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Bayesian Analysis of Insurance Losses Using the 
Buhlmann-Straub Credibility Model 

Abraham j. van der Merwe* and Kobus N. Bekkert 

Abstract:f 

We propose a Bayesian analysis to develop credibility estimates of the well
known Biihlmann-Straub model. We describe simple numerical methods to 
obtain exact posterior distributions and predictive densities under this model. 
These distributions are obtained through Monte Carlo simulations that gener
ate independent samples from the joint posterior distribution. Our methods 
are therefore preferable to methods such as Gibbs sampling, which generates 
dependent samples from the joint distribution. The methods discussed also 
can be extended to more complicated credibility models. 
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1 Introduction 

Let us consider a portfolio of I insurance risks where the ith insured 
risk is characterized by an unobservable random time homogenous risk 
parameter <Pi that influences the occurrence and size of the losses or 
claims stemming from risk i. We assume that the ith insured is observed 
for Ii periods (a period may be a month, quarter, year, etc.) and the 
data consist of the observations Yij and Pij for risk i in period j, j = 

1,2, ... , Ii and for i = 1,2, ... , I. The Yi/S and the Pi/S reflect the 
ith insured's claims experience (such as average claim amount or claim 
loss-ratio) and the weight (also called the risk volume), respectively, in 
period j. In principle, these weights should reflect the total exposure 
of each insured risk such as the number of claims in one year or the 
premium volume. A key consideration in the choice of Yij is that its 
conditional variance must be inversely proportional to the weight Pij. 
Following Goulet (1998) we depict the insurance portfolio as in Table 1. 

Given the data in Table 1, the insurer's problem is to determine the 
correct (or credibility) premium to charge each insured risk for period 
j + 1.1 To determine the correct premium, we will use the well-known 
Buhlmann-Straub credibility model (Buhlmann and Straub, 1970). The 
assumptions of the Buhlmann-Straub model are as follows: 

(B-Sl) lE [Yijl<Pi] = J1(<pd, is independent of j (Le., time invariant); 

(B-S2) The vectors (Yil, ... , Yiji' <Pi), i = 1, ... , I are mutually inde
pendent with finite covariance matrix; 

(B-S3) The risk parameters <PI, ... ,<PI are independent and identi
cally distributed; and 

(B-S4) Given <Pi, the ith insured's claims experience is uncorrelated 
across periods: 

{ 

0-
2 

(<I>i) if j = k 
Cov(Yij, Yikl<pd = 0 Pij 

otherwise 

fori= 1, ... ,1. 

1 This is a standard problem in actuarial credibility theory. There are several ap
proaches to determining this premium using credibility; see, for example, Gerber (1982), 
Waters (1987), Makov, Smith, and Liu (1996), Dannenburg, Kaas, and Goovaerts (1996), 
Goulet (1998), and Norberg (2004, pages 398-406) and references therein. 
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Under the Btihlmann-Straub model, the estimator of the premium 
is restricted to the class of linear Bayesian estimators. This restriction 
leads to a credibility premium for the ith insured, 'Pi, which is given by 

(1) 

where 0 ~ Zi ~ 1 is the credibility factor, Vi. = Lj Yij / Ii is the average 
claim of the ith insured, and Y. = Li Ii Vi. / Li Ii is the sample collective 
mean (based on all of the data). 

Table 1 
The Basic Insurance Portfolio 

Insured Risk Periodic 
Risk Level Observations Weights 

1 <PI Yll YllJ Pll PlJl 

i <Pi Yil Yili Pil Pili 

I <PI Yn YIJ/ Pn PIlI 

1.1 Our Objectives 

We will show that, by using a full Bayesian approach, the credi
bility premium corresponds to the mean of the posterior distribution 
of the portfolio's claims. Recall that in the Btihlmann-Straub model 
the number of periods of experience may be unbalanced across in
sureds, i.e., Ii depends on i. As a simplification, however, we will 
consider only the case of a balanced claims experience where Ii = j 
for i = 1,2, ... , I. To simplify matters, we assume that the risk level is 
such that J1(<Pi) = m + Ui and for i = 1, ... ,I and j = 1, ... ,j, 

(2) 

where m is a global or collective risk level, Ui is a random parameter, 
and Eij is a random error term. The random variables Ui and Eij are 
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sometimes called random effects.2 We assume the random effects are 
normally distributed,3 i.e., Eij ~ N(O, Pi/a}) and Ui ~ N(O, DO}). 

Eij ~ N(O, Pi/a}) 
Ui ~ N(O, oCTf). 

(3) 

(4) 

The credibility model as defined in equation (2) can be written in 
matrix notation as follows 

Y = ml + Zu+ E (5) 

where 

Y = (Yll, ... , Yl}, Y21, ... , Y2j, ... , Yn, ... , YIj)T (IJ x 1) 

1 = (1,1, ... ,I)T, (fJx 1) 
(I xI) 

E = (EIl, ... ,El},E21, ... ,E2j, ... ,En, ... EIj)T, (IJ x 1) 

are column vectors (T denotes transpose) and Z is an 1] x f matrix of 
Os and Is with the ones indicating the insured risk. Also, u and E are 
multivariate normal with u ~ N(O, OCTfl') and E ~ N(O, P-1CTf) where 1 
is the identity matrix and P is a diagonal matrix of weights, i.e., 

P = Diag (PIl •...• Pl}, P21,.··, P2j,···, PIl,···. pIj l, (IJ x 1]). 

For the credibility model of equation (5), the distribution of the data 
given m, u, and CTr can be written in matrix notation as 

1 1 ~Ij 
P (Ylm,u,CTf) = (2rr)-zIj iPi z (07) 

x exp {-~ (Y - ml - ZU)T P (Y - ml- ZU)}. 
(6) 

2The model represented by equation (2) is known in field of the analysis of variance 
as a one-way random effects model. For more on analysis of variance see, for example, 
Scheffe (1959) for a classical approach and Box and Tiao (1973) for a Bayesian approach. 

3 Klugman (1992) gives a few arguments supporting the normal assumption: (i) anal
ysis is often done on loss ratios, not losses themselves, so that the class-to-class devia
tions may well be symmetrically distributed; (ii) the normal distribution is easy to work 
with even when the model includes dependent observations; and (iii) (this is the most 
compelling argument) the Bayes solution and the credibility (linear Bayes) solution are 
identical. 
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Given the data, P (Ylm, u, o-f) may be regarded as a function of m, u, 
and o-f and not of Y. When so regarded, following Box and Tiao (1973) 

P (Yim, u, o-f) is called the likelihood function of m, u, and o-f and 

is written as L ( m, u, o-f 1 Y). The integrated likelihood function is the 
following I dimensional integral: 

L (m, o-f, 81 Y) = f L (m, u, o-f 1 Y) (2rr80-f) -~I exp {- 28
1
0-f UTU} du, 

jRI 

which reduces to 

(7) 

J _ J 
where Pi. = :L Pij and Y i. = :L Pij Yij / Pi.· The proof of equation (7) is 

j=l j=l 

given in van der Merwe and Bekker (2004). 

2 Prior and Posterior Distributions 

One of the main advantages of the Bayesian approach over the clas
sical statistical approach is that it allows for explicit use of the statis
tician's prior information on each parameter of interest, thereby giv
ing new insights in problems where classical statistics may fail. In the 
Bayesian framework, a prior must be specified even when the statis
tician has no actual prior information. Determination of reasonable 
non-informative priors in multi-parameter problems is not easy. Com
mon non-informative priors, such as Jeffreys' prior,4 can have features 
that have an unexpectedly dramatic effect on the posterior. In recog
nition of this problem, Berger and Bernardo (1992) proposed using so
called reference priors to develop non-informative priors, while Tibshi
rani (1989) and Datta and Ghosh (1995) have proposed using so-called 
probability-matching priors for this purpose. A key feature of Berger 
and Bernardo's approach is that it permits the reference prior to depend 
on the parameters of interest and on nuisance parameters. 

4The Jeffreys' prior is the square root of the determinant of the Fisher information 
matrix. 
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2.1 Reference Priors 

Suppose the data Y depends on a k x 1 vector of unknown parame
ters O. The reference prior method is motivated by the notion of max
imizing the expected amount of information about 0 provided by the 
data Y. The expectation is lE [D (p (0 I Y) , P (0))] where 

D (p (Oly), p (0)) = f p (OIY)log (p;~~~)) dO 
(J 

is the Kullback-Liebler divergence. 
The actual reference prior method stems from a modification of the 

notion of maximizing the expected information provided by the data. 
Berger and Bernardo (1992) define Zt = (Yi, Y2"" I Yd to be a vector 
containing data from t replications of an experiment. The first step in 
the reference prior method is to choose a prior distribution to maximize 
lE [D (p (OIZd, p (0))] for each t. The reference prior is then given as 
the limit of these priors. The algorithm for generating reference priors 
is described by Berger and Bernardo (1992) and Robert (2001). Only 
some of the features of the algorithm are described below. 

Step 1: Assume that the Fisher information matrix for 0 I F (0) I exists 
and is of full rank. Denote S = F- i (0). 

Step 2: Separate the parameters into r groups of sizes n 1, n2, ... , nr 
that correspond to their decreasing levels of importance, i.e" 

0= (O(l):O(2):' .. :O(r)) where O(l) = (eil""eNl) I 

0(2) = (ON1+il",l eN2), .. ·,andO(r) = (eNr_l+il""ek) with 
i 

Ni = 2: nj for j = 1, ... , r. Note that O(l) is the most impor
j=i 

tant and O(r) is the least. 

Step 3: Define, for j = 1, ... , r , O(j] = (O(l) ,,,,,0 (j)) and O(j] 

(O(j+i)"'" O(r)) so that 0 = (O(j]:O(j]). 

Step 4: Decompose the matrix S according to the r groups of sizes 
ni, n2, ... , nr, i.e" 

l 
All A~i 
A2i A22 

S = . . 

Ari Ar2 
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where Aij is an (ni x nj) matrix; 

Step 5: Define 5 j as the (Nj x Nj) matrix consisting of elements from 
the upper left corner of 5 with 5r == 5; 

Step 6: Let Hj == 5j I. Then define h j to be the (n j x n j) matrix 
contained in the lower right corner of Hj for j = 1, ... , r. 

Step 7: _ Define the (nj x Nj-l) matrixBj = [Ajl Aj2 ... Aj j-l J, 
for j = 2, ... ,r, of sizes (nj XNj-I). 

Step 8: It is straightforward to verify that for j = 2, ... , r 

and 

Step 9: Iteratively calculate H2, ... , Hr , and hence h2, ... , hr to obtain 
the ordered reference priors under asymptotic normality. 

According to Bernardo (1998), the derivation of the ordered refer
ence prior is greatly simplified if the hj (e) terms depend only on e[J], 

and not on e[J], then: 

I 

I nm Ihj(tnl
2 

p (e) = I 

j=l f 1 hj (e) 12 de[J] 

Often some of the integrals appearing in the algorithm are not defined. 
Berger and Bernardo (1992) then propose to derive the reference prior 
for compact subsets el of e and to consider the limit of the correspond
ing reference priors as l tends to infinity and el tends to e. In general, 
the resulting limits do not depend on the choice of sequence of the 
compact sets. -

The Btihlmann-Straub model, where we are concerned with the three 
parameters m, al, and 8-, represents a typical situation where reference 
priors had been shown to be very promising; see Ye (1995) and Yang 
and Chen (1995). As in the case of the Jeffreys' prior, the reference 
prior method is derived from the Fisher information matrix. Berger and 
Bernardo (1992) recommended the reference prior be based on having 
each parameter in its own group, i.e. having each conditional reference 
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prior be only one-dimensional. The notation {el, e2, e3} means that the 
parameter e1 is most important and e3 is the least important. 5 Only 
the reference prior for the group ordering {m, 8, a}} will be derived. 
The reference priors for other group orderings can be computed in a 
similar fashion. 

The Fisher information matrix and its inverse for the group ordering 
{m, 8, o-n are given below for the Buhlmann-Straub model with Y = 

ml + Zu + E where u ~ N(O,8o-f.l). E ,.,., N(O,P-1o-[). (See van der 
Merwe and Bekker (2004) for the derivation of these matrices.) 

o o 

F= o (8) 

o 

and its inverse is 

o o 

F- 1 = o ( )

2 
I] 1 

ZTHT07 
I 

1 2: ~ 
- 21H1 crr i=l l+~i.O o 

(9) 

where the determinant IHI is equal to 

(10) 

Here r = 3, nl = n2 = n3 = 1, Nl = 1, N2 = 2, and N3 = 3. 
For i,j = 1,2,3, let Fij and Fij denote the (i,j)th element of F and 
F-l as defined in equations (8) and (9), respectively. The matrices hj, 
j = 1,2,3 are needed to obtain the reference prior. Now, 

SIn this terminology, Jeffreys' prior is also a reference prior, arising when all the 
parameters are treated as a single group. 
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Further, as 

and 

OIL. ~ 

1 [ 
I ] 

207 i=1 I+p;.o 

which means that H22 = F22 - _pI F23F32 = h2' Therefore 
33 

h2 = .!. L Pi. 2 - _1_ L Pi. I 2 ( I )2 
2 i=1 (1 + Pi.t5) 2I] i=1 1 + Pi,t5 

and 

I] ( 1 )2 h3 = F33 = - -2 
2 O"I 

It follows that 

1 

P (m) cc hi = 1 because it does not contain m; 

P (151m) cc ht = L Pi, 2 _1.. L Pi. , { I 2 (I )2}i 
i=1 (1 + Pi.t5) I] i=1 1 + Pi. t5 

( 
2 ) ! 1 P O"llm,t5 cc hj = -2' 

O"I 

and 
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Notice that the hj (0) terms depend only on 0U]' which permits fac

torization (Bernardo, 1998), and not on oUL 
The reference prior for the group ordering {m, 8, un is therefore 

given by 

PRJ (m,8,un = P (m) P (81m) P (ulI8,m) 

- ~ L Pi. - ~ L Pi. 
{

I 2 ( I ) 2} ~ 
- ul i=l (1 + Pi.8)2 I] i=l 1 + Pi.8 

(11) 

This prior is independent of the limits of the compact subsets and yields 
a proper posterior distribution. As will be seen, PRJ (m, 8, un also 
satisfies the probability-matching criterion. 

It turns out that for the Btihlmann-Straub model, the reference prior 
for the group orderings {m, 8, un, {8, m, un, {8, ul, m} is given by 

equation (11), while for the group orderings {m, ul, 8}, {ul, m, 8}, 

{ul, 8, m} the reference prior is given by 

{

I 2}~ 2 -2 Pi. 
PR2 (m, U1' 8) oc u 1 ~ (1 + .8)2 

t=l Pt. 
(12) 

2.2 Probability-Matching Priors 

The reference prior algorithm is but one way to obtain useful non
informative priors. Another type of non-informative prior is the pro
bability-matching prior. This prior has good frequentist properties, Le. 
properties that hold on the average (in Y) rather than conditional on Y. 
Two reasons for using probability-matching priors are that they provide 
a method for constructing accurate frequentist intervals, and that they 
could be potentially useful for comparative purposes in a Bayesian anal
ysis. Also, Berger states (in Wolpert, 2004) that frequentist reasoning 
will play an important role in finally obtaining good general objective 
priors for model selection. Indeed, some statisticians argue that fre
quency calculations are an important part of applied Bayesian statistics. 
[See Rubin (1984) for an example.] 

There are two methods for generating probability-matching priors 
due to Tibshirani (1989) and to Datta and Ghosh (1995). Tibshirani 
(1989) generated probability-matching priors by transforming the model 
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parameters so that the (single) parameter of interest is orthogonal to 
the other parameters. The prior distribution is then taken to be propor
tional to the square root of the upper left element of the information 
matrix in the new parameterization. 

Datta and Ghosh (1995) provided a different solution to the problem 
of finding probability-matching priors. They derived the differential 
equation that a prior must satisfy if the posterior probability of a one
sided credibility interval for a parametric function and its frequentist 
probability agree up to O(n-1) where n is the sample size. 

The exact definition of Datta and Ghosh (1995) is as follows: Sup
pose Y1, ... , Yn are independently and identically distributed with den
sity f (y, 0), where 0 = (01, .•. Ok) T is a k-dimensionalvector of param
eters and the parameter of interest is t (0), which is a real-valued twice 
continuously differentiable parametric function. Consider a prior den
sity for 0, p (0), which matches frequentist and posterior probability 
for t (0) as follows: For - 00 < 2 < 00 

lP'o [ni (t (0) - t (0)) ~ S 2] = lP'p(O) [ ni (t (0) - t (0)) ~ S 21 Y] 

+Op(n-1) 

where 0 is the posterior mode or maximum likelihood estimator of 0, 
T2 is the asymptotic posterior variance of n 1/2 [t (0) - t ( 0)] up to 
Op (n- 1/2 ), lP'o (.) is the jOint probability measure of Y = (Y1, ... , Yn)T 
under 0, and lP'p(O) (·1 Y) is the posterior probability measure of 0 un
der the prior p (0). According to Datta and Ghosh, such a prior may be 
sought in an attempt to reconcile a frequentist and Bayesian approach 
or to find (in some cases validate) a non-informative prior, or to con
struct frequentist confidence sets. 

Let 

V'd O).=[ a~lt(O) ... a~kt(O) r 
and 

17(0) = F-
1
(0)V't(0) = [l7dO) ... I7dO) r 

~V'i (0)F-1 (0) V't (0) 

where F (0) is the Fisher information matrix andF-1 (0) is its inverse. It 
is evident that I7T (0) F (0) 17 (0) = 1 for all O. Datta and Ghosh proved 
that the agreement between the posterior probability and the frequen
tist probability holds if and only if 
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k 0 L ae {rJoc(lJ)p(O)} = O. 
oc=l oc 

(13) 

Henceforth p (0) is the probability-matching prior for 0, the vector of 
unknown parameters. 

The method of Datta and Ghosh (1995) provides a necessary and 
sufficient condition that a prior distribution must satisfy in order to 
have the probability-matching property. They pointed out that their 
method is more general than Tibshiraui's, but will yield equivalent re
sults when the parameter of interest is defined to be the first parameter 
in an orthogonal parameterization. 

In the case of the Bilhlmann-Straub model, we are interested in the 
probability-matching prior for 8. Let 0 = [m, 8, ODT and t(6) = 8, 
then 

ot(O) = ot(6) = 0 
06 oo} , 

ot(O) = 1 
08 ' 

vI (0) = [0 1 0 ] and 

( )

2 
I] 1 

2THTOT 

Further, 

I] (1)2 
21HI 0-[ and 

Vj(0)F- 1(0) _ [0 ~~ 
~VI(6)F-l(O)VdO) - J2y'iHTul 

= [rJdO) rJ2(6) 

The prior p(O) = p(m, 8, o}) is a probability-matching prior if the dif
ferential equation (13) is satisfied. 

If we take p (0) = .JWT, then 
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Thus the differential equation is satisfied and the probability-matching 
prior is given by 

(14) 

which is identical to equation (11). 

2.3 Posterior and Predictive Densities 

Posterior and predictive densities are needed to make inferences 
about the unknown parameters and to predict future observations. For 
the linear model Y = ml + Zu + E, where u - N(O,8uF), and E -

N(O, p- 1U[), van der Merwe and Bekker (2004) proved the following 
posterior and predictive densities: 

1. The posterior distribution of m given uf and 8, is normal with 
mean 

I 

I Yi'l}~',5 
E(mIY ,uf,8) = i=1

1 
,. = Y. (15) 

and variance 

" Pi. 
.L.. l+Pi.,5 
t=l 

( 

I )-1 
var(mlY ,Uf,8) = I 2( Pi. ,8) 

i=l U1 1 + Pt. 
(16) 
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2. The joint posterior distribution of U[ and 8 is given by 

p(u[,8 IY) = p(u[18, Y)p (8 I Y) 

where 

( 1) !(I]+l) v(6.Y) 

p(u[18, Y) = Cl U[' e -201, (17) 

which is an inverse gamma probability density function, with 

v(8 Y) == ~ ~ p' .(y .. _ y.)2 + ~ Pi. Wi. - Y,y 
, L L LJ LJ L. L 1 + . 8 

i=lj=l i=l Pr. 
(18) 

1 (2) -!(IJ-l) 
Cl - and 

- r (~ (If - 1)) v (8, Y) 

p(JIY) ~ C, {D C + ~iJ ) '} (#, 1 :~iJ )-j 
x (v(8, y))-!(I]-l) p(8) (19) 

where C2 is the normalizing constant and p(8) is the prior (refer
ence, probability-matching prior, or any other prior) distribution 
for 8. 

3. The posterior distribution of mi = m + Ui for i = 1, ... ,I, given 8 
is a Student t-distribution with 1] - 1 degrees of freedom, mean 

(20) 

and variance 

Var(milY,J) ~ (, + ~iJ) {J + 1 + ~iJ (t 1 :~iJ ) -I} 
x (1]~JV(8,Y). (21) 
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4. The predictive probability density function of the mean of q future 
observations from the ith group (q future claims from the ith risk), 
given 8, is a Student-t distribution with 1] -1 degrees of freedom, 
mean 

~ Pi.8 - 1-
JE (Y I Y, 8) = 1 + p' 8 Y i. + 1 + p' 8 Y .. 

t. L 

(22) 

and variance 

{ [ ( 
I ) -1]} NIl 1 Pi. 

Var(Y I Y, 8).= - + 1 + .8 8 + 1 + .8 L 1 + .8 
q Pt. Pt. t=1 PL 

X C] ~ 3) v (8, Y). (23) 

rv qrv rvN tv 

where Y 2: Yij/q, and Yil, Yi2, ... , Yiq are the future claims 
j=1 . 

from the ith insured risk. 

5. The predictive probability density function of the mean of q future 
claims from a new or arbitrary insured risk, given 8, is a Student 
t-distribution with 1] - 1 degrees of freedom, mean 

JE(Y* I Y, 8) = Y. (24) 

and variance 

Var(V*IY,8) ={'!+8+ (± 1 ~L8)-1} 
q . i=1 + Pt. 

x C] ~ J v(8, Y) (25) 

- q 
where Y* = ~ .2: Y/' and Yt, Y2*, ... , Yq* are the future claims. 

J=1 

Equations (20) and (22) can be written in the form ZiY i . + (1- ZdY., 
which means that the posterior mean of mi (posterior mean of a group 
or company) and also the mean of the predictive density for that com
pany is equal to the credibility estimator of the Buhlmann-Straub model. 
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3 Monte Carlo Simulation 

The usual approach to the problem of predicting linear combina
tions of fixed and random effects (m + Ui, i = 1, ... ,I), when the vari
ance components are unknown is to estimate the unknown variance 
components and then proceed as if these estimates were the true val
ues of the variance components. Patterson and Thompson (1971) and 
Harville (1974) have developed a method based on the maximum like
lihood principle to derive unbiased estimates of the unknown variance 
components. This method is called restricted maximum likelihood es
timation (REML). Substituting the REML estimates yields the empirical 
Bayes solution to the random effects model.6 

In our opinion, there are several problems with simply substituting 
REML estimates for actual values: 

1. The properties of REML estimators are hard to assess. 

2. Sampling errors are generally ignored in the subsequent analysis. 
Therefore, the variance of the prediction error will generally be 
underestimated. 

3. Depending upon the size and characteristics of the data, point 
estimators of variance components can be volatile. For certain 
values of the variance component estimators, the predictors ob
tained by substituting these values in the best linear unbiased 
predictor are intuitively unappealing. 

An alternative approach to the empirical Bayesian approach is the fuller, 
more involved Bayesian approach, which, according to Harville (1990) 
and Gianola and Foulley (1990), can be used to devise prediction pro
cedures that are more sensible, from both a Bayesian and frequentist 
perspective, than those in current use. 

In many Bayesian problems marginal posterior distributions are used 
to make appropriate inferences. Technical difficulties that arise in the 
calculation of the marginal posterior densities needed in Bayesian infer
ence, however, have long served as a practical impediment to the wider 
application of Bayesian methods. The main technical difficulties arise 
from the evaluation of high order multidimensional integrals. In the last 
few years, there have been a number of advances in the numerical in
tegration and analytic approximation techniques for such calculations. 

6For an example of this, see Chapter 8 on credibility theory in the ActEd Study Ma
terials (2002) for Subject 106. ActEd Study Materials 2002 Examinations. Subject 106 
Course Notes Oxford, United Kingdom: The Actuarial Education Company, 2002. 
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Implementation of these approaches typically requires access to high 
speed computers and sophisticated numerical or analytic approxima
tion expertise and software. 

In response to this limitation, Gelfand and Smith (1991), Gelfand et 
al. (1990), Carlin, Gelfand, and Smith (1992), and Gelfand, Smith, and 
Lee (1992) have applied Markov Chain Monte Carlo (MCMC) procedures, 
and more specifically the Gibbs sampler to the evaluation of these inte
grals.7 The Gibbs sampler is an adaptive Monte Carlo integration tech
nique. The typical objective of the sampler is to collect a sufficiently 
large number of parameter realizations from conditional posterior den
sities in order to obtain accurate estimates of the marginal posterior 
densities. The principal requirement of the sampler is that all condi
tional densities must be available in the sense that they can generate 
random variables. 

The Gibbs sampler is appealing for its general applicability and ease 
of implementation. The burden of proof, however, is shifted to moni
toring stochastic convergence and the mixing of the Markov chain. To 
date the monitoring only can be assessed with convergence diagnos
tics; see Robert and Casella (1999) and Jones and Hobert (2001). As 
pointed out by Gelfand (2002), "in general, convergence can never be 
assessed, as comparison can be made only between different iterations 
of one chain or between different observed chains, but never with the 
true stationary distribution." Because of this problem, researchers are 
interested in generating samples that are perfectly distributed as the 
stationary distribution of the Markov chain; see Green and Murdoch 
(1999) and Casella, Lavine, and Robert (2001). Unfortunately, generat
ing samples that are perfectly distributed is currently feasible only for 
limited low-dimensional problems, and the cost of obtaining n samples 
is far greater than that of the usual MCMC, because essentially the en
tire algorithm must be repeated n times (Skare, B0lviken, and Holden, 
2003). 

We will now describe a simple algorithm to obtain the exact pos
terior and predictive densities for the Buhlmann-Straub model. These 
densities are obtained through Monte Carlo simulations where inde
pendent samples are obtained.8 Conditional posterior densities of the 
form p(a} 18, Y)p(8IY) or p(mi 18, Y)p(8IY) and predictive densi-

N _* 
ties such as p(Y 18, Y)p(8IY) or p(Y 18, Y)p(81y) are used to sim-

7The Gibbs sampler is implicit in the work of Hastings (1970) and was made popular 
in the image-processing context by Geman and Geman (1984). 

8This algorithm may be preferable to Gibbs sampling, which generates dependent 
samples from the joint distribution. 
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ulate the unconditional posterior and predictive densities. These den
sities can be obtained in the following way: 

Step 1: By using the rejection method (Rice, 1995, page 91), an ob
servation is generated from P (8 I Y) (equation (19)). 

Step 2: Given 8, the conditional posterior and predictive densities 
N _* 

p(mi 18, Y), p(Y 18, Y), and p(Y 18, Y) are Student t-distri-
butions, while p(a} 18, Y) is an inverse gamma distribution. 

These steps are repeated n times to get a sample of size n. Using a 
Rao-Blackwell argument (Gelfand and Smith, 1991) density estimates of 
the unconditional densities are obtained by averaging the conditional 
densities over the n repetitions. 

4 Illustrative Examples 

For these examples we set the sample size as n = 10000. 

Example 1 

We will first apply the Bayesian simulation procedure to the simple 
data set given on page 46 of Chapter 8 on Credibility Theory in the 
ActEd 106 Actuarial Study Guide, 2002. Table 2 shows the data for an 
international insurer's fire portfolio for a five year period. The data con
sist of Xij, which is the aggregate claim amount and Pij, which is the 
volume-aggregate claim amounts and volume are expressed in appro
priate units. The claims per unit volume is Yij = Xij/Pij. For example, 
Yll = 48/12 = 4.00 and Y45 = 71/10 = 7.10. Given the data for the 
past five years and the current volume Pi6, the insurer's problem is to 
determine the credibility premium for year 6 for each country. 

The posterior density of 8 is 

p(8IY) oc {n ( 1 )~} (± Pi. ) -~ (v(8, y))-~(IJ-l) p(8) 
i=l 1 + Pi.8 i=ll + Pi. 8 

(26) 
Figure 1 shows p (8 I Y) for four different priors: 
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Table 2 
An International Insurer's Annual Fire Portfolio (Xij, Pij) 

Aggregate Claims (Xij) and Volume (Pij) 

Country Year U) 
(i) 1 2 3 4 5 Pi6 
1 (£48, 12) (£53, 15) (£42, 13) (£50, 16) (£59, 10) 20 
2 (£64,20) (£71, 14) (£64, 22) (£73, 15) (£70,30) 25 
3 (£85, 5) (£54, 8) (£76, 6) (£65, 12) (£90,4) 10 
4 (£44,22) (£52, 35) (£69,30) (£55,16) (£71, 10) 12 

Source: ActEd Study Materials 2002 Examinations. Subject 106 Course Notes. Oxford, 
United Kingdom: The Actuarial Education Company, 2002. 

Pi (0) = I Pi. - ~ I Pi. { I 2 (I )2}~ 
i=l (1 + Pi. 0 )2 l] i=l 1 + Pi. O 

(27) 

P2(0) = {± (1 +pf"
0
)2}! 

t=l Pt. 
(28) 

1 

PA(O) = {O (1 + pi. 0 )}-7 (29) 

PB(O) = {n n 1 }fI 
i=l j=l (1 + PijO) 

(30) 

Note that Pi (0) and P2 (0) are the two reference priors defined in equa
tions (11) and (12), while PA(O) and PB(O) are two priors motivated by 
Klugman [1992, page 133, equations (8.26) and (8.27)]. 

The posteriors P (0 I Y) generated by the two reference priors are 
almost indistinguishable for all practical purposes. The largest dis
crepancy is in the case of prior P B (0). The choice of anyone of these 
priors, however, does not influence the posterior distributions of mi 
(for i = 1, ...• 4) or the predictive densities of future claims that much. 
Therefore, we will use Pi (0), as it is both a reference and a probability
matching prior. 

Table 3 shows the credibility estimates (risk premiums per unit vol
ume) for the four countries using a full Bayesian approach versus the 
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empirical Bayes approach (EBCT risk premiums given on pages 61-63 
of ActEd 106 Actuarial Study Guide, which is cited in Table 2). 

Table 3 
Credibility Estimates for the Four Countries 

Empirical Full Bayesian Analysis 
Country Bayes Posterior Posterior 

(i) Estimate Mode Mean 
1 3.851 3.9750 3.9762 
2 3.468 3.5750 3.5668 
3 8.504 9.2250 8.8427 
4 2.750 2.8250 2.8562 

As the volume for Country 4 for the coming year is 12 units, the 
fully Bayesian risk premium is: 2.8250 x 12 = 33.9 compared to the 
empirical Bayes premium of 33. The reason for the large difference 
between 173• = 10.571 and the risk premium for Country 3 (8.504 for 
the empirical Bayes and 8.8427 for the full Bayesian procedure) is the 
small exposure [small amount of business (P3. = 35)] associated with 
Country 3 over the years that results in large uncertainty with respect 
to estimation and prediction. The credibility factor for Country 3 is 
therefore quite small, which means that the mean of Country 3 (y 3.) 
will be closer to the overall mean (Y .. ) than in the case of the other 
countries. By comparing the two procedures, we see that there is not 
much of a difference between them. The fully Bayesian approach has, 
however, some additional advantages over the empirical Bayes analysiS: 

1. The Bayesian practitioner does not need to commit to only a point 
estimate of o}, 8, and the credibility estimator Zi. Credibility 
intervals and predictive densities can be easily obtained. 

2. Uncertainty about the true values of o} and 8 is formally incorpo
rated into the analysis through the choice of an appropriate prior 
distribution. 

3. The Bayesian approach provides a set of widely applicable and 
mathematically tractable tools, often more tailored to the require
ment of users than the corresponding frequentist tools. 

Table 4 shows the means and credibility intervals for mi, as well as 
the prediction intervals for future observations. 
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Table 4 
Means and Credibility Intervals for mi 

90% Credibility 90% Prediction 
Interval Limits Interval Limits 

i lE[miI Y ] Lower Upper Lower Upper 
1 3.9762 1.8895 6.0745 0.7492 8.7214 
2 3.5668 1.8495 5.3185 1.0874 6.0690 
3 8.8427 5.0235 12.1850 4.0438 13.3000 
4 2.8562 1.2415 4.5505 0.4870 5.2672 

Example 2 

This example is from Dannenburg, Kaas, and Goovaerts (1996, page 
34). Our results will be illustrated by an application to collective au
tomobile insurance data. Consider a portfolio consisting of nine fleets 
of cars that has been observed for a period of ten years. The relevant 
data associated with fleet i (i == 1, ... ,9) in year j (j == 1, ... ,10) are 
represented, as before, by the random variable Yij, which is an aver
age taken over Pij cars. We assume the data are consistent with the 
Buhlmann-Straub assumptions. Table 5 displays the data Yij with the 
number of cars Pij in parentheses. The total observed risk exposure in 
the portfolio is 1510 years. 

Figure 2 shows the posterior densities of 8 [equation (26)] for the 
four priors [equations (27) to (30)], The four posterior distributions are 
more symmetrical and nearer to each other than the corresponding dis
tributions illustrated in Figure 1 because the number of risks (I == 9) 
in this example is more than the four in Example 1. This means that 
the between-group variance is based on more degrees of freedom and 
8 can be more accurately estimated. The reference posteriors are again 
indistinguishable for all practical purposes. 

Table 6 shows the credibility estimates for the nine fleets calculated 
using both a full Bayesian analysis and empirical Bayes. From Table 6 
it is evident that there is little difference between the two methods. But 
as in the case of Example 1, the fully Bayesian estimate tends to shrink 
less than the empirical Bayes procedure. This means that the credibility 
factors for the fully Bayesian method are in general larger. 

Table 7 shows the credibility estimates and credibility intervals for 
mi using the full Bayesian approach, as well as the prediction intervals 
for the average of q future claims. The means of the posterior distri-
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Table 5 
Annual Average Claims in Fleet with 
Number of Car Units in Parentheses 

i Year 1 Year 2 Year 3 Year 4 Year 5 
1 540 (44) 514 (50) 576 (56) 483 (58) 481 (58) 
2 99 (20) 103 (20) 163 (24) 126 (32) 0(28) 
3 0(8) 400 (6) 1042 (10) 313 (6) 0(8) 
4 275 (22) 278 (22) 430 (18) 196 (20) 667 (12) 
5 543 (26) 984 (24) 727 (22) 562 (18) 722 (20) 
6 0(6) 0(8) 0(6) 645 (6) 833 (2) 
7 333 (18) 404 (20) 400 (20) 361 (16) 588 (18) 
8 494 (16) 133 (16) 735 (14) 519 (16) 1000 (14) 
9 1667 (6) 313 (6) 556 (4) 769 (2) 1818 (4) 

i Year 6 Year 7 Year 8 Year 9 Year 10 
1 493 (56) 438 (54) 588 (52) 541 (52) 441 (46) 
2 219 (28) 370 (28) 273 (22) 155 (26) 275 (22) 
3 833 (4) 0(6) 0(4) 0(4) 0(4) 
4 185 (10) 517(12) 204 (10) 323 (6) 968 (6) 
5 610 (16) 794 (12) 299 (14) 580 (14) 488 (8) 
6 0(4) 0(2) 769 (2) 0(2) 0(2) 
7 349 (18) 435 (14) 476 (12) 635 (12) 556 (10) 
8 641 (16) 339 (12) 513 (8) 227 (8) 244 (8) 
9 0(2) 1429 (4) 0(2) 0(4) 0(2) 

bution of mi and the predictive distribution of the average of q future 

claim Yi,q are exactly the same [equations (20) and (22)] but the 90% 

predictive interval for Yi,q is much wider than the corresponding cred
ibility interval for mi. This fact illustrates the uncertainty associated 
with the prediction of future values. If we compare Var(mi!Y, a}, 6), 

equation (21), with Var(Yi,qIY, a}, 6) it is also evident that the latter 
variance is much larger. 

In closing, Example 1 (small data set) was mainly used for illustra
tive purposes. It therefore does not matter what procedure (Bayesian, 
empirical Bayes, or frequentist) is used, a large amount of uncertainty 
will always be associated with the estimation of parameters and the pre-
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Table 6 

0.4 

Credibility Premiums for the Automobile Insurance Data 
Fleet (i) 1 2 3 4 5 6 7 8 9 

y. 
t. 509 178 301 360 654 177 441 506 795 

EBE 506 204 344 373 626 283 441 495 646 
FBE 506 202 339 372 626 271 440 494 655 

Notes: EBE = Emperical Bayes estimate; and FBE = Full Bayesian Estimate 
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Table 7 
Means and Credibility Intervals for mi 

90% Credibility 90% Prediction 
Interval Limits Interval Limits 

i E[miI Y ] Lower Upper Lower Upper 
1 506 446 565 421 589 
2 202 115 291 81 324 
3 339 180 493 105 574 
4 372 261 481 209 531 
5 626 522 728 477 77l 
6 271 77 455 0(-5) 559 
7 440 337 544 288 592 
8 494 381 609 326 660 
9 655 456 866 348 961 

diction of future values. In the case of Example 2, it is clear that there 
is large variation within and across groups. This is also the reason for 
the large prediction intervals illustrated in Table 7. The reason for the 
extremely large credibility and prediction intervals for fleets 3, 6, and 
9, is that the experience of these fleets is limited. 

One might possibly argue that some of the credibility and prediction 
intervals in the examples are so wide that they may appear useless for 
practical purposes and ask what the actuary should actually do in such 
situations. One possible solution is to obtain more data with many more 
groups and more observations per group. Larger samples will in general 
give smaller credibility intervals. Another possible solution is to assign 
proper priors with small variances or to assign priors on a restricted 
parameter space to the unknown parameters. The assignment of proper 
priors to the parameters must be justifiable from a practical point of 
view. In conclusion, it might be easy to obtain small Bayesian intervals 
but the question is whether the posterior and frequentist probabilities 
of these intervals will be the same. This is one of the reasons why the 
probability-matching prior (14) is used. 
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