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Textured heterogeneity in square artificial spin ice
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We report evidence of spontaneous formation of a heterogeneous network of superdomains in two-dimensional
square artificial spin ice nanostructures in externally applied magnetic fields. Coherent resonant soft-x-ray
scattering from such textures gives rise to unique internal structure in Bragg peaks. The magnetic heterogeneity
is locally disordered but has a zigzag texture at longer length scales. Our result suggests that the macroscopic
magnetic texture is derived from the microscopic structure of the Dirac strings.

DOI: 10.1103/PhysRevB.99.024406

I. INTRODUCTION

Artificial spin ice (ASI) systems are magnetic nanostruc-
tures whose magnetization textures mimic the frustrated hy-
drogen bonding networks observed in water ice [1–3]. ASIs
are most commonly periodic arrays of identical, elongated
thin film islands whose shape anisotropy forces their mag-
netizations to align along their long axes, which gives them
an Ising spin character. Geometrical constraints dictate the
interactions between the Ising spins. In square ASI, for exam-
ple, the arrangement of mutually perpendicular nanomagnets
over a square lattice causes an asymmetry in the interis-
land interactions that, in principle, favor an antiferromagnetic
ground state. However, high-energy barriers to magnetization
switching of individual islands oppose their thermalization at
room temperature, and the ground state is attained only in
limited areas of the ASI [4,5].

Magnetic excitations of ASI are analogous to those of
natural (atomic scale) spin ice [6–9], and are quasiparticle-like
magnetic point charges that reflect the behavior of hypo-
thetical magnetic monopoles [10]. Pairs of opposite-polarity
charges are connected by a chain of flipped spins, or “Dirac
strings,” which result from a chain of successive Ising spin
flips against a background spin texture [9,11].

The formation and propagation of Dirac strings during
the magnetization reversal is particularly interesting as a
general process among ASI. In kagome ASI, Mengotti et al.
[12] found that reversals occur via nucleation, followed by
avalanches of magnetic charges. In contrast, square ASI with
large lattice constants form pairs of opposite charges that
remain near randomly distributed vertices, (i.e., junctions
between the nanoislands) instead of becoming itinerant [13].
When such charges do move, the resulting Dirac strings prefer

*Present address: School of Materials Science and Technology,
Indian Institute of Technology (BHU), Varanasi 221005, India.

†Corresponding author: sroy@lbl.gov

to form closed loops rather than open-ended chains [8]. These
studies show that square ASI spin textures are heterogeneous
and form structures that span many vertex sites. In order to
distinguish between domains that occasionally form within
each nanoisland from the areas of uniform ASI spin texture,
we denote these mesoscale magnetic structures superdomains.
While concepts of heterogeneity are central to the global un-
derstanding of spin ice physics, they have not been addressed
in any detail. It is important to understand the evolution of
magnetic heterogeneity on a macroscopic length scale, and
how energetic considerations in both micro- and macroscopic
length scales influence formation of superdomains, which will
affect nucleation and propagation of magnetic charges.

Herein, we demonstrate that the constructive and destruc-
tive interference of a coherent x-ray beam scattered from a
square ASI results in Bragg peaks whose internal structure
is highly sensitive to heterogeneity in the magnetic texture.
This provides more information than typical low-coherence
resonant x-ray scattering studies [14], which are sensitive to
long-range order. The profile of magnetic Bragg peaks on
high-coherence scattering reveals detailed information of the
spin textures within the illuminated area. We found that after
taking a square ASI through multiple hysteresis loops, a par-
tially magnetized two-dimensional (2D) square ASI develops
a heterogeneous patchwork of areas, each of which can extend
over tens of lattice sites. Although locally heterogeneous, over
large length scales the disordered superdomains resemble a
zigzag texture that is reminiscent of the zigzag shape of Dirac
strings propagating along a diagonal (e.g., [11]) direction of
square ASI. The heterogeneity is stable under application
of moderate applied fields, and the ASI “remembers” the
arrangement of superdomains from previous hysteresis loops,
which is evidence for magnetic pinning sites [15].

II. EXPERIMENTAL DETAILS

Our samples were 2D square ASI fabricated from permal-
loy (Ni0.81Fe0.19) deposited on a Si wafer using electron beam
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FIG. 1. Scanning electron micrograph of a square array of
Permalloy dots of thickness t = 25 nm, width w = 50 nm, length
� = 150 nm, and lattice constant a = 300 nm, and the total dimen-
sion of the array is 2 mm × 2 mm.

deposition at the University of Kentucky. ZEP positive resist
was spin coated on a Si wafer prior to electron beam exposure.
After the e-beam exposure and development, a permalloy
film of thickness 25 nm was deposited using electron beam
evaporation, with a base pressure of 10−7 Torr. Final lift-
off of resist was done using N-Methyl-2-pyrrolidone (NMP).
The resulting permalloy nanoislands had widths w = 50 nm
and lengths � = 150 nm. The ASI lattice constant was a =
300 nm. Our sample had a 2 × 2 mm2 overall dimension. A
scanning electron micrograph of a portion of the sample is
shown in Fig. 1.

The magnetic properties of the ASI were studied using both
coherent resonant soft x-ray scattering (RSXS) and supercon-
ducting quantum interference device (SQUID) magnetometry.
Coherent RSXS was performed at Beamline 12.0.2.2 [16]
of the Advanced Light Source, Lawrence Berkeley National
Laboratory, whose undulator generates σ -polarized x rays. We
passed these x rays through a 10 μm diameter pinhole at the
monochromator focus, located 5 mm upstream from the ASI,
in order to create a transverse coherent beam. Using an in situ
magnet to apply fields (maximum 0.5 T) to the sample in
directions along to the incident beam, we forced the ASI into
hysteresis loops. An Andor charge-coupled device camera,
0.5 m downstream of the sample, recorded diffraction patterns
at several points in the loops.

X-ray beam energy was tuned to the Fe L3 resonance
(≈707 eV) to enhance the magnetic contrast. On resonance,
σ -polarized soft x rays are sensitive to the component of
magnetization along the beam direction (i.e., �k0 ‖ �M) [17].
Based on this, we chose an incidence angle of 9◦ to make
the beam nearly parallel to the [10] axis of the square ASI
while allowing us to capture a significant amount of scattering.
This [10] alignment matches the sample orientation during
SQUID hysteresis loops made at the University of Kentucky,
which measured the component of the total ASI magnetization
along the same axis. In addition, we performed both measure-
ments nearly equal temperatures (RSXS at room temperature,
SQUID at 310 K). Using such similar conditions permits
us to correlate coherent RSXS information about the ASI
magnetic texture to the SQUID-based total ASI magnetization
measurement.

FIG. 2. (a) Hysteresis loop of the square ASI sample at T =
310 K. A saturating magnetic field of 5 T was initially applied
along the [10] direction of the square ASI, and the magnetization
(“Long Moment”) measured in 2 mT steps along a hysteresis loop.
The plot is normalized to the magnetization saturation value. Blue
dots show field points of 7.9, 24.9, and 50.0 mT, at which coherent
RSXS data are shown. (b) Bragg peaks in coherent RSXS from
the square ASI. These peaks split into nearly identical rough ring
shapes in applied magnetic fields (left column) and become approx-
imately circular (due to the pinhole) when the field is off (right
column). This ring shape persists till μ0H ≈ 80 mT, though it subtly
changes at higher fields. (c) Contrast of the split Bragg peak [C =
(Imax − Imin )/(Imax + Imin )] decreases with applied magnetic field,
indicating that the mechanism causing x-ray interference weakens
with increasing magnetic field.

Based on the incidence angle and pinhole diameter, as well
as the polarization-dependent sensitivity of x rays to magnetic
moment, we estimate that half of the nanoislands in the
x-ray illuminated area (≈5580) contributed significantly to the
resonant coherent x-ray scattering.

Figure 2(a) shows the dc magnetic hysteresis loop of the
sample measured by SQUID. A field of μ0H = 5 T was
initially applied along [10] of the ASI and the sample’s net
magnetization was recorded as the field was reversed in 2 mT
steps between ± 5 T.

The hysteresis loop is zoomed in to show the low-field
behavior of [10]-aligned nanoislands that are parallel to the
field. Full saturation is not achieved until well above μ0H =
±100 mT, as indicated by the increasing magnetization for
μ0|H | > 70 mT, where the [01]-aligned nanoislands lose their
Ising nature and their magnetization is slowly rotated away
from being parallel to the long axis. The low-field hysteresis
loop indicates there are two regimes of [10]-aligned (parallel)
segment reversals. The first regime is centered at μ0H = ±4
mT and accounts for approximately 70% of horizontal seg-
ments having reversed. The second reversal regime, centered
at μ0H = ±50 mT, can be interpreted as the completion
of parallel segment reversals mixed with reversals of the
[01]-aligned nanoislands that provide signal due to a slight
misalignment between the applied field direction and [10].
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FIG. 3. Ideal resonant magnetic x-ray scattering from T1 and T2 vertex lattices vs data. (a) Characteristic scattering from a lattice of T1
vertices. The antiferromagnetic arrangement of spins cause peaks at half-integer Miller index positions (e.g., peaks along dashed K = 1/2
line). (b) “Half-order” peaks are absent in scattering from a T2 vertex lattice. (c) Zero-field diffraction data. Lack of half-order peaks indicates
that no long-range T1 order exists in the sample.

Figure 2(b) shows coherent RSXS Bragg peaks recorded
in conditions corresponding to the blue dots marked along
the hysteresis loop in Fig. 2(a). In order to study the field
evolution of magnetic scattering, we field cycled the sample
several times (about five times between ±0.25 T) through the
hysteresis loop before recording any diffraction data. After
applying a saturating field opposite to the beam propagation
direction, we applied fields in the range 10 � μ0Hz � 80 mT
and recorded coherent RSXS at several points within that
range. Every measurement was followed by a zero field mea-
surement (labeled “OFF” on the right-hand panels).

In zero field conditions, we obtained symmetric Bragg
peaks surrounded by diffuse Airy fringes caused by diffraction
from the circular pinhole. The intensity pattern is remark-
ably different from those acquired in nonzero magnetic field
[Fig. 2(b), left panel]. “Doughnut”-shaped Bragg peaks form
with intensity minima at their centers surrounded by nonuni-
form circular rings of intensity that feature two strong inten-
sity regions along the scattering plane, connected by weaker
arcs of intensity. Interestingly, on switching off the magnetic
field, we observe symmetric Bragg peaks without any dis-
cernible doughnut structure [Fig. 2(b), right panels]. Since the
Bragg peaks develop internal structure with the application of
magnetic fields, change as the field is increased, and return to
a symmetric shape when the field in taken away, we conclude
that the resonant scattering effect shown in Fig. 2(b) (left
panels) is magnetic in origin. Further, the contrast of the
Bragg peak [C = (Imax − Imin)/(Imax + Imin)] decreases with
applied magnetic field [see Fig 2(c)], which indicates that the
mechanism of the splitting-effect is initially caused by the
applied magnetic field but diminishes as its strength increases.

In a 2D square ASI the four islands surrounding a vertex
site can adopt 24 = 16 distinct local spin configurations,
which can be assigned one of four energy states: T1, T2, T3,
and T4. (See Appendices.) In order to understand the mix of
vertex states that could give rise to the observed scattering
patterns, we performed model scattering calculations for cases
where the spin ice is populated by either the lowest-energy
T1 or next-lowest-energy T2 vertices (see Fig. 3). Lattices
entirely composed of T2 vertices result in Bragg peaks that
precisely overlap with lattice Bragg peaks [Fig. 3(b)], which
are denoted by integer Miller (H,K ) indices. A pure T1

lattice forms additional peaks at half-integer Miller index
positions, e.g., peaks lying on the green dashed lines and
between yellow lines in Fig. 3(a), consistent with the doubled
unit cell of the T1 state, which is also the ideal ASI ground
state. Since our data [Fig. 3(c)] do not exhibit any scattering
at half-integer positions, we conclude that no long-range T1
order exists in the sample. This is expected as the sample was
subjected to several magnetic field cycles between maximum
fields of ±0.25 T, which would have introduced a heteroge-
neous mixture of mainly T2 vertex states [18].

III. COHERENT RESONANT SOFT X RAY SCATTERING
MODEL

We defined a set of magnetic unit cells, shown in Fig. 4,
to construct model ASI spin textures and simulate resonant
x-ray scattering patterns from magnetically heterogeneous
ASI. Figure 4(a) schematically shows the unit cells and the
nanoislands (containing arrows) that resonant magnetic x-ray
scattering can distinguish in our scattering geometry. The
unit cells are divided into T1 and T2 types that describe
square ASI when only one type of unit cell is present. T1/T2
vertex mixtures can also be made, as shown on the right of
Fig. 4(a).

The number of each unit cell type and their relative po-
sitions in the ASI determine the resonant magnetic x-ray
scattering pattern. Each of these unit cell types give rise to
a characteristic Bragg peak distribution in reciprocal space, as
well (See Appendices.) ASI with only T1 unit cell structure
factors F+ or F− exhibit half-order scattering [Fig. 3(a)],
whereas T2 structure factors FL or FR show no half-order
peaks [Fig. 3(b)]. The distribution of T1 and T2 unit cells over
the lattice significantly affects the x-ray scattering intensity,
which is determined by a sum of structure factors, weighted
by position-dependent phases, over every lattice point (i, j ) of
the ASI: I (�q ) ∝ |∑Nx−1

i=0

∑Ny−1
j=0 Fij (�q ) exp[i �q · �rij ]|2, where

there are Nx × Ny lattice points. The constructive and de-
structive interference of terms with different structure factors
can cause Bragg peaks to exhibit internal structure deter-
mined by the particular distribution of the unit cells. Coherent
x-ray scattering detects these interference effects and reveals
detailed information about this distribution.
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FIG. 4. (a) Schematics of the unit cells used to calculate the
magnetic structure factor of model ASI. The scattering structure
factors of the unit cells are F+(�q ) and F−(�q ) respectively for T1
unit cells with two-in or two-out arrow patterns, and FL(�q ) and
FR (�q ) for T2 unit cells with left and right pointing arrows. An
example of how the unit cells build up an ASI is shown on the right.
(b) Calculated ASI diffraction patterns used to establish both an
upper limit on the number of T1 vertices and their distribution in
the ASI. If the T1 vertices do not form long-range order, they cause
weak diffuse scattering at half-integer (H,K ), as in the calculated
scattering pattern.

IV. DISCUSSION

We varied the arrangement and relative fraction of T1
and T2 unit cells in the ASI in our calculations to identify
spin textures that replicated essential features of the data.
For example, of the scenarios investigated, we found that T1
unit cells play no role in splitting the Bragg peak intensities.
Figure 4(b) illustrates the types of T1 (gray) and T2 (blue/red)
unit cell mixtures we considered in our model ASI; a calcu-
lated diffraction pattern from one such mixture is shown on
the right. To keep the half-order scattering intensity in our
calculations below what would be the background level in our
experimental data required that the T1 unit cells be sparsely
distributed or only form a few small clusters containing no
more than ∼50 unit cells. No more than ∼10% of the ASI
lattice sites are occupied by T1 unit cells.

We now focus on the distributions of T2 unit cells that
would yield the observed scattering pattern. We found that
random mixtures of small T2 states produce weak or no Bragg
peaks. As in the case of crystal diffraction, the ASI will give
the strongest scattering when it has large areas of identical
vertices or unit cells to provide constructive interference at
the Bragg peaks. In contrast, scattering amplitudes from ASI
with many small “crystallites” of vertex order essentially add
together incoherently (i.e., insignificant constructive interfer-
ence). Therefore, the spin texture we observe must have large
areas, or superdomains, dominated by a particular T2 unit cell
type [types shown in Fig. 4(a)].

The largely reproducible shape of the doughnut Bragg
peaks over six consecutive hysteresis loops supports this
conclusion. This memory effect indicates quenched disorder
in the ASI which promotes the formation of superdomains.
Based on changes in Bragg peak shape and intensities, we
estimate that at least 2.5% of illuminated area of ASI changes
from one hysteresis cycle to the next. These differences in
Bragg peak profile are slight, indicating that there is sufficient
disorder in the magnetic texture to create superdomains con-
taining hundreds of unit cells circumscribed by long, partially
charged boundaries [19]. Furthermore, this memory effect
also implies the existence of a complex network of interacting
magnetic defects, such as Dirac strings and magnetic charges
[15].

Superdomain morphology strongly influences the overall
shape and intensity of the scattered signal. For example,
antiphase domains in real crystals composed of unit cells
of different structure factors can broaden Bragg peaks in
particular directions in reciprocal space [20]. In the context
of coherent RSXS from ASI, one superdomain (say, +M)
can advance the phase of the scattered x rays and the another
adjacent one (−M) can retard it. The mismatched phases of
the scattered light from the two domains will create a dark
band going through the Bragg peak, instead of broadening the
peak as with low-coherence scattering methods. This Bragg
peak splitting is particular to this type of magnetic texture, so
seeing such a pattern is a strong indication that two large, op-
positely polarized superdomains are being illuminated. Since
point defects in crystals or fork dislocations in nanostructures
can give rise to doughnut-shaped Bragg peaks, we focused on
magnetic textures with similar morphologies, namely domains
with sharp corners or stripe-like textures with phase singular-
ities in their order parameters. To account for experimental
conditions in our real space model, we considered an elliptical
area of the ASI to imitate the beam footprint at 9◦ incidence.

We show various superdomain arrangements that could
cause this characteristic splitting along with their correspond-
ing Bragg peak shapes (see Appendices). An inspection of
these cases tells us that the shape and intensity pattern of the
Bragg peaks are highly susceptible to the texture, as expected.
The minima in the doughnut peaks are due to the presence of
contrasting superdomains. Further, the cases that have inten-
sity minima in their centers have a common feature: regions
where superdomain walls form an intersection or converge to
a point. After examining several different cases, we concluded
that the doughnut shaped peaks have their origins in wedge-
like superdomain morphology. The superdomain morphology
and distribution that gave diffraction closest to the data are
shown in Fig. 5(a). The real space structure contains two dif-
ferent T2 superdomains, each interspersed with a disordered
background, and have diagonal walls that converge to form
a cusp. The calculated diffraction pattern from the real space
model in Fig. 5(a) has doughnut-like Bragg peaks with two
strong intensity lobes separated by approximately the same
reciprocal space distance as in the data. As the magnetic field
is increased, the superdomains could plausibly change size
and shape in ways that maintain the cusp. This will result
in the Bragg peak maintaining the doughnut shape but with
decreasing contrast.

The following is one possible way superdomain cusps
form. Starting from saturation, where the sample is Ising
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FIG. 5. (a) Comparison between “doughnut-hole” Bragg peak
data to Bragg peaks in calculated x-ray scattering pattern. The real
space model on which the calculation is based is shown on the right.
(b) Schematic of Dirac strings forming out of the saturated state of an
ASI. These strings prefer to move diagonally due to the symmetry of
the square lattice. (c) Depiction of superdomains (bounded by white
dashed lines) formed out of bundled Dirac strings. The dashed ellipse
illustrates the area sampled by an x-ray beam.

saturated, reversal begins by random spin flips giving rise
to oppositely pointed T2 unit cells. Islands in neighboring
vertices flip and form areas dense with Dirac strings that
traverse the diagonal easy directions of the square ice [see
Fig. 5(b)]. With increasing field, the Dirac strings grow in
length and number, and ultimately start to bundle up. These
bundles ultimately form large T2 superdomains with net mag-
netization parallel to the applied field.

Since a magnetic field applied along [10] is equally likely
to create Dirac strings growing along the easy directions
[11] and [11̄], it is conceivable that existing Dirac strings
can also change their propagation directions from one easy
axis to another at any given lattice site, causing cusp-like
features in the chains of flipped spins. Consequently, the
associated bundles could also grow in two directions, resulting
in superdomains that have wedge-like features and corners, as
shown in Fig. 5(c). The formation of cusps on two different
length scales (individual strings and bundles) suggests that the
interactions between Dirac strings control the superdomain
morphology and heterogeneity.

V. CONCLUSION

Future experiments should be directed towards the topic of
superdomain defects, memory effects, and their relationships
to fundamental Dirac string excitation. Topological defects,
in the form of Buergers defects, can be introduced to ASI to
create magnetic heterogeneity [21]. Superdomains nucleated
around the defects could form, each with a potentially differ-
ent capacity to remember past states based on the quenched
disorder, field history, and Buergers vector. Coherent resonant
x-ray scattering can characterize these superdomains and their
persistence across magnetic field cycles.

Generalizing to other frustrated systems, the important
question is if the properties of large areas of long-range
order (e.g., superdomains) are determined by the funda-
mental properties of the excitations. X-ray photon correla-
tion spectroscopy or inelastic x-ray scattering can reveal the

characteristic time and type of superdomain dynamics associ-
ated with memory effects.
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APPENDIX A: MAGNETIC VERTICES IN SQUARE
ARTIFICIAL SPIN ICES

In a 2D square ASI the four islands that form a vertex
can adopt 16 distinct local spin configurations which can be
assigned to one of four energy states, called T1, T2, T3, and
T4 (See Fig. 6.) Analogous to the “two-in/two-out” ice rules
for the atomic moments in a tetrahedral spin ice structure,
T1 states [Fig. 6(a)], with one pair of opposing magnetic
moments pointing inward and one pointing outward from a
vertex, have the lowest magnetostatic energy at zero applied
field. T2 states [Fig. 6(b)] also have two-in/two-out local
spin textures but with pairs of opposing inward and outward

FIG. 6. The Ising spin textures associated with (a) T1, (b) T2, (c)
T3, and (d) T4 energy states of square ASIs. The two lowest energy
configurations, T1 and T2, have two of four magnetic moments
oriented toward the vertex and two oriented away from the vertex,
analogous to the “two in/two out” ice rules for tetrahedral water ice.
The two highest energy configurations, T3 and T4, display magnetic
charges at their vertices, shown by green and red dots.
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moments. T2 states have higher energies than T1 states be-
cause of the inequivalent distance between the four nanois-
lands which introduces asymmetry in the interaction energy
between the four elements of a vertex. States having three
[T3, see Fig. 6(c)] or four [T4, see Fig. 6(d)] spins pointing in
or out, respectively, exhibit higher magnetostatic energies and
net magnetic flux (i.e., local magnetic monopoles). Generally,
after multiple field cycling, 2D square ASIs attain states that
are primarily mixtures of T1 and T2 configurations with
sporadic T3 vertices [18].

APPENDIX B: CALCULATION OF MAGNETIC
STRUCTURE FACTOR

The magnetic structure factor, being proportional to the
scattered field, can be used to calculate the far field interfer-
ence pattern. We will explain how we arrived at expressions
for the magnetic structure factors used in calculations that
rendered Figs. 3–5 of the main text.

Calculating the structure factors involves defining the re-
peating motif, or basis, decorating the square ASI lattice, then
performing a Fourier transform of the nanoislands in the basis
[20].

Schematics of the bases used in our study are shown in
Fig. 7. The vector k0 denotes the direction of the incident
beam. The charge basis of a square ASI [Fig. 7(c)] consists
of a pair of two perpendicular nanoislands that are equidistant
to a common point, O. In addition, the long axes of the
nanoislands intersect at O. The magnetic basis can differ from
this once the Ising macrospins of the nanoislands are taken
into account. The T1 magnetic basis, shown in Fig. 7(b), is
a set of four Ising macrospins that are arranged in a fourfold

FIG. 7. Real space diagrams of the effective magnetic unit cells
used in the calculation. Only the Ising macrospins that the beam is
sensitive to ( �k0 ‖ �M) are represented with arrows. (a) The dimensions
of the effective T1 unit cell and its nanoislands are shown on the left.
The magnetic motif of each effective unit cell and their magnetic
scattering structure factors [F+(q) and F+(q)] are to the right.
(b) The dimensions of the effective T2 unit cells and their magnetic
scattering structure factors [FL(q) and FR (q)]. The unit cells contain
orthogonally oriented Ising nanoislands with sharp-edged rectangu-
lar prisms in the structure factor calculation. Their lengths and widths
are l and w (height is ignored). The lengths of the square T1 and
T2 unit cell sides are, respectively,

√
2a or a, where a is the lattice

constant.

symmetric pattern around O. The T1 unit cell is accordingly
doubled in area and rotated by 45◦ with respect to the charge
unit cell. On the other hand, the T2 basis [Fig. 7(d)] is a pair
of Ising macrospins and its unit cell is identical to the charge
unit cell. Each of these bases have different structure factors.

The magnetic form factors of the nanoislands in the res-
onant magnetic x-ray scattering process are dependent on
their different magnetization directions. Note that the resonant
x-ray scattering process is sensitive to only to the magnetiza-
tion component collinear to the incident beam, k0, because
we used σ -polarized incident x rays with low grazing angles
(∼9◦) [17]. This means that the T1 bases effectively have
two Ising macrospins [arrows in Fig. 7(b)] and the T2 bases
effectively have just one Ising macrospin [arrows in Fig. 7(d)].
Only two basis sets for T2 unit cells and two basis sets for T1
unit cells are used in our calculations.

Calculating a magnetic structure factor of a magnetic basis,
Fbasis(q ), amounts to calculating the q Fourier component of
an unit cell charge density, ρi (x). The sign of this charge
density can be positive or negative based on whether the
magnetization is parallel or antiparallel to k0:

Fbasis(q ) ∝
(

2π

a

)2 ∫
cell

eiq·x k̂0 ·
(∑

i

m̂iρi (x)

)
dx. (B1)

The sum in the bracket runs over the nanoislands in the unit
cell, the x axis is parallel to the incident beam, and the y axis
is parallel to the vertical nanoislands shown in Fig. 7. The term
m̂i is the macrospin direction of nanoisland i.

We treat the nanoislands as identical rectangular prisms
of uniform density ρ0 with dimensions described in the main
text. The nanoislands can be defined by a product of unit step
functions �(x):

ρT 2(x, y) = ρ0�

(
x − l

2

)
�

(
3l

2
− x

)

×�
(
y + w

2

)
�

(w

2
− y

)
,

ρT 1,left (x, y) = ρ0�

(
x − l

2

)
�

(
3l

2
− x

)
(B2)

×�
(
y + w

2

)
�

(w

2
− y

)
,

ρT 1,right (x, y) = ρ0�

(
x + 3l

2

)
�

(
− l

2
− x

)

×�
(
y + w

2

)
�

(w

2
− y

)
.

The subscript indicates whether the function represents one of
the T1 nanoislands or the T2 nanoisland shown in Fig. 7.

Using Eq. (B1) and the density functions of Eq. (B2), the
T1 and T2 magnetic structure factors are

F+/−(q ) ∝ ρ0

(
2π

a

)2

k̂0 · m̂left

×
( ∫ 3l

2

l
2

eiqxxdx −
∫ − l

2

− 3l
2

eiqxxdx

) ∫ w
2

− w
2

eiqyydy,

FL/R (q ) ∝ ρ0

(
2π

a

)2

k̂0 · m̂
∫ 3l

2

l
2

eiqxxdx

∫ w
2

− w
2

eiqyydy,
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FIG. 8. The profile of a split Bragg peak like that shown in the
main text, superimposed by concentric black circles that mark the
size of the splitting.

with the index determined by the direction of m̂. (For
F+/−(q ), the relationship m̂left = −m̂right was used.) Dividing
out common factors from the two expressions:

F+/−(q ) ∝ i k̂0 · m̂left sin(lqx )sinc

(
l

2
qx

)
sinc

(w

2
qy

)
,

FL/R (q ) ∝ k̂0 · m̂eiqx lsinc

(
l

2
qx

)
sinc

(w

2
qy

)
.

We choose to use the charge/T2 lattice to base our Miller
indices on since we found that T2 unit cells play the greatest
role in our study. Thus, qx = 2π H

a
and qy = 2π K

a
.

These expressions allowed us to calculate the ideal scat-
tered intensity at and around ASI Bragg peak locations in
reciprocal space, as described in the text.

APPENDIX C: GALLERY OF ASI MAGNETIC TEXTURES

This appendix illustrates several superdomain arrange-
ments, and their corresponding coherent x-ray magnetic
Bragg peak profiles. We first show several idealized cases
that can be used to illustrate how the real-space structure
influences the Bragg peak structure. Then, we show several
cusp superdomain scenarios explored before we arrived at the
texture shown in the main text. Lastly, an alternative scenario
involving patches of contrasting superdomains distributed in a
polarized background is shown. We explain why the cusp sce-
nario proved to be the better solution than the patch scenario.

In nearly every figure that follows, a pair of concentric
black circles are superimposed over the calculated pattern.
The circles indicate the size of the Bragg peak splitting seen
in the data. (See Fig. 8.) The best real-space arrangement will
cause two lobes of scattering intensity, and a weaker ring of
scattering, to form between the circles or on the edge of the
inner circle.

FIG. 9. Highly symmetric arrangements of large T2 superdo-
mains and their corresponding coherent Bragg peak profiles. The
symmetry of the peak splitting reflects the symmetry of the real space
arrangements, which are shown above the Bragg peak profiles. The
concentric black circles indicate the size of the splitting seen in the
data.

1. Idealized cases

a. High symmetry textures

The highly symmetric T2 superdomain arrangements
shown in Fig. 9, while not realistic, do illustrate how large,
contrasting T2 superdomains can cause magnetic Bragg peaks
to form complex internal structure. The Bragg peaks split to
form intensity minima at what used to be the center of the
Bragg peaks. Complete destructive interference can occur at
the center if the contrasting areas are of equal area.

The splitting occurs along directions in which there is
strong magnetic contrast. For example, in the scenario shown
on the left of Fig. 9, the twofold symmetric checkerboard
superdomain structure results in a Bragg peak structure with a
similar symmetry.

The fact that the Bragg peak splits to form lobes of inten-
sity to the left and the right of the central Bragg peak position
indicates a strong magnetic contrast along the long axis of the
beam spot.

b. Linear grating of superdomains

This idealized situation gives an idea of what the Bragg
peak structure would be if long, linear T2 superdomains
formed in the beam spot. The situations shown in the top
row of Fig. 10 are, generally, the type of structure one might
expect if the superdomains elongated along the direction of
the applied magnetic field. Such T2 superdomains, however,
would cause lobes of scattering to form above and below the
Bragg peak position, rather than to the left and right of it, as
shown in Fig. 8. Based on this, we ruled out such a grating-like
structure.

The grating scenarios in the bottom row of Fig. 10 do offer
clues as to what superdomain length scales would cause the
Bragg peak to split as it does in Fig. 8. Specifically, the case
with three vertical T2 superdomains, separated by ∼25.5 μm
or 40% of the beam spot’s length, causes satellite peaks to
appear between the two black circles, which indicate the
size of the peak splitting. Therefore, the correct superdomain
structure needs to contain this length scale.

2. Cusps

We found that a superdomain structure whose boundaries
converge to a cusp produced magnetic Bragg peak splitting
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FIG. 10. Grating-like arrangements of linear T2 superdomains
and their corresponding coherent Bragg peak profiles. Satellite peaks
form around the Bragg peak position according to the momenta of
the grating arrays. The real space arrangements are shown above the
Bragg peak profiles. The concentric black circles indicate the size of
the splitting seen in the data.

closest to that observed in the data. As illustrated in Fig. 11,
the structures that most closely match the data have nearly
equal areas containing parallel and antiparallel nanomagnets.
Furthermore, the superdomain structures contain the impor-
tant length scale illustrated by the grating domains in the
previous subsection.

In search of the most plausible superdomain structure, we
considered many cusped domain structures, some of which
are shown in Figs. 11–13. In Fig. 11, cusped superdomains

FIG. 11. Two scenarios, depicted in the top and bottom rows, in
which the opening angle of the T2 superdomain cusp changes. In the
top row, the opening angle of a cusped superdomain is symmetrically
increasing, going from left to right. In the bottom row, the opening
angle of an asymmetric cusped superdomain is increasing, going
from left to right. The corresponding coherent Bragg peak profiles
are shown below the real space arrangements. The concentric black
circles indicate the size of the splitting seen in the data.

FIG. 12. The dependence of the coherent x-ray Bragg peak struc-
ture on the position of the cusped T2 superdomain within the beam
footprint. In the top row, the cusped superdomain shifts from right
to left. In the bottom row, a cusped superdomain shifts from top to
bottom, such that its cusp is no longer within the beam footprint. The
corresponding coherent Bragg peak profiles are shown below the real
space arrangements. The concentric black circles indicate the size of
the splitting seen in the data.

of various shapes are shown, along with their Bragg peak
structures. The top row demonstrates that the angle of the
cusp must be such that nearly equal areas of parallel and
antiparallel nanomagnets are present. Superdomains that are
nearly symmetric about the vertical axis also concentrate the
scattering intensity in the lobes to the left and right of the
Bragg peak center.

Figure 12 illustrates the effects of placing the cusped
superdomain away from the center of the illuminated area.
In the top row, the superdomain from being right of center to

FIG. 13. Other cases in which T2 superdomains display cusps
and their corresponding coherent x-ray Bragg peaks. The middle row
of panels shows a wider area of reciprocal space around a Bragg peak
than is shown in either the top or bottom rows, as was necessary to
show the scattering that extends far from the Bragg peak position.
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FIG. 14. The best cusp configuration is subjected to different
degrees of disorder. In each case, the size of the Bragg peak splitting
remains the same.

nearly centered. The most off-center case causes the two lobes
to merge near the Bragg peak center, which separate as the
superdomain becomes more centered. The bottom row shows
what it might look like if the superdomain were shifted down,
highlighting the role of the cusp in forming a split Bragg peak.
In this case, the superdomain is still laterally centered and,
thus, the two lobes of scattering remain and are nearly at the
right positions in all of the five cases. Comparing this bottom
row of figures to the top row of Fig. 11, the cusp and the
angled superdomain boundaries cause scattered intensity to
form a weak ring shape around the black circles shown in
the figures, closely matching the Bragg peak splitting seen
in the data. Therefore, the cusp of the superdomain plays an
important role in creating a ring of scattering, rather than a
peak that is split into two parts.

The mere presence of a cusp is not sufficient to create
the right magnetic Brag peak splitting, however. As shown
in Fig. 13, the orientation of the superdomain is important
for capturing the size of the peak splitting. Furthermore,
the superdomain must completely span the beam spot. The
top row, left panel of Fig. 13 shows a case when there is
a connection between the blue areas, which are oppositely
polarized to the red cusp superdomain. This connection shifts
the scattering intensity away from the peaks to the left and
right of the Bragg peak center. Another case like this is shown
in the bottom row, right panel, in which a wedge-shaped
superdomain is roughly in the middle of the beam spot. While
there is strong scattering to the right and left of the Bragg
peak position, and the size of the split is right, this case is

FIG. 15. Four scenarios in which large T2 superdomains are
arranged over the illuminated area. The two lobes of intensity are
replicated, though the size of the splitting between those lobes is too
small. The Bragg peak structures in these scenarios are quite sensitive
to disorder.

discounted because it creates scattering well away from the
black circles. Cases with multiple cusps also cause scattering
outside of the outer black circle, which also disqualify them
as likely structures.

Figure 14 illustrates the effect of incompletely polarized
superdomains, and other forms of disorder, on the scattering
pattern. Even when the boundary between the cusped superdo-
main and the magnetically contrasting background is poorly
defined, and many oppositely polarized areas exist in the
cusped superdomain, the scattered intensity is still distributed
within the black circles. The size of the peak splitting and
ring-like scattering pattern in the central figure of Fig. 14
most closely resembles the data shown in Fig. 8. It is this
calculation, after a convolution with a gaussian function to
simulate the effect of a partially coherent incident beam, that
we show in Fig. 5(a) of the main text.

3. Alternative case: Patches

Another set of superdomain structures were also seriously
considered. In these cases, patches of superdomains are dis-
tributed around the beam spot. The left panel of Fig. 15 shows
a superdomain configuration that gives rise to a scattering ring
of the correct size and intensity distribution. However, small
variations of the patches (e.g., position, size, disorder) cause
the magnetic Bragg peak structure to dramatically change.
This instability against small changes in superdomain config-
uration, occurring in the ASI as it is subjected to one magnetic
field cycle then another, is the main reason we abandoned
further investigation of these structures.
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