halves were placed on Styrofoam trays and wrapped 

in oxygen-permeable film to be exposed to retail display for lipid oxidation analysis.  

LABORATORY ANALYSES 

Moisture and ash values were quantified using a LECO Thermogravimetric 

Analyzer (LECO Corporation, model 604-100-400, St. Joseph, MI).  Total fat was 

determined by ether extraction using the Soxhlet procedure (AOAC, 1990). 
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 For fatty acids, total lipid was extracted following the chloroform-methanol 

procedure of Folch et al. (1957). After extraction, the lipids were converted to fatty acid 

methyl esters according to Morrison and Smith (1964) and Metcalfe et al. (1966), and 

analyzed using gas chromatography (Hewlett-Packard Gas Chromatograph - Agilent 

Technologies, model 6890 series, Santa Clara, CA). Samples were analyzed using a 

capillary column (Chrompack CP-Sil 88 (0,25 mm x 100 m). Oven temperature was 

programmed from 140 to 220°C at 2°C/min and held at 220°C for 20 min. Injector and 

detector temperature were maintained at 270 and 300°C, respectively. The carrier gas was 

Helium at a flow rate of 30 mL/min. Fatty acids were identified by comparison of 

retention times with known standards. In this experiment, after analyzing the fatty acid 

profile of ribeyes, an upgrade of standards was realized allowing the identification of 

more fatty acids. Therefore, no estimation of total omega 6 and omega 6: omega 3 could 

be calculated on ribeye slices.. 

Mineral composition (mg/kg) was determined by atomic absorption spectroscopy 

following the methodology of Ward and Gray (1994). Minerals that were quantified 

included Ca, P, K, Mg, S, Na, Zn, Fe, Mn and Cu. 

 Lipid oxidation was measured by the thiobarbituric acid assay (TBA) according to 

the protocol of Buege and Aust (1978), modified by Ahn et al. (1998), at 0, 3 and 7 days 

of display. 

SIMULATED RETAIL DISPLAY 

Two display retail cases (LNSC5 - Tyler Refrigeration Corporation, Niles, MI) 

maintained at 2 ± 2°C were used for retail display. Samples were randomly placed in the 
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cases and exposed to continuous fluorescent lightning (Lamp type = F32T8/TL850 

ALTO; Phillips, Inc., New Jersey, USA) with intensity of 1614 lx. 

OBJECTIVE COLOR 

Objective color measurement was obtained for L* (psychometric lightness; black 

= 0, white = 100), a* (red = positive values; green = negative values) and b* (yellow = 

positive values; blue = negative values) using a HunterLab colorimeter (45/0-LAV 

Miniscan XE Plus, Hunter Associates Laboratory, Inc., Virginia, U.S.A.) with a 35 mm 

diameter measurement area, a D65 illuminant and 10º standard observer. The colorimeter 

was calibrated daily using black and white ceramic titles provided by the manufacturer. 

Color measures were obtained at 1, 3, 4, 5, 6 and 7 d of display by averaging three 

readings from different areas of the steak surface. 

SENSORIAL ANALYSIS AND OBJECTIVE TENDERNESS (WARNER-BRATZLER SHEAR 

FORCE, WBSF) 

Steaks for trained taste panel and WBSF analysis were thawed for 24 h at 5°C and 

grilled to 70°C. Steaks were flipped after reaching 35°C at the geometric center. A seven-

member beef attributes panel was screened, selected, and trained to evaluate all muscles. 

Panelists were trained according Meilgaard et al. (1991) to evaluate tenderness, 

connective tissue amount, juiciness, and off-flavor intensity on 8-point hedonic scales. 

Attributes were rated from 1 = extremely tough to 8 = extremely tender (tenderness); 1 = 

abundant amount to 8 = no connective tissue (connective tissue amount); 1 = extremely 

dry to 8 = extremely juicy (juiciness); and 1 = extremely off-flavor to 8 = no off-flavor 

(off-flavor intensity). To avoid visual differences, samples were served under a red 

fluorescent light and unsalted crackers and double distilled, deionized water were 

available to the panelists to cleanse their palates between the samples. For WBSF, after 
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cooking, steaks were cooled for 1 h at 4°C and cores were removed with a drill press 

parallel to muscle fiber orientation. At least 6 cores (1.27 cm in diameter) from each steak 

were sheared on an Instron Universal Testing Machine (model 55R1123, Instron Corp., 

Canton, MA) with a Warner-Bratzler blade and the average of the cores represented the 

shear force for a given steak. The crosshead speed was 250 mm/min with a 500 kg load 

cell. 

STATISTICAL ANALYSIS 

 Oxidation data (TBA values) were analyzed as a split plot where diet was the 

whole plot and day the split plot. Effects of diet and day were considered main effects. 

Animal (whole muscle) within diet was considered the whole plot and day by diet the 

split plot error terms, respectively. Color data were analyzed as a split plot repeated 

measures design. The compound symmetry covariance matrix was used due to smaller 

AIC and BIC coefficients. Sensory data were also analyzed as a split plot where diet was 

considered the whole plot and panelist the split plot. Diet was considered the main effect, 

and panelist and panelist by diet were considered random effects. Animal (whole muscle) 

within diet was considered the whole plot error term and panelist by diet the split plot 

error term. The kenward-Rogers degrees of freedom approximation was used. Mineral, 

fatty acid profile and fat content data were arranged on a complete randomized design. 

For fatty acids and TBA values, response curve was also used to detect linear and 

quadratic relationships. 

  Data were analyzed using the GLIMMIX procedure of SAS (Version 9.1, Cary, 

N.C., 2002). When significance (P ≤ 0.05) was indicated by ANOVA, means separations 

were performed using the LSMEANS and DIFF functions of SAS. 
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RESULTS AND DISCUSSION 

MARBLING AND FAT 

There were linear relationships between marbling score and fat percentage in 

the ribeye (Figure 1), regardless of amount of WDGS in the diet. The coefficients of 

determination ranged from 21 - 40%. Slopes were statistically similar at P = 0.72 

indicating an equal rate of change between fat content and marbling among the 3 diet 

treatments. This means feeding WDGS does not alter the ability of a federal grader to 

visualize intramuscular fat. Feeding WDGS did not affect fat content, moisture and ash 

content in the top blade or tenderloin 

Feeding grains (starch) supports more propionate production in the rumen, 

which is responsible for 75% of marbling deposition whereas acetate, produced from 

digestion of grass (fiber), is responsible for 75% of subcutaneous fat deposition (Smith 

and Crouse, 1984).  During the corn dry-milling process starch is removed from the 

grains leading distillers grains to have more fiber when compared to ground corn. 

Conceivably, this feedstuff could move fat deposition away from marbling and toward 

subcutaneous fat. However, our study showed that feeding 15 or 30% WDGS did not 

significantly influence marbling score, marbling texture, marbling distribution or fat 

content when compared to 0% WDGS (Table 2). Even with starch removal, Vander Pol 

et al. (2009) showed that feeding distillers grains stimulated higher propionate production 

by the rumen, which could help to explain our results. In a meta analysis of multiple 

studies concerning inclusion of WDGS in cattle diets, Bremer et al. (2008) showed an 

increase in marbling up to 40% of dietary WDGS (DM basis). 

 

 



63 
 

 

FATTY ACIDS 

Fatty acid values are shown in Tables 3, 4, and 5 for ribeye, tenderloin and top 

blade, respectively. For all muscles, values of PUFA, 18:1∆13t, 18:2 (n-6), and omega 6 

linearly increased as WDGS levels increased. Except for tenderloin steaks, total trans 

fatty acids also linearly increased in response to WDGS level. Major components of the 

saturated fatty acid group, 16:0 and 18:0, responded differently to feeding WDGS. For 

tenderloins and top blades, a linear decrease was observed in 16:0 as levels of WDGS 

increased in the diet. For ribeyes, although a linear decrease was not observed, steaks 

from animals fed 30% WDGS had lower 16:0 when compared to steaks from steers fed 

0% WDGS. Values of 18:0 linearly increased in ribeyes and a similar trend (P = 0.07) 

was observed for top blades. Feeding WDGS did not alter values of 18:0 for tenderloin 

steaks. 

For top blades and ribeyes, 18:1 trans fatty acids (18:1t) showed a linear 

increase as dietary levels of WDGS increased. No differences in proportions of 18:1 trans 

fatty acids were observed for tenderloins. 

Other 18:1t isomers such as ∆14t and ∆13t were also quantified in our analysis. 

These fatty acids account for 10 to 30% of the total trans fatty acids. Tenderloin and Top 

blade content of 18:1∆14t decreased linearly (P < 0.01) and approached significance (P = 

0.06) for ribeyes.  In our study, feeding WDGS created higher values of omega 6:omega 

3 for tenderloins and top blades. Similar results regarding omega 6 and omega 6:omega 3 

were found by Gill et al. (2008) when comparing distillers grains to steam flake corn.  

Modification of beef fatty acid profiles by feeding WDGS likely occurs because 

this feedstuff has a higher level of lipid and greater fat digestibility when compared to 
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corn (Lodge et al., 2007; Vander Pol et al., 2009). In addition, Vander Pol et al. (2009), 

analyzed fatty acids passing through the rumen and observed that feeding WDGS led to 

higher levels of 18:2 and 18:1t in the duodenum when compared to corn, which may 

result in higher deposition of those fatty acids in the muscle. This explains higher levels 

of 18:2(n-6) and PUFA in all muscles, as well as higher levels of 18:1t and total trans 

fatty acids in Longissimus and Infraspinatus from our study.  

These results contradict Shand et al. (1998), who found no impacts on fatty acid 

composition in beef from animals fed wheat-based wet distillers grains (WDG) and wet 

brewers grains (WBG). Considering that corn-based WDGS have higher fat concentration 

when compared to wheat-based, our study demonstrated that corn-based wet distillers 

grains modify the fatty acid profile of beef.  

SENSORY ANALYSIS AND OBJECTIVE TENDERNESS. 

 Results of sensory analysis and WBSF are presented in Table 6. Feeding WDGS 

did not affect WBSF and sensory attributes of top blade and tenderloin steaks. Despite a 

significant but slight decline in strip steak juiciness at 15% WDGS, no pattern on other 

sensory traits was observed for any muscle regarding levels of WDGS. 

In the present study, feeding WDGS led to a linear decrease of 18:1(n-7) in all 

muscles (P < 0.01). Camfield et al. (1997) showed that lower values of 18:1(n-7) may 

lead beef to liver, sour and metallic off-flavor. A similar trend was observed by Jenschke 

et al. (2007), reaffirming that there is a negative relationship between liver off-flavor and 

levels of 18:1(n-7). In our study, although we detected lower values of 18:1(n-7), 

panelists did not detected a significant presence of off-flavors in beef from animals fed 
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any dietary treatment. However, steaks for sensory analysis were not subject to retail 

display, when oxidation could contribute to development of off flavors. 

MINERAL COMPOSITION 

Feeding WDGS did not alter mineral composition of top blades and strip loins 

(Table 7). Sulfur-based compounds are sometimes associated with off-flavor of beef. In 

this study, tenderloins from steers finished with 30% had significantly lower levels of S 

(P = 0.05) than 0 and 15% WDGS. Other minerals such as Na are correlated to off-flavor 

development of beef (Jenschke et al., 2007). In our study no effects on sodium were 

observed as WDGS levels were increased.  

 

LIPID OXIDATION 

A significant interaction between retail display day and WDGS treatments was 

observed for top blade and strip loin. Top blade steaks from cattle fed 30% WDGS had 

higher oxidation (higher TBA values) (P < 0.01) after 7 d of display when compared to 0 

and 15% WDGS (Table 8); similar results were observed for strip loins (P < 0.01) and a 

linear increase was identified for both muscles (P = 0.02) at day 7  (Table 8). No WDGS 

effects were identified on TBA values of tenderloin steaks (P = 0.19; data not shown).   

Zhang et al. (2007) showed that PUFA are more easily oxidized when compared 

to saturated fatty acids. This research clearly demonstrated a linear increase of PUFA in 

all analyzed muscles as WDGS levels increase in diets. Consequently, high oxidation 

values observed after 7 d of retail display for top blade and strip loin steaks are 

associated, in part, to the increase in PUFA.  In this study, high levels of corn-based 

WDGS in finishing diets supported higher oxidation of strip loin and top blade steaks. 
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OBJECTIVE COLOR 

Meat redness values (a*) are presented in figures 2a, 2b, and 2c for strip loin, 

tenderloin, and top blade steaks, respectively. Strip loin steaks from steers fed 15 and 

30% WDGS were less red (lower a* values) when compared to 0% (P < 0.05) after 7d of 

display. For tenderloin steaks, lower a* values were observed on day 3 and 5 of retail 

display for beef from cattle fed 15 and 30% WDGS. For top blades, steaks from animals 

fed 30% were less red throughout the display time than steaks from cattle fed 0%WDGS. 

Roeber et al. (2005) reported that finishing diets including distillers grains at high 

rates (40 to 50% - DM basis) may negatively affect color stability of strip loin steaks, 

although low to moderate levels (10 to 25%) could be included in the diet with no 

detrimental effects. Data from the present study showed that levels up to 15% may 

influence color stability after 7 d of retail display for strip loin steaks (Figure 2a). Top 

blade color was compromised when steers were fed 30% WDGS. In the muscle, 

myoglobin is responsible for red color. When myoglobin is oxidized to metmyoglobin, 

detrimental effects on color can be observed (Liu et al., 1996). In addition, myoglobin 

and lipid oxidation are closely correlated (Arnold et al., 1993). Thus, propagation of 

oxidation by PUFA from WDGS appears to reduce color stability during retail display. 

Higher values of a* are associated with desirable visual appearance (Zerby et al., 

1999).  According to Steiner et al. (2001), consumers consider color and discoloration 

when selecting beef products in the display case. Normally, from 2 to 20% of fresh beef 

in U.S. retail stores is discounted or discarded due to loss of desirable color (Sherbeck et 

al., 1995). Compromising color by feeding WDG may increase this percentage. 
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CONCLUSION 

Distillers grains are widely-used as a way of decreasing the cost of beef production. 

However, the inclusion of 30% of WDGS in finishing diets increased PUFA and 

oxidation of beef, resulting in shorter shelf life and economic losses.  
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Table 1. Composition of treatment diets on a dry matter basis.  

 Dietary treatments (%, WDGS) 

Ingredients 0 15 30 

Dry rolled corn 41.25 33.75 26.25 

High moisture corn 41.25 33.75 26.25 

Alfalfa hay 7.5 7.5 7.5 

WDGS - 15 30 

Molasses 5 5 5 

Fine ground corn 1.74 2.97 2.97 

Tallow 0.13 0.13 0.13 

Limestone 1.44 1.5 1.5 

Salt 0.3 0.3 0.3 

Calcium sulfate 0.13 - - 

Beef trace mineral 0.05 0.05 0.05 

Vitamin A, D, E 0.015 0.015 0.015 

Urea 1.15 - - 

Rumensin-80 0.014 0.014 0.014 

Tylan-40 0.008 0.008 0.008 

Thiamine 0.011 0.011 0.011 
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Table 2. WDGS finishing diets effects on marbling and fat content of the ribeye (Longissimus thoracis). 

 Dietary treatmentsa  

Attributes 0 15 30 P-value 

Marbling scoreb Slight93 Small03 Small04 0.46 
Marbling texturec 1.60 1.58 1.52 0.84 
Marbling distributiond 1.29 1.15 1.22 0.40 
Fat, % 5.44 5.91 5.94 0.19 
a Wet distillers grains plus solubles (%, DM basis). 
b Slight = 300 - 399, Small = 400 - 499. 
c Fine = 1, Medium = 2, Coarse = 3. 
d Even = 1, Uneven = 2. 
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Table 3. Weight percentage of fatty acids1 and fat content of ribeye slices (Longissimus thoracis) from steers fed 
wet distillers grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value Linear Quadratic 

14:0 2.94 2.96 2.84 0.50 0.25 0.09 
14:1(n-5) 0.64a 0.63a 0.54b 0.04 0.25 0.09 
15:0 0.51b 0.57a 0.49b 0.02 0.25 <0.01 
iso16:0 0.93 0.90 0.81 0.22 0.43 0.27 
16:0 26.35a 25.83ab 25.12b <0.01 0.29 0.13 
16:1(n-7) 3.50a 3.23b 2.90c <0.01 0.29 0.11 
17:0 1.43b 1.66a 1.43b 0.01 0.15 <0.01 
iso18:0 0.66 0.73 0.64 0.24 0.54 0.01 
17:1(n-7) 1.08ab 1.17a 0.98b 0.03 0.79 <0.01 
18:0 13.76b 14.13b 15.03a 0.02 <0.01 0.33 
18:1t 2.28b 2.61b 3.76a <0.01 <0.01 0.35 
18:1(n-9) 36.14a 34.66b 34.02b <0.01 0.46 0.20 
18:1(n-7) 3.20a 2.77b 2.41c <0.01 0.02 0.13 
18:1∆13t 0.10c 0.51b 0.64a <0.01 <0.01 <0.01 
18:1∆14t 0.49 0.48 0.43 0.06 0.88 0.04 
19:0 0.02 0.01 0.04 0.29 0.21 0.68 
18:2(n-6) 3.27b 4.22a 4.50a <0.01 <0.01 0.04 
20:0 0.005b 0.007b 0.03a 0.02 0.03 0.75 
18:3(n-3) 0.07 0.09 0.06 0.51 0.89 0.09 
20:1(n-9) 0.15 0.16 0.20 0.06 <0.01 0.73 
20:3(n-6) 0.29b 0.33ab 0.35a 0.05 <0.01 <0.01 
20:4(n-6) 1.06 1.02 1.03 0.92 0.25 0.93 
Others 0.93 1.07 1.49 0.06 0.06 0.81 
Total Trans 2.87c 3.61b 4.86a <0.01 <0.01 0.33 
PUFA 4.90b 5.91a 6.23a <0.01 <0.01 0.29 
SFA 46.60 46.79 46.42 0.79 0.72 0.65 
Omega 3 * * * * * * 
Omega 6 4.62b 5.60a 5.86a <0.01 <0.01 0.47 
Omega 6:Omega 3 * * * * * * 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distillers grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
*not estimated. 
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Table 4. Weight percentage of fatty acids1 and fat content of tenderloin steaks (M. Psoas major) from steers fed 
wet distillers grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value Linear Quadratic 

6:0 0.15 0.14 0.15 0.79 0.76 0.40 
10:0 0.03 0.03 0.02 0.90 0.93 0.94 
12:0 0.06 0.04 0.03 0.53 0.27 0.86 
14:0 2.92 2.93 2.69 0.18 0.20 0.27 
14:1(n-5) 0.63ab 0.69a 0.57b 0.05 0.21 0.03 
15:0 0.57 0.61 0.54 0.09 0.38 0.04 
iso16:0 0.66 0.64 0.61 0.79 0.47 0.80 
16:0 26.36a 25.45b 24.62b <0.01 <0.01 0.09 
16:1(n-7) 2.59a 2.53a 2.06b <0.01 <0.01 0.09 
17:0 1.53 1.58 1.45 0.16 0.21 0.15 
iso18:0 0.46 0.51 0.53 0.57 0.41 0.99 
17:1(n-7) 0.98 0.90 0.78 0.10 0.03 0.83 
18:0 15.64 15.46 16.58 0.15 0.12 0.22 
18:1t 1.30 2.09 1.72 0.56 0.57 0.37 
18:1(n-9) 35.31a 34.55a 33.12b <0.01 <0.01 0.56 
18:1(n-7) 1.43a 1.37a 1.26b 0.01 <0.01 0.62 
18:1∆13t 0.17c 0.27b 0.41a <0.01 <0.01 0.20 
18:1∆14t 0.26a 0.28a 0.21b <0.01 0.05 0.01 
19:0 0.10 0.10 0.12 0.15 0.05 0.58 
18:2(n-6) 3.08c 4.07b 4.80a <0.01 <0.01 0.66 
18:2t 0.03 0.04 0.05 0.44 0.20 0.85 
20:0 0.10 0.10 0.12 0.44 0.24 0.96 
18:3(n-3) 0.22 0.23 0.23 0.72 0.54 0.60 
20:1(n-9) 0.51 0.52 0.56 0.06 0.02 0.59 
20:3(n-6) 0.24 0.27 0.27 0.56 0.37 0.80 
20:4(n-6) 0.85 0.80 0.85 0.88 0.94 0.46 
22:4(n-6) 0.15 0.13 0.13 0.41 0.25 0.34 
22:5(n-3) 0.20a 0.17ab 0.15b 0.04 0.01 0.78 
Others 3.40b 3.43b 5.27a 0.05 0.02 0.22 
Total Trans 3.22 4.05 3.66 0.59 0.59 0.52 
PUFA 4.76b 5.80a 6.50a <0.01 <0.01 0.91 
SFA 48.60 47.52 47.44 0.21 0.14 0.51 
Omega 3 0.42 0.41 0.38 0.19 0.07 0.90 
Omega 6 4.34b 5.23a 6.05a <0.01 <0.01 0.92 
Omega6:Omega3 10.09c 12.95b 16.25a <0.01 <0.01 0.71 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distillers grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 5. Weight percentage of fatty acids1 and fat content of top blade steaks (Infraspinatus) from steers fed wet 
distillers grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value linear quadratic 

6:0 0.17 0.18 0.18 0.79 0.87 0.78 
10:0 0.02 0.02 0.03 0.78 0.61 0.34 
12:0 0.02 0.03 0.02 0.37 0.86 0.10 
14:0 2.87 2.88 2.70 0.42 0.29 0.30 
14:1(n-5) 0.63ab 0.70a 0.52b 0.01 0.06 0.02 
15:0 0.50ab 0.56a 0.47b 0.03 0.45 0.01 
iso16:0 0.66 0.66 0.68 0.93 0.84 0.76 
16:0 25.06a 24.26b 23.48b <0.01 0.01 0.97 
16:1(n-7) 3.12a 2.93a 2.46b <0.01 <0.01 0.27 
17:0 1.54ab 1.68a 1.39b 0.05 0.19 0.03 
iso18:0 0.46 0.50 0.57 0.21 0.27 0.70 
17:1(n-7) 1.21a 1.24a 1.00b <0.01 0.01 0.06 
18:0 14.52 14.51 15.37 0.19 0.07 0.35 
18:1t 2.17c 2.79b 4.03a <0.01 <0.01 0.29 
18:1(n-9) 38.46 37.37 36.52 0.06 0.02 0.86 
18:1(n-7) 1.73a 1.58b 1.47b <0.01 <0.01 0.80 
18:1∆13t 0.08c 0.23b 0.37a <0.01 <0.01 0.95 
18:1∆14t 0.38a 0.38a 0.28b <0.01 <0.01 0.08 
19:0 0.05 0.06 0.07 0.41 0.12 0.93 
18:2(n-6) 3.00c 3.96b 4.78a <0.01 <0.01 0.82 
18:2t 0.01 0.00 0.00 0.25 0.52 0.22 
20:0 0.04 0.04 0.07 0.22 0.07 0.60 
18:3(n-3) 0.16 0.16 0.18 0.43 0.98 0.18 
20:1(n-9) 0.45 0.48 0.48 0.32 0.22 0.37 
20:3(n-6) 0.24 0.26 0.29 0.17 0.20 0.88 
20:4(n-6) 0.78 0.73 0.85 0.37 0.83 0.26 
22:4(n-6) 0.18 0.14 0.19 0.33 0.74 0.13 
22:5(n-3) 0.18a 0.12ab 0.10b 0.04 0.01 0.67 
Others 1.43 1.52 1.43 0.87 0.82 0.44 
Total Trans 4.36b 4.98b 6.15a <0.01 <0.01 0.37 
PUFA 4.60b 5.38ab 6.40a <0.01 <0.01 0.81 
SFA 45.98 45.26 45.02 0.44 0.37 0.91 
Omega 3 0.35 0.31 0.28 0.19 0.06 0.97 
Omega 6 4.24c 5.07b 6.10a <0.01 <0.01 0.80 
Omega6:Omega3 12.50b 18.15b 24.65a <0.01 <0.01 0.65 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distillers grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 6. Sensorial attributes1 and Warner-Bratzler shear force (WBSF) of ribeye, tenderloin, and top blade 
from steers fed wet distillers grains plus solubles (WDGS). 

Muscle Attributes Dietary treatments2  

  0 15 30 P-value 

Ribeye (Longissimus lumborum)      

 Tenderness 5.11 5.28 5.42 0.64 

 Connective tissue 4.67 5.05 4.87 0.54 

 Juiciness 5.32a 4.86b 5.52a 0.02 

 Off-flavor 2.62 2.57 2.56 0.84 

 WBSF, kg 3.42 3.45 3.65 0.57 

Tenderloin (Poas major)      

 Tenderness 6.73 6.76 6.55 0.48 

 Connective tissue 6.40 6.54 6.24 0.20 

 Juiciness 5.29 5.26 5.03 0.60 

 Off-flavor 2.56 2.57 2.57 0.98 

 WBSF, kg 2.62 2.77 2.71 0.52 

Top blade (Infraspinatus)      

 Tenderness 6.19 6.45 6.17 0.51 

 Connective tissue 5.20 5.70 5.18 0.12 

 Juiciness 6.05 6.11 6.12 0.97 

 Off-flavor 2.93 3.06 2.84 0.56 

 WBSF, kg 2.95 2.57 2.91 0.06 
1Tenderness (1 - extremely tough, 8 - extremely tender), Connective tissue amount (1 - abundant, 8 - no 
connective tissue), Juiciness (1 - extremely dry, 8 - extremely juicy), Off-flavor intensity (1 - trace amount, 
8 - very extreme). 
2 Wet distillers grains plus solubles (%, DM basis). 
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 7. Least square means of minerals (mg/kg) for strip loin, tenderloin, and top blade steaks from steers 
fed wet distillers grains plus solubles (WDGS) finishing diets. 

Muscle Min.1 Dietary treatments2   

  0 15 30 S.E.3 P-value 

Strip loin (Longissimus lumborum)       

 Ca 268 219 253 26 0.37 

 P 2092 2048 2093 27 0.35 

 K 3586 3480 3576 47 0.18 

 Mg 232 227 230 5 0.77 

 S 2061 2137 2142 94 0.77 

 Na 498 493 487 10 0.69 

 Zn 41 42 40 1 0.40 

 Fe 18 16 17 1.7 0.75 

 Mn 5 3 4 0.9 0.28 

 Cu 1.2 1 1.1 0.09 0.42 

Tenderloin (Poas major)       

 Ca 160 195 213 34 0.51 

 P 2045 2041 2038 28 0.98 

 K 3363 3270 3312 46 0.40 

 Mg 240 241 240 4 0.97 

 S 1890a 1924a 1574b 112 0.05 

 Na 498 474 478 8 0.09 

 Zn 34 36 34 1 0.22 

 Fe 25 22 21 1 0.11 

 Mn 4 2 3 0.7 0.27 

 Cu 1.2 1.4 1.4 0.1 0.50 

Top blade (Infraspinatus)       

 Ca 417 466 364 56 0.44 

 P 1814 1804 1816 19 0.89 

 K 2924 2867 2905 33 0.44 

 Mg 207 209 204 4 0.61 

 S 1780 1689 1797 100 0.70 

 Na 679 656 687 12 0.18 

 Zn 65 69 68 1 0.08 

 Fe 23 23 23 0.8 0.96 

 Mn 4 2 3 1 0.31 

 Cu 1.4 1.4 1.5 0.1 0.52 
1 Minerals quantified 

2 Wet distillers grains plus solubles (%, DM basis). 
3 Standard error 
a,b Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 8. Least square means of TBA values (mg malonaldehyde/kg) for top blade and strip loin steaks from steers fed wet distillers grains 
plus solubles finishing diets. 

  Dietary treatments1   

Muscle day 0 15 30 P-value Effects 

Top blade (Infraspinatus)     <0.01 linear quadratic 

 0 0.68a 0.53a 0.59a  0.50 0.39 
 3 1.43Aa 2.37ABb 3.42Bb  <0.01 0.53 
 7 3.84Ab 5.04Ac 8.42Bc  0.02 0.55 
Strip loin (Longissimus lumborum)     <0.01   
 0 0.58a 0.52a 0.45a  0.43 0.44 
 3 0.65a 1.74a 1.45a  0.12 0.26 
 7 2.02Ab 3.77Bb 4.80Bb  0.02 0.86 
1 Wet distillers grains plus solubles (%, DM basis). 
A,B Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
a,b,c Means in the same column having different superscripts are significant at P ≤ 0.05 level. 
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Figure 1.The relationship between fat% and marbling score for cattle fed varying levels of wet 

distillers grains plus solubles (WDGS). 
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Figure 2. Objective redness (a*) of strip loin (2a), tenderloin (2b), and top blade (2c) steaks from calf-

fed steers fed 0, 15, and 30% WDGS (DM Basis) displayed for 7 d under retail conditions 

2a 

 

 

 

  

0

5

10

15

20

25

30

1 3 4 5 6 7

a
*

days

0 15 30 WDGS 

*

**

* Steaks from steers fed 30% WDGS had significantly (P ≤ 0.05) lower a* values than 0 %.

** Steaks from steers fed 15 and 30% WDGS had significantly (P ≤ 0.05)  lower a* values than 0 %.

std error = 0.83



82 
 

 

  2b. 

 

0

5

10

15

20

25

30

1 3 4 5 6 7

a
*

days

0 15 30 WDGS

**

*

* Steaks from steers fed 30% WDGS had significantly (P ≤ 0.05) lower a* values than 0 %.

** Steaks from steers fed 15 and 30% WDGS had significantly (P ≤ 0.05)  lower a* values than 0%.

**

std error = 0.98



83 
 

 
 

2c. 

 

  

0

5

10

15

20

25

30

1 3 4 5 6 7

a
*

days

0 15 30 WDGS

* **

*
*

* Steaks from steers fed 30% WDGS had significantly (P ≤ 0.05)  lower a* values than 0 and 15%.

std error = 0.83



84 
 

 
 

Running Head: Distillers grains affect beef quality. 

 

FINISHING DIETS CONTAINING WET DISTILLERS GRAINS PLUS SOLUBLES AFFECT BEEF 

QUALITY OF YEARLING STEERS 
1,2. 

 

A.S. Mello, Jr.†3, B.E. Jenschke†, L.S. Senaratne†, T.P. Carr‡, G.E. Erickson†, and C.R. Calkins†4 

 

University of Nebraska, Department of Animal Science† and Department of Nutrition and Health 

Sciences‡, Lincoln, NE 68583-0908 

    

 

1A contribution of the University of Nebraska Agricultural Research Division. 

2This project was funded in part by the Beef Checkoff. 

3CAPES / Fulbright - Brazil. 

4Correspondence: [A213 Animal Science; (Telephone (402) 472-6314; Fax (402) 472-6362)] E-

mail address: ccalkins1@unl.edu (Chris R. Calkins). 

 

Written in the style of Meat Science. 



85 
 

 
 

ABSTRACT 

 The objective of this study was to evaluate the effects of feeding wet distillers grains plus 

solubles (WDGS) on quality attributes of three beef muscles (Longissimus dorsi, Psoas major 

and Infraspinatus). Ninety-six, yearlings crossbred steers were randomly assigned to one of three 

dietary treatments (Corn, 15%, or 30% WDGS - DM basis) and fed for 133 d. No significant 

differences were observed in marbling score (P = 0.89), marbling texture (P = 0.70), and 

marbling distribution (P = 0.36).  Higher levels of PUFA and lower levels of 18:1(n-7) were 

observed in beef from steers fed 30% WDGS when compared to other treatments. Lipid 

oxidation was also higher in beef from steers fed 30% WDGS (P ≤ 0.05). No significant 

differences were observed in sensorial attributes and Warner-Bratzler shear force (WBSF) for all 

muscles (P > 0.05). Feeding WDGS increased PUFA and lipid oxidation which may lead lower 

shelf life. 

Keywords: Beef, distillers grains, fatty acids, sensory traits 
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INTRODUCTION 

 Exponential growth of the American ethanol industry led to increased production of 

distillers grains plus solubles (DGS) in the past few years (Klopfenstein, Erickson, and Bremer, 

2008). In the past decade the number of ethanol plants increased from 50 to 170 elevating 

ethanol production around 500% (Renewable Fuels Association, 2009). Although sorghum and 

wheat are also used in milling processes, corn is the most important grain for the ethanol industry 

(Stein and Shurson, 2009). During dry milling, starch from the grain is fermented to produce 

ethanol. After fermentation, the remaining part is called stillage. Coarser particles are removed 

from this stillage generating wet distillers grains (WDG). The liquid remaining fraction is 

condensed producing a type of syrup called solubles (S). Normally, solubles are added back to 

WDG forming WDGS (Stock, Lewis, Klopfenstein, and Milton, 2000). 

 When compared to corn, distillers grains plus solubles have higher levels of nutrients 

such as proteins, fat, and fiber (Klopfenstein, Erickson and Bremer, 2008). Hence, WDGS have 

been used widely in feedlot finishing diets with levels varying from 10 to 80% dry matter (DM) 

basis. Larson, Stock, Klopfenstein, Sindt, and Huffman (1993) showed a linear increase of 

average daily gain (ADG), feed conversion, hot carcass weight (HCW), and marbling score in 

yearling steers when feeding levels up to 40% WDGS. Vander Pol, Erickson, Klopfenstein, 

Greenquist, and Robb (2006), replacing corn by levels up to 50% WDGS, observed greater feed 

efficiency at all levels of WDGS. Klopfenstein Erickson and Bremer (2008) reviewed data 

obtained from results of 9 experiments conducted at the University of Nebraska and showed that 

feeding WDGS led to greater ADG, gain-to-feed ratio (G:F), and observed a linear increase of 

fat thickness and yield grade when compared with corn. In addition, this feedstuff is cheaper than 

whole grains, which decreases costs of production. Although research showed that feeding DGS 
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results in similar or improved beef cattle performance when compared to corn, few studies 

approached beef quality attributes. In this study we hypothesized that feeding WDGS would alter 

fatty acid composition of beef and consequently lead to changes in lipid stability. The aim of this 

work was to evaluate the effects of finishing diets containing intermediate rates of WDGS (15 

and 30%) on marbling attributes, lipid content, fatty acid profile, sensory attributes, objective 

color and lipid oxidation of beef aged 7 and 42 days. 

MATERIAL AND METHODS 

ANIMALS, DIETS, AND SAMPLE COLLECTION 

 Yearling steers (n = 96) were randomized in three groups, assigned to one of three dietary 

treatments containing 0% WDGS (only corn), 15% WDGS, or 30% WDGS (DM basis), and fed 

for 133 d prior to slaughter. All diets were based on dry rolled corn, high moisture corn, and 

alfalfa hay. Steers in this experiment were implanted once on d 1 with Revelor-S (Intervet Inc.). 

Feeding methods and cattle performance data were reported by Luebbe et al. (2009). 

 Fourty-eight h postmortem, marbling attributes (score, texture, and distribution) were 

evaluated by a United States Department of Agriculture (USDA) beef carcass grading 

supervisor. A 7 mm-thick slice of the ribeye (Longissimus thoracis) was collected at the 12th/13th 

rib region from each carcass to analyze the fatty acid profile. Later, 16 carcasses from each 

treatment (8 USDA Choice and 8 USDA Select) were randomly selected and their short loins 

(IMPS # 174, NAMP, 2007) and shoulder clods (IMPS #114, NAMP, 2007) were vacuum 

packaged and transferred to the University of Nebraska Meat Laboratory. After 7 days of aging 

under 2°C, the longissimus dorsi (LD), and psoas major (PM) were removed from the short loins 

whereas the infraspinatus (INF) was removed from the shoulder clod. Steaks for sensorial, 

proximate, and retail display analysis (lipid oxidation and color) were cut from each muscle. 
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Fatty acid analysis was also performed for PM and INF steaks (n = 16 per treatment). After 

cutting steaks, the remaining portions of LD and INF were re-vacuum packaged and stored under 

refrigeration (2°C) until 42 days of aging. 

 SAMPLE PREPARATION 

 Ribeye slices were trimmed of subcutaneous fat and connective tissue, pulverized with 

liquid nitrogen (- 174°C) using a blender (Waring Commercial, model 51BL32, Torring, CT), 

and stored at -80°C until the fatty acid analysis and proximate analysis could be made. For each 

aging period, 5 steaks were cut from the LD and INF.  The same number of steaks were cut from 

the PM, however, due to muscle size, tenderloin steaks were analyzed only when aged 7 d. 

Steaks were analyzed for fatty acid profile and proximate analysis (except LD, where the ribeye 

slice was tested), and lipid oxidation display day 0, retail display evaluation and lipid oxidation 

display day 7, lipid oxidation display day 3, Warner-Bratzler shear force (WBSF), and sensory 

analysis. For WBSF and sensory analysis, the steaks were immediately vacuum packaged after 

sliced from the PM, LD or INF muscles. Therefore, these steaks were not subjected to retail 

display.  

 PROXIMATE, FATTY ACID PROFILE, AND LIPID OXIDATION ANALYSES 

  Values of moisture and ash (%) were quantified by a LECO Thermogravimetric Analyzer 

(LECO Corporation, model 604-100-400, MI, USA) whereas total fat was determined by ether 

extraction using the Soxhlet procedure (AOAC, 1990).  

 Fatty acid profile of the three muscles was identified following methodologies of Folch, 

Lees, and Stanley (1957), Morrison and Smith (1964), and Metcalfe, Schmitz, and Pelka (1966). 

Lipids were extracted using chloroform and ether and converted to fatty acid methyl esters prior 

to Gas Chromatography analysis (Hewlett-Packard Gas Chromatograph - Agilent Technologies, 
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model 6890 series, CA, USA). Individual fatty acids were separated using a capillary column 

[Chrompack CP-Sil 88 (0.25 mm x 100 m)] and identified through retention time according to 

known standards. Temperature of the oven was set to increase from 140 to 220°C at 2°C/min and 

be held at 220°C for 20 min. Simultaneously, injector and detector temperatures were maintained 

at 270 and 300°C, respectively, whereas compounds were carried by Helium at a flow rate of 30 

mL/min. 

 For lipid oxidation, the protocol of Buege and Aust (1978), modified by Ahn, Olsen, 

Chen, Wu, and Lee (1998) was used to perform Thiobarbituric Acid Assay (TBA). The modified 

protocol consisted of mixing 5 g of powdered sample with 14 ml of demineralized / deionized 

water and 1 ml of Butylatedhydroxianisole (BHA), homogenizing for 15 s, centrifuging at 2000 

rpm for 5 min, transferring 1 ml of the homogenate to a 15 ml conical tube, vortexing after 

adding the 2-Thiobarbituric Acid / Trichloroacetic Acid (TBA/TCA), incubating at 70°C for 30 

min, centrifuging at 2000 rpm for 15 min, transferring aliquots of 200 µl from tubes to a well 

plate, and reading absorbance at 540 nm (Dynatech microplate reader - Dynex Technologies, 

model MR 5000, VA, USA) . Lipid oxidation (TBA values) was expressed as malonaldehyde 

concentration (mg/kg) and the quantification was realized comparing samples to standards 

absorbance. 

RETAIL DISPLAY 

 A simulated retail display was performed in two retail cases (Tyler Refrigeration 

Corporation, model LNSC5, MI, USA) set at 2 ±1°C. Over 7 d, samples were randomly re-

allocated in the case to be exposed uniformly to uncontrolled temperature variations that usually 

occurs in commercial cases. Three sets of 3 fluorescent light bulbs  (Phillips, Inc., model 
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F32T8/TL850 ALTO, NJ, USA) were used for each display case providing 100 to 150 ft candles 

with intensity lightning varying from 1000 to 1800 lx. 

 OBJECTIVE COLOR AND SURFACE DISCOLORATION 

 Objective color was measured for L* (psychometric lightness; black = 0, white = 100), a* 

(red = positive values; green = negative values) and b* (yellow = positive values; blue = negative 

values) using a HunterLab colorimeter (Miniscan XE Plus - Hunter Associates Laboratory, Inc., 

model 45/0-LAV, VA, U.S.A.). Every day before measuring, the colorimeter was calibrated 

according to the manufacturer instructions using a black and a white ceramic template. Area of 

measurement of the equipment was 35 mm diameter and the illuminant and standard observer 

were set at D65 and 10° respectively. Surface discoloration was evaluated by trained panelists (n 

= 5) using a hedonic scale from 1 (0% discolored) to 11 (91 - 100% discolored). Measures for all 

color attributes (L*, a*, and b*) and discoloration were taken during 7 consecutive days. For 

objective color, readings were averaged from three different locations on each steak. 

SENSORIAL ANALYSIS AND OBJECTIVE TENDERNESS 

 Cooking procedures for sensorial and WBSF (kg) analyses consisted of thawing steaks 

for 24 h at 5°C and grilling to 70°C. During cooking, steaks were flipped after reached 35°C at 

the geometric center and grilled until temperature reached 70°C. A seven-member panel was 

screened, selected, and trained (Meilgaard, Civille, and Carr, 1991) to evaluate tenderness (1 = 

extremely tough to 8 = extremely tender), connective tissue amount (1 = abundant amount to 8 = 

no connective tissue), juiciness (1 = extremely dry to 8 = extremely juicy), and off-flavor 

intensity (1 = extremely off-flavor to 8 = no off-flavor) on 8-point hedonic scales. Visual 

differences of samples were avoided through serving panelists under a red fluorescent light. 

Additionally, unsalted crackers and double distilled deionized water were available to the 

panelists to cleanse their palates between the samples. For WBSF, after cooking, steaks were 
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cooled for 1 h at 4°C and at least 6 cores (1.27 cm in diameter) were removed from each steak 

with a drill press parallel to muscle fiber orientation. Cores were sheared (Instron Universal 

Testing Machine - Instron Corp., model 55R1123, MA, USA) with a Warner-Bratzler blade 

where the crosshead speed was 250 mm/min with a 500 kg load cell. 

 STATISTICAL ANALYSIS 

 Data from this experiment were analyzed using the SAS® 9.2 package, SAS Institute, 

Inc., USA. Lipid oxidation was analyzed as a split-split-plot design where dietary treatment was 

the whole plot, aging the split plot and day the split-split-plot. Color data were analyzed as a split 

plot with repeated measures where dietary treatment was the whole, aging the split, and day the 

repeated measure. For repeated measures, the smallest Akaike and Bayesian information criteria 

(AIC and BIC, respectively) indicated best model fitting when the compound symmetry 

covariance matrix was used. Additionally, to determine the correct degrees of freedom for the 

estimates, the Kenward-Rogers approximation method was used. Color panelists were 

considered a random effect when analyzing subjective discoloration.  For sensory evaluation, a 

split plot design was used. Fixed effects of dietary treatment and aging were the whole and split 

plots respectively, and panelist was considered a random effect. For fatty acids, a completely 

(CRD) randomized design with a 3 x 2 factorial (3 dietary treatments and 2 USDA grades) was 

used.  Marbling and proximate analysis were analyzed as a completely CRD where dietary 

treatment was the main effect. Linear and quadratic relationships were detected by response 

curves. Data were analyzed using the GLIMMIX procedure and when significance (P ≤ 0.05) 

was indicated by ANOVA, means separations were performed using the LSMEANS and DIFF 

functions. 
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RESULTS 

 MARBLING ATTRIBUTES MOISTURE, ASH, AND FAT CONTENT 

 Feeding WDGS did not alter any marbling attribute (Table 1). Klopfenstein, Erickson and 

Bremer (2008) reported improved carcass traits when adding WDGS levels from 10 to 50% in 

finishing diets. In the present study, levels up to 30% did not affect marbling, ash, moisture, and 

fat content of any tested muscle (P ≤ 0.05). Positive linear relationships between marbling and 

fat content of the ribeye were detected for all dietary treatments where the determination 

coefficients ranged from 29 to 41% and feeding WDGS did not affect the relationship between 

marbling and intramuscular fat content (Figure 1). Slopes were statistically similar at P = 0.99. 

 FATTY ACIDS 

 Feeding 15% WDGS led to lower proportions of iso 16:0 and iso 18:0 in LD when 

compared to 0 and 30% (Table 2). Additionally, a slight increase of 18:0 proportion was detected 

in PM (Table 3).  Regarding other fatty acids, feeding WDGS linearly increased 18:1t, 18:2(n-6), 

total trans, PUFA, Omega 6, and Omega6:Omega3 in all muscles (P ≤ 0.03). The increase of 

these fatty acids may be explained by the concentration of corn oil in the final byproduct 

compared to the initial grain caused by milling process (Klopfenstein Erickson and Bremer, 

2008). After lipolysis and hydrogenation, lipid reaching the duodenum consists of fatty acids 

from dietary and microbial origins (Jenkins 1992). Vander Pol, Luebbe, Crawford, Erickson and 

Klopfenstein (2009) showed greater proportions of 18:1t, 18:1(n-9) and 18:2(n-6) reaching the 

duodenum in WDGS fed cattle when compared to corn fed. During lipid hydrogenation most of 

the unsaturated fats are saturated by rumen bacteria (Jenkins, 1992). Therefore, predominant 

unsaturated fats from WDGS may be protected from rumen transformation (Klopfenstein, 

Erickson and Bremer, 2008) leading to greater deposition of some unsaturated and 

polyunsaturated fatty acids in the muscle when compared to corn diets.  Conversely, as WDGS 
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levels increased, proportions of  16:1 (n-7), 17:1 (n-7), and 18:1(n-7) fatty acids linearly 

decreased in all muscles (P < 0.01). The reason of this decrease is still unknown. Posssibly, high 

fat digestibility may alter the ruminal bacteria’s ability of reducing cis n-7 fatty as well as 

mechanisms of absorption and transportation of these fatty acids from the small intestine to the 

muscle. Increased proportions of Omega 6 fatty acids and Omega 6:Omega 3 in beef from steers 

WDGS agrees with Gill, Van Overbeke, Depenbusch,  Drouillard, and  DiCostanzo (2008), who 

observed similar results comparing distillers grains and steamed-flake corn diets. Additionally, it 

seems that corn-based distillers grains affect the fatty acid profile of beef differently when 

compared to wheat-based distillers grains. Shand, McKinnon and Christensen (1998) did not 

observe any effect on fatty acid profile of beef when feeding wheat-based distillers grains and 

wet brewers grains compared to corn. This may be because corn-based WDGS are higher in fat 

than wheat-based WDGS. The present research clearly demonstrates that feeding levels up to 

30% significantly alters the fatty acid profile of all three muscles (LD, PM, and INF). 

 LIPID OXIDATION 

  For LD, significant interactions (P < 0.01) between day of display and aging, and dietary 

treatment and day of display were observed (Figure 2). Likewise, an interaction between aging 

and day of display and the single effect of dietary treatment (P < 0.01) were detected in INF 

(Figure 3). Due to its size, PM was only aged for 7 days and a significant interaction between 

dietary treatment and day of display was observed (Figure 4). For LD and INF, 42 day-aged 

steaks had higher oxidation when compared to 7 days-steaks (P < 0.01). When aging is extended, 

endogenous enzymes may increase the effects of residual oxidants such as free radicals, iron 

ions, and reactive oxygen species for increased oxidation of beef (Liu, Lanari and Schaefer, 

1995). Regarding dietary treatment, this research shows that feeding WDGS linearly increases 

proportions of PUFA in the lean. These fatty acids are easier oxidized when compared to 
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unsaturated fatty acids due to the weakness of their double bonds (Zhang, Shi and Shi, 2007). 

Because of this increase in PUFA, LD and INF steaks from steers fed 30% WDGS had greater 

oxidation than steaks from steers fed only corn (Figs. 2 and 3). The same results were observed 

for PM steaks from 30% WDGS fed-steers on days 3 and 7 of display (P < 0.01). Jakobsen and 

Bertelsen (2000) reported that lipid oxidation cause rancid off-flavor and limit beef shelf life. 

Thus, feeding WDGS may play an important role in determining final flavor and fresh color of 

beef. 

SENSORY ANALYSIS AND WBSF 

 Interactions and single effect P values of all muscles are presented in the Table 5. No 

effects of dietary treatment, quality grade, and their interaction were observed in LD. Aging 

significantly (P < 0.01) improved tenderness, increasing taste panel scores (5.03 and 5.79 for 7 

and 42 d, respectively) and decreasing WBSF values (4.02 and 3.41 for 7 and 42 d, respectively). 

Extended aging also decreased (P < 0.01) connective tissue amount (4.65 and 5.51 for 7 and 42 

d, respectively) and beef juiciness ratings (5.13 and 4.54 for 7 and 42 d, respectively). Parrish, 

Rust, Popenhagen and Miner (1969) concluded that juiciness is not affected by aging period. In 

this project, a slight, but significant decrease in juiciness in LD was observed. For INF, a three-

way interaction was observed for subjective tenderness (P = 0.04) and an interaction between 

dietary treatment and quality grade (P = 0.05) was detected for juiciness. Although interactions  

between dietary treatment and quality grade occurred, no specific trends were observed. Values 

of tenderness based on the three-way interaction varied from 4.7 to 6.2 with no distinct pattern 

for dietary treatment or grade. However, tenderness ratings were greater and WBSF values were 

lower in 42 d-aged steaks as well as ratings for connective tissue amount (P < 0.01) compared to 

7-d aged steaks.  
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In this study, feeding WDGS increased PUFA and decreased 18:1(n-7) fatty acids. 

Calkins and Hodgen (2007) reported that PUFA are positively correlated and 18:1(n-7) is 

negatively correlated to off-flavors. Thus, higher off flavor intensity ratings in samples from 

steers fed 30% WDGS were anticipated. However, all steaks that were sensory evaluated were 

not subjected to retail display, which minimizes lipid oxidation. In this study, the inclusion of 

30% of WDGS decreased off-flavor intensity (P = 0.02) in INF steaks (3.74, 3.62, and 3.46 for 0, 

15, and 30% WDGS, respectively).  

In this study, aging beef for 42 d resulted in higher oxidation when compared to 7 d 

aging. This caused greater off-flavor intensity in 42 d-aged INF steaks when compared to 7 d. 

Regarding PM, USDA Choice grade steaks were significantly (P < 0.01) more tender (6.63 and 

6.19 for USDA Choice and USDA Select, respectively), had lower scores of connective tissue 

amount (6.13 and 5.83 for USDA Choice and USDA Select, respectively), and lower WBSF 

values (2.15 and 2.76 for USDA Choice and USDA Select, respectively). Gruber, Tatum, 

Scanga, Chapman, Smith and Belk (2006) also observed lower values of WBSF in USDA 

Choice grade PM compared to USDA select grade. Likewise, Jones and Tatum (1994) showed a 

positive correlation between marbling and muscle fiber tenderness. Conversely, Wheeler, 

Shackelford, and Koohmaraie (1999) showed similar tenderness comparing top USDA Choice 

and low USDA Select Longissimus thoracis aged 14 d. In our study, USDA Choice grade PM 

steaks had the most desirable values of tenderness and shear force when compared to USDA 

Select. Overall, feeding WDGS did not alter sensory attributes of muscles when steaks were not 

subjected to retail display. Results of this study showed that oxidation increased when steaks 

were displayed for 7 d and Calkins and Buford (2005) reported that steaks displayed for 3 d had 

greater off-flavor intensity and less flavor preference when compared to 1-d displayed steaks. 
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Therefore, if steaks used in this experiment had been subjected to retail display, results of 

sensory evaluation may have been different due to greater oxidation. 

 COLOR  

 Dietary treatment and USDA quality grade did not affect PM objective color (P ≥ 0.05). 

However, an expected main effect of display day affected beef color. Smith, Morgan, Sofos and 

Tatum (1996) reported that the estimated retail case life of PM is 1 day. In this study, L* and a* 

started dropping after the first day of display. Regarding the surface discoloration, there was a 

three way interaction among dietary treatment, quality grade, and day (Figure 5). On day 4, 

USDA Choice and USDA Select PM steaks from steers fed 30% WDGS as well as USDA Select 

steaks from cattle fed 15% WDGS had greater discoloration than other steaks. During day 5 and 

6, USDA Choice steaks from cattle fed 30% had the greatest discoloration compared to others. 

At the conclusion of the display period, the same steaks that hadgreater discoloration at day 4 

had the greatest discoloration at day 7. It has been known that when beef is stored under normal 

atmosphere (permeable film) there is a positive relationship between lipid oxidation and color 

pigment oxidation (Arnold, Arp, Scheller, Williams and Schaefer, 1993). As we noted 

previously, time influenced lipid oxidation, with TBA values increasing during the display 

period. Extended display time increases beef exposure to oxidants. Oxidative radicals are interact 

with each other increasing oxidation. Thus, detrimental effects on color may be observed as 

oxidation occurs. Feeding WDGS led to higher PUFA when compared to corn. This likely 

contributed to the greater discoloration of USDA Choice-grade steaks from steers fed 30 and 

15% WDGS and USDA Select grade-steaks from steers fed 30% WDGS. 

For INF, an interaction between aging and day of display (P < 0.01) was observed in all 

objective color attributes. Aged 42 d-steaks had lower lightness (L*) and redness (a*) values 
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than steaks aged 7 d. Feeding 15% WDGS led to greater b* values when compared to 0%. 

(11.60b, 12.51a, and 12.00ab for 0, 15, and 30% WDGS respectively). Also, there was an 

interaction among dietary treatment, aging, and display day for discoloration (P < 0.01) (Figure 

6).  The INF steaks, aged 42 d had greater discoloration than 7 d-aged steaks from day 2 to day 5 

of the display period.  After this period, similar discoloration patterns were observed in all 

steaks. 

 For LD, results of main effects and interactions on objective color and subjective 

discoloration are presented in Table 6. For L*, interactions among grade, day, and aging, and 

among dietary treatment, grade, and aging were observed (P = 0.01). For a* and b*, four way 

interactions among all main effects were observed. In most of cases, four way interactions are 

difficult to interpret, but in this case, aging and day were significant when compared to dietary 

treatment, which was not individually significant. Thus, it appears that effects of day and aging 

on lower values of a* are greater than effects of grade and dietary treatment. Similar interactions 

were observed when analyzing surface discoloration. For this attribute all individual factors 

showed significance or trend values (P = 0.03, 0.07, < 0.01, and < 0.01 for dietary treatment, 

grade, day, and aging respectively). Therefore, regarding surface discoloration, levels up to 30% 

of WDGS represent a risk to color stability and surface discoloration. Roeber, Gill and 

DiCostanzo (2005) reported that moderate levels of WDGS (10 to 25% WDGS) could be added 

into finishing diets without causing any problems on color stability. In our study, levels from 15 

to 30% led to greater surface discoloration in beef when compared to corn. 

CONCLUSION 

 Feeding levels up to 30% of WDGS to steers during the finishing period did not alter 

proximate composition and marbling. When steaks were not subjected to retail display, feeding 
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WDGS did not alter attributes. However, inclusion of WDGS increased trans fatty acids and 

PUFA. The increase of PUFA resulted in higher oxidation of beef during retail display and 

higher surface discoloration. Future research related to the use of anti-oxidants to minimize lipid 

oxidation of beef from animals fed WDGS should be conducted. 
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Table 1. WDGS finishing diets effects on marbling and fat content of the ribeye (Longissimus thoracis). 

 Dietary treatmentsa  Effectsb 

Attributes 0 15 30 P-value Linear quadratic 

Marbling scoreb Small20 Small22 Small30 0.89 0.86 0.90 
Marbling texturec 1.67 1.87 1.77 0.70 0.72 0.91 
Marbling distributiond 1.17 1.08 1.07 0.36 0.61 0.34 
Fat, % 5.00 6.22 5.73 0.22 0.63 0.41 
a Wet distiller’s grains plus solubles (%, DM basis). 
b Linear and quadratic response to WDGS level.  
cSmall = 400 - 499. 
d Fine = 1, Medium = 2, Coarse = 3. 
e Even = 1, Uneven = 2. 
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Table 2. Weight percentage of fatty acids1 and fat content of striploin steaks (Longissimus thoracis) from steers fed 
wet distiller’s grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value Linear Quadratic 

6:0 0.02 0.02 0.03 0.46 0.34 0.93 
10:0 0.02 0.03 0.02 0.33 0.15 0.96 
12:0 0.03 0.04 0.04 0.88 0.53 0.50 
14:0 2.75 2.75 2.77 0.99 0.82 0.79 
14:1(n-5) 0.74 0.67 0.68 0.41 0.09 0.40 
15:0 0.52 0.54 0.50 0.52 0.07 0.23 
iso16:0 0.68a 0.56b 0.65a 0.05 0.98 0.36 
16:0 24.14 24.08 24.33 0.81 0.72 0.98 
16:1(n-7) 3.46a 2.97b 2.81b <0.01 <0.01 0.13 
17:0 1.47 1.60 1.43 0.10 0.12 0.03 
iso18:0 0.44ab 0.37b 0.50a 0.04 0.16 0.05 
17:1(n-7) 1.26a 1.21a 1.03b <0.01 <0.01 0.14 
18:0 13.02 13.64 13.28 0.44 0.99 0.47 
18:1t 3.15b 4.38a 4.90a <0.01 <0.01 0.54 
18:1(n-9) 36.89 37.82 36.35 0.46 0.09 0.49 
18:1(n-7) 1.83a 1.56b 1.44c <0.01 <0.01 0.12 
19:0 0.1 0.1 0.1 0.79 0.53 0.73 
18:2(n-6) 2.19c 3.25b 4.15a <0.01 <0.01 0.58 
18:2t 0.02 0.04 0.04 0.24 0.37 0.61 
20:0 0.09 0.10 0.13 0.13 0.18 0.53 
18:3(n-3) 0.25 0.24 0.26 0.49 0.17 0.71 
20:1(n-9) 0.51 0.53 0.50 0.82 0.98 0.49 
20:3(n-6) 0.28 0.25 0.29 0.30 0.14 0.25 
20:4(n-6) 0.82 0.82 0.68 0.16 0.80 0.15 
22:4(n-6) 0.17a 0.07b 0.09ab 0.04 0.29 0.27 
22:5(n-3) 0.29a 0.23b 0.26ab 0.05 0.29 0.16 
Others 4.62a 2.06b 2.34b 0.02 0.37 0.30 
Total Trans 3.17b 4.43a 4.94a <0.01 <0.01 0.53 
PUFA 4.23b 4.91b 6.15a <0.01 <0.01 0.60 
SFA 43.30 43.86 43.79 0.63 0.81 0.59 
Omega 3 0.62 0.52 0.55 0.21 0.19 0.44 
Omega 6 3.81c 4.53b 5.71a <0.01 <0.01 0.69 
Omega6:Omega3 6.52c 9.04b 10.89a <0.01 <0.01 0.89 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distiller’s grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 3. Weight percentage of fatty acids1 and fat content of top blade steaks (Infraspinatus) from steers fed wet 
distiller’s grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value Linear Quadratic 

6:0 0.08 0.08 0.08 0.67 0.63 0.44 
10:0 0.04 0.05 0.03 0.60 0.69 0.36 
12:0 0.05 0.04 0.04 0.60 0.42 0.54 
14:0 2.53 2.46 2.54 0.74 0.90 0.44 
14:1(n-5) 0.71 0.60 0.62 0.16 0.14 0.23 
15:0 0.49 0.48 0.47 0.90 0.64 0.96 
iso16:0 0.69 0.68 0.58 0.40 0.23 0.55 
16:0 22.17 22.21 22.64 0.42 0.24 0.55 
16:1(n-7) 3.26a 2.94b 2.69b <0.01 <0.01 0.84 
17:0 1.56 1.62 1.51 0.63 0.72 0.37 
iso18:0 0.47 0.48 0.54 0.55 0.30 0.73 
17:1(n-7) 1.42a 1.33a 1.04b 0.02 <0.01 0.36 
18:0 13.43 13.79 13.25 0.73 0.81 0.46 
18:1t 2.96b 3.41b 4.86a <0.01 <0.01 0.08 
18:1(n-9) 40.72a 39.68a 37.57b 0.003 <0.01 0.46 
18:1(n-7) 2.11a 1.93b 1.67c <0.01 <0.01 0.39 
19:0 0.04 0.05 0.06 0.28 0.11 0.98 
18:2(n-6) 2.76c 3.63b 4.43a <0.01 <0.01 0.91 
18:2t 0.10 0.09 0.10 0.14 0.36 0.08 
20:0 0.07 0.07 0.08 0.76 0.57 0.64 
18:3(n-3) 0.20 0.21 0.21 0.23 0.09 0.92 
20:1(n-9) 0.57 0.54 0.60 0.08 0.32 0.04 
20:3(n-6) 0.25 0.28 0.28 0.65 0.47 0.55 
20:4(n-6) 0.75 0.79 0.79 0.89 0.69 0.80 
22:4(n-6) 0.14 0.15 0.12 0.23 0.47 0.90 
22:5(n-3) 0.25 0.24 0.24 0.76 0.54 0.86 
Others 2.22 2.06 2.90 0.29 0.80 0.66 
Total Trans 5.12b 5.37b 6.41a <0.01 <0.01 0.08 
PUFA 4.37b 5.33ab 6.09a <0.01 <0.01 0.81 
SFA 41.63 42.04 41.90 0.88 <0.01 0.81 
Omega 3 0.45 0.45 0.45 0.99 0.98 0.95 
Omega 6 3.91b 4.84a 5.62a <0.01 <0.01 0.84 
Omega6:Omega3 8.59c 10.61b 12.74a <0.01 <0.01 0.94 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distiller’s grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 4. Weight percentage of fatty acids1 and fat content of tenderloin steaks (Poas major) from steers fed wet 
distiller’s grains plus solubles (WDGS) finishing diets. 

 Dietary treatments2  Effects3 

Fatty acid 0 15 30 P-value Linear Quadratic 

6:0 0.10 0.10 0.11 0.58 0.56 0.39 
10:0 0.04 0.03 0.04 0.22 0.99 0.08 
12:0 0.05 0.04 0.05 0.36 0.52 0.20 
14:0 2.77 2.66 2.57 0.34 0.14 0.95 
14:1(n-5) 0.69a 0.59ab 0.55b 0.03 <0.01 0.65 
15:0 0.55 0.53 0.52 0.70 0.44 0.76 
iso16:0 0.70 0.65 0.69 0.83 0.94 0.54 
16:0 23.99 23.79 23.66 0.65 0.36 0.90 
16:1(n-7) 2.86a 2.46b 2.15c <0.01 <0.01 0.68 
17:0 1.58 1.65 1.52 0.40 0.52 0.23 
iso18:0 0.51 0.49 0.58 0.32 0.26 0.31 
17:1(n-7) 1.22a 1.12a 0.92b <0.01 <0.01 0.46 
18:0 14.57b 15.24ab 15.56a 0.03 0.01 0.57 
18:1t 3.37c 4.28b 5.23a 0.03 <0.01 0.72 
18:1(n-9) 37.27a 35.98a 33.69b <0.01 <0.01 0.46 
18:1(n-7) 1.76a 1.57b 1.41c <0.01 <0.01 0.83 
19:0 0.03 0.04 0.05 0.24 0.12 0.53 
18:2(n-6) 3.04c 3.84b 5.05a <0.01 <0.01 0.38 
18:2t 0.10 0.10 0.11 0.31 0.46 0.18 
20:0 0.10 0.11 0.11 0.21 0.09 0.59 
18:3(n-3) 0.23b 0.25b 0.28a <0.01 <0.01 0.44 
20:1(n-9) 0.51 0.53 0.54 0.49 0.25 0.75 
20:3(n-6) 0.28 0.28 0.30 0.67 0.43 0.65 
20:4(n-6) 0.88 0.85 0.98 0.53 0.42 0.44 
22:4(n-6) 0.12 0.12 0.11 0.32 0.13 0.87 
22:5(n-3) 0.28 0.25 0.28 0.56 0.83 0.30 
Others 2.34b 2.44b 2.78a 0.02 <0.01 0.35 
Total Trans 5.26b 5.94b 6.75a <0.01 <0.01 0.84 
PUFA 4.95b 5.68b 7.11a <0.01 <0.01 0.33 
SFA 46.20 46.43 46.39 0.90 0.72 0.77 
Omega 3 0.61 0.57 0.61 0.60 0.96 0.31 
Omega 6 4.33b 5.08b 6.43a <0.01 <0.01 0.37 
Omega6:Omega3 7.23c 8.98b 10.70a <0.01 <0.01 0.96 
1 Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2 Wet distiller’s grains plus solubles (%, DM basis). 
3Linear and quadratic response to WDGS level.  
a,b,c Means in the same row having different superscripts are significant at P ≤ 0.05 level. 
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Table 5. Interactions and main effect P- values of dietary treatments1 (T), USDA quality grade2 (G), and aging time3 (A) on sensorial attributes and Warner-

Bratzler shear force (WBSF) of LD (Longissimus dorsi),  INF (Infraspinatus), and  PM (Psoas major) from steers fed wet distillers grains plus solubles 

(WDGS). 

Muscle Attributes Interactions and single effects 

  T G T*G A T*A G*A T*G*A 

Longissimus dorsi         

 Tenderness 0.87 0.22 0.59 <0.01 0.45 0.90 0.38 

 Connective tissue 0.84 0.16 0.80 <0.01 0.34 0.98 0.40 

 Juiciness 0.37 0.15 0.09 <0.01 0.87 0.23 0.84 

 Off-flavor 0.90 0.81 0.68 0.11 0.99 0.73 0.71 

 WBSF, kg 0.22 0.17 0.89 <0.01 0.39 0.87 0.41 

         

Infraspinatus         

 Tenderness 0.64 0.92 0.93 <0.01 0.98 0.45 0.04 

 Connective tissue 0.30 0.67 0.71 <0.01 0.58 0.17 0.13 

 Juiciness 0.28 0.17 0.05 0.11 0.66 0.37 0.74 

 Off-flavor 0.02 0.99 0.33 <0.01 0.09 0.55 0.48 

 WBSF, kg 0.71 0.47 0.80 <0.01 0.47 0.26 0.49 

         

Psoas major         

 Tenderness 0.69 <0.01 0.39 NA NA NA NA 

 Connective tissue 0.51 0.04 0.34 NA NA NA NA 

 Juiciness 0.57 0.51 0.86 NA NA NA NA 

 Off-flavor 0.55 0.85 0.86 NA NA NA NA 

 WBSF, kg 0.39 0.04 0.36 NA NA NA NA 
10,15, and 30% Wet distillers grains plus solubles (DM basis). 
2Choice and Select. 
37 and 42 days. 

NA - Not applicable. 
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Table 6. Interactions and main effect P- values of dietary treatments1 (T), USDA quality grade2 (G), aging time3 (A), and retail display day4 (D) on objective 
color (L*, a*, and b*) and surface discoloration of LD from steers fed wet distillers grains plus solubles (WDGS). 

 Interactions and single effects 

 T G T*G D T*D G*D T*G*D A T*A G*A T*G*A D*A T*D*A G*D*A T*G*D*A 

L* 0.18 0.03 0.12 <0.01 0.38 0.72 0.97 0.04 0.13 0.22 0.01 <0.01 0.76 0.01 0.06 
a* 0.24 0.27 0.06 <0.01 0.45 <0.01 0.13 <0.01 0.90 0.06 0.88 <0.01 0.87 0.59 0.05 
b* 0.61 0.91 0.65 <0.01 0.28 0.52 0.75 <0.01 0.31 <0.01 0.20 <0.01 0.01 0.04 <0.01 
Discoloration 0.03 0.07 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.17 0.32 0.73 <0.01 0.01 0.16 <0.01 
10,15, and 30% wet distillers grains plus solubles (DM basis). 
2Choice and Select. 
37 and 42 days. 
47 days of display. 
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Figure 1.The relationship between fat% and marbling score for cattle fed varying levels of wet distillers grains plus 

solubles (WDGS). 
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Figure 2. TBA values (mg malonaldehyde/kg) for strip loin steaks (LD) from steers fed wet distillers grains plus 

solubles finishing diets.
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Figure 3. TBA values (mg malonaldehyde/kg) for top blade steaks (INF) from steers fed wet distillers grains plus 

solubles finishing diets.
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Figure 4. TBA values (mg malonaldehyde/kg) for tenderloin steaks (PM) from steers fed wet distillers grains plus 

solubles finishing diets.
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Figure 5. Dicoloration values (%) of USDA choice and select psoas major (PM) from steers fed wet distillers grains 

plus solubles (%) finishing diets.
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Figure 6. Dicoloration values (%) of aged 7 and 42 d infraspinatus (INF) from steers fed wet distillers grains plus 

solubles (%) finishing diets.
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Running Head: Modified wet distillers grains increases PUFA in beef. 
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ABSTRACT 

Wet distillers grains contain approximately 65% moisture.  A partially dried product 

(Modified Distillers Grains plus Solubles; MDGS) contains about 50% moisture. However, both 

have similar nutrient composition on a dry matter basis. The objective of this study was to 

investigate the effects of finishing diets varying in concentration of MDGS on marbling 

attributes, proximate composition, and fatty acid profile of beef. Yearling steers (n = 268) were 

randomly allotted to 36 pens which were assigned randomly to 0, 10, 20, 30, 40 and 50% MDGS 

(DM basis) and fed for 176 d prior harvest. Forty-eight h postmortem marbling score, marbling 

texture, and marbling distribution were assessed by a USDA grader and one ribeye slice 

(longissimus thoracis) 7 mm thick was collected from each carcass for proximate and fatty acid 

analysis. Treatments did not significantly alter marbling score or marbling distribution (P ≤ 

0.05). USDA Choice slices had greater marbling texture when compared to USDA Select. 

Although dietary treatment affected marbling texture no consistent pattern was evident. Diets did 

not influence fat content, moisture or ash of the ribeye (P ≥ 0.05). For treatments 0, 10, 30, 40 

and 50% there were linear relationships between marbling score and fat percentage in the ribeye 

(P ≤ 0.05) and all slopes were similar (P = 0.45). Feeding MDGS linearly increased stearic, 

linoelaidic, linoleic, linolenic, PUFA and ω 6 fatty acids. As levels of MDGS increased, linear 

decreases were observed in all ω 7 fatty acids and cubic relationships were detected for 

eicosenoic, elaidic and total trans fatty acids. No effects were observed on saturated fatty acids 

containing 6 to 14 carbons. Feeding MDGS resulted in increased PUFA, trans, and Omega 6 

fatty acids, minimal effects on marbling texture, and no effects on the relationship of marbling to 

intramuscular fat content relationship. 

Key words: beef, modified distillers grains, fatty acids, marbling.
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INRODUCTION 

 Over the last 10 years a significant increase in ethanol production has occurred, from 2.1 

billion gallons in 2002 to 9 billion in 2008 (Renewable Fuels Association, 2009). Consequently, 

a greater supply of distillers byproduct has been available for cattle feeding. During milling, 

starch is removed from the grain and hydrolyzed to dextrin by an α - amylase enzyme. Dextrin is 

converted in sugar, dextrose, by a glucoamylase enzyme, and yeast species such as 

Saccharomyces cerevisiae convert dextrose into ethanol and CO2 (Davis, 2001). After 

fermentation, the whole stillage is centrifuged and coarser particles generate wet distillers grains 

(WDG) or dried distillers grains (DDG). When drying, the coarser fraction usually passes 

through a rotary dryer. The liquid remaining fraction is condensed, producing solubles (S). The 

solubles may be added back to WDG or DDG to form WDGS or DDGS, respectively (Stock et 

al., 2000). Modified distillers grains plus solubles (MDGS), are obtained through partial drying 

until achieving moisture levels of 50 to 54%.  

 The final concentration of protein and fat are increased in ethanol byproducts 

(Klopfenstein et al., 2007). Research conducted at the University of Nebraska has shown that 

feeding WDGS or DDGS combined with corn improves growth, reproduction, carcass traits, and 

cattle performance (Lodge et al., 1997; Martin et al., 2007; and Corrigan et al., 2009). However, 

little research has been conducted to quantify the effects of feeding MDGS on beef quality. 

Vander Pol et al. (2009) suggested that some fat in distillers grains may be protected from rumen 

biohydrogenation, which may increase the concentration of unsaturated fatty acid at the 

duodenum. These fatty acids may be absorbed and later deposited in the lean. Therefore, the aim 

of this work was to determine the effects of feeding MDGS on the fatty acid profile of beef. 
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MATERIAL AND METHODS 

 ANIMALS, DIETS, AND SAMPLE COLLECTION 

 Yearling (n = 268) Angus crossbred steers were randomly allocated to 36 pens, which 

were assigned randomly to six treatments (Table 1) containing high-moisture, dry-rolled corn, 

and different levels of MDGS (0, 10, 20, 30, 40, or 50% MDGS - DM basis). Steers were fed 

176 d prior to slaughter and transferred to a commercial abattoir. Fourty-eight h postmortem, 

marbling attributes (score, texture, and distribution) were evaluated by a USDA beef carcass 

grading supervisor. After grading, a 7 mm-thick slice of the LM was collected at the 12th/13th rib 

region from each carcass to analyze the fatty acid profile and proximate composition.  Ribeye 

slices were transferred under refrigeration to the University of Nebraska Meat Laboratory 

trimmed of subcutaneous fat and connective tissue, vaccum packaged and stored at -35°C. Prior 

to both analyses, samples were pulverized with liquid nitrogen (- 174°C) using a blender 

(Waring Commercial, model 51BL32, Torring, CT), and stored at -80°C until the fatty acid 

analysis and proximate analysis could be completed.  

PROXIMATE AND FATTY ACID ANALYSES 

  Fatty acid profile were analized according to  Folch et al. (1957), Morrison and Smith 

(1964), and Metcalfe et al. (1966). Fatty acids were isolated from the lipid portion of the lean. 

One gram of pulverized sample was weighed out in a 40 mL conical tube and 5 mL of 2:1 

chlorofrom:methanol (v/v) was added. The sample was homogenized for 5 s and allowed to 

stand for 1 h at room temperature.  The homogenate was filtered through filter paper (Whatman 

#2) into a 13 x 150 mm screw tube, the final volume was brought to 10 mL with 

chlorofrom:methanol, and then homogenized for 5 s with 2 mL of 0.74% KCl. Samples were 

centrifuged at 1000 x g for 5 min, the top layer phase was aspirated, and tubes were dried under 

nitrogen at 60°C. After drying, samples were homogenized for 5 s with 0.5 mL of 0.5 M NaOH 



117 
 

 
 

in methanol and heated for 5 min at 100°C. Following heating, 0.5 mL of BF3 in 14% methanol 

was added into the tubes which were homogenized for 5 s and reheated at 100°C. Samples were 

homogenized with saturated salt solution and 1 mL of hexane for 5 s and centrifuged at 1000 x g 

for 5 min. After centrifuging, an aliquot of the top layer containing the fatty acid methyl esters 

was transferred to vials which were purged and capped with nitrogen prior to Gas 

Chromatography analysis (Hewlett-Packard Gas Chromatograph - Agilent Technologies, model 

6890 series, CA, USA). Individual fatty acids were separated using a capillary column 

[Chrompack CP-Sil 88 (0,25 mm x 100 m)] and identified through retention time according to 

known standards. Temperature of the oven was set to increase from 140 to 220°C at 2°C/min and 

held at 220°C for 20 min. Simultaneously, injector and detector temperatures were maintained at 

270 and 300°C, respectively, and compounds were carried by He at a flow rate of 30 mL/min. 

Values of moisture and ash (%) were quantified by a LECO Thermogravimetric Analyzer 

(LECO Corporation, model 604-100-400, MI, USA). Moisture analysis was performed on 

Nitrogen atmosphere where the ramp rate was set at 6 d/m, ramp time at 17 min, start 

temperature at 25°C, and end temperature at 130°C. Ash analysis was performed on Oxygen 

atmosphere where the ramp rate was set at 20 d/m, ramp time at 30 min, start temperature at 

130°C and end temperature at 600°C. For both moisture and ash analyses, flow rate, hold time, 

constant weight and constant weight time were set at high, 0 min, 0.05% and 9 min respectively. 

The crucible density was set at 3 and sample density at 1. Fat content was determined by ether 

extraction using the Soxhlet procedure (AOAC, 1990). Two grams of powdered samples were 

weighed out in a filter paper (Whatman #2) envelope and lipids were extracted using ether as the 

solvent. 
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Marbling, fatty acids and proximate analysis were analyzed as a complete randomized 

design where dietary treatment was the main effect. Linear and quadratic relationships were 

detected by response curves. Linear relationships between marbling and fat content were 

analyzed using the REG procedure and data were analyzed using the GLIMMIX procedure of 

SAS® (Version 9.2, Cary, N.C., 2007). When significance (P ≤ 0.05) was indicated by ANOVA, 

means separations were performed using the LSMEANS and DIFF functions. 

RESULTS AND DISCUSSION 

MARBLING ATTRIBUTES AND PROXIMATE VALUES 

Dietary treatments did not alter marbling score, marbling distribution, fat or ash(Table 2). 

A quadratic relationship was detected for moisture content. For marbling texture, there was a 

significant interaction between dietary treatment and USDA grade (P = 0.02).  Carcasses graded 

USDA Choice had significantly coarser marbling texture than USDA Select carcasses from 

steers fed  0, 10, 20, 40, and 50% MDGS. Regarding treatments, although a significant 

interaction was observed, there was no consistent pattern to indicate an optimum level of MDGS 

for marbling texture. Statistically, the individual P value of dietary treatment was 0.35 whereas 

for grade was < 0.01. Thus, it appears that feeding MDGS had minimal effects on marbling 

texture due to its individual high P value. Except for 20% MDGS, all treatments showed 

significant linear relationships between marbling score and fat content (P ≤ 0.05) (Table 3) and 

the test of common slopes revealed that all of them were similar (0.45) (Figure 1).  

As described previously, MDGS is very low in starch. When feeding grain, more 

propionate is produced in the rumen. The propionate can be converted to glucose and is 

correlated to marbling deposition (Smith and Crouse, 1984). Feedstuffs that are low in starch and 

contain more fiber are used in the rumen to yield more acetate, which is a precursor for 
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subcutaneous fat deposition (Smith and Crouse, 1984).  Modified wet distillers grains plus 

solubles contain more protein, fat, and fiber compared to corn (Klopfenstein et al., 2007). 

Therefore, we would expect significant differences in marbling through feeding MDGS. 

However, this study showed that levels up to 50% did not alter marbling attributes. Similar 

results were observed by Larson et al. (1993) and Lodge et al. (1997) when feeding wet distillers 

grains regarding quality grade. Vander Pol et al. (2009) showed that feeding distillers grains 

stimulated greater propionate production in the rumen than corn. They attribute this effect to the 

soluble. Corrigan et al. (2009) also showed that the inclusion of 40% of WDGS in diets 

containing dry rolled corn, high moisture corn, and steam-flaked corn led to higher levels of 

propionate and a lower acetate:propionate ratio in the rumen when compared to diets with no 

addition of WDGS. Additionally, Russell (1998) showed that disitillers byproducts may change 

the ruminal pH, which influence the ratio of acetate:propionate.  

Klopfenstein et al. (2008), summarizing different experiments, showed quadratic 

responses of ADG, G:F, and DMI as levels of WDGS increased in feedlot diets. Likewise, our 

experiment showed a quadratic relationship for fat content with optimal levels varying from 20 

to 40%. Feeding levels above 45% may compromise HCW and ribeye area (Depenbush et al., 

2009). It seems that optimal levels of distillers grains in diets vary from 20 to 40%. 

 FATTY ACIDS 

 Individual fatty acid proportions are presented in Table 4. Feeding MDGS did not affect 

proportions of hexanoic (6:0), decanoic (10:0), lauric (12:0), myristic (14:0), isostearic (iso 

18:0), homogamma linolenic (20:3, ω 6) and arachidonic (20:4, ω 6) fatty acids. 

 As levels of MDGS increased, a linear decrease of myristoleic (14:1, ω 5), pentadecanoic 

(15:0), palmitic (16:0), heptadecanoic (17:0), oleic (18:1, ω 9), and docosapentaenoic (22:5, ω 3)  
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was observed (Table 4). Similar pattern was observed in all ω 7 fatty acids. On the other hand, a 

linear increase in stearic (18:0), elaidic (18:1 trans), linoleic (18:2, ω 6), linolenic (18:3, ω 3), 

nonadecanoic (19:0), and eicosanoic (20:0) was observed as levels of MDGS increased in the 

diets. Similarly, CLA 18:2, cis 9, trans 11 increased linearly in the muscle as diets contained 

higher levels of byproduct. 

 Values of isopalmitic (iso 16:0) differed among the treatments (P < 0.01) and a quadratic 

trend was observed as MDGS levels increased (P = 0.09). For linoelaidic (18:2 trans), a 

quadratic relationship was detected due to a slight decrease of this fatty acid in beef from animals 

fed 50% MDGS. Although there was no difference among the treatments for CLA 18:2, trans 10, 

cis 12, a quadratic response in order of the increase of MDGS were observed.  Looking at total 

trans proportions, a cubic relationship was highly significant. However a quadratic response 

explained better the responses of total trans fatty acids to MDGS. Cubic relationships were 

observed for eicosenoic (20:1, ω 9), and total SFA, however, treatments did not statistically 

differ in SFA. As levels of MDGS increased, proportions of PUFA and ω 6 fatty acids linearly 

increased. No effects of dietary treatment were observed in proportions of ω 3 fatty acids. 

 Lipids are biohydrogenated  in the rumen by microbial lipases produced by bacteria 

releasing the fatty acids (Jenkins, 1993). Likely, the effects of MDGS inclusion in finishing diets 

on fatty acids proportions in this work are due to the greater amount of fatty acids from this 

feedstuff that are  biohydrogenated in the rumen (Vander Pol et al., 2009). It has been known that 

fatty acids reaching the duodenum are originated directly from diets and microbial 

transformation (Jenkins et al. 2008). After lipid hydrolyzation, unsaturated fatty acids are 

converted to SFA through isomerization forming trans fatty acids intermediates including CLAs, 

which have their double bonds hydrogenated (Harfoot and Hazlewood, 1988). This explains the 
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higher levels of total trans fatty acids in beef from animals fed 30 to 50% MDGS since the 

conversion of the linoleic at the beginning of the hydrogenation may be increased due to high 

digestibility of MDGS fat when compared to other fat sources. Additionally, Chin et al. (1992) 

affirmed that one of the most important CLA sources is lipid from ruminants. However in this 

work, very small proportions of CLA were found in the muscle. This is due to sample 

preparation which removed all subcutaneous fat.  Jiang et al. (2010) showed that CLAs are found 

in greater proportions in subcutaneous than intramuscular fat, therefore, lower values of CLAs in 

samples containing only lean tissue would be expected. As discussed previously, the fat 

digestibility of this feedstuff is higher than corn, generating larger proportions of intermediates 

such as the CLA 18:2, cis 9, trans 11 during biohydrogenation. French et al. (2000) showed that 

the absorption of CLA from the gastrointestinal tract and amount of linoleic acid at the 

duodenum may affect the CLA absorption through changing the growth and activity of 

Butyrivibrio fibrisolvenses. This would explain a linear increase of this fatty acid in beef from 

animals fed 50% MDGS. Additionally, beef from cattle fed high fiber has higher CLA 

concentration when compared to corn (French et al., 2000). This is in agreement with feeding 

MDGS, which contain more fiber than corn. Linoleic and linolenic acids are the main UFA in 

ruminat diets (Woods and Fearon, 2009). During biohydrogenation, Wood et al. (1963) observed 

that after 48 h in the rumen, linoleic acid is converted to stearic (46%), oleic or elaidic (33 to 

50%), and 3 to 6% remained as linoleic. Additionally, Ward et al. (1964) reported that linolenic 

acid is rapidly hydrogenated in the rumen environment, generating linoleic, oleic and stearic 

acids. They reported that 93% of all intermediate linoleic acid is converted to stearic and a small 

accumulation of elaidic acid can be found. In this work, all these three fatty acids increased 

linearly in lean tissue as levels of MDGS increased indicating that this conversion was optimized 
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by feeding higher levels of MDGS. Vander Pol et al. (2009) found higher proportions of elaidic, 

oleic, and linoleic reaching the duodenum in WDGS fed cattle when compared to corn fed. The 

absorption of these fatty acids depends of the surface area of bile salt micelles, which may be 

enhanced by the presence of unsaturated fatty acids (Zinn et al., 2000). This explains the linear 

increase in PUFA, ω 6, and ω 6: ω 3 ratio as levels of MDGS increased in finishing diets. Lock 

et al. (2005) affirmed that the digestibility of fatty acids decreases as chain length and number of 

double bonds increase. In the present study, a linear decrease of docosapentaenoic acid was 

observed as MDGS levels increased.  

 Regarding the ω 7 fatty acids, it appears that the higher digestibility of MDGS fat when 

compared to corn may have altered the biohydrogenation pathways decreasing the ability of the 

rumen bacteria to reduce these fatty acids. Consequently, the absorption and transportation of 

these fatty acids from the small intestine to the lean did not occur to the same extent as when 

animals are corn-fed. 

 Results and trends presented in this study regarding decanoic, lauric, myristic, 

pentadecanoic, palmitoleic, heptadecanoic, linoleic, CLA 18:2, cis 9, trans 11, total PUFA, and 

ω 6: ω 3 ratio are similar to results presented by Depenbush et al. (2009). Additionally, similar 

results regarding ω 6 and omega 6:omega 3 were found by Gill et al. (2008) when comparing 

distillers grains to steam-flaked corn. Apparently, corn based distillers grains affect the fatty acid 

profile of beef differently compared to wheat-based distillers grains. Shand et al. (1998) found no 

effect on fatty acid profile in beef when feeding wheat-based distillers grains and wet brewers 

grains compared to corn, possibly due to the lower fat concentration of wheat (27%) when 

compared to corn (47%). 
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 Higher levels of PUFA may imply that beef from cattle fed MDGS has an improved fatty 

acid profile from a human nutritional perspective. Woods and Fearon (2009) reported that 

unsaturated fatty acids may reduce risks of cardiovascular diseases, some cancers, asthma, and 

diabetes. However, PUFA are more easily oxidized than saturated fatty acids due to their double 

bonds, which are weaker than single bonds (Zhang et al., 2007). Lipid oxidation in beef stored or 

displayed under presence of O2 is linearly correlated to color pigment oxidation (Arnold et al., 

1993). Lipid and pigment oxidation may be increased by extended display periods, which limits 

the shelf life due detrimental effects on beef color (Houben et al., 2000).  Higher lipid oxidation 

may also compromise beef flavor due to the increase of rancid off-flavor (Jakobsen and 

Bertelsen, 2000). 

 A increase of total trans fatty acids in beef from animals fed higher levels of MDGS was 

observed in this study. Grundy (1994) and Semma (2002) presented results where trans fatty 

acids and palmitic acid increased the low density lipoprotein (LDL) cholesterol and decreased 

the high density lipoprotein (HDL) cholesterol in human blood. Gould et al. (1998) showed that 

LDL cholesterol may harm human health through the development of arthrosclerosis and 

subsequent coronary heart disease. However, Wahle et al. (2004) presented a series of studies 

reporting health benefits of CLAs such as anti-cancer, anti-atherosclerosis, anti-inflammatory, 

and anti-obesity properties, as well as capacity of enhancing antibody formation. In the present 

study, a linear increase of CLA 18:2, cis 9, trans 11 and a decrease of palmitic acids was 

observed as MDGS increased in the diets which improved the nutritional content of beef from a 

fat perspective. The increase of stearic acid in beef as MDGS increased in the diets does not 

represent a potential risk for human health since this fatty acid does not or minimally affects total 

cholesterol (Kris-Etherton et al., 1993; Judd et al., 2002). 
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 The decrease of cis vaccenic has known importance for human health (Burdge and 

Wooton, 2002). However, Jenschke et al. (2007), showed that there is a negative relationship 

between beef liver off-flavor and levels of cis vaccenic. Therefore, lower levels of this fatty acid 

may affect beef palatability. 

 In this study we observed higher proportion of ω 6 fatty acids, and ω 6: ω3 ratio in beef 

from steers fed MDGS when compared to beef from corn-fed cattle. Simopoulos (2002) 

suggested that elevated levels of these fatty acids and elevated ratio may cause cardiovascular 

disease, cancer, inflammatory and autoimmune diseases. This could be minimized by higher 

levels of ω 3, but no changes in these fatty acids were observed. 

CONCLUSION 

 Feeding MDGS increased PUFA, CLA 18:2, cis 9, trans 11  total trans, ω 6 fatty acids, ω 

6: ω 3 ratio and decreased palmitic acid in beef. Athough the increase of PUFA may decrease 

lipid stability in meat, the change in fatty acid profile caused by feeding MDGS does not 

represent a risk to human health. 
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Table 1. Dietary treatments composition (%DM basis). 

 Treatments (% MDGS) 

Ingredients 0 10 20 30 40 50 

Dry rolled corn 41.25 38.75 33.75 28.75 23.75 18.75 
High moisture corn 41.25 38.75 33.75 28.75 23.75 18.75 
MDGS 0 10 20 30 40 50 
Alfalfa 7.5 7.5 7.5 7.5 7.5 7.5 
Molasses 5 0 0 0 0 0 
Mineral and vitamin supplement 5 5 5 5 5 5 



 
 

 
 

1
3
1 

Table 2. Marbling attributes and proximate values of ribeye slices (Longissiumus thoracis) from steers fed modified distillers grains plus solubles 

(MDGS, %). 

 Dietary treatments (%MDGS – DM basis) S.E.M.
1
 P - value Contrasts

2
 

Attributes and prox. values 0 10 20 30 40 50   Linear Quadratic Cubic 

Marbling score3 Slight93 Slight93 Small02 Small01 Slight95 Slight93 6.09 0.76 0.13 0.14 0.93 
Marbling distribution4 1.12 1.20 1.13 1.17 1.22 1.21 0.06 0.71 0.12 0.83 0.76 
Marbling texture5 Choice 1.74Aa 1.65Aa 1.67Aa 1.42B 1.91Aa 1.44Ba 0.09 0.02* 0.41 0.91 0.14 
Marbling texture5 Select 1.11b 1.23b 1.18b 1.24 1.08b 1.15b 0.09 0.02* 0.75 0.37 0.36 
Fat, % 7.43 7.95 8.68 8.61 8.11 8.03 0.39 0.18 0.67 0.02 0.65 
Moisture, % 71.58 71.09 70.52 70.38 70.91 71.19 0.30 0.06 0.74 <0.01 0.95 
Ash, % 1.72 1.67 1.85 1.79 1.67 1.56 0.11 0.57 0.50 0.19 0.48 
1Standard error of the mean. 
2Linear, quadratic, and cubic responses to MDGS level. 
3Slight = 300, and Small = 400. 
4Even = 1, Uneven = 2. 
5Fine =1, Medium = 2, Coarse = 3. 
A,BMeans in the same row having different superscripts are significant at P = 0.02 within marbling texture. 
a,bMeans in the same column having different superscripts are significant at P = 0.02 within marbling texture. 
*P - value for the interaction between dietary treatment and USDA quality grade. 
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Table 3. Linear relationships between marbling and fat content (%) ribeye slices (Longissiumus thoracis) 

from steers fed modified distillers grains plus solubles (MDGS, %). 

Treatments (% MDGS, DM basis) Marbling equations P - value R
2
 

0 306.47 + 12.49 fat <0.01 0.18 
10 258.48 + 17.01 fat <0.01 0.30 
20 348.57 + 8.39 fat 0.10 0.07 
30 310.60 + 9.51 fat <0.01 0.19 
40 293.00 + 12.26 fat <0.01 0.21 
50 326.45 + 6.86 fat 0.04 0.10 
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Table 4. Weight percentage of fatty acids
1
 of ribeye slices (Longissimus thoracis) from steers fed modified distillers grains plus solubles (MDGS, %). 

 Dietary treatments (%MDGS – DM basis) S.E.M.
2
 P- value Contrasts

3
 

Fatty Acid 0 10 20 30 40 50   Linear Quadratic Cubic 

6:0 - hexanoic 0.22 0.22 0.18 0.20 0.20 0.21 0.02 0.48 0.95 0.34 0.84 
10:0 - decanoic 0.005 0.01 0.01 0.02 0.02 0.01 0.004 0.15 0.16 0.26 0.99 
12:0 - lauric 0.02 0.02 0.02 0.03 0.03 0.02 0.006 0.84 0.73 0.87 0.32 
14:0 - myristic 3.34 3.36 3.25 3.21 3.20 3.15 0.07 0.18 <0.01 0.99 0.83 
14:1(ω 5) - myristoleic 0.93a 0.83b 0.77bc 0.77bc 0.75bc 0.71c 0.03 <0.01 <0.01 0.04 0.19 
15:0 - pentadecanoic 0.55ab 0.57a 0.54ab 0.51bc 0.52bc 0.49c 0.01 <0.01 <0.01 0.64 0.37 
iso16:0 - isopalmitic 0.54ab 0.55a 0.42c 0.44bc 0.43c 0.49abc 0.04 <0.01 0.22 0.09 0.42 
16:0 - palmitic 26.00a 25.46b 25.15b 24.38c 24.39c 24.45c 0.18 <0.01 <0.01 0.02 0.27 
16:1(ω 7) - palmitoleic 3.37a 3.12b 2.82c 2.76cd 2.56de 2.45e 0.07 <0.01 <0.01 0.07 0.58 
17:0 - heptadecanoic 1.45a 1.48a 1.44a 1.29b 1.28b 1.25b 0.03 <0.01 <0.01 0.30 0.01 
17:1(ω 7) - heptadecenoic 1.16a 1.10a 0.98b 0.89c 0.82dc 0.78d 0.02 <0.01 <0.01 0.28 0.31 
Iso18:0 - isostearic 0.30 0.34 0.29 0.32 0.32 0.35 0.02 0.46 0.06 0.55 0.45 
18:0 - stearic 12.55d 13.44c 13.92cb 14.21b 14.34b 15.10a 0.25 <0.01 <0.01 0.31 0.13 
18:1 trans - elaidic 4.43d 4.96d 6.26c 6.61c 8.39a 7.48b 0.30 <0.01 <0.01 0.04 <0.01 
18:1(ω 9) - oleic 36.45a 35.76ab 34.15bc 34.01c 32.76c 32.86c 0.63 <0.01 <0.01 0.25 0.62 
18:1(ω 7) - cis vaccenic 2.33a 1.95b 1.76bc 1.59c 1.59c 1.33d 0.09 <0.01 <0.01 0.12 0.11 
18:2 trans - linoelaidic 0.06c 0.07bc 0.10a 0.11a 0.12a 0.09ab 0.01 <0.01 <0.01 0.01 0.16 
18:2(ω 6) - linoleic 3.13d 3.92c 4.29c 4.85b 5.07b 5.64a 0.15 <0.01 <0.01 0.28 0.33 
CLA 18:2, cis 9, trans 11 0.000c 0.000c 0.004c 0.01c 0.02b 0.04a 0.005 <0.01 <0.01 0.55 0.68 
CLA 18:2, trans 10, cis 12 0.000 0.002 0.003 0.006 0.007 0.004 0.002 0.26 0.03 0.002 0.59 
18:3(ω 3) - linolenic 0.17b 0.19ab 0.20a 0.20ab 0.21a 0.22a 0.01 0.02 <0.01 0.51 0.26 
19:0 - nonadecanoic 0.005b 0.003b 0.02ab 0.03a 0.03a 0.03a 0.006 <0.01 <0.01 0.92 0.56 
20:0 - eicosanoic 0.02b 0.04ab 0.06a 0.05ab 0.06a 0.06a 0.009 0.02 0.02 0.08 0.73 
20:1(ω 9) - eicosenoic 0.50a 0.44b 0.50a 0.52a 0.51a 0.48ab 0.02 0.05 0.62 0.36 0.02 
20:3(ω 6) - homogamma linolenic 0.13 0.13 0.13 0.15 0.13 0.15 0.02 0.74 0.29 0.99 0.82 
20:4(ω 6) - arachidonic 0.53 0.60 0.48 0.50 0.51 0.58 0.04 0.23 0.45 0.16 0.14 
22:5(ω 3) - docosapentaenoic 0.05a 0.04ab 0.02bc 0.02bc 0.01c 0.01c 0.009 <0.01 <0.01 0.10 0.90 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2Standard error of the mean. 
3Linear, quadratic, and cubic responses to MDGS level. 
a,b,c,dMeans in the same row having different superscripts are significant at P ≤ 0.05. 



 
 

 
 

1
3
4
 

Table 5. Weight percentage of fatty acids
1
 groups of ribeye slices (Longissimus thoracis) from steers fed modified distillers grains plus solubles (MDGS, 

%). 

 Dietary treatments (%MDGS – DM basis) S.E.M.
2
 P - value Contrasts

3
 

Fatty Acids 0 10 20 30 40 50   Linear Quadratic Cubic 

SFA 45.02 45.51 45.33 44.71 44.84 45.63 0.31 0.20 0.68 0.47 0.02 
PUFA 4.08d 4.95c 5.24c 5.85b 6.08b 6.71a 0.18 <0.01 <0.01 0.46 0.27 
Total trans 4.49d 5.03d 6.37c 6.73c 8.53a 7.59b 0.30 <0.01 <0.01 0.03 <0.01 
ω 3 0.22 0.23 0.23 0.22 0.23 0.23 0.02 0.99 0.90 0.71 0.36 
ω 6 3.80d 4.65c 4.90c 5.50b 5.72b 6.37a 0.18 <0.01 <0.01 0.55 0.28 
ω 6: ω 3 16.07d 19.20c 21.08bc 22.89ab 23.22ab 25.03a 0.85 <0.01 <0.01 0.06 0.59 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
2Standard error of the mean. 
3Linear, quadratic, and cubic responses to MWDGS level. 
a,b,c,dMeans in the same row having different superscripts are significant at P ≤ 0.05. 
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Figure 1. Relationship between intramuscular fat and marbling score from steers fed modified distillers 

grains plus solubles (MDGS, %).
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ABSTRACT 

The aim of this study was to investigate the fatty acid profile of those muscles from steers 

fed 0 or 40% DM basis Wet distillers grains plus soluble (WDGS) (DM basis) with or without 

500 I.U. of vitamin E (E) /head/d for 100 d prior harvesting. Thirty-two steers were allocated to 4 

treatments: Corn (0% WDGS), Corn (0% WDGS) + E, 40% WDGS, or 40% WDGS + E. After 7 

d of aging, the TER muscle was excised from both shoulder clods (n = 2) and the INF muscle 

was excised randomly from one shoulder clod, right or left (n = 1). Fatty acids were analyzed for 

raw TER and INF, broiled TER and INF, and grilled INF. Feeding WDGS and E did not alter 

intramuscular, moisture, and ash contents for either TER or INF independently of cooking state. 

Raw samples had higher values of moisture and when compared to cooked samples (P ≤ 0.05). 

However, fat content values of raw and cooked INF steaks were similar (P > 0.05). Regarding 

individual fatty acids, no effects of the interaction between dietary treatment and cooking state 

was observed. For TER, cooking effect (P ≤ 0.05) was observed in proportions of iso 16:0, 16:0, 

iso 18:0, 18:0, 18:1(ω 9), 18:1(ω 6), 20:4(ω 6), 22:4(ω 6), 22:5(ω 3), total saturated (SFA), total 

monounsaturated (MUFA), total polyunsaturated (PUFA), ω 6, and ω 3 fatty acids. For INF, 

except ω 3, cooking affected (P ≤ 0.05) the same fatty acids proportions plus 16:1(ω 7), 17:0, 

20:0, 20:3 (ω 6). Feeding WDGS significantly increased (P ≤ 0.05) proportions of PUFA, total 

trans, ω 6, and ω 6: ω 3, and decreased (P ≤ 0.06) proportions of all ω 7 fatty acids in all raw and 

cooked muscles. Raw TER from steers supplemented with E had lower ω 6: ω 3 when compared 

to TER from non-supplemented steers. Feeding WDGS increased total trans and PUFA in TER 

and INF and E supplementation led to lower ω 6:ω 3 in the lean. 

Index terms: Distillers Grains, Fatty Acids, PUFA.  
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INTRODUCTION 

 Some years ago, it has been observed a small price increase in traditional yielding steak 

cuts from beef ribs and loins, and a higher price decrease in chucks, rounds and trimmings (Von 

Seggern et al. 2005). Grueber et al. (2006) showed the Warner-Braztler Shear Force (WBSF) 

values of some muscles from the chuck such as the Teres major (TER) and the Infraspinatus 

(INF) were numerically similar to the muscle Psoas major WBSF values. Von Seggern et al. 

(2005), conducting an extensive work to characterize muscles from the chuck and round 

observed that the TER and the INF had intermediate fat content values (5 - 10 %) and lower 

values of WBSF when compared to other steak cuts, independently if moist or dry cooked. It has 

been showed that beef tenderness is the most important factor for determining steak acceptance 

and fat content essentially contributes to flavor development (Platter et al., 2003; Calkins and 

Hodgen, 2007). Therefore, the TER and the INF, underutilized in the past, were upgraded by the 

beef industry due to their tenderness and fat traits. Consumers then, accepted these cuts as steaks 

instead of roasts, which added value to the beef chuck (Kukowski et al., 2005). 

 However, although those muscles had their popularity increased in restaurants and 

grocery stores, no studies were conducted to analyze their chemical attributes in response of 

animal feeding. According to the USDA (2009), Nebraska, Texas, and Kansas produce 60% of 

beef in the U. S. Nebraska and Kansas are located in the Midwest where including ethanol 

byproducts is a common practice in finishing cattle diets due to the considerable expansion of the 

fuel industry (Gilbery et al., 2006; Martin et al., 2007; Jenschke et al. 2008). Although studies 

showed effects of feeding byproducts on fatty acids profile of beef (de Mello, Jr. et al. 2007; Gill 

et al. 2008; Depenbush et al. 2009), none the studies tested upgraded beef cuts such as TER and 

INF. The objective of this study was to determine the effects of finishing diets containing Wet 



139 
 

 

 
 

Distillers Grains plus Solubles (WDGS) and vitamin E supplementation on proximal 

composition and fatty acid profile of raw and cooked TER and INF.  

MATERIAL AND METHODS 

ANIMALS, DIETS, AND SAMPLE COLLECTION  

 Yearling steers (n = 32, 8 per treatment) were allocated to four dietary treatments 

consisting of Corn, Corn + vitamin E (E), 40% WDGS, or 40% WDGS + E, and fed for 140 d 

prior to slaughter. Vitamin E dose was 500 I.U. /head/d. Corn diet contained 41.25 % of dry 

rolled corn (DRC), 41.25 of high moisture corn (HMC), 7.5 % alfalfa hay, and 5 % of molasses 

(DM basis). The 40% WDGS diet contained 23.625 of DRC, 23.625 of HMC, 40 % of WDGS, 

and 5 % of molasses (DM basis). The remaining ingredients consisted of additives, fine ground 

corn, and other supplements. Forty-eight h postmortem, both shoulder clods (IMPS # 174, 

NAMP, 2007) were transferred to the Loeffel Meat Laboratory at the University of Nebraska and 

aged for 7 d at 5 ± 2°C. Two TER were excised from the shoulder clods (one muscle per clod) 

whereas only one INF was randomly excised from one clod, right or left. All shoulder clods used 

in this experiment were graded as Choice by a USDA grader. Muscles were trimmed of 

subcutaneous fat and epimysial connective tissue, and frozen (-16°C) until cooking and fatty acid 

and proximate analyses could be made.  

COOKING AND SAMPLE PREPARATION  

Due to the size, one whole TER muscle was used raw and the other one was broiled. The 

INF was cut in three steaks which were used raw, broiled and grilled respectively.  

Muscles were thawed to 5°C and cooked until the internal temperature at the geometric 

center of each muscle reached 70°C. Broiling was performed on an electrical oven (Mayatag 

Electrical Schematic FP860-910A, Benton Harbor, MI) where samples were turned over when 
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reached 34°C and removed from the oven when reached 68°C. Grilling was performed on a 

electric grill (Presto Series 0702 griddle, eau Claire, WI) where steaks were flipped after reached 

38°C and cooked until reached 68°C. For both cooking procedures, the final temperature (70°C) 

was reached 5 min after removing from the oven or grill. Raw and cooked samples were 

pulverized with liquid nitrogen (- 174°C) using a blender (Waring Commercial, model 51BL32, 

Torring, CT), and stored at -80°C until the fatty acid analysis and proximate analysis could be 

made. 

FATTY ACID AND PROXIMATE ANALYSES 

  The fatty acid profile was analyzed according to Folch et al. (1957), Morrison and Smith 

(1964), and Metcalfe et al. (1966) isolating fatty acids from the lipid portion of the lean. After 

pulverized one gram of sample was homogenized for 5 s with 5 mL of 2:1 chlorofrom:methanol 

(v/v) and allowed to stand for 1 h at room temperature to extract the lipids. The homogenate was 

filtered through filter paper (Whatman #2) into a 13 x 150 mm tube and the final volume was 

brought to 10 mL with chlorofrom:methanol. The filtered was homogenized for 5 s with 2 mL of 

0.74% KCl and the samples were centrifuged at 1000 x g for 5 min. After centrifuged, the top 

layer phase was aspirated and tubes were dried under nitrogen at 60°C until the 

chlorofrom:methanol could be totally evaporated. After drying, samples were homogenized for 5 

s with 0.5 mL of 0.5 M NaOH in methanol and heated for 5 min at 100°C. After heated, 0.5 mL 

of BF3 in 14% methanol was homogenized for 5 s and reheated at 100°C. Following re-heating, 

samples were homogenized with saturated salt solution and 1 mL of hexane for 5 s and 

centrifuged at 1000 x g for 5 min. Later, an aliquot of the top layer containing the fatty acid 

methyl esters was transferred to vials which were purged and capped with nitrogen and analyzed 

by Gas Chromatography (Hewlett-Packard Gas Chromatograph - Agilent Technologies, model 
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6890 series, CA).  Fatty acids were separated using a capillary column [Chrompack CP-Sil 88 

(0,25 mm x 100 m)] and identified through retention time according to known standards. The 

oven temperature was set to increase from 140 to 220°C at 2°C/min and held at 220°C for 20 

min. The injector and detector temperatures were maintained at 270 and 300°C, respectively, and 

He was the carrier gas at a flow rate of 30 mL/min. 

Regarding proximate values, a LECO Thermogravimetric Analyzer (LECO Corporation, 

model 604-100-400, MI, USA) was used to quantify values of moisture and ash. For moisture, 

the analysis was performed on N atmosphere where the ramp rate was set at 6 d/m, ramp time at 

17 min, start temperature at 25°C, and end temperature at 130°C. For ash analysis, the 

atmosphere was O atmosphere; the ramp rate was set at 20 d/m, ramp time at 30 min where the 

start temperature was 130°C and the end temperature 600°C. For both analyses, flow rate, hold 

time, constant weight and constant weight time were set at high, 0 min, 0.05% and 9 min 

respectively. Crucible and sample density were set at 3 and 1 respectively. For fat content 

analysis, an ether extraction throught the Soxhlet procedure (AOAC, 1990) was performed using 

two grams of powdered samples weighed out in a filter paper (Whatman #2) envelope and lipids 

were extracted using ether as the solvent. 

STATISTICAL ANALYSIS 

 Data from this experiment were analyzed using the SAS® 9.2 package, SAS Institute, 

Inc., USA. For TER, data was analyzed as a split-plot design where dietary treatment was the 

whole plot, and sample state (raw or broiled, one muscle per method) the split-plot. Additionally, 

a 4 x 2 factorial design was used to verify the interaction between dietary treatment and cooking 

method. A similar design was used for INF, however, for the split-plot, the whole muscle was 

divided in three steaks and each one was assigned to one out of three cooking methods (raw, 
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broiling, or grilling). Similarly, a 4 x 3 factorial design was used to verify the interactions. Data 

were analyzed using the GLIMMIX procedure and when significance (P ≤ 0.05) was indicated 

by ANOVA, means separations were performed using the LSMEANS and DIFF functions. 

RESULTS AND DISCUSSION 

PROXIMATE VALUES 

 Feeding WDGS or E supplementation did not alter fat, moisture, and ash content within 

sample state (Table 1). Klopfenstein et al. (2008) showed that WDGS had higher concentration 

of protein, fat and fiber when compared to corn. However, this byproduct is very low in starch, 

which is removed from the grain for ethanol production (Stock et al., 2000). Starch is converted 

to propionate and is associated with marbling deposition (Smith and Crouse, 1984). However, 

feeding WDGS led to similar concentration of propionate in the rumen when compared to corn 

(Vander Pol et al., 2006) and no effects on marbling and fat thickness at the 12th/13th region were 

observed in previous research conducted by Corrigan et al. (2009). In this study, significant 

effect of WDGS and E on fat content was observed neither for TER nor for INF. 

 Regarding sample state, cooked samples from both muscles had lower moisture than raw 

samples. For INF, values of moisture were statistically similar (P ≥ 0.05) when comparing the 

two cooking methods (broiling and grilling).  

FATTY ACIDS 

 Values of fatty acids composition are presented in tables 2, 3, 4, 5, and 6 for raw TER, 

raw INF, broiled TER, broiled INF, and grilled INF, respectively. Independently of the sample 

state, feeding WDGS increased 18:1 trans, 18:1∆14, 18:2(ω 6), 18:3(ω 3), PUFA, total trans, ω 

6, and ω 6 / ω 3. Except for 18:3(ω 6) of broiled TER, where the P value was 0.06 the P values 

of WDGS effect were less or equal than 0.05 for all fatty acids and ω 6 / ω 3 ratio. Small 
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proportions in response of feeding WDGS were observed in 16:1(ω 7), 17:0, 18:1(ω 9), and 

MUFA for all muscles. 

  Feeding WDGS also significantly decreased proportions of all ω 7 fatty acids with 

exception of 18:1(ω 7) in grilled INF. Similar results were observed for MUFA in all muscles 

excepting in broiled TER.  

 This similar shift in fatty acid composition due to feeding WDGS was also observed by 

Depenbush et al (2009) on 17:0, 18:2(ω 6), PUFA, and ω 6 / ω 3, and by Gill et al. (2008) for ω 

6 / ω 3 when comparing beef from animals fed distillers grains with beef from steers fed steam-

flaked corn.  

Vitamin E supplementation effects (P ≤ 0.05) were observed only on 10:0 and 12:0 fatty 

acids in raw and broiled INF. However, proportions of these fatty acids were very small 

comparing to others and it seems that although a significance difference was observed, values 

did not extensively ranged. 

 Distillers by-products such as WDGS have greater fat digestibility when compared to 

whole grains (Vander Pol et al., 2009). Fatty acids found at the duodenum originate from the 

rumen, consisting of fat modified by bacteria activity and fats that by-pass directly from the 

rumen to the duodenum without transformation (Jenkins et al. 2008). In the rumen, unsaturated 

lipids from diets are biohydrogenated to SFA through a series of events which includes the 

isomerization of previous unsaturated cis to trans fatty acids (Harfoot and Hazlewood, 1988). 

According to Vander Pol et al. (2009), feeding WDGS led to greater concentration of 18:1 trans, 

18:1(ω 9), and 18:2(ω 6) in the duodenum. In the duodenum, unsaturated fatty acids also 

enhance the surface area of bile micelles improving the absorption of PUFA (Zinn et al., 2000). 
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Therefore, greater amounts of PUFA and ω 6 fatty acids at the intestinal tract contribute to 

greater deposition of these fatty acids in the muscle due to increased absorption compared to 

corn. This also explains the greater ω 6 / ω 3 in beef from animals fed WDGS when compared to 

corn compared to corn.   

 During biohydrogenation, isomerization also produces CLAs as intermediates of 

saturated fatty acids (Harfoot and Hazlewood, 1988). Therefore, we expected greater proportions 

of CLAs in beef from animals fed WDGS since higher values of 18:1(ω 9) and 18:2 (ω 6), are 

present at the duodenum. Conversely, very small proportions of CLA 18:2 cis 9, trans 11 and 

CLA 18:2 trans 10, cis 12 in the lean were found in this study. This may be due to where CLAs 

are located. CLAs are found in larger proportions in subcutaneous than intramuscular fat (Jiang 

et al. 2010). During sample preparation, subcutaneous fat was trimmed of the lean, which may 

have determined the small proportions of CLAs in this experiment. 

  In raw TER and broiled and grilled INF, proportions of 18:0 were significantly (P ≤ 

0.05) greater in samples from steers fed WDGS. Although not significant, broiled TER and raw 

INF from steers fed WDGS had also numeric higher values of 18:0 than muscles from animals 

fed corn. As previously discussed, feeding WDGS led to greater proportions of unsaturated fatty 

acids when compared to corn. After 48 h in the rumen, 46 % of total 18:1 fatty acid present in the 

rumen is converted to 18:0 (Wood et al., 1963). This explains higher proportions of 18:0 in the 

lean since WDGS supplies higher amounts of 18:1 when feeding to cattle.  

 The reasons of lower proportions of ω 7 fatty acids in beef from animals fed WDGS are 

not clear. Some alteration in the biohydrogenation or absorption may be happened due to the 

high digestibility of WDGS fat.  
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 Regarding beef quality, higher proportions of PUFA lead to higher lipid oxidation due to 

the weakness of their double bonds (Zhang et al., 2007). Lipid oxidation leads to rancid off-

flavor and is linearly correlated to lower color stability when beef is displayed under presence of 

O2 (Arnold et al., 1993; and Jakobsen and Bertelsen, 2000). Additionally, lower levels of 18:1(ω 

7) are associated with liver off-flavor in beef (Jenschke et al., 2007). 

 Although significant changes in PUFA could compromise beef color and flavor, the 

vitamin E supplementation for extended periods applied in this study would provide protection 

of PUFA against oxidants (Lynch et al., 2000). Therefore, no detrimental effects on color and 

flavor would be observed when feeding WDGS and vitamin E. However, vitamin E 

supplementation did not interfere in the increase of PUFA caused by feeding WDGS.  

 Regarding cooking, broiled TER had larger proportions of iso 16:0, 18:1(ω 9), 18:2(ω 6), 

20:4, 22:4, 22:5, MUFA, PUFA and ω 6 fatty acids and lower proportions of 16:0, 18:0 and SFA 

when compared to raw (P ≤ 0.05). For INF, grilled steaks had higher values of iso 16:0, 16:1(ω 

7), iso 18:0, 18:1(ω 9), 18:2(ω 6), 20:3(ω 6), 20:4(ω 6), 22:4(ω 6), 22:5(ω 6), MUFA, PUFA and 

ω 6 fatty acids when compared to raw (P ≤ 0.05). Lower proportions of 16:0, 17:0, 18:0, 20:0 

and SFA were observed in grilled steaks when compared with raw and broiled (P ≤ 0.05).  No 

significant differences were observed between raw and broiled. 

 Results of this study regarding the decrease of 16:0, 18:0, SFA and increase of PUFA and 

are supported by (Sheeder et al., 2001; Ono et al., 1985; Rodriguez-Estrada et al., 1997) which 

studied cooking effects on ground beef. In meat, lipids are located in the membrane (polar 

fraction) and diffused in the lean or other locations (storage fraction) Noci et al. (2005). Changes 

during cooking are more common in the polar fraction where phospholipids containing PUFA 
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are located (Duckett and Wagner, 1998). Jiang et al. (2010) suggested that lower proportions of 

SFA could be observed after cooking due to dripping loss, which contains more triglycerides 

than phospholipids. However, Nayigihugu et al. (2004) did not observe any effect of cooking in 

fatty acid composition of the muscle LD. 

 In this study, it seems that grilling may determine more changes in the fatty acid content 

of INF when compared to broiling. 

CONCLUSION 

Feeding WDGS increased PUFA, total trans, and ω 6 fatty acids of TER and INF. No 

effects of vitamin E supplementation were observed in fatty acids with 14 or more carbons. 

Higher PUFA in raw beef  supports higher lipid oxidation and off-flavor. 

Cooked beef has larger proportions of 18:1(ω 9), 18:2(ω 6), MUFA, PUFA and ω 6 fatty 

acids and lower proportions of 18:0 and SFA when compared to raw (P ≤ 0.05). 
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Table 1. Proximate values of raw and broiled teres major (TER) and raw, broiled, and grilled infraspinatus (INF) 
from steers fed corn and wet distillers grains plus solubles (WDGS) and vitamin E. 

   Dietary treatments (WDGS, vitamin E)2  

Muscle State Composition1 0% no E 0% E 40% no E 40% E P - value 

Teres major        
 Raw       
  Fat 9.52A 8.39A 8.67 8.10 0.90 
  Moisture 72.24C 73.41C 72.56C 73.35C 0.54 
  Ash 1.68 1.64F 1.60 1.53F 0.82 
        
 Broiled       
  Fat 5.95B 7.48B 8.19 8.06 0.09 
  Moisture 66.37D 65.16D 64.71D 64.87D 0.36 

  Ash 1.99 2.16E 1.88 2.12E 0.50 
        
Infraspinatus        
 Raw       
  Fat 13.24 12.31 16.18 13.01 0.40 
  Moisture 68.67a 70.55a 66.94a 70.47a 0.46 
  Ash 1.74e 1.53f 1.65f 1.60e 0.51 
        
 Broiled       
  Fat 14.03 14.89 14.57 13.86 0.92 
  Moisture 61.30b 59.63b 59.39b 61.10b 0.32 
  Ash 2.03de 2.35d 2.33d 2.44d 0.06 
        
 Grilled       
  Fat 13.12 12.65 12.68 12.85 0.98 
  Moisture 59.52b 60.56b 60.67b 59.78b 0.79 
  Ash 2.19d 2.05e 2.02e 1.91e 0.48 
1Proximate values (%). 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.  
A,B Means in the fat content of muscle Teres major having different superscripts are significant at P ≤ 0.05 level 
within cooking state. 
D,C Means in the moisture content of muscle Teres major having different superscripts are significant at P ≤ 0.05 
level within cooking state. 
E,F Means in the ash content of muscle Teres major having different superscripts are significant at P ≤ 0.05 level 
within cooking state. 
a,b Means in the moisture content of muscle Infraspinatus having different superscripts are significant at P ≤ 0.05 
level within cooking state. 
d,e,f Means in the ash content of muscle Infraspinatus having different superscripts are significant at P ≤ 0.05 level 
within cooking state. 
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Table 2. Fatty acid profile of raw teres major (TER) from steers fed WDGS, corn and vitamin E. 

 Treatments (% WDGS (DM basis), Vitamin E)2  Contrasts3 

Fatty acids1 0% no E 0% E 40% no E 40% E P - value 0 vs 40% E vs no E 

10:0 0.01 0.03 0.04 0.02 0.11 0.18 0.95 
12:0 0.27 0.00 0.03 0.02 0.48 0.44 0.34 
14:0 2.53 2.52 2.67 2.70 0.88 0.43 0.92 
14:1(ω 5) 0.68 0.66 0.57 0.60 0.31 0.08 0.82 
15:0 0.50 0.49 0.44 0.46 0.14 0.04 0.98 
Iso 16:0 0.88 0.82 0.73 0.81 0.25 0.14 0.87 
16:0 25.11 24.87 23.95 24.19 0.38 0.10 1.00 
16:1(ω 7) 3.50A 3.00B 2.39C 2.69BC <0.0001 <0.0001 0.44 
17:0 1.33AB 1.46A 1.24B 1.26B 0.05 0.02 0.16 
Iso 18:0 0.68 0.63 0.66 0.70 0.87 0.67 0.92 
17:1(ω 7) 1.34A 1.36A 0.87B 1.00B 0.0005 <0.0001 0.40 
18:0 12.39B 12.91B 14.65A 13.71AB 0.01 0.004 0.66 
18:1 trans 2.35B 2.18B 3.95A 3.79A <0.0001 <0.0001 0.57 
18:1(ω 9) 39.87A 40.00A 36.83B 36.40B 0.0005 <0.0001 0.82 
18:1 (ω 7) 0.70AB 0.81A 0.50C 0.59BC 0.01 0.002 0.12 
18:1∆13 0.06B 0.12B 0.23A 0.14B 0.004 0.005 0.65 
18:1∆14 0.08C 0.12BC 0.19A 0.17AB 0.002 0.0006 0.58 
19:0 0.02 0.00 0.05 0.00 0.09 0.27 0.05 
18:2(ω 6) 3.85B 3.48B 5.88A 5.62A <0.0001 <0.0001 0.34 
18:2 cis 9, trans 11 0 0 0 0 N.EST. N.EST. N.EST. 
18:2 trans 10, cis 12 0 0 0 0 N.EST. N.EST. N.EST. 
20:0 0.03 0.02 0.07 0.04 0.19 0.08 0.25 
18:3(ω 3) 0.16A 0.12B 0.19A 0.19A 0.004 0.0009 0.09 
20:1(ω 9) 0.54 0.50 0.58 0.58 0.33 0.08 0.54 
20:3(ω 6) 0.34 0.30 0.34 0.33 0.74 0.50 0.40 
20:4(ω 6) 1.24 1.20 1.16 1.24 0.90 0.85 0.86 
22:4(ω 6) 0.18 0.21 0.18 0.18 0.59 0.32 0.45 
22:5(ω 3) 0.20 0.19 0.12 0.17 0.31 0.13 0.60 
SFA 43.72 43.74 44.52 43.91 0.90 0.58 0.73 
MUFA 49.11A 48.76A 46.11B 45.95B 0.0096 0.0011 0.75 
PUFA 5.97B 5.49B 7.87A 7.72A 0.0008 <0.0001 0.47 
Total trans 3.19B 3.24B 4.87A 4.69A 0.0003 <0.0001 0.82 
ω 6 5.80B 5.37B 7.68A 7.53A 0.0009 <0.0001 0.50 
ω 3 0.36 0.31 0.31 0.36 0.70 0.98 0.89 
ω 6 / ω 3 18.23 14.80 27.10 22.68 0.13 0.03 0.29 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.   
30 vs 40%, Corn only vs Corn + 40% WDGS; E vs no E, 500 I.U. daily vs no E supplementation. 
A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05. 
N.EST. Not estimated. 
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Table 3. Fatty acid profile of raw infraspinatus (INF) from steers fed WDGS, corn and vitamin E. 

 Treatments (% WDGS (DM basis), Vitamin E)2  Contrasts3 

Fatty acids1 0% no E 0% E 40% no E 40% E P - value 0 vs 40% E vs no E 

10:0 0.04 0.04 0.06 0.04 0.02 0.19 0.03 
12:0 0.05AB 0.05AB 0.06A 0.04B 0.05 0.82 0.02 
14:0 2.94 2.63 2.80 2.73 0.25 0.89 0.08 
14:1(ω 5) 0.75 0.71 0.62 0.64 0.19 0.04 0.88 
15:0 0.55 0.50 0.45 0.47 0.03 0.01 0.60 
Iso 16:0 0.46 0.45 0.47 0.58 0.59 0.37 0.52 
16:0 25.13 24.00 23.32 23.59 0.09 0.04 0.40 
16:1(ω 7) 3.35A 3.00B 2.53C 2.69BC 0.0002 <0.0001 0.42 
17:0 1.47A 1.50A 1.28B 1.28B 0.03 0.003 0.84 
Iso 18:0 0.32 0.30 0.38 0.45 0.28 0.09 0.62 
17:1(ω 7) 1.38A 1.39A 1.00B 0.96B 0.0004 <0.0001 0.77 
18:0 13.60 13.44 14.75 14.10 0.31 0.10 0.45 
18:1 trans 2.27B 2.19B 3.41AB 3.68A 0.05 0.01 0.84 
18:1(ω 9) 40.07 41.30 38.83 38.50 0.13 0.03 0.61 
18:1 (ω 7) 0.86AB 0.94A 0.66C 0.73BC 0.03 0.06 0.28 
18:1∆13 0.19 0.21 0.23 0.21 0.64 0.30 0.87 
18:1∆14 0.17 0.18 0.22 0.20 0.15 0.06 0.80 
19:0 0.07 0.11 0.14 0.14 0.06 0.02 0.25 
18:2(ω 6) 2.68B 2.41B 4.56A 4.77A <0.0001 <0.0001 0.92 
18:2 cis 9, trans 11 0 0 0 0.007 0.45 0.36 0.36 
18:2 trans 10, cis 12 0B 0B 0.034A 0.030A 0.007 0.0007 0.82 
20:0 0.08 0.09 0.09 0.08 0.90 0.81 0.74 
18:3(ω 3) 0.15B 0.14B 0.19A 0.21A <0.0001 <0.0001 0.67 
20:1(ω 9) 0.58 0.67 0.66 0.74 0.29 0.23 0.13 
20:3(ω 6) 0.18 0.17 0.21 0.25 0.07 0.02 0.43 
20:4(ω 6) 0.59 0.58 0.64 0.77 0.39 0.19 0.48 
22:4(ω 6) 0.12 0.13 0.14 0.15 0.74 0.36 0.54 
22:5(ω 3) 0.11 0.12 0.09 0.10 0.67 0.27 0.63 
SFA 44.71 43.13 44.71 43.80 0.63 0.76 0.28 
MUFA 49.62 50.60 48.40 48.11 0.18 0.04 0.47 
PUFA 3.83B 3.55B 5.82A 6.24A <0.0001 <0.0001 0.87 
Total trans 3.50B 3.52B 4.51AB 4.82A 0.07 0.01 0.70 
ω 6 3.41B 3.68B 5.63A 6.03A <0.0001 <0.0001 0.87 
ω 3 0.26 0.25 0.28 0.31 0.24 0.08 0.56 
ω 6 / ω 3 14.24BC 13.55C 20.90A 20.87AB 0.04 0.005 0.88 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.   
30 vs 40%, Corn only vs Corn + 40% WDGS; E vs no E, 500 I.U. daily vs no E supplementation. 
A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05. 
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Table 4. Fatty acid profile of broiled teres major (TER) from steers fed WDGS, corn and vitamin E. 

 Treatments (% WDGS (DM basis), Vitamin E)2  Contrasts3 

Fatty acids1 0% no E 0% E 40% no E 40% E P - value 0 vs 40% E vs no E 

10:0 0.02 0.02 0.04 0.03 0.43 0.18 0.64 
12:0 0.01 0.01 0.04 0.01 0.16 0.22 0.22 
14:0 2.59 2.43 2.52 2.46 0.88 0.92 0.45 
14:1(ω 5) 0.67 0.69 0.60 0.58 0.46 0.12 0.92 
15:0 0.42 0.47 0.42 0.43 0.79 0.61 0.47 
Iso 16:0 1.09 1.00 0.82 0.90 0.08 0.02 0.95 
16:0 24.68A 24.23AB 22.87B 23.09B 0.04 0.005 0.81 
16:1(ω 7) 3.43A 3.22A 2.71B 2.58B 0.0014 0.0002 0.82 
17:0 1.37A 1.30AB 1.16B 1.15B 0.02 0.0025 0.49 
Iso 18:0 0.85 0.77 0.74 0.80 0.72 0.65 0.82 
17:1(ω 7) 1.46A 1.32AB 1.01C 1.10BC 0.004 0.0006 0.17 
18:0 11.98 11.40 12.54 12.33 0.59 0.24 0.52 
18:1 trans 2.06B 2.30B 4.17A 4.23A <0.0001 <0.0001 0.71 
18:1(ω 9) 39.30B 41.74A 38.90B 38.29B 0.02 0.01 0.22 
18:1 (ω 7) 0.73 0.85 0.59 0.57 0.06 0.01 0.51 
18:1∆13 0.14BC 0.09C 0.22A 0.20AB 0.005 0.0009 0.16 
18:1∆14 0.10 0.13 0.19 0.15 0.09 0.03 0.73 
19:0 0.02 0.00 0.05 0.02 0.35 0.17 0.27 
18:2(ω 6) 4.55B 3.84B 6.42A 6.45A <0.0001 <0.0001 0.34 
18:2 cis 9, trans 11 0 0 0 0 N.EST. N.EST. N.EST. 
18:2 trans 10, cis 12 0 0 0 0.02 0.16 0.21 0.21 
20:0 0.02 0.02 0.03 0.05 0.53 0.23 0.59 
18:3(ω 3) 0.14 0.15 0.18 0.20 0.20 0.06 0.40 
20:1(ω 9) 0.53 0.50 0.62 0.61 0.13 0.02 0.74 
20:3(ω 6) 0.38 0.35 0.37 0.38 0.92 0.77 0.66 
20:4(ω 6) 1.49 1.43 1.26 1.40 0.57 0.30 0.74 
22:4(ω 6) 0.25A 0.24AB 0.19B 0.19B 0.03 0.004 0.72 
22:5(ω 3) 0.25A 0.26A 0.14B 0.21A 0.01 0.005 0.12 
SFA 42.98 41.70 41.28 41.22 0.50 0.23 0.50 
MUFA 48.87 50.75 48.87 48.44 0.28 0.28 0.32 
PUFA 7.06B 6.27B 8.57A 8.84A 0.002 0.0004 0.60 
Total trans 3.27B 3.13B 5.16A 5.15A <0.0001 <0.0001 0.73 
ω 6 6.92B 6.11B 8.39A 8.63A 0.004 0.0005 0.58 
ω 3 0.40 0.42 0.32 0.42 0.09 0.24 0.08 
ω 6 / ω 3 18.20B 15.02B 29.63A 20.84B 0.005 0.004 0.04 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.   
30 vs 40%, Corn only vs Corn + 40% WDGS; E vs no E, 500 I.U. daily vs no E supplementation. 
A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05. 
N.EST. Not estimated. 
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Table 5. Fatty acid profile of broiled infraspinatus  (INF) from steers fed WDGS, corn and vitamin E. 

 Treatments (% WDGS (DM basis), Vitamin E)2  Contrasts3 

Fatty acids1 0% no E 0% E 40% no E 40% E P - value 0 vs 40% E vs no E 

10:0 0.04 0.04 0.06 0.05 0.09 0.07 0.11 
12:0 0.06 0.04 0.07 0.05 0.10 0.22 0.04 
14:0 2.90 2.59 2.83 2.82 0.33 0.51 0.17 
14:1( ω 5) 0.69 0.68 0.61 0.61 0.59 0.18 0.86 
15:0 0.49 0.49 0.46 0.48 0.55 0.20 0.70 
Iso 16:0 0.68 0.55 0.51 0.59 0.23 0.26 0.71 
16:0 25.28 24.44 23.65 23.69 0.16 0.04 0.47 
16:1( ω 7) 3.31A 2.97AB 2.49C 2.82BC 0.006 0.003 0.98 
17:0 1.38AB 1.56A 1.30B 1.34B 0.03 0.02 0.08 
Iso 18:0 0.46 0.38 0.42 0.48 0.37 0.48 0.70 
17:1( ω 7) 1.28AB 1.38A 0.96C 1.10BC 0.005 0.001 0.14 
18:0 13.72 13.54 15.08 14.30 0.13 0.04 0.34 
18:1 trans 2.16B 1.95B 3.84A 3.91A <0.0001 <0.0001 0.78 
18:1( ω 9) 39.51AB 41.80A 37.69B 37.76B 0.002 0.0007 0.13 
18:1 ( ω 7) 0.78 0.96 0.71 0.61 0.07 0.03 0.67 
18:1∆13 0.14 0.19 0.23 0.19 0.08 0.04 0.74 
18:1∆14 0.17 0.16 0.22 0.19 0.10 0.04 0.24 
19:0 0.06B 0.05B 0.15A 0.10AB 0.04 0.01 0.31 
18:2( ω 6) 3.05B 2.71B 4.73A 4.70A <0.0001 <0.0001 0.49 
18:2 cis 9, trans 11 0 0 0 0.008 0.52 0.42 0.42 
18:2 trans 10, cis 12 0 0 0.01 0.02 0.25 0.05 0.76 
20:0 0.09 0.07 0.11 0.08 0.22 0.59 0.06 
18:3( ω 3) 0.14B 0.13B 0.19A 0.19A 0.0004 <0.0001 0.48 
20:1( ω 9) 0.47 0.58 0.65 0.66 0.12 0.03 0.32 
20:3( ω 6) 0.22 0.20 0.24 0.25 0.32 0.10 0.64 
20:4( ω 6) 0.82 0.72 0.68 0.78 0.63 0.64 0.99 
22:4( ω 6) 0.17 0.17 0.15 0.15 0.74 0.29 0.97 
22:5( ω 3) 0.16 0.12 0.10 0.12 0.30 0.15 0.67 
SFA 45.16 43.76 44.62 43.96 0.60 0.82 0.19 
MUFA 48.51AB 50.65A 47.40B 47.85B 0.05 0.03 0.14 
PUFA 4.56B 4.05B 6.09A 6.19A 0.0004 <0.0001 0.57 
Total trans 3.25B 3.25B 5.01A 4.90A <0.0001 <0.0001 0.85 
ω 6 4.42B 3.92B 5.90A 6.00A 0.0005 <0.0001 0.58 
ω 3 0.31 0.25 0.29 0.31 0.55 0.59 0.57 
ω 6 / ω 3 14.59 17.27 21.21 20.34 0.07 0.01 0.62 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.   
30 vs 40%, Corn only vs Corn + 40% WDGS; E vs no E, 500 I.U. daily vs no E supplementation. 
A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05. 
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Table 6. Fatty acid profile of grilled infraspinatus  (INF) from steers fed WDGS, corn and vitamin E. 

 Treatments (% WDGS (DM basis), Vitamin E)2  Contrasts3 

Fatty acids1 0% no E 0% E 40% no E 40% E P - value 0 vs 40% E vs no E 

10:0 0.05 0.12 0.06 0.04 0.29 0.25 0.32 
12:0 0.06 0.05 0.07 0.05 0.34 0.79 0.10 
14:0 2.76 2.50 2.67 2.67 0.65 0.77 0.36 
14:1(ω 5) 0.80 0.71 0.66 0.62 0.18 0.07 0.31 
15:0 0.49 0.47 0.42 0.44 0.13 0.03 0.97 
Iso 16:0 0.60 0.71 0.57 0.62 0.66 0.43 0.30 
16:0 23.48 23.08 22.75 22.64 0.54 0.22 0.59 
16:1(ω 7) 3.68A 3.30A 2.73B 2.85B <0.0001 <0.0001 0.30 
17:0 1.27 1.40 1.15 1.21 0.10 0.03 0.17 
Iso 18:0 0.43 0.49 0.45 0.49 0.87 0.88 0.43 
17:1(ω 7) 1.43A 1.47A 1.01B 1.16B 0.02 0.0003 0.27 
18:0 9.35 10.85 12.16 12.19 0.14 0.04 0.44 
18:1 trans 2.16B 1.98B 3.72A 3.27A 0.01 0.001 0.42 
18:1(ω 9) 43.53A 44.72A 41.09B 41.14B 0.007 0.0007 0.43 
18:1 (ω 7) 0.86 0.97 0.81 0.74 0.37 0.14 0.80 
18:1∆13 0.15B 0.18AB 0.22A 0.22A 0.02 0.005 0.47 
18:1∆14 0.15BC 0.13C 0.21A 0.20AB 0.03 0.004 0.50 
19:0 0.04C 0.05BC 0.13A 0.12AB 0.04 0.005 0.83 
18:2(ω 6) 3.22B 3.10B 5.06A 5.17A <0.0001 <0.0001 0.97 
18:2 cis 9, trans 11 0 0 0 0.01 0.52 0.42 0.42 
18:2 trans 10, cis 12 0B 0B 0.007B 0.04A 0.007 0.01 0.08 
20:0 0.07 0.02 0.06 0.07 0.15 0.15 0.16 
18:3(ω 3) 0.16B 0.14B 0.20A 0.20A 0.0007 <0.0001 0.57 
20:1(ω 9) 0.54 0.59 0.69 0.71 0.22 0.05 0.63 
20:3(ω 6) 0.21 0.24 0.26 0.27 0.48 0.21 0.53 
20:4(ω 6) 0.75 0.93 0.78 0.84 0.60 0.75 0.22 
22:4(ω 6) 0.25 0.20 0.17 0.16 0.61 0.29 0.54 
22:5(ω 3) 0.14 0.17 0.10 0.14 0.10 0.07 0.07 
SFA 38.61 39.74 40.48 40.56 0.60 0.27 0.62 
MUFA 53.29AB 54.06A 51.15BC 50.90C 0.02 0.002 0.74 
PUFA 4.73B 4.77B 6.58A 6.78A 0.002 0.0002 0.79 
Total trans 3.32B 3.27B 4.96A 4.43A 0.004 0.0005 0.40 
ω 6 4.58B 4.63B 6.38A 6.57A 0.002 0.0002 0.78 
ω 3 0.30 0.31 0.30 0.34 0.28 0.37 0.18 
ω 6 / ω 3 15.44B 15.23B 22.72A 19.15AB 0.02 0.004 0.30 
1Weight percentage values are relative proportions of all peaks observed by Gas Chromatography. 
20% no E, 0% WDGS, no vitamin E supplementation; 0% E, 0% WDGS and 500 I.U.of vitamin E daily; 40% no E, 
40% WDGS, no vitamin E supplementation; 40% E, 40% WDGS and 500 I.U.of vitamin E daily.   
30 vs 40%, Corn only vs Corn + 40% WDGS; E vs no E, 500 I.U. daily vs no E supplementation. 
A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05. 
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Table 7. Significant effects (P -values) regarding cooking method of teres major (TER) and infraspinatus (INF) from 
steers fed WDGS, corn and vitamin E. 

 teres major  infraspinatus 
 Cooking state   Cooking state   

Fatty acids Raw Broiled C*T1 C2  Raw Broiled Grilled C*T1 C2 

10:0 0.02 0.02 0.88 0.71  0.04 0.05 0.07 0.15 0.09 
12:0 0.08 0.02 0.79 0.71  0.06 0.05 0.06 0.91 0.73 
14:0 2.60 2.50 0.85 0.41  2.78 2.79 2.65 0.99 0.22 
14:1(ω 5) 0.63 0.63 0.93 0.82  0.68 0.65 0.70 0.98 0.41 
15:0 0.47 0.44 0.67 0.10  0.49 0.48 0.46 0.87 0.08 
Iso 16:0 0.81B 0.95A 0.70 0.003  0.49B 0.58AB 0.63A 0.60 0.02 
16:0 24.53A 23.72B 0.88 0.03  24.01A 24.26A 22.99B 0.95 0.002 
16:1(ω 7) 2.99 2.89 0.70 0.35  2.89B 2.90B 3.14A 0.88 0.01 
17:0 1.32 1.25 0.88 0.06  1.38A 1.39A 1.25B 0.89 0.007 
Iso 18:0 0.66B 0.79A 0.90 0.007  0.36B 0.43AB 0.47A 0.83 0.03 
17:1(ω 7) 1.14 1.22 0.80 0.18  1.18 1.18 1.27 0.94 0.25 
18:0 13.42A 12.06B 0.47 0.0009  13.97A 14.16A 11.14B 0.67 <0.001 
18:1 trans 3.07 3.19 0.70 0.52  2.89 2.97 2.78 0.91 0.80 
18:1(ω 9) 38.27B 39.56A 0.21 0.01  39.67B 39.19B 42.62A 0.95 <0.001 
18:1 (ω 7) 0.65 0.68 0.88 0.53  0.80 0.76 0.84 0.90 0.41 
18:1∆13 0.14 0.16 0.18 0.23  0.21 0.19 0.19 0.76 0.25 
18:1∆14 0.14 0.14 0.75 0.90  0.19 0.18 0.17 0.78 0.36 
19:0 0.02 0.02 0.82 0.70  0.12 0.09 0.09 0.75 0.16 
18:2(ω 6) 4.71B 5.31A 0.91 0.01  3.61B 3.80AB 4.14A 0.99 0.04 
18:2 cis 9, 
trans 11 

0 0 N.EST. N.EST.  0.002 0.002 0.003 0.99 0.98 

18:2 trans 10, 
cis 12 

0 0.004 0.13 0.18  0.02 0.008 0.01 0.31 0.41 

20:0 0.04 0.03 0.45 0.45  0.08A 0.09A 0.05B 0.28 0.0008 
18:3(ω 3) 0.17 0.17 0.41 0.71  0.17 0.16 0.17 0.95 0.20 
20:1(ω 9) 0.55 0.56 0.90 0.66  0.66 0.59 0.63 0.96 0.23 
20:3(ω 6) 0.33 0.37 0.99 0.08  0.20B 0.23AB 0.25A 0.87 0.03 
20:4(ω 6) 1.21B 1.39A 0.89 0.01  0.64B 0.75AB 0.82A 0.62 0.01 
22:4(ω 6) 0.19B 0.22A 0.40 0.01  0.13B 0.16AB 0.19A 0.68 0.02 
22:5(ω 3) 0.17B 0.22A 0.80 0.02  0.10B 0.13AB 0.14A 0.71 0.04 
SFA 43.97A 41.79B 0.50 0.0009  43.79A 44.38A 39.85B 0.60 <0.001 
MUFA 47.48B 49.14A 0.18 0.0073  49.18B 48.61B 52.35A 0.96 <0.001 
PUFA 6.76B 7.68A 0.95 0.007  4.86B 5.22AB 5.71A 0.96 0.01 
Total trans 4.00 4.18 0.75 0.35  4.08 4.10 3.99 0.84 0.90 
ω 6 6.60B 7.51A 0.95 0.007  4.69B 5.06AB 5.54A 0.96 0.01 
ω 3 0.33B 0.39A 0.56 0.05  0.28 0.29 0.31 0.87 0.09 
ω 6 / ω 3 20.70 20.92 0.91 0.92  17.39 18.35 18.15 0.89 0.77 
1
P-value for the interaction between cooking state (raw, broiled, or cooked) and dietary treatment (0% no E, 0% E, 

40% no E, or 40% E. 
2
P-value for cooking state (raw, broiled, or cooked) 

A,B,CMeans in the same row having different superscripts are significant at P ≤ 0.05 within muscle. 
N.EST. Not estimated. 
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ABSTRACT 

The objective was to study the effects of feeding wet distillers grains plus solubles 

(WDGS) and vitamin E (E) supplementation on color stability, lipid oxidation, Warner-Bratzler 

shear force (WBSF), and sensory attributes of beef displayed under different modified 

atmosphere packaging (MAP). Ninety steers were randomized in five dietary treatments 

containing 35% of WDGS (DM-basis) plus different levels of vitamin E (0E, 100E, 300E, 500E, 

or 1000E I.U. daily.) or a control corn-based (CORN) dietary treatment with no vitamin E and 

fed for 128 days.  Muscle Longissimus dorsi (LD) was excised from both short loins and each set 

(n=90) randomly containing right or left LD from each animal was aged for 7 and 21 d.  Steaks 

were displayed in O2-permeable film, low O2, or high O2 atmospheres. Low O2 had highest 

discoloration when compared to other MAP methods. Aged 7d steaks from treatments 300E and 

1000E had less discoloration when compared with steaks from animals 0E (P ≤ 0.05). When 

aged 21 days under permeable film 1000E steaks had improved color stability when compared to 

all steaks from other treatments. When displayed under high O2, 21 d aged steaks from animals 

0E showed higher discoloration than steaks from animals fed CORN or other treatments. Aged 7 

d steaks had no treatment trends of a* values and in high and low O2 atmospheres treatments did 

not differ among each other. When aged 21 d, a significant improve of redness were observed in 

permeable film packaged steaks from animals fed 1000E when compared to steaks from animals 

fed CORN, 0E, and 500E. High O2 MAP resulted in greater shear force values and lower TP 

tenderness ratings compared to the other two packaging systems. In this experiment, 300 and 

1000 I.U. daily supplementation mitigated lipid oxidation in steaks packaged under high O2 and 

O2-permeable film. Minimal lipid oxidation was observed in steaks displayed under low O2 

MAP.  Therefore, feeding WDGS led to higher discoloration and lipid oxidation in beef 



160 
 

 

 

displayed under O2-permeable film and high O2. Vitamin E supplementation mitigated effects of 

WDGS on both attributes. Minimal lipid oxidation was observed in beef displayed under low O2. 

However, steaks displayed under this atmosphere had highest discoloration on display. High O2 

MAP steaks were tougher when compared to steaks displayed under O2-permeable film and low 

O2 atmospheres. 

 

Index terms: Distillers Grains, Vitamin E, Modified Atmosphere Packaging.
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INTRODUCTION 

The appearance of beef at the retail display is an important factor regarding beef shelf life 

(Warren et al., 2007). Shelf life is defined as a certain length of time which a beef product 

remains acceptable under expected conditions of temperature and light exposure. Numerous 

extrinsic factors such as microbial contamination, storage temperature, packaging systems, 

additives, light, and time of exposure can affect shelf life (Smith et al., 1996). However, intrinsic 

factors such as fatty acid profile, fat content, and muscle composition also characterize the shelf 

life capability of beef cuts (de Mello, Jr. et al., 2007a; Nelson et al. 2008).  

 Usually, consumers consider color and discoloration traits a decisive factor when 

selecting beef products in the display case (Steiner et al., 2001).  In muscle, myoglobin is the 

pigment which plays the most important role regarding color, and when oxidized to 

metmyoglobin leads to beef discoloration (Liu et al.,1996). Liu et al. (1996) also reported that 

there is a positive correlation between myoglobin and lipid oxidation. Zhang et al. (2007) 

showed that long chain polyunsaturated fatty acids (PUFA) are more easily oxidized when 

compared to Saturated Fatty Acids (SFA). In accordance with that research, de Mello, Jr. et al. 

(2008) demonstrated that beef with higher levels of PUFA showed higher lipid oxidation at the 

retail display along 7 d of exposure. 

 Many studies demonstrated that different protein sources can be used to feed cattle. 

However, much speculation surrounds the effects of feeding ethanol byproducts on beef 

attributes. Feeding distiller’s grains (DG) does not alter objective tenderness (Warner-Bratzler 

shear force – WBSF), fat content (%), marbling score, proximate values, and mineral content of 

beef (Roeber et al. 2005; de Mello, Jr. et al., 2007a; and de Mello, Jr. et al. 2007b). Shand et al. 

(1998) reported no effect of feeding wheat-based DG on beef sensory characteristics. Also, 
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Roeber et al. (2005) showed that levels up to 25% of DG (dry matter basis) did not affect beef 

palatability. Conversely, minimal effects on tenderness and juiciness of top blade steaks were 

reported by de Mello, Jr. et al. (2008). Roeber et al. (2005) showed that levels up to 25% of DG 

did not affect the color of beef, however, when DG levels increased up to 40%, negative impacts 

were observed. 

 Estimated retail case-life is 1 d and 3 d for tenderloin and strip loin respectively, if these 

muscles are discolored before the end of the case life, they should be marked down in price or 

ground (Smith et al., 1996). Normally, 5.4% of fresh meat is lost during retail display, leading to 

potential economic losses (Smith et al., 1996). 

 Modified-atmosphere packaging involving gases such as O2, CO2 and N2 is widely used 

to extend the shelf life of beef through preserving color and avoiding deterioration (Paulsen et 

al., 2006). Diet supplementation with anti-oxidants is also an excellent alternative to extend shelf 

life. Vitamin E (α-tocopherol), when supplemented for extended periods, can be incorporated 

into the biological membranes where lipid-lipid interactions occur, providing a protection of 

PUFA against the reactive oxygen species (Lynch et al., 2000). 

 In this study we hypothesized that dietary vitamin E supplementation would minimize the 

higher oxidation of beef from animals fed WDGS. Therefore, the aim of our work was to identify 

the impact of feeding vitamin E and wet distillers grains plus solubles on shelf-life and 

tenderness attributes of beef under different packaging systems. 

MATERIAL AND METHODS 

TREATMENTS, SAMPLES, AND MODIFIED ATMOSPHERE PACKAGING 

 Yearling steers (n = 90) were randomized in five dietary treatments containing 35% of 

WDGS (DM-basis) plus different levels of vitamin E (0E, 100E, 300E, 500E, or 1000E I.U. 

daily.) or a control corn-based (CORN) dietary treatment with no vitamin E  and fed for 128 
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days.  Animals were adapted to finishing diets over 21 days by gradually removing forage 

(alfalfa hay) and increasing corn. Corn was a 1.5:1 mixture (DM basis) of HMC:DRC in both 

diets.  

Steers were harvested in a commercial plant (Cargill Meat Solutions, Schyuler, NE). 

Longissimus dorsi (LD) (n=2) were excised from short loins (IMPS #174, NAMP, 2007) and 

transferred to a research and development facility (Cargill Meat Solutions, Wichita, KS) where 

were aged for 7 and 21 days. After aging (7 and 21 d postmortem), seven 2.54 cm steaks were 

cut from each strip loin. After packaging, one steak ( d 0 steak) was immediately vacuum 

packaged whereas other steaks were displayed for 4 days (3 for WBSF analysis and 3 for 

sensorial tenderness analysis; d 4 steaks) under three different atmospheres. Atmospheres (MAP) 

used in this experiment were permeable film, low O2 (70% N2 and 30% CO2) (0 - 382 ppm O2), 

or high O2 (80% O2 and 20% CO2) (80-85% O2). After packaging, low O2 and high O2 packages 

were sampled to verify the final concentration of O2 (low O2; 0 - 382 ppm O2 and high O2; 80-

85% O2). Four display cases (Hussmann Climate Control Technologies, Bridgeton, MO) were 

set at 2 ± 2°C and light intensity varied from 60 to 200Lx (lamp type= F32T8/TL730 Phillips, 

Inc., New Jersey, USA). 

COLOR ANALYSIS 

Objective color measurement was recorded for L* (psychometric lightness; black = 0, 

white = 100), a* (red = positive values; green = negative values) and b* (yellow = positive 

values; blue = negative values) using a Minolta CR-400 colorimeter (Konica Minolta Sensing 

Americas, Inc, New Jersey, U.S.A.) with a 8mm/ 11mm measurement/illumination area, a D65 

illuminant, and diffuse illumination/0° viewing angle (d/0). The colorimeter was calibrated daily 

using a ceramic title provided by the manufacturer. Color readings were taken from steaks 
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displayed for sensorial analysis at 1, 2, 3, and 4 d of display by averaging three readings from 

different areas of the steak surface. 

Subjective color was assessed using a four-member panel that scored visual discoloration 

from 0% red (not discolored) to 100% brown (completely discolored) every day during all four 

days. 

SENSORIAL ANALYSIS AND OBJECTIVE TENDERNESS (WARNER-BRATZLER SHEAR FORCE, 

WBSF) 

 After retail display period, all steaks were vacuum packaged and frozen (-16°C) until 

tenderness analyses could be made. Steaks for trained taste panel and WBSF analysis were 

thawed for 24 h at 5°C and grilled to 70°C. Steaks were flipped after reaching 35°C at the 

geometric center. A nine-member beef attributes panel was screened, selected, and trained to 

evaluate the steaks. Panelists were trained according Meilgaard et al. (1991) to evaluate 

tenderness from 1 = extremely tough to 8 = extremely tender, connective tissue amount (1 = 

abundant amount to 8 = no connective tissue), juiciness (1 = extremely dry to 8 = extremely 

juicy), and off-flavor intensity (1 = extremely off-flavor to 8 = no off-flavor) on 8-point hedonic 

scales. Visual differences of samples were minimized through serving panelists under a red 

fluorescent light and unsalted crackers and double distilled deionized water were provided to the 

panelists to cleanse their palates during the analysis. For WBSF, after cooking, steaks were 

cooled for 1 h at 4°C and at least, 6 cores (1.27 cm in diameter) were removed from each steak 

with a drill press parallel to muscle fiber orientation. Cores were sheared (Instron Universal 

Testing Machine - Instron Corp., model 55R1123, MA, USA) with a Warner-Bratzler blade 

where the crosshead speed was 250 mm/min with a 500 kg load cell.  

OXIDATION ANALYSIS 

 For oxidation analysis, a steak was cut from the LD and displayed for 2 and 4 d. At the 

resolution of the display period, samples were vaccum packaged and stored at -80°C. Samples 
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were submerged in liquid nitrogen (-174°C) and pulverized with a blender (Waring Commercial, 

model 51BL32, Torring, CT). 

 Lipid oxidation was measured by the thiobarbituric acid assay (TBA) according to the 

protocol of Buege and Aust (1978), modified by Ahn et al. (1998), at 0, 2 and 4 days of display. 

The modified protocol consisted in mixing 5 g of powdered sample with 14 ml of demineralized 

/ deionized water and 1 ml of Butylatedhydroxianisole (BHA), homogenizing for 15 s, 

centrifuging at 2000 rpm for 5 min, transferring 1 ml of the homogenate to a 15 ml conical tube, 

vortexing after adding the 2-Thiobarbituric Acid / Trichloroacetic Acid (TBA/TCA), incubating 

at 70°C for 30 min, centrifuging at 2000 rpm for 15 min, transferring aliquots of 200 µl from 

tubes to a well plate, and reading absorbance at 540 nm (Dynatech microplate reader - Dynex 

Technologies, model MR 5000, VA, USA) . Lipid oxidation (TBA values) was expressed as 

malonaldehyde concentration (mg/kg) and the quantification was realized comparing samples to 

standards absorbance. 

STATISTICAL ANALYSIS 

 Data of this experiment were analyzed as a split split plot design where dietary treatment 

was the whole plot, aging the split, and MAP the split split plot. Muscle LD within diet was 

considered the whole plot, aging by diet the split plot and MAP by aging by diet the split split 

plot error terms. Color data were also designed as repeated measures where the smallest Akaike 

and Bayesian information criteria (AIC and BIC, respectively) indicated best model fitting when 

the compound symmetry covariance matrix was used. Additionally, the Kenward-Rogers degrees 

of freedom approximation method was used. Regarding subjective color, panelists were 

considered a random effect. A response curve was used to detect linear relationships as levels of 

vitamin E increased in the diets. 
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  Data were analyzed using the GLIMMIX procedure of SAS (Version 9.1, Cary, N.C., 

2002). When significance (P ≤ 0.05) was indicated by ANOVA, means separations were 

performed using the LSMEANS and DIFF functions of SAS. 

RESULTS AND DISCUSSION 

COLOR AND LIPID OXIDATION 

 For all treatments, both aging periods steaks packaged with low O2 had 100% of 

discoloration at the first day of display. For steaks aged 7 days, after four days of display, high 

O2 atmosphere determined less discoloration in steaks from treatments CORN, 0E, 100E, 500E, 

and 1000E when compared with steaks packaged with permeable film (P ≤ 0.05) Comparing the 

performance of all treatments within each tested MAP, steaks from animals fed WDGS 

supplemented with 300 and 1000 E had less discoloration when compared with steaks from 

animals fed WDGS no E (P ≤ 0.05). Although significant, the discoloration difference was about 

1%, which is probably not visually differentiated by regular consumers. In this study, notable 

discoloration was observed when aging was extended. When aged 21 days under permeable film 

(Figure 1), 1000E steaks had improved color stability when compared to all steaks from other 

treatments (P ≤ 0.05). When displayed under high O2 (Figure 1), steaks from animals fed 0E 

showed higher discoloration than steaks from animals fed CORN or WDGS with any level of E. 

Therefore, by the resolution of the display period, supplementing 1000E improved around 10% 

of color stability when compared to 0E in permeable film (Figure 1) and any level of E improved 

12% when compared to 0E in high O2.  Regarding objective color, some differences among 

treatments were observed for lightness (L*) and yellowness (a*) for steaks aged both periods. 

However, redness (a*) is known as the most important parameter of visual quality once high 

values are associated with desirable visual appearance (Zerby et al., 1999). Aged 7 d steaks had 

no treatment trends of a* values. In high and low O2 atmospheres steaks from all treatments did 
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not differ among each other (Table 1). When displayed under permeable film atmosphere, 

CORN and 1000E treatments had the best a* values at 4 d of display. When aged 21 d, a 

significant improve of redness were observed in permeable film packaged steaks from animals 

fed 1000E when compared to steaks from animals fed CORN, 0E, and 500E (Table 2). 

Differences among treatments were observed when steaks were packaged under high O2 (values 

of a* from steaks fed 0E were lower), however there was no specific trend regarding the increase 

of E in the diets and higher values of redness. Overall, low O2 atmosphere determined lower L*, 

a*, and b* values to all steaks when compared to other atmospheres (P ≤ 0.05). Red color of beef 

is due to the presence of oxymyoglobin; this pigment is formed by O2 and myoglobin. In MAP 

with high levels of O2, we suggest that oxymyoglobin is more stable due to the high partial 

pressure of this gas inside of the pack. This can explain less discoloration in steaks packaged 

under high O2 where oxymyoglobin cannot be reduced to metmyoglobin, which is responsible 

for brown color and discoloration (Grobbel et al., 2006). In this experiment, we observed that 

high O2 packaged steaks had overall less discoloration and less tenderness when compared to 

steaks packaged with low O2 and O2-permeable film.  

Oxidation results are presented in the Figure 2. Overall, steaks displayed in low O2 had 

minimal or no oxidation at the resolution of display whereas steaks displayed under high O2 had 

the highest oxidation (P ≤ 0.05). In steaks displayed under O2-permeable film and high O2 

atmospheres 1000E supplementation had the lowest oxidation. Feeding treatments 1000E, 300E, 

and CORN had similar and significant superior lipid stability when compared to 0E, 100E and 

500E. de Mello, Jr. et al. (2008) found that beef displayed under O2-permeable from steers fed 

30% WDGS (DM basis) had increased oxidation when compared with corn. This increase of 

oxidation was due to the higher levels of PUFA found in meat from animals fed WDGS when 
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compared to corn (de Mello, Jr. et al., 2007a; Depenbush et al. 2009). In this study, levels of 300 

and 1000 I.U. of vitamin E supplementation provided the best protection against higher oxidation 

commonly found in from animals fed WDGS when compared to corn. Additionally, steaks from 

treatments 100E and 500E had similar oxidation when compared to corn fed-steaks. Therefore, 

any level of vitamin E supplementation in diets containing WDGS led to similar or improved 

color stability when compared to steaks from steers fed CORN (Figure 2). 

 The highest oxidation found in beef displayed under high O2 MAP is due to the high 

concentration and partial pressure of this gas in the package. At the same time that contributes to 

improve color, higher amount of this gas increases the lipid oxidation since the O2 is a potential 

lipid oxidant (Liu, Lanari and Schaefer, 1995). This finding is in agreement with Jakobsen and 

Bertelsen (2000) who also observed higher oxidation in beef packaged under high O2 when 

compared to other atmospheres .  

When beef is stored under normal atmosphere there is a positive relationship between 

lipid oxidation and color pigment oxidation (Arnold et al., 1993). According to our results, this 

relationship can not be applied when different packaging systems and different gases 

concentrations are used. As we previously described, beef under high O2 had higher lipid 

oxidation and higher color stability and low O2 had the lowest lipid oxidation and the highest 

discoloration. The highest discoloration of beef displayed under low O2 was due to the residual 

amount of O2 in the package. Grobbel et al. (2008) showed that metmyoglobin formation may be 

initiated by very low amounts of O2. Although discolored, steaks displayed under low O2 did not 

have the lipid stability compromised. During sample preparation for the oxidation analysis, we 

observed a thin brown layer on the steak surface. This suggested that the residual oxygen only 

initialized metmyoglobin formation and did not compromise the lipid stability.  



169 
 

 

 

WBSF AND SENSORY ATTRIBUTES 

 Two way interactions between effects of MAP and aging, and dietary treatment and aging 

were observed when analyzing subjective tenderness and WBSF (P ≤ 0.05). For WBSF, feeding 

WDGS to steers led to similar shear force results (P > 0.05) when compared to corn (Table 3).  

Regarding vitamin E supplementation, a significant effect (P = 0.04) was observed when aged 7 

d beef was displayed under O2-permeable film. However, no consistent pattern was identified.  

For subjective tenderness, significant effects of dietary treatments were observed only in beef 

aged 21 d (Table 4). O2-permeable film steaks from steers fed WDGS and vitamin E had higher 

(P = 0.02) ratings when compared to O2-permeable film steaks from animals fed corn. When 

analyzing the effect of E within WDGS diets through the contrasts, low O2 steaks from E 

supplemented steers had higher tenderness when compared to non supplemented (P = 0.04). A 

similar trend (P = 0.08) was observed when steaks were displayed under O2-permeable film. 

Regarding the MAP effect, high O2 MAP resulted in greater (P ≤ 0.05) shear force values 

(Figure 3) and lower TP tenderness ratings (Table 4) compared to the other two packaging 

systems. This detrimental effect on tenderness in beef displayed under high O2 MAP is due to the 

high concentration of this gas, which oxidized beef proteins (Clausen, 2004). Additionally, Rowe 

et al. (2004) suggested that oxidation of beef muscle proteins may limit the resolution of the 

rigor mortis due to inactivation of µ-calpain decreasing the tenderization. However, inactivation 

of calpain activity and inhibition of calpain by calpastatin not only can be affected oxidation, but 

also by pH and ionic strength (Maddock Carlin et al., 2006). In this study, LD was aged for 7 d 

and 21 d before steaks go under retail display. Camou et al. (2007) showed that µ-calpain 

activity decreased nearly to zero 48 h postmortem whereas m-calpain retains active up to 6 d 

postmortem.  This implies that the decrease in tenderness in beef displayed under high O2 may 

have occurred due to the oxidation of myofibrillar or cytoskeletal proteins rather than through 
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oxidation of the calpains. Tenderness decrease was observed even after 21 d postmortem, when 

most of the proteolytic activity from calpains would have been complete.  Vitamin E 

supplementation provided a small, but significant protective effect against oxidation-induced 

toughening when beef was displayed under O2-permeable film and low O2 atmospheres. Results 

of this study agree with Lund et al. (2007), who showed that high O2 atmosphere tended to 

increase toughness in meat due to protein oxidation. 

 Regarding connective tissue amount (Table 5), no differences were observed among 

steaks from steers fed corn or WDGS, independently which MAP was used (P > 0.05). Trends of 

higher tenderness ratings were observed for WDGS fed-beef displayed under low O2 and O2-

permeable film when vitamin E was supplemented to cattle (P = 0.06 and P = 0.08, 

respectively). It has been know that higher connective tissue amount is associated with lower 

tenderness (Reagan et al., 1976). Therefore, higher connective tissue ratings were observed for 

beef displayed under high O2 atmosphere. 

 No effects of dietary treatment were observed on juiciness of aged 7 d-steaks (Table 6). 

However, when aged 21 d and displayed under low O2, steaks from steers fed WDGS + E had 

higher juiciness ratings when compared to steaks from animals fed only WDGS. Although 

significant, this effect remained unclear since Arnold et al. (1992) did not observe any effect of E 

supplementation on juiciness.  Regarding MAP, aged 7 d-steaks displayed under high O2 had 

lower juiciness when compared to steaks displayed under low O2. This MAP effect on juiciness 

was not constant in both aging periods. 

 Feeding WDGS and vitamin E supplementation did not influence off-flavor intensity of 

aged 7 d-beef displayed under any MAP. Aged 21 d-steaks from steers fed WDGS had slight, but 

significant increased off-flavor ratings when displayed under low O2 (P = 0.04). Overall, aged 7 
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d-steaks displayed under high O2 showed higher (P ≤ 0.05) off-flavor ratings when compared to 

steaks displayed under O2-permeable film. Likewise, aged 21 d-steaks displayed under high O2 

had higher off-flavor ratings when compared to low O2 and O2-permeable film. Calkins and 

Hodgen (2007) showed that compounds such as aldehydes, lactones, hydrocarbons, furans, and 

ketones are produced during lipid oxidation and led to undesirable off-flavors in meat. In this 

study, higher lipid oxidation was observed in beef displayed under high O2. Therefore, higher 

off-flavor intensity was anticipated due to lipid oxidation results, which were significant higher 

in beef displayed under high O2. 

 

CONCLUSION 

 Vitamin E supplementation and high O2 packaging to improved color stability in steaks 

from animals fed WDGS. Steaks displayed under high O2 atmosphere may show a slight off-

flavor. Vitamin E by itself does not alter tenderness, however, a slight decrease in tenderness and 

increased oxidation are observed when high O2 MAP is used. 
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Table 1. Redness (a*) of strip steaks aged 7d from steers fed WDGS, corn, and WDGS plus different concentrations 
of vit E displayed under different MAP. 

MAP2 Treatment1 days 

Permeable film  1 2 3 4 

 CORN 19.70A 19.30AB 19.08AB 18.46Ba 
 0E 19.47A 19.11A 19.41A 17.95Bab 
 100E 19.08A 18.76A 18.85A 17.40Bb 
 300E 18.99 19.17 19.22 18.42ab 
 500E 19.37A 19.25A 19.28A 18.03Bab 
 1000E 18.93 19.55 19.55 18.91a 
      

High O2      
 CORN 18.55AB 18.26B 19.34A 16.89C 
 0E 18.23AB 17.49BC 18.78A 16.74C 
 100E 18.21AB 18.00B 19.02A 16.69C 
 300E 17.87A 17.88A 18.75A 16.75B 
 500E 18.61A 17.19B 19.23A 16.64B 
 1000E 18.36AB 17.93B 19.04A 16.11C 
      

Low O2      
 CORN 8.18 8.40 8.37 8.37 
 0E 8.07 8.48 8.84 7.79 
 100E 7.73B 8.08AB 8.74A 7.59B 
 300E 7.80 7.92 8.28 7.58 
 500E 8.21 8.24 8.88 8.02 
 1000E 8.48AB 8.37AB 8.81A 7.77B 

1Treatments: CORN (Dry rolled corn), 0E (WDGS), 100E (WDGS + 100E I.U. /daily), 300E (WDGS + 300E I.U. /daily), 500E 
(WDGS + 500E I.U. /daily), and 1000E (WDGS + 1000E I.U. /daily). 
2MAP: Permeable film, High O2 (80-85% O2), and Low O2 (0 - 382 ppm O2).

  

A,B,C Means in the same row within MAP group having different superscripts are significant at P ≤ 0.05. 
a,b Means in the same column within MAP having different superscripts are significant at P ≤ 0.05. 
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Table 2. Redness (a*) of strip steaks aged 21d from steers fed WDGS, CORN, and WDGS plus different 
concentrations of vit E displayed under different MAP. 

MAP2 Treatment1 days 

Permeable film  1 2 3 4 

 CORN 21.77A 20.32B 18.47Cb 16.40Db 
 0E 21.65A 19.72B 17.82Cb 15.79Db 
 100E 21.55A 19.58B 18.20Cb 16.92Dab 
 300E 22.00A 19.98B 19.13Bab 16.94Cab 
 500E 21.47A 19.82B 18.55Cb 16.40Db 
 1000E 22.32A 20.26B 20.13Ba 17.91Ca 
      

High O2      
 CORN 21.93Aa 18.24Bab 19.27Ba 16.92Cab 
 0E 19.91Acd 16.44Bc 17.64Bc 15.85Cb 
 100E 20.37Abc 17.52Cbc 19.07Ba 16.51Cab 
 300E 21.62Aab 18.98Ba 19.62Ba 17.77Ca 
 500E 21.00Aabc 17.81Cab 19.16Ba 17.25Ca 
 1000E 21.24Aabc 18.22Cab 19.89Ba 17.08CDab 
      

Low O2      
 CORN 8.82 8.36a 9.18 8.71ab 
 0E 8.20 7.50ab 8.51 8.40ab 
 100E 8.30BC 7.43Cab 9.63A 8.73ABab 
 300E 8.54AB 7.38Bab 8.76A 8.02ABb 
 500E 8.23A 6.99Bb 8.79A 8.03ABb 
 1000E 8.60AB 8.16Bab 9.44A 9.43Aa 

1Treatments: CORN (Dry rolled corn), 0E (WDGS), 100E (WDGS + 100E I.U. /daily), 300E (WDGS + 300E I.U. /daily), 500E 
(WDGS + 500E I.U. /daily), and 1000E (WDGS + 1000E I.U. /daily). 
2MAP: Permeable film, High O2 (80-85% O2), and Low O2 (0 - 382 ppm O2).

  

A,B,C Means in the same row within MAP group having different superscripts are significant at P ≤ 0.05. 
a,b,c,d Means in the same column within MAP having different superscripts are significant at P ≤ 0.05. 
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Table 3. Least square means of WBSF values of strip loin steaks from steers fed WDGS, CORN, and WDGS plus different concentrations of vitamin 
E displayed under different MAP. 

  Treatments1   Contrasts 

 MAP2 CORN 0E 100E 300E 500E 1000E Average  WDGS vs 
CORN3 

WDGS + E vs 
CORN4 

WDGS vs 
WDGS + E5 

A
g

ed
 

7
d
 High O2 4.00 3.72 3.39 3.86 4.01 3.76 3.79a  0.96 0.07 0.07 

Low O2 3.64 3.55 3.30 3.57 3.34 3.43 3.47b  0.11 0.41 0.23 
OW 3.74 3.43 3.24 3.57 3.39 3.40 3.46b  0.09 0.89 0.04 

             

A
g

ed
 

2
1

d
 High O2 3.64 3.47 3.40 3.76 3.45 3.13 3.47a  0.37 0.97 0.23 

Low O2 3.22 3.59 3.14 3.43 3.26 3.20 3.31b  0.84 0.54 0.39 
OW 3.26 3.30 3.23 3.42 3.37 3.05 3.27b  0.54 0.39 0.93 

a,b Means in the same column within aging having different superscripts are significant at P ≤ 0.05 level. 

1Dietary treatments based on WDGS or corn for 128 d. 
2 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and OW (Permeable film). 
3P value of WDGS (35%) + no vitamin E (0E) vs CORN diet. 
4P value of WDGS (35%) + all vitamin E treatments (0E, 100E, 300E, 500E, and 1000E) vs CORN diet. 
5P value of WDGS (35%) + no vitamin E (0E) vs WDGS (35%) + all vitamin E treatments (100E, 300E, 500E, and 1000E). 
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Table 4. Least square means of subjective tenderness of strip loin steaks from steers fed WDGS, CORN, and WDGS plus different concentrations of vitamin 
E displayed under different MAP. 

  Treatments1   Contrasts 

 MAP2 CORN 0E 100E 300E 500E 1000E Average  WDGS vs 
CORN3 

WDGS + E vs 
CORN4 

WDGS vs 
WDGS + E5 

A
g

ed
 

7
d
 High O2 5.47 5.70 5.73 5.81 5.55 5.63 5.65c  0.31 0.19 0.93 

Low O2 5.93 5.99 6.20 6.37 5.91 5.81 6.03a  0.80 0.37 0.63 
OW 5.77 5.75 5.90 6.11 5.76 5.80 5.85b  0.89 0.36 0.35 

             

A
g

ed
 

2
1

d
 High O2 6.07 6.05 6.22 6.20 5.98 6.09 6.10b  0.84 0.70 0.59 

Low O2 6.25 6.06 6.44 6.51 6.36 6.22 6.31a  0.30 0.30 0.04 
OW 6.11 6.14 6.53 6.33 6.32 6.47 6.32a  0.89 0.02 0.08 

a,b Means in the same column within aging having different superscripts are significant at P ≤ 0.05 level. 

1Dietary treatments based on WDGS or corn for 128 d. 
2 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and OW (Permeable film). 
3P value of WDGS (35%) + no vitamin E (0E) vs CORN diet. 
4P value of WDGS (35%) + all vitamin E treatments (0E, 100E, 300E, 500E, and 1000E) vs CORN diet. 
5P value of WDGS (35%) + no vitamin E (0E) vs WDGS (35%) + all vitamin E treatments (100E, 300E, 500E, and 1000E). 
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Table 5. Least square means of connective tissue of strip loin steaks from steers fed WDGS, CORN, and WDGS plus different concentrations of vitamin E 
displayed under different MAP. 

  Treatments1   Contrasts 

 MAP2 CORN 0E 100E 300E 500E 1000E Average  WDGS vs 
CORN3 

WDGS + E vs 
CORN4 

WDGS vs WDGS + 
E5 

A
g

ed
 

7
d
 High O2 5.70 5.71 5.68 5.96 5.82 5.68 5.75b  0.99 0.53 0.60 

Low O2 5.98 5.80 6.07 6.22 5.94 5.76 5.96a  0.30 0.81 0.15 
OW 5.77 5.71 5.90 6.07 5.92 5.72 5.85ab  0.63 0.22 0.11 

             

A
g

ed
 

2
1

d
 High O2 5.95 5.90 6.23 6.11 6.01 5.99 6.03b  0.72 0.19 0.14 

Low O2 6.22 6.04 6.28 6.38 6.27 6.15 6.22a  0.20 0.57 0.06 
OW 5.96 6.09 6.24 6.20 6.33 6.22 6.17a  0.48 0.23 0.08 

a,b Means in the same column within aging having different superscripts are significant at P ≤ 0.05 level. 

1Dietary treatments based on WDGS or corn for 128 d. 
2 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and OW (Permeable film). 
3P value of WDGS (35%) + no vitamin E (0E) vs CORN diet. 
4P value of WDGS (35%) + all vitamin E treatments (0E, 100E, 300E, 500E, and 1000E) vs CORN diet. 
5P value of WDGS (35%) + no vitamin E (0E) vs WDGS (35%) + all vitamin E treatments (100E, 300E, 500E, and 1000E). 
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Table 6. Least square means of juiciness of strip loin steaks from steers fed WDGS, CORN, and WDGS plus different concentrations of vitamin E displayed 
under different MAP. 

  Treatments1   Contrasts 

 MAP2 CORN 0E 100E 300E 500E 1000E Average  WDGS vs 
CORN3 

WDGS + E vs 
CORN4 

WDGS vs WDGS + 
E5 

A
g

ed
 

7
d
 High O2 5.37 5.32 5.49 5.31 5.37 5.40 5.38b  0.81 0.95 0.74 

Low O2 5.70 5.55 5.76 5.87 5.53 5.59 5.66a  0.43 0.90 0.40 
OW 5.53 5.47 5.65 5.63 5.42 5.36 5.52ab  0.71 0.88 0.75 

             

A
g

ed
 

2
1

d
 High O2 5.60 5.49 5.73 5.70 5.75 5.62 5.62  0.57 0.67 0.32 

Low O2 5.59 5.34 5.76 5.82 5.58 5.47 5.63  0.26 0.39 0.05 
OW 5.55 5.42 5.80 5.55 5.82 5.79 5.64  0.09 0.24 0.29 

a,b Means in the same column within aging having different superscripts are significant at P ≤ 0.05 level. 

1Dietary treatments based on WDGS or corn for 128 d. 
2 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and OW (Permeable film). 
3P value of WDGS (35%) + no vitamin E (0E) vs CORN diet. 
4P value of WDGS (35%) + all vitamin E treatments (0E, 100E, 300E, 500E, and 1000E) vs CORN diet. 
5P value of WDGS (35%) + no vitamin E (0E) vs WDGS (35%) + all vitamin E treatments (100E, 300E, 500E, and 1000E). 
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Table 7. Least square means of off-flavor of strip loin steaks from steers fed WDGS, CORN, and WDGS plus different concentrations of vitamin E 
displayed under different MAP. 

  Treatments1   Contrasts 

 MAP2 CORN 0E 100E 300E 500E 1000E Average  WDGS vs 
CORN3 

WDGS + E vs 
CORN4 

WDGS vs 
WDGS + E5 

A
g

ed
 

7
d
 High O2 2.64 2.92 2.96 2.69 2.61 2.99 2.80a  0.08 0.13 0.41 

Low O2 2.62 2.85 2.72 2.55 2.78 2.83 2.73ab  0.16 0.36 0.36 
OW 2.62 2.84 2.74 2.49 2.69 2.72 2.68b  0.13 0.60 0.17 

             

A
g

ed
 

2
1

d
 High O2 3.04 3.28 3.15 3.04 3.14 3.30 3.16a  0.11 0.27 0.32 

Low O2 2.71 3.02 2.95 2.73 2.83 3.08 2.89b  0.04 0.08 0.30 
OW 2.84 3.11 3.08 2.84 2.93 3.03 2.97b  0.09 0.24 0.29 

a,b Means in the same column within aging having different superscripts are significant at P ≤ 0.05 level. 

1Dietary treatments based on WDGS or corn for 128 d. 
2 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and OW (Permeable film). 
3P value of WDGS (35%) + no vitamin E (0E) vs CORN diet. 
4P value of WDGS (35%) + all vitamin E treatments (0E, 100E, 300E, 500E, and 1000E) vs CORN diet. 
5P value of WDGS (35%) + no vitamin E (0E) vs WDGS (35%) + all vitamin E treatments (100E, 300E, 500E, and 1000E). 
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Figure 1. Discoloration of steaks aged 21 d and packaged with O2-permeable film or under 

high O2 atmosphere. 

 

 

 

1 MAP: High O2 (80-85% O2) and Film (Permeable film). 
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Figure 2. Oxidation of Longissimus dorsi steaks displayed for 4 days under 3 different 

atmospheres. (Treatment*map*day = 0.05)

 

 

 

 1 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and Film (Permeable film). 

a,b,cMeans with different superscripts are significantly different within day 4 (P < 0.05). 
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Figure 3. Warner Bratzler values of Longissimus dorsi displayed under 
1
different 

atmospheres. 

 

 1 MAP: High O2 (80-85% O2), Low O2 (0 - 382 ppm O2), and Film (Permeable film). 
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APPENDIXES  

APPENDIX 1. PROXIMATE ANALYSIS 

 

1. Place crucibles in drying over at 100°C for 4 h and then in the desicator 

2. Place 2 g of pulverized muscle tissue into a crucible  

3. Moisture and ash are determined using the following program 

Trait Covers Ramp Rate Ramp Time Ramp Temp End Temp 

Moisture off 4°C/min 26 min 25°C 130°C 

Ash off 16°C/min 29 min 130°C 600°C 

 

Trait Atmosphere Flow Rate Hold Time Constant Wt Constatnt WtTime 

Moisture off 4°C/min 26 min 25°C 130°C 

Ash off 16°C/min 29 min 130°C 600°C 

 

Equations: 

Initial Wt W[Initial] 

Ash (W[Ash]/W[Initial]*100 

Moisture ((W[Initial-W[Moisture])/W[Initial])*100 

Fat Content 

1. Weigh 2 g of pulverized muscle tissue on Whatman #2 filter paper 

2. Fold and place in Soxhlet apparatus with ethyl ether drip for 48 h 

3. % Fat = (Wet Weight-Dry Weight)/Wet Weight 
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APPENDIX 2. FATTY ACID ANALYSIS 

Folch et al. (1957). Morrison and Smith (1964) and Metcalfe et al. (1966) 

 

1. Weigh out 1 g of pulverized muscle tissue. If extracting subcutaneous fat, weigh out 0.1 g of 

pulverized subcutaneous fat into centrifuge tube. 

2. Add 5 mL of 2:1 chloroform:methanol (v/v) for muscle tissue or 3 mL for subcutaneous fat. 

3. Vortex for 5 s and let stand for 1 h at room temperature. 

4. Filter homogenate through Whatman #2 filter paper into 13 x 150 mm screw cap tube bringing 

the final volume with chloroform:methanol to 10 mL for muscle lipid and 5 mL for subcutaneous 

fat extract. If stopping at this point, purge test tube with nitrogen, cap tube, and store at -80°C. 

5. Add 2 mL of a 0.74% KCl solution for muscle lipid extract or 1 mL for subcutaneous fat 

tissue extract and vortex for 5 s. If stopping at this point, purge test tube with nitrogen, cap tube, 

and store at 0°C for no more than 24 h. 

6. Centrifuge samples at 1000 x g for 5 min. Following centrifugation, aspirate off the aqueous 

phase (top layer). If stopping at this point, purge test tube with nitrogen, cap tube, and store at -

80°C. 

7. Evaporate to dryness under nitrogen at 60°C.  

8. Add 0.5 mL of a 0.5 M NaOH in methanol. Vortex for 5 sec. Heat for 5 min at 100°C. 

9. Add 0.5 mL of boron trifluoride in 14% methanol. Vortex for 5 sec. Heat for 5 min at 100°C. 

10. Add 1 mL of a saturated salt solution and 1 mL of hexane. Vortex for 5 sec. 

11. Centrifuge samples at 1000 x g for 5 min. Following centrifugation, remove hexane layer 

(top layer) making sure not to disrupt the aqueous phase (lower layer) and place in GC vial. 

Purge GC vial with nitrogen, cap and crimp cap, and store at -80°C until sample is ready to be 

read on the GC. 
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GC Settings 

Column- Chrompack CP-Sil 88 (0.25 mm x 100 m) 

Injector Temp- 270°C 

Detector Temp- 300°C 

Head Pressure-40 psi  

Flow Rate-1.0 mL/min 

Temperature Program- Start at 140°C and hold for 10 min. Following 10 min, raise 

temperature 2°C/min until temperature reaches 220°C. At 220°C, hold for 20 min. 
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APPENDIX III. THIOBARBITURIC ACID REACTIVE SUBSTANCES ASSAY 

(Buege and Aust, 1978), Modified by Ahn et al., (1998) 

 

TEP solution (1,1,3,3-Tetraethoxypropane) (Make new weekly) 

Stock Solution: Dilute 99 µl TEP (97%) bring volume to 100 mL ddH2O. 

Working Solution: Dilute stock solution to 1:3 (TEP Solution:ddH2O) (1 × 10-3 M). 

 

TBA/TCA (2-Thiobarbituric Acid/Trichloroacetic Acid) Stock Solution: 1L 

15% TCA (w/v) and 20 mM TBA (MW 144.5) reagent in ddH2O. 

Dissolve 2.88 g TBA in warm ddH2O first, then add TCA (150 g) and ddH2O to 1L. 

 

BHA (Butylated Hydroxy Anisole) stock Solution: 

Make 10% stock solution by dissolving in 90% ethanol.  

10 g BHA dissolved in 90 mL ethanol (90%) + 5 mL ddH2O. 

Standards: In duplicate 

         Moles of TEP 
Blank:   1 mL ddH2O 
Standard 5:  100 µl working TEP + 1.90 mL ddH2O   (5 × 10-5 M) 
Standard 4: 1 mL Std. 1 + 1 mL ddH2O    (2.5 × 10-5 M) 
Standard 3:  1 mL Std. 2 + 1 mL ddH2O    (1.25 × 10-5 M) 
Standard 2: 1 mL Std. 3 + 1 mL ddH2O    (0.625 × 10-5 M) 
Standard 1: 1 mL Std. 4 + 1 mL ddH2O    (0.3125 × 10-5 M) 
  Remove 1 mL of Standard 1 and discard it, leaving 1 mL behind. 
 

Procedure: 

1. Mix all reagents and standards before beginning. 

2. Transfer 5 g powdered sample into a 50 mL conical tube; add 14 mL of ddH2O and 1.0 mL of 

BHA. 
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3. Homogenize for 15 sec with a polytron. 

4. Centrifuge for 2000×g for 5 min. 

5. Transfer 1 mL of homogenate or standard to 15 mL conical tube. 

6. Add 2 mL of TBA/TCA solution, vortex. 

7. Incubate in a 70°C water bath for 30 min to develop color. 

8. Cool samples in a coldwater bath for 10 min. 

9. Centrifuge tubes at 2000×g for 15 min. 

10. Transfer duplicate aliquots of 200 µl from each tube into wells on a 96-well plate. 

11. Read absorbance at 540 nm. 

Calculations: mg of malonaldehyde/kg of tissue 

 K(extraction) = (S/A) × MW × (106/E) × 100 

Where;  S = Standard concentration (1 × 10-8 moles 1,1,3,3-Tetraethoxypropane)/5 mL 

   A = Absorbance of standard MW = MW of malonaldehyde (72.063 g/mole) 

   E = Sample equivalent (1)  P = percentage recovery 

Final calculation: 0.012 × concentration × (72.063 ×106) = mg of Malonaldehyde/kg of tissue 

Reagents (Sigma): TBA- T5500; TCA – T9159; TEP – T9889; BHA – B1253 
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APPENDIX IV. TRAINED SENSORY PANEL EVALUATION FORM 

 
Trained Taste Panel 

Form 

 
Panelist #:              

 

Please evaluate each sensory attributes of the sample by using the rating scale (1-8) and then 
identify the flavor notes associated with the sample. 
 
Rating scales: 
 
TENDERNESS CONNECTIVE TISSUE JUICINESS OFF-FLAVOR INTENSITY 

 

8 Extremely Tender 
7 Very Tender 
6 Moderately Tender 
5 Slightly Tender 
4 Slightly Tough 
3 Moderately Tough 
2 Very Tough 
1 Extremely Tough 

8 No Connective Tissue 
7 Trace amount 
6 Slight Amount 
5 Small Amount 
4 Modest Amount 
3 Moderate Amount 
2 Slightly Abundant 
1 Abundant Amount 

8 Extremely Juicy 
7 Very Juicy 
6 Moderately Juicy 
5 Slightly Juicy 
4 Slightly Dry 
3 Moderately Dry 
2 Very Dry 
1 Extremely Dry 

8 Extremely Intense 
7 Very Intense 
6 Moderately Intense 
5 Slightly Intense 
4 Slightly Mild 
3 Moderately Mild 
2 Very Mild 
1 Extremely Mild 

 

 

Sample 

ID 

Tenderness Connective 

Tissue 

Juiciness  Off-flavor 

Intensity 

Comments 

      

      

      

      

      

      

      

      

 

Off-flavor notes: 

A. Sweet   E.  Livery 
B. Metallic   F.  Bloody 
C. Sour   G. Bitter 
D. Oxidized/rancid/old 



192 
 

 

APPENDIX IV. VISUAL DISCOLORATION SCALE 
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APPENDIX V. COMPOSITION OF TREATMENT DIETS ON A DRY MATTER BASIS 

(EXPERIMENT 1 AND 2). 

 Dietary treatments (%, WDGS) 

Ingredients 0 15 30 

Dry rolled corn 41.25 33.75 26.25 

High moisture corn 41.25 33.75 26.25 

Alfalfa hay 7.5 7.5 7.5 

WDGS - 15 30 

Molasses 5 5 5 

Fine ground corn 1.74 2.97 2.97 

Tallow 0.13 0.13 0.13 

Limestone 1.44 1.5 1.5 

Salt 0.3 0.3 0.3 

Calcium sulfate 0.13 - - 

Beef trace mineral 0.05 0.05 0.05 

Vitamin A, D, E 0.015 0.015 0.015 

Urea 1.15 - - 

Rumensin-80 0.014 0.014 0.014 

Tylan-40 0.008 0.008 0.008 

Thiamine 0.011 0.011 0.011 
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APPENDIX VI. COMPOSITION OF TREATMENT DIETS ON A DRY MATTER BASIS 

(EXPERIMENT 3) 

 Treatments (% MDGS) 

Ingredients 0 10 20 30 40 50 

Dry rolled corn 41.25 38.75 33.75 28.75 23.75 18.75 
High moisture corn 41.25 38.75 33.75 28.75 23.75 18.75 
MDGS 0 10 20 30 40 50 
Alfalfa 7.5 7.5 7.5 7.5 7.5 7.5 
Molasses 5 0 0 0 0 0 
Mineral and vitamin supplement 5 5 5 5 5 5 
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APPENDIX VII. COMPOSITION OF TREATMENT DIETS ON A DRY MATTER BASIS 

(EXPERIMENT 4) 

 Supplemented with E  Non-supplemented with E 

Ingredients 0% WDGS 40% WDGS  0% WDGS 40% WDGS 

Corn (HMC and DRC) 82.5 47.5  82.5 47.5 
WDG 0.0 28.0  0.0 28.0 
Solubles 0.0 12.0  0.0 12.0 
Alfalfa hay 7.5 7.5  7.5 7.5 
Molasses 5.0 -  5.0 - 
Supplement 5.0 5.0  5.0 5.0 
Vitamin E Yes Yes  No No 

*Vitamin E supplementation – 500 IU/ head on daily basis for last 100 d 
WDG – wet distillers grains, DS – distillers solubles, E - vitamin E, HMC – high moisture corn, DRC – 
dry rolled corn) 
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APPENDIX VIII. COMPOSITION OF TREATMENT DIETS ON A DRY MATTER BASIS 

(EXPERIMENT 5) 

 Dietary Treatment 

Ingredients CORN WDGS 

High moisture corn 45.0 27.0 
Dry rolled corn 30.0 18.0 
Silage 15.0 15.0 
Supplement 5.0 5.0 
WDGS - 28.0 
Solubles - 7.0 
Molasses 5.0 0.0 

Vitamin E supplementation in WDGS diets: 0, 100, 300, 500, and 1000 I.U. daily.  
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RECOMMENDATIONS FOR FUTURE RESEARCH 

This research showed that adding levels up to 50% of wet or modified distillers grains 

plus solubles in beef cattle diets (DM basis) did not alter carcass characteristics. However, as 

levels of distillers grains increased in finishing diets, independently of the moisture levels of this 

feedstuff, linear increases of PUFA and trans fatty acids were observed. The increase of PUFA 

decreased lipid and color stability of muscles tested in all studies. Addition of vitamin E helped 

to avoid higher oxidation in beef from animals fed distillers grains and a combination with high 

O2 MAP improved color stability. A singular effect of high O2 MAP increased lipid oxidation, 

off-flavor intensity, and decreased the rate of aging, which generated tougher beef when 

compared to other packaging systems. 

It is clear that vitamin E mitigated the effects of feeding distillers grains on lipid 

oxidation and discoloration. Since color is the most important attribute during retail display, a 

high O2 atmosphere combined with lower levels of vitamin E seems to be a reasonable solution 

to provide desirable color during the retail life. However, the higher off-flavor and lipid 

oxidation in beef displayed under this atmosphere may represent an issue regarding eating 

satisfaction. Similar consequences may happen regarding the lower tenderness. Therefore, more 

research is needed to verify different concentrations of gases in MAP, since they may alter beef 

attributes during the retail display. Additionally, the lowering in tenderness caused by High O2 

MAP when compared to other MAP is not completely understood. Intially, it has been thought 

that the oxidation of calpains could  lead to this problem. However, high calpain activity is 

limited to 72 h in beef. The decrease of the extent of tenderization observed in this study cannot 

be attributed to oxidation of calpains since all muscles used in the last experiment were aged 

vacuum-packaged for at least 7 d. Current research suggest that reactive oxygen species such as 

O2, O3, and H2O2, may cause polymerization and degradation of muscle proteins. Additionally, it 
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is common to observe destruction of aminoacids and cross-linkage of  proteins. In our study, the 

significant decrease in tenderness in beef displayed under high O2 was observed mainly in beef 

displayed after aged for 21 d. Therefore, more research is needed to investigate the role of 

protein oxidation on beef tenderness associated with aging period and MAP. 
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