# University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Historical Research Bulletins of the Nebraska Agricultural Experiment Station

Extension

1-1983

# Evaluation of Bromegrass Introductions for Forage Yield and Quality

Kenneth P. Vogel University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/ardhistrb Part of the <u>Agriculture Commons</u>, <u>Agronomy and Crop Sciences Commons</u>, and the <u>Plant</u> <u>Breeding and Genetics Commons</u>

Vogel, Kenneth P., "Evaluation of Bromegrass Introductions for Forage Yield and Quality" (1983). *Historical Research Bulletins of the Nebraska Agricultural Experiment Station*. 10. http://digitalcommons.unl.edu/ardhistrb/10

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Research Bulletins of the Nebraska Agricultural Experiment Station by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

### esearch Bulletin 300

## January 1983

Evaluation of Bromegrass Introductions for Forage Yield and Quality

UNIV. OF NEBRASKA LINCOLN LIBRARIES

MAY 17 1983

by STACKS Kenneth P. Vogel



The Agricultural Experiment Station Institute of Agriculture and Natural Resources University of Nebraska-Lincoln Irvin T. Omtvedt, Director





#### **CONTENTS**

| Summary                | 1                          |
|------------------------|----------------------------|
| Introduction           | 2                          |
| Materials and Methods  |                            |
| Results and Discussion |                            |
| Smooth Bromegrass      | 5                          |
| Meadow Bromegrass      | 11                         |
| Literature Cited       | IBC                        |
|                        | Issued January 1983, 1,200 |

#### SUMMARY

Smooth bromegrass (*Bromus inermis* Leyss.) is one of the most important cool-season forage grasses in the United States and Canada. Further improvement in this grass by breeding depends on identifying sources of genetic variability for forage yield and quality. Since smooth bromegrass is an introduced species, foreign introductions are an obvious source of genetic variability.

This study evaluated 49 smooth bromegrass introductions for forage yield and quality as measured by *in vitro* dry matter digestibility (IVDMD) and protein content and compared them with the cultivar 'Lincoln'. Evaluated in a separate study and reported here were eight meadow bromegrass (*Bromus biebersteinii* Roem. and Schult.) introductions.

There were large differences among the smooth bromegrass introductions for all traits evaluated including forage yield, panicle height, canopy height, seed production rating, IVDMD, and protein content. Forage yield was negatively correlated with IVDMD and crude protein content in the smooth bromegrasses. Several of the smooth bromegrass introductions, including PI 315374, 315378, 315398, and 325237, produced forage yields similar to those of Lincoln in 1977 and 1978 and had first cut forage IVDMD values three percentage units higher than Lincoln in 1978 and should be useful germplasm in breeding for both high yield and high IVDMD. Forage yields of the meadow bromegrass introductions were only about 50% of those of Lincoln and in general were not as promising for use in a breeding program as the smooth bromegrass introductions.

1

## Evaluation of Bromegrass Introductions For Forage Yield and Quality

Kennth P. Vogel<sup>1/</sup>

#### INTRODUCTION

Smooth bromegrass, a productive cross-pollinated grass, is native to parts of Europe and Asia and was introduced into the U.S. in 1884 (Newell, 1973). Since its introduction, about 20 smooth bromegrass cultivars have been developed and released.

The first cultivars released, such as 'Achenbach' and 'Lincoln', were direct seed increases from highly productive bromegrass fields that developed via natural selection from early introductions. Subsequent cultivars were developed almost exclusively by selection within the older cultivars (Hanson, 1972). The use of recent plant introductions in smooth bromegrass breeding programs in North America has been minimal since only 'Manchar' has been developed from a specific introduction or has a specific introduction in its pedigree (Hanson, 1972). The potential gain that can be made in a plant breeding program depends upon the available genetic variability for economic traits including the variability in plant introductions. I believe the use of smooth bromegrass plant introductions has been neglected in breeding programs. One of my objectives has been to systematically screen introductions to identify accessions that can be used to improve the forage yield and quality of smooth bromegrass.

The limited quantity of seed collected by plant explorers is usually increased at plant introduction stations before being made available to plant breeders for evaluation. The number of introductions being increased at any one time precludes increasing the seed lots in isolation. Seed of crosspollinated grasses is increased in the same nursery under open-pollination. Seed lots increased by plant introduction stations thus do not represent the original introductions but represent the combining ability of the original introductions with other accessions that were flowering at the same time. The limited amount of seed available to breeders from plant introduction stations necessitates evaluating the accessions in space-planted plots rather than in solid-seeded sward plots.

<sup>1</sup>/Research Agronomist, ARS/USDA, University of Nebraska, Lincoln, NE. Contribution of the Agricultural Research Service, U.S. Department of Agriculture and the Department of Agronomy, University of Nebraska.

Two of the most important agronomic traits of smooth bromegrass are forage yield and forage quality as measured by *in vitro* dry matter digestibility (IVDMD). Lebsock and Kalton (1954) demonstrated that spaceplanted plots of smooth bromegrass provide a good indication of their productivity in swards, and Ugherughe *et al.* (1980) showed that space-planted plots can be used to accurately access the differences among smooth bromegrass genotypes for IVDMD and are reflective of IVDMD values obtained in swards. Forage yield and IVDMD are both heritable traits in smooth bromegrass and research on their inheritance was recently summarized by Walton (1980).

This study evaluated 49 smooth bromegrass introductions for forage yield and quality as measured by IVDMD and percent protein. Also evaluated in a separate study and reported here were eight meadow bromegrass (*Bromus biebersteinii* Roem. and Schult.) introductions. Only one cultivar of meadow bromegrass, 'Regar', has been released and it is grown on a limited scale. Meadow bromegrass is similar to smooth bromegrass in adaptation and appearance except its leaves are dominately basal and mildly pubescent (Foster *et al.*, 1966).

#### **MATERIALS AND METHODS**

The seed lots of the introductions used in these studies were obtained from the USDA Regional Plant Introduction Station at Ames, Iowa (Skrdla *et al.*, 1976). Lincoln smooth bromegrass was used as a check in both the smooth bromegrass and the meadow bromegrass experiments. Seeds of the introductions and Lincoln were started in a greenhouse in February 1976 and transplanted into a nursery at the Mead Field Laboratory, Mead, Nebr., on 2, 3 June 1976. The smooth bromegrass and meadow bromegrass introductions were in separate areas of same nursery.

The experimental design for both experiments was a randomized complete block with two replicates. Plots were single rows of 20 plants with plants and rows spaced 1.1 m apart. In the smooth bromegrass experiment, the check cultivar Lincoln was located on the borders and in every eleventh row. Four of the smooth bromegrass introductions, PI 251681, 251682, 255870, and 255871, were unreplicated because of poor germination in the greenhouse. In the meadow bromegrass experiment, Lincoln was included once in every replicate and was used as border plants. The nursery site was a Sharpsburg silty clay loam (Typic Argiudoll).

Herbicides, hand weeding and cultivation were used for weed control and both experiments were essentially weed-free throughout the study period. The herbicides used were DCPA (dimethyl tetrachloroterephthalate) and 2,4-D[2,4-D-dichlorophenoxy) acetic acid]. Dates and rates for fertilizer applications were as follows: 1 September 1976, 112 kg/ha N; 28 September

3

1976, 17 kg/ha P; 1 April 1977, 123 kg/ha N and 13 kg/ha P; 24 August 1977, 56 kg/ha N; 26 April 1978, 70 kg/ha N. The nursery was mowed in the early spring of each year to remove aftermath from the previous year. The nursery was also roto-tilled with a heavy duty rototiller the spring of 1977 and 1978 to cut all plants back to a uniform size of  $0.5 \times 0.5$  m or  $0.25m^2$ . Individual plants were essentially microplots.

Data were not collected during the year of establishment but it was observed that many of the accessions flowered in the establishment year. In 1977, heading date was scored on most individual plants in replicate 1 of the smooth bromegrass experiment and in 1978 on all plots in both experiments on a plot basis. Heading date was the day when two or more panicles per plant were emerging from the boot. The plants were scored for heading date on 12 and 24 May 1977 and on 26 May 1978. Introductions were scored as being earlier or later in maturity than Lincoln, which headed on 12 May 1977 and on 25 May 1978.

In 1977, panicle and canopy height were measured on each plant in both experiments just before harvest. Panicle and canopy height was the distance from the soil surface to an imaginary plane perpendicular to the top of the panicle or canopy, respectively. Plants were also scored for seed production based on panicle size and number, using a 1 to 5 scale with 1 = excellent and 5 = very poor. Lincoln was used as the standard for comparison and was rated 3 for seed production. In 1978, panicle and canopy height and the seed production rating were determined on a plot basis.

In 1977, forage yields of every plant in both studies were harvested on 6, 7, and 8 July with a flail type plot harvester. The cutting height for this and all other cuttings was 10 cm. Two plants per plot were sampled for dry matter percentage and the mean dry matter percentage of these two plants was used to calculate the dry weight yield for that plot.

In 1978, the first replicate on the smooth bromegrass experiment was harvested on 27 June and the second replicate on 5 July as was the meadow bromegrass experiment. The delay in harvesting was due to mechanical problems with the harvester. In 1978, forage was harvested on a plot basis. The total yield of a plot was divided by the number of surviving plants in a plot to obtain the mean yield per plant. Most plots had 100% survival. For the first cut in 1978, forage from each plot was subsampled using 4 to 6 grab samples per plot. The grab samples from a plot were bulked to form a plot sample that was used to determine dry matter percentage by oven drying, IVDMD, and crude protein content.

In both 1977 and 1978, the foliage of all plants for the first cut was still green at harvest and the seed was approaching maturity. In 1978, regrowth (cut 2) was harvested on 24 and 26 October using the same procedures as for the first cut. However, for the second cut only 12 plots were sampled for dry

matter content in the smooth bromegrass experiment and the mean dry matter content of these plots was used to calculate dry weight yields. In the meadow bromegrass experiment, five of the higher yielding introductions and the Lincoln check were sampled for dry matter content and the samples were also used to determine IVDMD and crude protein content. The Tilley and Terry procedure (1963) was used to determine IVDMD and the Kjeldahl procedure (A.O.A.C., 1960) was used to determine crude protein content.

Data for both the smooth and meadow bromegrass experiments were analyzed on plot mean basis, i.e., mean value/plant for a plot. This was done to eliminate the effects of missing plants within a plot. The mean of all Lincoln plots within a replicate was used as the value of Lincoln for that replicate in the statistical analyses. The unreplicated introductions were included in the analyses for a single year and the data were analyzed as an unbalanced design. The traits for which two years' data were available; namely, cut 1 forage yield, dry matter %, panicle height, canopy height, and seed production rating, were analyzed over years as a split-plot in time. Unreplicated introductions were excluded from the analyses over years. All statistical analyses were conducted using Statistical Analyses System software (Helwig and Council, 1979).

#### **RESULTS AND DISCUSSION**

#### **Smooth Bromegrass**

In the analyses over years, there were significant differences among the smooth bromegrass introductions for all traits for which two years data were available (Table 1). There were also significant differences among the introductions for all the traits evaluated in each individual year of the study (Table 2). Year x strain (introduction) interaction effects were not significant for cut 1 forage yield, dry matter %, and canopy height, indicating that the introductions performed consistently for these traits in the two years of the study. Year x strain interaction effects were significant for panicle height and seed production rating. The 1978 data for panicle and canopy height and seed production rating are not as accurate as the 1977 data for these traits since they were determined on a plot basis instead of on an individual plant basis. The difference in accuracy between the 1977 and 1978 data may have contributed to the magnitude of the year x strain interaction effect for these traits. Only the 1977 panicle and canopy height and seed production rating are producted to the year x strain interaction effect for these traits. Only the 1977 panicle and canopy height and seed production rating are presented (Table 2).

The check cultivar Lincoln is one of the most widely grown bromegrass cultivars in the United States, yet several of the accessions yielded as high or higher than Lincoln in both 1977 and 1978 (Table 2). None of the introductions were significantly higher in forage yield than Lincoln, however. In-

Table 1. Analyses of variance over years for cut 1 forage yield, dry matter %, panicle and canopy height, and seed production rating for the *B. inermis* introductions evaluated at Mead, Nebr., in 1977 and 1978.

|                | Degrees |         |             |         |        |                          |
|----------------|---------|---------|-------------|---------|--------|--------------------------|
|                | of      | ť       | Dry         | He      | ight   | Seed                     |
| Source         | freedom | Yield   | matter      | Panicle | Canopy | production <sup>a/</sup> |
|                |         | g/plant | 0% <u>0</u> | c       | m      | •                        |
| Replicates (R) | 1       | 5,603   | 0.9         | 39      | 152    | 0.09                     |
| Strains (S)    | 44      | 6,696** | 24.8**      | 392**   | 171**  | 0.37**                   |
| S X R          | 44      | 1,966   | 7.7         | 36      | 36     | 0.14                     |
| Year (Y)       | 1       | 119,844 | 1,101.0     | 8,940   | 13,909 | 1.15                     |
| YXS            | 44      | 3,134   | 10.6        | 78**    | 23     | 0.26**                   |
| YXR            | 1       | 37,684  | 63.4        | 12      | 196    | 0.55                     |
| Error          | 44      | 2,173   | 11.2        | 35      | 30     | 0.10                     |

\*\* indicates significant at the 0.01 level of probability for strains and strain x year interaction effects.

a/ Rating scale: 1 = excellent, 5 = very poor.

dividual plants were harvested for the first cut in 1977 to get an estimate of the within accession variability for forage yield. There was considerable variation for forage yield within accessions as indicated by the 1977 cut 1 range values. Standard deviation also provide an estimate of variation. The overall individual plant standard deviation for first cut forage yield per plant for the smooth bromegrass experiment was s = 117 g. The standard deviation for the Lincoln bromegrass check plants was s = 102 g, while the standard deviation range for the introductions was s = 72 to 139 g. These results indicate that there is considerable variation both between and within accessions for forage yield. Narrow-sense heritability estimates for total annual yield for smooth bromegrass of H = 0.25 to 0.37 have been reported (Walton, 1980). With these heritabilities and with the variation that exists among and within these bromegrass accessions it should be possible to improve the yield potential of smooth bromegrass by using the better plants of the higher-yielding accessions in a breeding program.

There was considerable variation among accessions for panicle and canopy height (Table 2). Lincoln was one of the tallest cultivars in the nursery for both traits. In addition to differences among introductions for panicle and canopy height there were also large differences for the height of the panicle above the canopy, i.e., panicle height minus canopy height. For Lincoln the height of the panicle above the canopy was 45 cm while for some of

# Table 2. Means and other statistics for the traits measured or scored for the B. inermis introductions evaluated at Mead, Nebr., in 1977 and 1978.

|                      |              |         |            | 19      | 77     |      |       | 1978                  |                    |           |       |                     |                    |          |                    |  |
|----------------------|--------------|---------|------------|---------|--------|------|-------|-----------------------|--------------------|-----------|-------|---------------------|--------------------|----------|--------------------|--|
|                      |              | 1978    |            |         |        | H    | eight | Seed                  |                    |           |       | Dry                 |                    |          |                    |  |
|                      |              | Yie     | eld (dry n | natter) | Dry    | Pan- | Can-  | pro-                  | Yield (dry weight) |           |       | matter <sup>d</sup> | IVDMD <sup>d</sup> | Proteind | Matu-              |  |
| Accession            | Origin       | Mean    | Mean       | Range   | matter | icle | ору   | duction <sup>c/</sup> | Total              | Cut 1     | Cut 2 | Cut 1               | Cut 1              | Cut 1    | rity <sup>e/</sup> |  |
| PI                   |              | g/plant |            |         | . %    |      | cm    | -                     |                    | -g/plant- |       |                     | %                  |          |                    |  |
| 172393               | Turkey       | 334     | 302        | 54-538  | 43     | 82   | 45    | 3.4                   | 683                | 366       | 317   | 36                  | 51.6               | 13.4     | L                  |  |
| 173645               | ,, ,,        | 372     | 435        | 101-900 | 45     | 93   | 52    | 3.2                   | 627                | 315       | 312   | 36                  | 51.8               | 14.2     | L                  |  |
| 173647               | ,, ,,        | 351     | 340        | 124-529 | 45     | 89   | 49    | 3.6                   | 620                | 361       | 260   | 33                  | 48.2               | 12.9     | L                  |  |
| 173648               | » <b>»</b> » | 342     | 327        | 84-569  | 42     | 89   | 49    | 3.4                   | 633                | 357       | 276   | 36                  | 50.8               | 13.7     | L                  |  |
| 178843               | ,, ,,        | 319     | 324        | 66-726  | 44     | 84   | 48    | 3.3                   | 605                | 313       | 292   | 36                  | 43.4               | 13.7     | S-L                |  |
| 204432 <sup>a/</sup> | ,, ,,        | 355     | 381        | 104-644 | 46     | 84   | 46    | 3.2                   | 506                | 329       | 177   | 36                  | 45.1               | 12.8     | L                  |  |
| 205264 <sup>b/</sup> | ,, ,,        |         |            |         |        |      |       |                       |                    |           |       |                     |                    |          | - 1                |  |
| 251681 <sup>b/</sup> | USSR         | 344     | 362        | 215-564 | 41     | 67   | 44    | 3.7                   | 579                | 327       | 252   | 32                  | 44.0               | 14.6     | S                  |  |
| 251682 <sup>b/</sup> | ,, ,,        | 276     | 283        | 124-437 | 38     | 65   | 41    | 3.6                   | 519                | 270       | 249   | 29                  | 48.0               | 15.9     | S                  |  |
| 255870 <sup>b/</sup> | Poland       | 261     | 209        | 111-361 | 37     | 62   | 43    | 3.6                   | 509                | 314       | 195   | 33                  | 47.7               | 14.0     | S-L                |  |
| 255871 <sup>b/</sup> | ,, ,,        | 301     | 293        | 70-470  | 40     | 64   | 41    | 3.8                   | 545                | 310       | 235   | 33                  | 46.5               | 13.6     | S                  |  |
| 267054               | ,, ,,        | 331     | 341        | 132-528 | 44     | 65   | 43    | 3.6                   | 590                | 321       | 269   | 34                  | 46.8               | 15.0     | S-L                |  |
| 311020               | Romania      | 341     | 328        | 130-580 | 40     | 86   | 48    | 3.1                   | 657                | 353       | 304   | 36                  | 44.6               | 14.2     | S-L                |  |
| 311022               | ,, ,,        | 366     | 388        | 96-540  | 48     | 94   | 49    | 3.3                   | 690                | 344       | 346   | 36                  | 45.0               | 12.5     | S-L                |  |
| 314071               | USSR         | 317     | 296        | 113-512 | 41     | 92   | 53    | 3.1                   | 660                | 338       | 322   | 39                  | 49.9               | 13.8     | S-L                |  |
| 315374               | ,, ,,        | 425     | 447        | 161-713 | 46     | 95   | 58    | 3.1                   | 763                | 403       | 360   | 39                  | 48.0               | 12.6     | S-L                |  |
| 315375               | ,, ,,        | 387     | 361        | 64-677  | 43     | 90   | 51    | 3.1                   | 701                | 399       | 302   | 36                  | 47.3               | 13.4     | S                  |  |
| 315376               | ,, ,,        | 401     | 397        | 94-623  | 47     | 94   | 56    | 3.3                   | 723                | 406       | 317   | 38                  | 45.6               | 12.8     | S-L                |  |
| 315377               | ,, ,,        | 448     | 433        | 64-688  | 43     | 94   | 52    | 3.1                   | 864                | 462       | 402   | 39                  | 45.8               | 11.4     | S-L                |  |
| 315378               | ,, ,,        | 398     | 332        | 29-585  | 39     | 102  | 61    | 3.2                   | 906                | 464       | 442   | 35                  | 48.0               | 13.6     | L                  |  |

V

|           |      |                    | 1977- |        |         | 19     | 77   |                    |                       |       |                                                             |       | 1978  |       |       |                    |
|-----------|------|--------------------|-------|--------|---------|--------|------|--------------------|-----------------------|-------|-------------------------------------------------------------|-------|-------|-------|-------|--------------------|
|           |      |                    | 1978  |        |         |        | H    | eight              | Seed                  |       |                                                             |       | Dry   |       |       |                    |
|           |      | Yield (dry matter) |       | Dry    | Pan-    | Can-   | pro- | Yield (dry weight) |                       |       | matter <sup>d</sup> IVDMD <sup>d</sup> Protein <sup>d</sup> |       |       | Matu- |       |                    |
| Accession | Orig | in                 | Mean  | Mean   | Range   | matter | icle | ору                | duction <sup>C/</sup> | Total | Cut 1                                                       | Cut 2 | Cut 1 | Cut 1 | Cut 1 | rity <sup>e/</sup> |
| PI        |      |                    |       | g/plan | t       | •70    | (    | cm                 | -                     |       | -g/plant-                                                   |       |       | %     |       |                    |
| 315379    | ,,   | ,,                 | 396   | 378    | 194-591 | 43     | 88   | 51                 | 3.2                   | 778   | 414                                                         | 364   | 36    | 46.2  | 14.0  | S                  |
| 315381    | ,,   | ,,                 | 379   | 347    | 104-618 | 38     | 99   | 55                 | 3.1                   | 798   | 412                                                         | 386   | 36    | 46.0  | 13.8  | S-L                |
| 315382    | ,,   | ,,                 | 370   | 326    | 121-484 | 44     | 94   | 56                 | 3.3                   | 761   | 413                                                         | 348   | 38    | 46.7  | 13.0  | S-L                |
| 315383    | ,,   | ,,                 | 364   | 295    | 82-461  | 41     | 98   | 58                 | 3.2                   | 766   | 398                                                         | 368   | 36    | 45.8  | 12.7  | S                  |
| 315384    | ,,   | ,,                 | 364   | 307    | 118-538 | 43     | 100  | 59                 | 3.2                   | 824   | 421                                                         | 403   | 38    | 47.6  | 13.5  | S-L                |
| 315385    | ,,   | ,,                 | 301   | 282    | 56-439  | 45     | 71   | 35                 | 3.4                   | 496   | 320                                                         | 176   | 37    | 45.4  | 13.6  | L                  |
| 315398    | ,,   | ,,                 | 383   | 296    | 99-462  | 33     | 98   | 55                 | 3.4                   | 845   | 470                                                         | 375   | 38    | 48.6  | 12.2  | S-L                |
| 316172    | Aus  | stralia            | 339   | 310    | 144-459 | 36     | 70   | 44                 | 3.6                   | 644   | 368                                                         | 276   | 35    | 45.1  | 13.2  | S-L                |
| 324305    | USS  | SR                 | 344   | 291    | 92-492  | 41     | 86   | 50                 | 3.4                   | 702   | 397                                                         | 305   | 36    | 44.5  | 12.7  | S-L                |
| 325227    | ,,   | ,,                 | 408   | 396    | 209-671 | 44     | 99   | 52                 | 3.1                   | 768   | 419                                                         | 349   | 40    | 45.6  | 12.8  | S-L                |
| 325230    | ,,   | ,,                 | 417   | 380    | 132-792 | 48     | 102  | 65                 | 3.1                   | 816   | 454                                                         | 363   | 48    | 46.6  | 13.0  | S-L                |
| 325237    | ,,   | ,,                 | 402   | 352    | 104-678 | 46     | 102  | 61                 | 3.1                   | 813   | 454                                                         | 359   | 38    | 48.6  | 12.8  | S-L                |
| 326258    | ,,   | ,,                 | 351   | 310    | 68-536  | 39     | 73   | 48                 | 3.3                   | 693   | 391                                                         | 302   | 34    | 42.4  | 12.6  | S-L                |
| 326259    | ,,   | ,,                 | 382   | 347    | 50-520  | 40     | 66   | 42                 | 3.5                   | 667   | 417                                                         | 250   | 35    | 42.0  | 13.1  | S                  |
| 326260    | ,,   | ,,                 | 307   | 225    | 51-425  | 34     | 64   | 43                 | 3.8                   | 641   | 348                                                         | 293   | 33    | 43.3  | 15.4  | S                  |
| 326262    | ,,   | ,,                 | 291   | 222    | 57-475  | 38     | 48   | 35                 | 4.1                   | 543   | 361                                                         | 182   | 33    | 44.8  | 16.9  | S-L                |
| 326263    | ,,   | ,,                 | 306   | 257    | 46-500  | 37     | 62   | 43                 | 3.9                   | 572   | 354                                                         | 218   | 33    | 43.7  | 14.6  | S                  |
| 326264    | ,,   | ,,                 | 388   | 322    | 117-614 | 39     | 74   | 45                 | 3.5                   | 668   | 420                                                         | 248   | 34    | 40.8  | 13.6  | E-S                |
| 326265    | ,,   | ,,                 | 364   | 324    | 56-546  | 37     | 69   | 45                 | 3.3                   | 694   | 404                                                         | 290   | 32    | 42.6  | 13.4  | S                  |
| 340068    | Tur  | key 🕓              | 399   | 308    | 45-641  | 45     | 93   | 53                 | 3.2                   | 786   | 440                                                         | 346   | 38    | 44.3  | 13.8  | S                  |

 

 Table 2. Means and other statistics for the traits measured or scored for the B. inermis introductions evaluated at Mead, Nebr., in 1977 and 1978 (continued).

ω

|            |         |      | 1977-              |        |         | 19     | 77     |       |                       |       |           |                                                             | 1978  |       |       |                    |
|------------|---------|------|--------------------|--------|---------|--------|--------|-------|-----------------------|-------|-----------|-------------------------------------------------------------|-------|-------|-------|--------------------|
|            |         |      | 1978               |        |         |        | He     | ight  | Seed                  |       |           |                                                             | Dry   |       |       |                    |
|            |         |      | Yield (dry matter) |        | Dry     | Pan-   | Can-   | pro-  | Yield (dry weight)    |       |           | matter <sup>d</sup> IVDMD <sup>d</sup> Protein <sup>6</sup> |       |       | Matu- |                    |
| Accession  | Ori     | gin  | Mean               | Mean   | Range   | matter | icle   | ору   | duction <sup>c/</sup> | Total | Cut 1     | Cut 2                                                       | Cut 1 | Cut 1 | Cut 1 | rity <sup>e/</sup> |
| PI         |         |      |                    | g/plan | t       | 0%     | C      | m     |                       |       | -g/plant- |                                                             |       | %     |       |                    |
| 340069     | ,,      | ,,   | 407                | 368    | 118-570 | 43     | 92     | 53    | 3.0                   | 776   | 447       | 328                                                         | 39    | 45.3  | 13.7  | S                  |
| 340070     | ,,      | ,,   | 448                | 416    | 196-667 | 46     | 93     | 50    | 3.7                   | 869   | 480       | 389                                                         | 36    | 45.6  | 13.6  | S-L                |
| 345594     | US      | SSR  | 361                | 320    | 104-570 | 38     | -80    | 46    | 3.2                   | 695   | 402       | 293                                                         | 38    | 44.6  | 13.8  | E-L                |
| 345595     | ,,      | ,,   | 393                | 340    | 117-643 | 39     | 68     | 42    | 3.4                   | 760   | 446       | 314                                                         | 36    | 42.7  | 13.4  | E-S                |
| 345596     | ,,      | ,,   | 408                | 361    | 78-624  | 39     | 92     | 58    | 3.2                   | 876   | 455       | 421                                                         | 36    | 46.0  | 12.8  | S-L                |
| 345597     | ,,      | ,,   | 402                | 386    | 184-542 | 35     | 76     | 48    | 3.2                   | 717   | 418       | 299                                                         | 34    | 41.8  | 13.2  | S                  |
| 345598     | ,,      | ,,   | 413                | 397    | 185-663 | 39     | 74     | 50    | 3.4                   | 715   | 428       | 288                                                         | 33    | 42.2  | 14.8  | S                  |
| 369211     | • •     | ,,   | 287                | 260    | 27-540  | 36     | 70     | 42    | 4.0                   | 570   | 314       | 256                                                         | 33    | 44.2  | 14.8  | S-L                |
| 369212     | ,,      | ,,   | 377                | 342    | 178-588 | 42     | 73     | 48    | 3.6                   | 746   | 411       | 335                                                         | 35    | 45.4  | 13.0  | S                  |
| Lincoln    |         |      | 438                | 438    | 88-726  | 44     | 104    | 59    | 3.0                   | 862   | 438       | 424                                                         | 38    | 44.7  | 12.5  | S                  |
| Statistics | :       |      |                    |        |         |        |        |       |                       |       |           |                                                             |       |       |       |                    |
| Nursery    | mean    |      | 371                | 341    | 75-2000 | 42     | 84     | 50    | 3.4                   | 705   | 393       | 312                                                         | 36    | 45.7  | 13.5  |                    |
| F ratio fo | or stra | ains | 3.4**              | 2.4**  |         | 1.7*   | 29.3** | 7.5** | 8.4**                 | 4.1** | 2.6**     | 3.3**                                                       | 2.3** | 2.3** | 4.1** |                    |
| L.S.D(     | 05      |      | 62                 | 93     |         | 8      | 7      | 7     | 0.3                   | 145   | 90        | 99                                                          | 4     | 4.6   | 1.3   |                    |
| C.V. %     |         |      | 13.0               | 13.4   |         | 9.5    | 4.2    | 6.7   | 3.9                   | 10.1  | 11.4      | 15.7                                                        | 5.4   | 5.0   | 4.8   |                    |

 

 Table 2. Means and other statistics for the traits measured or scored for the B. inermis introductions evaluated at Mead, Nebr., in 1977 and 1978.

\*, \*\* indicates significance at the 0.05 and 0.01 levels of probability, respectively.

a/ PI206264 did not survive winter of 1976.

b/ Unreplicated accessions.

c/ Rating scale: 1 = excellent, 5 = very poor.

d/ For the 12 plots sampled for cut 2 in 1978, mean dry matter % = 39.5%, mean IVDMD = 51.8%, and mean protein % = 15.6%.

e' E = earlier than, S = same as, and L = later than Lincoln, respectively.

the shorter introductions such as PI 326260 it was less than 25 cm. Accessions such as PI 326260 consequently had a "bushy" appearance in comparison to Lincoln. There was not apparent relationship between the bushy characteristic and forage quality as measured by IVDMD.

Many of the accessions were similar to Lincoln in seed production scores but several had significantly poorer scores. Most of the high yielding introductions had seed production scores that were not significantly different from the Lincoln score.

There were significant differences among accessions for first cut IVDMD in 1978 (Table 2). IVDMD values were obtained only for the first cut. Ugherughe *et al.* (1980) suggested that selection for improved IVDMD in smooth bromegrass should be restricted to the first cut since this harvest produces the highest yields and there are the largest differences among genotypes for IVDMD at this cut. As a bromegrass plant matures, the IVDMDand protein percentage of the forage decreases.

Most introductions in the nursery headed within a two-week period in both years. Due to differences in maturity, the later maturing introductions would be expected to have higher IVDMD and protein percentages than the earlier maturing accessions. This in general occurred, particularly for IVDMD. However, there was considerable variation within maturity classes

| anu 1976.           |         |              |            |         |        |                          |  |  |  |  |  |  |  |
|---------------------|---------|--------------|------------|---------|--------|--------------------------|--|--|--|--|--|--|--|
|                     | Degrees | Mean squares |            |         |        |                          |  |  |  |  |  |  |  |
|                     | of      |              | Dry        | He      | Seed   |                          |  |  |  |  |  |  |  |
| Source              | freedom | Yield        | matter     | Panicle | Canopy | production <sup>a/</sup> |  |  |  |  |  |  |  |
|                     |         | g/plant      | <b>%</b> 0 | c       | -      |                          |  |  |  |  |  |  |  |
| Replicates (R)      | 1       | 344          | 10.2       | 30      | 35     | 0.04                     |  |  |  |  |  |  |  |
| Strains (S)         | 7       | 25,400**     | 9.8        | 255**   | 389**  | 0.74**                   |  |  |  |  |  |  |  |
| SXR                 | 7       | 806          | 5.4        | 18      | 14     | 0.04                     |  |  |  |  |  |  |  |
| Year (Y)            | 1       | 21,673       | 0.9        | 1,783   | 797    | 0.02                     |  |  |  |  |  |  |  |
| y x s <sup>b/</sup> | 7       | 1,384        | 10.9       | 42      | 34     | 0.03                     |  |  |  |  |  |  |  |
| Y X R               | 1       | 337          | 1.5        | 2       | 8      | 0.04                     |  |  |  |  |  |  |  |
| Frror               | 7       | 656          | 5 1        | 28      | 11     | 0.17                     |  |  |  |  |  |  |  |

# Table 3. Analyses of variance over years for cut 1 forage yield, dry matter %, panicle and canopy height, and seed production rating for the *B. biebersteinii* introductions evaluated at Mead, Nebr., in 1977 and 1978.

\*\* indicates significant at the 0.01 level of probability for strains and strain x year interaction effects.

a/ Rating scale: 1 = excellent, 5 = very poor.

b/ Degrees of freedom for yield and dry matter % was 6.

for these traits indicating that much of the differences in IVDMD and protein could not be attributed solely to maturity. Some of the introductions such as PI 315374, 315378, 315398 and 325237 had yields similar to that of Lincoln but have IVDMD values that are three percentage points higher in IVDMD than Lincoln. These differences are not significant at the 0.05 level of probability but are significant at the 0.10 level (L.S.D. 0.1 = 3.0). In 1978, cut 1 yield was positively correlated with yield for cut 2 (r = 0.25) but was negatively correlated with IVDMD (r = -0.43) and protein percentage (r = -0.27). This negative correlation between yield and IVDMD should make the high yield and high IVDMD accessions identified here extremely valuable to grass breeders.

Although I evaluated only a portion of the available bromegrass introductions, several superior accessions were identified that could be used in breeding programs for improved forage yield and quality. The continued exclusive reliance on old cultivars and old fields as germplasm sources for breeding work in smooth bromegrass appears to be unwarranted. Some of the shorter introductions may be useful in developing cultivars for conservation uses such as roadsides where excessive forage production is not a desirable attribute since it necessitates additional mowings.

#### **Meadow Bromegrass**

In the analyses over years, there were significant differences among the meadow bromegrass introductions for all traits for which two years' data were available except for dry matter % (Table 3). Year x strain interaction effects were not significant for any of the traits (Table 3). In the individual year analyses, there were significant differences among introductions for all traits except for dry matter % in 1977, dry matter % and IVDMD for both cuts in 1978, and for protein content for cut 1 in 1978 (Table 4).

The smooth bromegrass check cultivar Lincoln produced almost twice as much forage as the meadow bromegrass introductions and had a higher seed production rating than any of the meadow bromegrasses (Table 4). The meadow bromegrasses had cut 1 IVDMD values equal to or greater than Lincoln even though they were earlier in maturity. These differences in IVDMD, however, were not stastistically significant. The meadow bromegrass introductions do not appear to be well adapted to eastern Nebraska and areas with similar climates since the poorest smooth bromegrass introductions were equal to or better than the meadow bromegrass accessions in yield. Improving the present superior productivity of smooth bromegrass in this area by breeding would be more profitable than trying to improve meadow bromegrass.

| Table 4. | Means and other statistics for the traits measured or scored for the <i>B. biebersteinii</i> introductions evaluated at Me | ead, |
|----------|----------------------------------------------------------------------------------------------------------------------------|------|
|          | Nebr., in 1977 and 1978.                                                                                                   |      |

|                          |                       |               |      |          |         | 19     | 77   |      |                       |         |        |                 |            |     | 1978  |       |       |       |                    |  |
|--------------------------|-----------------------|---------------|------|----------|---------|--------|------|------|-----------------------|---------|--------|-----------------|------------|-----|-------|-------|-------|-------|--------------------|--|
|                          |                       | 1977-<br>1978 |      |          |         | He     | ight | Seed | Yield                 | (dry w  | eight) | D<br>ma         | ry<br>tter | IVE | OMD   | Pro   | otein |       |                    |  |
|                          |                       |               | Yie  | eld (dry | weight) | Dry    | Pan- | Can- | pro-                  |         | Cut    | Cut             | Cut        | Cut |       |       |       |       | Matu-              |  |
|                          | Accession             | Origin        | Mean | Mean     | Range   | Matter | icle | ору  | duction <sup>c/</sup> | Total   | 1      | 2 <sup>d/</sup> | 1          | 2   | Cut 1 | Cut 2 | Cut 1 | Cut 2 | rity <sup>e/</sup> |  |
|                          | PI                    |               |      | g/plant  |         |        | c    | m    |                       | g/plant |        |                 |            |     |       | -     |       |       |                    |  |
|                          | 172389                | Turkey        | 157  | 133      | 29-322  | 39     | 74   | 44   | 4.0                   | 397     | 182    | 215             | 42         | 42  | 53.1  | 57.8  | 12.5  | 15.5  | Е                  |  |
|                          | 172390 <sup>a/</sup>  | ,, ,,         | 227  | 230      | 63-357  | 42     | 84   | 46   | 4.0                   | 473     | 224    | 248             | 42         | 43  | 50.0  | 55.2  | 11.8  | 14.0  | E                  |  |
|                          | 172392                | ,, ,,         | 215  | 178      | 32-400  | 42     | 78   | 38   | 4.0                   | 488     | 252    | 236             | 44         |     | 48.1  |       | 11.2  |       | E                  |  |
|                          | 172394                | ,, ,,         | 187  | 144      | 21-273  | 42     | 76   | 33   | 4.0                   | 458     | 229    | 229             | 44         | 42  | 48.8  | 49.3  | 11.1  | 16.3  | E-S                |  |
|                          | 325226                | USSR          | 163  |          |         |        | 75   | 23   | 4.5                   | 333     | 163    | 170             | 44         |     | 47.3  |       | 11.0  |       | Е                  |  |
|                          | 341222                | Canada        | 300  | 216      | 72-430  | 41     | 76   | 32   | 4.0                   | 664     | 341    | 322             | 43         | 38  | 48.9  | 51.5  | 11.8  | 15.4  | E-S                |  |
|                          | 341223                | ,, ,,         | 281  | 240      | 117-380 | 39     | 79   | 38   | 4.0                   | 671     | 322    | 349             | 38         | 38  | 51.5  | 56.6  | 13.0  | 15.3  | S                  |  |
|                          | 314419 <sup>b/</sup>  | USSR          |      |          |         |        |      |      |                       |         |        |                 |            |     |       |       |       |       |                    |  |
| 12                       | Lincoln               |               | 404  | 392      | 207-713 | 46     | 103  | 58   | 3.0                   | 881     | 414    | 466             | 39         | 37  | 47.7  | 54.9  | 13.0  | 15.3  | S                  |  |
|                          | Statistics:           |               |      |          |         |        |      |      |                       |         |        |                 |            |     |       |       |       |       |                    |  |
|                          | Nursery m             | ean           | 245  | 220      |         | 42     | 81   | 40   | 4.0                   | 546     | 266    | 280             | 42         | 40  | 49.4  | 54.4  | 12.0  | 15.3  |                    |  |
|                          | F ratio for           | strains       | 32** | 26**     |         | 1      | 15** | 29** | 6**                   | 61**    | 17**   | 29**            | 3          | 2   | 1     | 1     | 4*    | 7*    |                    |  |
|                          | L.S.D. <sub>.50</sub> |               | 47   | 56       |         |        | 8    | 6    | 0.6                   | 77      | 69     | 59              | 4          |     |       |       | 1.4   | 1.0   |                    |  |
| Coefficient of variation |                       | 12.9          | 10.9 | x        | 6.9     | 4.4    | 6.9  | 6.2  | 6.0                   | 11.0    | 8.9    | 4.1             | 9.5        | 5.1 | 11.1  | 5.0   | 2.6   |       |                    |  |

\*, \*\* indicates significance at the 0.05 and 0.01 levels of probability, respectively.

a/ Regar was selected from PI 172390.

b/ PI 314419 did not survive the establishment year.

c/ Rating scale: 1 = excellent, 5 = very poor.

d/ Dry matter % of 39.5% used to calculate dry weight yield for cut 2 in 1978.



#### LITERATURE CITED

- 1. Association of Official Agricultural Chemists. 1960. Official methods of analyses of the A.O.A.C. 9th ed. A.O.A.C. Washington, DC.
- Foster, R. B., H. C. McKay, and E. W. Owens. 1966. Regar bromegrass. Idaho AES Bul. 470.
- Hanson, A. A. 1972. Grass varieties in the United States. USDA Agricultural Handbook No. 170. Washington, DC.
- 4. Helwig, J. T., and K. A. Council (eds.) 1979. SAS User's Guide, 1979 edition. SAS Institute Inc., Cary, North Carolina.
- 5. Lebsock, K. L., and R. R. Kalton. 1954. Variation and its evaluation within and among strains of *Bromus inermis* Leyss. I. Space-planted studies. Agron. J. 46:463-467.
- 6. Newell, L. C. 1973. Smooth bromegrass. p. 254-262. *In* M. E. Heath, D. S. Metcalf, and R. F. Barnes (eds.) Forages. The Science of Grassland Agriculture 3rd ed. The Iowa State Univ. Press, Ames.
- Skrdla, W. H., R. L. Clark and J. L. Jarvis. 1976. List of seed available at the North Central Regional Plant Introduction Station. North Central Regional Plant Introduction Station, Ames, Iowa.
- 8. Tilley, J. A., and R. A. Terry. 1963. A two-stage technique of the *in vitro* digestion of forage crops. J. Br. Grassl. Soc. 18: 104-111.
- 9. Ugherughe, P. O., P. N. Drolsom, and J. R. Davis. 1980. Influence of planting pattern on estimated digestibility of smooth bromegrass. Crop Sci. 20:695-699.
- 10. Walton, D. P. 1980. The production characteristics of *Bromus inermis* Leyss. and their inheritance. Ad. in Agron. 33:341-369.

