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Abstract

X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid 

scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated 

tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl 

nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide 

scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, 

and the placement of highly conducting aluminum plates on the poles of a Bruker 10" magnet to 

reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-

noise for the rapid-scan absorption spectra was about an order of magnitude higher than for 

continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden 

the lineshapes.
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1. Introduction

In rapid-scan electron paramagnetic resonance (EPR) the magnetic field is scanned through 

resonance in a time that is short relative to the electron spin relaxation times [1]. The 

directly detected quadrature signal is obtained using a double-balanced mixer with the 

reference at the resonance frequency. By contrast conventional continuous wave (CW) EPR 

uses phase sensitive detection at the modulation frequency [1]. Deconvolution of the rapid-

scan signal gives the absorption spectrum. Rapid-scan EPR has been shown to yield 

improved signal-to-noise (S/N) per unit time relative to continuous wave (CW) EPR for 

rapidly-tumbling nitroxides in fluid solution [2], spin-trapped superoxide [3], the E' center in 

irradiated fused quartz [4], amorphous hydrogenated silicon [5], N@C60 diluted in C60 [5], 

and the neutral single substitutional nitrogen centers (NS
0) in diamond [5]. With the 

exception of the piece-wise acquisition of the Hyde lab [6], the widest rapid-scan spectra 

reported so far were the 55 G scans of spin-trapped superoxide at X-band [3]. Among 

organic radicals, one very important case is immobilized nitroxide spin labels. In this paper 

we demonstrate that the technology developed in our laboratory for rapid scans can be 

extended to perform 155 G wide sinusoidal scans, which are wide enough to encompass the 

full spectrum of an immobilized nitroxide. Rapid scans were obtained for 14Nperdeuterated 

tempone (14N-PDT) and 15N-PDT in sucrose octaacetate and for T4 lysozyme spin labeled 

at positions 61 and 135 with iodoacetamide spiro cyclohexyl nitroxide 2 in a trehalose glass. 

The S/N for the rapid-scan spectra of the immobilized nitroxides is about an order of 

magnitude greater than for CW spectra of the same samples.

2. Methods

2.1 Sample preparation

Nitroxides 14N-PDT (perdeuterated 4-oxo-2,2,6,6-tetramethylpiperidinyl-N-oxyl) and 15N-

PDT (perdeuterated 4-oxo-2,2,6,6-tetramethylpiperidinyl-15N-oxyl) were purchased from 

CDN isotopes (Quebec, Canada), and used as received. Solid 14N-PDT or 15N-PDT and 

sucrose octaacetate were mixed in ratios that would result in 0.50 mM or 0.050 mM 

solutions, respectively. The solids were ground gently in a mortar and pestle to mix the two 

components. The solid mixtures were placed in 4 mm outer diameter quartz EPR tubes, 

evacuated for 6 hr to remove oxygen, heated gently above the melting point, and cooled to 

form glasses [7]. Tubes were flame sealed. The concentrations of PDT in the samples were 

determined by comparison of the double integrated intensities with that for a standard 

sample of 0.56 mM tempone (4-oxo-2,2,6,6-tetramethylpiperidinyl-N-oxyl) in toluene. The 

final concentrations of radical in the samples were 0.15 mM 14N-PDT and 0.018 mM 15N-

PDT, and the numbers of spins in these samples were 2.3x1015 and 2.8x1014, respectively. 

These concentrations are lower than in the initial mixtures due to losses during the 
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evacuation and heating steps. Spirocyclohexyl amino acid nitroxide 1 was prepared at 

University of Nebraska as previously reported [8] and dissolved in 1:1 water:glycerol for 

relaxation time measurements. Iodoacetamide spirocyclohexyl spin label 2 was prepared at 

the University of Nebraska. For double electron-electron resonance (DEER) experiments [9] 

T4 lysozyme was spin-labeled at positions 61 and 135 by reaction of iodoacetamide 

spirocyclohexyl nitroxide 2 with cysteines introduced by site-directed mutagenesis. The 

preparation of the spin-labeled T4 lysozyme was performed at Vanderbilt University [9]. 

The solution of spin-labeled protein and a 10-fold excess of hen egg white lysozyme was 

mixed with 0.2 M trehalose in water, then spread on a watch glass and allowed to air dry in 

the dark for 48 hours before drying in vacuum for 6 hours. There were 1.4x1016 spins in the 

T4 lysozyme sample.

For electron spin relaxation time measurements MTSL (1-oxyl-2,2,5,5-tetramethyl-Δ3-

pyrroline- 3-methyl-methanethiosulfonate) was purchased from Toronto Research 

Chemicals, and tempone (4-oxo- 2,2,6,6-tetramethylpiperidinyl-N-oxyl) was purchased from 

Sigma Aldrich.

2.2 EPR spectroscopy

CW and rapid-scan spectra were recorded on a Bruker E500T using a Bruker Flexline 

ER4118X-MD5 dielectric resonator, which excites spins over a sample height of about 1 cm 

[2,5]. Sample heights of about 4 mm were used to ensure uniform B1 and scan field along 

the sample. The resonator Q is ~ 9000 for these nonlossy samples. The rapid-scan signals 

were recorded with a Bruker SpecJetII fast digitizer. The quadrature detection channels were 

calibrated with a small sample of the solid BDPA (1:1 α,γ-bisdiphenylene-β-phenylallyl: 

benzene) radical. Deconvolution and background removal procedures require that the phase 

difference between the two quadrature channels is close to 90°. Kronig-Kramers 

transformation of one channel and comparison with the other showed that the phase 

difference deviated from 90° by 7°. The phase difference between the two channels was 

corrected to 90° in the post-processing of the rapid-scan signals.

The sinusoidal scans were generated with the recently described scan driver [10]. The scan 

coils were constructed from 200 turns of Litz wire (255 strands of AWG44 wire). The coils 

have about 7.6 cm average diameter and were placed about 4 cm apart. The coil constant 

was 37.7 G/A, which is sufficient to generate scans up to 155 G wide with scan frequencies 

up to 13.4 kHz [10]. Mounting the coils on the magnet, rather than on the resonator, reduces 

the oscillatory background signal induced by the rapid scans. The placement of highly 

conducting aluminum plates on the poles of the Bruker 10" magnet reduces resistive losses 

in the magnet pole faces that arise from induced currents. The dielectric resonator decreases 

eddy currents induced by the rapidly-changing magnetic fields relative to resonators with 

larger amounts of metal. Data were acquired in blocks of 2 to 3 sinusoidal cycles. Scans are 

labeled with the rate in the center of the scan, which is π fs Bm G s−1 where fs is the scan 

frequency and Bm is the scan width.

To select the incident microwave powers for the CW and rapid scan experiments, power 

saturation curves were examined (Fig. 1). The amplitudes of CW spectra and rapid scan 

signals were measured as a function of microwave power. The incident powers were 
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converted to B1 using the known resonator efficiency of about  at Q of 9000 [5]. 

For signal-to-noise calculations rapid scan signals were deconvolved into EPR absorption 

spectra and processed as described in [11,12]. Figures 2 - 4 compare CW and rapid scan 

spectra measured at powers optimized for each measurement. The power selection was done 

using the following criterion. A linear least-squares fit through the point 0,0 and the signal 

amplitudes at the lowest 5 or 6 microwave powers was extrapolated to higher B1. The B1 

selected for data acquisition was the point at which the experimental signal amplitude was 

about 5% lower than the amplitude predicted by linear extrapolation of the non-saturated 

signal amplitude. The modulation frequency for the CW spectra was 100 kHz. The 

modulation amplitudes: 14N-PDT in sucrose octaacetate (0.63 G), 15N-PDT in sucrose 

octaacetate (0.9 G), 14N-spin label on T4 lysozyme (1.8 G), were about 20% of ΔBpp. These 

combinations of parameters result in less than 2% line broadening relative to spectra 

obtained at lower modulation amplitude and smaller B1. The scan modulation frequencies 

for the rapid scan signals were limited by the constraints of the coil driver. At these scan 

frequencies the signal bandwidths were less than the resonator bandwidth [1] so resonator 

bandwidth did not contribute to spectral broadening.

The data acquisition times were about 10 s. The estimates of 10 s acquisition times were 

based on the following calculations, which are consistent with the relatively small overhead 

in the software. For CW spectra the acquisition time is the conversion time per point 

multiplied by the number of field steps. For rapid scans the acquisition time is (1/fs) 

multiplied by the product of number of scan cycles combined in the deconvolution software 

and the number of scans averaged.

Ambient temperature relaxation time measurements were obtained on a locally-built pulsed 

Xband spectrometer [13], equipped with a Bruker ER4118X-MS5 split ring resonator. 

Variable temperature measurements of amino acid nitroxide 1 were performed on a Bruker 

E580 as described previously [7,14]. Spin-spin relaxation times (T2) were measured by two-

pulse electron spin echo decay. Spin-lattice relaxation times (T1) at 295 K were measured by 

inversion recovery and therefore may be slightly shortened by spectral diffusion. The 

temperature dependence of T1 was measured by saturation recovery (Fig. S1). Relaxation 

times were calculated by fitting exponentials to the data using a locally written program that 

implements the Multifit algorithm [15].

2.3 Signal processing

Nitroxide tumbling correlation times, τR, in the rapid tumbling regime were determined by 

simulation of the CW lineshapes using the NLSL software [16].

The rapid-scan signals were deconvolved and background corrected [11,12]. The resulting 

spectra are the sum of up-field and down-field scans for the absorption and dispersion 

signals. The experimental dispersion spectra were converted into absorption spectra for 

summation with the experimental absorption spectra [17]. A post-processing Gaussian filter 

was applied to both CW and rapid-scan spectra. The cut-off frequency for the low-pass filter 

was selected to cause no more than 2% broadening of the full width at half maximum of the 

absorption spectra or the ΔBpp linewidth for first-derivative spectra. The bandwidth of the 
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first derivative spectrum is larger than for the absorption spectrum of the same signal [18]. 

The first derivative spectrum was therefore calculated by numerical differentiation of the 

deconvolved rapid-scan spectrum before low-pass filtering, with subsequent application of 

low-pass filtering. S/N is peak-to-peak signal amplitude (for CW) or signal amplitude (for 

rapid scan) divided by rms noise in baseline regions of the spectrum.

3. Results and Discussion

Sucrose octaacetate and trehalose form glasses at ambient temperatures. The EPR lineshapes 

for 14N PDT in sucrose octaacetate (Fig. 2), 15N PDT in sucrose octaacetate (Fig. 3) and for 

T4 lysozyme spin labeled with 2 in trehalose (Fig. 4) are consistent with immobilized 

nitroxides with τR > 104 ps [19]. The spectra shown in Fig. 2 – 4 were obtained with ~10 s 

acquisition time, except for the CW spectrum of 15N-PDT in sucrose acetate which was 

obtained with 5 min acquisition because of the low S/N.

3.1 Electron spin relaxation times

The X-band electron spin relaxation times at about 295 K for 14N PDT in sucrose 

octaacetate, 15N PDT in sucrose octaacetate, and T4 lysozyme spin labeled with 2 in 

trehalose are compared with values for more rapidly tumbling radicals in Table 1. T1 in the 

vicinity of 10 μs for the immobilized nitroxides at 295 K is consistent with values reported 

previously for very slowly tumbling nitroxides [20,21]. Nitroxide T1 increases as the 

tumbling correlation time, τR, becomes longer due to decreases in the contributions from 

spin rotation and from modulation of the anisotropic nitrogen hyperfine interaction 

[20,22,23]. The temperature dependence of T1 for spirocyclohexyl nitroxides [24], including 

1 (Fig. S1), is similar to that for methyl-containing nitroxides including tempone and MTSL 

[7,14]. For the strongly immobilized nitroxides at 295 K the dominant contributions to T1 

are the Raman process and a local mode, both of which depend on the properties of the 

glass. The longer value of T1 for spin-labeled T4 lysozyme in trehalose than for PDT in 

sucrose octaacetate is proposed to arise because sucrose octaacetate is a softer glass than 

hydrogen-bonded trehalose [7].

PDT in water or 44% glycerol (τR is 9 or 19 ps, respectively) is near the rapidly-tumbling 

limit where motional averaging of anisotropy is nearly complete and T1 dominates T2. As 

tumbling slows incomplete averaging of anisotropy causes T2 to become very short and 

difficult to measure by pulsed EPR [25]. As tumbling slows further and the spectra approach 

the rigid limit, values of T2 become longer. Values of T2 about 0.5 μs at 295 K for 14N PDT 

and 15N-PDT in sucrose octaacetate and for T4 lysozyme spin labeled with 2 in trehalose 

indicate extensive immobilization [19], consistent with the rigid lattice lineshapes. For 

methyl-containing spin labels the averaging of electron spin couplings to inequivalent 

protons by rotation of the methyl groups causes a decrease in T2 at temperatures between 

about 100 and 200 K. This process is absent in spirocyclohexyl nitroxides [8].

3.2 Comparison of CW and rapid-scan spectra

The power saturation curves for 14N-PDT (Fig. 1) in sucrose octaacetate are typical of the 

samples studied. The region in which signal amplitude increases linearly with B1 extends to 
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higher B1 for the rapid-scan experiments than for CW, which permits use of higher 

microwave power without saturating the signal. This phenomenon has been observed 

previously in rapid scans of the E' center in irradiated fused quartz [4], nitroxides in fluid 

solution [2], amorphous hydrogenated silicon [5], N@C60 diluted in C60 [5], and the neutral 

single substitutional nitrogen centers (NS
0) in diamond [5]. In a rapid scan experiment the 

spin system is on resonance for a time that is shorter than in conventional CW, so higher B1 

can be used without saturation. The use of higher power (Table 2) and resulting increase in 

signal amplitude is a significant contributor to the improved S/N for rapid-scan spectroscopy 

[1].

The S/N for the rapid-scan absorption spectra is 6 to 30 times that for the CW first derivative 

spectrum (Table 2), which is a substantial advantage for weak signals. The S/N for the first 

derivative calculated from the rapid scan absorption spectrum has lower S/N than the 

original absorption spectra. This is due in part to the higher bandwidth of first derivatives, 

which limits the filtering that can be performed without broadening the spectrum [18]. The 

improved S/N for rapid-scan relative to CW spectra comes from three factors: (i) differences 

in signal amplitudes due to excitation of a small portion of the spectrum in the CW 

experiment vs excitation of the entire spectrum in rapid scan, (ii) the ability to use higher B1 

without power saturating the signal (Fig. 1), and (iii) the differences in the noise spectral 

densities in CW and rapid-scan spectra [1]. The improvement in S/N for rapid scan relative 

to CW was not as large for the spin-labeled T4 lysozyme sample as for the PDT samples. 

For the T4 lysozyme the linewidth is large due to the high spin concentration which 

permitted use of a higher modulation amplitude and therefore detection of a larger fraction 

of the signal amplitude than in the CW spectra of the PDT samples, which decreased the 

relative advantage of rapid scan. In addition, the large linewidths for the T4 lysozyme 

sample corresponds to a smaller signal bandwidth than for the narrow linewidths of the PDT 

signals. A higher scan rate for the T4 lysozyme sample would have been consistent with the 

resonator bandwidth and could have provided further improvement in S/N, but was not 

possible with the current hardware.

The S/N improvement for slowly tumbling spin-labeled protein samples that is provided by 

rapid scan EPR (Fig. 4) will be highly advantageous for biophysical studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• 155 G wide nitroxide spectra were scanned 26,800 times per sec.

• Signal averaged room temperature spectra were acquired in 10 s.

• Nitroxides were immobilized in sucrose octaacetate or trehalose glasses.

• Signal-to-noise was higher for rapid scan than CW for the same acquisition 

time.
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Figure 1. 
Power saturation curves at the peak of the absorption (rapid scan) or first derivative (CW) 

spectra of 0.15 mM 14N-PDT in sucrose octaacetate at 293 K. The scan widths were 155 G 

and rapid-scan frequencies were 7.7 or 13.4 kHz. The amplitude of the CW spectra is scaled 

to match that obtained for the rapid scans at low B1.
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Figure 2. 
CW and rapid-scan spectra of 0.15 mM 14N-PDT in sucrose octaacetate at 293 K obtained 

with 10 s acquisition time. (A) Absorption spectrum obtained by rapid scan with the 

parameters listed in Table 2, (B) first derivative spectrum obtained from (A) by numerical 

differentiation, and (C) field-modulated CW spectrum obtained with 100 kHz and 0.63 G 

modulation amplitude, which is 20% of ΔBpp = 3.2 G.
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Figure 3. 
CW and rapid-scan spectra of 0.018 mM 15N-PDT in sucrose octaacetate at 293 K. (A) 

Absorption spectrum obtained by rapid scan with the parameters listed in Table 2, (B) first 

derivative obtained from (A) by numerical differentiation, and (C) field-modulated CW 

spectrum obtained with 100 kHz modulation frequency and 0.9 G modulation amplitude, 

which is 20% of ΔBpp = 7.23 G. The data acquisition times were 10 s for (A) and 5 min for 

(C).
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Figure 4. 
CW and rapid-scan spectra at 293 K of spin label 2 attached to T4 lysozyme obtained with 

10 s acquisition times. (A) Absorption spectrum obtained by rapid-scan with the parameters 

listed in Table 2, (B) first derivative obtained from (A) by numerical differentiation, (C) 

field-modulated CW spectrum obtained with 100 kHz modulation frequency and 1.8 G 

modulation amplitude which is 20% of ΔBpp = 1.06 G
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