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 Shear walls are primary structural systems that support building against lateral loads 

(tornados and hurricanes). Even though concrete shear walls are the most efficient lateral 

resisting system, they are rarely used in a residential construction. The reasons for why 

contractors do not use concrete walls in residential construction were due to higher construction 

cost and slower construction paces. This study proposes building and testing residential concrete 

structural wall system that is energy efficient, cost competitive and structurally safe.   

 In order to decrease environmental impact of the residential construction process, this 

study proposed implementing sustainability concept while building residential structures. The 

recycled material was used in the wall’s concrete mix, while salvaged material was used for the 

wall’s formwork. To test how experimental concrete mix behaves under high lateral loads, two 

reinforced concrete shear walls with typical residential profiles were built and evaluated. Shear 

wall with experimental mix (SW2) showed significantly lower shear capacity (27.7 kips) 

compared to the shear capacity (40.5 kips) of the wall with control mix (SW1). However 

obtained shear capacity for both walls was greater than shear demand (21.1kips). The results 

showed that implementing sustainability concept in residential construction process did not 

affect its cost competitiveness. The proposed system was shown to be environmentally friendly 



 
 

and structurally safe, despite excessive compressive strength retardation of experimental 

concrete mix caused by mineral or chemical contamination. 
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CHAPTER 1.  INTRODUCTION 

1.1. Motivation 

“Sustainable development is development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs”- from the World 

Commission on Environment and Development’s (The Brundtland Commission) report Our 

Common Future 1987. 

  Shear walls are primary structural systems that support building against lateral loads. 

Frame walls (frames) are the other type of structural systems that support buildings against 

lateral loads. General consensus is that in residential construction shear walls are made of 

concrete or masonry while frames are made of metal (steel or aluminum) or wood. Lateral loads 

on structure primary come from winds, earthquakes or blasts. The most critical wind load on 

residential structures comes from tornados and hurricanes. According to National Oceanic and 

Atmospheric Administration during 2011 total of 1,691 tornadoes and 176 casualties were 

reported across the country. These numbers are greater than any other on the record except for 

2004, in which it was recorded total of 1,817 tornadoes. FEMA 342 Report (1999) stated that a 

single tornado in Oklahoma in 1999.  “destroyed over 2,750 homes and apartments, damaged 

approximately 8,000 homes, and was responsible for 41 fatalities and approximately 800 

injuries”. Estimated damages were over $750 million. 

The hurricanes are not frequent as tornados (Figure 1.) but they are more extensive and 

very destructive. The DIIO (2001) report estimated more than $15 billion in insured property 

damage was caused by hurricane in 1992 in Florida. Majority of the assessed damaged was made 
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to residential wooden structures. Russell (2002) reported structural failures in single-family 

residential masonry structures due to hurricane Andrew in Florida 1992. 

 

                  Figure 1. 1. Tornado Occurrence Map FEMA 342 Report (1999)
1
  

 

It is well documented that concrete shear walls are the most efficient lateral load resisting 

system. However, they are relatively rarely used in residential construction. The reasons for why 

contractors do not use concrete walls in residential construction were mostly cited as higher 

construction cost and slower construction paces (Mehta, 2002). However, a typical wood frame 

structure needs very costly upgrades for compliance with the codes in areas with high wind load 

demands. On the other hand concrete residential home would require little upgrading to abide by 

same high wind code requirements. It is assumed that in disaster prone areas, wood frame 

structures would have higher home insurance premiums compared to concrete shear wall system.  

                                                             
1  Figure is taken from FEMA 342 Report (1999) 
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Additional savings for homeowner could come from energy efficient structural system. In 

order to address energy efficiency of the construction systems, it is suggested to combine 

materials with high thermal resistance properties with concrete to build energy efficient 

structural system (Tovey, 2007). 

Currently there are multiple construction systems that use insulation layers to cover 

concrete core. These construction systems are known as Insulated Concrete Form (ICF) walls 

and have been patented almost 50 years ago. These walls have been use effectively as both 

gravity and shear resistant wall systems. 

The studies have been conducted to address the shear resistance of the different types of 

ICF walls with and without openings (NAHB Research Center Report. 2001; 2002). The results 

suggest that residential shear walls have greater capacity to resist lateral loads than other types of 

residential walls such as wooden or steel frame walls. In order to better understand the behavior 

of ICF wall panels to in-plane shear loading, Mehrabi (1999) suggested developing finite 

element or simple analytical models and to further investigating effects of openings on ICF 

walls.  

There are a few other challenges that residential construction industry faces in promoting 

sustainable design-build process. Incorporating sustainable concrete mixes in residential 

construction building process is one of them.  

Presently, concrete is the most important and the most widely used building material in 

the construction industry. It was, conservatively, approximated that around 10 billion tons of 

concrete is produced each year (Nagaraj, 1993). Concrete prevalence as building material was 

based on concrete’s superior advantages over the other building materials. The mix of concrete’s 
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availability, affordability, applicability and mechanical properties, totals above other 

construction materials. However, to consider concrete structure to be sustainable, we should 

analyze impact that concrete’s components enact on environment during extraction, utilization 

and maintenance. 

Typical structural concrete contains about 10-15% of cement, 5-8 % of water and 70-80% 

of aggregate by mass. It is approximated that annual world consumption of cements is 1.6 billion 

tons, while annual world consumption of sand and rock totals up to 10 billion tons (Mehta, 

2002).   

While concrete itself is considered environmentally friendly material, environmental 

costs of the concrete components are not. In 2008, the United States (U.S.) produced 

approximately 66 million tons of Portland cement (European Cement Association Report 2008).  

It has been estimated that production of one ton of Portland cement generates one ton of CO2 

(Malhotra, 2000). Additionally, U.S. produces 2 billion tons of aggregate each year and that 

production is expected to increase to more than 2.5 billion tons per year by the year 2020 

(Harrington, 2005). Mining, manufacturing and transporting of huge amounts of aggregate 

consume substantial amount of energy and initiates enormous environmental cost (Mehta, 2002).  

 To achieve positive sustainable ranking, concrete industry has to adopt strategies that will 

reduce environmental impact of cement production and aggregate mining. These strategies 

include decreasing amount of cement in concrete mixes by replacing it with cementious material, 

replacing the natural aggregate with recycled concrete aggregate and to improving mechanical 

properties and durability of concrete mixes.  
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An additional environmental issue that concrete industry faces is the disposing 

construction and demolition waste at landfills. It is reported that over 1 billion tons of 

construction and demolition waste are generated in the world each year (Mehta, 2002). The most 

of that construction and demolition waste can be recycled cost-effectively and reused as 

replacement for the concrete aggregate (Mehta, 2000).  

There are a number of studies that used fly ash, furnace slag, and silica fumes as 

substitute for Portland cement (Olorunsogo, 2002; Tavakoli, 1996; Sago, 2002; Acker, 1997; 

Wen-Chen, 2004). These studies suggested that is possible to replacing Portland cement with 

cemenitous substitutes and coarse aggregate with recycled concrete aggregate and still get high 

strength and good performing concrete.  

Additionally, new construction structures could become more sustainable by increasing 

its energy efficiency. Structure’s energy efficiency can be achieved by implementing utilization 

of the materials that have high thermal resistivity (R value). However, concrete is not known as a 

high thermally resistive material. An average R value of 4” thick structural concrete is only 0.8 

which is about 25 times smaller than average R value of 4” thick extruded polystyrene form used 

in ICF walls. Energy savings achieved by utilizing ICF walls is an important component of 

sustainable development concept that has been promoted in the construction industry in last 

couple of years. 

In order to address the need for tornado and hurricane resistant houses this study 

proposes, testing in-plane shear behavior of sustainable reinforced concrete wall build with 

sustainable construction methods. 
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Additionally, the study proposes new concrete mix to be implemented in building 

concrete residential structures. The new mix would be more environmentally friendly. This is 

achieved by replacing natural coarse aggregate with recycled concrete aggregate and replacing 

Portland cement with “greener” IPF cement.  

Finally, the study proposes developing, a new, cost-effective, site-build lateral load 

resisting structural system that will be energy efficient, sustainable and easy to build. 

1.2. Literature Review 

 This section reviews research and information available on insulated concrete form walls, 

recycled aggregate used in concrete mixes, properties of self-consolidating concrete and shear 

wall design procedures. 

1.2.1.    Insulated Concrete Form Walls  

Insulated concrete form (ICF) is a precast construction system that is made of concrete 

core that is sandwiched between two layers of insulation material. Insulating materials are made 

of polystyrene foam, polyurethane foam or plywood sheets. Insulated forms are prefabricated 

and assembled at construction site. After the insulating form is cast in place concrete is poured 

between layers and reinforced with steel bars. Architectural surfaces are applied to interior and 

exterior wall sides, in order to protect insulating forms from environmental and human exposure. 

As reported in the study for the U.S. Department of Housing and Urban Development 

(2001) construction cost of insulated concrete form (ICF) is 3-5 % higher compared to wood 

frame residential buildings. However, high thermal resistivity of ICF walls gives far higher 

return in energy cost-savings over lifetime of the structure compared to the regular wooden 
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frame structures. Some local residential building codes (Oregon Residential Energy Code, 2012) 

require that all new residential building walls have to have minimum thermal resistivity value of 

15 (R=15), making ICF walls very economical and price competitive compared to other 

buildings systems. Furthermore, ICF wall homes are more durable and require less maintenance.   

  According to U.S. Department of Housing and Urban Development report (2001) typical 

advantages for using ICF in constructions are: 

1. Structural Safety -ability to resist damage and protect occupants from fire, wind, 

earthquakes, and flooding.  

2. Comfort- ability to evenly distribute the air temperature in the home and to reduce 

outside noise.  

3. Energy Efficiency-ability to maintain low monthly energy cost.  

4. Durability -ability to resist material degradation that may occur over time.  

5. Sustainable Construction – ability to reuse construction materials and ability 

minimize amount of waste generated on site. 

Another study (NAHB Research Center, 1998) reports similar advantages for using ICF 

in residential construction. The study lists better sound insulation, higher fire resistance rating 

and lower maintenance cost as additional ICF wall advantages.  

There are few reported disadvantages (NAHB Research Center, 1998; 2001) when ICF 

are used in construction of ICW: 

1. Cost of manufacturing of prefabricated ICF systems.  
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2. Need for trained labor. 

3. Shipping and storage cost of ICF systems. 

4. Constrains in height and rate of concrete placement. 

According to the study (NAHB Research Center, 1998),“Site labor, either in the form of 

competent subcontractors or trained hourly employees, will impact a builder's decision to 

consider ICFs as a framing method. Regardless of how cost competitive an alternative is to wood 

framing, if the builder has limited choices for field installation, the risk of committing to ICFs as 

his or her framing method may be too great”. Thus, there is a need for the development of the 

ICF construction systems that will not need trained labor to install it.  

 At present, ICF accounts for only 3.0% of the total housing construction market in the US 

in 2005 (NAHB Research Center, 2005). However, due to recent spikes in energy prices and 

home energy efficient tax initiatives, future market for ICF could grow exponentially.  American 

Recovery and Reinvestment Act, mandates significant funding for energy savings in federal 

buildings. It is approximated that the $400 billion will be spent on major “green” projects in the 

commercial building sector (Energy Efficiency Retrofits for Commercial and Public Buildings -

Pike Research 2011). Additionally, it is forecasted that energy efficiency savings projects will 

more than triple in annual revenue to $6.6 billion by 2013. 

1.2.2. Sustainable Concrete 

Sustainable concrete refers to concrete that “balances the desire to specify concrete with 

low environmental impact” (Concrete Center, 2011). The guideline published by Concrete center 
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in 2011 suggests that sustainable concrete should incorporate use of recycled aggregates, 

cementious replacement additives (fly ash, slag silica fume) and admixture additives.  

The admixture additives are used to modify physical properties of concrete mainly by 

making concrete more workable and more durable. The Cement Admixtures Association (CAA) 

estimates the use of the admixtures in concrete eliminates production of 600,000 tons of CO2 per 

year. This number could be significantly higher if taken into account lower maintenance costs 

and more durable and better performance of concrete structures made with admixtures. 

Additionally, the guideline recommends that designer should consider specifying 

concrete strength at 56
th

 day rather than at conventional 28
th

 day. The early strength of concrete 

is mostly dependable on type of Portland cement used and water cement ratio in concrete mix. 

The guideline argues that concrete mix made of recycled materials shows lower early strength 

compared to conventional concrete, but no significant difference in compressive strength in later 

stages. Since majority of residential units will not be occupied and fully in service before 

concrete reaches desired strength, making this specification will nullify the advantage that 

conventional concrete has over sustainable concrete.  

The “Specifying Sustainable Concrete“ guideline suggests that recycled concrete 

aggregate should be used only when is locally available. The guideline argues that environmental 

impact of hauling recycled aggregates to job site will exceed the benefit of using it. 

Local availability of recycled material should not be stumbling block in using sustainable 

concrete for the construction projects. Every year, the United States produces about 157 million 

metric tons of construction and demolition waste (Chini, 2007). Residential construction, 

renovation and demolition waste totals 67.5 million tons or 43%, while no-residential waste 
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(bridges, roads, high rise buildings) accounts for 90.2 million tons or 57 % (Franklin Associates, 

1998). 

According to EPA report (2003) only 20 to 30 percent of the produced waste is reused or 

recycled, meaning that more than 115 million tons of construction and demolition waste was 

landfilled. Franklin Associates report (1997) analyzed the composition of nonresidential 

construction demolition waste produced in the U.S. It was reported that approximately 66% of 

nonresidential construction demolition waste was concrete, 16% wood and 9% landfilled debris. 

It is estimated that about 45 million tons of concrete is landfilled each year in the Unites States.   

 Despite high availability of disposed concrete at land-fields, its potential has not been 

utilized. In current building practice, contractors and designers still give advantages to natural 

aggregates over recycled concrete aggregates. 

After years of independent testing American Society for Testing and Materials (ASTM) 

and American Association of State Highway and Transportation Officials (AASHTO) have 

accepted recycled concrete as a source of aggregate into new concrete and have set the quality 

standards for its use (FHWA report, 2004). Currently, in many construction projects, use of 

recycled concrete aggregate (RCA) is to supplement the natural aggregates such as crushed 

stone, sand and gravel.   

Michigan Department of Transportation allows the use of RCA as coarse aggregate in 

Portland cement concrete for curb and gutter, valley gutter, sidewalk, concrete barriers, 

driveways, temporary pavement, interchange ramps and shoulders (Standard Specifications of 

Construction, 2003). RCA is also allowed to be used as coarse aggregate in hot mix asphalt and 

as dense-graded aggregate for base course, surface course, shoulders, approaches and patching. 
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The use of RCA in a new concrete was initially associated with concrete’s workability 

(flow) problems. It was previously documented that RCA is less dense and has higher water 

absorption rate than natural aggregate. Buck (1977) reported that shape and surface structure of 

RCA have more angles when compared to natural concrete aggregate (NCA). The density of 

RCA ranges from 2380 to 2410 kg/m3 and SSD specific weight of recycled aggregate ranges 

from 2.34 to 2.49 (the specific weight of natural aggregate is from 2.50 to 2.61). Additionally the 

study found that the surface of RCA is more porous and rougher, thus making recycled concrete 

less dense than conventional concrete. 

According to Hansen (1983) the absorption rate of RCA is 8.7% for diameter from 4 to 8 

mm, 3.7% for diameter from 16 to 32mm (absorption rate of natural aggregate is only from 0.8% 

to 3.7%).  Since RCA has higher absorption rate, study concluded that concrete mix with RCA 

needs 10 % more water in order to maintain its workability. The study did not report use any of 

admixture super-plasticizers in the mix that could address concrete workability problem. Nor did 

the study report the use of any water retarding admixture.  The other solution to this problem 

could be pre-conditioning of the RCA. In later study, Topcu (1997) suggested that in order to 

mimic characteristics and performance of natural aggregate, RCA has to be cleaned, washed and 

its water absorption rate known. Sagoe (2002) also reported that the problem of RCA high water 

absorbency and the difficulty in maintaining a consistent and uniform saturated surface dry 

condition. Topcu (2004) also reported decreased workability of recycled concrete made of 50% 

RCA in concrete mixture. 

FHWA Researchers have identified increase in creep and shrinkage when RCA is 

incorporated into new concrete. They suggested that this finding can be a major issue when RCA 

is used in structural concrete. Similarly, Limbachiya (2004) reported that shrinkage and creep are 
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increasing with increasing the RCA content in the mix. It is speculated that lower water/cement 

ratio in RCA concrete mix together with residual mortar on RCA contributes to increased 

shrinkage and creep in RCA concrete mixes. However, total RCA replacement of NCA in the 

concrete mix did not affect abrasion resistance for RCA concrete or did not deteriorated its 

freeze/thaw capacity.  

 Since studies have proven that RCA can affect concrete ductility, Xiao (2006) 

investigated how concrete frames made of RCA will behave under earthquake like loadings. 

Results showed that RCA frames have lower lateral loading capacity compared to NA frames. 

However, displacement and energy dissipations were similar between RCA and NA concrete 

frames, prompting authors to conclude that RCA structures are satisfying Chinese earthquake 

design standards and can be used in projects.   

The concrete designers regularly question whether totally replacing the natural aggregates 

with RCA will affect concrete strength and other mechanical properties. A number of studies 

were conducted investigating the strength of the concrete achieved using RCA. The studies 

(Wen-Chen, 2004; Acker, 1997; Yaprak, 2011) speculated that original concrete quality, 

environmental exposure and concrete mix proportions effects compressive strength and 

durability of RCA concrete mixes. 

 Totally replacing natural aggregate with recycled concrete aggregate and mixing it with 

fly ash showed that RCA mix will yield lower compression strength but higher tensile strength 

compared to natural aggregate concrete mix (Wen-Chen, 2004). Another study showed that 

replacing natural coarse aggregate with 5%, 10% and 12.5 %  of RCA will not significantly 

change expected compressive strength of the concrete (Acker, 1997). 
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It was reported that replacing only fine natural aggregate with fine RCA also reduces 

compressive strength of the produced concrete (Yaprak, 2011). But same study concluded that 

concrete with 50 % of fine RCA can still yield significant compressive strength of 25 MPa (3.5 

ksi) at 28days. Additionally, concrete made of 100% of coarse RCA will yield lower early 

compressive strength, but it will still achieve targeted compressive strength (>70 MPa -10.1 ksi) 

after 60 days (Limbachiya, 2000). 

Since RCA yields higher water absorption rate, it was questioned could RCA replace 

natural aggregate in high strength concrete (concrete used in structural beams and columns), and 

still maintain satisfactory engineering properties. Studies showed that if concrete with 100 % 

RCA has a water/cement ratio lower than concrete with natural aggregate it can produce higher 

compressive strength (Tavakoli, 1996; Sago, 2002; Olorunsogo, 2002).  However, if the 

water/cement ratio in recycled concrete is kept the same as it is in conventional concrete than 

recycled concrete shows lower compressive strength (Richardson, 2010). 

Because recycled concrete has higher water absorption rate, it was questioned whether it 

had the same durability properties as natural concrete. Results showed that concrete made of 

30% of coarse RCA will have comparable engineering and durability characteristics as concrete 

made of natural aggregates (Limbachiya, 2004). 

Some researchers suggest that if using RCA in structural concrete extra 5-10 % of cement 

should be added to account for lower compressive strength (Frondistoun-Yannas S, 1977).  

Recent study (Tu, 2006) investigated applicability of replacing NA with RCA in high 

performance concrete (HPC). Results showed that slump, concrete resistivity, ultra pulse velocity 

and chloride penetration are similar between mixes of RCA and NA in high performance 
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concretes. However, compressive strength and long term durability values are lower at RCA 

when compared to NA concrete mixes. The study recommended that RCA should not be used in 

projects where HPC is required. 

Recent research showed that compressive strength reduction and durability issues 

associated with RCA concrete could be avoided if using blast furnace slag in adequate 

proportions (Berndt, 2008). Slag has been shown to improve bonding between concrete and 

natural aggregate (Gao, 2003). Additionally, Otzuki (2003) reported that compressive strength of 

RCA concrete is dependent on microstructure of the interfacial transition zone between RCA and 

new cement paste.  

 Existing research has also shown that incorporating blast furnace slag in concrete mix can 

improve tensile strength of the RCA concrete.  Replacing of 50% cement with slag led to 

improved tensile strength of a RCA concrete for 15 % when compared to NA concrete (Berndt, 

2008). Similarly, Olorunsogo (2002)  found that RCA concrete with  35 % of blast furnace slag- 

65 % Portland cement mix, had increased compressive and tensile strengths when compared to 

regular NA concrete mix. 

1.2.3. Self-Consolidating Concrete  

Self-Consolidating Concrete (SCC) is highly flow-able concrete that fills the formwork 

without help of mechanical consolidation. Another characteristic of SCC is its ability to flow 

through heavily reinforced or oddly shaped structures effectively filling all voids without 

excessive aggregate segregation or excessive air migration. 

The slump test for self-consolidated concrete ranges from 18-32 inches. The high flow 

characteristic of the SCC is obtained by using high range water reducing admixtures. The 
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resistance to segregation of aggregates when placing the concrete is obtained by using 

admixtures that can modify viscosity of the concrete mixture. In order to achieve high flow-

ability and low aggregate segregation it is suggested that the maximal size aggregate for SCC to 

be 1 ½ inch. 

  According to National Ready Mix Association advantages of using SCC over regular 

concrete are: 

1. Faster placement rate with no use of mechanical vibration devices. 

2. SCC is less permeable, develops high early strength, and provides higher 

durability than regular concrete. 

3. Uniform architectural surface. 

4. Improved consolidation around reinforcement and better bond with 

reinforcement. 

5. Improved pumpability and cast on site uniformity. 

6.  Shorter construction periods and less labor intensive inducing increasing labor 

savings and reducing labor costs.  

7. Greater construction efficiency and increased job safety by eliminating the need 

for consolidation. 

There are more than few reasons to use SCC mix in sustainable concrete. In general, fine 

material accounts for most the volume in the mix for SCC, making concrete more flow-able and 

cohesive. Some studies (Corinaldesi, 2004; Dyer, 2000) suggest that building ruble powder and 
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ash from municipal solid waste (MSW) can be used as a great sustainable mineral additive to 

cement. Corinaldesi (2004) showed that MSW ash have similar chemical and physical properties 

to coal fly ash and can be effectively used as substitute where coal fly ash in not locally 

available. Same study compared compressive strengths of SCC with the mix of rubble ash, MSW 

ash and recycled concrete aggregate to conventional concrete mix. The study found that SCC had 

lower early compressive strength compared to conventional concrete, but still able to achieve 

strength over 5 ksi after 28 days.  When the mixes were examined by ultrasound pulse to check 

for aggregate segregation, conventional concrete showed higher deviation in ultrasound pulse 

velocity. The study concluded that conventional concrete shows higher level of aggregate 

segregation than self-consolidating concrete 

Recent studies (Tu, 2005; Ali 2010) investigated the effect of using recycled concrete 

aggregate in self-consolidating concrete. Both studies reported that replacing coarse aggregate 

with recycled concrete aggregate will not significantly change structural properties of the 

concrete.     

1.2.4. Insulated Concrete Form Wall (ICF) as Shear Wall 

The shear wall is a structural element that resists lateral loads parallel to the plane of the 

wall. Generally there are two types of shear walls. The types are distinguished based on wall’s 

height (H) to length (L) ratio. If the L/H <0.5 the wall is considered to be squat or short wall, 

while if the L/H >2, the wall is considered to be slender wall. When L/H is between 0.5 and 

2,this wall is considered to be something between slender and short wall (International Building 

Code, 2006). 
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Recognizing the need and the value of energy efficient residential structures, U.S. 

Department of Housing and Urban Development developed a guideline, Prescriptive Methods for 

Insulating Concrete Forms
2
, for the construction of one- and two-family residential dwellings 

using insulating concrete form (ICF) systems. The guideline’s requirements were based on 

multiple structural codes: Building Code Requirements for Structural Concrete, Minimum 

Design Loads for Buildings and Other Structures, International Building Code and the 

International Residential Code.  

The Prescriptive Methods were developed so ICF systems can be effectively used as 

structural lateral resistant systems (shear wall) in residential construction. 

Wall’s geometry also determines walls behavior. Flexural capacity (flexural 

deformations) governs behavior at slender walls, while shear capacity (shear based deformations) 

governs behavior at short wall. Additionally, when L/H ratio is between 0.5 and 1, diagonal 

shear cracking is the predominant shear mode failure (Cardenas, 1980). 

Due to the nature and esthetics of residential construction it is highly unlikely that any 

exterior wall in the structure will not have some kind of sizeable opening (doors, windows, sky –

lighting). Since the geometry dictates walls mechanical behavior, introducing wall opening into 

the wall geometry will additionally complicate wall’s structural response to loading.  

Taylor (1998) reported that openings that are relatively small to the wall’s overall 

dimension can be neglected since they do not produce any significant effect to wall’s shear or 

moment capacity. However, position of the opening will affect wall’s performance. Alli and 

                                                             
2  In further text Prescriptive Methods for Insulating Concrete Forms for simplification  reasons are going to 
be referred as Prescriptive Methods  
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Wight (1990) reported that even narrow wall openings placed close to the wall’s boundaries can 

significantly decrease slender wall’s shear capacity. 

 Mehrabi (1999) conducted a series of tests on lateral resistance of residential insulated 

concrete wall panels, wooden and steel frames. One of the tested specimens was flat wall panel 

4” thick with insulation from both sides. The wall was designed for wind up to 70 mph. The wall 

panel’s horizontal reinforcement consisted of three horizontal bars, one on the top of the wall and 

two at about 1/3 of the wall height from the bottom while vertical reinforcement was provided 

with three vertical # 4 bars, spliced with foundation dowels. The results showed that concrete 

wall panel resisted about twice as much load as the maximum strength of a wood- and steel-

frame wall panels without exhibiting any sign of damage or distress. This study acknowledged 

that the ICF wall systems are highly advantageous over other types of the commonly used wall 

systems in residential construction. 

There are very few studies that have tested shear strength of cement mixes with recycled 

aggregate. Sogo (2007) tested shear strength of recycled aggregate beams with and without 

reinforcement. The study showed that when reinforcement is not used the shear strength of the 

beams with recycled aggregate is 10-30 % lower compared to natural aggregates. When shear 

reinforcement is used no significant difference is observed in shear strength of the specimens. 

However, there is a lack of research on using recycled aggregates in shear walls or using self-

consolidating concrete in shear walls. . 

Prescriptive Methods addresses characteristics of concrete mix that should be used in ICF 

wall panels. Recommended maximum slump of 6” (Prescriptive Methods, Section 2.2.1) is in the 

range of commonly used ready mix concretes. Prescriptive Methods does not stipulate use of 

self-consolidating concrete in ICF walls, however, it does approve that exception can be made 
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when maximum slump requirements may be exceeded for approved concrete mixtures resistant 

to segregation as long as minimum compressive strength requirement is met.  

When choosing the insulated forms for the wall system one has to make sure that forms 

has to be strong enough to keep concrete in place during casting and to satisfy fire resistant 

conditions. Flame-spread rating of ICF forms that remain in place shall be less than 75 and 

smoke-development rating of such forms shall be less than 450, tested in accordance with ASTM 

E 84.  

Prescriptive Methods also addresses minimum horizontal and vertical reinforcement in 

the wall and around openings. It was required that all opening reinforcement placed horizontally 

(one #4 bar) above or below an opening shall extend a minimum of 24 inches (610 mm) beyond 

the limits of the opening, while for the vertical reinforcement around opening it was required one 

#5 bar along the full height of the wall story within 12 inches (305 mm) of each side of the 

opening (Prescriptive Methods Section, Section 5.2). Both vertical and horizontal wall opening 

reinforcements will be added to already put wall’s reinforcement. Prescriptive Methods also 

addresses connection between the footing and the wall stipulating that the dowels should be 

installed across the joint between the foundation wall and the footing at 48 inches (1.2 m) on 

center (Prescriptive Methods, Section 6.1). Foundation footing should be checked for one way 

shear, flexural strength and development length of reinforcing bars. 

Building code for structural concrete (ACI 318-08) stipulates minimum vertical and 

horizontal shear reinforcement in the wall section (ACI 318-08, Sections 11.9.9.2 and 11.9.9.4). 

When designing the wall section, it has to be taken into the consideration that vertical shear 

reinforcement ratio-ρ𝑙 to gross concrete area of horizontal section (length of the wall(𝑙𝑤) * width 

of the wall (𝑤𝑤), should not be less than whichever is greater between 0.0025 or ρ𝑙.  Equation 
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1.1.  from the ACI 318-08 (11.9.9.2) code was used to calculated vertical shear reinforcement 

ratio. 

ρ𝒍=0.0025 +0.5(2.5-
𝒉𝒘

𝒍𝒘
)*(ρ𝒕 -0.0025)                                    (Equation 1.1.) 

 

Where,𝑙𝑤 is overall length of the wall and ℎ𝑤 is overall height of the wall. Spacing the 

vertical shear reinforcement shall not exceed the smallest of 𝑙𝑤/3, 3ℎ and 18 in. 

Additionally, code stipulates minimum horizontal reinforcement in the wall section. Ratio 

of horizontal shear reinforcement to gross concrete area of vertical section ρ𝑡shall not be less 

than 0.0025 and the spacing shall not exceed the smallest of the 𝑙𝑤/5, 3ℎ and 18 in. 

Both codes (Prescriptive Methods and ACI 318-08) do not provide exact design 

guidelines for the walls with openings. However, ACI 318-08 stipulates that any shear wall that 

is subject to lateral in plane loading shall be designed with shear provisions for the beams (ACI 

318-08, Section11.9.2). In addition to the minimum reinforcement ACI 318-08 code requires 

minimum of  two #5 bars in walls having two layers of reinforcement in both directions and one 

#5 bar in walls having single layer of reinforcement to be placed around  opening in both 

direction vertical and horizontal (ACI 318-08, Section 14.3.7). Prescriptive Methods has similar 

requirement for the  walls designed for wind speeds greater than 110 mph. Prescriptive Methods 

stipulates placing two #4 bars or one #5 bars for the full height of the wall story within 12 inches 

on each side of the opening (Prescriptive Methods, Section 5.2, Table 5.6).  

Additionally, Prescriptive Methods requires that flat ICF wall systems shall have a 

minimum concrete thickness of 5.5 inches (140 mm) for basement walls and 3.5 inches (89 mm) 

for above-grade walls (Prescriptive Methods, Section 2.1.1). Conversely, there is one rather 

strange stipulation in the Prescriptive Methods regarding minimum wall thickness around 
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openings. Prescriptive Methods requires that minimum depth (thickness) of concrete over the 

length of the opening for flat ICF walls to be 8 inches. Considering the nature of residential 

construction (pace and simplicity), in order to honor this stipulation all exterior wall profiles are 

going to be built with 8” thickness regardless of the wall opening.     

 

1.3.  Study Objectives 

1.3.1. First Objective – Concrete Mixes 

The first objective of this study is to compare in plane shear strengths of the concrete 

shear walls that are made of two different concrete mixes. First concrete mix is the mix that is 

commonly used in residential construction. This mix is control mix. 

  The second mix (experimental mix) is the mix that had coarse aggregate replaced with 

recycled concrete aggregate, 20% of cement by mass replaced with fly ash, and Portland cement 

replaced with IPF cement. 

1.3.2. Second Objective –Determining Representative Residential Shear Wall 

Model 

The second objective of this study is to determine representative residential shear wall 

model that is going to be build and tested. The walls are designed to withstand lateral loads 

caused by high velocity winds. These wind loads are custom for tornado and hurricane prone 

areas of the U.S. 

 In addressing the second objective, the study proposes developing numerical models of 

in-plane shear resistance of the walls with varying thickness and wall openings. Finite element 
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analyses of the models were performed in order to determine stress distribution throughout the 

wall profile. Based on F.E. analysis the most representative wall model will be constructed and 

tested for shear resistance. 

The accuracy of the numerical ICF wall model will be validated with in-plane shear 

testing of full scale ICF wall. 

1.3.3. Third Objective- Sustainability and Cost Comparison 

The third objective of this study is to incorporate sustainability concept into the 

construction f ICF walls. In addressing this objective, the study proposes development of a 

sustainable, cost-competitive job-built ICF system that can be easily transported, stored, and 

rapidly installed on site. The proposed job built ICF system will not require trained crew for 

installation and building, and all materials needed for construction would be locally available and 

easily accessible. 

 

1.4. Hypothesis 

This section of the chapter lists working hypothesis in this study. Hypothesis will be 

tested analytically and experimentally. 

Hypothesis #1: Test results for the shear wall made of experimental concrete mix will 

not be significantly greater than test results for the shear wall of regular concrete. 

 Hypothesis #2: Test results gotten from the testing a residential shear wall with control 

mix (SW1) will not be significantly greater than results gotten from the testing a residential shear 

wall with experimental mix (SW2) 
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           Hypothesis #3: The cost of the construction of the job build insulated concrete form 

walls is not going to be significantly more expensive than the cost of construction of a precast 

insulated concrete form walls.  
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CHAPTER 2.  METHODOLOGY OF EXPERIMENTAL ASSESMENT 

This chapter this chapter defines materials and concrete mix designs used in building 

insulated concrete form walls. It also lists instrumentation used to test flexural and compressive 

strength of concrete specimens. 

Additionally, it presents the mathematical models used for analyzing effects of different 

wall opening, thickness and reinforcement on the wall shear capacity. It also lists methodology, 

instrumentation and experimental setting for testing wall’s shear strength 

Finally, it describes sustainable methods approach in building insulated concrete form 

walls.  

2.1. Materials and Material Properties  

This section of the chapter describes concrete mixes and materials used in the study. 

Additionally it lists material properties and instrumentation used in testing concrete mixes. 

2.1.1. Concrete mix materials  

 The materials used in the concrete mixes were: Portland cement type I, IPF 

cement, river sand, crushed limestone, recycled concrete aggregate, Nebraska fly ash class C, 

super-plasticizers admixture (glenium 3030). 

2.1.2. Concrete Mix Design 

This section of the chapter presents description of the mix designs used in the study. Two 

different mixes were used in this study. 

1. Control concrete mixed presently used in residential construction (CC) 
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2. Experimental concrete mix consisting of  self-consolidating recycled concrete (SCRC) 

2.1.3. Control Concrete Mix  

The control concrete mix contains sand (4110 and S47B) as fine aggregate, crush lime 

stone (C67 5S) as a coarse aggregate, water and Portland type I cement. 

Quantities of natural aggregate concrete were optimized to achieve flow-ability and 

slump of 6” with air entrainment 5% and water/cement ratio of 0.427.  The unit weight of the 

mix is 143.06 lb/ft
3
. For testing purposes, mixing took place in a mixing truck to simulate actual 

construction conditions. The material quantities used in the mix are presented in Table 2.3. 

 

 

 

 

 

Designed strength of the mix is designed to be 4 ksi at 28
th

 day.  

2.1.4. Experimental Concrete (SCRC) Mix  

Experimental concrete mix (SCRC) contains recycled concrete as a coarse aggregate, 

graded sand (4100 and 47B) as fine aggregate, water, IPF cement and Nebraska class C fly ash. 

Twenty percent (20%) of IPF Duracem D cement by mass is replaced with Nebraska class C fly 

ash. Unit weight of the mix is 138 lbs/ft
3
. Self-consolidating agent Glenium 3030 (6 oz/cwt)  is 

Material 
Quantities 

Proportion (%) Batched (lb/cy) 

Portland Cement Type I 15.79 610 

Water 6.75 260.8 

Coarse Aggregate 69.79 2696 

Fine Aggregate 7.66 296 

Air entrainment additive (oz)-AAE90 0.01 2 

 

Table 1.Concrete mix quantities for natural aggregate concrete
 

 

 

Table 2.1. Concrete Control Mix Specifications 
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used to achieve flow-ability and slump greater than 18” and air entrained agent Daravair 1400 is 

used to achieve air entrainment of 5%.  The mix has water to cement ratio of 0.53 and water to 

cemenitous paste (cement + fly ash) ratio of 0.42. Designed strength of the mix is 4 ksi at 28
th

 

day. The material quantities used for the mix of the concrete are presented in Table 2.4. 

 

 

 

 

 

 

 

2.1.5. Natural aggregate  

 Natural aggregate used in this study consists of gravel sand (47B), fine sand 

(4110), and crushed limestone (C67 Class 5S). The gravel sand (47B) was classified as poorly 

graded sand (SP). Sample’s physical properties are shown in Table 2.5.  

 

 

 

 

Material 
Quantities 

Proportion (%) Batched(lb/cy) 

IPF Cement (75% of cemenitous paste+25 fly 

ash class D) 
16.11 600 

Water 8.46 315 

Recycled Coarse Aggregate (100%) 53.69 2000 

Fine Aggregate-(Sand 4110) 7.79 290 

Fine Aggregate (47 B sand gravel) 9.93 370 

NE Fly Ash Class C  4.03 150 

SC Agent- Glenium 3030 (oz/cwt) 0.01            9 (oz/cwt) 

Air entrainment additive- Daravair 1400 (oz) 0.001 0.060 

 

Table 2.2. Experimental Mix Specifications 
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The fine sand (4110) was also classified as poorly graded sand (SP). Sample’s physical 

properties are shown in Table 2.6.  

 

 

 

The crushed limestone C67 Class 5S with maximal aggregate size of ¾” was classified as 

poorly graded gravel (GP). This is the maximum size aggregate that is recommended by 

Prospective Methods (2.2.1). The sample’s abrasion wear was 28.9 % and NaSO4 soundness % 

loss was 0.7.  Sample’s grading curve is shown in Figure 2.13. 

    Table 2.3.Physical Properties for Gravel Sand 47B Aggregate 

TEST DESCRIPTION TEST METHOD  RESULT 

Organic Impurities   ASTM C40 lighter std. 

NaSO4 soundness % loss (5 cycles) ASTM C88 1.3 

L.A. Abrasion % wear ASTM C131 29.6 

Min. Index Density pcf ASTM D 4254 110.9 

Max. Index Density pcf  (WET) ASTM D 4253 124.5 

Max. Index Density pcf  (DRY) ASTM D 4253 128.6 

Dry Unit Weight pcf C 128 116.5 

Bulk Specific Gravity SSD C128 2.62 

Permeability of Granular Soils cm/sec ASTM D2434 0.0776 

 

    Table 2.4. Physical Properties for Fine Sand 4110 Aggregate 

TEST DESCRIPTION TEST METHOD  RESULT 

Organic Impurities   ASTM C40 lighter std. 

NaSO4 soundness % loss (5 cycles) ASTM C88 1.3 

L.A. Abrasion % wear ASTM C131 29.6 

Min. Index Density pcf ASTM D 4254 107.2 

Max. Index Density pcf  (WET) ASTM D 4253 119.5 

Max. Index Density pcf  (DRY) ASTM D 4253 123.1 

Dry Unit Weight pcf C128 116.1 

Bulk Specific Gravity SSD C128 2.615 

Absorption  % C128 0.3 

Permeability of Granular Soils cm/sec ASTM D2434 0.0434 
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          Figure 2.1. Gradation Curve for Limestone C67 Class 5S 

 

2.1.6. Recycled concrete aggregate 

Recycled concrete aggregate used in this study is supplied by the local distributer.  The 

maximum size of aggregate is ¾”. This size was also recommended for use in self-consolidating 

concrete mixes. Recycled concrete aggregate was tested in accordance with P-207 Local 

Material Crushed Rock Base Course. The results are presented in Table 2.7.   
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The recycled aggregate was classified as well graded sand (SW) with coefficient of 

curvature (Cc) of 1.75 and Coefficient of uniformity (Cu) of 18.48. The aggregate distribution 

curve is shown in Figure 2.14.  

 

 

 

TEST DESCRIPTION TEST METHOD  RESULT 

Specific Gravity and Absorption     

Bulk Specific Gravity ASTM C128 2.271 

Bulk Specific Gravity SSD ASTM C128 2.392 

Apparent Specific Gravity ASTM C128 2.584 

Absorption (%) ASTM C128 5.4 

Quality Tests   

  

  

L.A. Abrasion (% wear) ASTM C131 52.6 

Freeze Thaw Soundness (% loss) NDOR T103 10.1 

Liquid Limit ASTM D4318 NP 

Plasticity Index ASTM D4318 NP 

Soundness of Aggregate ( % loss)   4.5 

 

 

Table 2.5. Recycled Concrete Aggregate Physical Properties 
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         Figure 2.2. Gradation Curve for Recycled Concrete Aggregate  

2.1.7. IPF Cement  

 IPF Duracem F is subtype of Portland cement that is mixed with 25% Class F fly 

ash. This cement is recommended to use in high performance concrete mixes. This type of 

concrete was produce to address metal mitigation problems (silica reactivity) of previously fly 

ash based concrete mixes and to increase concrete’s sulfate resistance. Additionally, IPF cement 

is advertised to improve flexural and compressive strengths of concrete mixes. 
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2.1.8. Nebraska Fly Ash Class C 

   Nebraska Fly Ash Class C is cementious additive used in the concrete mix. Fly 

ash is fine residue that is a byproduct of coal combustion in thermal power plants. Fly ash reacts 

with calcium released by cement hydration forming cement compounds. It is added to concrete 

to increase strength and reduce permeability. Nebraska Fly Ash Class C comes from the coal 

power plant in Nebraska City. Physical and chemical properties of Nebraska Fly Ash Class C are 

given in table below (Table 2.8. and 2.9.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical Composition (mass %) 

Silicon Oxide (SiO2) 35.4 

Aluminum Oxide (Al2O3) 19.1 

Iron Oxide (Fe2O3(T)) 5.5 

SUM (SiO2+Al2O3+Fe2O3(T)) 60 

Sulfur Trioxide (SO3) 2.3 

Calcium Oxide (CaO) 25.5 

Magnesium Oxide (MgO) 5 

Moisture Content 0.1 

Loss on Ignition 0.6 

 

 

Physical Properties 

Fineness   

Retained on a 45-μm sieve, (%)  14.7 

Strength Activity Index   

With Portland Cement, (%)   

Ratio to Control @ 28 days  99 

Ratio to Control @ 7 days  91 

Water Requirement, (% of Control)  95 

Soundness   

Autoclave Expansion, (%)  0.05 

Density (grams per cubic cm)  2.56 

 

Table 2.b.Physical Properties Nebraska Fly Ash Class C 

 

 

Table 2. 6. Chemical Composition Nebraska Fly Ash Class C 

Table 2.7. Physical Properties Nebraska Fly Ash Class C 
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2.1.9. Reinforcement materials 

Steel #4 (0.5” diameter) bars size were meshed and used for longitudinal and transversal 

reinforcement to provide strength and serviceability. Reinforcement steel has modulus of 

elasticity of 29,000 ksi and yielding strength of 60 ksi.  

2.1.10. Formwork materials  

The materials used in building of a formwork were: expanded polystyrene panels (Table 

2.10), plywood panels (thickness ¾ “), lumber boards (dimensions 2”x4”x 8’), steel ties 

(diameter ½”, length 72”) and plastic tubes (diameter ¾”, length 6’). 

 

 

 

 

2.2. Concrete Sample Testing and Instrumentation 

 The unconfined compression test and flexural test were conducted to determine 

structural properties of the concrete specimens. All strength tests performed followed the 

specifications of American Standards for Testing Material (ASTM) Specifications. 

2.2.1. Compressive strength test 

To determine concrete compression strength compression tests (ASTM C 39) are 

conducted at 7, 14 and 28
th

 day.   

Density 

(lb/ft
3
) 

Thermal 

Resistance R 

per 1" thickness 

(40ºF) 

Compressive 

Strength (psi) 

Flexural 

Strength (psi) 

Water Vapor 

Permanence of 

1.0" thickness 

Water 

Absorption 

(max volume %) 

3 5 60 75 2.5 2 

 

Table 2.8. Foamular-250 Properties  

 



33 
 

For compressive strength tests, 4“diameter, 6” long cylindrical specimens were casted for 

testing. Each concrete mix was tested at 7, 14 and 28 days. A compression testing machine 

(Manufacturer – Forney. Model : QC-400C-D2) was used for conducting compression test.  

2.2.2. Flexural strength test 

To determine concrete flexural strength and it’s modulus of rupture, the third-point 

loading flexural test (ASTM C-78) was performed using hydraulic flexure testing machine. For 

flexural tests prismatic beam specimens of dimension of 6 “x 6 “x 20 were casted. The load was 

applied at until sample’s rupture. The maximum stress at the middle of the span is computed and 

reported as concrete flexural strength.  

Since flexural capacity of normal concrete is well documented, only recycled concrete 

mix specimen was tested for flexural strength at 28th day. A universal flexural testing machine 

(Manufacturer– Tinius Olsen) was used in testing flexural strength of concrete.  

2.3. Developing Numerical Models for Finite Element Analysis (FEA) 

 This section presents steps carried out in developing numerical model for the Finite 

Element Analysis. The sections start with defining the model used for calculation of the wind 

load. The wind load is then converted into the single point load applied at the top of the wind 

wall. This load corresponds to in-plane lateral load applied to top of the shear wall. Once the 

lateral load is determined the model of the shear wall is modeled in the finite element software 

SAP2000 (Computers and Structures, Inc). The FEA is carried out and the stress distribution 

throughout the shear wall is determined. The capacity of the shear wall is compared to the 

demand and reinforcement, if needed, is designed. Subsequently, reinforcement design is 

compared to the ACI 318-08 code requirement and further analyzed. 
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2.3.1. Wind Load Structure Profile  

According to the U.S. Census Bureau 2011, one-story residential homes account for 47% of all 

residential units build in the last 20 years. In 2010, the average single-family house was 2,392 

square feet, while the average floor height is 8 ft. Based on the average square footage and 

average wall height, the study’s structure profile used for calculation of the wind load is a wall 

50 ft x 48 ft long and 8 ft high with roof height of 15 ft and slope of 15° (Figure 2.3). The length 

of the profile represents the average side of the single family one-story residential unit, while 

the profile’s height represents average residential wall height. The roof height and roof slope are 

derived from the dimensions of the structure and they follow the provisions of the International 

Residential Code for One and Two Family Dwellings (IRC 2012, Section R301.3 Story height).    

 

                      Figure 2.3. Wind Load Profile Structure 
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2.3.2. Wind Load Calculations
3
 

 The study used analytical procedure detailed in ASCE 07-10 for calculating wind loads. 

All equations used in the analytical procedure are referenced accordingly (Figure 2.4.). 

 According to Southeast Regional Climate Center map, majority of the tornados in Florida 

were type F2 (Fujita scale) with wind speeds of 113 -157 mph. The wind speeds greater than 

155 mph corresponds to hurricane Category 5. Since the study assumes future application of the 

concrete shear walls in the tornado and hurricane prone areas, it was proposed that designed 

basic wind speed (V) be 170 mph which correspond to basic wind speed from the ASCE 07-10 

map for southern Florida. 

 

                 Figure 2.4. Graphical Representation of Procedure for Calculating Wind Loads 

on the Structure (ASCE 07-10. Figure 27.4-1). 

 

a)  Wind Velocity Pressure Coefficient (qz) 

Wind velocity pressure coefficient (qz) is calculated using code ASCE 07-10, Section 

27.3-1, Equation 2.1.                            

                                                             
3  For detailed wind load calculations procedure go to Appendix A-1 
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𝑞z= 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2𝐼  

 

                                                                                                              (Equation 2.1.)                                                                                

 

Since the total height of the building is ≤15 ft (wall + roof), therefore  

 𝑞z= 𝑞h  

where  𝑞h is velocity pressure calculated at mean roof height from Equation 2. 1. (ASCE 07-10, 

Section 27.3-1). 

 

b) Internal Pressure Coefficient (GCpi) 

Internal pressure coefficient is constant value for enclosed structures. 

                   GCpi= ±0.18 

c) External Pressure Coefficient (GCp) 

 The structure is considered rigid, with a gust factor, G=0.85 (ASCE 07-10, Section 

26.9.1). While pressure coefficient Cp for the walls is determined from ASCE 07-10 Table 27.4-

1. External pressures for windward and leeward walls and roofs are calculated (Table 2.9) 

   Table 2.9. Summary of External Pressure Coefficients  

Wall Orientation External Pressure Coefficient 

Windward wall 0.68 

Leeward wall 0.425 

Roof windward -0.595 

Roof leeward -0.425 

 

𝑞z=53.45 psf 

 

𝑞h=53.45psf 
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d) Design Pressure (p) 

  Wind Pressure Equation used (Equation 2.2) for calculating the pressure design (p) 

combines internal and external design pressures ASCE 07-10, Section 27.4-1. 

p =qGCp-qi(GCpi)                                                             (Equation 2.2) 

Design pressure (p) is broken down into two wind load pressures: wall pressure (pw) and roof 

pressure (pr) (Figure 2.5). 

 

 

 

 

 

           Figure 2.5. Wind Wall Pressure (pw) and Roof Pressure (pr) 

 

e) Total Wind Load (W) 

Total wind loads acting on the structure come from the wind wall pressure and form the 

roof’s wind pressures.   

Total wind load acting on structure is calculated to be W= 848.93 lb/ft. 

f) Lateral Wind Force (Pw) 

Lateral wind force (Pw) is wall is calculated from the total wind load (W) acting parallel 

to the shear wall (Figure 2.6.). 

 

pw =59.05 lb/ft
2
        pr =-53.79/ft

2
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                  Figure 2.6. Schematic Computation of Lateral Wind Force (Pw) 

 

  Lateral wind force was calculated to be Pw =21.22 kips. This force was used as design 

shear force Vmax (Vu) in computer models in order to analyze behavior and stress distribution of 

the shear walls. 

2.3.3. Computer Models for Finite Element Analysis 

This section describes procedure used in developing F.E. models of residential shear walls. 

2.3.3.1. Preliminary calculations for sizing the shear wall 

Since the lateral forces on residential structures are relatively small compared to 

commercial structures, it was proposed that lateral wind (shear) force should primarily be 

resisted by concrete. However, designing the whole structure’s length (48ft) as a shear wall was 

determined to be impractical and rather wasteful. Consequently, the length of 14 ft was 

calculated to be appropriated length for the shear wall analysis
4
.  

  

 

                                                             
4  Detailed procedure and calculations for initial length of the shear wall is given at Appendix A-2 

Shear Wall 

Wind wall 
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2.3.3.2. Determining the Opening Size and Additional Wall Thickness of 

Models for Finite Element Analysis (F.E.A)  

 The length and the size of the openings should replicate commonly used wall features in 

residential construction. The minimum residential wall thickness required by International Code 

is 4” (Prescriptive Methods would allow minimum flat wall thickness of 3.5” in certain cases). 

  In order to keep a number of F.E. models relatively reasonable, it was decided that 

additional 5” and 6” wall thickness will be analyzed. Analyzing the 10” wall thickness was 

ruled out since by the ACI 318-07 code requirement, 10” thick wall would need minimum of 2 

layers of reinforcement, which in this case would complicate comparison, and it was foreseen as 

highly over-conservative design. Prescriptive Methods stipulate that concrete thickness (depth) 

over the size of the opening has to be minimum 8” so this wall thickness is also included in the 

analysis.   

The total of 12 finite element models are developed and analyzed. The following is 

breakdown of the finite element models: 

a) Group 1:- Three  single window opening (2ft x 4 ft)  with wall thickness of 4, 5, 6  

and 8 inches, 

b) Group 2: - Double-door opening (6 ft x 6.8 ft) with wall thickness of 4, 5, 6 and 8 

inches, 

c) Group 3: -Large double window opening (6ft x 5.8 ft) with wall thickness of 4, 5, 

6 and 8 inches. 

 To minimize model variability total area of the wall openings for all 3 groups was kept 

relatively close to 20-30% of the total wall area.  
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When determining wall openings, additional look was given to the orientation and symmetry of 

the openings in respect to the wall’s dimensions.  

2.3.3.3. Modeling and Analyzing F.E. Wall Models in SAP2000   

 All shear wall models are modeled and analyzed in SAP200 finite element analysis 

software in order to determine best wall candidate. The maximal shear stress and maximal 

deflection for each model are calculated and presented in Table 2.10
5
.  

Table 2. 10. Maximum Shear Stress and Deflection for F.E. Shear Wall Models 

F.E. Model 

Wall 

Thickness 

(in) 

Maximum  

Shear Stress 

(psi) 

Maximum 

Deflection (in) 

Three  single window - Group 1 4 -141.1 -0.0194 

Three  single window - Group 1 5 -113.06 -0.0156 

Three  single window - Group 1 6 -94.22 - 0.013 

Three  single window - Group 1 8 -70.66 -0.097 

Double-door  – Group 2 4 -129.38 -0.025 

Double-door – Group 2 5 -103.55 -0.02 

Double-door – Group 2 6 -98.92 -0.0165 

Double-door – Group 2 8 -74.19 -0.0121 

Large double window – Group 3 4 -149.5 - 0.027 

Large double window – Group 3 5 -119.2 -0.0185 

Large double window – Group 3 6 -99.55 - 0.015 

Large double window – Group 3 8 -74.66 - 0.0114 

 

 

 

                                                             
5  Detailed calculations for FEA models are presented in Appendix A-3 
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 After detailed analysis of F.E. models it was decided that numerical model 6” thick wall 

from Group 2. is the best candidate to be a tested as representative residential shear wall. The 

main reason why it was decided Group 2. was the best model for testing is that the deflection 

failure mode pattern seems to be the most critical at this group. Deflection pattern of the beam 

that connects two solid panel sections of the wall could be the easily observed and confirmed 

(Figure 2.7). 

 

 

 

 

 

 

 

 

      

     

                                   

2.4. Shear Wall Testing

This section of the chapter describes finalized shear wall design including wall dimension 

and reinforcement detailing. Additionally this section presents testing procedure and 

instrumentation used in testing the wall specimen. 

 

 

 

 

 

 

 

 

 

Load direction 
Load direction 

Figure 2.7. F.E. Model of 6” Thick Shear Wall with Double Door Opening  

Max shear stress = -98.92 psi Max deflection-horizontal=-0.0165 in 
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2.4.1. Shear Wall Dimensions 

 The study proposed building concrete wall that is 8 ft (96in) high, 14 ft (168in) long and 

6 in thick, with the double door opening in the middle of the wall that is 6.83 ft (82 in) high, 6 ft 

(72 in) long (Figure 2.8.).  

 

                          Figure 2.8. Shear Wall Dimensions 

 

 

 

 

 

The wall is sandwiched  between  2” thick insulation panels and placed over concrete 

footing that is 18 ft (216 in) long, 1.83 ft (22 in) wide and 1ft (12in) high (Figure 2.9). 
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2.4.2. Footing –Wall Connection 

Shear wall footing was designed to mimic cast in place residential footings. Footing 

concrete strength was designed for 𝑓′𝑐=8 ksi. Footing reinforcement
6
 was designed to withstand 

flexural loads coming from the self weight and walls weight while being lifted and transported 

to testing position. Footing’s dowels (footing-wall connections) consist of four #5 bars spaced 

18” on center. Total length of the dowel is 32”. Dowels are spliced with vertical reinforcement. 

 

 

 

 

 

     

 

                                                             
6 Footing detailed reinforcement is presented in Appendix A-4 

 

 

 

 

Front view 

                                    

                                    Figure 2.9. Insulated Concrete Form Walls 

    

Dowels 
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2.4.3. Shear Wall Reinforcement Detailing  

During preliminary design it was determined that wall has enough shear capacity in 

concrete and that it needs only minimum reinforcement (Appendix A-2). Minimum 

reinforcement for the shear wall is designed as vertical and horizontal mesh of #4 bars (As =0.2 

in
2
). ACI 318 -07, Section 11.9.2 stipulates spacing limits for minimum vertical reinforcement, 

which is a minimum of the following: 

a) 𝑙𝑤/5  ,where 𝑙𝑤 is length of the wall  

𝑙𝑤/5=168/5=33.6 in 

b)  3ℎ, where ℎ is thickness of the wall 

3ℎ =3*6= 18 in 

c) 18 in. 

Spacing limits for horizontal reinforcement is a minimum of the following  

a) 𝑙𝑤/3  ,where 𝑙𝑤 is length of the wall  

𝑙𝑤/3=168/3=56 in 

b)  3ℎ, where ℎ is thickness of the wall 

3ℎ =3*6= 18 in 

c) 18 in. 

Additional stipulation requires one #5 bar, in walls having single layer of reinforcement 

to be placed around  opening in both direction vertical and horizontal (ACI 318-08, Section  

14.3.7). However, Prospective Methods in the commentary acknowledges that adding # 5 bars 

that even though recommended, it is considered over designed and impractical for construction 

purposes (C 5.2.). International Building Code (IBC) suggests that one #4 bar from each side of 

the opening is enough to satisfy loading conditions as long as vertical  #4 bar has continues span 
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from support to support. The final reinforcement design is a mesh of   #4 bars spaced at 18” in 

both directions with added bars around opening (Figure 2.10). 

 

            Figure 2.10. Reinforcement Mesh Design 

2.4.4. Shear Wall Testing Procedure 

 Shear wall testing has taken place in the University of Nebraska–Lincoln Structural Lab 

at PKI. Tests were conducted after concrete’s curing period of 28 days. The shear walls were 

tested in vertical position. Overturning restraint connections that were attached at the leading 

edge and at mid-span of the footing are preventing overturning failure of the specimen. These 

hold-down connections are anchoring footing to the structural lab strong floor. Shear wall sliding 

was prevented by 12”x 12” x 2” steel plate that was anchored to a strong floor while bearing on 

in-plane back edge of the shear wall’s footing (Figure 2.11). 
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 In order to mimic innovative single story residential construction, testing setup for ASTM 

E 564 - 2000 needed to be modified to better serve testing purpose. Testing setup provisions for 

ASTM E 564 (Section 5.4) suggest that loading condition should be uniformly distributed along 

top edge of the wall to simulate roof or floor members that will be used in building construction. 

Merhabi (1999) and NAHB Research Center (2002) used cast in place concrete beams to 

distribute later loads from an actuator to the top edge of the wall. Cast in place beams are used to 

replicate cold joint between ICF walls and floor slab. However, given that this study proposes 

using efficient job build ICF formwork systems, that allows concrete placement rate of over 15 

ft/h, it is assumed that building’s floor-wall system would be cast at once, and no cold joint 

would be needed. This innovative design would significantly lower construction cost and shorten 

construction time. Knowing this, it was proposed that lateral load from the actuator is applied 

directly to the upper edge of the shear wall.  

 Before data collection, a small initial load (10 % of the theoretical ultimate load) was 

applied to a testing wall. The load was held for a few minutes to seat the connections between 

the wall and footing. The initial load was then removed. After data acquisition system is 

initialized, testing procedure started with lateral load being increased gradually. Lateral load is 

applied at a rate of 0.2 in/ min. A 100,000 lb load cell was attached to the end of the actuator to 

facilitate data acquisition. 

 Seven, linear variable differential transducer (LVDT), were used to measure the 

displacement of the wall during the tests. Additional control markings were placed at the bottom 

edge on the out of plane face of footing and at the bottom edge on in-plane face of the footing. 

These markings are to measure horizontal slip and uplift of the footing. Four strain gauges are 

placed on the compression sides of the wall to detect strain deformation on the concrete surface. 
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The static lateral loading test was conducted until displacement of the top of the wall reaches 2”, 

or until wall shear strength had been considerably reduced from the maximal value, due to 

significant structural damage in the specimens. Data from the load cell, strain gauges and LVDTs 

are collected at 2 times per second. Additionally, shear wall’s crack development and crack 

propagations are observed and marked during testing. Whole procedure is video-taped with 

digital camera. 

2.4.4.1.  Footing hold-down connection design 

 In order to reach wall’s full shear capacity it is imperative to prevent overturning, or 

sliding failure of the wall. To prevent wall’s overturning footings are anchored to the strong floor 

with two 2” in diameter, 24” long, treaded steel bolts. Each bolt is penetrating through 12” deep 

concrete footing through pre-casted, specially designed holes. Before concrete footing is casted, 

two 3” diameter hollow plastic tubes were placed inside the formwork, at specially designated 

position and left until concrete is harden. The holes’ positions in the footing are mirroring strong 

floor anchoring holes. After concrete was hardened plastic tubes were taken out and steel bolts 

were put through the footing and screwed into anchoring hole. The 12” x 12” x 2” steel plate was 

put over the steel bolt and laid on the top of the concrete footing. The steel heavy duty nut is 

screwed on steel bolt and secured steel plate preventing overturning of the whole structure. At 

the back edge of the footing  12” x 12” x 2” steel plate is anchored directly into the strong floor 

with one side bearing onto the footing preventing sliding motion of the structure ( Figure 2.11). 

 

 

 

 



48 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.4.2.        Shear Strong Wall 

Shear Strong Wall is 25 ft high, 6 ft long and 6.5 ft deep ft anchoring wall that is used in 

testing of shear capacity.  

Shear Strong Wall is heavily reinforced high strength concrete structure with 3” 

anchoring wholes spaced at 23” at center along the height of the wall. 

2.4.4.3. Hydraulic Actuator and Hydraulic Actuator Supporting Frame 

 A hydraulic actuator is a testing machine with 23” long loading jack with outer diameter 

of 7” with push-out range of 10 in and capacity of 120,000 lb (Figure 2.12). A hydraulic 

actuator is attached to a support frame that is anchored to lab’s strong wall. Support frame is a 

 

Figure 2.11. Testing Constrain Connections– Overturning and Sliding Constrain 

Connections 

 

 

 

Sliding constrain 

connection 

Overturning constrain connection 
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steel structure designed to hold actuator in place. Support frame consists of two 3.5” x 3.5” x 

0.2” steel channels connected at top with 14”x 6”x 0.5” steel plate. Actuator anchoring steel 

plate is connected to steel channels and support steel plate with 7/8” bolts and firmly tightened. 

Frame is anchored to a strong wall with 1” in diameter treaded steel road that is tightened to a 

steel plate. 

 

 

 

 

 

 

 

 

 

 

 

     

 

  

2.4.4.4.       Strain Gauges  

 The total of four PL-60 wire strain gauges were used to measure strain on the in-plane 

compression face of the wall (Figure 2.13). 

Hydraulic actuator 

Anchoring steel rod 

Front view 

Figure 2.12. Hydraulic Actuator and Hydraulic Actuator Supporting Frame 
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a) First strain gauge (s1) and third strain gauge (s3) are placed 24” above the 

footing. 

b) Second strain gauge (s2) and fourth strain gauge  (s4) are placed at 72” 

above the footing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

      Figure 2.13. Strain Gauge Placement Position 

2.4.4.5.  Deflection Gauges -Linear Variable Differential Transducers (LVDT) 

 Wall deflections under lateral loading were measured using Linear Variable Differential 

Transducers LVDT. First transducer -LVDT1 was connected at the top leading corner on out of 
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s2 

s3 

s4 
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plane face of the wall. LVDT1 is measuring horizontal displacement of the top of the wall. 

Second transducer -LVDT2 is placed at the bottom leading corner of the wall LVDT2 

measures horizontal displacement of the bottom of the wall (wall slipping). Third transducer- 

LVDT3 is placed at the bottom leading edge on the in-plane face of the wall. LVDT3 measures 

uplift displacement of the wall relative to the footing. Fourth transducer LVDT4 is placed at 

the bottom of the back edge on in plane face of the wall. LVDT4 measures vertical 

displacement of the wall’s outer compression face (Figure 2.14). Fifth transducer LVDT5 is 

placed at the bottom corner of the trailing wall panel on tension side.  

 

        Figure 2.14. Deflection Transducers Placement and Directional Orientation 

 Sixth transducer- LVDT6 is placed at the bottom trailing edge on the in-plane face of the 

trailing wall’s panel. Seventh transducer LVDT7 is placed at the bottom of the trailing edge on in 

plane face of the wall’s first panel. 
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2.5. Sustainable Construction Methodology in Building Insulated Concrete Wall 

 This section describes the sustainable principles and construction methods used in 

building insulated concrete form walls. Additionally, it presents design of efficient and 

economical job built formwork system for insulated concrete form wall. 

2.5.1. Sustainable Principles in Building Process 

The study adopted four major sustainable principles in building process of insulated 

concrete form walls: conservation, waste reduction, energy savings and local availability. 

1. In order to conserve the environmental resources, recycled materials should be 

used in the construction process. To achieve this goal the study proposed replacing all coarse 

aggregate with recycled concrete aggregate in the concrete mix. Additionally, salvaged 

construction materials (boards, plywood, nails, steel treaded ties, and plastic tubes) from old 

construction projects were to be re-used for construction of formwork for ICF walls. 

2. In order to reduce construction and industrial waste, 20% of cement by mass is 

replaced with fly ash. Additionally, new “green” cement type (IPF) was used in concrete mix.  

All boards and plywood dimensions used in construction of the formwork are carefully 

designed and cut in a way that could be re-used for other construction projects, with minimum 

waste generated. To simplify handling process of the wooden materials only two profiles were 

used: ¾” plywood and 2 x 4 boards.  Finally advanced planning and scheduling plays 

important role in minimizing construction waste. For example materials used in building 

footing formwork, was reused for building walls formwork. The boards and plywood were cut 

only once with minimum waste generated and minimum damage inflicted. The tie holes drilled 

in plywood for footing were used as tie holes in the wall. 
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3. Energy savings plays a big role in building efficient and sustainable structures. In 

order to achieve this goal the study proposed building ICF walls with total thermal resistivity 

of R=20. This value is about 10 times greater when compared to regular concrete walls, or 

more than twice when compared to regular, insulated wooden frame residential wall 

(Recommended Levels of Insulation, Energy Star 2012). 

4. In order to reduce environmental impact (carbon footprint) of transporting 

construction supplies, all materials used in the study needed to be locally manufactured or 

locally available.  Recycled concrete aggregate came from the local plant that used concrete 

acquired from local demolishing/ renovation projects. Fly ash that was used in concrete mix is 

Nebraska Class C fly ass and came from the local coal power plant. All wooden materials 

(boards and plywood) came from the local Home Depot store. Special consideration was given 

to the insulation material used in the study. Initial idea was to use any EPFB (Expanded 

Polystyrene Foam Boards) for the insulation; however, very few companies have country wise 

manufacturing centers. After careful investigation it was decided that Foamular-250 was the 

best candidate. Company that supplies these panels has nation-wide manufacturing centers and 

distribution contract with Home Depot, making this brand widely and easily available. Worth 

mentioning is that the Foamular-250 was originally not meant to be used as wall insulation or 

as a building block the ICF walls, but as attic and basement insulation.  
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2.5.2.  Construction Methods in Building ICF Walls 

 Construction methods are the procedures and techniques employed during 

construction. In order for construction methodology to be widely accepted, it has to be 

applicable and conductible. All materials used in the study were picked in a way that the 

construction process can be replicated almost anywhere in the USA. 

2.5.2.1. Formwork Design and Construction 

The unit weight of 150 lb/ft
3 

and average placement rate of 15ft/h were used as 

parameters in calculating concrete lateral pressure
7
.  

Expanded Polystyrene Panels (EPP) are used as permanent formwork sheets. EPPs are 

supported by plywood sheets, studs and wales and secured by treaded ties. 

 In ordered to simplify building procedure 2x4 lumber boards are chosen for both studs 

and wales. Studs supported plywood, while wales were resting on flat side of 2x4 boards. Based 

on the lateral pressure imposed on the studs and wales tie spacing was calculated. Tie spacing 

was governed by the same deflection limits as it was for wales and stud spacing. 

                 Table 2.11. Formwork Spacing Limits  

Limit spacing Designed (in) Build (in) 

Studs 8.03 7.5 

Wales 19.5 

 

18.0 

Ties 17.7 12.0 

 

                                                             
7  Detailed formwork calculations are presented in Appendix A-5 
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EPP were connected with hollow plastic tubes (leftovers from a plumbing projects) to 

hold insulation in place and to provide the bond between EPP and concrete.  

 

 

Figure 2.15. Formwork Design 

Ties were placed inside plastic tubes and connected to the wales. Low strength steel 

treaded tie with minimum capacity of 3,500 lb was used as a tie. Once concrete is hardened and 

made a bond with EPP, ties were removed from the plastic tubes and reused. Additionally, 

bearing stress that ties induced on the washers and bearing stress that washers induced on the 

wales was checked and confirmed that all stress are under allowable limits. Final formwork 

design is presented in the Figure 2.15 and Table 2.11. 
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2.5.2.2. Concrete Placement 

In order to replicate real work situation concrete is mixed and delivered in the mixing 

trucks. Before concrete is placed into the formwork, air entrapment test was performed in order 

to confirm 6% air entrapment. After entrapment test had satisfying result, slump test was 

performed on the concrete sample. After successful verification that slump test is 6” for the 

control mix and >18” for the experimental mix (self-consolidating concrete), concrete was 

poured in 0.5 yd
3
 concrete buckets. Concrete samples for the compression and flexure tests were 

taken from the concrete buckets. Following sampling procedure, concrete is elevated and 

dropped from the 2-3 ft from the top edge of the formwork. Concrete was place at rate of 15 

ft/hr. 

2.6.  Construction Cost Comparison 

In order for ICF system to be market competitive it has to be cost effective and labor 

friendly. To analyses construction cost it was decided to compare material and labor costs 

between industry standard pre cast ICF walls and sustainable job built ICF walls.  

ICF industry reported data on materials and labor are used to obtain average cost data for 

precast ICF wall systems. Project’s material purchases were used to calculate material costs for 

job build ICF wall system and sustainable job build ICF wall system. 

 The cost of exterior wall framing per square foot was used for estimating labor cost for 

job build ICF walls. It was noticed that handling re-used construction material would take more 

time, therefore 15% higher labor cost was used for estimating sustainable job build ICF labor 

costs.  
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CHAPTER 3. RESULTS  

  This chapter lists shear resistance (pushover) test results and material testing results for 

control concrete mix (SW1) and experimental concrete mix (SW2). Additionally, this chapter 

list comparative cost analysis between precast industry standard ICF walls and sustainable 

construction job build ICF walls.   

3.1. Material Testing Results 

       All test results in Material Testing Results section were obtained averaging two test trials. 

3.1.1. Compression Strength for Control Concrete Mix (Natural Aggregate) 

 Compression test results for Control Mix were presented in the Table 3.1. Control Mix 

was successfully designed and testing specimen were properly cured. 

                Table 3.1. Compression Test Results for Control Concrete Mix 

 

 

 

 

 

3.1.2. Compression Strength for Experimental Concrete Mix (Recycled Aggregate) 

 Compression test results for Experimental Mix were presented in the Table 3.2 and Table 

3.3. After 14
th

 day testing reveled that concrete specimen were not gaining any strength. 

Inspection of a specimen interior after a break reveled that cement paste inside a specimen was 

still being wet, indicating that no hydration was taking place (Figure 3.1). 

 

Compression tests 

day psi 

7 3,329 

14 3,533 

21 4,033 

28 4,565 
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                                  Table 3.2. Compression test results for experimental mix (wet cured) 

 

 

 

  

 

 

 

 

 

 

 

 

 

               Figure 3.1. Experimental Mix Compression Test 

  Since Experimental Mix was not curing properly it was decided to take 6 testing 

cylinders out of curing room, and to cure it at lab temperature where the shear walls were built.  

It seems that samples did gain some extra strength by being cured. The lab cured sample gained 

twice the strength of wet cured sample (1,164 psi vs. 678 psi).  However, strength gain quickly 

leveled off, and further strength gain was stopped at 35th day. After failing to gain more 

strength it was decided the wall with experimental mix should be tested. Measured strength 

after 21
st
 (35

th
) day of dry curing (1,158 psi) was way under designed compression strength of 

4,000psi.  

 

Compression tests (wet cured) 

day psi 

7 254 

14 420 

21 293 

28 678 
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                                     Table 3.3. Compression tests (lab cured) 

Compression tests (lab cured) 

day
8
  psi 

7 (21) 670 

14 (28) 1,164 

21 (35) 1,158 

 

3.1.3. Flexural Strength of Experimental Concrete Mix (Recycled Aggregate) 

 Third point loading test was used to determine breaking load, P= 28,788lb (Figure 3.2). 

After breaking load was determined from the flexure test, flexural strength was calculated using 

Equation 3.5                                                              

𝑹 =
𝑷𝑳

𝒃𝒅²
                                                    (Equation 3.1) 

where L is effective length of specimen =18in; 

b is width of the specimen=6 in; 

d is depth of the specimen =6in. 

                              𝑅 =2,399psi 

 

 

 

 

 

 

                               Figure 3.2. Flexural Strength Testing for Experimental Concrete Mix 

                                                             
8  First number is lab cured day, second number (in parenthesis) is actual day after samples are casted   
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3.2.  Shear Wall Testing Results 

 This section of the chapter lists results obtained from the static shear pushover test.  

Following data are collected and analyzed: ultimate load capacity, load-displacement analysis, 

wall shear stiffness, load-strain distribution, and crack formation, growth and progression. 

3.2.1.    Shear Wall Testing Result for Control Concrete Mix (SW1) 

 The SW1 wall was tested on 42th day after the concrete was casted. The lateral load was 

applied at approximately 2000lb/s. The load is transferred from the actuator to the wall over 7”x 

7”x2” steel plate. In this way load is distributed over effective concrete area of 42 in
2
, greatly 

reducing chance of concrete bearing failure. The maximum lateral load achieved before wall’s 

structural failure was 40,555.87 lb (Figure 3.3). 

 

 

 

 

 

 

 

3.2.2. Load Displacement Analysis for SW1 

 Load-displacement analysis is based on evaluation of load displacement curves. Load 

displacement curves are plots of load versus displacements obtained from deflection transducers 

(LDVT).  Most commonly displacements are represented as shear displacement (Δs) and lateral 

 

Figure 3.3. Control Wall Structural Failure 
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displacement (Δ1). Additional wall’s behaviors such as uplift, slipping, rotation (“toe” crushing) 

can be analyzed from load displacement curves. 

Shear displacement is calculated from displacement transducers using Equation 3.1. 

                      Δs = Δ1-Δ2-(Δ3-Δ4) ∗
𝒂
𝒃
                                        (Equation 3.2.) 

where,  Δ1, Δ2, Δ3, Δ4  are data obtained from LDVT1, LDVT2, LDVT3 and LDVT4, 

a is height of the wall, 

  b is overall length of the wall.   

Maximal shear displacement (Δs max) was obtained at failure load (L max). 

                      Δs max = 0.72 in 

           L max = 40,555 lb 

Load–shear displacement curve (Figure 3.4) shows shear wall’s characteristic and expected 

response during the loading phase.  

 

 

 

 

 

 

 

 

 

  Figure 3.4. Load-Shear Displacement Curve SW1 
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 The contribution of the each wall panel to the total shear deflection was analyzed 

comparing panel’s individual shear deflections (Equations 3.2 and 3.3). 

    Δs1 = Δ1-Δ2-(Δ3-Δ7) ∗
𝒂

𝒃𝟏
                                                                      (Equation 3. 3) 

    Δs2 = Δ1-Δ5-(Δ6-Δ4) ∗
𝒂

𝒃𝟐
                                                                      (Equation 3. 4) 

 Where, 

Δs1, Δs2 are shear deflections of panel #1 and panel #2 respectively  

b1 and b2  are lengths of solid concrete panels.   

       Δs1max = 0.84 in                  Δs2max = 0.82 in 

 Shear deflection of the wall panel #1 very closely reassembles total shear deflection, 

while shear deflection of the panel #2 somewhat lags behind (Figure 3.5). 

 

 

 

 

 

 

 

 

            Figure 3.5. Shear Deflections SW1 
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 The difference between two panels’ shear deflections is attributed to the crack 

propagation at the joint between wall’s connecting beam and the wall panels (Figure 3.6).  First 

crack that is detected at load of approximately 20,000lb coincides to the first significant 

separation of shear deflection curves. Further crack propagation ( at loads of 25,000lb and 

30,000lb) even more enhanced the separation between shear deflection curves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.6. Crack Propagation at SW1                      
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 Lateral displacement (Δ1) is displacement obtained from LDVT1, which is transducer on 

the top of the leading edge of the wall.   

  When Δs ≈ Δ1 , wall response is characterized as pure shear behavior. When Δs ≠ Δ1,  

wall’s response can be attributed to multiple sources  such as wall slipping or uplift due to 

impropriate connection with footing , concrete crushing  on the compression side or wall’s 

torsional failure. 

 

    

 

 

 

 

 

 

 

 

 

      

Figure 3.7. Load–Lateral Displacement Curve SW1 

 Maximal lateral displacement (Δ1max= 0.93 in) was obtained at the failure load. 

The load-displacement curve (Figure 3.7) shows shear wall’s linear response during the loading 

phase. Well defined proportional limit was easily detected on the load displacement curve. 

 Lateral displacement at the design load of 21.22 kips was 0.41 in. 
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 In order to better understand walls behavior, contribution of the each transducer is 

individually analyzed. Figure 3.8 shows deflection history for seven transducers. 

 

 

 

 

 

 

 

 

 

 

 

            Figure 3.8. LDVT Deflection History SW1 

 As anticipated deflection history showed that upper part of the shear wall was deflecting 

linearly with load increments. Wall’s bottom remained almost unaffected by load growth.  

Wall’s uplift was minimal (LVDT2 and LVDT5), while slipping wasn’t detected (LVDT3 and 

LVDT6). The footing to wall connection was effectively preventing wall’s uplift and slipping. 

 The deflection behavior of the concrete panels was analyzed comparing matching 

deflection transducers on the concrete panels 

a) uplift deflection- LDVT2 vs. LDVT5  (Figure 3.9), 

b) slipping deflection- LDVT3 vs. LDVT6  

c)  rotational deflection (“toe” crushing)- LDVT7 vs. LDVT4 (Figure 3.10). 
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 Both concrete panels showed high resistance to the uplift force. Maximal uplift deflection 

for panel #1 was 0.191 in while for panel #2 was 0.196 in.  Figure 3.9 shows that there is a very 

small difference (0.0145in) in panels’ behavior when resisting uplift force. 

 

 

 

 

 

 

 

 

 

Figure 3.9. Uplift Deflections SW1 

 Both concrete panels showed very high resistance to the slipping force. Maximum 

slipping deflection for panel #1 -0.0098in while maximum slipping deflection for the panel #2 

was -0.0125in.  Negative sign means that actual slipping did not occur, but rather rotation at the 

wall-footing connections. Wall’s slipping behavior is characterized by the same direction (sign 

orientation) of the lateral force and the bottom of the wall. Negative sign for both wall panels 

means that the wall panels moved in opposite direction than lateral force. However, the 

magnitude of the movement is insignificant when compared to the total quantity of lateral 

deflection (0.93 in or ≈1.3% of total lateral deflection). 

  When concrete panel is laterally loaded at the top, the bottom end has tendency to rotate 

inward, generating high compression (crushing) forces.  Rotational analysis gives us very good 
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insight how crack formation directs panels’ behavior. As seen from Figure 3.10 bulk of wall 

rotation is detected at the second panel. The first major spike in panel’s rotation coincides with 

first crack detection at approximately 25,000lb. The second change in panels’ response to lateral 

load occurred after massive crack progression at the joint between cross beam and panel #1. This 

event occurred at lateral load of 35,000lb. At this point there is an aggressive transfer in panel’s 

rotation from panel#2 to panel#1, with simultaneous drop in deflection at panel #2. This drop at 

panel#2 could be attributed to hinge formation at joint between cross beam and panel#1.  

 

 

 

 

 

 

 

 

 

 

 

                    Figure 3.10. Rotational Deflections (“toe” crushing) SW1 

 The maximum deflection at panel#1 was 0.04in, while maximum deflection at panel#2 

was 0.035in. Maximum difference in deflection between panels was 0.035in. 

Load–deflection analysis summary is presented in Table 3.4. 
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Table 3.4. Load –Deflection Analysis Summary SW1 

Load -Shear Deflection Load-Lateral  Deflection 
Panel #1 

Deflection (in) 

    Panel #2 

Deflection (in) 

Δs max = 0.72 

in 

L max = 40,555lb Δ1max= 0.93 in L max = 40,555lb uplift max =0.191  uplift max =0.196  

Δs1max = 0.84 

in 

L max = 40,555lb Δ1sap2000= 0.21in 
L sap2000= 

21,2100lb 

slipping max =  

-0.0098 
slipping max = -0.0125 

Δs2max = 0.82 

in 

L max = 40,555lb 
Δ1design= 

0.41in 

L design= 

21,2100lb 

rotational max=0.04 

rotational 

max=0.035 

 

3.2.3. Shear Stiffness (G) of SW1
9
 

 The shear stiffness is defined as wall’s resistance to shearing strains. The shear stiffness 

correlates wall’s deformation to an action of a force applied parallel to one of its surfaces while 

its opposite face experiences an opposing force. The wall’s shear stiffness was calculated 

according to the equation recommended in ASTM E564.  

    G’=8,423.60 lb/in 

3.2.4. Strain Analysis for SW1 

 Strain gauges were placed on the compression sides of the wall face.  Gauges s1 and s2 

are placed on the compression face of the panel#1, while gauges s3 and s4 are placed on the 

compression face of the panel#2. Maximal strain obtained for SW1 was -118 µE. Maximal strain 

was  recorded at the maximal lateral load of 40,555 lb (Figure 3.11).  

 

                                                             
9 Detailed shear stiffness calculations are presented in Appendix A-5 
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 Load-Strain curve in Figure 3.11. shows linear dependency between lateral load and 

concrete strains on the compression sides. Shape irregularities displayed on the graph are 

attributed to the gauge’s sensitivity to the testing conditions.  

 

 

 

 

 

 

 

 

 

 

          Figure 3.11. Load-Strain Curve SW1 

 

3.2.5. Concrete Crack Analysis for SW1 

  Concrete crack analysis is visual observation of cracks development and cracks 

propagation while wall being under constant lateral loading. Once the cracks were detected, they 

were marked and photos were taken (Figure 3.12). Procedure is repeated until wall’s structural 

failure.  
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           Figure 3.12. Concrete Cracks Development
10

 

 First cracks were observed at 25,000lb on the both sides (front and back) at the joint 

between connecting beam and panel#1 (Figure 3.13).  At load of 30,000lb additional cracks 

showed on the both side at the joint between connecting beam and panel#2 (Figure 3.14). Cracks 

that were created at 25,000lb load further propagated diagonally. At failure load of 40,555lb 

concrete split at the base of the connecting beam 15” lateral from the joint with panel#1 (Figure 

                                                             
10 Dark lines on the wall represent reinforcement position in the wall 
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panel #2 

connecting beam 
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3.15). Splitting crack was 0.25”wide and 19” long, diagonally spreading across the depth of the 

connecting beam.  

 

 

 

 

 

                  Figure 3.13. Cracks Generation at Load of 25,000lb (Front and Back Side) 

 

 

 

 

 

 

 

                  Figure 3.14. Cracks Generation at Load of 30,000lb (Front and Back Side) 

 

 

 

 

 

 

        

                  Figure 3.15. Cracks Generation at Failure Load (Front and Back Side 
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At the failure load cracks at the joint between connecting beam and panel#2 propagated further 

but no concrete splitting was detected. Additional new crack (22” long) was detected at the 

bottom section of the panel#2. 

3.2.6. Shear Wall Testing for Experimental Concrete Mix (SW2) 

The SW2 wall was tested on 35th day after concrete was casted. The lateral load was 

applied at approximately 1000lb/s. The load is transferred from the actuator to the wall over 7”x 

4”x 2” steel plate. The load was distributed over effective concrete area of 28in
2
, which proved 

to be insufficient to prevent concrete bearing failure. The maximum lateral load, achieved 

before wall’s structural bearing failure, was measured to be 27,657.18 lb (Figure 3.16). 

  

 

 

 

 

 

 

           Figure 3.16. Experimental Wall Bearing Failure SW2 

Further concrete penetration by hydraulic actuator was prevented by wall’s vertical 

reinforcement (Figure 3.16). 

3.2.7. Load Displacement Analysis for SW2 

  Maximum shear displacement (Δs max) for experimental mix SW2 was obtained before 

maximum lateral load (L max) was achieved. 

  

Vertical reinforcement #4 bar 
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                      Δs max = 0.214in 

           L shear_max = 24,297 lb  

Load–shear displacement curve for SW2 (Figure 3.17) shows wall’s overall response to the 

lateral loading.  

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 3.17. Load Shear Displacement Curve SW2 

 Negative values of the shear displacement indicate the wall did not behave in anticipated 

fashion. It seems that factors such as uplift, slipping and “toe” rotations greatly contributed to the 

wall’s overall behavior. Additionally, the contribution of the each wall panel to the total shear 

deflection was analyzed comparing panel’s individual shear deflections (Figure 3.18). 

Δs1max = -0.235 in 

Δs2max =- 0.179 in .                    
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    Knowing that wall’s panel #1 structurally failed in bearing, it was expected that panel #1 

has the highest shear deflection. Sudden change in the slope of the shear deflections coincides 

with start of the bearing failure of the panel #1. 

 

 

 

 

 

 

 

               

 

              Figure 3.18. Shear Deflections SW2 

 When load-lateral displacement curve was analyzed (Figure 3.19), it revealed that the 

wall started deflecting in lateral direction only after the bearing failure was already in progress. 

Rapid progression in a wall’s bearing failure coincides with rapid progression in lateral 

deflection. Maximal lateral deflection (Δ1max= 0.237 in), occurred at maximal lateral load (Lmax= 

27,657.18 lb) 
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              Figure 3.19. Load-Lateral Displacement Curve SW2  

 

 In order to determine wall’s behavior contribution of each LDVT to shear deflection is 

analyzed (Figure 3.20). Anticipated deflection patterns from LDVT were not confirmed. It seems 

that upper sections of the shear wall were not deflecting linearly with load increments. Spike in 

displacement of the wall’s upper section was only noticed after bearing failure. Wall’s bottom 

sections remained unaffected by load growth until reached approximately 21,000lb. At that point 

wall’s panels (LVDT3 and LVDT6) were displacing in opposite directions. Significant wall 

uplift was detected at both panels (LVDT2 and LVDT5). 
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           Figure 3.20. LVDTs Deflection History SW2 

 

The deflection behavior of the concrete panels was further analyzed comparing matching 

deflection transducers on the concrete panels: 

a) uplift analysis- LDVT2 vs. LDVT5  (Figure 3.21), 

b) slipping analysis- LDVT3 vs. LDVT6 (Figure 3.23), 

c)  rotational analysis (“toe” crushing)- LDVT7 vs. LDVT4 (Figure 3.24). 

Both concrete panels showed relatively low resistance to the uplift force when 

compared to SW1. Maximal uplift deflection for panel #1 was 0.317in, while for panel #2 was 

0.150in. Figure 3.21 shows a difference of 0.167in in panels’ uplift deflection. Low uplift 

resistance affected how wall has behaved when laterally loaded. It seems that wall started 

deflecting upwards before it started deflecting laterally, giving shear displacement curve 

negative sign orientation.  
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                   Figure 3.21. Uplift Deflections SW2 

 First major peak in uplift deflection was detected at load of approximately 10,000lb 

(Figure 3.22). Uplift deflection was linearly increasing with the load, dominating overall wall 

behavior. 

 

 

 

 

 

 

                     Figure 3.22. Uplift Deflection at SW2 
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 Both concrete panels showed low resistance to the slipping force. Maximum slipping 

deflection for panel #1 was -0.044in while maximum slipping deflection for the panel #2 was 

0.016in (Figure 3.23).  Negative sign for wall panel#1 means that the wall panel moved in 

opposite direction than lateral force, while positive sign for panel#2 means that this panel moved 

in the same direction as lateral force. The panels opposite deflection indicate that the load 

transfer from panel#1 to panel#2 did not proceed as anticipated.  

  

 

 

 

 

 

 

 

 

 

 

               Figure 3.23. Slipping Deflections SW2 

 Rotational analysis showed that both panels deflections have negative sign, indicating 

that both panels rotated outwards (Figure 3.24). Maximal deflection for panel #1 was -0.0444, 

while maximal deflection for panel #2 was -0.0443. 
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            Figure 3.24. Rotational Deflections SW2 

 

Load deflection analysis summary is presented in Table 3.5. 

 

Table 3.5. Load Deflection Analysis Summary SW2 

Load -Shear Deflection Load-Lateral  Deflection 
Panel #1 

Deflection (in) 
    Panel #2 

Deflection (in) 

Δs max = 

 -0.214 in 

L shear max = 

27,757lb 

Δ1max= 

 0.237 in 

L max = 

27,657lb 

uplift 

max=0.317 uplift max =0.15  

Δs1max = 

  -0.235 in 

Ls1max  =  

23,757 lb 

lb 

Δ1sap2000= 

0.21in 

L sap2000= 

21,2100lb 

slipping max =  

-0.027 

slipping max = 

 0.016 

Δs2max = 

- 0.179 in 

L s2max=  

23,337 lb 

 

Δ1 design=  

0.003 in 

in 

L design= 

21,2100lb 

rotational max= 

-0.0440 

rotational max= 

-0.0443 
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3.2.8. Shear Stiffness (G’) for SW2
11

 

      Shear stiffness was calculated using Equation 3.4 recommended in ASTM E564. 

                   G’= 
𝑷𝒍∗𝒂

𝜟𝟏∗𝒃
                                                                         (Equation 3. 5) 

 

      Calculated shear stiffness for SW2 was G’ =22,540 lb/in 

3.2.9. Strain Analysis for SW2 

 Maximal strain obtained for SW1 was - 440.32µE. Maximal strain was recorded at the 

maximal lateral load of 27,597lb (Figure 3.25).  

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 3.25. Load-Strain Curve SW2 

                                                             
11  Detailed calculation for shear stiffness is presented in Appendix A-6 
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 Load-Strain curve in Figure 3.25. shows same linear dependency between lateral load and 

concrete strains as it was shown during testing of SW1. Shape irregularities displayed on the 

graph are attributed to the gauge’s sensitivity to the testing conditions. 

3.2.10. Concrete Crack Analysis for SW2 

  Concrete crack development and propagation pattern at SW2 was different than observed 

at SW1 (Figure 3.26).  The cracks were not only detected at the joints between panels and 

connecting beams but they were grouped at the lower sections of the wall panels as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 3.26. Concrete Crack Development and Propagation SW2 

 

panel #1 panel #2 

connecting beam  
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 First cracks were detected at the load of 10,000lb at the joint between footing and bottom 

section of the panel#1 (Figure 3.27). This finding confirmed assumption that initially the wall 

was deflecting upwards rather than sideways. 

 

 

 

 

 

 

                 Figure 3.27. Cracks Generation at Load of 10,000lb (Front Side) 

 

 At design load of 21,000lb additional cracks showed on the joints between connecting 

beam and both panels (Figure 3.28). At the same load additional cracks were detected at lower 

sections at both panels (Figure 3.29).  

 

 

 

 

 

 

                       Figure 3.28. Crack Generation at Load of 21,000lb (Front Side) 
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 At load of 27,597lb, concrete bearing failure occurred at the upper section of the panel#1 

at the point where the load was applied (Figure 3.30). It seems that bearing failure did not affect 

already formed cracks. No crack propagation was detected on already formed cracks. 

 

 

 

 

 

 

 

Figure 3.29. Cracks Development at Load of  21,000 lb ( Lower Front Side) 

 

 

 

 

 

 

 

 

 

                     Figure 3.30. Crack Generation at Failure Load (Front Side) 
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3.3. Cost Analysis 

3.3.1. Cost Analysis of Precast (Industry Standard) ICF  

 The cost estimation of typical precast industry standard ICF walls (Figure 3.31) was 

obtained from NAHB Research Center and ICF Builder Magazine (2012). 

The precast ICF specifications:  

 #4 dowels,  48" long, spaced 12" on center   

 6" concrete layer 

 #4 bar horizontal at 16" on center and one within 12" of the top of the wall, double at all 

openings.  

 #4 bar vertical at 12" on center, double at all openings.  

 3/8" aggregate 3500 psi concrete.  

 $3.15 per sq. ft. of ICF  

 $3.00 for ICF labor cost 

Total cost estimate for precast ICF walls
12

 was calculated to be 9.08 $/ft² (Table 3.6). 

 

 

 

 

                                                             
12  Precast ICF Wall Figure is taken from monsterconstructor.com website 

Item $/ft² 

 Dowels 0.55 

ICF forms  6" 3.5 

Reinforcing steel 0.6 

Concrete 6” core at $80/CY 1.48 

Labor 3.25 

Waste 0.25 

Total 9.08 

 

 

 

 

 

Table 3.6. Initial Cost Estimate of Precast ICF Walls   

Figure 3.31. Precast ICF Wall 
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3.3.2. Cost Analysis of Site-Build ICF Wall System  

 The cost of material for site build ICF wall was computed from actual material purchases 

used in project (Table 3.7.) 

 

 

 

 

 

 

The job-build ICF specifications (Figure 3.32):  

 #5 dowels,  24" long, spaced 18" on center   

 6" concrete layer 

 #4 bar horizontal at 18" on center and one within 12" of the top of the wall 

 #4 bar vertical at 18" on center, and one within 6”from the opening.   

 3/4" aggregate 4000 psi concrete.  

  EPS Boards 8’x4’x 2” 

 Ties- 24” long spaced at 16” 

 Plywood  8’x4’x ¾”   

 2x4 boards 8ft long  

Total cost estimate
13

 for job build ICF walls was calculated to be 10.86 $/ft² (Table 3.8) 

 

                                                             
13  Labor was estimated as exterior wall framing, data was obtained from Home Improvement Resource web 
site 

Item Member Quantity 

Sheet plywood  3/4" 5 

Studs  lumber 2x4   20 

Wales lumber 2x4  40 

Columns lumber 2x4  4 

Ties steel rod  72" long 7 

 

Table 3.7. Materials Used in Construction of Site Build ICF Wall System 
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      Table 3.8. Initial Cost Estimate of Job Build ICF Wall 

 

 

 

 

 

 

 Figure 3.32 Formwork Job Build ICF Wall 

 

 

3.3.3.  Cost Analysis of Site-Build Sustainable ICF Wall System 

 Salvaged plywood and 2x4 boards are used in building of formwork for sustainable job -

build ICF system (Figure 3.33). Usually the cost of salvaged lumber is 50-70% of the price of 

the new lumber.  

      Table 3.9. Initial Cost Estimate of Job Build Sustainable ICF Wall 

 

 

 

 

 

 

                                                                                         Figure 3.33. Formwork Job Build 

Sustainable ICF Wall 

Item $/ft² 

Dowels 0.55 

EPS Boards 4”  1.53 

Reinforcing steel 0.5 

Concrete 6” core at 

$80/CY 1.48 

Plywood ¾” 1.22 

2x4 boards  1.67 

Labor ³ 3.00 

Ties, Nail 0.66 

Waste 0.25 

Total 10.86 

  

 

 

Item $/ft² 

Dowels 0.55 

EPS Boards 4”  1.53 

Reinforcing steel 0.5 

Concrete 6” core at $96/CY 1.77 

Plywood ¾” 0.66 

2x4 boards  0.8 

Labor²  3.45 

Ties, Nail 0.33 

Waste 0.1 

 Total 9.69 

  

 

 



87 
 

 
 

 Reusable ties are also used in building of the formwork. Labor cost is increased for 15% 

compared to job build ICF walls. Labor cost rise was attributed to handling reused lumber 

materials.  Total cost estimate for sustainable job build ICF walls was calculated to be $9.69 

(Table 3.9). 

 Initial cost of  job-build ICF walls is 16.4 % higher than  precast ICF walls, while initial 

cost of job-build sustainable ICF wall is 6.3% higher than  precast ICF walls. 
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CHAPTER 4. DISSCUSION AND CONCLUSION  

  This chapter summarizes and discusses findings from the Chapter 3. It compares test 

results with the research hypotheses and makes further research recommendations.  

4.1. Material Testing Discussion                                                        

Results from material testing showed that experimental mix did not gain designed 

compression strength. The reason why experimental mix did not gain designed compression 

strength is either due to chemical or mineral contamination. Chemical contamination of self 

consolidating agent could cause a very strong retardation. Chemical hydration process and 

chemical contamination of self consolidating agent could be very difficult to trace. Another 

source of retardation could be mineral contamination of the aggregate. Recycled aggregate is 

first on the list of potential contaminated candidates. It could be possible that recycled concrete 

aggregate in previous utilization cycle was used in mineral contaminated environment (for 

example environmental conditions were too acidic). Additionally, many minerals could shut 

down the C3A
14

 (three calcium aluminate) or C3S (three calcium silicate) potential in Portland 

or IPF cement. 

 Compression tests results also showed that experimental mix specimen gain strength 

when exposed to dry conditions. Explanation why the compression cylinders gain strength in 

dry condition could lie in combination of factors. One of the factors could be that the heat from 

being out of doors is likely the strength gaining catalyst. Mechanism of this reaction still 

remains unknown.  Results from the Chapter 3 do not support thesis Hypothesis #1 that states 

that test results for the shear wall made of experimental concrete mix will not be significantly 

greater than test results for the shear wall of regular concrete. 
                                                             
14 C3A  and C3S  control dynamic and heat of hydration of concrete 
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4.2. Shear Wall Testing Discussion 

 Shear wall testing showed that SW1 has 32 % higher ultimate load capacity, 74.5 % 

higher lateral deflection and 99.9% higher lateral deflection at design load. SW1 also has 62.6% 

lower shear stiffness and 73.2% lower strain. Table 4.1 summaries testing results for both walls. 

Table 4.1. Summary of Shear Test Results for Control (SW1) and Experimental (SW2) wall 

 Measurement SW1 SW2 

Ultimate lateral load Pu (lb) 40,555 27,597 

Max lateral deflection Δ1 (in) 0.93 0.237 

Max shear deflection  Δs  (in) 0.72 -0.214 

Lateral deflection at design load Δ design (in) 0.41 0.003 

Shear stiffness (lb/in) 8,423 22,540 

Compression Strain
15

 (µE) 118.0 440.32 

First crack generation load (lb) 25,000 10,000 

 

 The test results showed that walls behaved differently under lateral loading. SW1 mostly 

deflected laterally with minimal uplift and no slipping, while SW2 first deflected upward before 

started deflecting laterally. Lateral deflection at SW2 mostly started when concrete bearing 

failure at load application point occurred. Walls’ different load response could be attributed to 

different concrete mixes used in the study. It seems that concrete to dowel bond in control mix 

was stronger than concrete to dowel bond in experimental mix. The comparative evaluation of 

shear deflection and shear stiffness between SW1 and SW2 should be taken with lot of reserves. 

It seems that both suggested algorithms (Equations 3.1 and 3.4) are heavily influenced by walls 

                                                             
15  Strain on the wall’s compression side   
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uplift deflections. Calculated max shear deflection for SW2 has negative sign which imply that 

wall just partially deflected as designed (as rhomboid).  Additionally, just looking at shear 

stiffness value we could wrongly conclude that SW2 has higher capacity to resist shear forces 

compared to SW1. Very interesting finding is that SW2 has higher compression strain capacity 

than SW1.  Results obtained from the Chapter 3 do not  support thesis hypothesis #2 that states 

that test results gotten from the testing a residential shear wall with control mix (SW1) will not 

be significantly greater than results gotten from the testing a residential shear wall with 

experimental mix (SW2) 

4.3. Cost Analysis Discussion 

 Cost analysis showed that when precast ICF walls are less costly than job build ICF 

walls. However this holds true just for initial material and labor costs analysis. In order to 

compare overall cost of pre cast ICF vs. job build walls we needed more profound cost analysis. 

The  value of   job built ICF walls is its ability to withstand high gravity construction loads. Job 

built ICF formwork’s high structural rigidity allows cast in-place of both, floor’s slab and 

accompanying walls. Precast ICF walls do not have high compressive strength (60 psi) and 

therefore combined slab–walls cast in-place is not possible.  

There are two other potential benefits from combined cast in place concrete placement. 

First potential benefit is that construction cost is lower. Generally, on small projects such as 

concrete walls, 20-30 % of concrete casting cost is going towards transportation costs and 

handling fees for concrete mixing trucks. Concrete slabs in general take more concrete volume 

than concrete walls. If fewer times concrete mixing trucks are needed on the site project, lower 

are overall construction costs. 
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Second potential benefit is a higher construction pace. Precast ICF systems are generally 

constrained by lower concrete placement rate. A concrete placement rate for precast ICF systems 

is about 3 ft/hr. A concrete placement rate for job build ICF systems is between 10 ft/hr and 15 

ft/hr depending of the formwork design. High concrete placement rate allows lower labor cost 

and accelerated construction process. Accelerated construction could be very important issues in 

uncharacteristic construction circumstances such as relief efforts after earthquakes, tornados, 

hurricanes or wars.  In these circumstances reliable, safe, cost effective and quick construction 

systems could vital for the public safety and benefit.  

If we assumed that job build ICF formwork is going to be reused at least 5 times before 

discarded and that concrete cost for job build ICF wall per project is going to be 20% lower than 

it would be for pre cast ICF wall than we get a better approximation of  real overall cost of ICF 

wall systems. Figure 4.1 shows comparison between initial and overall cost of ICF wall systems. 

 Overall cost of job build ICF wall remain almost unchanged ($ 10.56) but overall cost of 

sustainable  job build ICF wall dropped significantly ( $ 7.84). When comparing overall cost of 

sustainable job build ICF wall to precast ICF wall we can see that cost of building sustainable 

ICF wall is 13.6%  is less expensive than building precast ICF wall. 
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Figure 4.1. Initial to Overall Cost Analysis Comparison among ICF Wall Systems  

 

Results of overall cost analysis of   ICF wall systems support thesis hypothesis #3  that 

stated that the cost of the construction of the job build insulated concrete form walls is not going 

to be significantly more expensive than the cost of construction of a precast insulated concrete 

form walls. 

4.4. Conclusion 

         The results showed that compressive strength of the experimental mix (1,164 psi) is 

below safe minimum limits required for residential structural concrete (2,500 psi). However, 

flexural strength of experimental mix (2,399 psi) showed no signs of flexural strength 

retardation. The cause and mechanism of compressive strength retardation remains unclear and 

unknown. 
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 The results showed that shear wall with experimental mix (SW2) showed significantly 

lower shear capacity (27.7 kips) compared to the shear capacity (40.5 kips) of the wall with 

control mix (SW1). However obtained shear capacity for both walls was greater than shear 

demand (21.1kips).  

 The results also showed that implementing sustainability concept in residential 

construction process did not affect its cost competitiveness. Overall cost of construction of  

job-build sustainable ICF shear wall is 13.6% less expensive than conventional pre-cast ICF 

wall.  

 The proposed system was shown to be cost competitive, environmentally friendly and 

structurally safe, despite excessive compressive strength retardation of experimental concrete 

mix caused by mineral or chemical contamination. 

4.5. Recommendations for Future Work 

 For the future work I recommend replicating the experimental concrete mix and testing 

its compression strength. The literature review does not provide any evidence that using RCA, 

flay ash and self consolidating admixture would decrease its compressive strength that 

dramatically, but contrary  all evidence point that using self consolidating admixture should 

increase concrete’s mix compressive strength. In order to rule out any ambiguities experimental 

mix should use more than one source of RCA and self consolidating agent. 

   Additional work should be done in testing different type of connections between footing 

and the wall. As seen from the shear wall testing bonding between concrete and dowel at the 

shear wall with experimental mix, played major role how wall deflected under lateral load. Since 
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the bond wasn’t strong enough, the wall started deflecting upwards before started deflecting 

laterally. For the future studies I recommend testing different types footing to wall connection by 

varying shape of dowel design, length and spacing. 

  Finally the second look should be given to the equation that calculates wall’s shear 

stiffness. Using this equation blindly we could erroneously conclude that the wall with 

experimental mix had larger shear stiffness, which was obviously not the case. This equation is 

heavily influenced by lateral deflection of the upper leading corner. As seen from the results of 

this study, the wall necessary does not deflect purely laterally, but it can deflect differently than 

predicted. This especially holds true for the walls with openings.  
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𝑞z= 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2𝐼  

 

A-1. Wind Load Calculations 

Step 1. Calculate Velocity Pressure Coefficient  

 

 

where: Kz is velocity exposure coefficient evaluated at height z(ft), Kzt is topographical factor 

(flat surface assumed), Kd is wind directional factor and I is building importance factor.  

Kz= 0.85 

Kzt=1.00  

Kd= 0.85 

V= 170 mph 

I=1.00 (Category II building, Table 1-1. ASCE 7) 

𝑞z= 0.00256 ∗ 0.85 ∗ 1.00 ∗ 0.85 ∗ 1702 ∗ 1.00  

𝑞z=53.45 psf 

qz= qh 

qh= 53.45 psf 

Step 2. Calculate External Pressure Coefficients (GCp)  

 External Pressure Coefficients are calculated using appropriate coefficients from 

Appendix A-1 Table 1. and 2. 

Appendix A-1 Table 1.  Wall External Pressure Coefficient from the ASCE 07-10 Table 

27.4-1 

 

h= mean roof height (ft) 
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L= horizontal dimension of the building (ft) measured parallel to the wind 

B= horizontal dimension of the building (ft) measured normal to the wind  

G=0.85 –gust factor for rigid building 

Windward wall - All values 

Cp=0.8 

GCp=0.85*0.8 

GCp=0.68 

Leeward wall    - L/B= 48/50=0.96;  

Cp=-0.5 

 GCp=0.85*0.5 

GCp=0.425 

Roof Windward- h/L =15/48 =0.312; Angle θ =15° 

 Cp=-0.7 

 GCp=0.85*-0.7 

 GCp=-0.595 

Roof Leeward - Angle θ =15° 

 Cp=-0.5 

 GCp =0.85*-0.5 

 GCp=-0.425 

Appendix A-1 Table 2. Roof External Pressure Coefficients from the ASCE 07-10 27.4-1.
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 Step 2.  Calculate Design Pressure (p) 

  Wind Pressure Equation used (Equation 2.2) for calculating the pressure design (p) 

combines internal and external design pressures ASCE 07-10, Section 27.4-1. 

p =qGCp-qi(GCpi)                                                             

Since only external pressure equation is used for the design of shear walls we can simplify this 

equation to: 

 p =qGCp                                            

Windward wall pressure 

 p= 𝑞z*G*Cp 

 p=53.45*0.68  

             p=36.34lb/ft2  

Leeward wall pressure   

p= 𝑞h*G*Cp 

p=53.45*0.425 

p=22.71 lb/ft2 

 

Total wind load wall pressure: pw= Windward wall pressure+ Leeward wall pressure 

Total wind load wall pressure: pw= 36.34 + 22.71

Total wind load wall pressure: pw= 59.05 lb/ft
2 

Roof windward pressure 

           p= 𝑞h*G*Cp 

           p=53.45*-0.595 

           p= - 31.80lb/ft
2
 

Roof leeward pressure 

           p= 𝑞h*G*Cp 

           p=53.45*-0.425 

           p= - 22.71lb/ft
2
 

Total wind load roof pressure: pr= Windward roof pressure+ Leeward roof pressure 

Total wind load roof pressure: pr= 31.80 + 22.71

Total wind load roof pressure: pr= 53.79lb/ft
2 

 Both roof wind pressures contribute to shear demand of the walls, and they are included 

in the computation of the total wind load on the structure (Appendix A-1 Figure 1.). Since the 
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slope of the roof is relatively small it is conservatively assumed that total roof load is acting 

horizontally (parallel to the shear wall). 

 It is assumed that there is no roof overhang on the structure and that is the reason why 

overhang wind load are not included in the calculations. 

 

Appendix A-1 Figure  1. Wind Load Wall (pw) and Roof Pressures (pr) 

   

Step 3.  Calculate Total Wind Load (W) 

Total wind loads acting on the structure come from the wind wall pressure and form the 

roof’s wind pressures.  

Total wind loads acting on structure:  

W= pw * ℎw+ pr * ℎrh, 

where  ℎw is height of the wall is ft, and ℎrh median roof height in ft.  

         W= 59.05 lb/ft
2 
* 8 ft + 53.79 lb/ft

2
 *7 ft 

 

 

 

W= 848.93 lb/ft 
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Step 4.   Calculate Lateral Wind Force (Pw) 

Lateral wind force (Pw) is wall is calculated from the total wind load (W) acting parallel 

to the shear wall                             

Pw= W* B/2, 

where W is wind load (lb/ft
2
)  and B is length of the wind wall base (ft) 

Pw= 
848.93

lb

ft
∗50 𝑓𝑡

2
 

Pw= 21223.25 lb  

 

  

 

 

 

 

 

 

 

 

Pw =21.22 kips 
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A-2. Sizing the Shear Wall Calculations 

 ACI 318-08 code requires that all shear walls have to have minimum shear reinforcement 

no-matter how small shear demand is. The code stipulates that where Vu is less than 0.5φVc only 

minimum shear reinforcement is needed (ACI 318-08, Sections 11.9.8 and 14.3.1.). 

 Vu ≤ 0.5φ Vc                                                                                                

For the calculation of the nominal shear strength (Vc) of the concrete section equations ACI 318-

08 11.9.5 was used: 

Vc= 2λ 𝑓′𝑐 hd                                                                                   

Where,

Vc is nominal shear strength provided by concrete (ACI 318-08, Section 11-2), 

λ is concrete modification factor  (ACI 318-08, Section 8.6.1). It is 1.00 for normal weight 

concrete,  

f'c is concrete strength in psi, 

h is thickness of the wall in inches (ACI 318-08, Section 11.9.3), 

d= 0.8𝑙w            (ACI 318-08, Section 11.9.4), 

where 𝑙w is overall length of the wall in inches, 

φ is strength reduction factor  for shear; φ =0.75  (ACI 318-08, Section 9.3.2.3). 

In order to get preliminary length of the shear wall Equations 5. and 6.were combined to get: 
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Vu=0.5*φ2λ 𝑓′𝑐hd 

According to International Residential Code for One and Two Story Family Dwelling (2012) 

minimum flat wall thickness is 4”, therefore 4” wall thickness was used in preliminary 

calculations. 

Vu=0.5*φ 2λ 𝑓′𝑐hd 

21220 = 0.5*0.75*2∗  4000 *4*d 

 d= 111.83in 

Since d= 0.8𝑙w, therefore total length of the wall  

𝑙w=111.83/0.8 

𝑙w=139.79 in=11.65 ft 

It was proposed that openings occupies 30 % of the total area of the wall, therefore it was 

decided to add approximately 30% extra length to the preliminary size of the wall. Therefore, the 

final longitudinal dimensions of the shear wall, used for numerical analysis, was determined to 

be 14 ft. 

 

 

 

 

A-3. F.E. Models of Shear Walls With Openings   
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a) Group 1. Walls With Three Single Window Openings (2ft x 4ft) 

 

Appendix A-3. Figure  1. Group 1. Model Dimensions 

 

1.  F.E. model with three single window opening and wall thickness of 4”. 

 

 

 

  

 

2. F.E. model with three single window opening and wall thickness of 5” 

 

 

Max shear stress = -141.1 psi 

 

 

Max deflection horizontal=-0.0194 in  
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3. F.E. model with three single window opening and wall thickness of 6” 

 

 

 

 

 

 

 

 

4. F.E. model with three single window opening and wall thickness of 8” 

 

 

 

Max shear stress = -94.22 psi 

 

 

Max deflection horizontal=- 0.013in 
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b) Group 2. Walls With Double Door Opening (6ft x 6.83ft) 

 

 

 Appendix A-3. Figure  2. Wall With Double Door Opening Dimensions 

 

1. F.E. model with double door opening  and wall thickness of 4” 
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2. F.E. model with double door opening  and wall thickness of 5” 

 

 

 

 

 

 

 

 

 

 

3. F.E. model with double door opening  and wall thickness 6” 

 

 

 

Max shear stress = -103.55 psi 

 

 

 

Max deflection horizontal=-0.02 in 
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4. F.E. model with double door opening  and wall thickness 8” 

 

 

                                   

 

 

 

 

 The wall with thickness of 4” had the stress demand of 149.5 psi, which is higher than the 

maximum concrete shear stress capacity.  The maximum shear stress that concrete can resist is 

given by equation ACI 318-07, Section 11.9.5 

𝒗c =2λ 𝑓′𝑐(psi),                                                                               

 

Max Shear stress = -74.19 psi                                     

 

 

Max deflection horizontal=-0.0121 
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𝒗c = 109.5 psi.  

 Acknowledging that complete shear failure is unlikely event, due to presence of 

minimum reinforcement requirement, we still wanted to stay away from concrete cracking. 

Once the concrete section is cracked it starts to behave in fairly nonlinear fashion which hard to 

model and test. All three of remaining candidates (5”, 6” and 8” thickness) satisfied stress 

condition requirement. Although, Prescriptive Methods stipulated minimum 8” wall thickness 

around opening, structural analysis showed that this stipulation is highly over conservative from 

structural design standpoint and more expensive form construction stand point.  Additional 

reason why we decided not to include 8” wall thickness into further consideration comes from 

architectural reasons as well. Considering that we have to add 4” of additional foam boards plus 

1” of final wall’s covering we end up with 13” deep walls. The wall that deep would require 

custom made windows and doors which would add to extra construction cost of the structure.  

  Finally it was decided that 6” thick wall is better testing candidate than 5” thick wall for 

mostly construction reasons. Knowing that reinforcement has to be put in place inside the wall,  

and knowing that minimum of 1.5” clear cover is needed  for exterior walls (ACI 318-07, 

Section 7.7.1) it was decided that 6” thick wall would give us more room to operate if  any 

correction is needed in placing reinforcement mesh.   

c) Group3. Walls with Large Double Window Opening (6ft x 5.8ft) 
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Appendix A-3. Figure  3. Walls with Large Double Window Opening Dimensions 

1. F.E. model with large double window opening and wall thickness 4” 

 

 

 

 

 

 

 

2. F.E. model with large double window opening and wall thickness 5” 

 

Max shear stress =  -149.5psi 

 

 

 

Max deflection horizontal= - 0.027in 
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3. F.E. model with large double window opening and wall thickness 6” 

4.  

 

 

 

 

 

 

 

 

 

4. F.E. model with large double window opening and wall thickness 8” 

 

Max Shear stress = -119.2psi 

 

 

Max deflection horizontal=-0.0185in in 
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A-4. Dowel Design Calculations 

 

Max Shear stress = -74.66 psi 

 

 

Max deflection horizontal=- 0.0114in 
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Minimum splice length 𝑙= 40 db,   

where, db is diameter of the vertical reinforcement.  

𝑙= 40* 0.5 = 20 in ≤ 24 in 

The dowel ends with 90° twelve inch long hook parallel to the length to the end of footing  

 

 

 

 

 

 

 

A-5. Formwork Design Calculations 

 

 pair of #5 

dowels 
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Concrete lateral pressure was calculated using ACI equations: 

pmax= Cw*Cc[   150+43,400/T+2800 R/T]                                                

pmax ≥600 Cw            

pfluid ≤γh 

Cc =1.4- Chemistry Coefficient; for other types of blend with admixtures containing less 

than 70% slag or less than 40% fly ash. Once lateral pressure is determined it is used for 

calculating stud spacing. 

Cw=1.00 ;      R=10  ;   T=6 0F; 

 Pflud= 1200.00 lb/ft
2 

 Pmax= 1340.00 lb/ft
2 

       Pdesign= 1200.00 lb/ft
2 

 

Stud spacing 

There are 3 limit states that governed studs spacing: 

1. Bending limit  𝒍= 10.95 
𝑭𝒃𝑺

𝒘

𝟐
 ;  

where :                                               

𝐹𝑏   plywood’s maximum bending strength=1545 psi 

 𝑆 =
𝑏ℎ2

6
is elastic section modulus, =0.412 in

3
. 

  𝑤 is calculated lateral pressure per unit width =1200 lb/ft 

              𝒍= 8.92 in 

2. Deflection  limit governed by span length L/360 and 1/16 

𝒍(L/360)= 1.69 
𝑬𝑰

𝒘

𝟑
;                                                         

 

where: 

𝐸 is Modulus of elasticity of plywood=1,5000,000 psi, 
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 𝐼 =
𝑏ℎ3

12
 𝑖𝑠 moment of inertia=0.197in

4
;   

𝑤=1200 lb/ft 

𝒍(L/360)= 10.59 in                                                        

𝒍(1/16)= 12.08 in                 

                               

3. Shear  limit state is governed by  

𝒍(shear)=

𝟐𝟎 𝑭𝒗∗𝑰∗𝒃

𝒘∗𝑸
;                                                      

where: 

𝐹𝑣 is shear strength of plywood= 57 psi  

𝑏 is section unit width =12 in 

ℎ is plywood thickness=3/4” 

𝑄= 
𝑏ℎ2

8
is first moment of area =0.843 

𝒍(shear) =8.03 in governs 

 

Wales spacing 

Wales spacing is governed by bending limit state (shear). 

  𝑙= 10.95 
𝐹𝑏𝑆

𝑤

2
, 

where: 

𝐹′𝑏  is adjusted  bending strength of studs= 1940 psi 

𝑆 =
𝑏ℎ2

6
is elastic section modulus, =1.31 in

3
. 

𝑤=1200*8.03/12= 803 lb/ft  

       𝒍bending= 19.5 in  

 

        Tie spacing 
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Tie spacing is governed by the same limit state (shear) as studs spacing except the shear is 

governed by equation 

𝑙shear=13.33∗ 𝐹𝑣
𝑏𝑑
𝑤 +2𝑑 

where: 

 𝑑 is section depth= 7 in 

 b is section thickness=1.5 in 

 𝐹′𝑣 is adjusted shear strength =225 psi 

 𝑤 = 1200lb/ft
2
 * 19.05/12= 1905 lb/ft 

      𝒍shear= 15.11in  

Ties were also checked for strength capacity 

Tie capacity = 3500 lb 

 T= 1200* 15.11*19.5/144= 2437 lb -tension force in tie 

 Tie capacity >T safe 

 

 

 

 

 A-6. Shear Stiffness Calculations 

To calculate shear stiffness we used equation 
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G’= 
𝑃𝑙∗𝑎

𝛥1∗𝑏
 

where: 

 G’ is the global shear stiffness (G’),    

P𝑙 is 1/3 of the maximal resistance load obtained from the load displacement curve, 

a is height of the wall =96 in, 

 b is length of the wall =164 in. 

𝛥1 is lateral displacement at maximal lateral resistance

SW1 SW2

 P𝑙= 0.33* 40,555= 13,383lb 

𝛥1 = 0.93 in 

G’= 
𝑃𝑙∗𝑎

𝛥1∗𝑏  
=  

13,383∗96

0.93∗164
  

 G’= 8,423.60 lb/in 

 

P𝑙= 0.33* 27,657.18= 9,126lb 

𝛥1= 0.237 in. 

G’= 
𝑃𝑙∗𝑎

𝛥1∗𝑏  
=  

9,126∗96

0.237∗164
 

 G’=22,540 lb/in 
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