
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

NASA Publications National Aeronautics and Space Administration 

4-12-2008 

A new methodology to map irrigated areas using multi-temporal A new methodology to map irrigated areas using multi-temporal 

MODIS and ancillary data: An application example in the MODIS and ancillary data: An application example in the 

continental US continental US 

Mutlu Ozdogan 
University of Wisconsin - Madison 

Garik Gutman 
NASA 

Follow this and additional works at: https://digitalcommons.unl.edu/nasapub 

 Part of the Physical Sciences and Mathematics Commons 

Ozdogan, Mutlu and Gutman, Garik, "A new methodology to map irrigated areas using multi-temporal 
MODIS and ancillary data: An application example in the continental US" (2008). NASA Publications. 10. 
https://digitalcommons.unl.edu/nasapub/10 

This Article is brought to you for free and open access by the National Aeronautics and Space Administration at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 





First, while paddy irrigated fields have a distinct remotely sensed
signal associated with transplanting inwater andmaturity (Xiao et al.,
2006), dryland irrigated conditions are much more ambiguous and
require separate methods. Second, irrigated pastures make up a small
portion of total irrigated lands and are not considered important
for food production as well as environmental implications. We also
selected a minimum mapping unit of 100 ha (roughly four MODIS
500-m pixels) to identify and map irrigated lands, in essence, not
considering small, irrigated lawns and gardens.

Our irrigation mapping methodology is objective, uses contem-
porary data, is robust enough to handle complex forms of irrigation
that occur around the globe, and can be repeated at any location and
time. This irrigation mapping effort is part of our larger research
program to understand anthropogenic effects, specifically that of irri-
gation on global water and energy cycles, climate, agricultural pro-
ductivity, and agricultural water sustainability. In this paper we
present the methodology and an example of its application to the
continental US as well as assessment and validation of our algorithm.

2. Existing datasets on global irrigation

In recent years, there have been several attempts to determine the
spatial extent of irrigation at global scale. One such attempt is the
USGS Global Land Cover Map (Loveland et al., 2000), generated based
on 1-km AVHRR observations between April 1992 and September
1993. Of several land-cover legends that the database contains,
the Global Ecosystems Legend identifies four irrigated land classes:
irrigated grassland, rice paddy and field, hot irrigated cropland, and cool
irrigated cropland. When combined, these classes provide one of the
few sources of remotely sensed information on spatial distribution of
irrigation over the continental US (Fig. 1 — Panel A).

Another global irrigation mapping effort was undertaken by
Siebert et al., 2005 (updated by Siebert et al., 2007) who combined
heterogeneous information on the (approximate) location of irrigated
areas with information on the total irrigated area from national and
international sources to generate the first global “irrigated lands”map
(Fig. 1 — Panel B). The map is a digital raster product with 5-min
spatial resolution containing information for each cell on the per-
centage of area equipped for irrigation centered on the year 2000. For
the US, this product was generated by assigning the maximum of the
irrigated areas by county as reported in the census surveys of USGS
and USDA for the years 1995, 1997, 2000 and 2002 to agricultural land
mapped by USGS and US-EPA at 30 m resolution. As a result, the total
area equipped for irrigation in the continental US is about 25% larger
than the NASS-estimate for 2002 (Siebert et al., 2005). The product of
Siebert et al. (2005) has become the de facto present-day information
source for spatial distribution of global irrigated areas.

More recently, the Remote Sensing and GIS group at the Inter-
national Water Management Institute (IWMI) released a beta version
of the Global Map of Irrigated Areas (GMIA) circa 1999 (http://www.
iwmigmia.org/info/main/index.asp). The dataset has been produced
using twenty years of AVHRR data augmented with additional
information from SPOT Vegetation, Japanese Earth Resources Satellite
(JERS-1), and Landsat GeoCover 2000 data, and mapped into 10 km
grid resolution (Fig. 1 — Panel C). The Beta release map has 53 irri-
gation classes, derived from the 628 classes in the master file. This
approach follows that of Thenkabail et al. (2005).

While these data sets provide the best available source of infor-
mation regarding the distribution of irrigation at continental scales,
depending on the way these datasets are used, they may also have
serious shortcomings. For example, the Siebert et al. (2005)
map primarily represents areas equipped to be irrigated circa 2000.

Fig.1. Irrigation in the US represented by three differentmap products (A–C) and compared to the dotmapmade by the USDA (D). Themap in the upper left (A) is the USGSmapmade
from the AVHRR NDVI data. The upper rightmap (B) wasmade by the IWMI using 10-kmAVHRR data and does not contain fractional irrigation information. The bottom left map (C) is
the University of Frankfurt-FAO map showing the fraction of the total cell area equipped for irrigation ca. year 2000. The bottom right map (D) is the USDA dot map ca. year 2001
where each dot represents ~4000 ha.
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However, actual area of irrigated lands can vary greatly driven by each
year's water availability and the choice of crop. Therefore, this product
will exhibit smaller variations in a study concerned with year-to-year
variation in irrigated areas. The major shortcoming of the USGSmap is
that irrigated areas were determined as part of a broader classification
scheme. Thus the emphasis was primarily placed on other land-cover
types while irrigated classes received less attention and thus
decreased classification accuracy. A recent comparison by Vörösmarty
(2002) of irrigated lands depicted by the USGS map to the country-
level reports of irrigated area (FAO,1998) points tomajor uncertainties
in classification and inventory irrigated lands due to the highly
politicized nature of FAO data reports, as well as to the technical
limitations of the more objective datasets made from remote sensing.
The major drawback of the IWMI global irrigation map product is that
the ground-truth data obtained only in India, SE Asia, Africa, and
South America were used to adjust and refine global irrigation classes.
This makes the IWMI product highly parameterized per region for
which extensive ground data exists. However, in areas without such
data, the irrigation classes may be less reliable.

The goal of our research is to overcome these shortcomings by
relying on improved remotely sensed data sources and classification
methodology and on ever-increasing continental and globally exten-
sive ancillary data sources of gridded climate data and agricultural
extent. The major differences between the newmethodology (and the
product) described here and existing large area irrigation datasets
include improved spatial resolution, up-to-date information content,
repeatability across time, and the use of machine learning algorithms
that are intrinsically objective. The irrigation mapping effort is part of
our larger research initiative to understand anthropogenic effects,
specifically that of irrigation, on the global water, carbon, and energy
cycles. This paper describes the development of a generic methodol-
ogy for mapping irrigated lands over large areas. We apply this
method to the US – a data-rich environment – to work out potential
problems and understand the most important inputs to the algorithm
and the development and refinement of the algorithm itself.

3. Irrigation mapping procedure

3.1. Definition of irrigation

We define irrigation as agricultural area that receives full or partial
application of water to the soil to offset periods of rainfall shortfalls
under dryland conditions. More specifically, we focus on dryland
cultivated areas, excluding irrigated pastures, paddy rice fields, and
other semiaquatic crops. The reasons for this are twofold. First, while
paddy irrigated fields have a distinct remotely sensed signal
associated with transplanting in water in maturity (Xiao et al.,
2006), dryland irrigated conditions are much more ambiguous and
require separate methods. Note that while irrigated paddy rice fields
do not occupy large portions of the continental US, other countries,
especially in southeast Asia, irrigated paddy rice is an important form
of cultivation. Thus, as we move from the US effort to a global
approach, we will have to pay more attention to irrigated paddy rice
fields. Second, irrigated pastures make up a small portion of total
irrigated lands and are not considered important for food production
or environmental consideration such aswater logging and soil salinity.
We also selected a minimum mapping unit of 100 ha (roughly four
MODIS 500 m pixels) to identify and map irrigated lands, in essence
eliminating small irrigated lawns and gardens.

3.2. Proposed method

As part of our objective to map irrigated lands globally, we
designed the mapping procedure to meet three criteria. First, the
procedure must be automated and repeatable across space and time.
Next, it must be robust enough to capture many different forms of

irrigated lands across large geographic regions. Finally, it must rely on
high quality and objective remotely sensed observations. To meet
these criteria, we adapted an image classification approach to the
irrigation-mapping problem, guided by a climate-based index that
identifies locations that require irrigation. This index of irrigation
potential was found necessary in earlier versions of our work to better
identify real irrigation and reduce the rate of false positives when
using remotely sensed data (Ozdogan and Gutman, 2007). Within the
boundary conditions identified with the potential irrigation index, the
classification of remotely sensed, multi-temporal, multi-spectral
images was achieved in two steps: i) binary classification into irri-
gated and non-irrigated classes; and ii) fractional areal estimate of
each pixel identified as irrigated in the first step. The subpixel
estimation was necessary since often only a portion of individual
pixels are often occupied by irrigated fields and this can significantly
affect the estimates of agricultural/irrigated areas from remote
sensing, especially in areas known to have small cultivated fields
(Ozdogan and Woodcock, 2006).

Our classification-based irrigation mapping procedure is based on
two key developments in the global remote sensing arena. First,
remotely sensed inputs with improved radiometric and geometric
quality, such as those provided by the MODIS instrument, have
become available for continental to global scale studies. Second, a
new generation of classification algorithms, such as classification and
regression trees, initially developed within the machine learning
community, have successfully found their way into large area remote
sensing applications (DeFries et al., 1998; Friedl et al., 2002; Hansen
et al., 2002).

Our irrigation mapping procedure has four parts that are sche-
matically shown in Fig. 2. In part one, we calibrate a climatological
moisture index along with existing agricultural maps to define
irrigation potential. Second, we identify irrigation-related remotely
sensed temporal and spectral indices. Third, we combine irrigation
potential and remotely sensed indices within a supervised classifica-
tion algorithm to locate irrigation. Finally, we estimate subpixel
proportion of irrigation in each 500-m pixel identified as irrigated. We
initially tested our procedure in the US to map irrigated lands across
the entire country. In the sections that follow, we describe these steps
in greater detail. In the last section, we show the initial examples from
the US and present our results of validation.

3.3. Effective irrigation potential

Irrigation is practiced in many countries around theworld at scales
ranging from small subsistence farming to national enterprises. The
location of irrigation is determined by a combination of factors
including climate, resource availability, crop patterns, and technical
expertise. Climate plays an important role in presence and distribution
of irrigation as it determines natural moisture availability (precipita-
tion), crop water demand (evaporation), and crop schedules. In this
study, we delineated potentially irrigated areas using a climate-based
index. A map of potentially irrigated areas provides the first ap-
proximation for areas that require irrigation from the climate
perspective. As noted earlier, introduction of a climate-based potential
irrigation index into the classification process greatly reduces ambi-
guity in identifying irrigation using remotely sensed inputs alone
(Ozdogan and Gutman, 2007).

Over large areas, presence and distribution of irrigation is pri-
marily controlled by natural moisture availability at the surface. For
example, in arid and semi-arid parts of the world, dry atmosphere and
the lack of rain-supplied moisture requires exclusive use of irrigation
to grow crops. In more humid locations, on the other hand, irrigation
is often supplemental and is used to meet the demand of crops whose
growth cycle is out of sync with natural precipitation. Thus, climatic
moisture availability provides the first level of information on
potential presence of irrigation at a given location.
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Budyko (1974) introduced the Radiative Dryness Index as:

D ¼ R
λP

ð1Þ

where R is mean annual net radiation, which can be estimated from
Earth–Sun geometry, observed mean air temperature, and observed
humidity; P is mean measured annual precipitation; and λ is the
latent heat of vaporization. In the present work, we calculated both R
and P using gridded datasets of the WorldClim database (Hijmans
et al., 2005). The WorldClim dataset is the only database that offers
global coverage at around 1-km spatial resolution while providing a
reliable and consistent source of climate information.

The dryness ratio has been widely used to classify climate regimes
and the corresponding land cover types in simple climate models
(e.g. Gutman et al., 1984). While D provides important information
on climatic moisture availability, it is not directly related to irrigation.
To relate D to irrigation, we plotted D against percent irrigation
presence information from the GMIA product (Siebert et al., 2005).
This relationship is shown in Fig. 3 on the left Y-axis as open circles
(original aggregated data) with a fitted curve. The association be-
tween D and fractional irrigated area is non-linear. To linearize this
relationship we follow Gutman et al. (1984) in using the empirical

relationship suggested by Lettau (1969) for a water availability
parameter:

W ¼ tanhD
D

; Dz0 ð2Þ

The association betweenW and fractional irrigated area is given in
Fig. 3, right Y-axis as triangles and a linear fit of the original aggre-
gated data.

Using this linear relationship between W and fractional irrigated
area, we mapped climate-based irrigation potential, referring to it as
the effective irrigation potential. As the final step, we used existing
cultivated area masks (e.g. Ramankutty and Foley, 1998; Wood et al.,
2000) to mask out those locations on the potential irrigation map that
are not known to be cultivated, in essence limiting our investigation to
major agricultural areas.

3.4. Remotely-sensed inputs

3.4.1. MODIS data
The MODIS instruments on board both Terra and Aqua platforms

include seven spectral bands that are designed exclusively for
monitoring Earth's land surfaces (Townshend and Justice, 2002). The

Fig. 2. Flow chart of the major steps in the proposed mapping algorithm. Each dashed box with a number refers to the processing step in the proposed irrigation mapping procedure.
Please see text for details.
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Terra and Aqua MODIS combined provide sub-daily global coverage at
250- and 500-m spatial resolutions and offer enhanced spectral,
spatial, radiometric, and geometric quality for improved mapping and
monitoring of vegetation activity. Hence, to date, MODIS land data
have been an integral part of production of a variety of land cover
maps, including irrigation (Friedl et al., 2002; Thenkabail et al., 2005;
Wardlow and Egbert, 2008; Xiao et al., 2006).

A large array of standard MODIS data products are operationally
produced by the MODIS Land Science Team and made available to the
scientific community on a timely basis. One of these products is the
Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) data (MOD34B4, Schaaf et al., 2002). This product
provides cloud-screened and atmospherically corrected surface
reflectances for all MODIS land bands that have been corrected for
view- and illumination-angle effects. Currently, the NBAR data is
produced at 500-m spatial resolution every 8 days with a total of 46
observations over the calendar year geographically organized in a
MODIS tile system with the Sinusoidal Projection. In this study, we
used one calendar year (2001) of NBAR data (total of 46 observations)
for 14 tiles covering the continental US.

3.4.2. Irrigation-related indices
Remote sensing of irrigated lands over large geographic regions

involves significant challenges both in selecting spectral bands or
indices that contain the maximum amount of irrigation-related infor-
mation and in relating this information to complex forms of irrigation
presence. For instance, while satellite-derived indices are extremely
useful in detecting vegetated areas in agricultural lands, the cause of
spatial and temporal variability in biomass, whether as a result of
rainfall or irrigation, is much less straightforward, hencemore difficult
to determine. A further complication may arise when only supple-
mental irrigation is practiced.

To overcome these challenges we first identified the characteristic
attributes of irrigated lands, especially those characteristics that are
observable with remotely sensedmeasurements. One such attribute is

related to vegetation “greenness”. There is an overwhelming consen-
sus that the Normalized Difference Vegetation Index (NDVI) is an
important vegetation monitoring tool (DeFries et al., 1998; Goward
et al., 1991; Justice et al., 1985; Myneni et al., 1995; Tucker, 1979). NDVI
is defined as:

NDVI ¼ ρnir − ρred

ρnir þ ρred
ð3Þ

where ρnir and ρred respectively represent NIR and red reflectances.
NDVI has been closely related to plant moisture availability (Nicholson
et al., 1990), leaf area index (Xiao et al., 2002), primary production
(Prince, 1991); and vegetation fraction (Gutman and Ignatov, 1998).

Although NDVI has beenwidely used to monitor vegetation green-
ness in agricultural settings under a variety of climatic conditions,
overwhelmingly it is the temporal NDVI signal that has often been
most related to irrigation (Kamthonkiat et al., 2005; Martinez-Beltran
and Calera-Belmonte, 2001; Pax-Lenney et al., 1996; Thenkabail et al.,
2005; Tucker and Gatlin,1984). Consider an irrigated landscape. Under
ideal conditions, irrigation would be practiced when soil moisture
deficit occurs, leading to a strong temporal mismatch between the
greenness cycle of rain-fed crops and that of irrigated crops, par-
ticularly in arid and semi-arid locations. Greenness associated with
non-irrigated crops in arid/semi-arid landscapes is often a direct
result of rainfall events while greenness associated with irrigated sites
is generally independent of rainfall and would show a development
cycle different than that of rainfed crops. This differential temporal
behavior of irrigated and non-irrigated cultivation is illustrated in
Fig. 4 for two relatively arid locations in the US. Here, the seasonal
dynamics of vegetation greenness for irrigated (solid) and non-
irrigated (dashed) croplands are illustrated in the form of mean
smoothed NDVI signature (left Y-axis) for the year 2001. Also plotted
in each panel is the monthly mean precipitation for the same year
(right Y-axis). The top panel (A) is an example from semi-arid eastern
Washington state (Northwest USA), where the non-irrigated crops

Fig. 3. The relationship between D,W, and global fractional irrigated area obtained from the GMIA product. D is plotted as filled circles with the fitted curve (solid), whileW is plotted
as open triangles with the straight fitted line (dashed). W linearizes the relationship between D and irrigated area and is used to produce effective irrigation potential. Note that the
left Y-axis has been reversed to show consistent wet and dry directions (also indicated as text).
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(mostly cereals) exhibit two peaks, first following planting in the
fall and second before harvest in late spring/early summer, closely
following the moisture availability. In contrast, irrigated crop
greenness peaks during mid-summer when moisture availability is
smallest and greenness value of non-irrigated crops drops to its
lowest value. Note that the lack of precipitation in the summer
time at this location causes a large moisture deficit and makes
irrigation absolutely necessary. The bottom panel (B) reflects a
similar mismatch of greenness dynamics between irrigated and
non-irrigated crops for a site in northern Texas (South Central US).
However, the greenness dynamics at this location do not nec-
essarily reflect moisture availability and irrigated crops that ex-
hibit greenness peak about the same time when maximum
precipitation occurs. Of course, the available precipitation may
not be enough to meet the crop demands in this region and thus
irrigation may be necessary. In fact, crop-distribution maps pro-
vided by the US Department of Agriculture's National Agricultural
Statistics Service (NASS) for this region show a large presence
of cotton, a crop with heavy water demand. Nevertheless, the
irrigated and non-irrigated crops exhibit clearly distinct temporal
greenness profiles and by monitoring the seasonal greenness be-

havior of crops via NDVI it is possible to distinguish irrigated crops
from non-irrigated ones.

While such temporal analysis of the NDVI signal clearly reveals the
differences between irrigated and non-irrigated crops, it also reveals
that the timing difference of peak greenness in each location is related
to the crop type. For example, both inWashington and Texas, the non-
irrigated crops are predominantly winter cereal varieties (e.g. winter
wheat) and the irrigated crops are primarily summer row crops (e.g.
corn, soybean, or cotton). Nevertheless, to detect this crop type
difference through temporal analysis, especially if related to moisture
availability, also reveals information about the irrigation status of
crops. For example, cereals (specifically winter varieties) are pre-
dominantly not irrigatedwhilemost summer crops are irrigated. Thus,
detecting crop type through temporal analysis is used here as a proxy
for detecting irrigation.

A more difficult case for distinguishing irrigated crops from non-
irrigated counterparts occurs in locations where the same crop type is
grown with and without irrigation in the same growing season. A
primeexample of this situation is centralNebraskawhere, dependingon
a particular year's soil moisture availability and installed irrigation
infrastructure, irrigated and non-irrigated corn fields are often

Fig. 4. Temporal NDVI and precipitation profiles of irrigated and non-irrigated fields in two different locations in the US. In each location, the lines represent average response from a
sample of approximately five sites in each category.
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simultaneously present. The temporal NDVI profile of irrigated and non-
irrigated corn from Central Nebraska in Fig. 5A exhibits an identical
pattern with a sharp peak in greenness around late June/early July
followed by a rapid decline. While irrigated corn fields exhibit slightly
larger NDVI, possibly due to constant availability of moisture, the

difference is small andprobably useless in distinguishing irrigatedfields.
Thus, a more sensitive index is required to make this distinction.

A large body of research of spectral remote sensing of vegetation
canopies indicates that moisture stress in vegetation is strongly mani-
fested in spectral indices related to chlorophyll content (Gitelson et al.,

Fig. 5. (A) Seasonal dynamics of NDVI for irrigated and non-irrigated corn in Nebraska. Each line represents an average response from a sample of approximately five individual sites
for each category. Also plotted is the long-term average monthly total precipitation acquired from a nearby meteorological station. (B). Sensitivity of four vegetation indices, namely
NDVI, EVI, GI, and WDRVI, to irrigation presence as measured by Relative Sensitivity Index (RSI) in Nebraska for 2002. Each index was generated from an average response using a
sample of approximately five individual sites. Please see the text for details on the RSI.
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2003; Zarco-Tejada et al., 2002). One such index, suggested by
Gitelson et al. (2005) to be used with the MODIS sensor, is the
Green Index (GI) defined as:

GI ¼ ρnir=ρgreen ð4Þ

where ρgreen is the reflectance in the green spectral region. The
theoretical foundations of the GI are given in Gitelson et al. (2003). In
short, it is based on the evidence that in the green spectrum (centered
around 510 nm) the specific absorption coefficient of chlorophylls
is very low while green leaves absorb more than 80% (e.g., Gitelson
andMerzlyak, 1994). In contrast, depth of light penetration into leaves
in the blue and red spectral ranges is four to six times lower (e.g.,
Merzlyak and Gitelson, 1995). Therefore, in the green spectrum,
absorption of light is high enough to provide high sensitivity of GI to
chlorophyll content but much lower than in the blue and red to avoid
saturation (Gitelson et al., 2003).

Our hypothesis for using the GI for irrigation assessment is that
irrigated crops with very little or no soil moisture stress will exhibit
larger Chlorophyll content than non-irrigated crops with potential
moisture stress. To test this hypothesis and the sensitivity of the GI to
irrigation (moisture) presence, we compared four vegetation indices,
NDVI, Enhanced Vegetation Index (EVI) (Huete et al., 1999), Wide
Dynamic Range Vegetation Index (WDRVI) (Gitelson, 2004), and GI,
using the following Relative Sensitivity Index (RSI):

RSI ¼ Iirr−Inon
Inon maxð Þ−Inon minð Þ

x100 ð5Þ

In Eq. (5), Iirr and Inon are the irrigated and non-irrigated values for
each index, I, at each time period, normalized by the seasonal
amplitude (maximum−minimum) of non-irrigated values of each
index. RSI represents the difference between irrigated and non-
irrigated index value compared to the seasonal maximum change in
the same index's non-irrigated value. Comparison of relative sensi-
tivity of all four indices reveals that the GI shows the largest sensitivity
to irrigation presence during peak crop growth (Fig. 5B). Similar
results were obtained by Gitelson et al. (2006) over other maize
canopies in Nebraska. Recognizing the increased sensitivity to irri-
gation, we developed a GI dataset from MODIS NIR and green NBAR
bands for each 8-day period.

The temporal analysis of NDVI and GI data presented above reveals
that the timing of phenological transition dates such as the timing of
greenup, maturity, and senescence are nearly identical between the
two indices while the absolute magnitude of greenness (or maximum
greenness) as one indication of irrigation presence is better cap-
tured by the GI. In essence, the GI by itself captures all of the salient
temporal features of irrigation in addition to the spectral signature
associated with the chlorophyll content. Therefore, we developed a
full year (46 observations) GI only dataset and incorporated it into our
classification algorithm. The complete list of input features into the
irrigation classification algorithm is given in Table 1. Note that the
methods involving the GI are only applicable to sensors such asMODIS
that are capable of sensing in the green part of the electromagnetic

spectrum. Without this capability, NDVI may be the only data source
to monitor irrigation remotely and may require new methods.

3.5. Classification algorithms

Our goal is to separate irrigated crops from non-irrigated crop-
lands. Remote sensing based greenness indices suggest that mapping
is possible through the use of certain rules based on input data.
While there are several different methods to formulate these rules
(e.g. Thenkabail et al., 2005), in our research we use a supervised
classification methodology derived from the tree-based models.
Popularized by Brieman et al. (1984), tree-based models have been
successfully used to determine distributions of a variety of bio-
geophysical fields using remote sensing data (DeFries et al., 1998;
Friedl and Broadley, 1997; Friedl et al., 2002; Hansen et al., 2002).
Tree-based methods have substantial advantages for remote sensing
classification problems because of their flexibility, intuitive simplicity,
and computational efficiency. Because of their ability to handle noisy
and missing data as well as eliminating requirements for distribu-
tional assumptions these methods are useful for remote sensing
applications, particularly at continental to global scales (Friedl et al.,
2002).

For the research presented here, we consequently used two tree-
based models: i) decision trees to classify the input data into irrigated
and non-irrigated classes; and ii) regression trees to estimate the
fraction of irrigation within each pixel that has been identified as
irrigated. At the heart of our decision tree phase is a supervised
decision-tree classification algorithm (C4.5) (Quinlan, 1993). Widely
used in the machine learning community, the C4.5 algorithm we use
has been augmented with the Boosting method (Friedman et al., 1998)
to optimize classification accuracies and to provide spatially explicit
class confidence estimates (McIver and Friedl, 2001). In this appli-
cation, we used 10 boosting iterations as suggested in McIver and
Friedl (2001). We also used C4.5's internal pruning algorithm to limit
overfitting.

As in classification trees, the regression-tree algorithms produce
rule-based models for prediction based on training data but allow
prediction of continuous variables such as subpixel distribution of
irrigation. Each rule set defines the conditions under which a
multivariate linear regression model is established. We use a specific
regression-tree algorithm called Cubist (Rulequest, 2001). The Cubist
algorithm consists of a set of linear models and a set of inequality
“cuts” on the variables to select among the individual linear models,
yielding a piecewise linear model.

3.6. Development of a continental-scale training database

Our approach to irrigation mapping is a supervised learning
methodology that requires training data that well characterizes the
desired output. Thus, the training data that provide exemplars of
all different types and amount of irrigation across large regions are
critical. A globally representative, consistent, and accurate training
database is required to establish a relationship between remotely
sensed signal, climate constraints and irrigation and plays a key role in
land-cover classification based on remote sensing. In addition to the
quantity, the quality of the training site database strongly influences
the quality of classification results. Because irrigation is highly diverse,
a key requirement of the database is that it be geographically com-
prehensive and include variations in irrigation practices manifested
across different landscapes.

In our approach, we derive two separate sets of training data, one
to train the decision-tree algorithm and the other for the regression-
tree algorithm. The method to derive both training datasets involves
several dozen high spatial resolution satellite images acquired by the
Landsat 7 ETM+ sensor circa 2000. The location of the training sites is
chosen to represent major irrigated land areas of the US. In the case of

Table 1
List of input features in the classification algorithm

Input feature Source Frequency Period Description

GI MODIS reflectance 8-days 12 months Ch2 & Ch4 NBAR
reflectance

Irr. Potential WorldClim static climatology Precip. and temp.
climatology

croplands Ramankutty & Foley static circa 1995 LC classification
and country
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