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1 Topological Spaces and Continuous Functions

Topology is the axiomatic study of continuity. We want to study the continuity of functions to and from the spaces
C,R™,C[0,1] = {f : [0,1] — R|f is continuous}, {0, 1}", the collection of all infinite sequences of Os and 1s, and H =
{(z)5° : 2 € R, Y. 22 < oo}, a Hilbert space.

Definition 1.1. A subset A of R? is open if for all z € A there exists € > 0 such that |y — x| < € implies y € A.

In particular, the open balls B.(z) := {y € R? : |y — 2| < €} are open. This definition of open lets us give a new definition
of continuity, other than the basic € — ¢ definition. To do this, first we need to define the preimage of a function: If f: X — Y
and A CY, then the preimage is f~1(A) = {z € X|f(x) € A}.

Lemma 1.2. A function f: R? — R? is continuous if and only if the preimage of every open set is open.

Proof. First suppose f is continuous. Consider an open A C R2. We want to show f~1(A) is open. Let z € f~1(A) (if
f71(A) = 0, done). As A is open, there exists € > 0 such that B.(f(z)) C A. By continuity, there exists § > 0 such that
ly — x| < § implies |f(y) — f(z)| < ¢, that is, f(y) € B(f(x)) € A. Thus y € f~1(A), which implies Bs(z) C f~1(A).
Therefore, f~1(A) is open.

Now suppose the preimage of every open set is open. Note that for all z and for all € that B.(z) is open. Let x € R? and
€ > 0 be given. By hypothesis, f~1(B.(f(x)) is open. So there exists § such that Bs(z) C f~1(B.(f(x))), that is, for all y
with |y — x| < J, we have f(y) € Be(f(x)), which says |f(y) — f(z)] <e. O

Properties of Open Sets in R?:

e Arbitrary unions of open sets are open.

e Finite intersections of open sets are open.
We want to abstract this notion to a more general setting. To do so, consider the following definition.
Definition 1.3. Given a set X, a topology on X is a collection T € P(X) such that

o For all A C 7, we have Upec A0 € T.

e For all O1,05 € 1, we have O1 N Oy € T.

e )X e
Given a topology 7 on X, we call the sets in T open or T — open and we call the pair (X, 7) a topological space.
Examples. The following are topologies.

1. The usual topology on R".

2. The discrete topology on X, where 7 = P(X).

3. The indiscrete topology on X, where 7 = {0, X }.

4. Let X = C[0,1]. Then we can define 7 by saying A is open if and only if for all f € A there exists € > 0 such that for
all g € X with sup,¢jo17[f(z) — g(z)| < € we have g € A.

5. The Zariski topology on R?, where A C R? is open if there exists polynomials fi,..., f, € C[z,y] such that A =
{(@, )| fi(z,y) =0,i=1,...,n}C.

6. The cofinite topology on X, where 7 = {A : |A®| < 0o} U {0}.
Examples. The following are continuous functions.

1. If R is the topological space of the set R with the usual topology, then f : R — R is continuous if and only if for all
x € R and for all € > 0 there exists § > 0 such that |y — x| < J implies | f(y) — f(z)| < e.

2. If X is any topological space, then idx : X — X defined by x — x is continuous.



3. If X,Y are arbitrary topological spaces and f : X — Y is constant (that is, for all z, x — yp), then f is continuous.
Lemma 1.4. If f: X —Y,g:Y — Z are continuous, then sois go f: X — Z.

Proof. Given A € 77, (go f)"1(A) = f~*(g~'(A)). By continuity of g, we have g~*(A) € 7y and by continuity of f, we have
g1 (4)) € x. O

Definition 1.5. A homeomorphism from X to Y is a bijection f: X — Y such that both f and f~' are continuous.

1.1 Bases

Definition 1.6. If B C P(X) is a collection of sets satisfying X = UpepB and for all A,B € B and all x € AN B, there
exists C € B such that x € C C AN B (that is, for all A,B € B, AN B € 75), then the topology generated by B is

™ ={A C X]| for all x € A, there exists B € B such that x € B C A} = {UpecB : C C B}.

In particular, B C 5. We call B a basis for 3.

Theorem 1.7. 75 is a topology.

Examples.
e The usual topology on R is generated by the basis {(x — €,z + €)|x € R,e > 0} = {(a,b) : a < b}.
e The discrete topology on X is generated by {{z} : z € X}.
e Bases are NOT unique: If 7 is a topology, then 7 = 7.

Theorem 1.8. If f : X — Y is a function and the topology on Y is generated by B, then f is continuous if and only if
f~Y(B) is open for all B € B.

Proof. We need only to prove the backward direction. So assume f~1(B) is open for all B € B. Consider A € 75. Then
A = UpgeaB for some A C B. Now, f~1(A) = f~1(UpeaB) = Ugeaf 1 (B). As f~1(B) is open, the union is. O

Definition 1.9. If S C P(X), then the topology generated by X as a subbasis is the topology
{arbitrary unions of finite intersections of sets in S}

with basis {S1N---NS,|n>0,8; €8,i=1,.,n}. [Note: This is a topology, if we consider N = X .

Theorem 1.10. If f : X — Y and a topology on Y is generated by a subbasis S, then f is continuous if and only if
fYS) € Tx forall S € S.

Proof. We need only prove the backward direction. So assume f~1(S) € 7x forall S € S. If A = S, N---N S, is a basic
open set, then f~1(A) =", f~1(S;) € 7x. Thus f~!(A) € 7x for all basic open sets A. Thus f is continuous. O

1.2 Product Topology

Suppose X; and X, are topological spaces. Then X; x Xy = {(z,y)|z € X1,y € X2}. The product topology on X; x Xs has
basis Bx,xx, ={U xV :U €7x,,V € 7x,}.

Example. In R?, we have two bases: By = {B.(z) : * € R% e > 0} and By = {U x V : U,V are open in R}. In fact,

TB, = TB,. 10 prove this fact, note that B; C 73, and vice versa.
Theorem 1.11. Bx, xx, s a basis.

PTOOf. X1 x Xy = X7 x Xy, were X; € TX17X2 € TX,- Thus X; x X, € BX1><X2~ Note that (Ul X Vl) n (UQ X ‘/YQ) =
(UlﬂUg) X(Vlﬂ‘/Q)GBXlxX2~ -



Lemma 1.12. If 7 is a topology on X and B C 7, then B is a basis for T if and only if
1. UpepB 2 X

2. For oll A € T and for all x € A, there exists B € B with x € B C A. (Equivalently, for all A € T, A = UpecB where
CCB.

Proof. Note that for B,B’ € B, BN B’ € 7. Hence, for all x € BN B’, there exists C € B withz € C C BN B’. So B is
a basis for some topology. Since B C 7, any union of a subfamily of B belongs to 7. Thus 73 C 7. Now, condition (2) says
A C 7 implies A C 75. Thus 7 = 73. O

Lemma 1.13. If By, B are bases for the topologies on X1, Xa, then Biyxo = {B1 X Ba|B; € B;} is a basis for Tx,xx,-

Proof. Certainly Bix2 C Bx,xx, C Tx,xx, and X3 x Xa = (Upep, B) X (Uprep, B = UB x B’ = Upep, ,,B. Now suppose
x € A € Tx,xx,- Then if x = (1, x2), we see there exists U; € 7x, such that (x1,z2) € Uy x Uy C A. Since B; are bases,
there exists B; € B; such that x; € B; C U;. Thus « € By x By C Uy x Uy C A. O

Definition 1.14. The projection maps are defined as w; : X1 x Xo — X; where (x1,x2) — x; fori=1,2.
Note m; is continuous since, for A € 7x,, 7r1_1(A) = A x Xy € Bx,xx, € Tx,xx, and similarly for m5. Also, a function

f:Z — X xY is continuous if and only if 7 o f and 75 o f are continuous.

1.3 The Subspace Topology

If X is a topological space and Y C X, then we define the topology on Y by v = {Y NA: A€ rx}.
Lemma 1.15. 7y s a topology.
Examples.

1. Consider Q@ C R. Then A C Q is open if A = A’ N Q for some open A’ in R.

2. Let Y :=[0,1) U (1,2]. Then [0,1) is open in Y. In fact, [0,1) = Y N (—o00,1). Also note that ¥ can be partitioned into
two open sets: [0, 1) and (1, 2].

3. L={1},>1U{0} C R. Each {1} is open and each open set around 0 contains {1 },>,, for some ng. Notice if f : L — R

is defined by % — fn and 0 — fo, then f is continuous if and only if f,, — fo as n — oco.

Remark. Consider the space NU {co} where the topology has basis {{n}},en U {[n, o0]}nen. Here, we say a sequence (z,)

in a topological space X converges to {z} if f: NU {oo} — X defined by n — z,, and co — z is continuous.
Lemma 1.16. If B is a basis on 7x and Y C X, then {BNY : B € B} is a basis for the subspace topology on Y.
Definition 1.17. The inclusion map is defined asi:Y — X where y — y.

Note. The inclusion map is continuous as for all A C X, i~}(4) = ANY. Also, if f : Z — Y is continuous, then so is
iof:Z—X.

Theorem 1.18. A function f: Z — Y is continuous if and only if g=1io f : Z — X is continuous (where i : Y — X is the

inclusion map).

Proof. The forward direction is clear by the continuity of compositions. So suppose ¢ is continuous. Let A=Y NA' € 1y
for some A’ € 7x. Then f~1(A) = f~1(A'NY) = g~ 1(A’). By hypothesis, f~1(A) is open. O

Theorem 1.19. 1. If f: X =Y is continuous, then so is fla: A—Y forall AC X.

2. If f: X =Y and f(x) CZ CY, then g : X — Z defined by x — f(x) is continuous if and only if f is continuous.



1.4 The Quotient Topology

If ~ is an equivalence relation on a topological space X, then X/ ~= {[z] : # € X} and the quotient topology on X/ ~ is
defined to be 7y = {A C X/ ~ |¢"*(A) is open in X} where ¢ : X — X/ ~ defined by p — [p] is the quotient map.

Theorem 1.20. The quotient topology is in fact a topology. Moreover, q : X — X/ ~ is continuous and a function

f: X/ ~— Z is continuous if and only if f o q is continuous.

Proof. To prove the quotient topology is a topology, note that ¢=1(0) =0 € 7x,q }(X/ ~) = X € 7x, for all A;, Ay € X/ ~,
g HAINAY) =g (A1) Ng 1 (As) € 7x, and ¢ (UaeaA) = Uacaq ' (A) € 7x. For the moreover statement, it is clear that
q is continuous and that f continuous implies f o ¢ is. So suppose f o ¢ is continuous and let A € 77. Note that f~1(A) is
open if and only if ¢=!f~1(A) is open and of course ¢~ 1 f~(A) = (f o ¢) 1 (A), which is open. O

Examples. The following are quotient topologies.
1. [0,1]/(0 ~ 1)

2. R/ ~ where x ~ y if and only if x — y € Z. This is often written as R/Z. This is in fact homeomorphic to [0,1]/(0 ~ 1)

and can be thought of as a circle.

3. R?/Z2, defined similarly to the above. By identifying the top and bottom of the unit square and the two sides, we see
that this can be thought of as a torus.

4. Let D? = {z € R? : |z| < 1} and ~ be generated by = ~ y if and only if |z| = |y| = 1. Then D?/S! := D?/ ~== §2.

[S1

5. SY/(x ~ —x) = ST,

6. S?/(x ~ —x) is known as a cross-cap.
O @



1.5 The Metric Topology
Definition 1.21. A metric on a set X is a function d: X x X — Ry>0 satisfying
1. Forallz,y € X, d(z,y) =0 if and only if x = y.
2. Forallz,y € X, d(z,y) = d(y, x).
3. For all x,y,z € X, d(z,2) <d(x,y) + d(y, 2).
If d is a metric on X, then the metric topology T4 is the topology with basis { Be(x)}pex,e>0 where Be(z) = {y € X : d(z,y) <
€}
1.6 Topology from the Other Side
Definition 1.22. A set C in a topological space X is closed if CC is open.
Facts.
1. 0, X are closed in X.
2. Finite unions of closed sets are closed.
3. Arbitrary intersections of closed sets are closed.
Theorem 1.23. If Y C X, then C is closed in 'Y if and only if C = DNY for some D closed in X.

Proof. Suppose C is closed in Y. Then C¢ =Y \ C is open in Y, which says Y\ C = Y N A for some A open in X. Thus
C=YN(X\A) =Y NAY where A is closed. On the other hand, if C' =Y N D where D is closed, then Y \ C =Y n D®
where D is open in X. Thus Y \ C is open in Y, which says C is closed in Y. O

Definition 1.24. A neighborhood of a point x in a topological space X is an open set A with x € A.

Definition 1.25. The closure of a set A C X is the set A= {x : every neighborhood of x meets A}. Equivalently, A is the

smallest closed set containing A.
Note. The smallest closed set containing A is clearly NgeeC' where C is the set of closed sets containing A.
Theorem 1.26. The two definitions of closure are indeed equivalent.

Proof. Note x € NeC' if and only if there does not exist closed C with A C C but = ¢ C, which is if and only if there doest
not exist an open U such that x € Y but ANY = (), that is, every neighborhood of x meets A. O

We can similarly define the interior of a set A to be AY = {z| some neighborhood of x is contained in A}. Equivalently,

A© is the largest open set contained in A, namely Uy open,ucAU.
Note. (A)¢ = (A9)°.
Theorem 1.27. I[f ACY C X, then A= (ZX) NY, where A" denotes the closure of AinY.
Proof. Note that A' = Necy eosed,AccC =NpCX closed,acpDNY = (ND)NY = @Y. O
Definition 1.28. We say z is a limit point of A if every neighborhood of x meets A\ {x}. Let A’ = {limit points of A}.
Example. Let A= ((0,1)NQ) U {5,—1}. Notice 3 € ANA’,0€ A’\ A,5€ A\ A". Clearly, A’ C A. Indeed, A= AU A’
Note. A is closed if and only if A’ C A which is if and only if A = A.
Theorem 1.29. If f: X — Y is a map between topological spaces, then TFAE

1. f is continuous

2. For all AC X, f(A) C f(4)

3. For all closed C CY, f~1(C) is closed in X.



4. For all x € X and for all neighborhoods U of f(x), there exists a neighborhood V' of x such that f(V) C U.

Proof. (1= 2): Suppose f is continuous, but x € f(A)\ f(A). Then there exists an open neighborhood U
of x with U N f(A) = 0. Now f~1(U) is open. As z € f(A), there exists y € A such that f(y) = z. But
y € f~1(U), which implies f~1(U) is a neighborhood of y disjoint from A, contradiction.

(2=4): Consider x € X with f(z) =y and U a neighborhood of y. We want to show there exists a neighbor-
hood V of = with f(V) C U. Let A = f~Y(U®). We know f(A) C f(A) C UC = UC. In particular, = ¢ A.
So there exists a neighborhood V' of x with V N A =0, that is f(V) C U.

(4=2): Suppose (4) is true and A C X. Let f(z) = y for some z. If y & f(A), then there exists a neighborhood
U of y with UN f(A) = 0 and by assumption there exists a neighborhood V' of x such that f(V) C U. Then
VNA=0(implies x ¢ A. Thus y ¢ f(A).

(1<3): Note that f~1(AY) = [f~1(A)]°. As AY is closed if and only if A is open, this is clear.

(3=2): Suppose the preimage of a closed set is closed and let A C X. Then C = f~1(f(A)) is closed. Of

course, A C C implies A C C. Thus A C f~1(f(A)) which implies f(A4) C f(A).

(4=3): Suppose C is closed. We want to show f~1(C) is closed. We will show for all x ¢ f~1(C) that there
exists a neighborhood V of = with VN f~1(C) = §). We have f(z) € C open. So there exists a neighborhood
V of x with f(V) C O, that is, C C f~1(C°) = f~1(C)Y, that is, V N f~1(C) = 0. 0

Lemma 1.30 (Pasting Lemma). Let f : X — Y and X = UYC;, where C; closed or X = UQ,, where O,, are open. Then

f is continuous if and only if f|c, is continuous for all i and f is continuous if and only if flo, is continuous for all .

Proof. Let C be closed in Y. Then f~1(C) = U ,CiN f~1(C) = U, (f|c,) ~H(C). Now, (f|c,)~1(C) is closed in Cj, that is,
there exists D; closed in X with C; N D; = (f|c,)~1(C). Of course, C;, D; closed in X implies C; N D; is closed in X. Thus
(fle,)~H(C) is closed in X, which says f~1(C) is closed in X.

Now suppose A is open in Y. Then f=1(A) = Us f~1(A) N O = Ua(flo, ) 1(A). By hypothesis, (f|o, ) 1(A) is open in
O., that is, there exists U, such that (f|o,) " '(A) = U, N O, for U, open in X. Thus f~!(A) is a union U, (Uy N Oy) of

open sets and therefore is open. O

Note. The essence of the proof is that “closed in closed is closed” and “open in open is open.”

Separation Conditions

Definition 1.31. A topological space X is said to be Ty if {x} is closed for all z € X. To be more precise, for all x,y € X
with y # x, there exists a neighborhood U of y such that x & U. We say X is Hausdorff if for all x,y € X with x # y, there
exists a neighborhood U of y and a neighborhood V' of x such that U NV = {).

Clearly, Hausdorff implies 77. However, T7 does not imply Hausdorff.

1.7 Product Topology Returns

We talked about X x Y and how the generalization to X; x --- x X, is straightforward. However, what should the topology
on RY look like? Note that unlike in the finite case the basis B = {[];c 4 4 : A € 7x,,i € I} and the subbasis S = {ﬂ)_(il(Ai) :
i €I, A; € Tx,} typically do not generate the same topology.

Example. Let X = (RN 75). Define f : R — X by t — (t,t,¢,...). Then f is not continuous. For, consider A =

(=1,1) x (=%,3) x (—5,3) x -+, a basic open set. Clearly, f~*(A) = {0}, which is not open. The topology 73 is called the

box topology.
The example above shows that the box topology is really not what we want the product topology to be. So, we define
the product topology to be that generated by S. We will show that this is indeed the topology we want, but first we need

to following lemma.



Lemma 1.32. 7; : [[;c; Xi — X is continuous.
Proof. For A open in X, 7TJ~_1(A) is a subbasic set and thus open. O

Theorem 1.33. If f : Y — ]

continuous for all i € I.

ser Xi and [],c; Xy has the product topology, then f is continuous if and only if m; o f is

Proof. For the forward direction, note that m; o f is the composition of continuous functions and is thus continuous. For the
backward direction, recall that f is continuous if and only if the preimage of every subbasic open set is open. Let 7, 1(A) be
a subbasic open set. Then f~!(m;'(A)) = (m; o f)~(A), which is open by the continuity of 7; o f. O

Theorem 1.34. If X; is Hausdorff for i € I, then so is [[;c; Xi.

Proof. If (z;); # (y;)1, then there exists j such that z; # y;. Let U,V be neighborhoods of x;,y; respectively in X; such
that UNV = 0. Now, z € W;l(U) and y € 7T;1(V), both of which are open and 7r;1(U) N 7r;1(V) =0. O

Theorem 1.35. If [[; A; C [[; Xi, then [[; Ai = ] 4.

Proof. For C, note that m;([[; A;) C m;([]; A;) = A; as 7; is continuous. For D, suppose (y;) € [] 4;, that is, y; € A; for
all i but (y;) & [] A;. Then there exists U open in [[ X; with (y;) € U but U N ([] 4;) = 0. Then there exists a basic open
set B = 7ri_11(01) N---nN 7ri_n1(0n) where (y;) € B C U. As y;, € A;,, there exists x;, € O;, N A;,. Similarly, there exists
x;, € O, NA;, for all k < n. Let (z;) € [ X; be any sequence with those values in those coordinates and z; € A; for all
other coordinates [note that if A; = @, then [[4; = 0 = 0 = [] 4;]. Now (z;) € ([] A;) N B = 0, a contradiction. O
1.8 The Quotient Topology Returns

Let f : X — Y be any surjective map. Define an equivalence class ~y on X by x ~y z if and only if f(z) = f(z). Then,
there is a one to one correspondence between Y and X/ ~; defined by y < [z] where € X is such that f(z) = y.

Definition 1.36. We say f is a quotient map if the topology on Y is the “same” as the topology on X/ ~y, that is, the

canonical bijection is a homeomorphism, that is, for A CY, A is open if and only if f~1(A) is open.
Recall the function f : R? — R defined by (z,y) — x + y* on homework 2. This is a quotient map.
Theorem 1.37. X/ ~;=Y by the canonical bijection if and only if f is a quotient map.
Theorem 1.38. Let f: X — Y be a surjection.
1. f is a quotient map if and only if we have A C'Y is closed < f~1(A) is closed.
2. f is a quotient map if and only if f is continuous and for any saturated open set A in X we have f(A) is open.
3. If f is open and continuous, then it is a quotient map.
4. If f is closed and continuous, then it is a quotient map.

Proof. 1. A'is open in Y if and only if AY is closed in Y which is if and only if f~1(A)¢ = f~1(A®) is closed in Y, that

is f71(A) is open in X. Similarly, swap “open” and “closed.”

2. For the forward direction, suppose f is a quotient map and A a saturated open set. Then f(A) is open as f~1(f(4)) = A
is open. For the backward direction if f maps saturated open sets to open sets and is continuous, then A open in Y
implies f~!(A) is open in X by continuity and f~!(A) open implies f(f~*(A4)) = A is open as f~1(A) saturated and

open.
3. If f is open and continuous, then it is a quotient map by (2).

4. If f is closed and continuous and A C Y has f~1(A) closed, then we conclude f(f~1(A)) = A is closed and we are done
by part (1). O

Example. The projection map 7x : X X Y — X is continuous and open. Thus X x Y/ ~, = X.



Theorem 1.39. If q: X — Y is a quotient map and g : X — Z is constant on ¢~ ({y}) for all y € Y, then there exists a
unique f 1Y — Z such that f(y) = g(z) for all z € ¢~ ({y}), that is, g = f o q. Also, f is continuous if and only if g is

continuous, and f is a quotient map if and only if g is a quotient map.

X

I
q

y-L-7

Proof. Certainly, f is well-defined since if z,2’ € ¢~!({y}), then g(x) = g(2'). We already know f is continuous if and only
if g is continuous. So suppose g is a quotient map. If A C Z and f~*(A) is open, then ¢~ 1(f~1(A)) = g~ *(A) is open in X.
As g is a quotient map, A is open. Similarly, if f is a quotient and g=!(A) is open in X, then ¢~ ! f~1(A) is open and thus
f71(A) is open. Thus A is open. O

1.9 The Metric Topology Returns

Examples.
. . : 0 ifz=y, .
1. The discrete metric on a set X is defined by d(z,y) = This induces the discrete topology as {z} =
1 ifzx#y.
B; (x)

2. The usual metric on R"™ is defined as da(z,y) = /> (x; — y;)2.

3. The ¢;—metric on R" is defined as dq(z,y) = D7 |vi — vil.
4. The ¢, —metric on R"™ is defined as do(x,y) = max; |x; — y;|-

Claim. The above 3 metrics generate the same topology on R"™.

Proof. To prove that do generates the d; metric, for example, it is enough to show that dy balls are open
under the d; metric. It is easy to show 1dy(z,y) < deo(w,y) < d2(w,y) < di(x,y). This quickly shows

that in fact a ball under one metric is open under another metric.

5. K = {closed, bounded subsets of R?}. Given A C R? define A, = {y| there exists € A with da(z,y) < €}. Define
the engulfing number for A and B to be e(4, B) = inf{e : B C A.}. Note that e(A, B) = sup,¢pinfzead(z,y) =
sup,cp d(y, A). Now, we can define a metric di(A, B) = e(A, B) + (B, A).

1.9.1 Metrics on RY

Theorem 1.40. If (X,d) is a metric space, then d(z,y) = min(d(x,y),1) is a metric on X and induces the same topology

as d.

Proof. Certainly d is symmetric and 0 if and only if z = y. So we need only show the triangle inequality holds. If d(z, z) or
d(z,y) is 1, done. Otherwise,
d(z,y) < d(z,y) < d(z,2) +d(z,y) = d(z,2) + d(z,y).

Thus d is a metric. To show it induces the same topology, we want to show every d ball is d—open and vice versa. Of
course, d—balls are either d—balls or X, both of which are d—open. If y € B () and we set § = min(%7 e — d(z,y)), then
B(gd) (y) = Béd)(y) c BY (z). Thus every d—ball is d—open. O

A standard metric on X where (X, d) is a metric space is doo () e, (Y5)jes) = sup; d(z,y;) < 1. This metric is called

the uniform metric and it induces the uniform topology.

Examples.

1. f:R— (RN d,) defined by t + (t,t,t...) is continuous.

Proof. If 0 < € <1, then Bc((t,t,t,...,)) 2 (t— 5,6+ 5) x (t—5,t+5) x---.So f~HBe(t,t,..)) 2 (t =5, t+5). O



2. f:R— (RN, d) defined by ¢+ (1,t,t2,...) is not continuous.

Proof. We will show f is not continuous at 2. If 0 < € < 1, then f~!(B.(1,2,4,8,..)) CRN(2—¢€2+¢) N (t —
)t d—ed+e)n---N(t—t")H2" — €27 +€)N--- = {2}. As {2} is in the preimage, we see it is not open. Thus
the uniform topology is not the product topology. O

Let Z = YX where Y is a bounded metric space and X a topological space. Then Z = {f : X — Y}. A sequence of
functions (fp)n>o0 with f,, : X — Y converges to f in (Z,d) if for all € > 0 there exists N € N such that n > N implies
doo(fr, f) < €, that is, for all € > 0 there exists N € N such that n > N and x € X implies doo(frn(z), f(2)) < €, that is,

fn — f uniformly.
Theorem 1.41. If f,, € Z and f, LN f and f, is continuous for all n, then f is continuous.

Proof. Suppose z € X and V' a neighborhood of f(zg) = yo in Y. WLOG, V = B.(yo) for some ¢ > 0. By uniform convergence,
there exists IV such that n > N implies for all z € X d(fn(z), f(z)) < §. By continuity, there exists a neighborhood U of
xo such that 2 € Y implies d(Fn(z), fn(w0)) < §. So for x € U, we see d(f(x), f(wo)) < d(f(z), fu(x)) + d(fn(z), fr(z0)) +
d(fn(20), f(20)) <35 =€ O

Fact. If we define the following metric on RY : D(xz,y) = sup;, M, where d is the standard bounded metric on R, then

D induces the product topology.

2 Connectedness

Definition 2.1. X is disconnected if there exists open A, A® in X with A, A # 0. The pair {A, A®} is called a discon-

nection. Say X is connected if it has no disconnection.
Theorem 2.2. Let X be a topological space. TFAE
1. X 1is disconnected
2. There exists a continuous f : X — {0,1} surjective, where {0,1} has the discrete topology.
3. There exists a continuous function f: X — Y surjective where Y is discrete and has > 2 points.
4. There exists A C X with A # () and BdA = 0.

Proof. We have proved (4) < (1) as BdA = () if and only if A is closed and open, that is A, A® are open. Also (2) = (3) is
clear. To prove (3) = (2), pick an arbitrary B € Y with B # 0,Y and define ¢: Y — {0,1} by y — 1 if y € B and y — 0 if
y ¢ B. This is continuous (as Y is discrete) and go f : X — {0, 1} is surjective. To prove (1) = (2), define f : X — {0,1}
by z+ 1if z € A and 0 if x € AC. Clearly f is continuous and surjective. Lastly, to prove (2) = (1), note if f : X — {0,1}
is continuous, then {f~1({0}), f~*({1})} is a disconnection. O

Theorem 2.3. If f: X — Y is continuous and X is connected, then so is Y. [That is, the continuous image of a connected

space is connected.]

Proof. Suppose Y is disconnected. Then there exists g : Y — {0,1}. Of course, then go f : X — {0,1} is continuous and

surjective, that is, X is disconnected. O
Definition 2.4. I C R is an interval if and only if for all x <y < z with x,z € I, we have y € I.
Theorem 2.5. I C R is connected if and only if I is an interval.

Proof. For the forward direction, let I C R be connected. If there exists a,b,c € R with a < ¢ < b, a,b € I but ¢ & I, then
IN(—o0,c) and I N (c,00) is a disconnection of I, contradiction.

For the backward direction, suppose I is an interval and I = BUC where B,C are open in I with x € B,y € C and
WLOG z < y. Let T = {t : [z,t] C B} and z = supT. Then z < z < y. If z € B, then there exists ¢ > 0 such that
(z — €,z + €) C B which implies z # sup T, a contradiction. If z € C, then there exists ¢ > 0 such that (z —¢,z2+¢) € C

which again implies z # sup T, a contradiction. O



Corollary 2.6 (Intermediate Value Theorem). If f : X — R is continuous, X is connected, and a,b € f(x) with a < b,
then [a,b] C f(X).

Proof. We've prove that f(X) is connected and thus f(X) is an interval. By above theorem, done. O
Notes.
e Subspaces of connected spaces are not necessarily connected. For example {0,1} C R.
e Quotients of connected spaces are connected (as ¢ : X — X/ ~ is continuous).
Lemma 2.7. If f: X — {0,1} is continuous and Y C X is connected, then f|y is constant.
Lemma 2.8. IfY, C X is connected and N;Y, # 0, then Y = UrY, is connected.

Proof. Suppose f : Y — {0,1} is continuous. We know f|y, is constant for all a. If p € N;Y,, then f|y, = f(p). So [ is

constant. O
Theorem 2.9. If X,Y are connected, then so is X x Y.

Proof. If X = (), done. Note that for z € X,y € Y that {z} XY 2 Y and X X {y} = X are connected. Since they meet,
their union is connected. Fix yo € Y and define T, = {2} x Y U X X {yo}. Each T, is connected and N7, = X x {yo}. Thus
UzexT, = X XY is connected. O

Lemma 2.10. IfY C Z CY are subspaces of X and Y is connected, then so is Z. In particular, Y connected implies Y is

connected.

Proof. Suppose f : Z — {0,1} is continuous. Then f|y is continuous and hence constant. Say f|y = 0. Note f(Z) =
—7 —_
fY7) c f(Y) ={0} = {0}. -

Theorem 2.11. If X, are connected, o € I, then so is X = Hael Xa.

Proof. If X, = (), then so is X and we are done. Otherwise, there exists z = (z,); € X (by the Axiom of Choice). For a finite

subset K of I, define Xx = {y € [[ Xo : Yo = Ta,a & K}. Hence X =[] X, is connected. Note {z} € N Xk
KCI,|K|<oo

acEK

and so U X is connected.
KCI,|K|<oco

Claim. W = [laes Xa-

Proof. If y € []; Xo and N is a basic open neighborhood of y, then N = 7,1(O1) N --- N7, 1(0y,) for some

Qn

Yo IfaeK,
ay,....,an € 1,0; € Tx, . Let K = {oq,...,an } and define z, = . Then z = (z,) € NN Xk.
' o ifaéK.
So y € UXk.
Thus ] X, is connected. O

Definition 2.12. Let X be a topological space. Define x ~ y if there exists C C X connected with x,y € C. The (connected)

components are defined to be the equivalence classes under ~ .

Theorem 2.13. ~ is an equivalence relation. The components of X are connected and closed (but not necessarily open). If
there are a finite number of components, then they are open. Components are maximal connected subspaces. Any connected

subspace is contained in some component.

Proof. If x ~ y,x ~ z then there exists connected C, C, with z,y € Cy and z, 2z € C,. Then CyUC, is connected and contains
y, 2. Thus y ~ z. Now, [z] is connected as for all y € [z] there exists C, connected such that x,y € C,. So [x] = Uy¢[;Cy is
connected. If [z] C C and C is connected, then z € [z] for all z € C. So C = [z], that is, components are maximal connected

sets. To show components are closed, note that [z] is connected and [z] C [z], thus they are equal. If the components of X
are C1,Cy, ...,C,, then C; = (Uj#Cj)C is open. Lastly, if 2 € C is connected, then C C [z]. O

Example. Let X = Q. Note that Q N (—oo, %) and QN (%, 00) is a disconnected of any A C Q with 0,1 € A.



2.1 Path Connected

Example. The topologists sine curve: Let G := {(z,sin 1) : 2 € (0,1]},1 = {0} x [-1,1] and S = GUI. Then S is connected

as it is the closure of G which is connected as it is the continuous image of the interval [0, 1].

Definition 2.14. A space X is path connected if for all v,y € X there exists a path in X from x toy. A path from x to
y is a continuous function vy : [0,1] — X such that v(0) = z and v(1) = y.

Lemma 2.15. X path connected implies X is connected.

Proof. Suppose f : X — {0,1} is continuous. Pick x € X. If y € X, there exists v : [0,1] — X continuous with v(0) =
x,7(1) =y. So fovy:]0,1] — {0, 1} is continuous and hence constant. Thus f(z) = fv(0) = fv(1) = f(y). O

Example. Consider the topologists sine curve again. We will show S is in fact not path connected. For suppose v is a
path rom (0,0) to (1,sin1). Let ¢t = inf{s : w1 (y(r)) > 0 for all r > s}. WLOG, ¢t = 0 (otherwise, we can rescale as t < 1).
So 7(v(0)) = 0 and w(y(s)) > 0 for all s > 0. Let v(t) = (x(¢),y(¢)) so that we have £(0) = 0 and z(s) > 0 for all s > 0.
Since z(t) is continuous, there exists ¢; > 0 such that z(t;) = 2, that is, y(t;) = 1. Then there exists t; < & such that

z(tz) € (sin1)71(—1), that is, y(t2) = —1). Further, we can find t3 < % such that y(t3) = 1. Inductively, there exists a

sequence t, — 0 such that y(t,) = (—=1)"*!. By continuity, y(t,) — y(0), a contradiction as (—1)"*! does not converge.

Definition 2.16. If X is a topological space, we consider the equivalence relation of being joined by a path. The path

components of X are the equivalence classes.

Fact. Path components are path connected and maximal path connected spaces. The continuous image of a path connected

space is path connected.

Example. The path components of S are G and I, but G is not closed in S. Thus path components are not necessarily

closed.

2.2 Locally connected

Definition 2.17. A space is locally connected if connected open sets form a basis for the topology, that is, for all O € T
and x € O, there exists U such that x € U C O and U is connected.

Example. R is locally connected, but S is not (for example B1(0,0) has no connected neighborhood of 0 in it).
Theorem 2.18. X is locally connected if and only if for all O open in X every component of O is open.

Proof. For the forward direction, suppose X is locally connected and O is open. Let C' be a component of O. If x € C, then
by local connectivity there exists a connected neighborhood N with x € N C O. Since N is connected, its contained in the
component C, that is, z € N C C. Thus C is open.

For the backward direction, if x € O is some open set, we want to find a connected open N with x € N C O. Let N be

the component of O containing x. O
Corollary 2.19. If X is locally connected, then components are open.
Proof. Apply the previous theorem to the open set X. O

One can also talk about locally path connected.

3 Compactness

Definition 3.1. A space X is compact if for all O C 7 such that UO = X (that is, for all open covers) there exists
O1,..,0, € O such that UTO; = X.

Examples.
1. [0,1] is compact (proof later)

2. R is not compact as {(—n,n)} is a cover with no finite subcover.



3. (0,1) is not compact as {(£,1— 1)} is a cover with no finite subcover.

4. {0} U{L} C R is compact as any open set containing 0 contains {1}, for some ng.
5. If X is finite, then it is compact.

Lemma 3.2. IfY C X, then Y is compact if and only if for all O C tx such that UO DY, there exists O1,...,Op € O such
that UTO; 2'Y.

Proof. For the backward direction, if & C 7y has U =Y, then there exists O C 7x such that Y = {UNY : U € O} and
UO D Y. So, by hypothesis, there exists O, ...,0, € O such that Oy U---U O, D Y. Then defining U; = O; NY, we get
U, e U and UTU; =Y. The forward direction is similar. O

Theorem 3.3. If f : X —» Y is continuous and X is compact, then so is Y.

Proof. If O C 1y has UO =Y, define Y = {f~1(0) : O € O}. Then UU = X which implies there exists Oy, ..., O,, such that
X = Urf~H0;). By surjectivity, Y = UO;. O

Corollary 3.4. Quotients of compact spaces are compact.
Theorem 3.5. [a,b] C R is compact.

Proof. Let O C 7 have UO D [a,b]. Let S = {s : [a, s] has a finite subcover of O,s < b}. Then s # § as a € S and S is
bounded above by b. Let ¢ = sup S.

Claim. ¢ > a (unless b = a).
Proof. There exists O € O such that a € O and € > 0 such that (a —€,a+¢) CO.Soa+ 5 € S.
Claim. ¢ =b.

Proof. If not, then ¢ < b. So there exists O € O such that ¢ € O. Then there exists ¢ > 0 such that
(c—€,c+€) € Oand x € SN(c—e¢,c]. Then [a,z] has a finite subcover Oy, ..., O,. Now, OUUTO; is a cover
of [a,c+ 5], a contradiction as ¢ is an upper bound.

Claim. b € S.
Proof. There exists O € O and € > 0 such that (b—e,b+¢) C O € O. Now there exists z € SN (b—epsilon, b].
Then, [a,z] has an open cover Oy, ..., O,, which implies {O} U {O;}} is a finite subcover for [a, b]. O
Theorem 3.6. 1. If K is a closed subspace of a compact set X, then K is compact.
2. If K is a compact subspace of a Hausdorff space X, then its closed in X.

Proof. 1. If O C 7x has UO D K, then OU{K“} C 7x has union equal to X. So there exists Oy, ...,0,, € OU{K%} such
that U7O; = X. Then U({0;}7 \ {K“}) 2 K and is a subcollection of O.

2. Suppose z € K. Then for all y € K, there exists Oy, U, disjoint such that O, is a neighborhood of = and U, is a
neighborhood of y. Then U,U, 2 K and so there exists y1,...,y, € K such that UTU,, 2 K. Let O = N7O,,. Then
O n (UtU,,) = 0. In particular, O N K = (). Thus we have found a neighborhood of z that does not meet K. O

Lemma 3.7 (Tube Lemma). IfY is compact and N C X xY is open with {xo} x Y C N, then there exists a neighborhood
of xg in X (say W) such that W xY C N.

Proof. For all y € Y there exists O, x U, C N such that O, is a neighborhood of 2y € X and U, is a neighborhood of
y € Y. Then {U,} ey is an open cover of Y, which implies there exists y1, ..., Y such that Y = U}U,,. Let W = N7O,,. Then
W xY CcuUto,, xU,, € N. O



Theorem 3.8. If X, Y are compact, then so is X x Y.

Proof. Suppose O is an open cover of X x Y. Then for all x € X, O is an open cover of {z} x Y. So there exists n, and
OS’”, ., 0% € O such that {z} xY C U?IOZ(I). Then there exists W, such that W, x Y C UT" ng). By compactness of X,
there exists x1, ..., Ty, such that X = UP'W,,. Thus X x Y = (U['W,,) x Y =U"W,, x Y C U U;ij Oixj). O

Corollary 3.9 (Heine-Borel). K C R"™ is compact if and only if it is closed and bounded.

Proof. For the forward direction, as R™ is Hausdorff, K is closed. If K is unbounded, then U$°B,,(O) (where O is the origin)
is an open cover of K with no finite subcover.
For the backward direction, if K is bounded for some B > 0, then K C [-B, B] x ---[—B, B]. The right hand side is

compact. As K is closed, it must be compact as well. O

Corollary 3.10. If f : X — R is continuous and X compact, then f is bounded and attains its bounds.

Proof. f(X) compact in R implies f(X) is closed and bounded. O

Remark. If 7x is generated by a basis B and every cover by basic open sets has a finite subcover, then X is compact.

Perhaps more astounding is the following.

Lemma 3.11 (Alexander’s Subbasis Lemma). If 7x is generated by a subbasis S and every open cover by subbasic open

sets has a finite subcover, then X is compact.
Proof. If X is not compact, consider the set
O = {0 : O C 7 is an open cover with no finite subcover}

ordered by inclusion. Suppose C C O is a chain. Then &/ = UC is an open cover with no finite subcover and is an upper

bound. By Zorn’s Lemma, O has a maximal element M.
Claim. M NS is an open cover (and hence has a finite subcover, a contradiction).

Proof. Suppose x & U(MNS). There exists O € M withz € O and S, ..., S,, € S such that x € S1N---NS,, C
O. Since z ¢ UMNS), we know S; ¢ M for i = 1,...,n. By maximality, M US; has a finite subcover, call it
FiU{S;} where F; C M. Then UF; D Sic which implies 7 = U} F; covers everything except S1N---NS, C O.
So FU {0} C M is a finite subcover of M, a contradiction.

Thus M NS is an open cover and thus by hypothesis has a finite subcover. But then, M has a finite subcover, a contradiction.
O

Corollary 3.12 (Tychonoff’s Theorem). If X; for i € I are compact topological spaces, then X = [],.; X; is compact.

iel

Proof. Let S = {m; }(O) : O € 7x,,i € I} be the standard subbasis for 7x. Consider O C S, an open cover. Let O; = {O €
7 1(0) € O}.

TX;
Claim. Some i has O; an open cover of X;.

Proof. Tf not, then for all i there exists x; € X; such that z; € UO;. Let © = (2;)ics. Then & € S for some
SeOandS= 7ri;1(0) for some ig € 1,0 € 7x, . But then z;, € UO;,, a contradiction.

Thus if X; = UQ;, we have Oy, ...,0,, € O; such that X; = UTO; and 7ri_1(01), oy 1(0,) € O s a finite subcover of O. [

K2

Example. {0,1}" is compact. This is called the Cantor Space as it is homeomorphic to Cantor’s middle third set.



4 Completeness and Compactness in Metric Spaces

Definition 4.1. A metric space (X,d) is complete if every Cauchy Sequence converges. (A sequence (Tn)n>1 is Cauchy
if for all € > 0, there exists N € N such that d(xn, xm) < € for n,m > N.)

Examples.
1. R is complete with its usual metric.
2. R=(0,1) but (0,1) is not complete as (1 — 1) is a Cauchy sequence which does not converge.

3. Qis not complete. Any sequence (gy,,) of rational approximations to 7 converging in R to 7 is Cauchy, but not convergent
in Q.

4. R* with any of its usual metrics is complete.

Proof. Suppose (r,,) is a Cauchy sequence in R*¥. We have for all i = 1,....k that |m;(x,) — 7 (z)| < d(zp,2m) for
any d = dq,ds, dw, ... and so (z,,) Cauchy implies (m;(xy,))n>1 is Cauchy in R. So m;(x,) — 2; for i =1, ..., k since R is

complete. Thus z,, — z = (z;)¥ by Homework 3, #6. O
5. C[0,1] = {f :[0,1] = R, f is continuous} with metric doo(f, g) = sup;c(o.1;|f(t) — g(t)| is complete.

Proof. Let (f,) be a Cauchy Sequence. We have that for all ¢ € [0, 1] the real sequence (f,,(t))n>1 is Cauchy. Thus for
some (not necessarily continuous) function f, we see f,(t) — f(t). Note C[0,1] C RI%! with the uniform metric. So
for all € > 0 there exists N such that n,m > N implies |f,(t) — fm(t)| < € for all ¢ € [0,1]. Letting m — oo, we get
|fn(t) — f(t)| < eforallte[0,1]. So f, — f uniformly, that is, f is the uniform limit of continuous functions and thus
fec,. 0

6. If Y is a complete metric space and X a topological space, then YX with the uniform metric, Cy (X) = {f : X —
Y|f is continuous} with the uniform metric, and By (X) = {f : X — Y|f is bounded} with the uniform metric are all

complete.
Lemma 4.2. IfY is a closed subspace of a complete metric space X, then Y is complete.

Proof. If (y,) is a Cauchy Sequence in Y, then it is Cauchy in X. Thus there exists x € X such that y,, — x. Since Y is
closed, z € Y. O

Lemma 4.3. If every Cauchy sequence in X has a convergent subsequence, then X is complete.

Proof. In fact, any Cauchy sequence with a convergent subsequence converges. If ny < ny < --- and (x,) is Cauchy with

Ty, — & as k — oo, then for all € > 0 there exists Ny such that & > N; implies d(z,,,r) < § and there exists Ny such that
n,m > Ny implies d(xpn,2,) < §. Let N = max{ny,, No}. Then for n > N, we have d(z,,z) < d(n,Tn,) + d(2n,,z) <

frs—e O

Theorem 4.4. A metric space X is complete if and only if for all sequences Ay O Ay D -+ of closed nonempty sets with
diam(A;) — 0, we have NA; # 0.

Proof. For the forward direction, choose a,, € A,. Then (a,)n>1 is a Cauchy sequence as for all e there exists N such that
n > N implies diam(A,) < §. Now, for all n,m > N, we have a,,an € Anin{n,my € An. So d(an,am) < § < €. Now, let
an, — a (as X is complete). We have (an)n>n, C An, and so a € A,,, as it is closed. Thus a € N,>1A4,.

For the backward direction, if (a,) is Cauchy, let A4,, = m Then A; D Ay DO ---, the A; are closed, and
diam(A,) — 0 as (a,) are Cauchy. Thus there exists a € N,>14,. It is easy to get a subsequence a,, — a. By the lemma,

ap, — a. ]
Corollary 4.5. Compact metric spaces are complete.

Proof. Follows from HW6 #6. O



Definition 4.6. A topological space
e is limit point compact if every infinite subset has a limit point.
e is sequentially compact if every sequence has a convergent subsequence.

e is totally bounded if for all € > 0 there exists a finite subset F' C X such that UpcpBc(z) = X (such a set is called a

e—net.

e has the Lebesgue number property if for all open covers O C 7 there exists € > 0 such that for all A C X with
diam(A) < € there exists O € O with A C O. (We use this to prove that continuous functions on compact metric spaces

are uniformly continuous)
Lemma 4.7. If X is sequentially compact then every open cover has a Lebesgue number.

Proof. Suppose not. Let X be sequentially compact and O an open cover with no Lebesgue number. Then for all n > 1 there
exists K, with diam(K,) < % such that there does not exist O € O with K,, C O. Pick z,, € K,, and a subsequence z,,, — x.
Then there exists € > 0 and O € O such that Bc(z) C O. Pick i sufficiently large so that d(z,,,z) < § and diam(K,,) < 5.
Then for all y € K,,, we have d(y,z) < d(y, zn,) + d(xn,,x) < €, that is, K,,, C B.(x) C O, a contradiction. O

Lemma 4.8. If X is sequentially compact then X 1is totally bounded.

Proof. Suppose X is sequentially compact. Pick € > 0, 1 € X and z2 & Bc(z1) (if B(z1) = X, done). Continue to pick
T; € (Uj<iBE(:rj))C as long as there is such an x;. Either we find a finite e—net or there exists an infinite sequence x1, xs, ...
such that the terms are e—separated, that is, d(x,, z,,) > € for all n,m. Now, let (z,,) be a convergent subsequence. Then

it is Cauchy, but e—separated, a contradiction. O

Theorem 4.9. If X is a metric space then TFAFE
1. X is compact
2. X is limit point compact
3. X is sequentially compact
4. every open cover of X has a Lebesgue number and X is totally bounded
5. X is complete and totally bounded.

Proof. (1 = 2) Suppose X is compact and A C X has no limit points. For all € X there exists an open
neighborhood O, of x such that O,NA C {z}. By compactness, there exists Oy, , ..., O, such that UO,, = X
and A =U(O,;, NA) C{x1,...., 2 }. Thus A is finite.

(2 = 3) Let (x,)$° be a sequence in X. If {z,},>1 is finite, then there exists x with x,, = x infinitely often,
say for ny,ng,.... Then x,, — x. If {z,},>1 is infinite, then it has a limit point . So there exists ny such
that ,, € Bi(x) \ {z}, n2 > ny such that z,, € By(x)\ {} and similarly for all k there exists ng > 1,1
such that z,, € Bi(z)\ {z}. Clearly, z,, — .

(3 = 4) Follows from Lemmas.

(4 = 1) Let X have the Lebesgue number property and be totally bounded. Let O be an open cover of X.
Let € be a Lebesgue number for O and let z1, ..., 7, be an §—net. Then the Lebesgue number property says
there exists O € O such that Bg(xk) CO. So X = UBg(mk) C U0y, C X, that is, Oq, ..., O, form a finite

subcover.

(1 = 5) We have seen compact implies complete. Given € > 0 we see {B.(z) : x € X} is an open cover. So
there exists x1, ..., ,, such that X = U} B(z;).



(5= 3) Let (zn)n>1 be a sequence in X. Let J; be a finite 1-net. We have X = Uyc s, B1(y). Then there
exists y1 € Jp such that there are infinitely many =, € Bi(y1), say n = n11 < ny2 < --- . Inductively,
define ny 1 < ng2 < --- as follows: Let J; be a finite 7—net and find y; € Ji and an infinite subsequence
ng1 < gz <-o- of ng_1y <np_12 <o with @y, ; € Bi(yk). Then @y, ; € Bi(y1) N Bi(y2) N--- B (yi).
Now, define n; = n; ;. Then (z,,) is Cauchy since for ¢,¢ > k we have z,,, and z,,, both belong to B% (yx)-
So x,, — x by the completeness of X. 0

Theorem 4.10. Suppose f: X — Y is continuous where X is a compact metric space and Y a metric space. Then for all

€ > 0 there exists § > 0 such that d(z,y) < 0 implies d(f(z), f(y)) < € (i.e., f is uniformly continuous)

Proof. Consider O = {f~!(Bs(y)) :y € Y} Let 0 be a Lebesgue number for O. Then d(z, z’) < ¢ implies there exists O € O
with {x, 2’} C O, that is, f(z), f(2") € B (y) for some y € Y. Thus d(f(z), f(y)) < e. O
4.1 Space Filling Curves

Theorem 4.11. Let I = [0,1]. There exists a continuous surjection from I — I2.

Proof. Define a sequence of continuous maps on I — I? as follows:

Give I? the /o metric: d((z,y),(2',y’)) = max{|z — 2’|,y — ¥/|}. On C(I,I?), take the sup metric: duo(f,g) =
supd(f(t),g(t)). We've shown C(I,1?) is complete with respect to du
tel
Claim. doo(fr, fry1) <27™
Proof. For t € |5, 5], both f,,(t) and f,41(t) are in some subsquare of I? with diameter < 27"

For m > n, we have de(fn, fm) < div. to—i < Sooe. 278 < 27l — (. Thus, by completeness, there exists f € C(I,I?)
such that f,, — f.

Claim. f is surjective.

Proof. Pick z € I?. We will show z € f(I). Given € > 0 pick N sufficiently large such that 2=V < 5 and
doo(fn, f) < &. Then there exists ¢t € I such that d(fy(t),z) < 27 (the N*" function visits all blocks of
size 27N) and so d(f(t),z) < d(f(t), fn(t)) + d(fn(t),x) < e. Of course, f(I) is compact and hence closed.
Thus z € f(I).

4.2 Compactification
Theorem 4.12. If X is any metric space, then there exists a complete metric space Y O X with X =Y.

Proof. Let Y/ = B(X,R), the space of all bounded continuous functions from X — R, with the sup metric d(f,g) =
sup | f(z) — g(x)|. Then Y’ is complete. Fix zo € X. Given a € X, define ¢, : X — R by = — d(z,a) — d(x,zo). Note
rzeX

|pa ()| < d(xg,a) for all z, that is, ¢, € B(X,R).
Claim. doo(ba,dp) = dx(a,b)
Proof. For x € X we have |¢q(x) — ¢p(z)| = |d(x,a) — d(z,b)| < d(a,b). Of course, |¢pq(a) — ¢p(a)| = d(a,b).

The set X = {¢, : a € X} C Y" is an isometric copy of X. Now X C Y”. So define Y := X. Then X is closed in B(X,R) and

hence is complete. O



Recall that if X was a noncompact Hausdorff locally compact topological space, then X, with X C X is such that
X is compact, Hausdorff and X = X_.. This was a compactification of X. There are in fact many compactifications.

However, there is only one completion.

4.3 Countability and Separation Axioms

Definition 4.13. A topological space X is first countable if for all x € X there exists a countable collection {O;}ien of
neighborhoods of x such that for all O € T with v € O there exists i such that x € O; C O, that is, X has a countable

neighborhood basis at each point.
Example. If X is a metric space, take O; = B1(x).

Definition 4.14. A topological space is second countable if the topology has a countable basis. A topological space X is
separable if there exists countable A C X with A = X.

Theorem 4.15. If X is 15t countable, then
1. For all AC X, x € A if and only if there exists a, € A such that a, — .
2. f: X =Y is continuous if and only if for all x,, — x in X we have f(x,) — f(z).

Proof. 1. The backward implication is true in all topological spaces. For the forward, pick a countable neighborhood basis
{N;}i>1 of 2. WLOG Ny D N3 D --- . Then for all n there exists a,, € N,, N A. If O is a neighborhood of z, there exists
k such that Ny C O. Then for all n > k we have a,, € N,, C N C O, that is, a,, — .

2. The forward implication is always true. For the backward, suppose f satisfies the condition on sequences. If A C X, it

is enough to show f(A) C f(A). If € A, there exists a,, — x with a,, € A by part a. By hypothesis, f(a,) — f(x),

that is, f(x) € f(A). O
Lemma 4.16. If X has a countable subbasis, then X is 2" countable.
Proof. If S is a countable subbasis then B = {S;1N---NS,|n >0,5; € S} is a countable basis. O

Theorem 4.17. Both 15 and 2™¢ countability is preserved under taking subspaces and countable products.

Proof. If Y C X and {N;};>1 is a neighborhood basis at x, then {N; N Y };>1 is a neighborhood basis at = in Y. Similarly, if
B is a countable basis for 7x then {BNY : B € B} is a countable basis for 7y .

If X = [[X; is a product of 2"¢ countable spaces, then if B; is a countable basis for X; then S = {ﬂi_l(O) NS
N,O € B;} is a countable subbasis for 7x. If x € X and AN is a countable neighborhood basis at m;(z) € X;, then
N={m'(N)n---n 7TZ-;1<N/€) D1, .., 0k € N, Nj € Ny, } is a countable neighborhood basis at z. O

Theorem 4.18. If a topological space X is 2" countable, then it is separable.

Proof. Let B be a countable basis for 7x. For all B € B pick 5 € B. Then D = {xp : B € B} is countable. Then if O is
open and O # (), say « € O, then there exists B € B with z € B C O. Then z3 € O and D = X. O

Examples.
e R is 15 countable, 2"¢ countable, and separable.

e RY is a countable product of R and is thus 1* and 2" countable. It is also separable (consider D = {(z,) : =, €
Q, there exists N such that z, =0 for all n > N}).

e (RN d.,) (the uniform topology) is a metric space and thus 15! countable. It is not 2" countable nor separable, however.
S ={0,1}" has d(z,y) = 1 for all = # y € S. So R" has an uncountable collection of disjoint open sets {B1 (z) : = € S}.

e Let Ry be R with basis B = {[a,b) : a,b € R}. If € Ry, then N = {(z,2 + 1) : n > 1} is a countable neighborhood
basis for . So Ry is 1% countable. Q is a countable dense subset and so R, is separable. However, R, is not 2¢
countable. To see this, let O, = [z,z + 1). If B is any basis, then for each O, there exists B, € B with € B, C O,.

For all x, we see = inf B, and so x # y implies B, # B,. So B is uncountable.



Definition 4.19. A topological space X is regular if points are closed and for all x € X and A C X closed with x ¢ A,
there exists open O,U with x € O,A C U and ONU = (). A topological space is normal if points are closed and for all
A, B C X closed with AN B =0, there exists open O, U with AC O,BCU and ONU = 0.

Alternatively, one could define regularity as having the property that for all € O open there exists a neighborhood U
of  with U C O. Similarly, X is normal if for all closed A with A C O open there exists U open with A CU C U C O.

Theorem 4.20. Hausdorffness and regularity are closed under taking subspaces and arbitrary products.

Proof. We have already shown the result for Hausdorff spaces. So suppose Y C X, A is closed in Y and € Y \ A. There
exists B C X with A = Y N B. In particular, z ¢ B. Then there exists O, U open in X with x € O, A CC BU and ONU = 0.
Now O' =0NY and U = U NY separate x from A in Y.

Suppose X = [[,c; Xa and each X, is regular. Recall m = [I Aa. So points are closed. Suppose now z € O is
open in X. Consider a basic open set B with z € B C O. Then B = ni7,'(0;) for O; € 7x, . By regularity of X,,,
there exists V; with z,, € V; and V; C O;. Setting V = [locs Vo where Vo, = X, if o € {a1,...,a,}, we have 2 € V and
7=Ha617a§ﬂa610a§320~ O

Example. R, is normal: If A, B are closed in R, with AN B = (), then for all a € A there exists ¢, > 0 such that
[a,a + €,) N B = (). Similarly, for all b € B there exists €, > 0 such that [b,b+€,) N A = 0. Let O = Ugeala,a + ¢,) and
U = Upep[b,b+ €). Then A C O and B C U.

Claim. ONU = (.

Proof. Suppose x € ONU so x € [a,a+ €,) N [b,b+ €) for some a € A,b € B. WLOG a < b. Then b < a + €4

which says b € [a,a + €,), a contradiction.

Example. The Sorgenfrey Plane, R? is not normal: Suppose it were. Consider L = {(z,—z) : 2 € R}. Then L is closed
(anything not in L is not in L) and discrete in the subspace topology (any (z, —x) is open as it ([z,z+1] X [—2, —z+1])N L).
Then for any A C L we have A, L\ A are disjoint closed sets. For each A C L with A # (), L, there exists U4, V4 open in R?
with A CUs, L\ AC V4 and Uy NVy = 0. Define 6 : P(L) — P(Q?) by A UaNQ?, 0 — 0, and L — Q.

Claim. 0 is injective.

Proof. Suppose A, B C L with A # B. Then WLOG there exists z € A\ B. So x € Us N Vp and thus Uy NVp is
a nonempty open subset of R? and so contains a part of Q2. Thus Uy \ Up # 0, that is, Uy # Ug.

Note P(L) has cardinality 2¢ where ¢ = |R| and P(Q?) has cardinality 2%° = ¢. Clearly, this is impossible.
Theorem 4.21. Metric spaces are normal.

Proof. If A, B are disjoint subsets of a metric space X, then for all 2 € A there exists €(z) such that B, (x) N B = () and
for all y € B there exists e(y) such that B (y) N A = ). Suppose B () N Bew (y) # 0. Then WLOG €(y) < €(z) and
2 2

d(z,y) < @ + # < €(z) a contradiction. Thus U = UzeaBew (z) and V = UyepBew (y) are open disjoint neighborhoods
2 2
of A and B respectively. O

Theorem 4.22. Compact Hausdorff spaces are normal.
Proof. Homework 6 #2. O
Theorem 4.23. Regular 2"¢ countable spaces are normal.

Proof. Suppose X is regular and 2"¢ countable with countable basis B. Let A, B be disjoint closed sets. For all a € A let U,
be an open neighborhood of a such that U, N B = . Then regularity implies there exists a neighborhood V, of a such that
vV, CV, cU, By ond countability, there exists B, C V, with x € B, € B. List all the B,’s for all a’s chosen in this way as
01, 0o, .... Similarly, list all of the By’s as N1, Ny, ... so that N; N A = ). Now, let O} = Oy \ U?zlﬁj and N = Ny \ U?zlﬁj.
Define O = U0}, and N = U°N;. Then A C O,B C N and ONN = () as O N N}, = () for all j, k. O

Alternative proof that metric spaces are normal:



d(z, A)
d(z,A) +d(x, B)
is continuous with the property that f|4 = 0 and f|g = 1. Then U = f~!(—o0, %) and V = ffl(%, o0) are disjoint open sets
separating A and B. O

Proof. Suppose X is a metric space and A, B C X are closed and disjoint. Define f(z) = .Then f: X — R

Theorem 4.24 (Urysohn’s Lemma). If X is normal and A, B C X are disjoint and closed, then there exists a continuous
f: X >R with fla=0 and f|p = 1.

Proof. Let P = QN [0,1]. Enumerate as 1,0,ps, ps,... We will construct {U,},ep with the property that p < ¢ implies
71, C U, Let Uy = BC€. By normality, there exists Uy with A C Uy C Uy C U,. Suppose we have contructed {Up}per where
F is some initial segment of our enumeration. Say r is the next rational. Let p, ¢ be the immediate predecessor and successor
of r in F. By normality, there exists U,. such that 7,, CU,CU, C Uy.

Extend the definition of {U,} to U, = 0 if p < 0 and U, = X if p > 1. Now define S(z) = {p : = € U,} and
f(x) = inf e g(y) p. This is well-defined. Furthermore, notice

o If z € U, then f(z) <r as S(z) 2 (r,00) N Q.
o If x ¢ U,, then f(x) >ras S(x) C (r,00) NQ.
Suppose f(z) =« € R and € > 0. Then there exists rationals p,r witha —e <p<a<r<a+e.
Claim. U, \ U, is a neighborhood of z contained in f~!(a — €, o + €).

Proof. U, \U, is open. Further z € U, as otherwise f(x) > r and = ¢ U, as otherwise f(z) < p. Soz € U, \U,.
Similarly, for all y € U, \ Up, we see p < f(y) < r which implies y € f~1(a — €,a + €).

Now z € A implies 2 € Uy and so f(z) = 0. Also z € B implies = ¢ Uy so f(x) > 1. Of course, S(z) 2 (1,00) N Q and so
flx)=1. O

Definition 4.25. A topological space X is completely regular if points are closed and for all x € X, B C X closed with
x & B there exists a continuous function f: X — R such that f(x) =0 and f|g = 1.

Theorem 4.26. Complete regularity is preserved by taking subspaces and products.

Proof. If X CY and Y is completely regular with « € X, B C X closed and x ¢ B, then there exists B’ CY with B’ closed
and B = B’ N X. In particular, z ¢ B’. By complete regularity of Y there exists g : ¥ — R with g(z) = 0 and g|p = 1. Let
f=yglx.

Suppose now X = [[ X; and each X; is completely regular. Then x € X, B C X is closed with 2 ¢ B. We produce
f X — R which is 1 at  and 0 on B. There exists a basic open neighborhood U = H;I(Ul) Nn---N H;l(Un) of . For
Jj =1,...,n there exists ¢; : X; — R which is 1 at m;;(z) and 0 on ch. Let f(y) = I} &j o mi,(y). This has f(z) = 1 and
flye = 0. O

Example. R? is completely regular since R, is normal and hence completely regular. However R? is not normal (proved

earlier). Note that there are spaces which are regular but not completely regular.

Theorem 4.27 (Embedding Theorem). Let X be a topological space in which points are closed, F a family of continuous
functions X — R such that for all x € X and U a neighborhood of x there exists f € F with f(x) > 0 and f|yec = 0. Then

there exists a homeomorphism X into a subspace of R”.

Proof. Define F : X — R” by x — (f(z))er. We need only show F : X — F(X) is a homeomorphism. It is continuous
if and only if each coordinate is continuous, but this is true by hypothesis. It is injective as points are closed, so if x # y
there exists U neighborhood of z with y ¢ U and f € F with f(z) > 0 and f(y) = 0, i.e., F(z) # F(y). Now let U C X
be open and a € F(U). Pick € U with a = F(x). By hypothesis, there exists f € F with f(z) > 0 and f|ye = 0. Let
V= 7T]71(((),oo)) NF(X). Want « € V C F(U). Suppose § € V with § = F(y). Since 8 € 7rJ71((O,oo)) we have F(y) > 0
which implies y ¢ U€, that is, y € U and V C F(U). O

Corollary 4.28. X is completely regular if and only if X — [0,1]7 for some set J.

Proof. Take J = C(X,R). O



Theorem 4.29 (Urysohn’s Metrization Theorem). If X is second countable and regular (and thus normal), then X is

metrizable.

induces the product topology. So we will embed X in RN,

Proof. Recall that RY is metrizable as dg(z,y) = sup; M

Let B be a countable basis for 7x. For B,C € B with B C C there exists continuous gB,c : X — R such that g\g =1 and
glce = 0 by Urysohn’s Lemma. Let G = {gpc: B,C € B,BC C}.

Claim. G satisfies the hypotheses of the embedding theorem.

Proof. Suppose x € X and U a neighborhood of z. Then there exists C € B with x € C C U and by
regularity there exists an open V with x € V C V C C C U. Then, there exists B € B with z € B C V. So
r € BC BCC. Thus ggc(x) =1 and gp.c|ye = 0.

By the embedding theorem, X «— R = RN as G is countable. O

Theorem 4.30 (Tietze Extension Theorem). If X is normal, A C X closed and f : A — R is continuous, then there
exists f : X — R continuous with f|o = f. Indeed if f : A — [a,b] then there exists f : X — [a,b] with fla = f

Proof. We will prove the second statement. WLOG f: A — [-1,1].
Claim. If f : A — [—r,r] then there exists g : X — [—%, %] such that |f(a) — g(a)| < 2 for all a € A.

Proof. Let B = f~!([-r,—%]) and C = f~([5,r
By Urysohn’s Lemma, there exists g : X — [—
that |f(a) — g(a)| < & for all a € A.

r]). Then B and C' are closed in a closed set and thus closed.
£, %] with g|p = —% and g|¢ = 5. Thus g has the property

By the claim, there exists g1 : X — [~ 3] with |f(a) — 12(a)| < 2 for all a € A. Lets consider f — g1 : A — [-2,2]. There
exists g2 : X — [—2, 2] with [f(a) — g1(a) — g2(a)| < (2)”. Having constructed gi, ..., g, : X — R with |gz( )|

and |f(a) — 37 gi(a)| < (2)", by the lemma there exists g,+1 : X — [—3 ()", 1 (2)"] with |f(a) - 31" g

<3
3\3/ »3 S(

By induction, we have an infinite sequence (g;)i>1.

Define g = >"1° gi(z). The sequence of partial sums (s, (z)),>1 is Cauchy for all z as |sn( ) = sm(z)| = 20" gi(x)] <
S lgi(@)] <S5 (3 )n+1 — 0. Letting m — oo, we see |s,(z) — g(z)| < >0 3 (3 )". As the RHS does not depend
on z, we see s,(z) — g(z) uniformly. Thus g is continuous and |f(a) — g(a)| < lim,— (g) , that is, f = g|a. Also
g(@)] <3775 (3) =1

Suppose now f : A — R. There exists a homeomorphism h : R — (—=1,1) and so ho f : A — (—1,1) C [-1,1]. So there
exists g : X — [—1,1] with gla = ho f. Let D := g~ '({—1,1}). Then D is closed and disjoint from A. By normality there
exists a continuous function ¢ : X — [0,1] with ¢|p = 0 and ¢|4 = 1. Now ¢'(z) := ¢(x)g(x) has ¢'|p = 0 and ¢'|4 = g|a.
So h~'g’ : X — R is a continuous extension of f. O

4.4 Compactifications

Definition 4.31. A compactification of a topological space X is a topological space Y which is compact, Hausdorff, and
X CY (ie., the subspace topology is the original topology). In addition, we require X =Y.

Lemma 4.32. If X has a compactification then it is completely regular.
Proof. As X CY and Y is completely regular, done. O
Examples.

1. Consider (—1,1) = st \ {—1} C S* defined by t +— '™, This is a (1 point) compactification of (-1, 1).

2. (=1,1) € [-1,1] is another compactification of (—1,1)

3. Let D? = {z € C: |z| < 1}. Then B;(0) C D? is a compactification. Also B1(0) C (B1(0))s = S?, the sphere (Recall

(-)oo is the one-point compactification).

4. Consider (0,1) — [0,1] x [—1,1] defined by ¢ — (¢,sin }). Let S = {(¢,sin |t € (0,1)}. Then S, the topologist’s sine
curve, is a compactification of (0,1). Note the function f : ¢ — sin } has a continuous extension to S (i.e., a continuous

function f : S — [—1,1] such that f|g = f), namely f = 7y, the projection on the second coordinate.



Theorem 4.33. If X is completely reqular, then there exists a compactification SX (called the Stone-Céch Compactifi-

cation) such that every bounded continuous function f: X — R has a continuous extension f : X — R with f|X = f.

Proof. Let 7 = {f : X — R : f is continuous, bounded} and Iy = [infzex f(2),sup,ex f(2)]. Embed X into [[,. 1y by
B X — Jljer!y defined via @ — (f(z))fer. We know [y is compact by Tychonoff and 3 is an embedding. By the
Embedding Theorem £(X) = X and so X = 3(X) is a compactification of X. Given f : X — R continuous, bounded, then
Tfla@) = f. So my : BX — R is the required continuous extension of f. O

Theorem 4.34. If we have X CY such that X =Y and every bounded continuous function X — R can be extended to Y

then every continuous function f : X — Z with Z compact and Hausdorff can be extended to Y.

Proof. Z compact Hausdorff implies it is completely regular and so Z = Z C [0,1]7 for some index set J. Suppose Z C [0, 1]7.
Then f; = 7;f : X — [0,1] is continuous for all j € J and there exists f; : ¥ — [0,1] continuous with f;|x = f;. Define

fW) = (fj(y));jes. Clearly f is continuous and f|x = f. Notice f(V) = f(X) = f(X)=f(X)CZ = Z. O

Lemma 4.35. If f: A — Z is continuous and Z Hausdorff, then there exists at most one continuous extension of f to A.

Proof. Suppose g,h : A — Z are continuous extensions of f with g # h. Then g(z) # h(x) for some z and by Hausdorffness
there exists U,V disjoint open sets with g(z) € U and h(x) € V. Now g~ }(U) and g~'(V) are neighborhoods of X and so
g Y (U)Nh=Y(V) is. Then there exists a € AN (g~ (U) N h=1(V)) since z € A. Thus f(a) = g(a) € U and f(a) = h(a) €V,

a contradiction. O

Corollary 4.36. 3X is unique. If Y)Y’ are two compactifications of X for which the extension property of the theorem
holds, then Y = Y”.

Proof. Since i : X — Y is a continuous function to a compact Hausdorff space, there exists 7:Y' — Y continuous with
i x = i. Similarly there exists i’ : Y — Y’ continuous with i’|x = i. Then 7/ 07 : Y’ — Y extends i’ o i = i’. By Idy is the

(unique) extension of i’ to Y”. Thus i’ 07 = Id and similarly 7 0 i’ = Id. Thus Y =Y. O

4.5 Filters

Definition 4.37. A filter on X is a collection F C P(X) such that
1. If A¢ F,BD A, then B F
2.0¢F
3. A, B € F implies ANB € F.
Examples.
1. F={ACN: A is finite} is called the cofinite filter.
2. Ifx e X, then F={AC X :x € A} is a filter.

3. If X is a topological space, z € X, then MV, = {A C X : A contains a neighborhood of X} is called the neighborhood
filter at z.

S

. Suppose (z;)$° is a sequence in X. Then F = {A C X : there exists N such that i > N implies x; € A} is a filter. If
z; — x, then N, C F.

Definition 4.38. A filter base B C P(X) is a collection satisfying
1. 0¢B
2. A, B € B implies there exists C € B with AN B 2 C.
Lemma 4.39. If B is a nonempty filter base, then there exists a filter Fg = {A C X| there exists B € B with A D B}.

Examples.



1. If X a topological space, x € X, then B, = { neighborhoods of z} is a filter base. We see Nx = Fp. .

2. B ={B} for some B # (). This is a filter base and Fgz = {A C X|A D B}.

3. If Fisafilter on X and f: X — Y, then {f(A4) : A € F} is a filter base. Certainly f(A)N f(A") D f(ANA").
Definition 4.40. If F is a filter on X, f : X — Y, define f(F) to be the filter generated by {f(A) : A € F}.
Definition 4.41. If X is a topological space and F a filter on x, say F — x if N C F.

Theorem 4.42. Let X,Y be topological spaces and f: X — Y. Then f is continuous if and only if for all F — x in X, we
have f(F) — f(z) =:y.

Proof. For the forward direction, we want to show that a set A with y € U C A (U open) is in f(F). Well f~1(U) is a
neighborhood of = which implies f~'(U) CN, CF.So ADU D f(f~1(U)) € f(F).

For the backward direction, let U be open in Y and z € f~}(U). We know A, — z and so f(N;) — f(z). This implies
N2y € f(Ny). In particular, U € f(N,). So there exists a neighborhood O of z with f(O) C U, that is, O C f~}(U). O

Definition 4.43. A filter U is an ultrafilter if for all filters F on X with F O U, we have F = U.

Definition 4.44. Two filters F,G are compatible if for all A€ F,B € G, we have AN B # (.

Lemma 4.45. If F and G are compatible filters then B={ANB: A€ F,B € G} is a filter base and we define FV G = Fg.
Notice that F,G C F V G. Also, any filter containing F and G also contains F V G.

Lemma 4.46. If U is an ultra filter and G is compatible with U, then G C U.

Theorem 4.47. Ultrafilters exist.

Proof. Consider P = {filters on X} ordered by inclusion. If C C P is a chain of filters in P, then UC is an upper bound for
C since it is a filter. By Zorn’s Lemma, done. Indeed for all F € P, there exists an ultrafilter U with F C U. O

Theorem 4.48. U a filter is an ultrafilter if and only if for all A C X either A€ U or A® € U.

Proof. For the backward direction, if W D U, then there exists A with A, A® € W which implies W is not a filter.
For the forward direction, consider A C X. If AN B = () for some B € U then A® D B implies A® € U. Otherwise,
AN B #( for all B € U. Then Fiay is compatible with U, which implies F;4; € U. So A € U. O

Theorem 4.49. If f : X — Y and U is an ultrafilter on X then f(U) is an ultrafilter on'Y.

Proof. Suppose A € f(U). Then for all B € U we have A D f(B), that is, A® N f(B) # (. Similarly if AY ¢ f(U) then
AN f(B) # 0 for all B € U. But exactly one of f~1(A) and f~(A) is in U, a contradiction. O

Lemma 4.50. 1. If F — x thenx € A for all A € F.
2. If U is an ultrafilter and x € A for all A€ U, then U — .
Proof. 1. If 2 ¢ A then there exists a neighborhood U of 2 with U N A = (). But by hypothesis U, A € F, a contradiction.

2. If x € A for all A € U then for all B € N, and A € U we have AN B # (). So N, is compatible with ¢/, which implies
N, CU as U is an ultrafilter. Thus U — z. O

Theorem 4.51. 1. A topological space X is Hausdorff if and only if every ultrafilter has < 1 limit.
2. A topological space X is compact if and only if every ultrafilter as > 1 limit.

Proof. 1. For the forward direction, we will in fact show all filters have < 1 limit. Suppose F — z,y and U,V are disjoint
neighborhoods of z,y respectively. Then U,V € F but U NV = (), a contradiction.

For the backward direction, suppose z,y do not have disjoint neighborhoods. Then N, and N, are compatible. Then

Nz V Ny is a filter and lives in some ultrafilter . Then U — x,y, a contradiction.



2. For the forward direction, let I be an ultrafilter. Consider {A : A € U}. This has the finite intersection property and
s0 NacuA # 0. If 2 € Ngey A, then U — z by the lemma.

For the backward direction, suppose O is an open cover of X with no finite subcover. Let B = {O{'n---nO¢ : O; € O}.
This is a filter base. Let U be an ultrafilter with &/ O Fi. We have U — z for some xz € X. So there exists O € O with
r €0 and O € N, CU. So we have O, 0 € U (as O € B), a contradiction. =

Theorem 4.52. F a filter on [[,c; Xi has F — x = (v;)icr if and only if 7;(F) — x; for alli € I.

Proof. For the forward direction, m; continuous implies m;(F) — m;(x) = z;. For the backward direction, let O be a neigh-
borhood of z in [] X;. We know @ € ;" (O1) N -+ N w;nl(O ) C O for some open sets O; € m;(F) for all j =1,...,n. Then
there exists Fy,..., F,, € F with O; 2 m;, (Fj). We know Fy N ---N F, C Nim; 1(0;). So N7, 1(O;) € F. Thus O € F, that
is, F — x. O

Theorem 4.53 (Tychonoff’s Theorem). X; compact for all i € I implies X =[] X; is compact.

Proof. Let U be an ultrafilter on X. So m;(U) is an ultrafilter for all ¢ € I. So m;(U) — z; for some x; € X. By the previous

theorem U — (x;);er, that is, every ultrafilter converges and thus X is compact. O

Given a topological space X let uf(X) = {U|U is an ultrafilter on X'}. Notice uf(X) contains the principal ultrafilters
Fizy = {A C X[z € A} for all x € X. We can put a topology on uf(X) as follows:

e Given A C X define Sy = {U € uf(X): Ae U} and B={S4: A C X}. Note that B is a basis for the topology on
uf(X) as S; =uf(X) and S4 NS = Sans.

Lemma 4.54. Any bounded continuous function f: X — R has a continuous extension f : uf(X) — R.

Proof. Define f(U) = lim f(U). The limit exists as (/) is an ultrafilter on the compact set [—M, M] C R for some M. Note
that X — wuf(X) via z +— Fy,). See f(]—"{w}) = lim f(F{zy) = lim Fyf(z)y = f(2). To show continuity, suppose r € O for some
open O in R and f(U) = r. Now there exists a neighborhood V of R with V' C U. Notice that U € S;-1( because f(U) — 7.
Then V € f(U) which implies V D f(A) for some A € U and thus f=1(V) D A, that is, f~}(V) € U. Now suppose V is an
ultrafilter in Sf vy, so f7H(V) € V, which implies f(f~1(V)) € f(V), that is, V € f(V). We know lim f(V) € V C U, that
is, Sp-11) C f~Y(U). Thus f is continuous at U. O

Theorem 4.55. If X is discrete then uf(X) = 8X.

Proof. Note Sg;3 = {Fiz}}. So the induced topology on X from uf(X) is discrete. Need to show uf(X) is compact,
Hausdorff and X is dense in uf(X). Note uf(X) C {0,1}P(X). Certainly this is Hausdorff but also compact as uf(X) is

closed in {0,1}P(X) : it is the intersection of

m‘l(O),
72 (0) U [r1' (1) mrB '(1)], for AC B,
711(0) UwBl(O) U [7@1(1) ﬂwB ( )ﬁﬂ'AmB( )], for A,B C X,

[m' ()N (O}U[ )Ny c(1)] for ACX
Now we need X = uf(X). Well consider a basic neighborhood S4 of . For all a € A, we have Fla} € Sa, thatis, SANX # 0.
So uf(X) =pX. O

5 The Fundamental Group

We would like to get better at distinguishing “different” topological spaces. To do so, we need more invariants. Our first is

a group called the fundamental group.

Definition 5.1. Given two continuous functions fo, f1 : X — Y we write fo ~ f1 and say fo is homotopic to f1 if there
exists a continuous function F : [0,1] x X — Y such that for all x € X F(0,X) = fo(z) and F(1,z) = f1(z).



Definition 5.2. Two paths fo, f1 : I — X with fo(0) = 2o = f1(0) and fo(1) = z1 = f1(1) are path homotopic, written
fo ~p f1, if there exists f : I x I — X such that for allt € I F(0,t) = fo(t),F(1,t) = fi(t) and for all s € I F(s,0) = xg
and F(s,1) = ;.

Theorem 5.3. Both ~ and ~, are equivalence relations.

Proof. Suppose f ~g~h for f,g,h: X — Y. Let I be the function that takes f to g and G the function that takes g to h.
Let

F(2s,2) 0<s

G(2s—1,2) L1<s<

IN
IN

)

=
EIJ
8
~—
I

—_ N

This is continuous by the pasting lemma. Also if F, G are path homotopies, then H is a path homotopy.

If f~ghbyF,define F/ : I x X — Y by F'/(s,z) = F(1 — s,z). This is a homotopy making g ~ f. If F was a path
homotopy, so would F”.

If f: X Y then F: 1T x X —Y given by F(s,z) = f(z) is a homotopy. O

Theorem 5.4. If fo, f1: X — U CR" and U is convex, then fo ~ fi1. Moreover, if fo, f1 are both paths from xq to x then
fo Zp fl-

Proof. Define F : I x X — U by F(s,z) = (1 —3)fo(x) + sf1(z). This is clearly a homotopy from fy to fi1. If fo, f1 are paths
from xg to x; then f is a path homotopy. O

The path groupoid

f(2t) 0<t<

Given an z( to 1 path f and a x1 to z2 path g in Y we define f- g by f-g(t) = This is an g

to x5 path.

Definition 5.5. If f : I — X is a path then we write [f] for the path homotopy equivalence class of f. For f,g: I — X with
f(1) = g(0) we define the operation [f]-[g] = [f - g] on the equivalence classes.

Lemma 5.6. The operation on equivalence classes is well-defined.
Proof. If f ~, f" and g ~, ¢’ then f'(1) = ¢’(0). One can also see f'-¢' ~, f - g. O

Lemma 5.7. If fo, f1 : X — Y are (path) homotopic and g : Y — Z is a continuous map, then go fy and go fi are (path)
homotopic.

Proof. If F is the map that takes fy to fi, then g o F' is the map that takes go fy to go f1. O

Definition 5.8. If X is a topological space and x € X then e, : I — X defined by t — x is the constant path at x. If
f:1— X is a path, we let f: I — X be defined by t — f(1 —t), the same path but opposite arrow.

Theorem 5.9. 1. If either side of the following equation is defined then so is the other and they are equal:

2. If f is a path from x to y then [e;] - [f] = [f] and [f] - [ey] = [f]-

3. If f is a path from x to y then [f]- [f] = [e] and [f] - [f] = [ey].

Proof. 2. Consider the paths eg : I — I and i : I — I defined by ¢ +— t. Then [ is a convex subset of R and so eq - i ~ i.
Thus ey o f ~, fo(ey i)~ foi=f.

3. Let t : I — I be the function t = i-i. Then t ~, eg and so f-f = fo(i-i) ~, foeg = ez and f-f = fo(i-i) ~, foeq = e,.

1. Define the path «: I — I to be

2t 0<t<i
— 1 1 1
T=3t+7 15t<3

1 1 1

sty zstsl

Then (f-(g-h))oy=(f-g)-h. Since y ~i, wesee (f-g)-h=(f-(g-h)oy=p ((f-(g-h))oi=f-(g-h). O



Definition 5.10. If X is a topological space and xo € X then m(X,z0) = {[fIlf : I — X has f(0) = f(1) = zo} is

the collection of all homotopy classes of loops in X based at xo. This is a group under concatenation with identity [eg] and
[F17t = [7]-
Example. If U C R" is convex and z¢ € U, then 71 (U, x0) = {[ex,]}-

Theorem 5.11. If o : I — X is a path in X with a(0) = z¢ and a(1) = z1 and we define & : m (X, x9) — m (X, 1) by

[f]—[@] - [f] - o], then & is an isomorphism.

Proof. First note that it is a homomorphism as

a(lfl-lg) = [a-[f]-1g]-[e]
= [@-[f]-lex] - lg]- [
= [a-[f]-[o]-[a] - [g] - o]
a([f1) - alg))-
To show it is an isomorphism, we will show ¢—! = @&. For [f] € 71 (X, z0), we see

~a([f]) = la] - [a] - [f] - [o] - [0] = [exo] - [£] - [ea] = [/]

=

and similarly & - a([f]) = [f]. O
Corollary 5.12. If X is path connected then for all xg,x1 € X we have 71 (X, x9) = m (X, x1).

Definition 5.13. If f : X — Y and f(xg) = yo we write f : (X,2z9) — (Y,y0) and we define f. : m (X, 2z0) — 11 (Y, y0) by
Y] —= [fonl

Theorem 5.14. If f : (X,z0) — (Y,u0) and g: (Y,y0) — (Z,20), then g. o fo = (g0 f)« and idX = id™ (X)),

Proof. Note that g. o f.([7]) = [go f o] = (g ° f).([7]) and id.([7]) = [7]. H
In particular, if f: (X, z¢) — (Y, y0) is @ homeomorphism then f, : 71 (X, 29) — 71 (Y, yo) is an isomorphism.
Example. A space is called simply connected if its path connected and 71 (X) is trivial. In a simply connected space,

two paths are path homotopic if and only if they have the same endpoints.

Proof. Suppose «, 8 are paths from z to y. Then

em (X,z)={[ez]}

Example. 71(S5’) 2 Z. There are three ways to approach this problem.

1. The analysts will say S’ C C and a path v in S’ has a winding number n(y,0) = 5% fv %dz.

27

2. The engineers would construct an apparatus with a crank and ruler. Turning the crank one full revolution would make
the marker go from 0 to 1 on the ruler and turning it one full revolution in the opposite direction would make it turn

from 0 to -1. This gives the same winding number as in the analysts approach.

3. The topologists would wind the real line up like a slinky and define a projection map 7 : R — S’ by  — (cos(27x), sin(27x)).
This is called a covering map, that is, it has the property that for all z € S’ there exists a neighborhood U of x such

that 7—1(U) is a disjoint union of open sets in R, each homeomorphic by a restriction map of = — U.
Remark. If 7: E — B is a covering map then
1. 7 is open
Proof. If U is open in B and y = 7(z) € n(U) with z € U, then there exists a neighborhood V of y such that V is a

good neighborhood, that is, one as in the definition of a covering map. Now there exists « such that z € V,,, one of
the parts of 7=1(V). So 2 € V, NU C V,, and 7(V, NU) is open in B since 7|y, is a homeomorphism. O



2. 7 Y(y) is discrete in E for all y € B.
Proof. If V is good neighborhood of y, then each V,, contains exactly one point of 7~1(y). O

Definition 5.15. If 7 : E — B is a covering map and f : X — B is continuous then a lift of f is any continuous map
f:X — E with f =mnof.

Lemma 5.16. If 7 : (E,ep) — (B,by) is a covering map, then for all paths v : I — B with v(0) = by, there exists a unique
map 7 : I — E lifting v with 7(0) = eg.

Proof. Let O be a covering of B by good neighborhoods. Then {y~}(U) : U € O} is an open cover of I and hence has a
Lebesgue number. Thus we can decompose I into subintervals [t;,t;11] where 0 = tg < t; < -+ < t,—1 < t,, = 1 such that
Y([ti, ti+1]) is contained in some good neighborhood for i = 0, ...,n — 1. We will build 4 inductively. If v([0,¢]) C V for some
good neighborhood and 7~ (V) = UaesVa, suppose eg € Vg (one of the Vy’s). Define |4 = (w|y,) "t 07 (as 7y, is a
homeomorphism, this makes sense). Having defined 4 on [0,¢;], do the same for [t;, t;11] : If v([ts, ¢i+1]) C U for some good

neighborhood and (t;) = 2 € Uy for one of the parts of 7=1(U), define 5

(ti.tis1] = (Tlue) "' 0. Then 4 defined this way is
continuous by the Pasting Lemma and is a lift of v by construction.

Suppose now 7,4’ are two lifts of v with 5(0) = eg = 4/(0). Suppose they agree on [0, ;] for some i = 0, ...,n (certainly
true for ¢ = 0). On [t;, t;11], there is a good neighborhood of V' with y([t;, t;+1]) €V and 7(t;) = 7' (¢;) € Vo, one of the parts
of m=1(V)). We have ¥([t;, ti+1]), ¥ ([ti, tix1]) € 7~ 1(V) which has a separation {Vgy,7~1(V)\ Vo }. Since [t;, ;11] is connected,
we see Y([ti, tit1]), ¥ ([ti, tix1]) € Vo. So Tlvy 0 it tisa] = Tlve © ' |t ,t141)- As Ty, is invertible, we see Flt, 1,011 = V' ljts tiga]-

By induction, ¥ = 4. O

Lemma 5.17 (Homotopy Lifting). If 7 : E — B is a covering map and ww(eg) = by and F : I x I — B is a (path)
homotopy with F(0,0) = by, then there exists a unique lift F:1x1I— FE with F(0,0) = eg which is a (path) homotopy.

Proof. Let f(t) = F(0,t),7(s) = F(s,0) and f,4 be the unique lifts of f,~ starting at eq. If @ is an open cover of B by
good neighborhoods then there exists partitions 0 = tp < t; < --- <t, =1land 0 = 59 < 51 < -+ < S, = 1 such that
for all 4, j there exists 0 € O such that F([s;, sit1] X [t;,t;11]) € O. Order the set of rectangles {[s;, s;t+1] X [tj,t;4+1]} by
lexicographic order on (4, j). We will prove by induction that there exists a unique lift on the union of any initial segment of

these rectangles. At every stage we know F' (our rectangle) is contained in a good neighborhood V' in B and we have values

already determined on I' (the left and top edges of the rectangle). Since I' is connected, we have F(I") C Vj, where Vj is one
of the parts of #=1(V). If we lift F' to F we require o F = F. Since the rectangle is connected we would have for any lifting
extending the previous values F(our box) C Vy. Then n|y, o F = F but this serves to define F' = (7|y,)~" o F. The total F

is continuous by the Pasting Lemma. O

Corollary 5.18. If m: (E,eq) — (B,bg) is a covering map and f,g: I — B are path homotopic with f(0) = g(0) = by, then
the unique lifts f,§ starting at eq are path homotopic, in particular, f(l) = g(1).

Theorem 5.19. 7;(S') ~ Z.

Proof. Consider m1(5’,(1,0)) and the covering map = : (R,0) — (5’,(1,0)) by  — (cos 2nz, sin 27zx). Let ¢ : m1(5’, (1,0)) —
Q by [f] — f(l) where f is the unique lift of f with f(()) = 0. By the corollary, ¢ is well-defined.

Claim. ¢ is injective.

Proof. Suppose we have ¢[f] = ¢[g], that is, f(1) = §(1). Since Q is simply connected, f ~, §so g = mo f ~,
mog=g.So [f]=[g].

Claim. ¢ is surjective.
Proof. Let 1w, (t) = nt. Then w,, = 7 oW, is a loop in S’, and w, lifts to w,. So ¢[w,] = n.
Claim. ¢ is a homomorphism.

Proof. Suppose f, g are loops in S at (1,0) and ¢([f]) = n,¢([g]) = m. Let f,§ be the standard lifts and
define §'(t) = g(t) + n. We have f-g=f-§. Since clearly the right hand side is continuous (by the Pasting
Lemma), starts at O and has wo (f-§') = f - g. We have ¢([f]-[g]) = (f - 7)(1) = m + n. O



Definition 5.20. If 7 : (E,eq) — (B, bg) is a covering map then the functor ¢ : w1 (B,by) — m~(by) defined by [f] — f(1)

is called the lifting correspondence.

Corollary 5.21. 1. If E is path connected, then ¢ is surjective.
2. If E is simply connected, then ¢ is bijective.

Examples.

e 7:R? — 5 xS defined by (x,y) — ((cos 2wz, sin 27z), (cos 27y, sin 27y)) is a covering map of the torus by the plane.

The lifting correspondence is a bijection (S’ x S’) — Z X Z. In fact, it is an isomorphism.

e The real projective plan RP? = S?/(z ~ —x). The quotient map 7 : S? — S2/(z ~ —x) is a covering map. In particular,

since S? is simply connected, 71 (RP?) 2 Z,.

Some Applications

Definition 5.22. If A C X a topological space we say that r: X — A is a retraction if r|4 = ida.

Example. The central band of the mobius band is a retract of the band.

Lemma 5.23. If A is a retract of X and i : A — X is the inclusion map then i, : m1(A,a) — 7 (X, a) is injective for all
a € A.

Proof. ida =7r0i: (A a) — (A,a). So (ida)s = idy, (4,0) = 7« 0ix : T1(A,a) — m1(A, a). Since i, is invertible on the left, it
is injective. 0
Theorem 5.24. There is no retraction D? — S'.

Proof. Recall D? = {2z € Q? : |z| < 1} is convex. As i, : m1(S’) — m1(D?) is iy : Z — 0, it is not injective. O

Theorem 5.25 (Fundamental Theorem of Algebra). If p € Clx] is nonconstant, then there exists z € C such that
p(z) =0.

Proof. Define fs, a loop in S’ for s € [0,00), by fs(t) = %. If p is never 0, this is always defined. All these paths

are path homotopic. In particular, they are all homotopic to fo = e1. WLOG, p(2) = z"+a12" '+ -+a,. Pick sg > Y 7 |a;
with s > 1. If [2] = so we have |2 > Y7 |a;|sg ™" > | S27 @;2"~%|. Thus on {|z| = s} the polynomial p® = 2" + a3 a;2" "

for a € [0,1] has no zeros. Define f,, = ‘pp;(izoei:it))lﬁ;(ifg)‘. We have fo ~, fo, = fo ~p fO where f = e?™" The lift of
this is ¢t — nt which finishes at n. So 0 = n. Thus a polynomial with no zeros is constant. O

Theorem 5.26 (Brower Fixed Point Theorem for D?). Let D? = {x € R? : ||z|| < 1}. If f : D* — D? is continuous,
then there exists a fixed point of f.

Proof. Define a map p: D? x D*\ A — S’ C D? where A = {(z,z)|z € D?*} by

pxy)

If f: D? — D? is continuous and has no fixed point, then define f(x) = p(f(z),z). Then f is continuous and for z € S’

we have f(z) = z, that is, f is a retraction of D? onto S’ and by the previous lemma, no such beast exists. O

Theorem 5.27. Forn > 2, m(S™) =0 (the group with one element).

Proof. Recall S™ \ {point} = R™ as S™ is the one-point compactification. Consider a loop f : I — S™ and pick y & f(I).
Then f: 1 — ™\ {y} = R". Therefore f ~, esqy. We will prove every path is path homotopic to one omitting at least one
point. Suppose f is based at z¢ and z # x¢ and B is a neighborhood of x missing z (that is, zg ¢ B). Lets pick B nicely
homomorphic to D™. Consider f~1(B) = U(a;, b;), a countable (possibly finite) union of disjoint intervals. Note f~!({x}) is
compact and covered by U(a;,b;). Thus there exists a finite number of intervals covering f~!({z}). For each such interval,
we have f([a;,b;]) € B and f(a;), f(b;) € B\ B. Path homotop each segment f

can do this as B is simply connected). O

[a:,b;] tO @ path avoiding  (in order). (We



Lemma 5.28. If h : I — S’ is continuous and has h(t + 3) = —h(t) for all t € [0, 3], then [R] is an odd element of
m1(S’, h(0)).

Proof. WLOG h(0) = (1,0). Consider the lift of & starting at 0 and call it h. Then h(t + - h(t) € {4 : ¢ is an odd integer}.
As the left hand side is continuous from I which is connected and the right hand side is a discrete space, the function is
constant. So there exists qo, an odd integer, with h(t + 1) - h(t) = L for all t € [0, 5]. Thus h(1) = LD+ D =qp. O

Theorem 5.29 (Borsuk-Ulan Theorem for n = 2). If f : 5 — R? is continuous there exists v € S? with f(—x) = f(z).

Proof. Suppose f : S? — R? is continuous and f(z) # f(—=) for all z € S2. Define g : S? — S? by g(z) L@ D) ety

~ @)l
be the equatorial loop in S?. Consider h = gov : I — s'. This has h(t+3) = —h(t) for all t € [0, 3]. By the lemma, [h] = g for
some odd integer q. Also [h] = g.[v] € m1(S2,(0)), which implies [h] = [e,(p)] as G is a homomorphism, a contradiction. [

Theorem 5.30. X,Y path connected implies m (X X Y) = m1(X) x w1 (Y).

Proof. Pick zg € X,yo € Y. Define ¢ : m(X,20) x m(Y,y0) — m1(X X Y, (20,90)) by [7],[v] — [(v,¥)] and ) : m (X x
Y, (z0,y0)) — (X, z0) X m1(Y,90) by [y] — [7z 0], [ry o ~]. There are well-defined and are inverses of each other. O

Corollary 5.31. m (R?\ {0}) & Z.

Proof. R?\ {0} = S* x (0,00) by using polar coordinates. As 71((0,00)) is trivial, done by the theorem. O

Corollary 5.32. R? 2 R" forn > 3.

Proof. 7 (R™ \ {point}) = 71 (S"~! x (0,00)) = 0. Done by previous corollary. O
Definition 5.33. A C X is a deformation retract of X if there exists a homotopy R : X x I — X between ro = 1x and
r1 a retraction X — A such that R(a,s) = a for all a € A, s € I, that is, there exists a retraction r : X — A such that with

1: A— X the canonical inclusion we have roi =14 and ior ~4 1x (~4 means homotopy relative to A, so it is the identity
on A).

Examples. The following are three examples of deformation retracts. In all cases, X is given by the shaded region and A
by the dotted line.

Definition 5.34. Spaces X and Y are homotopy equivalent if there exists continuous maps ¢ : X — Y and ¢ : Y — X
such that oy ~ 1y and Yo ¢ ~ 1x.

Definition 5.35. A base point preserving homotopy from (X,xo) to (Y,yo) is a map F : X XY — Y such that
F(xo,s) =yo for all s € 1.

Lemma 5.36. If ¢o is homotopic to ¢1 where ¢o,¢1 : (X,xz0) — (Y,y0) by a base point preserving homotopy ®, then

(¢0)* = (¢1)* : '/Tl(X, 1'0) - ’/Tl(Yv yO)

Proof. [¢g o f] = [¢1 o f] through ® o f. O
If A is a deformation retract of X and ag € A then (A4, ag) = 71 (X, ap). Since we have i, : m1(4,a9) — m1(X, a0),7s :

(X, a0) — m1(A,ap) and 7y 0 iy = (10i)s = (1a)s = Lr,(A,00) DUt G 07% = (i 07)s = (1x)s = Ly (X,20)-

Lemma 5.37. If & : X x I — Y is a homotopy from ¢g to ¢1 and « is the path traced out by xg C X, that is, a(s) = ¢(xo, s)

for s € I, the the following diagram commutes:

m1 (X, 20) ﬂ>*7T1(Y7 do(x0))

!

71 (Y, ¢1(20))



Proof. Define s : I — Y by t — «(1 — s+ st). This is the tail end of « traversed at the right speed so that it takes time 1 to
complete. Let ¢ : X — Y be defined by  — ®(x,s). We have @g - (¢1 07) - ag 22, @71 - (¢o 0y) - o1 through @ - (¢s 07) - cvs.
So

107 p €gy(ag)  (B107) €4y (xg) =0 (P1077) g =p a1 - (Pooy) -1 =a - (doo7) - .

So (¢1)«(v) = [a] - [po 7] - [a] = &((¢0)«[V])- D

Theorem 5.38. If ¢ : X — Y is a homotopy equivalence then ¢, : m (X, z9) — 7 (Y, d(x0)) is an isomorphism for all
o € X.

Proof. Let 1 be a homotopy inverse to ¢. Consider

m(X, 20) 25 (Y, ¢(20)) L5 m (X, ¥(x0)) 25 (Y, dtb(ao)).

We have the first pairwise composition 9. o ¢, is an isomorphism. Since by the previous lemma 1 o ¢ is homotopic to 1x,
there exists a with ¥, 0 ¢, = (0 @) = & o (1x).. In particular, ¢, is injective. Similarly, ¢, o 1), is also an isomorphism

and thus 1, is injective. As 1, o ¢, is surjective, we have ¢, is surjective. Thus ¢, is an isomorphism. O
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