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 Increased railroad traffic volumes, speeds, and axle loads have created a need to 

better measure track quality.  Previous research has indicated that the vertical track 

deflection provides a meaningful indicator of track integrity.  The measured deflection 

can be related to the bending stresses in the rail as well as characterize the mechanical 

response of the track.    

 This investigation summarizes the simulation, analysis and development of a 

measurement system at the University of Nebraska (UNL) to measure vertical track 

deflection in real-time from a car moving at revenue speeds.  The UNL system operates 

continuously over long distances and in revenue service.  Using a camera and two line 

lasers, the system establishes three points of the rail shape beneath the loaded wheels and 

over a distance of 10 ft.  The resulting rail shape can then be related to the actual bending 

stress in the rail and estimate the track support through beam theory. 

 Finite element simulations are used to characterize the track response as related to 

the UNL measurement system.  The results of field tests using bondable resistance strain 

gages illustrate the system’s capability of approximating the actual rail bending stresses 

under load. 
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Chapter 1, INTRODUCTION 

 

 Spanning back to the middle of the 19
th

 century, railways have been a staple of 

both freight and passenger transportation.  This dependency on rail traffic is expected to 

continue into the foreseeable future.  Considering the recent emphasis on fuel efficiency, 

no other mode of transportation provides greater benefits.  For example, one gallon of 

diesel fuel can move one ton of freight an average of 406 miles by rail (UPRR, 2006). 

 In order to attain greater efficiencies and to compensate for increasing customer 

demands, the railroad industry has increased traffic and moved toward higher speed trains 

with heavier axle loads.  The resulting effect on the infrastructure is higher rail stresses 

and a corresponding increase in track deterioration.  Therefore, improved maintenance 

procedures as well as a better understanding of the track response are needed. 

 Several variables influence the condition of railroad track.  Rail profile, internal 

rail defects, rail stress, cross-level, gage, gage restraint, and track modulus are just some 

of the factors that shape the overall quality of the track (Kerr, 2003).  Many of these 

parameters are interrelated and a decline in one can lead to a corresponding effect in the 

others.  Therefore, both measurement and simulation of how the track state is affected by 

each of these quantities has become a priority in the railroad industry. 

 Since manual inspection methods are capable of covering only short specified 

distances and require track downtime, automation has become necessary for the 

determination of the track state.  Therefore, automated systems have been developed to 

measure most of the track parameters (Li et al., 2002).  For example, the Federal Railroad 

Administration’s (FRA) T-18 high-speed track geometry vehicle is capable of collecting 
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data at speeds up to 50 mph (FRA, 2006).  Such systems not only identify areas of 

needed maintenance but also provide the input necessary to create realistic and useful 

computer simulations of rail/vehicle dynamics (Hogan et al., 2008; Klauser, 2007). 

 Despite advances in automated track measurement, no vehicle is currently capable 

of measuring the vertical track support at revenue speeds.  Yet, the quality of the vertical 

track support and its variation over a length of track is widely considered to be one of the 

most important indicators of track quality (Sussman et al., 2001).  Most often, this 

support is described by the vertical track modulus.  Track modulus is defined as the 

coefficient of proportionality between the rail deflection and the vertical contact pressure 

between the rail base and the track foundation.  The track modulus represents the effects 

of all the track components beneath the rail (Cai et al., 1994).  These components include 

the subgrade, ballast, subballast, ties, and tie fasteners. 

 Previous investigations have shown that the determination of track modulus is 

possible by measuring the deflection of the track under known loads (Kerr, 2003).  

Although most methods rely on static measurements, at least one system has been 

developed to operate with a moving vehicle (Thompson & Li, 2002).  Unfortunately, the 

slow speed and high cost associated with the operation of this vehicle has limited its 

usefulness.  However, a new system developed over the past few years at the University 

of Nebraska (UNL) and sponsored by the FRA has shown the ability to successfully 

measure vertical track deflection in real-time from a car moving at revenue speeds.      

  The UNL system measures the rail height relative to the line created by the 

wheel/rail contact points.  Using a non-contact vision sensor system, it establishes three 

points of the rail shape beneath the loaded wheels and over a distance of 10 ft.  This 
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direct measurement of the rail shape can then be used to determine important information 

regarding the track and its support.  Primarily, the vertical track modulus can be related to 

the UNL deflection measurement through elastic foundation models.  Furthermore, since 

the rail shape is determined at the location of high bending stress beneath the loaded 

wheels, the measurement can be mapped into rail bending stress through the rail 

curvature and beam theory. 

 This thesis summarizes the simulation, development and usefulness of the UNL 

system for measuring vertical track response.  The relationship between the UNL 

deflection measurement and the actual bending stress in the rail is developed and 

described in detail.  Validation of this association is performed through field tests using 

the UNL system along with bondable resistance strain gages attached to the rail flange.  

Finite element simulations are used to characterize the track response from the 

perspective of the UNL measurement.  These simulations indicate that the UNL system is 

capable of distinguishing between several types of track support and geometry problems.   
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Chapter 2, BACKGROUND 

 

 Track quality and the parameters influencing it have been increasingly scrutinized 

as the railroad industry strives to meet consumer demands.  Although the evolution of 

track geometry vehicles has allowed for a thorough inspection of the geometrical defects 

of the rail, an important piece of the puzzle remains missing.  A valid method to measure 

and characterize the underlying track support would provide a missing tool in track 

design and maintenance.  In fact, previous research has shown that the locations of poor 

track support and geometry profile often coincide (Sussman et al., 2001).  Understanding 

the track support and how it relates to track response may provide for better maintenance 

methods and techniques to augment current practices. 

 Several mathematical models have been derived in an attempt to describe the 

relationship between the load and deflection of the railroad track (Kerr, 1964; Hetényi, 

1946).  In spite of their limitations, these models have historically been used to 

characterize the track support modulus.  A brief outline of these models is presented 

followed by a summary of the methods used to measure track response. 

2.1 Problem Definition 

 

 Analyzing track response requires some form of mathematical model.  Such 

models are needed for analytical calculations as well as relating field measurements to 

physical parameters associated with the track.  Most mathematical models for 

characterizing railroad track response have a basis in the bending theory of an elastic 

beam. 

 The bending theory of an elastic beam can be described by considering an infinite, 

continuous beam supported by an elastic foundation and subjected to a single point load.  
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This situation is similar to that of a railroad track under a single wheel load as illustrated 

in Figure 2-1. 

 

Figure 2-1.  Track response under one-wheel load (Lu et al., 2007). 

 Here the track support is modeled as a series of continuous, independent springs.  

The differential equation describing this situation is given by: 



EI
d4w

dx4
 p(x)  q(x) Equation 2-1 

 Initially for longitudinal tie tracks, EI represented the combined flexural rigidity 

of the rail and the longitudinal tie, w(x) represented the vertical beam (rail) deflection at 

location x, q(x) represented the vertical wheel load, and p(x) represented the continuous 

foundation reaction distributed force.  A detailed derivation of Equation 2-1 can be found 

in Hetényi, 1946.  For crosstie tracks, EI represents the flexural rigidity of the rail alone. 
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2.2 Winkler Track Model 

 

 The simplest track model based on Equation 2-1 is attributed to Winkler, who 

proposed that the distributed reaction force of the track foundation is linearly proportional 

to the vertical rail deflection.  With this assumption, Equation 2-1 becomes: 



EI
d4w

dx4
 uw(x)  q(x)  Equation 2-2 

 This equation can be solved for the response of the track to a given load.  The 

free-body diagram illustrating the load representation is shown in Figure 2-2.  

 

Figure 2-2.  Free body diagram for Winkler model (Lu et al., 2007). 

 Four boundary conditions defined by the following equations are used to solve 

this fourth-order linear differential equation: 



w()  0 Equation 2-3 



dw

dx x0

 0 
Equation 2-4 



0

 p(x)dx 
P

2
 Equation 2-5 
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 Applying these boundary conditions, Equation 2-2 can be solved for the vertical 

deflection along the length of the track.  The resulting expression is shown in Equation 

2-6. 

 



w(x)  
P

2u
e x cos( x  sin( x ) 

 
Equation 2-6 

where: 



 
u

4EI
4

 
Equation 2-7 

 

 

P is the load on the track 

u is the track modulus 

E is the modulus of elasticity of the rail 

I is the second moment of area of the rail section 

x is the longitudinal distance along the track
 

 

 The expression in Equation 2-6 is plotted for a range of modulus values as shown 

in Figure 2-3.  In this case, the flexural rigidity of 132 lb rail is used with a typical coal 

hopper wheel load of 32,500 lb.  Apparent in the figure is the fact that the rail deflects 

more with a decrease in modulus.  What may not be obvious by intuition, however, is that 

the rail actually lifts up from its original position over sections of track some distance 

away from the application of the load.  This phenomenon is observed in real track 

resulting in the loosening of cut spike fasteners (Kerr, 2003).  One potential pitfall of the 

linear Winkler model is that the base foundation “pulls down” on the rail at these 

locations.  The magnitude of this “pull down” effect is expected to be less in real track.  

Therefore, the rail lift may actually be greater than predicted by the Winkler model.   
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Figure 2-3.  Winkler track model showing the effect of varying modulus. 

 The linearity of the Winkler model allows for the combination of multiple axle 

loads through the property of superposition.  This is particularly useful for rail track 

analysis since loading conditions usually include a number of adjacent axles.  The 

influence of multiple axles is obvious as displayed in Figure 2-4.  In particular, the 

overall deflection increases while the location of maximum deflection moves slightly 

away from the points of load application.  The multiple-axle trucks on the same car seem 

to have little effect on one another.  However, trucks between adjacent cars have enough 

interaction such that they should be included in the analysis. 
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Figure 2-4.  Superposition of loads in Winkler model. 

 Despite the usefulness of superposition for railway analysis, it is widely accepted 

that the track response is nonlinear (Sussman et al., 2001; Lu, 2008).  This limitation and 

the fact that the spring elements in the foundation act independently have led to the 

formulation of several additional track models (Kerr, 1964). 

2.3 Alternative Track Models 

 

 Several alternative track and foundation models have been developed through the 

years (Kerr, 1964).  Some of these were developed as extensions of the Winkler model 

while others used distinct approaches.  The Pasternak foundation was an extension of the 

Winkler model where shear interactions were included between the vertical spring 

elements.  This introduced a second modulus term, the “shear modulus” G.  Viscous 

elements were later added to create a viscoelastic Pasternak foundation. 

 Discrete foundation models have also been created (Norman, 2004).  The 

advantage of a discrete model is that it allows variation of the stiffness from support to 
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support (tie to tie) along the foundation.  Such variation replicates measured data, which 

indicates that the support modulus can change significantly over short distances of 

railroad track (Ebersöhn & Selig, 1994; Lu, 2008). 

 In order to introduce the nonlinearity of the track foundation, a cubic approach 

was adopted for use with the bending theory of an elastic beam (Lu, 2008).  This model 

found its basis by determining that a cubic polynomial provided excellent agreement with 

experimental measurements of track deflection as shown in Figure 2-5.  

 

Figure 2-5.  Empirical data (Zarembski & Choros, 1980) with cubic curve fit (Lu, 2008). 

 A new expression was then proposed for the foundation reaction distributed force: 



p(x)  u1w(x)  u3w
3(x) 

Equation 2-8 

 Substituting this expression into Equation 2-1 yields the following differential 

equation for the track foundation: 
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

EI
d4w

dx4
 u1w  u3w

3  q Equation 2-9 

 Equation 2-9 is a nonlinear differential equation and a closed-form solution is not 

straightforward.  However, numerical techniques such as the “bvp4c” function in 

MATLAB® have been used to obtain a solution (Lu, 2008).  The results indicate several 

advantages over the Winkler model.  For example, the deflection more closely represents 

real measurements where the track deflects more under an initially soft support due to 

slack and voids in the foundation.  Further deflection results in stiffening of the 

foundation, which is typical of real track.  Additional improvements are that track lift is 

not deterred by the foundation pulling down on the rail with significant force.  The main 

disadvantages are that superposition is no longer valid and the current solution is limited 

to only one axle load. 

 Further progress has been achieved through models based on finite element 

analysis (FEA).  These models add further complexity while taking advantage of 

computing resources to create more realistic representations of the track.  Typical FEA 

models solve for the relationship between nodal displacements and applied forces by 

using differential equations or energy theorems.  One custom FEA program, titled 

GBEAM, displayed the usefulness of this method by considering dynamic effects on the 

track model (Carr, 1999).  The results indicate that above certain train speeds dynamic 

effects should not be ignored in the track response. 

 Despite the numerous models available, each track foundation representation 

seems to have limitations.  Although FEA models provide greater complexity, their 

implementation and scale is limited by the computing power available (Chang et al., 

1980).  Therefore, FEA models seem to be developed with regard to their specific use 
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and are limited in their generality.  For the purpose of track modulus measurement, the 

industry has leaned toward methods based on the Winkler approach (Kerr, 2003).  Even 

commercial simulation programs such as Vampire® rail vehicle dynamic software have 

opted for rather simple track models based on individual springs interacting with the 

vehicle masses (Hogan, 2007; Klauser, 2007).     

2.4 Measurement of Track Response 

 

 Analytical models provide a great tool for the design of railroad track and are a 

means to better understand the track response under loads.  However, to truly identify 

with real track mechanics, empirical measurements of the track response are required.  

Traditionally, vertical track deflection has been used to characterize the track support and 

corresponding response to loads (Kerr, 2003).  Studies have shown that deflection 

measurements related to the vertical track modulus can provide an important tool for 

track maintenance (Lu, 2008; Priest & Powrie, 2009; Ebersöhn & Selig, 1994).  Currently 

accepted methods rely mainly on static measurements to determine the vertical modulus 

of a short section of track. 

 The simplest of the static methods is the Beam on Elastic Foundation (BOEF) 

Method.  In this case, the vertical deflection of the track is measured at the location of a 

known applied load.  This essentially provides a stiffness measurement, which can be 

related to the track modulus using the Winkler model (Cai et al., 1994).  The resulting 

expression for the track modulus is given by: 

 



u 
1

4

1

EI











1

3 P

w0











4

3

 
Equation 2-10 
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where: u is the track modulus 

E is the modulus of elasticity of the rail 

I is the moment of inertia of the rail 

P is the load applied to the track 

w0 is the deflection of the rail at the loading point 

 

 Although this method has been suggested as the best technique for field 

measurement (Zarembski & Choros, 1980), it has several limitations.  The method relies 

on the Winkler model, which does not capture the nonlinear behavior of real track.  In 

addition, the single measurement does not consider the large variations in modulus that 

occur over relatively short distances of track.  Conducting manual measurements of this 

type over long sections of track is unreasonable and would require unacceptable track 

downtime. 

 Another static method that has been widely used to determine track modulus is 

the Deflection Basin Method, represented in Figure 2-6.  This technique considers the 

vertical equilibrium of the rail under an applied load.  The applied load can be shown to 

be proportional to the integral of the area formed by the deflected rail (Cai et al., 1994).  

This is represented as: 



P  
 uw(x)dx  0  Equation 2-11 

 In the field, the deflections are often measured at the tie locations, and the sum of 

the applied loads is used in the equilibrium equation to determine the support modulus 

(Kerr, 2003).  The resulting expression for modulus becomes: 
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

u 
P

awi(x)
i1

m

 
Equation 2-12 

where: 

 

u is the track modulus 

ΣP is the sum of the applied loads 

a is the tie spacing 

wi(x) is the rail deflection at each tie location 

m is the number of ties in the deflected region 

 

 

Figure 2-6.  Deflection Basin Method (Selig & Li, 1994). 

 Some researchers have challenged the validity of the Deflection Basin Method 

due to some questionable assumptions.  They dispute the belief that light wheel loads can 

be used to eliminate slack along the entire track section affected as recommended in (Cai 

et al., 1994).  The assumption that the tie deflections are directly proportional to the 

loading is also contested by the same investigation (Kerr & Shenton, 1985).  Furthermore, 

the method requires a multitude of displacement measurements that makes it tedious and 
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time-consuming.  As a result, the method is not very conducive to maintenance planning 

covering numerous miles of track. 

 One proposed solution that attempts to account for the nonlinear track behavior is 

the Heavy/Light Load Method.  This technique is similar to the BOEF method with two 

separate loads applied.  The method allows for a piecewise-linear representation of the 

track response as shown in Figure 2-7. 

 

Figure 2-7.  Piecewise-linear representation of track response (Lu, 2008). 

 The resulting expression for the track stiffness, which can be related to modulus 

through the Winkler model, is given by: 

 



k 
P2 P1

w2 w1  
Equation 2-13 

where: k is the track stiffness 
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 Pi are the applied loads 

wi are the corresponding deflections 

 The obvious weakness of this approach is apparent from Figure 2-7.  The 

selection of the two applied loads will undoubtedly affect the results of the piecewise 

approximation of the track response.  Similar to the other static measurements, this 

method results in fouling of the track and requires too much time and resources to 

become a valid inspection tool. 

 Automated track modulus measurement systems have been attempted and 

suggested as a way to gather information regarding track support for maintenance and 

planning.  One system that has been successfully applied, although not widely 

implemented, is the Track Loading Vehicle (TLV) operated by the Transportation 

Technology Center Inc. (TTCI) (Thompson & Li, 2002).  The system applies loads 

ranging from 4.45 kN to 267 kN (1 to 60 kips) while traveling at speeds up to 16.1 km/hr 

(10 mph).  Center-load bogies located on each of two cars apply the loads.  The leading 

vehicle applies a light load of 13.3 kN (3 kips) while the trailing vehicle applies 44.5 kN 

(10 kips) on a first pass and then 178 kN (40 kips) on a second pass over a single section 

of track.  Laser-based systems on each vehicle measure the track deflections associated 

with the applied loads. 

 The limitations of the TLV have restricted its use.  Due to its slow speed and the 

requirement of two passes over the same section of track, the TLV offers only minor 

gains over static measurements.  Significant expense and personnel are also required to 

operate the vehicle.   
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 Another automated system that has been proposed but not built was suggested 

based on walking-beam techniques developed by the military and used in highway 

research.  The suggested system would employ standard freight car trucks as the 

reference systems to record deflection measurements of a third loaded axle.  Similar to 

the TLV, both a heavy and light load would be applied but apparently in such a fashion 

that only one vehicle and one pass would be necessary.  An optical system in conjunction 

with a laser beam would be used to record the deflection of a target mounted to the 

loaded wheel (Carr, 1999). 

 Disadvantages associated with the hypothetical model are the requirement that 

each reference truck would need to follow an identical path (Carr, 1999).  Such a 

necessity means that special cylindrical wheelsets would have to be fabricated.  

Furthermore, the system requires specially loaded axles in contact with the rails, which 

would require the construction of a custom vehicle.  Such a contact measurement system 

could also be limited in speed and functionality. 

 Over the past few years, UNL has developed a system to measure vertical track 

deflection that overcomes many of the pitfalls found in previous measurement techniques.  

The system uses non-contact laser beams in conjunction with a camera to determine the 

rail displacement relative to the wheel/rail contact point.  Measurements are made from a 

modified hopper car in real-time while traveling at revenue speeds.  The non-invasive, 

robust operation of the UNL system makes it superior to previously proposed methods of 

track deflection measurement. 

 The principal goal of the UNL system is to use the track deflection measurements 

to identify locations of poor track support.  However, studies suggest that a wealth of 
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additional information regarding the track condition may be gleaned from the UNL data.  

Vertical track modulus may be derived from the primary measurement using the Winkler 

or cubic models (Lu, 2008).  Dynamic rail vehicle simulations may be improved when 

used in conjunction with data from the UNL system (Hogan et al., 2008; Hogan, 2007).  

Furthermore, the actual bending stress in the rails can be approximated through extension 

of the bending theory of an elastic beam (Greisen et al., 2009). 

2.5 Stress in Rails 

 

 Complex loading conditions lead to the stress distribution found in railroad rails.  

Cyclic wheel loads, temperature-induced longitudinal loads, and shear loads caused by 

the wheels and ties combine to create the compound stress environment found in the rails.  

Rail cant and gage widening further lead to eccentric and unusual forces on the rails.  

Despite the multitude of factors, cyclic axial forces most often govern the rail stresses 

leading to crack growth and fatigue failure. 

 Axial stresses primarily develop from temperature-based longitudinal stress, 

bending stresses from the wheel loads, and contact stresses from the wheel/rail contact 

patch.  The contact stress can be estimated based on the typical wheel loads on a given 

track by considering known tonnage rates.  Unfortunately, temperature-based stresses and 

bending stresses are much more difficult to determine.  Each of these two stress factors 

can independently lead to rail failure. 

 Flexural bending stress has historically been recognized as one of the main causes 

of fatigue failures in rail.  Therefore, much emphasis has been placed on an expanded 

understanding of stress related rail failure.  The Association of American Railroads (AAR) 

has developed theoretical equations for combining flexural bending stress, Hertzian 
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contact stress and longitudinal thermal stress with the classical fatigue theory of the 

Modified Goodman Diagram (Spotts et al., 2004).  Further modeling has been completed 

with computer programs developed by the AAR to analyze rail stresses (Steele & 

Muhlenberg, 1992; Steele & Joerms, 1988). 

 The theoretical models and programs developed by the AAR as well as testing 

conducted by TTCI have led to an overall increase in rail stress knowledge.  However, 

each model requires input concerning the rail stresses.  Therefore, any calculations based 

on these models will be limited by the details known about actual rail stresses.  

Unfortunately, data concerning bending stresses over significant amounts of actual track 

are limited. 

 The vertical track deflection measurement system developed by UNL has shown 

the capability to autonomously collect data over hundreds of miles of heavy-haul track in 

revenue service (Lu, 2008).  The relationship between data measured by the UNL system 

and the actual rail bending stress is developed in a later chapter of this thesis 

investigation.  Such a relationship, which has been validated with field measurements, 

provides important information for modeling, design and maintenance work concerning 

stresses in rails. 
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Chapter 3, UNL MEASUREMENT SYSTEM 

 

 Experts agree that continuous measurement of track support over vast distances 

would provide a significant addition to the maintenance tools available to railroad 

personnel (Sussman et al., 2001; Ebersöhn et al., 1993; Carr 1999).  However, as 

discussed in Chapter 2, methods for collecting data concerning track support conditions 

over many miles of track are currently unavailable.  Over the past few years, UNL has 

developed a system to measure vertical track deflection autonomously from a moving 

railcar traveling at revenue speeds.  This measurement system has successfully conducted 

tests over hundreds of miles of track and has preemptively identified several derailment 

locations (Lu, 2008).  The following chapter discusses the UNL method of measurement 

and recent improvements to the system. 

3.1 Method of Measurement 
 

 The UNL measurement system uses cameras and line lasers mounted to a stable 

reference frame to determine the vertical deflection of the rail.  The following sections 

describe how this system is implemented on a modified hopper car to create a robust, 

autonomous measurement system for recording the response of the railroad track under 

typical loading conditions.  

3.1.1 Sensor Geometry & Output 
 

 Deflection of the rail is recorded relative to the wheel/rail contact point as shown 

in Figure 3-1.  The instrumentation enclosure is mounted so that the sensor reading is 

measured 48” away from the inboard axle of a modified hopper car.  Included in the 

enclosure are a camera and two line lasers mounted at a fixed height, H, above the 
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wheel/rail contact line.  Line lasers are used to compensate for any lateral movement of 

the instrumentation.  This distance, H, can also be considered as the height of the sensors 

above a perfectly stiff rail with no deflection.  As the rail deflects under load, the sensor 

system measures its new height, h, above the rail.  The difference between the fixed 

height, H, and the varying height, h, is given by: 



Yrel  H  h  Equation 3-1 

 

 

Figure 3-1.  Schematic of UNL measurement method (Norman, 2004). 

 The track deflection is fully characterized by considering the other variables 

shown in Figure 3-1.  The deflection of the rail directly beneath the camera/laser 

assembly is defined as ycamera, while the deflection directly beneath the wheel/rail contact 

point is ywheel.  This maximum deflection, ywheel, at the wheel/rail contact point can be 
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related to the relative deflection, Yrel, using the Winkler track model.  Before this can be 

completed, Yrel must be determined from the direct sensor measurement.  As shown in 

Figure 3-2, the line lasers are projected at an acute angle toward the rail.  The distance 

between the two line lasers, d, at their intersection with the rail provides the output 

needed to determine Yrel. 

 

Figure 3-2.  Camera and laser placement with ideal sensor image (Norman, 2004). 

 The camera captures an image of the line lasers intersecting with the rail.  Curved 

lines appear in the image because of the curved profile of the railhead.  The minimum 

distance, d, between the two laser lines can be related to the distance, h, by considering 

the geometry of the camera and lasers as shown in Figure 3-3.  
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Figure 3-3.  Geometry of sensor system (Norman, 2004). 

 The geometry of the system can be described with the following equations: 



h  (L1  l1)tan1
 Equation 3-2 



h  (L2  l2)tan2
 Equation 3-3 



d  l1  l2
 Equation 3-4 

In this case, the variables are defined by the geometry shown in Figure 3-3.  An image-

processing program determines the distance, d, between the laser lines in the camera 

image (Lu, 2008).  The height of the sensor assembly above the rail is then found relative 

to this distance by solving the previous three equations for the following: 



h 
d  (L1  L2)

cot1 cot2

 
Equation 3-5 

 Combining Equation 3-5 with Equation 3-1, the deflection of the rail relative to 

the wheel/rail contact line, Yrel, can be determined from the sensor system’s output.  On 

soft track, the rail will deflect more beneath the wheel/rail contact point such that the 
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sensor system moves closer to the rail and the distance between the laser lines decreases.  

In contrast, the laser lines will move further apart on stiffer track.  Track modulus can 

then be estimated by considering the calculated relative deflection, Yrel, in conjunction 

with the Winkler track model. 

3.1.2 Measurement Related to Vertical Track Modulus 

 

 The UNL measurement of Yrel can be related to the vertical track modulus, u, by 

applying the superposition property of the Winkler track model as shown in Figure 3-4.   

 

Figure 3-4.  Determination of Yrel from the Winkler track model (Lu, 2008). 

 The modified hopper car used in the UNL measurement system has a known 

weight of approximately 262,000 lb.  The distances between each axle and between the 

inboard axle and the sensor system are 70” and 48” respectively.  Typically, the rail’s 

second moment of area and Young’s modulus for the particular track under consideration 

are known.  This information can be substituted into the Winkler track model, which can 

then be solved for the deflection of the track as represented in Equation 2-6.  Considering 
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only the two loads shown in Figure 3-4, superposition of the Winkler track deflection 

yields the following: 

 



wtotal(x) w1(x)w2(x) Equation 3-6 

where w1(x) is the deflection due to axle 1 

w2(x) is the deflection due to axle 2 
 

 The deflections beneath the sensor assembly and beneath the wheel/rail contact 

point are given by Equation 3-7 and Equation 3-8 respectively.  Note that these 

expressions are relevant to the abscissa in Figure 3-4.  The appropriate modifications 

must be made for a change in the reference axis. 



wsensor  wtotal(x)
xc48"

 
Equation 3-7 



wwheel / rail  wtotal(x)
xc

 
Equation 3-8 

 Now, Yrel can be determined based on its definition and the calculated deflections, 

which yields the following: 



Yrel wwheel / rail wsensor
 Equation 3-9 

 The explicit relationship between Yrel and track modulus, u, is more apparent by 

assuming a constant track modulus and expanding the previous equation to give: 

 



Yrel 
P

2u
1 eb cos b  sin b  

e48" cos 48"  sin 48"  

e (b48") cos (b 48")  sin (b 48"   

 

 

Equation 3-10 

where 



 
u

4EI











1

4
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Successive substitution of increasing modulus values into Equation 3-10 along with the 

known values of axle loads, geometry, and rail properties yields the graphical relationship 

between modulus and Yrel as shown in Figure 3-5.  This data can be compiled into a 

look-up table that can be used to directly transform measured Yrel data into modulus 

approximations for a section of track. 

 

Figure 3-5.  Relationship between Yrel and modulus from Winkler (Lu, 2008). 

3.1.3 Eliminating Track Geometry Effects 

 

 The theoretical measurement of Yrel as shown in Figure 3-1 includes the basic 

assumption that the unloaded rail is perfectly straight.  However, it is easy to speculate 

that some pre-existing geometry of the rail could affect the actual measured value of Yrel 

by the UNL system.  Unloaded geometry variations such as those shown in Figure 3-6 

can sometimes occur along mainline track.  The effect of such vertical track variations 

must be accounted for to ensure the integrity of the vertical track deflection measurement.   
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Figure 3-6.  Geometry variation in track profile. 

 In a previous investigation (Lu, 2008), a case study was performed to determine 

the effect of significant pre-existing rail geometry on the Yrel measurement.  This 

analysis examined an existing site where the rail contained an unloaded dip of 0.5” over a 

length of 200”.  The study indicated that the total Yrel measurement included combined 

effects from the pre-existing geometry and actual track deflection due to poor support 

conditions.  Using the Winkler model, the depth and length of an unloaded dip in the rail 

geometry was varied and the subsequent effect on Yrel was determined (Lu, 2008).  The 

results of the investigation suggest that only large vertical geometry defects over a short 

distance contribute to the Yrel measurement and that both geometry and modulus defects 

are generally present for large values of Yrel. 

 Rail profile data supplied by track geometry measurement vehicles is used to 

isolate the track deflection measurement from pre-existing geometry effects.  Track 

geometry vehicles measure various geometrical properties of the track including position, 

curvature, alignment, cross-level and profile, among others.  The vertical rail profile is 
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determined with the use of multiple on-board, high-precision accelerometers.  This data 

can be used to account for pre-existing geometry variations in the Yrel measurement. 

 The rail profile is used to calculate a 10 ft End Chord Offset (ECO) as shown in 

Figure 3-7.  The calculation of ECO corresponds directly to the determination of Yrel, 

except that the rail profile, rather than the instantaneous rail shape, is used in the 

computation.  Therefore, 70” is the spacing between the two truck axles (Figure 3-4) and 

48” is the distance between the inboard axle and the location of the sensor assembly.  

 

Figure 3-7.  Calculating End Chord Offset (ECO) from rail profile. 

 Note that the ECO has been referenced over 10 ft when in actuality the chord 

extends over 9 ft, 10 in.  This is done to simplify the calculation of ECO without any 

noticeable effect on the results.  Assuming the axles are spaced 72” apart makes this 

simplification.  Then, the expression for ECO is given by 

 



ECO 
5

3
p(x) 

2

3
p(x  72")  p(x  48")  Equation 3-11 

where p(x) is the rail profile at the inboard axle 

p(x-72”) is the rail profile at the trailing axle 

p(x+48”) is the rail profile at the sensor assembly 
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 The rail profile, p(x), should not be confused with the instantaneous rail deflection 

as shown in Figure 3-8.  In the figure, the axles travel from left to right.  The rail profile 

is the loaded path traversed by both axles.  The assumption that both axles follow the 

same path has been justified in previous investigations (Lu, 2008; Norman, 2004).  For 

example, the leading axle is currently in position p(x), the trailing axle is currently in 

position p(x-70”), and the sensor assembly is currently in position p(x+48”).  After 

traveling another 48”, the leading axle will be in position p(x+48”).  The trailing axle 

will be in position p(x) after 70” of travel and p(x+48”) after 118” of travel.  Conversely, 

the instantaneous rail deflection, w(x), defines the current rail shape.  The instantaneous 

deflection matches the rail profile only at the location of the axles.  Again, this is based 

on the assumption that both axles follow the same path.  At every other location, the 

instantaneous deflection is typically different than the loaded rail profile.  

 

Figure 3-8.  Relationship between Yrel and ECO. 

 The instantaneous rail deflection 48” ahead of the inboard axle, w(x+48”), will 

differ from the maximum, absolute deflection of the rail, p(x+48”), when the inboard 
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axle is actually at this location.  The difference between these two deflections was 

derived in (Lu, 2008) and is defined as: 



"Deflection"Yrel  ECO Equation 3-12 

 In this equation, both Yrel and ECO are defined by the geometry shown in Figure 

3-8.  In other words, by this definition, both Yrel and ECO are positive when the chord 

extends beneath the rail and negative otherwise.  The resulting value represents a relative 

deflection of the rail from partially loaded (when the axle is four feet away) to fully 

loaded (when the axle has advanced four feet). 

 The relationship between track deflection and track geometry is complex.  

Consolidating the preceding information, Yrel can be accounted for by two parts.  The 

first part is the geometry contribution defined with ECO.  The second part is the track 

deflection related to the vertical support modulus. 

3.2 Instrumentation 

 

 The instrumentation for the UNL measurement system is mounted on a 

refurbished hopper car as shown in Figure 3-9.  Sand is added to the covered hopper car 

in order to maintain a constant weight of 260,000 lb.  The cover is used to prevent the 

collection of rainwater.  The sensors themselves are supported from two (one above each 

rail) massive beams attached to the side frames of the trailing truck on the “A” end of the 

hopper car.  Modification of the side frames is not required since the beams are clamped 

to the side frames and held firmly in place with high-durometer rubber padding.  These 

rigid beams are painted red as shown in Figure 3-9. 
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Figure 3-9.  Instrumentation arrangement for UNL measurement system. 

 The system is comprised of the deflection measurement sensors, auxiliary 

measurement devices, power management, and onboard computational equipment.  These 

components work together to make an accurate and repeatable vertical deflection 

measurement of the rail in real-time.  Each of these elements is briefly described. 

 The deflection measurement sensors, consisting of a digital vision system and two 

line lasers, are enclosed in a sensor head bolted to the gage side of the red beam at a fixed 

distance from the inboard axle.  Excessive ambient light distorts the camera image and 

may lead to inaccurate or erroneous measurements.  Therefore, sunlight is shielded from 

the camera image with shrouds bolted to the bottom of the red beam as shown in Figure 

3-9. The shrouds themselves consist of flexible, plastic landscaping material wrapped 
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around a frame of steel tubing.  The top of the shroud frame is covered with stainless 

steel sheet metal. 

 Multiple mounting holes allow for positional adjustment of the camera and lasers 

inside the sensor head as shown in Figure 3-10.  Separate mounting holes, rather than 

slots, ensure that the instruments are rigidly attached.  The laser beams are projected at 

approximately 40° angles from the horizontal.  These beams cross and subsequently 

create curves across the top surface of the rail as shown in the right image of Figure 3-10. 

 

Figure 3-10.  Sensor arrangement with resulting camera image. 

 The minimum distance between the curves in the real image shown in Figure 3-10 

corresponds to the distance, d, defined earlier and illustrated in Figure 3-2 and Figure 3-3.  

The camera captures this image and an image-processing program is used to determine 

the minimum distance between the two curves (Lu, 2008).  As described earlier, the 

distance between the laser lines is directly related to the vertical track deflection.  On soft 

track, the rail deflects a greater amount and the laser lines move closer together.  On stiff 

track, the rail does not deflect much and the laser lines are further apart.     

 Several auxiliary measurement devices are used to complement the vertical 

deflection measurement.  These include an encoder, linear variable differential 

transformers (LVDT’s) and accelerometers as shown in Figure 3-11.  A global 
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positioning system (GPS) is also used with the corresponding antenna mounted to the top 

of the car as shown in Figure 3-12. 

 

Figure 3-11.  Auxiliary measurement devices on UNL system. 

 

Figure 3-12.  On-board computation, power supply, and GPS antenna. 



 34 

 The GPS receiver is located inside one of the sealed white Purcell® boxes 

mounted on the “A” end of the hopper car as displayed in Figure 3-12.  The GPS adds 

real-time longitude and latitude data to the corresponding deflection measurements.  This 

positional information is used to correlate milepost information with Precision 

Measurement Vehicle (PMV) data.  Therefore, the location of measurement exceptions 

can be accurately identified.  Any data that exceeds thresholds based on various criteria 

defined in section 3.4 qualifies as an exception.  Exception locations usually correlate to 

poor track quality and are further investigated with site visits requiring accurate location 

information. 

 Error in the GPS data may lead to misalignment of the deflection data with the 

corresponding track mileposts.  This alignment is needed to match the UNL 

measurements with PMV data and to locate exception sites.  The exact magnitude of this 

error can vary depending on a variety of factors related to the satellite clock, signal delay, 

signal reception, and weather.  The combined effects can lead to errors of up to 60 ft (Lu, 

2008).  Therefore, the encoder shown in Figure 3-11 was added to correct errors made by 

the GPS.  In addition to improving the precision of the location data, the encoder has 

been used to wake the computers from sleep mode. 

 Linear variable differential transformers (LVDT’s) are mounted to each red beam 

as displayed in Figure 3-11.  The purpose of these devices is to determine the dynamic 

response of the car body during travel.  They measure the car body roll by making a 

deflection measurement between the side frame of the truck and the bolster.  This 

approach has been in development for several years without definitive results (McVey, 
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2006).  However, the LVDT’s and their mounting placement have recently been updated.  

Further field measurements and data processing are needed to verify their operation. 

 Another recent addition to the UNL system includes accelerometers mounted to 

the bearing adapters on each side of the inboard axle as shown in Figure 3-11.  The 

accelerometers are Dytran Instruments 7500A5 variable capacitance models capable of 

measuring accelerations up to 50 g’s.  Their purpose is to record the vertical acceleration 

of the inboard axle.  The vertical acceleration may then be filtered and integrated twice to 

determine the vertical rail profile needed to calculate ECO.  This will ultimately eliminate 

the process of acquiring rail profile data from separate track geometry vehicles.  

Although current data processing has indicated the potential of these accelerometers, the 

results do not yet match track geometry profile data.  Alternative mounting positions are 

under exploration to avoid the influence of vibration from the bearing adapters. 

 Onboard computation and data processing is completed with three rugged 

computers stored inside the sealed white Purcell® boxes mounted on the “A” end of the 

car.  In addition to the computers, two data acquisition (DAQ) boards, two relays, and a 

wireless router are stored in the Purcell® boxes.  Two of the computers are used to 

manage the digital vision systems and lasers for each rail.  The third computer manages 

the auxiliary equipment including the LVDT’s and accelerometers.  The encoder data is 

read by a Rabbit 3000 micro-controller, also stored in the Purcell® box. 

3.3 Additions & Improvements 

 

 Several additions and improvements have been made in recent years as part of the 

ongoing development of the UNL vertical track deflection measurement system.  Some 

new and modified devices have been added as part of the auxiliary measurement 
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equipment already described.  New LVDT’s with a modified mounting configuration 

have been added as shown in Figure 3-11.  The new LVDT’s have a longer stroke than 

previous versions while the mounting configuration ensures direct contact of the piston 

with the bolster.  Earlier versions required a second bracket mounted to the bolster.  

Excessive car body roll also presented the possibility of interference between the LVDT 

housing and bolster, which has been eliminated in the new design. 

 Accelerometers have also been mounted above the bearing adapters on the 

inboard axle as displayed in Figure 3-11.  The goal of the accelerometers consists of 

determining the vertical space curve of each rail.  The space curve data is needed to 

compute the ECO used to remove geometry effects in the vertical deflection 

measurement.  Currently, separate track geometry vehicles operated by the railroad 

companies provide the space curve data.  Incorporating this measurement into the UNL 

system would allow the geometry effects to be eliminated in real-time.  Real-time 

measurement of the space curve eliminates the possibility of track variations between the 

time the UNL and track geometry car measurements are made.  Further field-testing and 

data processing are needed to verify that the accelerometers can successfully reproduce 

the vertical space curve of each rail. 

 Additional improvements have been completed with the design of new red beams 

as shown in Figure 3-13.  The original red beams were designed for use with a tank car, 

requiring the removal of material from the beam section (McVey, 2006) as shown in 

Figure 3-13 (b).  Deterioration of the welds around the modified section of the red beams 

created a concern regarding their structural integrity.  Since the beams are now mounted 
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on a modified hopper car, the removed material is no longer necessary.  Therefore, the 

new beams have a continuous section as illustrated in Figure 3-13 (a).  

 

Figure 3-13. (a) Modified vs. (b) original red mounting beams. 

 Another modification to the red beams includes the new, continuously welded and 

gusseted mounting plates visible in Figure 3-13 (a).  The original red beams employed 

small triangular gussets supporting the top mounting plate only, without any gussets 

supporting the bottom mounting plate.  The addition of two more holes per mounting 

plate allows six, rather than four, half-inch bolts to clamp the red beams firmly to the side 

frames.    
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 Several more modifications to the red beams make the system more robust while 

easing maintenance and troubleshooting tasks.  The addition of a second horizontal 

member at the sensor head location eliminates the need for an extra adapter plate as 

shown in Figure 3-14.  Previously, the sensor heads were not of the same construction.  

Fabrication of a new sensor head has made the system more uniform, modular, and 

quickly removable. 

 

Figure 3-14. (a) Modified vs. (b) original sensor heads and conduit. 

 As displayed in Figure 3-14, even the electrical conduit has been updated.  The 

original conduit was placed along the bottom of the hopper car and extended from a PVC 

pipe.  The new conduit was enlarged from 1” to 2” and routed inside the red beam itself 

with a small section exposed going into the sensor head as shown in Figure 3-14 (a).  
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These improvements allow wiring with larger connectors while minimizing weathering 

effects and external damage. 

 Recently, the shroud design was updated as shown in Figure 3-15.  The shroud on 

the right beam illustrates the modified design while the shroud on the left beam 

represents the original shroud structure.  Both existing shrouds have been remade to 

match the updated version.  The changes included reduction of the shroud width by eight 

inches and the addition of two gusseted brackets at the front and rear ends of the shroud.  

The overall effect results in less overall weight and less weight cantilevered away from 

the mounting bolts underneath the red beam.  The gussets provide further structural 

stability and reduce vibration.  

 

Figure 3-15.  Modifications to shrouds. 

 The last modification to mention is the addition of another set of high-durometer 

rubber padding near the angled portion of the red beam on the top of the side frames.  

The other two sets of rubber padding positioned at the mounting plate locations were 

already in place.  However, without the third set of rubber pads, the red beam was 
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actually cantilevered over a much greater distance than necessary.  The additional 

padding provides more support to the red beams.  This modification was seen as a simple 

way to enhance the mounting arrangement of the red beams to the side frames.  Previous 

studies of the beams’ rigidity have shown that they provide a stable reference frame for 

the measurement equipment (Norman, 2004).   

 

Figure 3-16.  Method of mounting red beams to side frames. 

3.4 Outline of Field Data 

 

 The UNL vertical track deflection measurement system has been tested over 

thousands of miles of track over the past several years.  The results have yielded a wealth 

of data and have provided a basis to begin classifying defects and setting exception 

thresholds.  Current exception criteria include computing a deviation ratio, σratio, 

computing the difference between an individual data point and the mean, Δ, and 

analyzing the difference between Yrel and ECO (Lu, 2008).  The deviation ratio is 
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calculated by forming a ratio of the difference criterion, Δ, with the standard deviation in 

the data over 0.1 miles of track. 

 The current exception criteria have proven successful in identifying defective 

areas in track.  For example, one test conducted in 2007 on the South Morrill subdivision 

of the UPRR independently identified three derailment locations (Lu, 2008).  Although 

the UNL system is building a solid reputation for identifying problem areas in track, 

further understanding of the data is required to make the system a more robust tool for 

maintenance activities.   

 The following sections briefly summarize three different exception sites identified 

by the UNL system.  These sites encompass some of the variety of magnitudes and 

shapes found in the UNL data as well as the range of defects discovered.  The locations 

of these sites are not discussed.  Instead, emphasis is placed on the relative shape of the 

data and how this might be used to identify the level and type of defects.  

3.4.1 Site A:  Failing Insulated Joint 

 

 The first exception location discussed is referred to as site “A” at the position of a 

failing insulated joint.  The data for this site are displayed in Figure 3-17 and a photo of 

the actual site is shown in Figure 3-18.  The data reveals a large peak of 1.2” in Yrel with 

only a 0.3” measurement in ECO on the south rail.  The data for the north rail do not 

reveal any significant exceptions at this location. 
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Figure 3-17.  Data at site A (Lu, 2008). 

 The large difference between Yrel and ECO indicates that although there are not 

any significant geometry variations at this location, the deflection of the rail must be 

quite significant.  Such differences have proven to be a common trait for data exceptions 

located at poor joints such as those shown in Figure 3-18.  In fact, large differences 

between Yrel and ECO have proven to be one of the most important exception criteria 

(Lu, 2008).  However, this type of magnitude and shape in the data is not necessarily 

exclusive to poor joints, as revealed by the next site. 
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Figure 3-18.  Failing insulated joint at site A (Lu, 2008). 

3.4.2 Site B:  Broken Concrete Ties 

 

 Several broken concrete ties are present at the location of site “B.”  The data and 

photo of this site are shown in Figure 3-19 and Figure 3-20 respectively.  Both rails have 

peaks in Yrel exceeding 0.8”.  While the ECO peak matches Yrel on the south rail, an 

ECO peak of only 0.37” is present on the north rail.   

 These data shapes highlight some of the complexity involved in setting thresholds 

based on one criterion alone.  This site was flagged based mainly on the north rail data 

because of the large difference between Yrel and ECO.  Yet the peaks in the data 

measured on the south rail are also a result of the broken ties.  Such results emphasize the 

correlation between geometry and poor support conditions on railroad track.  The reasons 

why some exception sites exhibit large differences between Yrel and ECO while at other 

sites they are the same is not completely understood.  Mathematical simulations may 

provide some clues as discussed in a later chapter. 
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Figure 3-19.  Data at site B. 

 

Figure 3-20.  Broken ties at site B. 
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3.4.3 Site C:  Mud Hole at Crossing 

 

 The Yrel and ECO data match very well at site “C” as displayed in Figure 3-21.  

The Yrel and ECO data both peak at about 0.92” on the south rail with a Yrel peak of 0.68” 

and ECO peak of 0.38” in the data for the north rail.  The matching data indicates that a 

dip in the vertical track geometry might exist at a location of poor support. 

 

Figure 3-21.  Data at site C. 

 During a site visit, a 31 ft mid-chord offset (MCO) of 0.875” was recorded.  The 

MCO is measured by placing a 31 ft string on top of the rail and measuring the difference 

in height between the top of the rail and the string at its midpoint.  The site visit revealed 

a mud hole with severe pumping across several concrete ties as displayed in Figure 3-22. 
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Figure 3-22.  Mud hole at site C. 

3.4.4 Classifying Exceptions Based on Data 

 The connection between poor track support and track geometry is complex.  Sites 

with poor support such as site “C” often exhibit both large Yrel and ECO peaks.  

However, sites “A” and “B” reveal that defective geometry is not always present at 

locations of poor track support.  Previous research has shown that large differences in 

Yrel and ECO provide good exception estimates.  However, this same research theorizes 

that both poor support and poor geometry are usually needed to generate large peaks in 

Yrel data (Lu, 2008). 

 Classifying exceptions based on the data shapes has proven difficult.  Although 

current criteria have proven useful in identifying exceptions, several separate indicators 

may be needed for categorization.  Mathematical techniques, such as the finite element 

method described later, may provide assistance in understanding this complex issue.  For 

example, the interaction between poor support, geometry, and joints may lead to a 

specific shape in the data indicative of a certain level of maintenance need. 
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Chapter 4, RAIL BENDING STRESS 

 

 Flexural bending stress in the vertical plane has historically been recognized as 

one of the significant contributions to fatigue failure of rail (Greisen et al., 2009).  

Despite this recognition, current measurement practices do not include any methods to 

measure the bending stress in rail over significant distances of actual track.  Such a 

method would provide key insights that would be useful for track maintenance as well as 

input into the various software programs developed by the Association of American 

Railroads (AAR). 

 The UNL vertical track deflection measurement system has demonstrated a robust 

method to determine track deflection over significant distances.  As already shown, this 

measurement can be directly related to the track support modulus using the Winkler or 

cubic track models.  Recent studies suggest that this system has the additional capability 

to determine the actual bending stress in the rail.  The following chapter outlines the 

relationship between the UNL measurement and rail bending stress.  Field tests verify 

this relationship, which expands the versatility of the UNL system. 

4.1 Relationship to UNL Measurement 

 

 The UNL system establishes three points of the rail shape beneath the loaded 

wheels and over a distance of 10 ft.  Applying any of the track models described in 

Chapter 2, this partial rail shape can be mapped into the bending stress in the rail.  For 

this investigation, the method chosen is the classic Winkler model.  The rail shape 

estimated by the Winkler model for two axles beneath the UNL test car (and other axles 

of a trailing car) is shown in Figure 4-1. 
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Figure 4-1.  Winkler shape of rail beneath UNL car showing Yrel measurement. 

 The Winkler shape of the rail in Figure 4-1 is found by superposition of the axle 

loads and application of Equation 2-6.  Previous research has shown that the Winkler 

model provides acceptable agreement with field measurements (Zarembski & Choros, 

1980; Kerr, 2003).  The bending moment, M(x) that results from the deflection estimated 

by the Winkler model is given by: 

 



M(x)  EI w (x) 
P

4
e x cos  x  sin  x  

 
Equation 4-1 

where: 



 
u

4EI
4

 
Equation 4-2 
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P is the load on the track 

u is the track modulus 

E is the modulus of elasticity of the rail 

I is the second moment of area of the rail section 

x is the longitudinal distance along the track
 

 

 The bending strain is then calculated at x = 0, matching the location of axle three 

in Equation 4-1.  This location matches the position where Yrel is measured from the 

UNL test car.  Knowledge of the bending moment is combined with classical beam 

theory to calculate the bending strain in the rail.  The bending strain, εB, that results is 

defined as: 

 



B 
Mz

EI  
Equation 4-3 

where: z is the distance from the neutral axis  

 The preceding derivation allows the Winkler model to be used to calculate 

theoretical Yrel and bending strain values for a known set of loading conditions.  For a 

particular rail profile and set of axle loads the only variation in the calculations is the 

track modulus.  Varying the track modulus and calculating the corresponding Yrel and 

bending strain values allows for the creation of a look-up table, which is displayed 

graphically in Figure 4-2.  The bending stress is directly related to the bending strain 

through Hooke’s law. 



B  EB
 Equation 4-4 
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Figure 4-2.  Relationship between Yrel and bending strain. 

4.2 Field Testing 

4.2.1 Method of Measurement 

 

 Field tests were conducted on the UPRR’s Yoder subdivision to verify the 

theoretical mapping of Yrel measurements into bending strain values.  The tests consisted 

of mounting strain gages on top of the rail’s bottom flange and measuring a value of Yrel 

with the UNL measurement system.  The strain gages were placed symmetrically on each 

side of the rail in a Wheatstone bridge configuration as shown in Figure 4-3.  This strain 

gage bridge configuration eliminated any transverse loading effects. 
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Figure 4-3.  Wheatstone bridge configuration and strain gage placement. 

 The output from the bridge was input into a Vishay Model 2150 strain indicator 

and signal conditioner shown in Figure 4-4.  The data were recorded with a standard 

analog-to-digital USB input card in conjunction with a laptop computer.  

 

Figure 4-4.  Vishay model 2150 strain gage signal indicator (Vishay). 

 The strain output from the strain indicator, εB, is expressed as: 

 



B 
q

k

q

2


2Eo

F(E i  2Eo)  
Equation 4-5 

where: 
εq is the strain output for a quarter-bridge Wheatstone bridge  
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ΔEo is the change in output voltage recorded from the indicator 

Ei is the excitation input into the bridge (10 volts) 

F is the gage factor (~2.1 for all gages used in the tests) 

K is the bridge factor (2 for the bridge configuration used) 

 The test-car consist (configuration of rail vehicles) used in the Yoder subdivision 

test passed over the strain gages at constant velocity, yielding the results displayed in 

Figure 4-5.  The locomotive and test car axles are clearly visible in the data.  Larger 

bending strains are present beneath the locomotive axles due to its larger weight.  The 

effect of adjacent axles is apparent in the strain with the overall curve analogous to the 

deflections found when superimposing adjacent axles in the Winkler model as shown in 

Figure 2-4. 

 

Figure 4-5.  Strain gage measurements of testing consist. 
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 In order to make an accurate comparison with the Yrel strain calculation, the 

measurement car was spotted with axle three (shown in Figure 4-1) directly above the 

strain gage location.  The resulting strain measurement is displayed in Figure 4-6.  

Increases in strain are observed as the locomotive axles pass over the strain gages 

followed by axles one and two of the test car.  The data spreads out as the car comes to 

rest since the abscissa represents a time axis.  As axle three is placed directly over the 

strain gages, the strain increases from 0 με to 290 με.   

 

Figure 4-6.  Spotting of UNL car and measurement of strain beneath inboard axle. 

 The strain measurement starts at zero in Figure 4-6 since the strain gages were 

mounted to the unloaded rail.  Temperature-based axial strain did not affect the data since 

the ambient temperature did not vary between gage placement and spotting of the car.  

Furthermore, any residual stresses are not measured since they would have been present 

prior to attaching the gages. 
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 The strain gage measurement represents the change in bending strain relative to 

the unloaded rail profile.  This fact is important to note because some initial bending 

strain is present in the rail since the unloaded rail profile is not perfectly straight.  In order 

to account for this initial strain, a measurement of the unloaded rail profile was 

completed with an independent instrument.  A surveyor’s transit was used to 

independently measure the unloaded and loaded profiles of the rail before and after 

spotting the car as shown in Figure 4-7. 

 

Figure 4-7.  Absolute measurement of loaded and unloaded rail profile (Lu, 2008). 

 In order to measure the rail profile while the train car wheels were in place, 

magnetic steel rulers, rather than a prism, were used as the references.  This new method 

is shown in Figure 4-8.  Before the rail was loaded, the surveyor’s transit was used to 

record a reference value on the steel rulers.  After the spotting train loaded the rail, the 

transit was again used to record the deflection of the steel rulers.  Therefore, the 

deflection of the ruler indicates the change in rail profile between the unloaded and 

loaded states.  The change in profile is added to the unloaded profile to produce a 

measurement of the loaded profile relative to an absolute horizontal reference.   
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Figure 4-8.  Magnetic rulers used to measure rail profile with surveyor’s transit. 

 As mentioned earlier, the field tests were conducted on UPRR’s Yoder 

subdivision in southeast Wyoming.  This subdivision handles approximately 2 MGT per 

year in rail traffic.  The measurements were made on October 15, 2008.  Two specific 

sites were instrumented with strain gages for comparison with the strain estimated by the 

UNL system.  The first site at MP 231.6 was comprised of stiff tangent track.  The second 

site at MP 228.6 consisted of a soft mud hole. Both locations were constructed of 131 lb 

rail with wood crossties. 

4.2.2 Strain Results at Stiff Tangent Track Site 

 

 The measurement results from the section of stiff tangent track at MP 231.6 are 

shown in Figure 4-9.  The UNL Yrel measurement of 0.15” indicates that this track was 

well supported.  Based on the chart in Figure 4-2, the absolute bending strain is estimated 

to be 332 με.  The strain gage reading relative to the unloaded profile was 290 με.  

However, some existing bending strain must be present based on the unloaded profile of 

the rail.  In order to directly compare the Yrel estimated strain with the strain gage 

reading, the unloaded bending strain must be removed from the Yrel measurement.  
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Figure 4-9.  Strain comparison at the location of a stiff section of tangent track. 

 As displayed in Figure 4-9, both the unloaded and loaded profiles were measured 

with the values of each displacement shown next to the arrows in inches.  These profile 

measurements are used to calculate a change in Yrel, referred to as ΔYrel.  This ΔYrel is 

determined by subtracting a Yrel value calculated with the unloaded profile from the Yrel 

value measured with the UNL car.  Then, using the data in Figure 4-2, the strain 

estimated with the ΔYrel value can be compared directly with the strain gage data. 

 Since the track is well supported at this location, the unloaded Yrel value is only 

0.001”, resulting in a ΔYrel of 0.149”.  Therefore, the change in bending strain from 

loaded to unloaded is 330 με.  This measurement differs from the strain gage recording of 

290 με by only 13.7%.  

 Based on the preceding results and discussion, it is theorized that the original 

value of Yrel from the UNL measurement car provides a true estimation of the bending 

strain present in the rail.  However, the ΔYrel value is needed to compare the strain gage 

readings since they are not mounted to the rail while it is in a strain-free state.  This 

premise becomes more apparent at the following site. 
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4.2.3 Strain Results at Soft Mud Hole Site 

 

 The measurement results from a poorly supported section of track with muddy 

ballast and pumping crossties are shown in Figure 4-10.  The UNL system recorded a 

Yrel value of 0.73” indicating softer track.  This results in an estimated bending strain of 

868 με.  The strain gages at this location measured a change of 580 με from the unloaded 

to the loaded state. 

 

Figure 4-10.  Strain comparison at the location of a soft mud hole. 

 As shown in Figure 4-10, a significant dip in the rail profile was present at this 

site.  Using the unloaded profile, a Yrel value of 0.254” is calculated.  Repeating the 

method described for the previous site, a ΔYrel of 0.478” is then determined by 

subtracting the unloaded Yrel from the Yrel value measured by the UNL car.  The 

bending strain estimated from the ΔYrel value is 651 με.  This differs by only 12.2% from 

the measured strain of 580 με. 

 Again, the absolute bending strain is considered to be estimated most accurately 

by the Yrel value measured with the UNL system.  The ΔYrel value is only needed to 

compare the measurement with the strain gage readings for validation purposes.  Had the 
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strain gages been mounted to the rails while they were in a strain-free state, this step 

would be unnecessary. 

 The results from both sites are displayed in Table 4-1. 

Table 4-1.  Strain measurement validation. 

 MP231.6 MP228.6 

Strain from Yrel 330 651 

Strain from gage 290 580 

% Error 13.7% 12.2% 

 

 The field validation results display a strong correlation between the strain gage 

measurements and the strains estimated with the Yrel measurement.  The differences of 

13.7% and 12.2% are well within the errors present in both the model and field 

measurements.  At both locations, the calculated strain was slightly above that of the 

measured strain.  The lower measured value may have resulted from slight misalignment 

of the strain gages with the axis of the rail.  Furthermore, the axle may not have been 

parked exactly above the strain gages such that the gages did not record the maximum 

strain present directly beneath the axle. 

 These early results expand upon the capability and versatility of the UNL vertical 

track deflection measurement system.  Increased understanding of how the UNL system 

relates to the track response will further its ability as a maintenance tool.  The next 

chapter reveals how finite element methods may clarify the relationship between 

measured Yrel data and the mechanical response of the track. 
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Chapter 5, FINITE ELEMENT ANALYSIS 

 

 As described in Chapter 2, several analytical models have been developed for use 

in railroad track design and to characterize the track response under load.  Despite the 

usefulness of some of these models, they lack the complexity needed to fully characterize 

real track.  Advancements in finite element analyses (FEA) have provided more realistic 

representations of the track response.  These FEA programs often need to be formulated 

with a specific objective in order to minimize computational costs.  Therefore, a FEA 

program suitable for solving one problem may not adapt well to another goal. 

 Custom FEA programs offer realistic solutions to well-defined problems. One 

particular FEA program titled GBEAM was developed to better understand track 

dynamics (Carr, 1999).  This program analyzed the motion of a single mass rolling along 

the track.  The track was modeled as an Euler beam resting on a damped, elastic 

foundation.  The results highlighted the importance of measuring track deflection and 

concluded that track dynamics become important in high-speed simulations (Carr, 1999). 

 The following sections describe the development and results of a new custom 

FEA program created to characterize track response from the perspective of the UNL 

system.  Nonlinear foundation characteristics are examined with the commercial FEA 

software, ALGOR®.  The purpose of this analysis is to provide better understanding of 

the data collected by the UNL system.  Improved evaluation of this data would enhance 

its potential as a resource for maintenance planning. 
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5.1 FEA Model Development 

5.1.1 FEA Objectives & Specifications 

 The main objective of the FEA analysis developed in this thesis investigation is to 

characterize track response based on the UNL measurement system’s point of view.  This 

system measures the vertical deflection of the track from a moving reference frame 

attached to a three-piece truck on a modified hopper car.  Variations in the track support 

and in short-wavelength track geometry affect the UNL measurement.  The exact nature 

of how these track characteristics relate to the UNL data is important for maintenance 

planning. 

 The UNL system, described in detail in Chapter 3, yields relative track deflection 

data defined as Yrel.  This measured deflection is used in conjunction with a 10 ft end-

chord-offset (ECO) calculated from the vertical rail profile to identify areas of poor track 

support.  The difference between Yrel and ECO is used as one exception criterion for 

identifying locations needing further inspection (Lu, 2008).  This criterion is used along 

with relative thresholds for the magnitudes of the Yrel and ECO measurements. 

 Certain track locations yield identical shapes and magnitudes for both Yrel and 

ECO as shown in the top of Figure 5-1.  Other locations result in large peaks in Yrel data 

with relatively minor ECO peaks as illustrated in the bottom of Figure 5-1.  

Corresponding site visits have shown that each case can result in the identification of 

track defects.  However, some visits have revealed track that is not in need of 

maintenance despite large magnitudes in the peaks of Yrel data. 
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Figure 5-1.  Different shapes in Yrel and ECO data. 

 Using the FEA program to characterize the track response based on the Yrel and 

ECO measurements may provide insights into which track features lead to certain 

measurement results.  For example, different combinations of poor track support, poor 

track geometry, and failing joints may lead to either case shown in Figure 5-1 as well as 

intermediate situations.  Therefore, the particular program developed should have the 

ability to vary each of these items individually and analyze the corresponding effects on 

the UNL measurement results. 

 Several specifications simplify the structure and focus of the FEA program.  The 

FEA program assumes a Winkler foundation.  However, the program allows for variation 

in support modulus along the track.  More complicated, nonlinear foundations are 
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examined with ALGOR®.  The model is constructed in two dimensions and considers 

only one rail.  Fixed boundary conditions are used, and the length of the model ensures 

that the boundaries do not affect the deflection results.  The dimensions correspond to a 

standard coal train traveling over 132 lb rail.  The elements are only one inch in length so 

that enough nodal deflections are calculated to reproduce the Yrel measurement.  

Dynamic effects are ignored and the deflections needed to reproduce the Yrel data are 

obtained using a quasi-static approach. 

5.1.2 Governing Equation & Program Development 

 

 The assumption of a Winkler foundation leads to the governing differential 

equation defined previously in Equation 2-2.  This equation is rewritten in a form more 

suitable for the derivation of the necessary finite element equations as displayed in 

Equation 5-1. The equation represents a beam supported by a series of continuous, 

independent springs.  Equilibrium of a differential length of the beam yields: 



d2

dx2
EI

d2w

dx2









 uw q  0 Equation 5-1 

 The derivation of the finite element equations follows a variational formulation 

based on the principle of minimum potential energy and the calculus of variations.  The 

following simplifying techniques based on the method in (Thompson, 2005) are used in 

the derivation: 

1. The governing equation is placed in its “weak” form (from the calculus of 

variations) rather than directly into the potential energy functional. 

2. The general element approximating functions are defined by a local coordinate 

system with the origin at the element’s left end. 



 63 

3. Equations and calculations are completed in matrix notation more suitable for 

programming. 

4. Known boundary values are included in the calculations as if they were 

unknowns and only accounted for after the final matrix equation is created. 

 The governing equation defined in Equation 5-1 requires that the fourth derivative 

of w exists.  In order to reduce these requirements, the equation is placed in its weak 

form giving: 

 



w
d2

dx2
EI

d2w

dx2









 uw  q









dx  0

0

L

  Equation 5-2 

where δw represents a small variation in w 

L is the length of a general element 
 

 Placing the governing equation in its weak form reduces the requirements for 

higher order derivatives in the solution.  Integrating by parts twice and substituting the 

expressions for shear and moments found in elementary beam theory yields Equation 5-3 

(Thompson, 2005). 

 



wLVL wOVO 
dw

dx











L

ML 
dw

dx











O

MO 

d2w

dx2
EI

d2w

dx2









wkw wq








dx  0

0

L


 Equation 5-3 

where 



M  EI
d2w

dx2  



V 
d

dx
EI

d2w

dx2









 

Equation 5-4 

 

Equation 5-5 

 

 Based on the weak formulation of the governing differential equation, only the 

second derivative of w is required to exist, as illustrated by Equation 5-3.  The condition 
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for existing second derivatives requires that the approximating shape functions be 

continuous and have continuous first derivatives. Hermite cubics are used as the 

approximating functions to accomplish these objectives.  Each function is defined in 

terms of the nodal values for w and dw/du at the ends of each element.  These functions 

are expressed in terms of their Gaussian coordinates as displayed in the following 

equations. 

 



N1 
1

4









u2  u 1 

2
 



N2 
1

4









u1  u 1 

2
 



N3  
1

4









u 2  u1 

2
 



N4 
1

4









u 1  u1 

2
 

Equation 5-6 
 
 

Equation 5-7 
 
 

Equation 5-8 
 
 

Equation 5-9 

where u defines the Gaussian coordinates  

 With respect to the nodal values and matrix notation the approximation becomes: 

 



w(u)  N1(u)  N2(u)  N3(u)  N4 (u) 

Wa

dWa du

Wb

dWb du

























 Equation 5-10 

where a and b represent the left and right nodes respectively 

u defines the Gaussian coordinates 
 

 Gaussian coordinates are used since Gaussian quadrature is the numerical 

integration method used to solve the finite element equations.  Gaussian quadrature is a 

method of determining an integral by using a weighted average of the integrand evaluated 

at specific sampling points (Thompson, 2005).  In this case, four-point Gaussian 
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quadrature is used since four points are needed to exactly integrate a cubic polynomial.  

The execution of this integration scheme is revealed in the FEA program code written in 

MATLAB® and included in the appendix. 

 The approximating shape functions are depicted graphically with respect to the 

Gaussian coordinates as shown in Figure 5-2. 

 

Figure 5-2.  Hermite cubic shape functions. 

 Since the shape functions are expressed in Gaussian coordinates, the integration 

limits of ±1 do not correspond with the x-axis of the elements. A change of variables is 

needed to map the functions and their derivatives into the x-axis of the element 

coordinate system.  This mapping is completed with the following linear transformation: 
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where a and b represent the left and right nodes respectively 

u represents the Gaussian coordinates 
 

 The actual transformation for each shape function and its derivatives is 

formulated in (Thompson, 2005) and used in the FEA program code shown in the 

appendix.  The solution and its variation can then be expressed in terms of the shape 

functions as follows: 
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Equation 5-14 

where W and δW represent the arrays of nodal values 
 

 Substituting the expressions in Equation 5-14 into the integral term of Equation 

5-3 yields the following integral expressions for each element: 
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Equation 5-15 

where [S1]e, [S2]e, and {f}e correspond to the first, second, and 

third terms of the integral in Equation 5-3 
 

 These expressions are evaluated and assembled for each element.  The shear and 

moment terms appearing in Equation 5-3 are used to define the boundary conditions.  The 

[S1]e and [S2]e terms define the stiffness matrices and the {f}e term represents the loading.  

After collecting the element matrices into a global matrix, the resulting expression shown 
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in Equation 5-16 can be solved for the nodal deflections.  The matrices that result from 

this model are banded and symmetric allowing for a compact storage arrangement.  The 

FEA program written in MATLAB® and shown in the appendix uses Gaussian 

elimination to solve the overall matrix equation. 

 



SK  W  Q  Equation 5-16 

where [SK] is the global stiffness matrix 

{W} is the array of nodal deflections 

{Q} is the forcing vector 

 

 The FEA program constructed in MATLAB® completes the integrations 

specified in Equation 5-15 over the array of elements, assembles the global matrices and 

solves for the nodal deflections in Equation 5-16.  A flowchart illustrating the execution 

of this program is displayed in Figure 5-3.   

 

Figure 5-3.  Flowchart of custom FEA computer program. 
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 The FEA program is an extension and adaptation from similar programs 

developed in (Thompson, 2005).  The actual code, shown in the appendix, is divided into 

four separate MATLAB® files designated as FEM.m, INITIAL.m, SF.m, and 

sGAUSS.m.  The main file, FEM.m, controls the program flow, integrates the element 

matrices, and plots the results.  The execution of the program begins by loading the 

quadrature weights and points from a separate text file, QUAD, stored in the program 

directory.  The loading is defined in the file INITIAL.m, which also specifies the 

model dimensions and initializes all variables.  A program loop is used to traverse 

through a series of static loads as specified by the diagram in Figure 5-3.  This method of 

quasi-static loading is described in the next section and allows for a simple calculation of 

the Yrel measurement found with the UNL system. 

 Within each loading cycle, the element matrices are constructed and then 

integrated within the main program using the SF.m file.  This file defines the 

approximating shape functions and their derivatives.  The element matrices are 

successively assembled into the global matrix.  Once the global matrix is constructed, the 

boundary conditions are taken into account and the nodal deflections determined using 

the sGAUSS.m file.  The main program displays deflection plots of the track for each 

loading cycle.  These plots include graphics of the Yrel and ECO measurements and the 

data that would be found by the UNL system.  After the specified section of track has 

been traversed, a movie is created by merging together the individual plot frames. 

5.1.3 Quasi-Static Loading & Yrel Computation 

 

 The main goal of the FEA program is to analyze the track response from the 

perspective of the UNL measurement system.  The data is collected from a moving 
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railcar and expressed by the Yrel measurement defined previously.  In order to simulate 

the movement of the railcar along the track, a quasi-static, rather than a dynamic, 

approach is utilized.  Placing static loads at specific locations along the track and 

computing the corresponding nodal deflections completes this method.  The static loads 

are then translated a specified amount (12”) and the deflections recomputed.  This 

process is repeated until the static loads have traversed far enough to cover a particular 

track feature allowing for the calculation of the corresponding Yrel and ECO data. 

 The quasi-static approach significantly simplifies the FEA model.  In order to 

capture the resolution needed to compute Yrel and ECO data, the elements need to be 

small (one inch length).  In addition, a relatively large number of elements are needed to 

capture realistic track features.  Therefore, the quasi-static simplification is expected to 

significantly decrease computation time compared with a dynamic model.  

5.1.4 Model Parameters & Visual Representation 

 

 The FEA model is visually represented by the diagram shown in Figure 5-4.  

Deflections occur along the y direction while the track extends along the x direction.   

 

Figure 5-4.  Visual diagram of FEA model. 
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 Each beam element is one inch in length.  The element length was chosen through 

experimentation to ensure a fine enough resolution in the deflection curve to capture 

short-wavelength peaks in the Yrel and ECO data.  The model encompasses 193.5 ft of 

track resulting in a total of 2,322 beam elements.  This length makes certain that the loads 

are applied far enough away from the boundaries so that the fixed boundaries do not 

influence the deflection results.  The beam element properties represent the 132 RE rail 

often found on heavy-haul coal lines as shown in Figure 5-5. 

 

Figure 5-5.  132 RE rail section properties. 

 The static loads are configured to represent two adjacent hopper cars with the 

dimensions displayed in Figure 5-4.  Constant load magnitudes of 32,500 lbs are applied 

for each static load.  In order to collect enough data to traverse typical track features, 72 

static load groups are applied.  The loads are translated 12” between each cycle.  

Therefore, the closest any load will be to a fixed-end boundary is 60 ft. 
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 The support elements shown in Figure 5-4 are located 18” apart to simulate the tie 

spacing of real track.  Stiffness, rather than modulus, is defined in the FEA model.  In 

order to simulate the correct stiffness, the desired modulus is multiplied by the distance 

between the support elements.  The support stiffness for the beam elements between the 

support elements is set to zero.  Each support element can have a unique stiffness value 

along the track. 

 The custom FEA program written in MATLAB® is applicable for linear elements 

only.  More complicated nonlinear support elements and support elements used to 

represent voids are simulated in the commercial FEA software, ALGOR®.  The 

advantage of the custom FEA program is a significant reduction in computation time as 

well as automatic calculation and plotting of the Yrel and ECO results for each simulation.  

When ALGOR® is used for a simulation, the deflection results must be manually 

exported to text files.  These text files are then imported into MATLAB® for the analysis 

of Yrel and ECO.  The overall process is much less cumbersome with the custom 

program. 

 All of the parameters defined in Figure 5-4 are adjustable within the custom FEA 

program. The element dimensions, element properties, load magnitudes, and support 

stiffness can all be varied between individual simulations.  A schematic of all possible 

simulation variables and combinations using either the custom FEA program or 

ALGOR® is illustrated in Figure 5-6. 
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Figure 5-6.  Schematic representation of model input variables. 

 The diagram in Figure 5-6 illustrates all of the simulation possibilities but does 

not characterize one particular simulation.  This type of diagram is used to visualize each 

simulation in the sections that follow.  The blue springs signify linear stiffness elements.  

The dark brown ties correspond to a nominal modulus of 3000 psi while the lighter ties 

indicate areas with a softer supporting foundation.  The orange springs represent 

nonlinear support elements.  The gaps between some of the springs and ties denote areas 

of track with voids where some deflection occurs before the foundation provides support.  

The modulus profile is shown at the bottom of the figure with the specific values listed. 

 Another feature that can be included in the model is the pin joint shown in Figure 

5-6.  This element represents a joint that transfers shear forces but cannot transfer any 

bending moment.  The pin joint is modeled using a feature known as a “beam end release” 

in ALGOR®.  In the custom FEA program, the pin joint is modeled by creating a very 

small beam element (1.0E-10”).  Then, the flexural modulus and stiffness for this element 

are set to zero.  The deflection of the nodes are kept equal by assigning a large value 

(1.0E+12) to the (1,1), (1,3), (3,1), and (3,3) elements of the [S1] beam-element matrix.  
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The other values in the [S1] matrix are set to zero, which allows the slopes of the 

adjoining elements to be decoupled.  This procedure is outlined in (Thompson, 2005). 

5.2 Verification of FEA Model 

 

 Before proceeding with more complicated simulations, the finite element 

programs are verified by comparing them with the traditional Winkler model.  First, the 

simulation of a single load in the custom FEA program is compared with the Winkler 

model as illustrated in Figure 5-7.  In this case, a 32,500 lb load was exerted on a 

foundation modulus of 3,000 psi.  As shown by the main figure and in the enlarged inset, 

the FEA results closely match the Winkler model. 

 

Figure 5-7.  Single-load simulation with FEA program compared to Winkler model. 

 Next, two 32,500 lb loads were simulated in the custom FEA program, 

representing adjacent axles of a hopper car.  Again, the results correspond very well with 

the deflections found using the Winkler model as displayed in Figure 5-8. 



 74 

 

Figure 5-8.  Two-load simulation with FEA program compared to Winkler model. 

 Verification of the custom FEA program’s more advanced features is not possible 

using the Winkler model.  For example, the Winkler model is unable to simulate varying 

modulus, pre-existing geometry, or joints in the rail.  However, these features are 

precisely why the model was created.  More complex simulation results are presented in 

the following section. 

 Another simulation was performed using the commercial FEA software 

ALGOR® and the results compared with the Winkler model.  In this case, nonlinear gap 

elements, rather than linear elements, were used as the supporting elements in the 

foundation.  These elements provide linear support in compression only and cannot be 

loaded in tension.  The effect is that the foundation does not “pull down” on the rail in the 

areas where the track lifts up from the foundation.  The results of the simulation are 

shown in Figure 5-9. 
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Figure 5-9.  Gap element simulation in ALGOR® compared to Winkler model. 

 Within the vicinity where the load is applied, the results match closely with the 

Winkler model.  However, beyond approximately 5 ft on either side of the load, the track 

lifts up with a much steeper slope than in the Winkler model.  An important fact to note is 

that the weight of the rail has not been included in this simulation.  Rather the simulation 

was completed to observe how the nonlinear gap elements compare with a linear 

foundation.  Due to the slightly larger peak deflection and the increased track lift, more 

advanced simulations using these elements are expected to yield different Yrel and ECO 

results.  Simulations using these elements are described in the following section. 

5.3 FEA Analysis & Results 

 

 This section describes several simulations performed with the custom FEA 

program written in MATLAB® as well as some nonlinear simulations performed in 

ALGOR®.  The purpose of each simulation is to examine how a particular track feature, 

or combination of features, affects the shapes and magnitudes of Yrel and ECO data.  For 
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example, which combination of features might lead to the differences in measured data 

found in Figure 5-1?  The features simulated include pin joints, soft foundation support, 

pre-existing geometry, voids, and several combinations of the parameters. 

5.3.1 Pin Joint 

 

 The custom FEA program was used to simulate a single pin joint as illustrated in 

Figure 5-10.  In this case, the pin joint transfers shear loads but not bending moments.  

Therefore, this model represents the properties of a failing joint (Kerr, 2003).  The 

foundation is modeled using linear support elements with a modulus of 3,000 psi.  The 

length of the model is not represented in the diagram of Figure 5-10 or any of the other 

simulation schematics to follow.  These diagrams are for visualization purposes only. 

 

Figure 5-10.  Schematic of FEA model with pin joint. 

 As mentioned earlier, the custom FEA program loops through a series of static 

loads in order to obtain the data needed to compute Yrel and ECO.  The nodal deflections 

due to each load are plotted in individual frames and compiled into a movie for 

visualization as shown in Figure 5-11.  The movie illustrates the loads moving from right 

to left along the track and plots the Yrel, ECO, and loaded-profile curves.  The Yrel data 

is computed from the instantaneous rail deflection while the ECO data is determined 

from the loaded profile.  The loaded profile is calculated from the deflection of the 

leading axle (the inboard axle beneath the red beam on the UNL hopper car).   
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Figure 5-11.  Movie frame from FEA simulation with pin joint. 

 The final Yrel and ECO results are shown in Figure 5-12.  The ratio of ECO to 

Yrel is 0.54 with a maximum Yrel peak of 0.25” and the maximum ECO at 0.15”.  The 

shapes of each curve closely match those measured in the field by the UNL system. 

 

Figure 5-12.  Yrel and ECO results from FEA simulation with pin joint. 
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 The results in Figure 5-12 reveal an interesting point concerning failing joints.  

Field measurements with the UNL system include large Yrel peaks (one inch or more) at 

the location of very poor joints.  Certainly, a joint that does not transfer any bending 

moment would be considered to be in very poor condition.  However, this feature alone 

did not produce the magnitude of peak expected.  In order to analyze this phenomenon 

further, the following simulation was completed. 

5.3.2 Pin Joint with Bad Ties 

 

 The custom FEA program was again used to simulate a pin joint but with the 

addition of two poorly supported ties.  The linear foundation support was reduced to 100 

psi for each tie on either side of the joint as displayed in Figure 5-13.  

 

Figure 5-13.  Schematic of FEA model with pin joint and two bad ties. 

 As before, a movie was plotted during the simulation to visualize the results.  The 

movie frame shown in Figure 5-14 was plotted shortly after the leading axle traversed the 

pin joint.  This image reveals the usefulness of the custom FEA program.  The deflection 

of each axle is apparent in the movie along with the chord used to compute Yrel.  The 

image provides a way to correlate the axle deflections and Yrel chord with the Yrel and 

ECO data for a particular location. 
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Figure 5-14. Movie frame from FEA simulation with pin joint and two bad ties. 

 The final Yrel and ECO results are shown in Figure 5-15.  The ratio of ECO to 

Yrel is 0.91 with the maximum Yrel peak at 1.0” and the maximum ECO peak at 0.91”.  

Obviously the addition of two poorly supported ties around the joint led to significantly 

higher peaks in the Yrel and ECO data.  The sharpness and magnitude of the Yrel peak is 

similar to data measured in the field at the location of failing joints.  However, the peak 

in ECO, which nearly matches the one in Yrel, is not always expected as displayed in the 

bottom portion of Figure 5-1.  In fact, as described in earlier chapters, pre-existing 

geometry is expected to be the main contribution in the calculation of ECO.  Yet, this 

simulation did not include any geometry effects.  This result is discussed in more detail at 

the end of the section. 
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Figure 5-15. Yrel and ECO results from FEA simulation with pin joint and two bad ties. 

5.3.3 Pin Joint with Voids 

 

 The complexity of the simulation is further increased with the inclusion of voids 

and nonlinear elements as shown in Figure 5-16.  The voids and nonlinear elements are 

modeled with gap elements in ALGOR®.  The size of each void is listed beneath the 

corresponding element in Figure 5-16.  A maximum void of one inch occurs beneath the 

pin joint.  The support modulus is also slowly decreased to a minimum beneath the joint.  

 

Figure 5-16.  Schematic of FEA model with pin joint, bad ties, and voids. 
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 The use of gap elements prevents the foundation from “pulling down” on the 

track where it lifts up from the foundation.  The configuration of the gap elements with 

voids leads to a nonlinear deflection curve as shown in Figure 5-17.  This sort of 

nonlinear deflection curve is similar to the one measured by (Zarembski & Choros, 1980) 

and displayed in Figure 2-5.  Despite the traditional use of linear models, the actual 

response of the track is expected to be somewhat nonlinear (Sussman et al., 2001; Lu, 

2008).  The response shown in Figure 5-17 represents the softer support associated with 

the seating load followed by the stiffening of the track as the various components 

compress together. 

 

Figure 5-17.  Nonlinear deflection curve for FEA model with voids. 

 The final Yrel and ECO results are shown in Figure 5-18.  The ratio of ECO to 

Yrel is 0.93 with the maximum Yrel peak at 1.4” and the maximum ECO peak at 1.3”.  

The decrease in support led to an increase in the Yrel peak as might be expected.  

However, the ratio between Yrel and ECO remained essentially the same.  Therefore, the 
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discrepancy between Yrel and ECO, found in real measured data and shown in the bottom 

of Figure 5-1, must result from some other effect not yet present in the simulations. 

  

Figure 5-18. Yrel and ECO results from FEA simulation with pin joint, bad ties, and voids. 

5.3.4 Pre-Existing Geometry 

 

 In order to study how pre-existing geometry influences Yrel and ECO data, a one-

inch rise over 30 ft was simulated in the track as displayed in Figure 5-19.  Again, the 

diagram is not drawn to scale.  The foundation modulus was kept constant at 3,000 psi. 

 

Figure 5-19.  Schematic of FEA model with pre-existing geometry. 
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 The final Yrel and ECO results from the simulation are shown in Figure 5-20.  

The ratio of ECO to Yrel is 0.8 with the maximum Yrel at 0.46” and the maximum ECO 

at 0.37”.  The data is symmetric about the geometry feature.  The geometry was created 

with two sloped and one horizontal track segments as shown in Figure 5-19.  These 

regions are evident in the data as both the Yrel and ECO curves peak as the loads move 

into and out of the sloped regions. 

  

Figure 5-20. Yrel and ECO results from FEA simulation with pre-existing geometry. 

 The simulation results verify that relatively short wavelength geometry can affect 

the Yrel measurement.  As shown in Figure 5-20, the Yrel and ECO data match very 

closely.  Therefore, these results also validate the method of eliminating the effect of pre-

existing geometry as described in section 3.1.3.  Since both curves are nearly the same, 

subtracting ECO from Yrel should remove the geometry component in the Yrel 

measurement.  However, the interaction between these two measurements with respect to 
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modulus and geometry is complex.  For example, ECO closely matches Yrel in the other 

simulations as well despite the absence of pre-existing geometry. 

5.3.5 Large Mud Hole 

 

 The last simulation is completed to examine the effect of poor support over an 

extended region of track.  The diagram for this simulation is shown in Figure 5-21.  In 

this case, 10 ties have a reduced support modulus of 250 psi. 

 

Figure 5-21.  Schematic of FEA model with 10 bad ties. 

 The Yrel and ECO results from the simulation are shown in Figure 5-22.  The 

ratio of ECO to Yrel is 0.91 with the maximum Yrel at 0.53” and the maximum ECO at 

0.48”.  Wider peaks in the data result from the long section of low support modulus.  Of 

particular interest is that the ECO peak is shifted with respect to the Yrel peak.   This 

effect is present in all simulations when the section of low support modulus is longer than 

the 10 ft chord used to calculate Yrel and ECO. 
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Figure 5-22. Yrel and ECO results from FEA simulation with 10 bad ties. 

5.4 Suggestions For Further Development 

 

 The results from all of the simulations discussed in the previous section are 

displayed in Table 5-1 below. 

Table 5-1.  Results of FEA simulations. 

Simulation Scenario Yrel (in) ECO (in) 
Ratio:  

ECO/Yrel 

Pin joint only (linear elements) 0.28 0.15 0.54 

Pin joint with two, 100 psi modulus ties on 
each side (linear elements) 

1.0 0.91 0.91 

Pin joint with 1” gap between joint and 
supporting foundation 

1.4 1.3 0.93 

Continuous rail with pre-existing 
geometry (3,000 psi modulus) 

0.46 0.37 0.8 

Continuous rail with 10 ties of 250 
modulus (linear elements) 

0.53 0.48 0.91 
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 The simulation results provide good insight into how specific track features might 

affect the shape and magnitude of Yrel.  Of particular interest, however, is that the ECO 

data nearly matched the Yrel values in each case.  This effect is certainly observable in 

real measured data with the UNL system.  Yet, these results do not indicate why certain 

track features lead to large peaks in Yrel with much smaller peaks in ECO as shown in 

the lower portion of Figure 5-1.  Therefore, some parameter or combination of 

parameters present during the actual measurement of this data is not represented in the 

simulations. 

 Considering how the FEA model is created in comparison to how the real Yrel 

and ECO data is measured may provide a basis for further development of the 

simulations.  The most obvious discrepancy is the exclusion of dynamic interactions 

between the measurement vehicle and the deflection of the track.  Dynamic effects were 

not included in the model to reduce its complexity and corresponding computation time.  

However, previous research has shown that at higher speeds, the dynamics should be 

included in the model (Carr, 1999).  Since the measurement vehicle travels up to revenue 

speeds, the missing dynamics may be the reason that the data shown in the bottom 

portion of Figure 5-1 could not be reproduced.  The dynamic response of Yrel and ECO 

to short wavelength perturbations may be different, leading to the missing peak in the 

ECO data.  Therefore, it is recommended that further development of these FEA 

simulations should include the dynamics of the railcar interacting with the deflection of 

the track. 

 Another possible contribution to the discrepancy between Yrel and ECO peaks 

may be in the method with which ECO is calculated.  The ECO measurement is 
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calculated from space curve data provided to UNL from track geometry vehicles.  Track 

geometry vehicles use multiple high-precision accelerometers to measure geometric 

properties of the track.  The vertical accelerations can be integrated to determine the 

vertical rail profile.  This profile is then used to calculate the 10-ft ECO. 

 The method with which ECO is calculated raises the possibility that sampling and 

frequency issues may result in missing data peaks for short-wavelength track features.  

The accelerometers used to measure the rail space curve have a specific sampling rate.  

This data is then filtered to remove low frequency (<0.3 Hz) and high frequency (>60 Hz) 

noise.  The resulting signal is then integrated, filtered, and integrated again to obtain the 

vertical displacement of the rail profile.  Finally, the ECO data is computed from the 

resulting space curve profile.  This procedure may result in lower peaks of ECO than Yrel 

at the location of short-wavelength track perturbations such as failing joints. 

 In order to study how the real computation of ECO compares with the ECO 

measurement found in the simulations, accelerometers have been added to the UNL 

system as described in Chapter 3.  These accelerometers are mounted to the bearing 

adapters above the inboard axle (axle 3 of the UNL car) and are displayed in Figure 3-11.  

These accelerometers have been used in a few tests, but as of yet, have not produced 

conclusive results.  Ongoing development is underway to match the UNL accelerometer 

output with data provided by track geometry vehicles.  The goal is that these instruments 

will eliminate the need for data provided by the track geometry vehicles and verify the 

computation of ECO used in the UNL deflection measurement system. 
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Chapter 6, CONCLUSION 

 

 The increased demands placed on the railway industry have led to a 

corresponding increase in railroad traffic volumes, speeds, and axle loads.  As a result, 

the need for improved maintenance methods and a better understanding of the mechanical 

response of railroad track is higher than ever before.  Over the past few decades, 

measurement technology and analytical models have improved dramatically but some 

pieces of the puzzle have remained missing. 

 In recent years, UNL has developed a system to measure the vertical deflection of 

the railroad track in real-time from a vehicle traveling at revenue speeds.  Previous 

research has already shown that the vertical track deflection provides an excellent tool for 

track maintenance.  However, this thesis reveals recent updates to the UNL system and 

how it is also capable of estimating the actual bending strain in the rail in real-time 

continuously over long distances.   

 The UNL system establishes three points of the rail shape beneath the loaded 

wheels and over a distance of 10 ft.  The direct measurement of the rail shape can then be 

mapped into rail bending strain through curvature of the rail and beam theory.  Field tests 

were conducted on the UPRR’s Yoder subdivision to verify this relationship.  Bondable 

resistance strain gages were mounted to the lower rail flange at several locations.  The 

track was then loaded as the UNL car traversed these locations at various speeds.  The 

unloaded and loaded profiles were recorded with surveying instruments and the 
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relationship between the UNL deflection measurement and rail bending strain was then 

verified. 

 The field test results show a strong correlation between the strain calculated from 

the UNL deflection measurement and the strain gage data.  The differences of 13.7% and 

12.2% found at two different test sites are well within the modeling errors of the 

measurement and the error present in the field tests.  Misalignment of the strain gage axes 

and the inability to park the UNL car exactly above the strain gages may have led to the 

lower measured values at both test sites. 

 In order to improve the UNL system’s capacity as a maintenance tool, an 

enhanced understanding of how its measurement relates to specific track features is 

required.  Finite element analyses have been used to characterize the mechanical response 

of the railroad track from the perspective of the UNL measurement system.  The resulting 

simulations have revealed how certain track features influence the shapes and magnitudes 

of Yrel and ECO data found with the UNL method.  Although these simulations have 

been useful, specific exception locations displaying large Yrel peaks and low ECO peaks 

have not been reproduced.  Therefore, some parameters or combination of parameters 

present in the actual measurement are missing in the simulations.  Further developments 

of the FEA models include recommendations to add the railcar and track dynamic 

features.  The method used to determine the rail space curve may also influence the lower 

peaks of ECO data and is worth additional examination. 
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APPENDIX 

 The code from the custom FEA program is included in this appendix.  The code is 

divided into four files:  FEM.m, INITIAL.m, SF.m, and sGAUSS.m.  The FEM.m file 

is the main program that controls the program flow, integrates the element matrices, 

calculates Yrel and ECO, and plots the results.  The INITIAL.m file initializes all of the 

variables.  The SF.m file included the shape functions and their derivatives.  The 

sGAUSS.m file uses Gaussian elimination to solve the global matrix for the nodal 

deflections.  The weights and points used for the Gaussian quadrature numerical 

integration scheme are included in a separate text file named QUAD, also shown in this 

appendix.  The operation of the code is summarized in the thesis text.  Comment lines are 

included throughout the code for more details regarding the code’s execution.  This code 

has been developed as an extension and adaptation from similar FEA codes found in 

(Thompson, 2005). 

A.1  FEM.m 

%--------------------------                             
% program FEM.m 
%--------------------------                             
 clear; 
 close; 
 clc; 
 tic 
%---------------------------------------------------------------------- 
%LOAD QUADRATURE POINTS & WEIGHTS 
load QUAD -ASCII 
%---------------------------------------------------------------------- 

  
% ---------------------------- 
% USER-SPECIFIED DISTANCE & INCREMENT 
% ---------------------------- 
ZINCR=12;           %Loading increment in inches 
ZDIST=72;           %Total distance moved in feet 

  
count=1;            %Count for movie frames 
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for Z=1:(12*ZDIST/ZINCR); 

  
% %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
% %Call Initial to load pre-processing data 

  
  INITIAL 

  
%END OF INPUT DATA 
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

  
%///////////////////////////////////////////////////////// 
% FORMATION OF STIFFNESS MATRIX and RIGHT HAND SIDE 

  
  for I=1:NUMEL 

       
% ---------------------------- 
% Initialize Element Variables/Matrices 
% ---------------------------- 
    for J=1:4 
      for K=1:4 
         S1(J,K)=0.0;  
         S2(J,K)=0.0;  
       end 
       Qe(J)=0.0;  
    end 

  
% ---------------------------- 
% Calculate element coordinate 
% information. 
% ---------------------------- 
     Xa = XORD(I);          %x-coordinate of left element node 
     Xb = XORD(I+1);        %x-coordinate of right element node 
     RL=Xb-Xa;              %length of element 
     DxDu=RL/2.0;  
     DuDx=2.0/RL;    

  
% -------------------------  
% Begin Gaussian Quadrature  
% -------------------------  
  for J=1:NQPTS 
     u  = GPTS(J);          %Gaussian coordinate 
     Wt = GWTS(J);          %Gaussian weight 

      
%    -------------------- 
%    Global coordinate of current Gauss point 
     Xg = (Xa+Xb)/2 + (RL/2.0)*u; 

  
% ---------------------------- 
% INCLUDE COEF.m  (Defines: EIx, Kx, and Qx) 
% ---------------------------- 
%      COEF 

      
%------------------------------ 
%Calculate  shape functions wrt  
%x at current Gauss point 
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%------------------------------ 
     No(1) = SF(0,1,u); 
     No(2) = SF(0,2,u)*(DxDu); 
     No(3) = SF(0,3,u); 
     No(4) = SF(0,4,u)*(DxDu); 

  
     Nxx(1) = SF(2,1,u)*(DuDx)^2; 
     Nxx(2) = SF(2,2,u)*(DuDx)^2*(DxDu); 
     Nxx(3) = SF(2,3,u)*(DuDx)^2; 
     Nxx(4) = SF(2,4,u)*(DuDx)^2*(DxDu); 

  

  
% ---------------------------- 
% Element stiffness matrices 
% ---------------------------- 
    Wt = GWTS(J); 

     
    for K=1:4 
        for L=1:4 
            S1(K,L)=S1(K,L) + ... 
                Wt*Nxx(K)*EIx(I)*Nxx(L)*DxDu; 

             
                S2(K,L)=S2(K,L) + ... 
                    Wt*No(K)*Kx(I)*No(L)*DxDu; 
        end 
        Qe(K)=Qe(K) + Wt*No(K)*Qx(I)*DxDu; 
    end 
  end 

  
    B = 1.0E+12; 
    if NPcode(I)==1 && NPcode(I+1)==1 
        S1=zeros(4,4); 
        S1(1,1)=B;S1(1,3)=-B;S1(3,1)=-B;S1(3,3)=B; 
    end 

   
% --------- Quadrature now complete  

  
%   -------------------------- 
%   Assemble element matrices  
%   into global matrix  
%   --------------------------  
    K1=2*I-2; 
    for K=1:4 
      K1=K1+1;  
      L1=0;  
      for L=K:4 
        L1=L1+1;  
        SK(K1,L1)=SK(K1,L1) + ... 
                 S1(K,L)+S2(K,L);  
      end 
      RHS(K1) =  RHS(K1) + Qe(K); 
    end 
   end 
%  ---- Global Matrices are assembled 
%///////////////////////////////////////////////////////// 
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% ------------------------- 
% BOUNDARY CONDITIONS 
% ------------------------- 
  B = 1.0E+06; 
  for I=1:NUMNP 
   if NPBC(I) == 1 | NPBC(I) == 3 
     I1 = 2*I-1;  
     SK(I1,1)=SK(I1,1)*B; 
     RHS(I1)=LHS(I1)*SK(I1,1); 
   end 
   if NPBC(I) == 2 | NPBC(I) == 3 
     I2=2*I; 
     SK(I2,1)=SK(I2,1)*B; 
     RHS(I2)=LHS(I2)*SK(I2,1); 
   end 
  end 

  

  
% ------------------------- 
% CALL EQUATION SOLVER 
% ------------------------- 
  LHS = sGAUSS(SK,RHS,NUMEQ,IB); 

  
% LHS=SK\RHS; 

  
% ---------------------------  
%extract nodal deflection values only 
% ---------------------------  
for z=0:length(LHS)/2-1 
    DEFLNOD(z+1)=LHS(1+2*z); 
end 

  
% ---------------------------  
%extract data for loaded profile 
% ---------------------------  

  
lp(Z)=DEFLNOD(LAX2+1); 

  
DEFL(Z,:)=DEFLNOD; 

  
lpaxis(Z)=LAX2*LGTHNOM; 

  
% ---------------------------  
%extract data for yrel 
% ---------------------------  

  
a=LAX2; 
b=LAX2-70/LGTHNOM; 
c=LAX2+48/LGTHNOM; 

     
Yrel(Z)= -(((5/3)*DEFLNOD(a+1))-((2/3)*DEFLNOD(b+1))-DEFLNOD(c+1)); 
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% ---------------------------  
%extract data for eco 
% ---------------------------  
if length(lpaxis) > 10*(12/ZINCR) &&... 
        length(lpaxis) < (12*ZDIST/ZINCR)-4*(12/ZINCR)  
    a_eco=Z-4*(12/ZINCR); 
    b_eco=Z-10*(12/ZINCR); 
    c_eco=Z; 

     
    ecoR(Z)= -(((5/3)*lp(a_eco))-((2/3)*lp(b_eco))-lp(c_eco)); 
else 
    ecoR(Z)=0; 
end   

  
ecoRaxis=lpaxis-48; 
ae=LAX2-48/LGTHNOM; 
be=LAX2-120/LGTHNOM; 
ce=LAX2; 

  
%---------------------------------------------- 
%Plot Results 

  
% ------------------------- 
% Define figure axes limits 
% ------------------------- 
    xmin = min(XORD); 
    xmax = max(XORD); 
    ymin = -1; 
    ymax= 1; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
    clf; 

     
    f1=figure(1); 
    set(f1, 'units','normalized','outerposition',[0.1 0.1 0.8 0.8]) 

     
    hold on; 

  
    plot(XORD, DEFLNOD, 'k','LineWidth', 2.0); 
    plot(lpaxis, lp, 'g','LineWidth', 2.0); 
    plot(lpaxis, Yrel, 'b','LineWidth', 2.0); 
    plot(ecoRaxis, ecoR, 'c','LineWidth', 2.0); 
    plot([c*LGTHNOM b*LGTHNOM], [DEFLNOD(c+1)-Yrel(Z) DEFLNOD(b+1)],... 
        'r', 'LineWidth', 2.0); 
    plot([c*LGTHNOM c*LGTHNOM], [DEFLNOD(c+1)-Yrel(Z) DEFLNOD(c+1)],... 
        'm', 'LineWidth', 2.0); 
    plot([LOCJTS(1) LOCJTS(1)], [-5 5], '--k'); 

  

  
xlim([xmin xmax]); 
ylim([ymin ymax]); 

  
a2=a*LGTHNOM; 
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% Trailing Car axle 3 arrow 
xa = [a2-221 a2-221]; 
ya = [DEFLNOD(a-221/LGTHNOM)+0.05 DEFLNOD(a-221/LGTHNOM)]; 
[xaf yaf]=ds2nfu(xa, ya); 
annotation('arrow',xaf,yaf, 'LineStyle', 'none', 'HeadStyle',... 
    'ellipse', 'HeadWidth', 10, 'HeadLength', 10, 'Color', 'b'); 

     
% Trailing Car axle 4 arrow 
xa = [a2-151 a2-151]; 
ya = [DEFLNOD(a-151/LGTHNOM)+0.05 DEFLNOD(a-151/LGTHNOM)]; 
[xaf yaf]=ds2nfu(xa, ya); 
annotation('arrow',xaf,yaf, 'LineStyle', 'none', 'HeadStyle',... 
    'ellipse', 'HeadWidth', 10, 'HeadLength', 10, 'Color', 'b'); 

     
% UNL axle 1 arrow 
xa = [a2-70 a2-70]; 
ya = [DEFLNOD(a-70/LGTHNOM)+0.05 DEFLNOD(a-70/LGTHNOM)]; 
[xaf yaf]=ds2nfu(xa, ya); 
annotation('arrow',xaf,yaf, 'LineStyle', 'none', 'HeadStyle',... 
    'ellipse', 'HeadWidth', 10, 'HeadLength', 10, 'Color', 'b'); 

     
%UNL axle 2 arrow 
xa = [a2 a2]; 
ya = [DEFLNOD(a)+0.1 DEFLNOD(a)]; 
[xaf yaf]=ds2nfu(xa, ya); 
annotation('arrow',xaf,yaf, 'LineStyle', 'none', 'HeadStyle',... 
    'ellipse', 'HeadWidth', 10, 'HeadLength', 10, 'Color', 'b'); 

     
    grid on; 
    xlabel('Distance (in)','FontSize', 16.0, 'FontWeight', 'bold'); 
    ylabel('Deflection (in)','FontSize', 16.0, 'FontWeight', 'bold'); 
    title('Deflection @ Nodal Points','FontSize', 24.0, 'FontWeight', 

'bold'); 
    legend('Deflection', 'Loaded Profile', 'Yrel', 'ECO'); 

     
    h=gca; 
    set(h,'FontSize', 16.0, 'FontWeight', 'bold'); 

     

  
    M(count:count+7)=getframe(gcf); 
    count=count+8; 
%     close; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
end 

  
mpgwrite(M,jet,'my_movie.mpg',[1, 0, 1, 0, 10, 1, 1, 1]); 

  
toc 
t=toc; 
% ---------------------------  
%Print data to files 
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% ---------------------------  
fid = fopen('Loaded_Profile', 'w'); 
fprintf(fid, '%6.5f\n', lp(1,:)); 
fclose(fid); 

  
fid = fopen('Yrel_Data', 'w'); 
fprintf(fid, '%6.5f\n', Yrel(1,:)); 
fclose(fid); 

  
% ---------------------------  
%Calculate ECO & Plot with Yrel 
% ---------------------------  

  
lpfit=fit(lpaxis', lp', 'cubicsp'); 

  
for n = 0:(12*ZDIST/ZINCR)-12*(12/ZINCR); 
    a=(START*LGTHNOM+70)+ZINCR*n; 
    b=START*LGTHNOM+ZINCR*n; 
    c=(START*LGTHNOM+118)+ZINCR*n;  

     
    eco(n+1)= -(((5/3)*lpfit(a))-((2/3)*lpfit(b))-lpfit(c)); 
end 

  
% ecoaxis=(LAX2-(12/LGTHNOM)*(ZDIST-6)):ZINCR/LGTHNOM:LAX2-

(12/LGTHNOM)*6; 

  
ecoaxis=lpaxis((72/ZINCR):((length(lpaxis))-72/ZINCR)); 

  
% lpaxisf=(LAX2-(12/LGTHNOM)*ZDIST):LAX2; 

  
if ZINCR >= 1 
    ecoaxisf=ecoaxis(1):0.5:ecoaxis(length(ecoaxis)); 
    lpaxisf=lpaxis(1):0.5:lpaxis(length(lpaxis)); 
else 
    ecoaxisf=ecoaxis(1):ZINCR:ecoaxis(length(ecoaxis)); 
    lpaxisf=lpaxis(1):ZINCR:lpaxis(length(lpaxis)); 
end 

  
yrelfit=fit(lpaxis', Yrel', 'cubicsp'); 
ecofit=fit(ecoaxis', eco', 'cubicsp'); 

  
figure(2) 
hold on; 
plot(lpaxisf, yrelfit(lpaxisf), 'k','LineWidth', 2.0);  
plot(ecoaxisf, ecofit(ecoaxisf), 'r','LineWidth', 2.0); 
grid on; 
xlabel('Distance (in)','FontSize', 16.0, 'FontWeight', 'bold'); 
ylabel('Deflection (in)','FontSize', 16.0, 'FontWeight', 'bold'); 
title('Yrel & ECO','FontSize', 24.0, 'FontWeight', 'bold'); 
legend('Yrel', 'ECO'); 
h=gca; 
set(h,'FontSize', 16.0, 'FontWeight', 'bold'); 
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A.2  INITIAL.m 

%------------------------------ 
%          INITIAL.m 
%------------------------------ 

  
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

  
% INPUT DATA 

  
%################################ 
%BEGIN MESH DATA 

  
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%USER-DEFINED DATA 

  
LGTHBM = 2322;       %Overall length of beam 
NUMEL = LGTHBM;        %Number of elements 
IB = 4;                %Stiffness matrix bandwidth 

  
LGTHNOM = LGTHBM/NUMEL;  %Length of elements 

  
NJTS=1;                 %Number of Joints 
LOCJTS=[1161]/LGTHNOM;          %Location of Joints 
LENJTS=1.0E-10;          %Length of Joints 

  

  
LGTHBM=LGTHBM+LENJTS*NJTS;      %Modified beam length 
NUMEL=NUMEL+NJTS;               %Modified # of elements 

  
LGTHEL(1:NUMEL)=LGTHNOM;        %Nominal Element Length 

  
for i =1:NJTS 
    LGTHEL(LOCJTS(i))=LENJTS;       %Include any joints 
end 

  

  
%Elastic Modulus of Rail 
Exx(1:NUMEL)=30E6; 

  
%Second Moment of Area of Rail Section 
Ixx(1:NUMEL)=87.9;  

  
% Element Modulus 
Kx(1:NUMEL) = 3000; 

  
%Process any joints 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
if NJTS > 0 
    for w=1:NJTS 
        Exx(LOCJTS(w))=0; 
        Ixx(LOCJTS(w))=0; 
        Kx(LOCJTS(w))=0; 



 98 

    end 
end 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

  
%Derivative 
dEIx(1:NUMEL) = 0; 

  
%Distributed Load 
Qx(1:NUMEL) = 0; 

  
%Rail Section Stiffness 
EIx = Exx.*Ixx; 

  
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

  
NUMNP = NUMEL+1;        %Number of nodal points 
NUMEQ = 2*NUMNP;        %Number of equations 

  

  
XORD=zeros(NUMNP,1);      %x-coordinate of nodal points 
NPcode=zeros(NUMNP,1);    %identifies nodes at joint locations 

  
for i=2:NUMNP 
    XORD(i)=XORD(i-1)+LGTHEL(i-1); 
    if LGTHEL(i-1) < 1.0E-8 
        NPcode(i-1)=1; 
        NPcode(i)=1; 
    end 
end 

  
%END OF MESH DATA 
%################################ 

  
% ----------------  
% Define QUAD Data 
% ----------------  
  NQPTS = QUAD(1,1); 
  for i=1:NQPTS 
     GPTS(i)=QUAD(i+1,1); 
     GWTS(i)=QUAD(i+1,2); 
  end 

  
% ---------------------------  
% General initialization 
% ---------------------------  

  
LHS=zeros(NUMEQ,1);           %Left-hand side (w and dw/dx) 
RHS=zeros(NUMEQ,1);           %Right-hand side (loading) 
SK=zeros(NUMEQ,4);          %Global Stiffness Matrix 
NPBC=zeros(NUMNP,1);          %Nodal B.C.'s 

  
%--------------------------- 
%DEFINE B.C.'S 
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%                w    dw/dx 
% NPBC(n) = 0    U      U 
%         = 1    K      U 
%         = 2    U      K 
%         = 3    K      K 

  
%where 
%K=known 
%U=unknown 
%--------------------------- 

  
NPBC(1) = 3;                % Left node B.C. 
NPBC(NUMNP) = 3;            % Right node  B.C. 

  
%--------------------------- 
%DEFINE LOADS 

  
%Location of AXLE 2 
% LAX2=1161; 
% START=729; 

  
START=729/LGTHNOM;                  %Starting location of UNL axle 2 

  
% ---------------------------  
% Load Increment of UNL Axle 2 
% --------------------------- 
LAX2=START+(ZINCR/LGTHNOM)*Z; 

  

  
% RHS(2*(LAX2-723)-1) = -32500;         %axle 1 of trailing car 
% RHS(2*(LAX2-653)-1) = -32500;         %axle 2 of trailing car 

  
RHS(2*(LAX2-221/LGTHNOM)-1) = -32500;         %axle 3 of trailing car 
RHS(2*(LAX2-151/LGTHNOM)-1) = -32500;         %axle 4 of trailing car 

  
RHS(2*(LAX2-70/LGTHNOM)-1) = -32500;    %axle 1 of UNL car 
RHS(2*LAX2-1) = -32500;                 %axle 2 of UNL car 

  
% RHS(2*(LAX2+432)-1) = -32500;         %axle 3 of UNL car 
% RHS(2*(LAX2+502)-1) = -32500;         %axle 4 of UNL car 

 

A.3  SF.m 

function s  = SF(D,Fnct,u) 
%------------------------------------------------------------  
%////////////////////////////////////////////////////////////  
%------------------------------------------------------------ 
%  Shape Functions 
%    D = derivative 
%      = 0 function itself 
%      = 1 first derivative of function 
%      = 2 second derivative of function 
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%      = 3 third derivative of function 
%  Fnct= Shape function number 
%    node = shape function number (1, 2, 3, or 4) 
%       u = local coordinate 
%------------------------------------------------------------ 

  
 if Fnct == 1  % Shape function 1 
    if D == 0 
       s = (1/4)*(u+2)*(u-1)^2; 
    elseif D == 1 
       s = (1/4)*(3*u^2-3); 
    elseif D == 2 
       s = (1/4)*(6*u); 
    elseif D == 3 
       s = (1/4)*(6); 
    end 

  
 elseif Fnct == 2  % Shape function 2 
    if D == 0 
       s = (1/4)*(u+1)*(u-1)^2; 
       s = (1/4)*(1-u^2)*(1-u); 
    elseif D == 1 
       s = (1/4)*(3*u^2-2*u-1); 
    elseif D == 2 
       s = (1/4)*(6*u-2); 
    elseif D == 3 
       s = (1/4)*(6); 
    end 

  
 elseif Fnct == 3  % Shape function 3 
    if D == 0 
       s = -(1/4)*(u-2)*(u+1)^2; 
    elseif D == 1 
       s = -(1/4)*(3*u^2-3); 
    elseif D == 2 
       s = -(1/4)*(6*u); 
    elseif D == 3 
       s = -(1/4)*(6); 
    end 

  
 elseif Fnct == 4  % Shape function 4 
    if D == 0 
       s = (1/4)*(u-1)*(u+1)^2; 
    elseif D == 1 
       s = (1/4)*(3*u^2+2*u-1); 
    elseif D == 2 
       s = (1/4)*(6*u+2); 
    elseif D == 3 
       s = (1/4)*(6); 
    end 
 end 

A.4  sGAUSS.m 

function s  = SF(D,Fnct,u) 
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%------------------------------------------------------------  
%////////////////////////////////////////////////////////////  
%------------------------------------------------------------ 
%  Shape Functions 
%    D = derivative 
%      = 0 function itself 
%      = 1 first derivative of function 
%      = 2 second derivative of function 
%      = 3 third derivative of function 
%  Fnct= Shape function number 
%    node = shape function number (1, 2, 3, or 4) 
%       u = local coordinate 
%------------------------------------------------------------ 

  
 if Fnct == 1  % Shape function 1 
    if D == 0 
       s = (1/4)*(u+2)*(u-1)^2; 
    elseif D == 1 
       s = (1/4)*(3*u^2-3); 
    elseif D == 2 
       s = (1/4)*(6*u); 
    elseif D == 3 
       s = (1/4)*(6); 
    end 

  
 elseif Fnct == 2  % Shape function 2 
    if D == 0 
       s = (1/4)*(u+1)*(u-1)^2; 
       s = (1/4)*(1-u^2)*(1-u); 
    elseif D == 1 
       s = (1/4)*(3*u^2-2*u-1); 
    elseif D == 2 
       s = (1/4)*(6*u-2); 
    elseif D == 3 
       s = (1/4)*(6); 
    end 

  
 elseif Fnct == 3  % Shape function 3 
    if D == 0 
       s = -(1/4)*(u-2)*(u+1)^2; 
    elseif D == 1 
       s = -(1/4)*(3*u^2-3); 
    elseif D == 2 
       s = -(1/4)*(6*u); 
    elseif D == 3 
       s = -(1/4)*(6); 
    end 

  
 elseif Fnct == 4  % Shape function 4 
    if D == 0 
       s = (1/4)*(u-1)*(u+1)^2; 
    elseif D == 1 
       s = (1/4)*(3*u^2+2*u-1); 
    elseif D == 2 
       s = (1/4)*(6*u+2); 
    elseif D == 3 
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       s = (1/4)*(6); 
    end 
 end 

A.5  QUAD 

%---------------------------------------------- 

%      Number of points     dummy number 

%---------------------------------------------- 

       4                    0 

%============================================== 

%      Coordinates          Weights                       

%---------------------------------------------- 

    -0.861136311594953     0.347854845137454 

    -0.339981043584856     0.652145154862546 

     0.861136311594953     0.347854845137454 

     0.339981043584856     0.652145154862546 

%----------------------------------------------   
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