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Group testing is the process of pooling samples (e.g., blood, chemical compounds) 

from multiple sources and testing the pooled material for some binary 

characteristic. It is used in pathogen screening for humans and animals, drug 

discovery studies, electrical systems testing, and many other applications. Group 

testing has traditionally been used for two main types of investigations: 1)the 

identification of positive specimens and 2) the estimation of a characteristic’s 

prevalence in a population. This dissertation focuses on the identification process. 

We propose new identification procedures that exploit the heterogeneity among 

samples in order to reduce the number of tests needed to detect the binary 

characteristic. We first propose the “ordered halving” procedure which is shown 

to reduce the expected number of tests in comparison to current implementations 

of halving. Next, we generalize our proposals to a class of hierarchical group 

testing procedures. Our proposals result in significant reductions in the expected 

number of tests while also maintaining accuracy at levels similar to those 

procedures which do not account for heterogeneity.  
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Chapter 1: Introduction 

1.1 Foundations of group testing 

In the four years after the bombing of Pearl Harbor, the US military put almost 

12 million men in uniform (Flynn 1993, page 53). As part of the build-up process, 

all new men needed to be screened to determine their fitness for combat. This 

screening process involved testing for various diseases, including syphilis. As 

detailed in Du and Hwang (2000), a group of government economists in 1942 or 

1943 were disappointed at the wastefulness that came from individually testing 

every man for syphilis. These economists subsequently developed the idea of 

group testing to reduce the time and costs associated from testing. Among them, 

Robert Dorfman subsequently published this idea.  

Dorfman (1943) proposed that blood specimens from a set of individuals could 

be combined into a single group specimen. If the group tested negative (syphilis 

was not present), all individuals within the group would be declared negative. If 

the group tested positive (syphilis was present), all individuals would be retested 

individually in order to decode the positives from the negatives. Because syphilis 

had a low prevalence, it was hoped that the number of tests resulting from group 

testing would be less than from testing each person individually.  

Group testing ultimately was not used for the military induction screening (Du 

and Hwang, 2000). The group testing idea may have disappeared if not for a 

problem described in Feller (1950, p. 189; 1957, p. 225) which started others 

thinking about how group testing may be done more efficiently. We next give 

details of Dorfman’s original proposal and of others’ subsequent proposals. 
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1.1.1 Dorfman (1943) 

Consider a group of I individuals where specimens are pooled. If the probability 

each individual is positive is denoted by p and we assume that individuals 

screened represent a random selection, the probability of no positive individuals 

in the group is (1 – p)I. The probability that a group tests positive is then 1 – (1 

– p)I. This leads to an expected number of tests of 1 + I{1 – (1 – p)I} for one 

group, and an expected total number of tests across all groups formed of size I to 

be N/I + N{1 – (1 – p)I}, where N is the number of individuals screened.  

Using these formulas, Dorfman (1943) showed a significant cost savings from 

using his proposal rather than individual testing. Dorfman presented tables to 

provide the most efficient group size given a value for p and concluded that 

group testing is only effective if the characteristic of interest has a small 

prevalence. Watson (1961) later showed that the optimal group size is 

approximately p-1/2.  

1.1.2 Sterrett (1957) 

Sterrett (1957) proposed a retesting algorithm for screening blood specimens that 

did not immediately test each individual in a positive group, but instead started 

testing individual specimens one at a time (chosen at random) until the first 

positive individual was found. Once this positive individual was found, the 

remaining individuals would be retested in a new group. If this new group tested 

negative, these remaining individuals would be declared negative. However, if this 

new group tested positive, the same one-by-one testing process would begin again 

with these remaining individuals to decode the positive individuals from the 

negative individuals. For situations with a reasonably chosen initial group size 
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and small p, this retesting procedure works well because there is most likely only 

one positive individual in a group. 

1.1.3 Group splitting procedures 

Sobel and Groll (1959) presented several industrial situations where group testing 

is useful as well, including the testing for a faulty device and the testing of 

electrical devices in series (e.g., Christmas tree lights). They also proposed a 

retesting algorithm that successively splits positive groups into two subgroups. If 

one of these subgroups tested positive, it can be split again and so on until only 

single units are left to be tested. Their algorithm used the knowledge of the 

prevalence to optimize the size of each retesting subgroup. If the prevalence was 

unknown, they suggested that the groups be split in half (two equally sized 

subgroups). This is what we refer to as halving.   

Subsequent papers by others further expanded upon the group splitting 

proposals. These papers include: Sobel and Groll (1966) expanded on the idea of 

halving from their 1959 paper, Hwang (1972) examined a binary splitting 

algorithm of which halving could be considered a subset, and Litvak et al. (1994) 

considered halving in the presence of testing error with the possibility of 

confirmation testing considered. 

1.1.4 Non-hierarchical procedures 

Li (1962) categorized group testing procedures by the number of possible stages 

(i.e., steps, cycles) and by hierarchical (adaptive) or non-hierarchical (non-

adaptive) approaches. Any procedure that uses information from a previous stage 

to determine the testing pattern on a subsequent stage is considered hierarchical. 

Dorfman’s procedure is an example of a simple hierarchical, two-stage procedure 

because the results from the initial testing of groups are needed to decide if 
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individual testing is needed. Sterrett is an example of a hierarchical procedure 

with a non-fixed number of stages, because the number of stages is unknown at 

the start.  

Non-hierarchical examples include standard individual testing and array 

(matrix) testing. Individual testing is a one-stage procedure because it takes just 

one step of testing to determine who is positive and who is negative. Array 

testing (Phataford and Sudbury, 1994) involves organizing individual specimens 

into a grid and pooling individuals for testing by both rows and columns. This 

leads to each individual being within two groups at the beginning. If an 

individual is in a row and column that both test positive, it could be classified as 

positive. Thus, there is only one stage of testing. However, when more than one 

row and more than one column test positive, ambiguities exist concerning which 

individual is positive or negative, so additional individual testing may be 

performed in these cases. Subsequent work in array testing after Phataford and 

Sudbury (1994) include: Berger et al. (2000) who proposed array testing in more 

than two directions without testing error, Kim et al. (2007) who incorporated 

testing error and a master array pool, and Kim and Hudgens (2009) who 

developed a three-dimensional array procedure with testing error. 

1.1.5 Other approaches 

Dorfman (1943) stated his proposal in probabilistic terms, “we have a population 

expressing a trait with probability (or prevalence rate) of p,” and the efficacy of 

his procedure is determined by the expected number of tests needed to decode 

positive and negative individuals. Li (1962) and Katona (1973) looked at group 

testing in combinatorial terms by trying to optimally find a subset of d positives 

from an initial set of size n. For a detailed exploration of combinatorial group 
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testing, see Du and Hwang’s (2000) textbook on the subject. We focus on 

probabilistic group testing, because we consider situations where individual 

probabilities of positivity may be different from an overall prevalence rate. 

1.2 Testing error 

While Dorfman (1943) did not consider testing error, he did mention the 

possibility of it in his paper. Most disease testing situations need to account for 

testing error because assays are usually not 100% correct. Watson (1961) is 

possibly the earliest paper to consider testing error in a group testing context. 

Watson looked at experimental error arising where significant factors in an 

experimental design were identified. Also, Graff and Roeloffs (1972) looked at the 

effect testing error could have on group testing in terms of the number of tests 

and associated costs. Incorporating testing error into an analysis is now standard 

for disease testing situations.  

Testing errors occur when positive items are incorrectly identified as negative 

or vice versa. Altman and Bland (1994a, b) define the sensitivity (Se) as the 

proportion of true positives identified by a test and the specificity (Sp) as the 

proportion of true negatives correctly identified. Typically, for disease diagnostic 

tests, the Se and Sp values are given by an assay manufacturer or validated by a 

laboratory using the assay. In these settings, Se and Sp are actually statistics 

summarizing a selected set of specimens with known positive and negative values. 

However, currently in most applications, Se and Sp are treated as constants, and 

we will do the same within this dissertation.   

Altman and Bland (1994a, b) also contend that it is desirable to know how 

well a diagnostic test does at correctly diagnosing subjects. Corresponding 

measures are the positive predictive value (PPV), which is the proportion of 
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positive test results that correctly indicate a true positive status, and the 

negative predictive value (NPV), which is the proportion of negative test results 

that correctly indicate a true negative status. PPV and NPV can then be 

calculated as PPV = Sep/[Sep +(1 – Sp)(1 – p)] and NPV = Sp(1 – p)/[(1 – Se)p + 

Sp(1 – p)] by using Bayes’ rule.  

In the context of group testing, an assay may be applied multiple times to the 

same specimen (either in a group or individually) to determine its positive or 

negative status. The Se and Sp values are often treated as the same for each 

testing stage (e.g., for Dorfman’s procedure, Se is the same for the initial group 

test and subsequent individual tests), and we will do the same within this 

dissertation. However, because a specimen may be tested multiple times, its 

probability of being correctly diagnosed through the group testing process is no 

longer Se and Sp. Instead, Johnson et al. (1991) define the pooling sensitivity 

(PSe) and pooling specificity (PSp) to measure the correctness of the group testing 

procedure’s classification of individuals. The pooling sensitivity is the probability 

that an individual is categorized as positive by a particular group testing 

procedure given that individual is truly positive. The pooling specificity is defined 

in a similar manner for the negative individuals. Kim et al. (2007) use PSe and 

PSp then to define the pooling positive predictive value (PPPV) and pooling 

negative predictive value (PNPV) for a given group testing procedure as 

(1 )(1 )
e

e p

pPS
PPPV

pPS p PS
=

+ - -  

and 

(1 )
,

(1 ) (1 )
p

p e

p PS
PNPV

p PS p PS

-
=

- + -  
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again through an application of Bayes’ rule.  

The assumption of identical Se and Sp values at multiple stages of group 

testing is often used due to the work of papers such as Kline et al. (1989), Tu et 

al. (1995), and Soroka et al. (2003). These papers showed that for group sizes up 

to 15 or 20 there was negligible loss of Se and Sp when screening for HIV with 

enzyme-linked immunosorbent assays (ELISA). Additionally, for nucleic acid 

tests (NATs), Kacena et al. (1998a, b) showed negligible loss for Se and Sp as 

group sizes increase when screening for chlamydia and gonorrhea. Of course, the 

assumption of identical Se and Sp values at multiple stages may not hold true if 

different diagnostic tests are used at multiple stages. For example, ELISA tests 

may be used to test the initial groups due to their lower costs and NATs may be 

used to decode positive groups due to their often higher sensitivity values. Also, 

the assumption may not hold true if a positive specimen is diluted enough by 

other specimens within a pool so that the group no longer tests positive. Ideally, 

before implementation of a group testing procedure, an assay should be calibrated 

to make sure this does not happen. If it does happen, there are a few group 

testing procedures that can account for a dilution effect. In particular, McMahan 

et al. (2013) showed that taking into account possible dilution effects can 

improve prevalence estimation.   

1.3 Individual probabilities of positivity 

In many cases where group testing is used, covariate information is available on 

the individual items being screened. This provides extra information that can be 

used to estimate covariate-specific probabilities of positivity for each individual. 

There are two ways these estimates can be obtained in a group testing context. 

First, a binary regression model can be estimated using a training data set of 
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known individual test results. This model can then be applied to the individuals 

being screened through group testing in order to obtain estimates of individual 

probabilities. Second, when a training data set is not available, the individual 

probabilities can be estimated through the methods of Vansteelandt et al. (2000) 

and Xie (2001). These papers discuss how to use initial group responses alone to 

estimate individual probabilities. For the purposes of this dissertation, we solely 

implement the training data approach.   

These individual probabilities of positivity can be exploited in order to reduce 

the number of tests needed for group testing. Hwang (1975) is likely the first 

group testing paper that discusses how to take advantage of probabilities of 

positivity for each individual, and he does so in the context of a Dorfman-like 

procedure. However, this paper did not discuss how these probabilities can be 

estimated or how to incorporate testing error.  

Surprisingly, there was little further group testing research on using individual 

probabilities until recently. Bilder et al. (2010) propose “informative retesting” as 

a way to take advantage of estimated individual probabilities when testing error 

is present. They used individual probability information to improve Sterrett’s 

procedure by retesting individuals with the highest probabilities first within 

positive groups. McMahan et al. (2012a, b) further explored informative retesting 

procedures that looked at how Dorfman’s procedure and array testing could take 

advantage of estimated individual probabilities. Closed form expressions for PSe, 

PSp, PPPV, and PNPV were also derived by McMahan et al. (2012a, b) to assess 

the procedures. They showed that their procedures resulted in similar and 

sometimes even better accuracy than corresponding non-informative retesting 

procedures. Bilder and Tebbs (2012) present an overall comparison of all 
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informative retesting procedures, including those in Chapter 2 of this 

dissertation. They conclude that no single procedure is the overall best in terms 

of the expected number of tests and accuracy. Prevalence, assay accuracy, 

availability of covariate information, the underlying distribution of individual 

probabilities, and application ease can all affect which procedure is best for a 

given situation.  

1.4 Integer programming 

An integer programming (IP) problem is a type of linear or non-linear 

programming (LP) problem where all or part of the solution require integer 

values. IP often uses LP methods to find solutions, but integer programs are 

often more difficult to solve. IP begins by defining an objective function to be 

solved (e.g., minimize a mathematical function) subject to a set of constraints. A 

simple method to find the solution is the simplex algorithm (Dantzig 1963). It 

begins by finding a feasible starting point for the function and then moves from 

one feasible point to another that successively improves the objective function 

(e.g., find a smaller minimum for the objective function). This process continues 

until the optimal solution is found. The direction of movement at each step is the 

direction that improves the function the most, which is often referred to as the 

path of steepest descent (ascent) for minimization (maximization) problems.   

The method of steepest descent (or ascent) is a well-known optimization 

strategy for convex functions. The direction of steepest descent can be found 

using partial derivatives when known. Alternatively, for IP problems, the 

direction is found by calculating the objective function value one step in each 

feasible direction to find the direction with the greatest improvement. Once the 
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direction of steepest descent is found, it can be followed until improvement in 

that direction stops. The process is continued until we reach the optimal solution.  

In the context of this dissertation, the expected number of tests can be treated 

as an objective function for an IP. The method of steepest descent then can be 

used to find how best to split a group into subgroups (the number of subgroups 

and their sizes are integers) to minimize the expected number of tests.  

1.5 Organization of the dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 is the first 

submission of a paper that was published in the Journal of the Royal Statistical 

Society (Series C) (a revision of the paper completed by my advisor was 

published). This paper shows how to use estimated individual probabilities to 

improve the halving group testing procedure. In Section 2.2, we derive formula 

for the mean, variance, and probability mass function (PMF) for the number of 

tests under halving where individuals may have different probabilities of 

positivity. We prove that the mean and variance for individuals from a 

heterogeneous population (individuals have different probabilities of positivity) 

assigned to subgroups at random are the same as assuming homogeneity in the 

population. In Section 2.3, we use the derivations from Section 2.2 to develop a 

new group testing procedure that we name “ordered halving”. We prove that 

ordered halving results in a smaller number of tests than for other 

implementations of halving. In Section 2.4, we examine this reduction in tests in 

the context of a beta distribution assumption for the individual probabilities. In 

Section 2.5, we apply our new procedure to chlamydia and gonorrhea screening in 

Nebraska. Finally, Section 2.6 summarizes the improvements and discusses how 
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other retesting procedures may benefit by taking into account heterogeneity 

among individual probabilities. 

We plan to submit Chapter 3 to the Journal of the Royal Statistical Society 

(Series C) as well. Section 3.2 generalizes the E(T) formula from Section 2.2 for 

any fixed-stage hierarchical group testing procedure. We minimize E(T) by 

finding the optimal configuration through looking at every possible configuration 

(subgroup sizes, members of each group) and using IP methods to find a possible 

solution. In Section 3.3, we examine the performance of our proposals in the 

context of beta distributions. In Section 3.4, we apply our procedures to the 

chlamydia and gonorrhea screening data as described for Section 2.5. Finally, in 

Section 3.5, we summarize our work and discuss future extensions.  

Chapter 4 contains additional items examined during this research that were 

not included in the papers of Chapter 2 and Chapter 3. In Section 4.1, we look at 

conditions when halving will not be optimal and suggest modifications for 

improvement. In Section 4.2, we derive the PMF for the number of tests in a 

general hierarchical group testing procedure. In Section 4.3, we discuss in more 

detail the IP solution used to find possible optimal retesting configurations for 

more than three stages. In Section 4.4, we provide documentation on how to run 

new R functions that implement the research in this dissertation. In Section 4.5, 

we layout possible future research directions. 

Because Chapters 2 and 3 are actual papers, their journal submission formats 

are preserved. For example, references are included within the chapters. 
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Chapter 2: Group testing in heterogeneous 
populations using halving algorithms 
 

Abstract 

Group (pooled) testing is often used to reduce the total number of tests needed 

to screen a large number of individuals for an infectious disease or some other 

binary characteristic. Traditionally, research in group testing has assumed each 

individual is independent with the same risk of positivity. More recently, there is 

a growing set of literature generalizing previous work in group testing to include 

heterogeneous populations so that each individual has a different risk of 

positivity. In this paper, we investigate the impact of acknowledging population 

heterogeneity on a commonly used group testing procedure known as “halving.” 

For this procedure, positive groups are successively split into two equal sized 

halves until all groups test negative or until individual testing occurs. We show 

that heterogeneity does not affect the mean number of tests when individuals are 

randomly assigned to sub-groups. However, when individuals are assigned to sub-

groups based on their risk probabilities, we show that our proposed procedures 

reduce the number of tests by taking advantage of the heterogeneity. This is 

illustrated using chlamydia and gonorrhea screening data from the state of 

Nebraska. 

Key words: binary response; classification; identification; pooled testing; 

retesting; screening. 
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2.1 Introduction 

When a large number of individuals need to be screened for an infectious disease 

or some other binary characteristic, group testing is often used to reduce the 

total number of tests needed. Group testing, also known as pooled testing, refers 

to the process of combining individual specimens (e.g., urine or blood) into a 

“pooled” specimen for testing. If the pool (group) tests negative, all individuals 

within it are declared negative. If the pool tests positive, retesting is needed to 

decode the positive and negative individuals. This idea was introduced by 

Dorfman (1943) as a way to screen World War II soldiers for syphilis. For this 

situation, Dorfman proposed to simply retest all subjects individually within the 

positive groups. Other retesting procedures have been proposed since then, and 

many of them result in a smaller number of tests; see Gupta and Malina (1999) 

and Hughes-Oliver (2006) for a review. The usefulness of group testing has been 

well established in many areas, including blood donation screening (Dodd et al. 

2002), opportunistic testing of individuals for chlamydia (Mund et al. 2008), 

Bovine Viral Diarrhea virus detection in cattle herds (Peck 2006), estimation of 

virus infection levels for carnations (Hepworth, 2009), West Nile virus detection 

among mosquitoes (Biggerstaff 2008), estimating transmission rates of pathogens 

from insects to plants (Tebbs and Bilder 2004), and discovery of chemical 

compounds to use in new drugs (Remlinger et al. 2006).  

Traditionally, research in group testing has assumed each individual to be 

independent with the same risk of positivity p; i.e., a homogeneous population of 

independent individuals with an overall prevalence p. More recently, there is an 

expanding set of literature that generalizes past work to include heterogeneous 

populations. In this setting, each individual has their own individual probability 
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of positivity, and heterogeneity can be modeled using the group testing regression 

methods of Vansteelandt et al. (2000) or Xie (2001). Bilder et al. (2010) show 

further how estimates of these individual probabilities can be used to retest 

individuals in a positive group, and they demonstrate how one can reduce 

significantly the number of tests needed through an extension of Sterrett’s (1957) 

identification procedure.  

Given these advances, it is now important to determine if accounting for 

population heterogeneity provides benefits with other retesting procedures used in 

practice. One widely used procedure involves successively splitting positive 

groups into smaller sub-groups until all positive and negative individuals have 

been identified (Sobel and Groll 1959; Johnson et al. 1991; Pilcher et al. 2005; 

Kim et al. 2007). A common example of this retesting approach is to form sub-

groups which are halves of larger groups; we refer to this as “halving.” Litvak et 

al. (1994) popularized the halving technique in the context of blood donation 

screening for HIV. In our paper, we generalize the use of halving to heterogeneous 

population settings.  

Our work is motivated by chlamydia and gonorrhea screening performed by 

the Nebraska Public Health Laboratory (NPHL). In this setting, clinical, 

demographic, and risk-behavior information is available on each individual being 

screened. Because these risk factors have a strong relationship with whether or 

not an individual has the disease, it is natural to consider the screening 

population as heterogeneous. Through exploiting this heterogeneity, we examine 

how well new halving procedures can reduce the total number of tests needed for 

screening.  
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The paper is ordered as follows. In Section 2.2, we derive the mean, variance, 

and probability mass function for the number of tests under halving. When 

compared to a homogeneous population setting, we prove that the mean and 

variance do not change if individuals from a heterogeneous population are 

assigned to sub-groups at random. Using the derivations from Section 2.2, we 

propose a new halving procedure in Section 2.3 that exploits risk heterogeneity to 

reduce the expected number of tests, and we identify in Section 2.4 the situations 

where our new procedure performs best. In Section 2.5, we apply our new 

procedure to chlamydia and gonorrhea screening in Nebraska. Finally, Section 2.6 

summarizes and discusses how other retesting procedures may benefit by taking 

risk heterogeneity into account.  

2.2 Halving 

2.2.1 Moments for a fixed set of individual risk probabilities 

We begin by assuming that each individual is assigned to exactly one initial 

group. For the remainder of this section and Section 2.3, we focus on one 

particular initial group of size I where individual i has risk probability pi for i = 

1, …, I. Later sections examine individuals across all initial groups.  

Halving involves successively splitting positive groups into two equal sized 

halves. Positive groups are halved until all groups test negative or until 

individual testing occurs. For example, 3-step halving for an initial group of size I 

= 16 begins by testing the entire group. If the group tests positive, the second 

step involves splitting it into two sub-groups of size 8. If either sub-group tests 

positive, a third and final step occurs where each individual in a positive sub-

group is tested. A 4-step halving protocol with I = 16 would continue with 
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halving into groups of size 4 before individual testing. A larger number of steps 

can be performed in a similar manner until only individuals remain.  

We now derive the operating characteristics of halving for a heterogeneous 

group. Let Gs,j = 1 (0) denote a positive (negative) test result for the jth ordered 

sub-group at the sth step for j = 1, …, 2s-1 and s = 1, …, S. In the last example, 

G1,1 represents the test result for the initial group of size 16, and G2,1 represents 

the test result for the first sub-group of size 8 halved from a positive initial 

group. In a 3-step setting, we can write the expected number of tests for an 

initial group of size I as  

1,1 2,1 1,1 2,1

2,2 1,1 2,2

( | ) 1 2 ( 1) ( 1 1)

( 1 1),

vecE T P G I P G G

I P G G

= + = + = Ç = +
= Ç =

p
 

where T is the number of tests, 1( , ..., ) ,vec
Ip p ¢=p  and Is,j is the number of 

individuals remaining in the jth ordered sub-group at step s. Adding a fourth step 

leads to an expected number of tests  

1,1 1,1 2,1 1,1 2,2

3,1 1,1 2,1 3,1

3,2 1,1 2,1 3,2

3,3 1,1 2,2 3,3

3,4 1,1 2,2 3,4

( | ) 1 2 ( 1) 2 ( 1 1) 2 ( 1 1)

( 1 1 1)

( 1 1 1)

( 1 1 1)

( 1 1 1).

vecE T P G P G G P G G

I P G G G

I P G G G

I P G G G

I P G G G

= + = + = Ç = + = Ç = +
= Ç = Ç = +
= Ç = Ç = +
= Ç = Ç = +
= Ç = Ç =

p

 

In general for an S-step halving procedure, it follows that  

1

,

2 2

,
{( , ): 1}1 1

( | ) 1 2 { 1}
s

s j

S
vec

s j
s j Gs j

E T P G
--

¢ ¢
¢ ¢ == =

æ ö÷ç= + = +÷å å ç ÷÷çè ø
p 

2

1,

2

1, ,
{( , ): 1}1

{ 1}
S

S j

S j s j
s j Gj

I P G
-

-

¢ ¢-
¢ ¢ ==

æ ö÷ç = ÷å ç ÷÷çè ø
     (2.1) 

for an appropriate number of steps S given the initial group size. When an odd-

sized group is halved, final step group sizes IS,j can be set equal to 0. For 

example, a 4-step halving procedure with I = 7 can have an initial split with sub-



17 

 

 

 

groups of size 4 and 3. The group of size 3 can be split further into groups of size 

2 and 1. Because the “group” of size 1 cannot be split again, we can set its I4,j 

equal to 0 so that its corresponding term is excluded from the mean calculation. 

Each of the probabilities in the above expressions is found by taking into 

account the true group statuses. Let , 1 (0)s jG =  denote a positive (negative) true 

status for the jth ordered sub-group at the sth step, and define the test sensitivity 

and specificity as , ,( 1 | 1)e s j s jS P G G= = =  and , ,( 0 | 0),p s j s jS P G G= = =  

respectively. The probability that the initial group tests positive can be written 

as   

1,1 1,1 1,1 1,1 1,1

1,1 1,1 1,1 1,1 1,1 1,1

( 1) ( 1 0) ( 1 1)

( 1 | 0) ( 0) ( 1 | 1) ( 1)

P G P G G P G G

P G G P G P G G P G

= = = Ç = + = Ç =
= = = = + = = =

 
   

{ } { }
1 1

(1 ) (1 ) 1 (1 ) ,
I I

p i e i
i i

S p S p
= =

= - - + - -       

where we make the standard assumption that the test outcomes are conditionally 

independent given the true statuses (see Litvak et al. 1994). 

Probabilities involving groups for steps two and higher become more 

complicated to derive because past steps must be taken into account. For 

example, the probability of positivity for the first group at step two, after the 

initial group tests positive, is 

1,1 2,1 1,1 2,1 1,1 2,1

1,1 2,1 1,1 2,1

1,1 2,1 1,1 2,1

( 1 1) ( 1 1 0 0)

( 1 1 1 0)

( 1 1 1 1),

P G G P G G G G

P G G G G

P G G G G

= Ç = = = Ç = Ç = Ç = +

= Ç = Ç = Ç = +
= Ç = Ç = Ç =

 
 
 

 

which takes into account the three ways that 1,1 2,1{ 1} { 1}G G= Ç =  may occur with 

respect to the true statuses. Continuing, we obtain 
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{ }
2,1 2,2

2
1,1 2,1

1
( 1 1) (1 ) (1 )

(1 ) (1 ) 1 (1 )

I

p i
i

e p i i
i B i B

P G G S p

S S p p

=

Î Î

= Ç = = - - +

ì üì üï ïï ïï ïï ï- - - - + í ýí ýï ïï ïï ïï ïî þî þ

2,1

2 1 (1 ) ,e i
i B

S p
Î

ì üï ïï ï- -í ýï ïï ïî þ
       

where ,s ji BÎ  is understood to mean those individuals who belong to the jth 

ordered group at the sth step. These results can be generalized for s> 1 to 

{ }
,

1, 1,

,
{( , ): 1} 1

1

1

{ 1} (1 ) (1 )

(1 ) (1 ) 1 (1 )

s j

a a

I
s

s j p i
s j G i

s
a s a
e p i i

i B i Ba

P G S p

S S p p
+ +

¢ ¢
¢ ¢ = =

-
-

Î Î=

æ ö÷ç = = - - +÷ ç ÷÷çè ø
ì üì üï ïï ïï ïï ï- - - - +å  í ýí ýï ïï ïï ïï ïî þî þ 



,

1 (1 ) ,
s j

s
e i

i B
S p

Î

ì üï ïï ï- -í ýï ïï ïî þ
    (2.2) 

where 12s aj - -=  and ,s ji BÎ  denotes the set of individuals within the parent 

group of ,s jB  excluding those in ,s jB  itself (e.g., 3,3i BÎ  denotes all individuals in 

B3,4 because 3,3 3,4 2,2{ } { } { }i B i B i BÎ È Î = Î ). Substituting (2.2) into (2.1), gives 

the expected number of tests for a specific set of risk probabilities. 

To find the variance, we need to calculate the second moment for T. For a 3-

step procedure,  

2 2
1,1 1,1 2,1 2,2

2
2,1 1,1 2,1 2,2

2
2,2 1,1 2,1 2,2

2
1,1 2,1 2,2

( | ) ( 0) 3 ( 0 0 0)

(3 ) ( 0 1 0)

(3 ) ( 0 1 0)

(3 ) ( 0 1 1).

vecE T P G P G G G

I P G G G

I P G G G

I P G G G

= = + = Ç = Ç = +

+ = Ç = Ç = +

+ = Ç = Ç = +

+ = Ç = Ç =

p

 

The four probability terms in this expression are found using Equation (2.2). For 

4-step and higher procedures, the number of terms grows very quickly, so we do 

not recommend direct evaluation. Instead, in Appendix A, we present a recursive 

algorithm to calculate the probability mass function (PMF) of T by exploiting 
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the hierarchical nature inherent to the halving procedure. Combining the PMF 

with the standard variance formula leads to the desired result.  

2.2.2 Treating risk probabilities as random 

Individual risk probabilities will vary from group to group. Therefore, in this sub-

section, we treat these probabilities as random and re-examine our moment 

calculations. Specifically, we now envision pi as independent random variables 

with E(pi) = p for i = 1, …, I. The overall expected number of tests is 

{ }
1

,

2 2

,
{( , ): 1}1 1

( ) ( | )

1 2 { 1}
s

s j

vec

S

s j
s j Gs j

E T E E T

E P G
--

¢ ¢
¢ ¢ == =

=
ì üæ öï ïï ï÷ç= + = +÷å å í ýç ÷÷çï ïè øï ïî þ



p

 

2

1,

2

1, ,
{( , ): 1}1

{ 1} .
S

S j

S j s j
s j Gj

I E P G
-

-

¢ ¢-
¢ ¢ ==

ì üæ öï ïï ï÷ç = ÷å í ýç ÷÷çï ïè øï ïî þ
     (2.3) 

The expectation of the joint probability in (2.1) is 

{ }
,

1, 1,

,
{( , ): 1} 1

1

1

{ 1} (1 ) (1 )

(1 ) (1 ) 1 (1 )

s j

a a

I
s

s j p i
s j G i

s
a s a
e p i i

i B i Ba

E P G S E p

S S E p E p
+ +

¢ ¢
¢ ¢ = =

-
-

Î Î=

ì üæ öï ïï ï÷ç = = - - +÷ í ýç ÷÷çï ïè øï ïî þ
é ùì ü ì üï ï ï ïï ï ï ïê ú- - - - +å  í ý í ýê úï ï ï ïï ï ï ïî þ î þë û 
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,

1 (1 ) .
s j

s
e i

i B
S E p

Î

é ùì üï ïï ïê ú- -í ýê úï ïï ïî þë û
   (2.4) 

Because of independence among the individual probabilities, Equation (2.4) 

simplifies to  

{ }
,

1,1 1, 1, 1, 1,

,
{( , ): 1}

1

1

{ 1}

(1 ) (1 ) (1 ) (1 ) 1 (1 )

s j

a l a l a l a l

s j
s j G

su u l u ls a s a
p e p

a

E P G

S p S S p p+ + + +

¢ ¢
¢ ¢ =

- - --

=

ì üæ öï ïï ï÷ç = ÷í ýç ÷÷çï ïè øï ïî þ
= - - + - - - - +å


 

{ }, ,1 (1 ) ,s j s ju ls
eS p -- -        (2.5)

 

 

where , , ,1 1j
s j s i s jil I I== - +å  and , ,1

j
s j s iiu I== å are the lowest and highest 

subscripts, respectively, for the individuals in the sub-group ,s jB  and ,s jl and ,s ju  

are the lowest and highest subscripts, respectively, for the individuals in the sub-
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group ,s jB . The expected number of tests E(T) is found by substituting (2.5) into 

(2.3). 

It is especially insightful to note that 
, ,{( , ): 1}( { 1})

s j s js j GP G ¢ ¢¢ ¢ = =  reduces to (2.5) 

when all individuals have a common risk probability p; this implies the 

unconditional means are the same for homogeneous or heterogeneous population 

assumptions. Furthermore, we show in Appendix B that Var(T) also remains 

unchanged. Therefore, when individuals with different risks are assigned 

randomly to groups, neither E(T) nor Var(T) is affected. This is reassuring if the 

researcher is unable to account for heterogeneity when implementing the halving 

procedure.  

An important generalization of these results is that they can be extended to 

other commonly used retesting algorithms, such as Dorfman’s (1943) procedure 

and Sterrett’s (1957) procedure, where moments can also be written in terms of 

(1 )ii p- . This is due to the underlying independence of the risk probabilities. 

For example, Bilder et al. (2010) give the probability mass function for T in a “3-

stage” informative Sterrett procedure. If one treats the individual risk 

probabilities as independent random variables, all of their P(T = t) expressions 

rely on these simple products.  

2.3 Ordered halving 

We have shown that the moment formulas for T do not depend on the individual 

risk probabilities when individuals are assigned to sub-groups at random. Instead 

of random assignment, we now control how individuals are assigned to sub-

groups. Our overall goal is to assign individuals to sub-groups in a manner that 

reduces the expected number of tests.  
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After an initial group of size I tests positive, two sub-groups of equal size are 

created. Our goal is to maximize one sub-group’s probability of testing positive 

and maximize the other sub-group’s probability of testing negative. We show this 

type of sub-group construction allows for faster identification of positive 

individuals on average while allowing negative individuals to be classified sooner. 

Define a set of ordered risk probabilities for an initial group of size I as 

(1) ( )( , , )ord
Ip p ¢=p   where p(i) denotes the it smallest probability within the 

group. The second step of “ordered halving” creates one sub-group of individuals 

with lower risks 
2,1(1) ( ), , Ip p  and one sub-group of individuals with higher risks 

2,1( 1) ( ), ,I Ip p+  . If one of these sub-groups tests positive and S³ 4 (i.e., individual 

testing does not occur at step 3 for positive sub-groups), the process of halving 

groups by the ordered risks continues in a similar manner.    

 To compare the expected number of tests with and without ordering when 

sub-group sizes are equal, i.e., compare ( | )ordE T p and ( | ),vecE T p  we need only 

focus on  ( )1

,

2
,{( , ): 1}1 { 1}

s

s j s js j Gj P G
-

¢ ¢¢ ¢ == =å   for each step s = 1, …, S – 1 of 

Equation(2.1). This is true because ordering only changes expressions that are 

functions of the risk probabilities. To help with the comparison, note that 

( )
1

,

2

,{( , ): 1}
1

{ 1}
s

s j s js j G
j

P G
-

¢ ¢¢ ¢ =
=

=å 

{ }
1

,

2
1 1

1 1
2 (1 ) 2 (1 ) (1 ).

a

a j

s
s s s a a s a

e p e e p i
i Ba j

S S S S S p
-

- - - -

Î= =
= + - - - -å å    (2.6) 

When s = 1, Equation (2.6) is the same regardless of whether sub-group 

assignment is ordered or random. However, for any step a> 1, one can show that 

ordering the individual risk probabilities maximizes 
1

,

2
1 (1 )

a

a j ii Bj p
-

Î= -å  . Thus, 

Equation (2.6) is minimized under ordered assignment as long as Se> 1 – Sp, 

which will be true for any diagnostic test used in application. This shows that 
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( | ) ( | )ord vecE T E T£p p  whenever our ordered sub-group construction is used. To 

find E(T) = [ ( | )]ordE E T p , we make use of Equations (2.1) and (2.4) again 

where the individual risk probabilities within (2.4) are properly ordered for the 

sub-groups. Because the expectations in (2.4) are now distribution dependent, a 

simple expression for E(T) no longer exists. However, we can use the result in 

Junjiro (1962) to find the distribution of the ordered risk probabilities. This 

distribution is  

{ }
, ,

,

, , , ,
,

1
( ) ( ) ( ) ( ) ( )

, ,

!
( ,..., ) ( ) ( ) 1 ( ) ,

( 1)!( )!

s j s j
s j

s j s j s j s j
s j

u I ul
l u l i u

i ls j s j

I
f p p F p f p F p

l I u

--

=

ì üï ïï ï= -í ýï ï- - ï ïî þ   

where 
, ,( ) ( )...

s j s jl up p£ £  are the ordered risk probabilities for individuals in group 

,s jB  (see Section 2.2.2), f(pi) is the probability density function for pi, and F(pi) is 

the cumulative distribution function for pi. Using this distribution, moments for 

T can be found by substituting the expected values into Equation (2.3). We 

examine values of E(T) for specific distributions in Section 2.4. 

2.4 Mean Comparisons 

Group testing is used in situations where the overall prevalence is small. To 

understand how well ordered halving works in practice, we take p = 0.005, 0.01, 

0.05, and 0.10 and examine the number of tests performed. The distributions 

chosen for pi are a beta(1, 1/p – 1), a uniform(0, 2p), and a degenerate at p 

(which corresponds to a homogeneous population of individuals). We also look at 

an “extreme case” of pi = 1 with probability p and pi = 0 with probability 1 – p. 

While this last case is unrealistic, it is useful to examine because it maximizes the 

variance among the individual probabilities. For all distributions, the expected 

value of pi is p, but the variances are different. For example, the variances are 
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0.048, 0.0023, and 0.0002 for the extreme, beta, and uniform cases when p = 0.05, 

and this ordering among the distributions occurs for the other values of p as well.  

We compare the expected number of tests for these different distributions 

using halving with 2, 3, 4 and 5 steps for a number of different group sizes. To 

make comparisons on a realistic numerical scale, we convert the expected number 

of tests for a single group into the expected number of tests in a population of 

10,000 individuals. We use the equations derived in Sections 2.2.2 and 2.3 to 

calculate the expected number of tests. For the beta distributions, it is necessary 

to estimate the expected values because of the difficulty in integrating over the 

distribution of the order statistics. For the degenerate case, the expected number 

of tests and the variance for the number of tests are calculated using the 

probability mass function algorithm described in Appendix A.  

For each level of overall risk and number of steps considered, Table 2.1gives 

the expected number of tests for a selected number of group sizes. The group 

sizes selected are those that minimize the expected number of tests in the 

degenerate case. For example, the expected number of tests for the degenerate 

case with p = 0.05 is the smallest for two-step halving (Dorfman’s procedure) 

when the group size is 5. It is common for other group sizes to exist where 

ordered halving has a smaller expected number of tests for the same S; thus, the 

expected benefits from ordering will be no worse than those presented here. 

While perfect testing does not often occur in actual applications, we assume Sp = 

Se = 1 because it provides a useful initial examination.  

Table 2.1shows the degenerate case always results in the maximum expected 

number of tests among the four distributions. For 2-step, there is no decrease in 

the expected number of tests from ordered halving; ordering risk probabilities has 
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no advantage when the second step is individual testing. For 3-steps and higher, 

ordered halving always leads to a decrease in the expected number of tests. This 

decrease can be limited for smaller p, but it can be pronounced for larger p. We 

also note that as the variance among the risk probabilities increases, the expected 

number of tests decreases. This result is intuitive because the more diversity in 

information available (in terms of the risk probabilities) the easier it is for an 

“informative retesting” procedure to find positive individuals. Exceptions can 

occur when the last halving step results in uneven group sizes (e.g., 4-step with 

group size of 10 when p = 0.05), because we choose to have the larger risk 

probabilities in the larger sub-group.   

Figure 2.1 plots the expected number of tests when p = 0.05 for a number of 

group sizes and levels of sensitivity and specificity. Additional plots for p = 

0.005, 0.01, and 0.10 are available in Appendix C. Figure 2.1 provides additional 

evidence that ordered halving reduces the expected number of tests, even in the 

presence of imperfect testing. In addition, we see that testing error does not 

change the relative ordering among the distribution cases. Furthermore, the 

group size that results in the smallest number of tests can be larger for ordering 

than for the degenerate case. The meaningfulness of this result may be tempered 

if dilution effects prevent the use of larger group sizes. 

2.5 Application 

The Infertility Prevention Program is a nationally implemented program whose 

goals are to assess and reduce the prevalence of chlamydia and gonorrhea in the 

United States. In Nebraska, urine and swab specimens are collected from 

individuals visiting health clinics throughout the state. These specimens are sent 

then to the Nebraska Public Health Laboratory (NPHL), where each specimen is 
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tested individually for both infections. Clinical, demographic, and risk-behavior 

information is recorded for each individual prior to testing. Therefore, it is 

sensible to envision individuals as having different probabilities of positivity, 

which leads to a potential application of ordered halving.  

To assess how well ordered halving would work in this application, we use 

previously diagnosed individual statuses from the NPHL in the following manner. 

The NPHL’s 2004-year results are used as a training data set to estimate the 

probability of positivity for individuals tested in 2005. First-order logistic 

regression models are fit to the training data with the response variable as disease 

status and the explanatory variables of age, race, clinic type, clinic location, 

reason for visit, symptoms, initial clinical observations, and risk history. These 

models are fit separately by disease (chlamydia and gonorrhea), gender, and 

specimen type (swab or urine). The 2005-year individuals are ordered by 

specimen date and are placed into successive groups by disease/gender/specimen 

combination. Assuming the observed 2005 diagnoses are the true responses, we 

simulate the halving process for each group, where simulated test responses are 

generated with the Se and Sp values provided by the NPHL. We repeat halving 

for each disease/gender/specimen combination ten times to account for 

simulation variability, and we record the average number of tests. 

Table 2.2 displays the average number of tests, and Table 2.3gives the 

percentage reduction in tests for ordered vs. unordered halving at specific group 

sizes. These tables provide the chlamydia screening results only. Similar results 

are found for gonorrhea screening, which are given in Appendix D. Overall, we 

find the chlamydia results to be similar to those found for the beta distribution 

cases in Section 2.4. This is not surprising because a beta distribution often fits 
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these individual probabilities well and overall prevalence ranges from 5.8% to 

13.0% for each gender/specimen combination. Generally, improvements from 

ordering are 1% to 6%, where some improvements are larger for swab/male (up 

to 10.49%). Also, the benefits from ordered halving are more pronounced for 

larger group sizes and prevalences, which is consistent with our findings in 

Section 2.4.  

We have also investigated how well ordered halving performs in terms of 

classification accuracy (e.g., pooling sensitivity, pooling positive predictive 

values). Complete results are in Appendix D. We found no discernible increases 

or decreases through ordered halving.  

2.6 Conclusions 

We have generalized the use of halving algorithms in group testing to 

heterogeneous population settings. Our results demonstrate that ordering risk 

probabilities reduces the number of tests needed to classify all individuals as 

positive or negative. The NPHL example shows a specific instance where ordered 

halving would reduce the testing load. Even when ordered halving provides a 

small percentage reduction in the number of tests, this can be magnified greatly 

in situations with very large numbers of individuals. For example, Kim and 

Hudgens (2009, p. 903) describe a HIV detection program in North Carolina 

where “slight improvements in efficiency can lead to substantial cost savings” 

because 120,000 specimens are screened per year. In addition, the American Red 

Cross screens millions of blood donations for multiple diseases per year by group 

testing (Stramer et al. 2004; Dodd et al. 2002), so even small improvements can 

translate to a large number of tests saved.    
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The reduction in the number of tests through ordering increases as the 

variation in the risk probabilities increases. Also, the test reduction grows as the 

overall prevalence increases. An intuitive explanation for this occurrence comes 

through examining the possible number of tests with halving. For simplicity, 

assume Se = Sp = 1. When there are no positives or only one positive within a 

group at step 1, ordered halving results in the same number of tests as without 

ordering. When there are two or more positives within a group at step 1, ordered 

halving pools the larger probability individuals together. This leads to a larger 

probability that all positive individuals are within one half rather than in both 

halves, which reduces the potential number of tests remaining. Thus, ordered 

halving on a group is beneficial only when there is more than one positive 

individual within the group. This is why ordered halving can have larger optimal 

group sizes.  

Our results from Sections 2.4 and 2.5 lead us to possible future research areas 

that can further improve halving. First, we showed that the variation in the risk 

probabilities was important, but its magnitude of importance changes when 

uneven sub-group sizes are needed. Future research should examine if there are 

optimal unequal sub-group sizes that could be chosen at each step of the group 

splitting process. Variations on this idea include immediate individual testing for 

those individuals with a large positive probability. We see an informal application 

of this already at the Nebraska Veterinary Diagnostic Laboratory; however, 

research is needed to determine actual benefits. Second, group splitting could 

involve more than two sub-groups. For example, Pilcher et al. (2005) use an 

initial group size of 90 and subsequent splits into 9 groups of size 10 when the 

initial group tests positive. It would be of interest to determine how ordering can 
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further reduce the number of tests needed when multiple sub-groups are used. 

Choosing the optimal sub-group sizes and the number of sub-groups for a split 

are open research problems.  
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 Expected number of tests  Max Degenerate 

p Steps Group size  Degenerate Uniform Beta Extreme  difference standard dev 

0.10 2 4  5,938.00 5,938.00 5,938.00 5,938.00  - 95.00 

 3 6  5,938.53 5,880.67 5,827.52 5,577.68  360.86 115.53 

 4 8  6,293.33 6,210.41 6,129.94 5,618.29  674.44 133.33 

 5 16  6,686.70 6,493.23 6,304.65 5,005.09  1,681.61 147.97 

0.05 2 5  4,262.19 4,262.19 4,262.19 4,262.19  - 93.55 

 3 8  3,946.39 3,916.30 3,886.74 3,774.42  171.96 109.92 

 4 10  3,953.15 3,706.77 3,732.70 3,810.91  246.38 119.47 

 5 20  4,094.67 3,781.16 3,739.71 3,403.54  691.13 137.72 

0.01 2 10  1,956.18 1,956.18 1,956.18 1,956.18  - 93.00 

 3 16  1,583.23 1,577.03 1,570.37 1,553.39  29.84 93.01 

 4 20  1,363.43 1,358.51 1,352.43 1,319.42  44.01 83.52 

 5 32  1,257.24 1,250.15 1,241.89 1,171.96  85.29 90.17 

0.005 2 16  1,395.69 1,395.69 1,395.69 1,395.69  - 106.68 

 3 20  1,084.29 1,081.71 1,078.98 1,072.34  11.95 81.19 

 4 32  894.53 891.60 887.60 868.24  26.29 80.47 

 5 48  785.46 782.20 778.08 742.95  42.51 79.13 

Table 2.1. Mean number of tests for specific risk distributions and halving steps where Sp = Se = 1. The group size chosen 

is the optimal size for the degenerate distribution case. Note that two-step halving is Dorfman’s procedure. 
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Group 3-step 4-step 5-step 
Specimen/Gender size Dorfman Unordered Ordered Unordered Ordered Unordered Ordered 

8 1,557.7 1,238.9 1,236.3 1,228.5 1,207.8 NA NA 
12 1,735.1 1,297.5 1,229.1 1,136.2 1,104.8 NA NA 

Urine/Female 16 1,925.6 1,405.6 1,352.0 1,146.4 1,102.5 1,132.2 1,100.8 
24 2,114.5 1,540.3 1,502.8 1,161.3 1,115.4 1,018.4 1,019.7 
32 2,186.5 1,632.1 1,541.3 1,211.9 1,085.4 1,007.1 961.3 
8 2,415.6 2,009.0 1,971.8 1,996.4 1,965.2 NA NA 
12 2,701.8 2,109.2 2,076.8 1,908.0 1,884.2 NA NA 

Urine/Male 16 3,037.4 2,338.2 2,253.2 2,000.0 1,930.6 1,992.9 1,946.8 
24 3,277.4 2,598.4 2,519.2 2,092.5 2,022.0 1,935.3 1,857.6 
32 3,506.6 2,882.0 2,762.4 2,233.8 2,236.2 1,930.7 1,909.9 
8 9,492.6 7,833.0 7,705.8 7,804.2 7,731.2 NA NA 
12 10,791.9 8,222.9 8,007.2 7,443.4 7,242.8 NA NA 

Swab/Female 16 12,341.1 9,035.2 8,759.5 7,569.4 7,404.9 7,533.7 7,387.7 
24 14,481.7 10,448.6 9,957.0 8,115.7 7,745.4 7,368.4 7,107.1 
32 15,691.0 11,711.6 11,124.1 8,771.6 8,173.4 7,378.6 7,103.1 
8 2,984.6 2,633.8 2,534.6 2,721.6 2,639.0 NA NA 
12 3,357.8 2,840.0 2,680.4 2,666.1 2,546.3 NA NA 

Swab/Male 16 3,568.0 2,996.4 2,815.6 2,638.4 2,495.4 2,702.4 2,579.2 
24 3,819.0 3,325.0 2,998.6 2,832.2 2,607.4 2,616.2 2,471.8 
32 3,802.6 3,427.5 3,165.1 2,939.8 2,631.3 2,605.9 2,403.6 

Table 2.2. Average number of tests for chlamydia screening. For urine/female, there are 2,679 individuals, Se = 0.805, and 

Sp = 0.96. For urine/male, there are 3,852 individuals, Se = 0.930, and Sp = 0.95. For swab/female, there are 19,451 

individuals, Se = 0.928, and Sp = 0.96. For swab/male, there are 4,085 individuals, Se = 0.925, and Sp = 0.95.
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Group 

 
Percentage decrease 

Specimen/Gender size 
 

3-step 
 

4-step 
 

5-step 

 
8 

 
0.21% 

 
1.68% 

 
NA 

 
12 

 
5.27% 

 
2.76% 

 
NA 

Urine/Female 16 
 

3.81% 
 

3.83% 
 

2.77% 

 
24 

 
2.43% 

 
3.95% 

 
-0.13% 

 
32 

 
5.56% 

 
10.44% 

 
4.55% 

 
8 

 
1.85% 

 
1.56% 

 
NA 

 
12 

 
1.54% 

 
1.25% 

 
NA 

Urine/Male 16 
 

3.64% 
 

3.47% 
 

2.31% 

 
24 

 
3.05% 

 
3.37% 

 
4.01% 

 
32 

 
4.15% 

 
-0.11% 

 
1.08% 

 
8 

 
1.62% 

 
0.94% 

 
NA 

 
12 

 
2.62% 

 
2.70% 

 
NA 

Swab/Female 16 
 

3.05% 
 

2.17% 
 

1.94% 

 
24 

 
4.70% 

 
4.56% 

 
3.55% 

 
32 

 
5.02% 

 
6.82% 

 
3.73% 

 
8 

 
3.77% 

 
3.03% 

 
NA 

 
12 

 
5.62% 

 
4.49% 

 
NA 

Swab/Male 16 
 

6.03% 
 

5.42% 
 

4.56% 

 
24 

 
9.82% 

 
7.94% 

 
5.52% 

 
32 

 
7.66% 

 
10.49% 

 
7.76% 

Table 2.3. Percentage reduction in tests for ordered vs. unordered halving at a 

specific number of steps and group size.
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Figure 2.1. Mean number of tests when p = 0.05. Each row of panels corresponds to the number of halving steps. Each 

column of panels corresponds to specificity and sensitivity settings. 
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Chapter 3: Optimal retesting configurations for 
hierarchical group testing 

 

Abstract 

Hierarchical group testing is a widely implemented procedure used to efficiently screen 

individuals for infectious diseases and other binary characteristics. This screening 

protocol works by amalgamating individual specimens into groups for testing. Groups 

testing positive are successively divided into smaller subgroups and retested to decode 

positive individuals from negative individuals. In our paper, we propose a general 

procedure to incorporate risk factor information into the testing process by optimally 

selecting these subgroup configurations for the individuals. We derive the expected 

number of tests and classification accuracy measures for our proposals, and we show 

that our proposals can significantly reduce the number of tests needed and still maintain 

high classification accuracy. An added benefit is that our proposals can be much more 

easily applied than most other group testing procedures that take into account risk 

factor information. We apply our proposals to infectious disease screening which was 

performed as part of the Infertility Prevention Project in the United States.  

Key words: classification; Infertility Prevention Project; informative retesting; pooled 

testing; retesting; screening  
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3.1 Introduction 

Infectious disease screening frequently occurs through the process known concurrently as 

group testing and pooled testing. For this screening protocol, clinical specimens (e.g., 

blood, urine) from separate individuals are amalgamated into a single specimen. 

Individuals within negative testing groups are declared negative. Individuals within 

positive testing groups are retested in some predetermined manner to decode the 

positive individuals from the negative individuals. As long as group sizes are judiciously 

chosen and the overall disease prevalence is small, group testing significantly reduces the 

overall number of tests required while subsequently reducing costs. Due to these benefits 

and the high volume of clinical specimens that often occur for infectious disease 

screening, group testing is successfully being applied now for chlamydia and gonorrhea 

testing within the Infertility Prevention Project (Lewis et al. 2012); for HIV, hepatitis 

B, and hepatitis C screening of blood donations (American Red Cross 2013; Hourfar et 

al. 2008); and for HIV screening among known HIV-positive individuals to detect 

antiretroviral treatment failure (Tilghman et al. 2011, Smith et al. 2009; Mehta et al. 

2011). 

Group testing algorithms are generally divided into two categories: hierarchical and 

non-hierarchical. Hierarchical group testing involves dividing positive groups into two or 

more non-overlapping groups for retesting, where a group size may be as small as one. If 

any of these subsequent groupings test positive, additional stages of dividing occur until 

individual testing at the final possible stage S, where individuals are decoded as positive 

or negative. Throughout the process, the results from a previous stage are necessary 

before further retesting can be performed. In contrast, non-hierarchical group testing 

involves placing individuals into overlapping groups in the hope that positive testing 

groups quickly lead to the identification of positive individuals. In particular, two-
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dimensional array (matrix) testing places specimens into an array where specimens 

within rows and columns are pooled. The intersections of positive testing groups 

correspond to those individuals who are potentially positive; additional individual 

retests can be completed within these intersections as necessary. For a further review of 

hierarchical and non-hierarchical group testing, see the excellent chapter given by 

Hughes-Oliver (2006). 

Our paper focuses on hierarchical group testing by taking advantage of recent 

advances in group testing collectively known as “informative retesting” (Bilder et al. 

2010, McMahan et al. 2012a, McMahan et al. 2012b, Black et al. 2012). Informative 

retesting incorporates individual probabilities of positivity into the decoding process. To 

obtain these probabilities, binary regression models are estimated using individual 

disease statuses along with individual risk factor covariates from a training data set. 

Individual probabilities of positivity are estimated with these models and used for 

retesting. By taking advantage of the heterogeneity among these probabilities, we 

propose in our paper new informative retesting procedures that significantly reduce the 

number of tests needed while also being easier to apply than most previously proposed 

methods. We achieve our gains in testing efficiency by optimally selecting the number of 

subgroups and their sizes at each stage. We achieve our ease in application by limiting 

the number of testing stages and ordering individuals by their probability of positivity.  

While our methods can be applied to a large number of infectious disease settings, we 

focus our discussion on the high volume of clinical specimens evaluated each year for the 

Infertility Prevention Project (IPP). The IPP was a nationally implemented program in 

the United States for chlamydia and gonorrhea detection, and hundreds of thousands of 

specimens are screened each year at laboratories across the country. Due to this high 

volume, many states (e.g., Idaho, Iowa, New York, Oregon, Virginia, Washington, and 
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Wisconsin) now use group testing for their screening, and it is likely that many more 

states will need to in the future given the current fiscal environment. With each 

specimen tested, risk factors, such as gender, sexual history, and clinician observations, 

are available. This has prompted at least one state, Idaho, to implement the “threshold 

optimal Dorfman” informative retesting procedure of McMahan et al. (2012a), which 

takes advantage of known risk factors to reduce their number of tests (Lewis et al. 

2012). It is of interest to determine if further reductions in tests can be obtained by 

taking advantage of this risk factor information. We will show later that this is the case, 

which in turn leads to lower screening costs.  

An outline of our paper is as follows. In Section 3.2, we derive the expected number 

of tests and measures of classification accuracy for hierarchical group testing. Using 

these derivations, we develop new proposals that reduce the number of tests needed to 

decode positive from negative individuals within positive testing groups. In Section 3.3, 

we compare our proposals through the use of beta distributions. In Section 3.4, we apply 

our procedures to chlamydia and gonorrhea screening data from the IPP. Finally, in 

Section 3.5, we summarize our work and discuss future extensions.  

3.2 Hierarchical group testing 

3.2.1 Expected number of tests 

Consider a group of I individuals that are to be screened for an infectious disease using 

group testing. Define Gsj as a binary random variable denoting the test status for a 

group (or subgroup) j at the sth stage, where a 0 denotes a negative test result and a 1 

denotes a positive test result. For example, G11 denotes the initial group’s test outcome. 

The number of individuals screened within the group corresponding to Gsj is defined as 

Isj, where I11 ºI. If Gsj = 0, all individuals within the corresponding group are declared 

negative. If Gsj = 1, individuals within the corresponding group are divided into msj 
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subgroups for the next stage of testing. Define cs as the total possible subgroups tested 

at stage s, where c1 = 1 and 1
1,1

sc
s s jjc m-

-== å  for s = 2, …, S. 

To help explain this notation, consider the use of three-stage hierarchical group 

testing implemented by Pilcher et al. (2005) to screen blood donations. Specimens from 

blood donations were placed into groups of size I = 90. If G11 = 0, all individuals are 

diagnosed as negatives. If G11 = 1, the initial group is divided into m11 = 9 subgroups of 

size I21 =  = I29 = 10 for stage 2 testing. For any of the subgroups at stage 2 that test 

negative, i.e., G2j= 0, these corresponding individuals are declared negative. If G2j = 1 

for a particular subgroup, it is divided into m2j = 10 subgroups of size one. Notice that 

the total number of possible subgroups tested at stage 3 is c3 = 90 because individual 

testing would occur. We provide additional examples of more complicated testing 

protocols in Appendix E.  

The expected number of tests for the group of I individuals is 

1

{( ): 1}1 1
( ) 1 { 1}

s

sj

cS

sj s j
s j Gs j

E T m P G
-

¢ ¢
¢ ¢ == =

æ ö÷ç= + = ÷å å ç ÷÷çè ø
      (3.1) 

over S stages. We see that E(T) depends on the number of subgroups, subgroup sizes, 

and probabilities of groups testing positive. The probability expression within Equation 

(3.1) is a joint probability representing a succession of groups testing positive up to and 

including 1sjG = . For example, to find E(T) for the Pilcher et al. (2005) application, 

one probability that would be needed is   

21

11 21
{( ): 1}

{ 1} ( 1 1)s j
s j G

P G P G G¢ ¢
¢ ¢ =

æ ö÷ç = = = Ç =÷ç ÷çè ø
  

when s = 2 and j = 1.  

To find the general probability expression within Equation (3.1), we need to 

reexpress it as a function of the true group statuses sjG  to account for testing error that 
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can occur during screening. Define ( 1 | 1)e sj sjS P G G= = = and ( 0 | 0)p sj sjS P G G= = =  

as the sensitivity and specificity, respectively, of the assay. The joint probability is then 
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   (3.2) 

where pi is the probability that individual i is truly positive, sji BÎ is understood to 

mean those individuals who belong to the jth ordered group at the sth stage, and sji BÎ  

denotes the set of individuals within the parent group of sjB  excluding those in sjB  

itself. Equation (3.2) is written the same way as the expected number of tests formulas 

given in Black et al. (2012), which examined the special case of hierarchical group 

testing where positive groups are halved. This equivalence is simply due to the 

generality of the sjB  and sjB  notation, and the derivation of E(T) is the same. We can 

now use Equation (3.2) in Equation (3.1) to fully define E(T). 

3.2.2 Optimal retesting configurations 

For infectious disease screening settings, we want the number of tests to be as small as 

possible while also minimizing the number of stages. As a result, costs generally will be 

as low as possible and testing will be completed in a timely manner. Before an 

application of group testing begins, we will not necessarily know the best retesting 

configuration (i.e., group sizes, members of each group, …) for positive testing groups. 

However, we can examine the expected number of tests among potential configurations 

before screening in order to choose one that is “optimal”; i.e., choose the procedure that 

minimizes the expected number of tests.  

To find the best retesting configuration, we first order individuals by their 

probability of positivity within an initial group that tests positive.  This helps to isolate 
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those individuals with small and large probabilities while also lowering the number of 

possible configurations that need to be examined (to be discussed more shortly). Define 

p(i) for i = 1, …, I as these ordered individual probabilities, where p(i)£p(i+1). Whenever a 

group tests positive, we assume that individuals are put into groups successively by this 

ordering. For example, a group of size I = 6 could be divided into m11 = 3 groups of size 

I21 = 3, I22 = 2, and I23 = 1. This retesting configuration will contain the corresponding 

individuals with the following probabilities: subgroup #1 includes p(1), p(2), p(3), subgroup 

#2 includes p(4), p(5), and subgroup #3 includes p(6). Ordering in this manner is intuitive 

because it allows larger (smaller) subgroups to be formed among the low-probability 

(high-probability) individuals, which in turn leads to reductions in the number of tests 

needed for decoding. We define the optimal retesting configuration (ORC) as the 

configuration which minimizes E(T) when the ordered individuals are successively put 

into subgroups of this form.  

3.2.3 All possible configurations 

The most direct approach to find the ORC is to calculate E(T) for all possible 

configurations. For a three-stage procedure, it is easy to see that the number of 

configurations is the combination 1 1I C-  when two subgroups are formed at stage 2, 

1 2I C-  when three subgroups are formed at stage 2, and so on. In general, there are 

11
10 2II

I ii C --
-= =å  configurations for a three-stage procedure. For example, for an initial 

group of size I = 4, this leads to 24-1 = 8 possible configurations of subgroups at stage 2 

with sizes: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2] or [1,1,1,1], where we use [⋅] to 

denote each possible subgroup configuration of particular sizes. If needed, a third stage 

for positive testing subgroups of size two or more leads to individual testing. Note that 

this enumeration contains configurations that would not typically be implemented, such 

as [4] (retest the entire group again), and those that would not result in a stage 3, such 
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Figure H.3. Accuracy measures when p = 0.15 and Se = Sp = 0.95.

a  0, S = 3

a  0, S = 4

a = 0.1,  S = 3 a  �’ , S = 3
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Appendix I: R function documentation 

Vector of probabilities produced from a beta distribution. 

Description 

Produces a vector of expected ordered statistics for a random sample of a specified size from a 

beta distribution  

Usage 
 
beta.dist(p, alpha = 1, beta = NULL, grp.sz = 10, simul = FALSE,
 rel.tol = ifelse(alpha < 1, .Machine$double.eps^0.1, 
 .Machine$double.eps^0.25),  plot = FALSE) 

Arguments 

p a probability value; if the value is between 0 and 1, it is used as mean of the beta 

random variable  

alpha value for alpha in the beta distribution. If alpha = “hom” or “inf”, a homogeneous 

vector of probabilities is produced. If alpha = 0, the Bernoulli distribution is used. 

beta if p = NULL or not a value between 0 and 1, b is the beta value for the beta distribution 

grp.sz number of probabilities to produce 

simul finds the expected order statistics through simulation instead of using the PDFs 

rel.tol used in integrate() function; may need to change for different values of alpha 

plot returns a plot of the associated beta distribution with expected ordered values 

indicated, only works for the beta distributions 

Details 

Produces a vector of probabilities  

Value 

p.vec vector of probabilities 

Author(s) 
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Michael Black, Christopher R Bilder 

Examples 
 
p1 <- beta.dist(p = 0.05, alpha = 1, grp.sz = 16, plot = TRUE)  
  round(p1, 4)  
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Descriptive information for the halving group testing procedure up to 5 stages. 

Description 

Obtains PMF for the possible number of tests to identify all positive individuals in a group using 

the “halving” group testing procedure. Returns the PMF, expected value, and variance.  

Usage 
 
halving(p, se = 1, sp = 1, stages = 2, order.p = TRUE) 

Arguments 

p a vector of individual probabilities 

se, sp sensitivity and specificity, respectively  

stages number of stages for hierarchical group testing 

order.p default is TRUE indicating the values in p are sorted; FALSE leaves the individual 

probabilities in their given order 

Details 

The PMF is produced for a vector of individual probabilities.  

Value 

PMF data frame with number of tests and associated probabilities 

ET expected number of tests 

VT variance of number of tests 

Author(s) 

Michael Black, Christopher R Bilder 

Examples 
 
ex1 <- halving(p = rep(x = 0.05, times = 16), stages = 3) 
ex1 
ex2 <- halving(p = rep(x = 0.05, times = 16), stages = 3, se = 0.95,  

  sp = 1) 
p1 <- beta.dist(p = 0.05, a = 1, b = NULL, grp.sz = 16) 
ex3 <- halving(p = p1, stages = 3, se = 0.95, sp = 1, order.p = TRUE) 
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data.frame(t = ex1$pmf[,1], ex1 = ex1$pmf[,2], ex2 = ex2$pmf[,2], ex3 

  = ex3$pmf[,2], row.names = NULL)  #PMF 
data.frame(ex1 = ex1$et, ex2 = ex2$et, ex3 = ex3$et) #E(T) 
data.frame(ex1 = ex1$vt, ex2 = ex2$vt, ex3 = ex3$vt) #Var(T) 
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Diagnostic information for generalized hierarchical group testing procedure. 

Description 

Returns diagnostic information for a given vector of probabilities for 2, 3, or 4 stages. 

Usage 
 
hierarchical.desc(p, se = 1, sp = 1, I2 = NULL, I3 = NULL, order.p =  
  TRUE) 

Arguments 

p a vector of individual probabilities 

se, sp sensitivity and specificity, respectively 

stages number of stages for hierarchical group testing 

I2 vector of stage 2 subgroup sizes 

I3 vector of stage 3 subgroup sizes 

order.p default is TRUE indicating informative retesting; FALSE leaves the individual 

probabilities in their given order 

Details 

Produces the diagnostic information. Pooling diagnostic information is for the given group. If the 

group is part of a larger retesting process, individual diagnostic values should be used for the 

entire process to calculate the pooling diagnostic values.  

Value 

ET expected number of tests 

group.size I2, I3 vectors with number of individuals in each subgroup 

m1, m2, m3 vectors with number of subgroups a group splits into 

individual.testerror table of individual pooled accuracy measures 

group.testerror vector of pooled accuracy measures for the group 
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Author(s) 

Michael Black, Christopher R Bilder 

Examples 
 
p1 <- beta.dist(p = 0.05, a = 1, b = NULL, grp.sz = 16) 
ex4 <- hierarchical.desc(p = p1, se = 0.95, sp = 1, I2 = c(8, 8), I3 
 = NULL) 
ex4  
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Optimal or candidate retesting configuration. 

Description 

Finds the optimal configuration (ORC) or a possible optimal configuration (CRC) for retesting over 

2, 3 or 4 stages  

Usage 
 
get.CRC(p, se = 1, sp = 1, stages = 2, order.p = TRUE, everycase =  
  FALSE, init.config = “hom”) 

Arguments 

P a vector of individual probabilities 

se, sp sensitivity and specificity, respectively 

stages number of stages for hierarchical group testing 

order.p default is TRUE indicating informative retesting; FALSE leaves the individual 

probabilities in their given order 

everycase default is FALSE indicating the CRC is found; TRUE finds ORC, warning of 

possible excessive time. 

init.config default is “hom” which uses an initial configuration with subgroups of 

approximately equal sizes;  “ord” uses an initial configuration with 1 individual in 

each subgroup except the first; “both” uses both “hom” and “ord” methods 

Details 

ORC can require an excessive amount of running time for large groups (>18 for three stages, >13 

for four stages). If a group has fairly homogeneous probabilities then init.config = “hom” 

should be used. If a group has very heterogeneous probabilities init.config = “ord” should 

be used. 

Value 
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ORC Returned if everycase = TRUE 

CRC Returned if everycase = FALSE 

Desc Provides diagnostic values from hierarchical.desc

Author(s) 

Michael Black, Christopher R Bilder 

Examples 
 
p1 <- beta.dist(p = 0.05, a = 1, b = NULL, grp.sz = 16) 
ex5 <- get.CRC(p = p1, se = .95,sp = 1, stages = 3) 
ex5 

 

 

 


