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Convective regimes in reactive fluid media due to the interaction 
with catalytic surfaces 

Hendrik J. Viljoena) 

Centrefor Advanced Computing and Decision Support. P.O. Box 395. Pretoria 0001. South Africa 

Jorge E. Gatica and Vladimir Hlavacek 
Department of Chemical Engineering. State University of New York at Buffalo. Amherst. New York 14260 

(Received 29 September 1987; accepted 7 September 1988) 

Reactive fluid media enclosed in a cavity with a catalytic surface are analyzed. Nonisothermal 
chemical reactions on this surface can lead to convective instabilities. A simplified model is 
developed by using a low-order truncation of a Fourier-type expansion and employing the 
Galerkin method. A linear stability analysis is presented and it is shown that, under certain 
conditions, the marginal curve for the onset of oscillatory instabilities can lie below that for 
mon?t?nic ones. The stability of the convective modes is studied by nonlinear stability analysis 
and It IS shown how they can evolve into periodic and nonperiodic motion patterns. Numerical 
results are provided to support and confirm analytical predictions. 

I. INTRODUCTION 

The Rayleigh-Benard problem has been the subject of 
study and analysis by a large number of scientists. This is 
perhaps a result of the fact that this problem can display 
many important features of convective instabilities in fluid 
media. For instance, the characteristics of the boundaries 
will strongly influence the stability of a motionless basic 
state. Thus the effect of rigid side walls will allow only specif
ic wavenumber perturbations to survive. For certain aspects 
ratios, competition between a pair of modes will be observed 
at the onset of convection. 1 The principle of exchange of 
stabilities does not always hold for deformable boundaries,2 

and three-dimensional rigid enclosures prevent truly two
dimensional convective structures. 3 

In reactive fluid media the chemical reaction can pro
vide the driving force for convection and a similar problem 
to that of Benard originates. The problem of convective in
stabilities due to the existence of a chemical reaction has 
already been reported in the literature. Bdzil and Frisch5 

considered a reversible exothermic reaction in a homoge
neous fluid. The horizontal planes were kept at constant 
temperature and concentration, and the Benard problem 
was recovered at chemical equilibrium. When the chemical 
equilibrium was disturbed the reaction rate was approximat
ed by a first-order Taylor expansion and, by using the Galer
kin method, a set of spectral equations was derived. A non
linear analysis was performed by considering the interaction 
of different modes in the convective term. Gitterman and 
Steinberg4 carried out a linear stability analysis for binary 
mixtures with chemical reaction. These authors reported on 
the possibility of monotonic or oscillatory instabilities at the 
first bifurcation point. 

If the chemical reaction occurs as a result of interaction 
between reactive fluids and catalytic surfaces, the reaction is 

oj Current address: Department of Chemical Engineering. University of 
Stellenbosch, Stellenbosch 7600, South Africa. 

said to be heterogeneous. When a nonisothermal reaction 
takes place at the catalytic surface, the heat generated (con
sumed) by an exothermic (endothermic) reaction as well as 
the difference in molecular weight (or phase) between reac
tants and products will determine density gradients. De
pending on the location of the catalytic wall this gradient 
will have a definite orientation with respect to the gravita
tional field. This eventually may give rise to buoyancy forces 
which by overcoming the viscous damping can destabilize a 
motionless basic state. 

The rate of reaction on a catalytic surface is determined 
by the relationship between the chemical kinetics of the reac
tion and the transport of reactants to the surface. For this 
reason, several authors studied the interaction between sur
face chemical reactions and natural convection. Gray and 
Kostin6

,7 studied a two-dimensional cavity with catalytic 
side walls. The reaction was exothermic and natural convec
tion was only driven by the thermal expansion of the fluid. 
Semianalytical solutions of the temperature and flow fields 
were constructed and compared with numerical results. For 
this configuration, natural convection is stable for Ra l > 0 
(thermal Rayleigh number) and Ra2 = 0 (i.e., the density 
does not depend on the concentration). Pribytkova and 
Shtessel8 studied an infinite horizontal layer with an inert 
bottom and a catalytic top. Natural convection is driven by 
the difference in density between reactants and products. A 
linear stability analysis of the basic state was performed. The 
eigenvalue problem was solved by approximating the eigen
function by a Chebyshev polynomial, and a dispersion rela
tion Ra2 (k) was derived. Pribytkova et al: 9 also considered 
an infinite horizontal layer, but they took both Rayleigh 
numbers, thermal and mass, into consideration. The disper
sion relation reported, however, only holds for monotonic 
instabilities. These authors pointed out the differences in the 
critical values when the reaction operated either in the kinet
ic or diffusion regime. A similar problem was analyzed by 
Wankat and Schowalter; a linear stability analysis was per
formed and conditions for the onset of stationary instabili
ties reported. 10 Later these authors extended their previous 
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work and used the Galerkin method to study the importance 
of oscillatory instabilities. II 

Both Rayleigh numbers were also taken into account in 
the experimental study reported by Chefanov and Shtessel. 12 
These authors studied the oxidation of sulfur dioxide on a 
platinum catalyst. Correlations between natural convection 
and enhancement of the heat transfer were given for a broad 
range of the system parameters. 

In this study the authors want to emphasize the role of 
the free convection and the effect that the chemical reaction 
has on flow phenomena. It is worth noting that, in deposition 
reactions for instance, flow phenomena can have a great in
fluence on surface morphology. Thus it is important to rec
ognize the factors that can cause secondary flows, and to 
determine under what conditions these flows will be absent. 
It is precisely from this point of view that the analysis is 
presented. 

The partial differential equations that describe the heat, 
mass, and momentum balances are not amenable to analysis 
and, even under mild conditions, they prove to be difficult to 
solve numerically. Therefore, it would be advantageous to 
make realistic simplifications that would cast these equa
tions in a more tractable formulation. One way to simplify 
the equations is to use separation of variables and, by choos
ing appropriate trial functions, approximate the partial dif
ferential equations by a set of ordinary differential equations. 
These equations can then be easily integrated and a qualita
tive picture of the bifurcation behavior of the original system 
can be drawn. However, there are several shortcomings with 
this approach. In the study of the Benard convection prob
lem for a homogeneous fluid between two infinite horizontal 
planes, the horizontal spatial variables were approximated 
by the Fourier series. This is valid since the influence of the 
lateral walls is absent, and periodicity can be expected. The 
problem now arises of where to truncate the Fourier series. 
Lorenz 13 did a one-mode truncation of the vorticity equation 
and kept two modes for the temperature. It is well known 
that this initial value problem in R 3 gives chaotic behavior. 
Curry l4 showed that an expanded version (R 14) indeed 
shows different dynamic behavior. Foias et al. 15 proved that 
a finite-dimensional space of the same order as the thermal 
Rayleigh number will give a correct picture of solutions im
bedded in an appropriate Banach space. This bound on trun
cation, however, is far too high to use existing continuation 
packages and still keep an advantage over a numerical 
scheme that solves the original problem. 

If the horizontal layer is bounded by lateral walls, the 
boundary conditions for the velocities become different and 
the Fourier series cannot be used. Platten and Legrosl6 and 
Luijkx and Platten I? used Chebyshev polynomials to ap
proximate the velocity in the horizontal variables. When a 
finite cavity is considered, truncation becomes valid since 
only a finite number of different convection modes will sur
vive in this bounded domain. 18 However, a new problem 
arises. If the cavity is large enough to stabilize more than one 
mode, odd modes as well as even modes are no longer or
thogonal with respect to the weight function 1 (or any other 
except (1 - X2) -1/2, XE[ - 1,1] for that matter). This fact 
complicates the truncation point. 
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For the Rayleigh-Darcy problem (the analogous prob
lem to Benard in porous media) the analysis is simpler. For 
both infinite and finite cavities, the Fourier series satisfy the 
boundary conditions and, since they are orthogonal (for 
weight function }, XE [ - },}] ), truncation becomes 
simpler. Viljoen and Hlavacek 19 studied chemically driven 
convection in a porous medium and employed this method 
to derive the spectral equations that were in good agreement 
with the numerical solution of the original problem. 

The problem posed in this work will be treated in a simi
lar fashion. First, it will be shown how the choice of the trial 
functions requires a careful analysis of the basic state. Fur
thermore, the requirement of meeting both (the nonslip and 
non penetration) boundary conditions on rigid walls adds 
another degree of complexity to the selection of the eigen
functions. A linear stability analysis will be presented and 
conditions for the onset of convective instabilities will be 
reported. Second, the convective modes born at the onset of 
convection will be followed through nonlinear stability anal
ysis and it will be shown how the system evolves in the pa
rameter space losing the characteristic of periodicity. Final
ly, the numerical solution of the governing equations will be 
presented. By comparison between numerical results and an
alytical predictions, the power of the approach will be vali
dated. 

II. MODEL FORMULATION 

It is the purpose of this work to analyze the situation 
where density gradients resulting from a surface chemical 
reaction can give rise to different convective regimes. The 
physical system under analysis is a rigid cavity whose bound
aries do not allow flow through. One of the boundaries will 
be considered to catalyze a chemical reaction and the oppo
site will be assumed to be permeable to reactants and product 
diffusion while kept at a constant temperature. The remain
ing two sides are rigid walls, while the whole cavity is consid
ered perfectly thermally insulated (adiabatic). 

To simplify the analysis of this problem it will be as
sumed here that a two-dimensional description will suffice. 
Even though in finite domains it is not strictly true that two
dimensional convective structures will prevail rather than 
three-dimensional ones, such an hypothesis is made here. 
With such a purpose, an infinite rectangular duct is studied. 
Thus it can be assumed that the influence of the rear and 
front walls is negligible for the problem analyzed here, and in 
a narrow region inside the system the two-dimensional de
scription will be satisfactory. In the case of a duct of finite 
length, a similar analysis could be performed if only Davis' 
"rolls" were considered (see Davis20 ). 

Under these assumptions the heat and mass transfer 
processes will be governed by the following dimensionless 
equations: 

ay 
-= - u • Vy + Le V 2y , (1) 

(2) 

subject to 
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ay ao 
-=-=0, at x=O,1 for O<;z<;l, ax ax 
y = 0 = 0, at z = 1 for O<;x<; 1 , 

B Le ay = ao = - FK R( y 0) az az ' , 

(3) 

(4) 

at z = 0 for 0 < x < 1 , ( 5 ) 

where y and 0 indicate the dimensionless conversion and 
temperature, respectively; and x, z, and t are the dimension
less directions and time while u = (ux,uz ) is the dimension
less velocity vector. The dimensionless numbers that appear 
are the Lewis number (Le), the adiabatic temperature rise 
(B), the Damkohler number (Da), and the Frank-Kamen
etskii parameter (FK = B Da). Here R( y,O) 
= (1 - y)" exp[O /(1 + 0 /y)] indicates the rate of reac
tion expression for an nth-order irreversible chemical reac
tion, where y is the dimensionless activation energy. 

For the description of the flow field, the Boussinesq ap
proximation is considered valid. The fluid density is consid
ered constant everywhere except in the external forces term. 
The dimensionless velocity-vorticity formulation is 

aOJ = -u.vOJ+prV2OJ+~(Ral ao +Ra2 a
y), 

at a ax ax 

with 

OJ = V2 t/J 
subject to 

(6) 

(7) 

t/J = n • V t/J = 0 , along the boundaries, (8) 

where OJ is the vorticity, t/J is the streamfunction such that 

curl t/J = (_ at/J , ~ at/J) 
az a ax 

is the velocity vector, a is the aspect ratio (width/height), 
and the dimensionless numbers are the Rayleigh number 
(Ra l), the concentration analog Rayleigh number (Ra2), 
and the Prandtl number (Pr). The definitions of the dimen
sionless parameters and variables are identical to those re
ported in the study of Pribytkova et al.9 

Equations (1 )-( 8) are solved numerically using an ex
plicit finite difference scheme with central differences for the 
second-order terms and first-order upwind for the convec
tive terms. The mass and temperature boundary conditions 
are solved by using standard Newton-Raphson iteration, 
and the Poisson equation for the streamfunction is solved by 
using cyclic reduction as proposed by Sweet and Swarz
trauber. 21 

III. PRELIMINARIES 

In the basic state, the fluid is motionless (t/J=O) and 
conduction and diffusion are the only modes of heat and 
mass transfer. The basic state (00 , Yo) is described by 

276 

Le dd~o =0, 

d
2
00 = 0 dr ' 
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(9) 

( 10) 

with boundary conditions given by Eqs. (3 )-( 5). The solu
tions to Eqs. (9) and (10) are 

Yo = Om/(B Le) (1 - z) , 

00 = °m(1-z), 

(11 ) 

(12) 

where Om is the maximum temperature in the system 
achieved on the catalytic surface. This temperature is the 
solution of 

(13) 

For irreversible kinetics of arbitrary order and by taking 
reactant depletion into consideration, Eq. (13) can have ei
ther one or three distinct positive roots (two is an exception
al case). The smallest root (Om I ) is associated with a kinetic 
regime (the reaction temperature is low and the reaction 
proceeds slowly). The second root (0 m2 ) is an unstable solu
tion and the chemical reaction will either extinguish (going 
to the kinetic regime) or ignite (going to the diffusion re
gime). The largest root (0 m3) is associated with the stable 
diffusion regime. The later operating mode is characterized 
by high temperatures, while a very fast chemical reaction is 
controlled by the diffusion of the reactants to the catalytic 
surface. In Fig. 1 the bifurcation diagram of Eq. (13) 
(Om,Da) is presented. The region of multiple solutions is 
bounded by Da. <; Da < Da *. 

It should be stressed that, depending on the Damkohler 
number (Da), the basic states will differ and so will the re
sults of the linear stability analysis that are strongly depen
dent on those basic states. 

IV. LINEAR STABILITY ANALYSIS 

As was done by Pribytkova et al.,9 in the rest of this 
work the thermal Rayleigh number (Ral) will be the bifur
cation parameter and the rest of the parameter set will re
main constant. 

s 
= S 
.~ 

«I 
:2 

Perturbing the basic state in the usual manner, 

Da· 

10 

KlneUc 
rectnle 

Diffusion recirne 

B == 20 

Le == 1 

.,. == 20 

1-t order reaction 

Da. 

o L-~~~~L-~-L~ __ ~-L~ 
0.000 0.025 

Damkohler number 

0.050 

(Da) 

FIG. 1. Multiplicity of basic solutions. 
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Y = Yo + EYI + CY2 + ... , 
() = ()o + E()I + C()2 + ... , 
¢ = ¢o + E¢I + C¢2 + ... , 

with 

Ra l = Rale + ERa: + c Rai + 
and substituting them into Eqs. (1), (2), and (6) yields 

aYI = Le V2YI _ 1.- a¢1 dyo , (14) 
at a ax dz 

a()1 _ V2() _ 1.- a¢1 d()o (15) 
at - I a ax dz' 

i.(V2¢ ) = Pr V4¢ + ~(Ra a()1 + Ra ay l ). 
at I I a Ie ax 2 ax 

(16) 

The boundary conditions at z = 0 now take the form 

aYI _ FK (aR () + aR ) (17) 
az B Le a() I ay YI , 

a()1 (aR aR) 
az - FK a() ()I + ay YI , (18) 

where, to make the problem more tractable, the reaction rate 
expression has been expanded in a Taylor series around the 
basic state (Yo,()o). 

The solution ( YI'()I'¢I) of this eigenvalue problem will 
be sought in the following form: 

N 

Yl = L Y'k (Z)gk (x)exp(ut) , 
k=l 

N 

()l = L ek (Z)gk (x)exp(ut) , 
k=l 

N 

¢l = L '11 dz)hk (x)exp(ut) , 
k=l 

where 

gk (x) = exp{hr/2k [COS(1TX) + I]}, 

hk (x) = exp(i1T/2{k [cos( 1TX) + 1] - 1}). 

(19) 

(20) 

(21) 

The choice of the horizontal perturbations is based on 
the fact that ¢ must satisfy both Dirichlet and Neumann 
boundary conditions simultaneously. A Fourier series 
would be incorrect to use, since the lateral walls are not free 
surfaces. 

The nonslip condition at the walls leads to slower veloc
ities near the wall. This implies that convection is becoming 
less prominent and only conduction/diffusion are present. 
Furthermore, the lateral walls are adiabatic and imperme
able, and no horizontal heat and mass flux occur. Thus only 
axial ( vertical) diffusion processes will prevail near the 
walls and they will be described by the basic state. Hence it 
can be argued that for temperature and concentration per
turbations, Neumann and Dirichlet boundary conditions 
will also hold at those walls. The nonslip and non penetration 
boundary conditions at the horizontal surfaces lead to a sim
ilar choice for 'I1(z) as in the x direction, and '11 (z) becomes 

'11 k (z) = Sk sin{1T/2m [cos( 1TZ) + I]} . 

Upon inspection of Eqs. (11) and (12), it is clear that 
the basic states of concentration and temperature differ only 
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by a constant. For small disturbances to these states, it can be 
assumed that the spatial similarity between concentration 
and temperature will be preserved. Furthermore, Eq. (5) 
also shows that the boundary conditions at the catalytic sur
face differ by the same constant, and both perturbations sat
isfy Dirichlet boundary conditions at z = 1. Hence (Y',e) 
will be sought in the following form: 

Y'k (z) = Ykf(z) , 

ek (z) = Tk fez) . 

Upon substitution of these functions into Eqs. (17) and 
( 18), and applying the Galerkin method in the x direction, 
the following eigenvalue problem results at z = 0: 

Y df = _ FK (aR T /1(0) + aR Y /1(0») (22) 
ldz BLea() I ay I , 

Tl df = _ FK(aR Tt/(O) + aR Yt/(O»). (23) 
dz a() ay 

~ontrivial solutions (YJ,TJ,SI) will only exist if 

df FK aR f(O) + (df )2 + FK aR f(O) df = 0 . 
dz B Le ay dz a() dz (24) 

At this point it is proper to introduce an explicit form of 
R ( y,(). If the kinetic is of the Arrhenius type, without loss 
of generality, the rate of reaction expression can be written as 

R(y,() =R 1(y)R 2 «(). 

One possible solution for Eq. (24) is 

df =0. 
dz ' 

this solution implies that 

R
J

( Y) aRz Tt/(O) + R z«() aR I Yt/(O) = o. 
a() ay 

If f(O) #0, this solution will be valid only if 

R ( ) aR2 = _ J:l R «() aRl 
I Y a() T

J 
2 ay' 

which constitutes an exceptional combination of (B,Da,Le). 
If f(O) = 0, it would imply that Yl and ()l are identically 
zero. As mentioned before, it will be expected that diffusion 
processes dominate adjacent to the rigid surfaces. At the 
catalytic surface, adiabaticity and impermeability condi
tions are not present and it would be incorrect to use 
df /dz = 0, since the diffusion contribution of Yl and ()l 

would be neglected. 
Therefore, more general solutions of Eq. (24) will be 

sought. It has been assumed that Y and () (to first order) will 
only differ by a constant and hence Rl (y)R2 «() = R«(). 
Since fez) must meet the asymptotic conditions 

(I) lim dfi = 0, 
aRlae-o dz z=O 

and 
(II) lim f(O) = 0, 

aR lae- 00 

a suitable choice for fez) is 

fez) = sin[1T(1- b)z + 1Tb] , 
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where b ..... ! in case (I), and b ..... O in case (II) [for b = 1, 
fez) would be trivialJ. Substituting this choice of fez) into 
Eq. (24) gives 

H(b) = 1T(1 - b)COS(1Tb)G(b) = 0, (25) 

where 

(
FK aR . 

G(b) = ----sm(1Tb) + 1T(1- b)COS(1Tb) 
BLe ay 

+ B Da aR sine 1Tb») . ao 
When b = 1, fez) is trivial, and when b = 2n - 1, 

n = 1,2, ... , it implies df Idz = 0, a case that was discussed 
earlier. This is illustrated in the following figures. In Fig. 
2(a) the bifurcation diagram of the basic state is presented 
for a typical set of parameter values; it can be clearly seen 
that two different regimes are possible depending on the val
ue of the Damkohler number. In Fig. 2(b), G(b) is present
ed for a small value of the Damkohler number (kinetic re
gime) and a larger one (diffusion regime) in the range 
O<,b<, 1. It follows that for small values ofDa the right-hand 
side of Eqs. (22) and (23) are positive (for B> 0) and 
! < b < 1 is the proper root. For large values ofDa, df I dz> 0 
is possible and the root will be such that 0 < b < ~. 

Q) 

'" :I .. 
«I 

'" Q) 

~ 

e 
Q) .. 
e 
:I 
§ 

>< 
«I 
:2 

5.0 

(a) 
Diffusion 

recirne 

B = 20 

Le = 0.25 
2.5 

J' = 20 

l-l order 

reaction 

Kinetic 
recirne 

0.0 ~~~ __ L-~~ __ L--L~ __ ~ 

0.000 0.025 

Dan:l.kohler nUn:l.ber 

0.050 

(Da) 

o 
- Da = 0.04 

, --. Da = 0.02 

B = 20 

Le = 0.25 

J' = 20 

: I_t. order reaction 
-5 L-__ ~~~ __ ~ __ ~ ____ L-~ 

0.0 0.5 1.0 1.5 

Free paran:l.et.er (b) 

FIG. 2. Basic solutions for the reacting system. (a) Bifurcation diagram for 
the basic solution. (b) Solution for the trial function. 

278 Phys. Fluids A. Vol. 1. No.2. February 1989 

Returning to EqS. ( 14 )-( 16) and applying the Galerkin 
method for these trial functions, the following set of ordi
nary differential equations is obtained (see also Appendix 
A): 

L(~) = (ur + iu; )8 .... , (26) 

where ~ = [Y,T,SJ T, Y = [Y\, ... ,YL, ... ,YN ] T, 

T = [T\, ... ,Tw .. ,TN ] T, S = [S\"",S;"",SN] T, and L ( ) is 
a linear operator that maps elements of C 3N into itself. This 
is an N-mode truncation of (y\,O\,rf\ ).It is important to note 
that the different modes are not necessarily independent 
(i.e., 8 in general will not be a diagonal matrix). For mono
tonic exchange of stabilities the complex number 0'; is zero. 
Many combinations of the system parameters have been in
vestigated and the results can be summarized as follows. If 
the mass diffusivity equals the thermal diffusivity, oscilla
tory convection cannot be found. For Le = 1 the concentra
tion field follows the temperature evolution. The energy and 
mass balances can be reduced to the equation for the invar
iant (y - 0 I B) with the Dirichlet boundary condition at the 
top of the system (z = 1) and Neumann boundary condition 
at the catalytic surface (z = 0). Both Rayleigh numbers can 
be also grouped as Ra = Ra\ + Ra2/B, and the principle of 
exchange of stabilities holds. However, for Le < 1 and 
Ra\ X Ra2 < 0, the first exchange of stabilities can occur for 
0'; #0 and the onset of oscillatory convection can be ob
served. This can be illustrated for two typical sets of the 
parameter values. Thus in Fig. 3(a) the neutral stability 
curve is shown for Le = 1, Da = 0.04 (diffusion regime), 
Pr = 0.7, B = 8, r = 20, and Ra2 = - 5000. In Fig. 3(b) 
the moduli for the corresponding eigenvalues are presented. 
The fact that the eigenvalues vanish indicates that the curve 
in Fig. 3 (a) corresponds to the onset of monotonic instabili
ties. In Fig. 4 (a), all conditions have been kept identical with 
the exception of the Lewis number, which is Le = 0.25; for 
those conditions the curve in Fig. 4(a) marks the onset of 
oscillatory convection as indicated by the corresponding 
eigenvalues presented in Fig. 4(b) whose imaginary parts do 
not cancel. To obtain both figures, the truncation point was 
N = 6; as a increases, more modes need to be considered and 
the computational effort increases drastically. These low 
truncation methods, especially for dependent modes, in
volve some trial and error. Usually the order of truncation is 
increased until the changes in the critical values become neg
ligible. 

To study the behavior of the system beyond criticality, it 
is necessary to extend the analysis by retaining the nonlinear 
terms. By taking the nonlinear convection terms into consi
deration, Bdzil and Frisch5 did a nonlinear study of the Ben
ard case with a homogeneous reaction superimposed on it. 
In the next section a nonlinear analysis, based on the interac
tion of different modes,22 is presented. 

V. NONLINEAR STABILITY ANALYSIS 

In a confined cavity only a finite number of modes will 
be stabilized and it could be argued that only the participat
ing modes need to be considered. Although it is a heuristic 
argument, an inspection of Fig. 3 supports this claim. For 
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instance, when a = 2 the system will experience one- and 
two-cell interactions and these cells will be affected by the 
third and fourth modes, respectively. The neutral curve at 
a = 2 constitutes a two-vortex solution and the role of k = 4 
is merely to modulate the two cells. When the Rayleigh num
ber exceeds the critical value (Ra le ), the first interaction 
will be with the neighboring first and third modes. In this 
work it is assumed that the conduction/diffusion basic states 
remain unchanged when convection develops and the latter 
mode is merely superimposed on the basic state. These argu
ments lead to the following ansatz: 

N 

Ycv =j(z) I Ydt)gk(X) , 
k=1 

N 

Ocv =j(z) I Tk (t)gdx) , 
k=1 

M N 

tPcv = I h m (z) I Sk (t)h k (x) , 
m= I k=1 

where 

( y,o,tP) = J.I. = J.l.o(Z) + J.l.cv (x,z,t) . 

In the rest of this study the number of modes in the z 
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direction (M) will be considered as one (i.e., M = 1). The 
function j(z) takes the same form as in the linear analysis. 
Since this function only depends on Da, B, Le, y, and the 
order of reaction, it is invariant to the bifurcation parameter 
Ra l • The same values for the parameter set as described in 
Fig. 3 will be used. 

The aspect ratio (a) plays a very important role and 
a = 2 and a = 4 will be considered with truncations of 
N = 3 and N = 6, respectively. Substituting for these trial 
functions into Eqs. (1)-(7) and applying the Galerkin 
method, a set of ordinary differential equations results. This 
set can be written as (see Appendix B for details) 

(27) 

and for fixed a, a bifurcation diagram IIJ.l.cv II vs Ra l can be 
constructed. In Figs. 5 and 6 the bifurcation diagrams are 
shown for a = 2 and a = 4, respectively. For a = 2 the sys
tem becomes unstable at RaIL and a limit cycle appears. The 
periodic branch is stable and the amplitude of the oscilla
tions increases (in the L2 sense) with increasing val ues of the 
thermal Rayleigh number. The critical value where the basic 
state becomes unstable, calculated by using Eq. (27), is 
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slightly larger than the numerical result. (It is known that 
the Galerkin method provides higher estimates.) The results 
are then compared in a qualitative sense and the values for 
the numerical verification are taken slightly lower than those 
predicted by the nonlinear analysis. 

Figure 7 shows two time series. Figure 7(a) is a plot of 
the solution ofEq. (27) for a = 2 and Ra l = 1730, and Fig. 
7 (b) shows a plot of the numerical solution of Eqs. (1 )-( 8) 
for Ra l = 1680. It clearly shows that the nonlinear analysis 
predicts the behavior of the model satisfactorily. Several 
points on the bifurcation diagram were numerically verified. 

The bifurcation diagram presented in Fig. 6 shows an 
increasingly complex dynamic behavior. The conduction/ 
diffusion basic state becomes unstable at RaIL and a limit 
cycle appears. This 1-p periodic branch bifurcates at Ra)p 
and a 2-p limit cycle appears. For Ra l > RaIN the time series 
shows chaotic behavior. In Fig. 8 the numerical results over 
one period of the limit cycle are presented. The series of 
contour plots shown in Figs. 9(a)-9(e) correspond sequen
tially to the points marked in Fig. 9. Over one period the four 
cells change their rotations and this occurs via an unstable 
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six-mode route. In the contour plots shown the solid and 
dashed lines indicate clockwise and counterclockwise rota
tions, respectively. 

The results of the numerical study are compared with 
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the nonlinear analysis in Figs. 10-12. In Figs. 1O(a) and 
1O(b) the time series for the nonlinear and numerical results 
are shown for Ra l = 1550 and Ra l = 1490, respectively. In 
Figs. l1(a) and 11(b) the results are shown for Ra l = 1650 
and Ra l = 1600, respectively. In Figs. 12(a) and 12(b), 
Ra l = 1750 and Ra l = 1700 were used. Both series show 
chaotic behavior. This chaotic behavior is characterized by a 
strong competition between the different convective modes. 
Even though more than six modes were never observed nu
merically, the fluctuation between the different modes ap
pears on a random basis. 

In comparing the sets of Figs. 7(a), 1O(a)-12(a) with 
the Figs. 7(b), 1O(b)-12(b), similarities and discrepancies 
can be observed. In the derivation of the spectral equations 
higher harmonics have been neglected and this is a plausible 
explanation for the differences between the predictions of 
Eq. (27) and the numerical results. It is granted that the 
different values in the Ra l can give rise to further discrepan-
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cies. However, there is a striking qualitative similarity that 
suggests that the dominant harmonics have been retained. 

VI. SUMMARY AND CONCLUSIONS 

An analysis of convective instabilities in confined reac
tive fluid media has been presented. The driving force for 
convection is the gradient in the fluid density, which de
pends linearly on the concentration and temperature. This 
gradient is a result of the existence of a heterogeneous chemi
cal reaction on one of the cavity walls. A linear stability 
analysis is presented and conditions for the onset of both 
monotonic and oscillatory convective instabilities are re
ported. The characteristic of the boundary conditions in a 
finite domain makes it difficult to choose an orthogonal basis 
for the trial functions, and explicit dispersion relations can
not be derived. In general, the conditions for the onset of 
oscillatory convective instabilities are disparity between 
mass diffusion and heat conduction (i.e., Lewis number dif
ferent from unity) and opposite effects of the concentration 
and temperature on the fluid density (i.e., the thermal Ray
leigh number and its analog mass Rayleigh number must 
have different signs). Such conditions can be observed in 
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many chemically reacting systems, for instance, endother
mic reactions where a heavy product is formed at the warm
er boundary. Based on the linear stability analysis an N
mode truncation is proposed. The stability of the convective 
modes is then studied by nonlinear stability analysis. It is 
shown how the dimension of the system is of great influence 
on the characteristic of periodic motions and very intricate 
flow patterns can be observed. As the systems becomes larg
er nonperiodic motion is the result. Numerical results of the 
original problem were provided and the stability predictions 
were confirmed. 

The major goal of the presented analysis has been to 
understand new phenomena caused by the occurrence of 
convective instabilities. Since the problem without convec
tive regimes is well understood, our strategy was to general
ize this analysis for convective instabilities. This led us to a 
set of dimensionless criteria generally used in the literature. 
The results were reported for the parameter space of these 
dimensionless criteria, and certain cuts through the param
eter space were presented. If parametric experiments were 
performed then a given dependence would be followed (e.g., 
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dependence on the temperature at the top of the cavity). As 
pointed out by one of the reviewers, since an experimental 
path would not generally follow the typical crosscuts pre
sented in this paper, the experimental points would define a 
trajectory that would occur on different intersections. 
Therefore, to follow an experimental path by theoretical cal
culations it is suggested that the analysis be performed by 
varying more than one parameter at a time. Thus, for a given 
reaction, the width and height of the system together with 
the temperature and reactant concentration at the top ofthe 
cavity can be identified as the main operating variables. Ex
periments conducted modifying the system width would al
ter the aspect ratio (a) only. This would provide data to 
verify stability predictions such as those presented in Figs. 3 
and 4. On the other hand, changes in the system height (H) 
unfortunately would imply that more than one parameter 
would be modified (a, Ra l , and Ra:z would vary simulta
neously) and in order to compare these experiments with 
theoretical predictions the latter ones should be performed 
in the corresponding parametric space. Identical comments 
can be made regarding experiments involving changes in the 
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temperature (Da, B, y, and Ra l would vary simultaneously) 
or reactant concentration (Da, B, and Ra2 would vary si
multaneously) at the top of the cavity. 
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APPENDIX A: DERIVATION OF THE EIGENVALUE 
PROBLEM 

The eigenvalue problem formulated in Eq. (26) is de
rived as follows. If the trial functions, as proposed by Eqs. 
(19)-(21), are replaced in the variational formulation of 
Eqs. (14)-(16), the following set of algebraic equations 
arises: 

uB y Y = Le A~ Y + (l/a) ({}mIB Le)A~S, 

uBTT = A~T + (l/a)(}mA~S , 
(Al) 

(A2) 

uBsT = Pr A1S + (Prla)(Ra l A1T + Ra2 A1Y). (A3) 

If the Galerkin approach is used, the matrices are de
fined as 

[By];j = [BT];j = f Lp(Z)g;(X)gj(X) dO., 

[A~);j= [A~L= f Lf(z)g;(X) 

XV"(Z)gj(X) + ~2f(z)gj'(X»)do., 

[A~);j = [A~ L = f Lf(z)g;(X)hl(Z)h;(X) dO., 

[Bs];j = f L hl(z)g;(X)(h;'(Z)hj(X) 

+ ~2 hi (z)h j'(X») dO. , 

[A1 L = f L f(z)h l (z)h; (x)g; (x) dO. , 

[A1);j = [A1);j = f L hi (z)h; (x) f(z)g;(x)do.. 

The system of Eqs. (AI )-(A3) can be rewritten as the 
following eigenvalue problem: 

AI-L = O]t, 

where 

I-L = [Y,T,S] T 

and 

(A4) 

o 
BiIA~ 

(Ralla)B; IA1 

(l/a) ({}mIB Le)By- IA~] 
({}mla)Bi IA} . 

(Ra2Ia)B; IA1 

APPENDIX B: DERIVATION OF THE SPECTRAL 
EQUATIONS 

If the trial functions proposed in Eqs. (19)-(21) are 
replaced in the variational formulation of the governing Eqs. 
(1 )-( 8) and the Galerkin approach is applied, the following 
ordinary differential equation system results: 

(Bl) 
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N 

L [BT ];)j 
j= I 

(B2) 

N 

L [Bs]ij'S'j 
j= 1 
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where the matrices By, Bp Bs , A~, A~, Ai, A~, A~, A~, and 
A1 have the same meaning as in Appendix A, while 

[At LJ,k = [A~ LJ,k 

= 5 In h; (z)/2(z)g;(x)hj (x)g'dx )dfl 

-5 In h.(z)f'(z)/(z)g;(x)h;(x)gdx)dfl, 

[A~ LJ,k = 5 In h ; (z)h ; (z)h ;'(z)h; (x)hj (x)h 'dx)dfl 

+ ~2 5 In h i (z)h; (z)h;(x)hj(x)h k'(x)dfl 

-5 In h t (z)h ;,,(z)h;(x)h ;(x)h k (x)dfl 

+J..5 ( ht(z)h;(z)h;(x)h;(x)h'k(x)dfl. 
a 2 Ju 

Thus the study of the stability of the convective modes 
can be done by solving the initial value problem posed by 
Eqs. (Bl)-(B3). 
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