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Multiple imputation to evaluate the
impact of an assay change in national
surveys
Maya Sternberg*†

National health surveys, such as the National Health and Nutrition Examination Survey, are used to monitor
trends of nutritional biomarkers. These surveys try to maintain the same biomarker assay over time, but there
are a variety of reasons why the assay may change. In these cases, it is important to evaluate the potential
impact of a change so that any observed fluctuations in concentrations over time are not confounded by
changes in the assay. To this end, a subset of stored specimens previously analyzed with the old assay is
retested using the new assay. These paired data are used to estimate an adjustment equation, which is then
used to ‘adjust’ all the old assay results and convert them into ‘equivalent’ units of the new assay. In this
paper, we present a new way of approaching this problem using modern statistical methods designed for
missing data. Using simulations, we compare the proposed multiple imputation approach with the adjustment
equation approach currently in use. We also compare these approaches using real National Health and
Nutrition Examination Survey data for 25-hydroxyvitamin D. Published 2017. This article is a U.S.
Government work and is in the public domain in the USA.

Keywords: multiple imputation; NHANES; assay change; vitamin D

1. Introduction

Missing data is a common problem in medical studies and surveys and can arise for a myriad of reasons.
A primary problem caused by missing data is the severe bias that can occur when respondents differ
from non-respondents. However, not all missing data is unplanned. Graham et al. [1] have proposed a
type of planned missingness in the setting of questionnaire design to obtain more high-quality
information, without dramatically increasing the costs or the number of questions asked of each
respondent. This is achieved by dividing the questions up in a specific way, ensuring a core set of
questions are answered by all respondents, and using modern missing data methods to impute answers
to questions that were not asked of specific sets of respondents. In our setting, when an assay has
changed in a large national survey, it is cost prohibitive and often not possible because of lack of
specimen availability, to go back and re-test all previously tested specimens using the new assay. This
paper proposes measuring the new assay on a designated sub-sample of the originally sampled National
Health and Nutrition Examination Survey (NHANES) specimens, followed by using multiple
imputation to address any bias induced by changing the biomarker assay. Multiple imputation was
proposed previously as a solution to bridge changes in measurement systems in large public datasets
[2–5]. However, it has never been used in NHANES as a form of planned missingness to account for
a change in biomarker assays.

The NHANES are a series of cross-sectional national surveys of health and nutritional status
conducted on a periodic basis by the National Center for Health Statistics (NCHS) of the US Centers
for Disease Control and Prevention (CDC) [6]. NHANES is the only US national survey that collects
biological specimens and as such is uniquely suited to assess trends on a wide variety of health and
nutritional biomarkers measured using clinical laboratory assays [7]. Ideally, for any given nutritional
biomarker, the same assay is used over time so that any changes in the concentration can be evaluated
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and interpreted as actual changes in the nutritional status of the US population. However, because of
discontinuation or advances in laboratory methods, changes in an assay are unavoidable.

In a laboratory, it is routine to perform a method comparison study to evaluate the potential
impact of a change in the assay. In the context of a national survey, if two assays are not
interchangeable, the method comparison study is used to derive adjustment equations for the old
assay into equivalent units of the new assay. These types of equations are published in the
NHANES documentation with a recommendation that users interested in trends derive predicted
values of the new assay given the old assay using the adjustment equation [8–10]. The
nomenclature varies, but the adjustment equation derived from this type of method comparison
study may be referred to as a crossover, bridging, or a calibration study [8–16]. In NHANES,
the results of bridging studies are reported in the documentation for serum and whole blood folate,
plasma homocysteine, serum ferritin, glucose, and serum 25-hydroxyvitamin D and used for
analyzing trends in NHANES [8–13,17–22].

The adjustment equation derived from the bridging study is often used in NHANES to replace all the
values from old assay with equivalent unit data of the new assay, and then the statistical analysis proceeds
as if these were real data from the new assay. This ad hoc approach to deal with an assay change fails to
account for important sources of variability, which in turn leads to underestimated standard errors,
confidence intervals that are too narrow and incorrect p-values. Further, even though the new assay is
used on a subset of the NHANES specimens to perform the bridging study, these actual measured values
are not used but rather replaced themselves with predicted values. This historical approach is common
practice in NHANES and was proposed as a core approach to standardize of vitamin D [15,16] and folate
[23] measurements in national surveys. This paper will refer to the ad hoc approach of using the data from
a bridging study to develop an equation as the adjustment equation approach.

Reframing this problem as a missing data problem, allows the use of all the statistical theory and
methodology under the rubric of missing data to solve some of the shortcomings associated with the
historical approach. The multiple-imputation approach has several advantages over the adjustment-
equation approach. First, it provides a natural way to accommodate the uncertainty associated with
replacing missing data with predictions (also called imputations). Second, this approach will not discard
the actual measurements made by the new assay. Lastly, this approach places the focus on developing a
proper imputation model rather than finding the single best adjustment equation from a subset of the
specimens. Therefore, model fit issues such as transformations, heteroskadisticity, errors in variables,
and linearity falls under the broader scope of developing a formal imputation model. Section 2 provides
a background on the assays that measure serum 25-hydroxyvitamin D in NHANES and a brief review of
missing data terminology and methods. Section 3 describes the proposed multiple imputation method,
and for comparison, the single imputation methods considered. Section 4 illustrates the application of
these imputation methods to serum 25-hydroxyvitamin D (25OHD) from NHANES 2001–2006.
Section 5 outlines the details of the simulation to demonstrate how the adjustment equation approach falls
short of a more principled approach. Section 6 presents some concluding remarks and a brief discussion.

2. Background

2.1. Vitamin D

Serum 25OHD is a biomarker in NHANES currently used to assess vitamin D status in the US
population. A radioimmunoassay (RIA) was used to measure 25OHD in NHANES from 1988 to
1994 and 2001–2006. During these periods, the assay suffered from some bias, fluctuations, and
imprecision. The CDC lab regularly uses bench and blind quality control (QC) pools that are run
concurrently with patient samples to monitor the consistency of an assay’s performance. Using QC
pools run during 1988–2006, it was discovered that during some periods the QC pools measured
higher (or lower) than in other periods. A round table was convened to address these problems [16].
The round table recommended changing the assay to an accuracy-based Liquid chromatography–
tandem mass spectrometry (LC–MS/MS) method starting in 2007. In preparation for the change to
the LC–MS/MS approach, a bridging study was undertaken to develop equations to adjust 25OHD
measurements made with RIA to LC–MS/MS equivalent units. The details of these adjustment
equations and the subsequent complete trend analysis are already published [19,20]. The adjusted data
were released by NCHS on the NHANES website in October 2015 to facilitate assessing the vitamin
D trends in the US population going forward [8]. In this paper, we will consider the data from the
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25OHD bridging studies performed for NHANES 2001–2006 (n = 943). Unweighted descriptive
statistics comparing RIA and LC–MS/MS for each of the survey cycles is shown in Table I, and
the Bland–Altman plots are shown in Figure 1. The mean bias is statistically significant for cycles
2001–2002 (p-value < 0.0001) and 2005–2006 (p-value < 0.0001), and more importantly, the

Table I. Unweighted descriptive statistics of serum concentrations of 25-hydroxyvitamin D by
radioimmunoassay and LC–MS/MS using a bridging data set: National Health and Nutrition Examination
Survey 2001–2006 [20]

Survey period n Variable Mean SD

2001–2002 371 RIA 57.4 30.8
LC–MS/MS 61.1 30.7
Difference �3.7 9.2

2003–2004 289 RIA 60.4 28.7
LC–MS/MS 61.1 29.7
Difference �0.7 9.3

2005–2006 283 RIA 53.9 27.8
LC–MS/MS 60.6 29.0
Difference �6.8 10.6

2001–2006 943 RIA 57.3 29.4
LC–MS/MS 61.0 29.9
Difference �3.7 9.9

LC-MS/MS, Liquid chromatography–tandem mass spectrometry; RIA, radioimmunoassay.

Figure 1. Bland–Altman plots comparing the serum concentrations of 25-hydroxyvitamin D by
radioimmunoassay and liquid chromatography–tandem mass spectrometry (LC–MS/MS) using a bridging data

set for National Health and Nutrition Examination Survey 2001–2006. RIA, radioimmunoassay.
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95% limits of agreement are too wide to consider LC–MS/MS interchangeable with RIA. Because
trends of the mean serum 25-OHD concentrations, reference intervals (2.5th–97.5th percentiles),
and/or prevalence of vitamin D deficiency is used to assess the vitamin D status in the US
population, a statistically valid approach is needed to estimate a variety of parameters under a change
of assay.

2.2. Review of missing data methods

Missing data methods are commonly used to fill in the missing data with plausible value(s). This
practice is often referred to as imputation. The goal for any viable imputation approach is not to
predict the missing values per se but to be able to draw accurate inferences about population
parameters [24]. There are many excellent reviews [24–31] and textbooks [32,33] of statistical
methods to address missing data problems. Every review always starts with a discussion about the
mechanism of missingness and whether the missing data is ignorable or non-ignorable. There are
two ignorable missing data mechanisms: missing completely at random (MCAR) and missing at
random (MAR). Rubin [32] formalized the notions of MCAR and MAR by specifying the missing
data mechanism as part of the full posterior distribution in a Bayesian framework and showed that
when the missing data are either MCAR or MAR, the missing data mechanism can be ignored and
likelihood based approaches provide valid unbiased estimates. For this reason modern missing data
methods are generally valid under MCAR or MAR.

A common approach to dealing with missing data is referred to as complete-case analysis. In
other words, cases that are missing in the proposed analysis are simply dropped. This kind of
approach will only provide valid estimates under MCAR, with some loss in power due to the
reduction of the sample size. Imputation methods can be classified as either a single imputation
or a multiple imputation method. A single imputation method replaces each missing datum with
a single plausible value and typically proceeds as if the completed data are real. Some single-value
imputation methods are ad hoc, such as mean imputation or last observation carried forward and
known to provide biased inferences. Other single imputation methods are able to provide unbiased
estimates of some population parameters under MAR but generally underestimate the standard error
by ignoring the uncertainty added by imputing the missing data [33]. The adjustment equation
approach used by NHANES, while not described in any textbook, can be considered an ad hoc
single imputation approach that applies conditional mean imputation to impute all the values,
including those actually observed. The problem with most single imputation approaches, including
the adjustment equation, is that they underestimate the standard error by failing to account for two
important sources of variation (i) sampling variability (ii) imputation uncertainty. Improvements on
this front can be made by using a stochastic version of conditional mean imputation which adds a
randomly drawn residual from the estimated error distribution of the missing data given the
observed data to each predicted value. Additionally, some replication based variance estimation
methods such as jackknife and bootstrapping have been proposed to address sources of uncertainty
when single imputation is used [34,35].

Multiple imputation is a general term for methods that replaces a single missing value with M
plausible values (M > =2). These imputed values are used to fill in the missing values and create
M separate complete datasets. The M complete datasets are each analyzed separately using valid
statistical procedures and the resulting estimates and standard errors are then combined to form a
single inference using Rubin’s formulas to approximate the posterior mean and variance of the
selected parameter [32]. The variation across the M imputations reflects the uncertainty associated
with replacing missing values with imputed values. The M imputations can be simulated from the
posterior predictive distribution of the missing data given the observed data. This approach was used
to obtain imputations under the multivariate normal distribution and applied to NHANES III data to
deal with non-response, using data augmentation, a class of Markov chain Monte Carlo methods [36].
Another multiple imputation algorithm, which may have less of a theoretical basis, is to use separate
chained equations, also known as sequential regression [37] or fully conditional specification [38]. In
contrast to specifying the full parametric of joint distribution, it specifies each separate conditional
probability distribution through a series of related (chained) regression models. Simulations suggest
that this approach works well [38] and was used to deal with missing dual-energy X-ray
absorptiometry data in NHANES [39].
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3. Description of imputation methods for assay changes

The old assay values (X) will be completely observed by design, the new assay value (Y) will be
partially observed on the basis of whether or not specimens are selected to be part of the bridging
study. This type of missing data pattern is known as monotone missingness and can simplify the
multiple imputation algorithm. In fact, if the joint distribution of (X, Y) is bivariate normal, a fully
Bayesian approach for this problem with non-informative priors or a fully conditional specification
will be asymptotically equivalent. Let X = Xobs = (X1, X2, …., XN) denote the values from the fully
observed old assay on N specimens. K specimens are selected at random from N (K < N) and tested
using the new assay, Y. We denote elements Y that are observed and missing as Yobs and Ymiss,
respectively.

3.1. Single imputation models

The estimated least squares linear regression model using the complete cases (Xobs, Yobs) forms the basis
of both single imputation models considered in this paper: the adjustment equation approach and
stochastic conditional regression. Let Ŷ ¼ β̂0 þ β̂1X be the predicted value of Y given X using the least
squares estimates from the observed data. Of course, the regression form selected might include more
flexible forms such as splines and/or include higher order terms, but for the purposes of this exposition
we will use ordinary least squares. The adjustment equation approach uses the estimated regression
equation to replace all the values ofY = (Ymiss,Yobs), thereby discarding the actual measurements ofYobs.
In contrast, stochastic conditional mean imputation fills in the N-K unknown/missing values,Ymiss, using
the estimated regression equation after adding a randomly drawn residual (ri) from a Normal distribution
with mean zero and variance equal to the estimated residual squared error of the regression line,

ri∼N 0; σ̂2yjx
� �

; such that, the predicted value for the ith case is calculated as Ŷ ¼ β̂0 þ β̂1X̂ i þ ri.

These two single imputation approaches are compared graphically in Figure 2 using a subset of data
from the bridging study to develop equations to adjust 25OHD measurements. The open circles are the
observed data (Xobs, Yobs), where the x-values are the original RIA measurements made in 2007 and the
y-values are the corresponding paired LC–MS/MS measurements. The estimated least squares
regression line is drawn in each graph. The solid circles along the x-axis are the selected observed values
of the old assay (RIA), that need to be imputed for the new assay (LC–MS/MS). The plus signs are the
imputed values made on the basis of the selected method. Notice how the adjustment equation approach
replaces all the values with imputations including the original Yobs (Figure 2a). In stark contrast,
stochastic conditional mean imputation only imputes the missing values, that is, the solid circles
(Figure 2b) and includes the sampling variability around the estimated line. This graph illustrates why
these single imputation approaches underestimate the variability in the new assay as they fail to capture
the variability associated with the actual imputations. However, the adjustment equation approach has
more drawbacks. First, as noted, the adjustment equation approach further underestimates the variance
of the new assay because all the newly imputed data lie exactly along the estimated regression function.
Second, discarding valid measurements made on the new assay in favor of values predicted by the
regression model makes little sense and leads to a further underestimation of the variance. Third, the
correlation between the two assays is severely biased to 1. Lastly, these single imputation approaches
ignore the imputation uncertainty of the selected regression model. These shortcomings are resolved
with a multiple imputation approach which replaces each missing value with M independent values
and incorporates both the uncertainty because of the sampling variability around the line as well as
the uncertainty of the parameters of the selected regression model.

3.2. Multiple imputation model

We propose a Bayesian linear regression model as the basis of the imputation model for our problem
where the new assay is only partially observed. It is a common practice in laboratories to use a standard
linear regression to describe the relationship between two assays such as Y= β0 + β1X+ ε, where

ε∼ N 0; σ2yjx
� �

. There may be times when additional covariates may be considered, or higher order

terms, weighting, and/or transformations are needed to meet the standard assumptions of a linear
regression model. These extensions can easily be incorporated into the approach described here.
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Assume that (Xi, Yi) comes from a bivariate normal distribution with mean μ = (μx, μy) and

covariance matrix, Σ ¼ σ2x
ρσxσy

ρσxσy

σ2y

" #
where σ2x and σ2y is the variance of x and y, respectively and ρ

is the correlation been X and Y. Then the conditional distribution of Yi given Xi is Normal with mean
μy|x= β0 + β1x, where β0 =μy� β1μx and β1 ¼ ρ σy

σx
, and variance σ2yjx ¼ σ2y 1� ρ2ð Þ.

Under a Bayesian formulation of the aforementioned simple linear regression model, we assume all
the parameters, μx; σ

2
x ; β0; β1; σ

2
yjx , are random, and specify non-informative prior distributions. Start

with the available cases to get initial values β̂ 0ð Þ
0 ; β̂ 0ð Þ

1 ; σ̂2 0ð Þ
yjx via least squares, followed by an iterative

algorithm, known as data augmentation, which cycles between an imputation step (I-step) and
posterior step (P-step). At the jth I-step, we simulate the missing values from the conditional predictive

distribution Y jð Þ
miss;ijxi;Yobs; β

j�1ð Þ
0 ; β j�1ð Þ

1 ; σ2
j�1ð Þ

yjx . The P-step involves drawing from the conditional

posterior distributions of σ̂2 jð Þ
yjx ; β̂ jð Þ

1 ; β̂ jð Þ
0 jY jð Þ

miss; Yobs to obtain updated estimates β̂ jð Þ
0 ; β̂ jð Þ

1 ; σ̂2 jð Þ
yjx . Under the

Normal Bayesian linear model, the conditional posterior distributions of σ̂2 jð Þ
yjx ; β̂ jð Þ

1 ; β̂ jð Þ
0 jY jð Þ

miss; Yobs have

well-known probability distributions. Using β̂ jð Þ
0 ; β̂ jð Þ

1 ; σ̂2 jð Þ
yjx , we obtain the ith subject’s missing value

by drawing from the conditional predictive distribution Ymiss;ijxi; Yobs; β0; β1; σ
2
yjx (see Appendix for

details). In order to get M imputations for the ith subject with the new assay, these steps are repeated
for j = 1…M.

Rubin [32] provided the theoretical foundation for multiple imputation using a Bayesian
formulation. Using these M imputations, M separate ‘filled in’ datasets are created and each of these
datasets is analyzed separately using a statistical analysis as if there was no missing data. The last
stage combines these M separate results using Rubin’s formulas into a single inference. Using the

Figure 2. Single regression imputation approaches (a) adjustment equation adjustment equation (b) stochastic
conditional regression. LC–MS/MS, Liquid chromatography–tandem mass spectrometry; RIA,

radioimmunoassay.
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conventional notation, let Q be the parameter of interest, such as a mean, prevalence, or percentile,
so that Q̂i is the point estimate and Vi the estimated variance of Q̂i from the ith ‘filled in’ data set for
i = 1…M. Rubin [32] shows that the complete data posterior mean of Q can be found by averaging

the individual estimates, Q ¼ 1
M

∑M
i¼1Q̂i . Using the Q̂i’s, we can compute the between imputation

variance B ¼ 1
M � 1ð Þ∑

M
i¼1 Q̂i � Q
� �2

and the average of the estimated variances V ¼ 1
M

∑M
i¼1Vi as

the within imputation variance to obtain an estimate of the standard error for Q asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM�1
� �

Bþ V
q

. The relative increase in the variance due to the imputation can be calculated

as r ¼ 1þM�1
� �

B

V
. The value of r can be used to construct λ ¼

rþ 2

3þ M�1ð Þ 1þr�1ð Þ2
rþ1 , the fraction of

missing data. Additionally, r is used to compute the approximate degrees of freedom. Let df be
the appropriate degrees of freedom associated with the variance of the complete data for a given
estimator. When the degrees of freedom is small, the following formula is recommended to calculate
the degrees of freedom [40]

1

M � 1ð Þ 1þ r�1ð Þ2 þ
1

dfþ1
dfþ3

� �
1� rV

Vþ 1þM�1ð ÞBð Þ
� �	 


df

0
BB@

1
CCA

�1

:

4. Application serum total 25-hydroxyvitamin D (25OHD) in National Health and
Nutrition Examination Survey

In this section, we compare the adjustment equation approach and stochastic conditional regression with
multiple imputation. The adjusted 25OHD data released on the NHANES website in October of 2015
are based on the previously published adjustment equations [8,19,20]. These equations are reproduced,
along with the respective estimated mean square error (MSE) and elements of the variance–covariance
matrix of the coefficients in Table II for each 2-year cycle from 2001 to 2006. (SAS Institute, Carey, NC,
US) v 9.3 [41] was used to perform both stochastic conditional regression (rannor statement) and the
multiple imputations. To be conservative, a large number of multiple imputations are used (M = 40).
Multiple imputations are performed separately for each cycle, similar to the adjustment equations
developed by NCHS [19,20]. Two distinct multiple imputation models are considered. MI model 1 uses
the measurements made from the completely observed RIA and partially observed LCMS/MS. MI
Model 2 adds covariates to MI model 1. The covariates are age, race (four dummy variables), gender,
and the 2-year survey mobile examination center (MEC) weight. SAS-callable SUDAAN 11.0.0 [42]
is used to estimate the weighted mean 25OHD concentration and the weighted prevalence of deficiency
for each of the imputation methods described using the MEC weights. Taylor series linearization for
variance estimation is used to account for the stratified cluster design.

Table II. Estimated linear regression models from a bridging study to predict serum concentrations of
LC–MS/MS-equivalent 25-hydroxyvitamin D from original radioimmunoassay 25-hydroxyvitamin D for
National Health and Nutrition Examination Survey, 2001–2006 [19,20].

Survey Period n Equation Mean
Square
Error

Variance
of

intercept

Variance
of

slope

Covariance
of intercept
and slope

2001–2001 371 LC–MS/MSequivalent = 6.43435
+ 0.95212 * RIAoriginal

83.38 1.00689 0.00024 �0.01362

2003–2004 289 LC–MS/MSequivalent = 1.72786
+ 0.98284 * RIAoriginal

85.88 1.61349 0.00036 �0.02179

2005–2006 283 LC–MS/MSequivalent = 8.36753
+ 0.97012 * RIAoriginal

112.38 1.89393 0.00052 �0.02779

LC-MS/MS, Liquid chromatography–tandem mass spectrometry; RIA, radioimmunoassay.
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The results in Tables III and IV are limited to persons 12 years of age and older, stratified by survey
cycle (2001–2002, 2003–2004, and 2005–2006) and grouped by demographic variables or vitamin D
supplement use. The estimated weighted means are fairly stable regardless of the imputation method.
The magnitude of the increase in the standard error under multiple imputation models relative to the
adjustment equation approach varies depending on the subgroup and year, and for MI Model 1 ranges
from around 1%–44% (median ~ 12%), further confirming inferences based on the adjustment equation
are too liberal. Table IV presents the prevalence of LC–MS/MS-equivalent serum 25OHD
concentrations below the 30 nmol/L cutoff. There is a noticeable difference between the imputation
methods when it comes to estimating characteristics around the tails. The estimates of the prevalence
are similar for both multiple imputation models and stochastic conditional regression but differ from
those based on the adjustment equation. Additionally, there can be a severe underestimation of the
standard error with the adjustment equation approach, which leads to confidence intervals that are too
narrow for the stated coverage. The multiple imputation (MI model 1) standard errors are 5%–190%
(median ~ 40%) larger than the adjustment equation approach. The magnitude depends on the subgroup,
year, and the magnitude of the prevalence itself; such as when the prevalence is low. Lastly, except for a
few subgroups, the addition of the selected covariates to MI Model 1 appears to have little to no effect on
the mean 25OHD concentration and prevalence <30 nmol/L estimates as compared with MI model 1
alone. The exceptions are in the 2005–2006 survey cycle: 12–19 year olds, Non-Hispanic Black and
Non-Hispanic Whites.

5. Simulation study

5.1. Details of simulation study

The primary challenge to our problem is that the bridging study is based on a rather small subset of the
original data, usually between 5 and 10% of the original sample. We perform simulations to evaluate
the conditions under which multiple imputation can provide reasonable statistical inference for a
variety of parameters in our setting. Factors that affect the magnitude of the missing data uncertainty
include the percent of missing data, the predictive ability of observed (or utilized) information to make
accurate imputations, and the number of imputations M. The relative efficiency of selecting M

imputations over an infinite number of imputations can be estimated as 1þ λ
M

� ��1
;where λ is the

fraction of missing data [32]. Using this formula, it can be shown if λ ≤ 0.50, that M = 10 has a
relative efficiency ≥ 0.95. For higher rates of missing information (λ > 0.50), this formula suggests
selecting a larger value of M. We selected M = 25 to be conservative because our focus is on cases
with a high percent of missing data, although the fraction of missing information (λ) may be much
smaller than the actual percent of missing data when the two assays are highly correlated. M is also
related to the degrees of freedom, a larger choice of M helps minimize the complexities that can arise
from limited degrees of freedom. To assess these issues, we performed simulations under the following
three scenarios:

(1) X and Y have a bivariate normal distribution with mean μ = (μx = 50, μy = 60), covariance matrix

Σ ¼ 190

190

190

225

" #
and correlation is 0.9189;

(2) X and Y have a bivariate normal distribution with mean μ = (μx = 50, μy = 60), covariance

Σ ¼ 190

103

103

225

" #
and correlation is 0.4982;

(3)
ffiffiffiffi
X

p
and

ffiffiffiffi
Y

p
have a bivariate normal distribution with mean μ = (μx = 7.1, μy = 7.6), covariance

matrix Σ ¼ 3:24

3:3

3:3

4

" #
and correlation is 0.9167. The detransformed values of X and Y are

obtained by squaring the simulated data. It can be shown that the expected value of Y and
X are μ2

y þ σ2y ¼ 7:6ð Þ2 þ 4 ¼ 61:76 and μ2
x þ σ2x ¼ 7:1ð Þ2 þ 3:24 ¼ 53:65; respectively [43].

The population means and correlation used in scenarios 1 and 3 are motivated from the bridging study
for serum 25OHD using a subset of data from NHANES 2001–2006. Prevalence of vitamin D deficiency
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Table III. Weighted mean LC–MS/MS-equivalent serum 25-hydroxyvitamin D concentrations for person 12
y of age and older, stratified by survey, and grouped by demographic variables or vitamin D supplement use,
NHANES 2001–2006: A comparison of imputation methods.

Group 2001–2002 2003–2004 2005–2006

Mean SE Mean SE Mean SE

All
MI Model 1 62.27 0.98 62.64 1.70 60.85 1.38
MI Model 2 62.63 1.14 63.30 1.74 61.70 1.37
Stochastic CR 62.17 0.90 62.74 1.55 61.14 1.11
AE 62.25 0.88 62.72 1.62 61.00 1.12

Age, y
12–19
MI Model 1 62.97 1.13 63.77 2.20 61.92 1.84
MI Model 2 63.19 1.27 64.24 2.22 64.27 1.68
Stochastic CR 62.99 1.10 64.34 2.18 62.34 1.72
AE 63.00 1.04 63.91 2.10 61.92 1.62

20–39
MI Model 1 62.80 1.13 62.85 1.97 62.35 1.72
MI Model 2 62.90 1.39 63.28 1.99 62.91 1.68
Stochastic CR 62.50 1.06 62.94 1.81 62.68 1.41
AE 62.76 1.02 62.93 1.84 62.53 1.44

40–59
MI Model 1 62.35 1.28 62.12 2.01 59.90 1.47
MI Model 2 62.91 1.49 62.98 2.16 60.27 1.68
Stochastic CR 62.44 1.22 62.22 1.88 60.09 1.25
AE 62.38 1.14 62.18 1.98 60.12 1.15

≥60
MI Model 1 60.55 1.31 62.40 1.40 59.35 1.40
MI Model 2 61.12 1.56 63.21 1.64 60.34 1.65
Stochastic CR 60.41 1.17 62.25 1.19 59.68 1.06
AE 60.44 1.16 62.49 1.17 59.45 1.14

Sex
Males
MI Model 1 63.24 1.05 62.93 1.78 60.93 1.36
MI Model 2 64.24 1.23 62.97 1.95 62.20 1.43
Stochastic CR 63.43 0.96 62.90 1.64 61.33 1.17
AE 63.22 0.90 63.07 1.71 61.06 1.01

Females
MI Model 1 61.36 1.13 62.36 1.69 60.77 1.52
MI Model 2 61.13 1.38 63.61 1.72 61.23 1.67
Stochastic CR 60.99 1.06 62.60 1.53 60.96 1.25
AE 61.34 1.04 62.39 1.58 60.95 1.30

Race-ethnicity
Mexican American
MI Model 1 55.07 1.54 54.10 1.78 50.97 2.11
MI Model 2 55.64 2.12 54.10 2.06 51.08 1.37
Stochastic CR 55.40 1.53 54.15 1.73 51.21 1.86
AE 55.06 1.44 54.23 1.62 51.17 1.87

Non-Hispanic Black
MI Model 1 39.28 0.79 40.87 1.74 41.40 1.34
MI Model 2 37.57 1.01 40.88 1.65 39.17 1.66
Stochastic CR 38.97 0.59 41.01 1.57 41.28 1.22
AE 39.34 0.55 40.91 1.48 41.67 1.03

Non-Hispanic White
MI Model 1 67.36 1.11 68.33 1.69 66.13 1.28
MI Model 2 68.57 1.24 69.51 1.78 68.13 1.32
Stochastic CR 67.35 1.02 68.46 1.57 66.50 0.99
AE 67.33 0.99 68.40 1.63 66.23 0.99

(Continues)
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is often a parameter of interest. To investigate the behavior of this estimator, simulated values <30 were
considered deficient [44]. Scenario 3 is probably most consistent with serum 25OHD values because
these measurements are often approximately normal after a square root transformation [19].

Two different missing data mechanisms are considered for the Y variable. The first is based on a
Bernoulli distribution. The probability a datum is missing, π, ranged from 0.5 to 0.95. Thus, the sample
size of the simulated bridging study ranged from 5% to 50% of the original sample size. The other
missing data mechanism is based on a systematic random sample. The sample is selected by sorting
the X values and sampling across the full range of the X with an appropriate sampling interval such that
50%–95% of the values are missing. To ensure that the full range of the X measurement is included, this
latter sampling approach is consistent with how calibration curves are developed for assays in clinical
laboratories and the sampling strategy for previous bridging studies in NHANES. The simulation and
analysis was implemented in R [45] using the package MICE [46]. The multiple imputation in MICE
was performed with Bayesian linear regression under non-informative Jeffrey prior, bivariate normality,
and monotone missingness. We perform 1000 simulations of each scenario where each complete dataset
has 2000 observations and M = 25 multiple imputations. We selected a large sample size N, as about
5000 subjects of all ages are sampled in NHANES each year [7].

5.2. Results of the simulation study

We compared the results of the imputation methods described in Section 3 for a variety of estimands
commonly used to assess nutritional status using biomarkers in NHANES [22]. The estimators for the
following parameters are assessed: population mean, population reference range (population percentiles
2.5th and 97.5th), and population prevalence of deficiency (<30). The 95% confidence intervals for the
percentiles are calculated using the Woodruff method [47]. For each imputation method, Tables V–VII
(and Tables S1 and S2) present the average across the 1000 simulations of each selected estimate, the
width of the 95% confidence interval and coverage of the confidence interval for various levels of
missing data. Each table presents averages based on the full original data before missing data mechanism
is applied to Y, complete case analysis, adjustment equation (AE), stochastic conditional regression
(stochastic CR), and multiple imputation (MI). In the case of simulation scenario 3 where the
detransformed data is not normal, the results are based on two different imputation models. The first
model addresses the non-normality of the data by taking a square root transform of the detransformed
data to develop the imputation model and then back-transforming (squaring) the imputations. The
second model simply proceeds with the detransformed data.

The purpose of presenting the results from the full data set before applying a missing data mechanism
and the complete case results is to set expectations to compare the imputation results. With a sample size
of 2000, we expect the average coverage of the 95% confidence intervals for the estimators of the full data

Table III. (Continued)

Group 2001–2002 2003–2004 2005–2006

Mean SE Mean SE Mean SE

Vitamin D supplement use
Yes
MI Model 1 68.15 1.13 68.64 1.60 66.60 1.43
MI Model 2 68.44 1.28 69.42 1.69 67.15 1.47
Stochastic CR 67.92 0.97 68.42 1.38 67.02 1.06
AE 68.03 0.96 68.62 1.46 66.74 1.12

No
MI Model 1 58.95 1.03 59.08 1.82 57.21 1.51
MI Model 2 59.57 1.18 59.77 1.84 58.33 1.51
Stochastic CR 58.94 0.98 59.33 1.71 57.42 1.26
AE 58.98 0.93 59.21 1.75 57.38 1.28

Abbreviations: SE, standard error; MI model 1, multiple imputation with assay data only; MI model 2, multiple
imputation with assay data, age, race, sex, and MEC survey weight; Stochastic CR, stochastic conditional regression;
AE, adjustment equation.
LC–MS/MS, Liquid chromatography–tandem mass spectrometry; NHANES, National Health and Nutrition
Examination Survey.
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Table IV. Weighted prevalence of LC–MS/MS-equivalent serum 25-hydroxyvitamin D concentrations below
or above 30 nmol/L for person 12 y of age and older, stratified by survey, and grouped by demographic
variables or vitamin D supplement use, NHANES 2001–2006: a comparison of imputation methods.

Group 2001–2002 2003–2004 2005–2006

Mean SE Mean SE Mean SE

Overall
MI Model 1 7.89 0.86 9.29 1.43 8.82 1.19
MI Model 2 8.04 1.02 9.03 1.43 8.62 1.26
Stochastic CR 7.78 0.71 9.23 1.29 8.65 0.89
AE 5.37 0.67 7.48 1.18 5.16 0.71

Age, y
12–19
MI Model 1 6.59 1.17 8.09 1.58 8.56 1.58
MI Model 2 7.13 1.28 8.02 1.61 7.90 1.56
Stochastic CR 6.26 1.16 8.23 1.30 8.67 1.48
AE 4.11 0.85 6.46 1.30 5.26 1.12

20–39
MI Model 1 8.28 1.10 10.18 1.78 8.71 1.40
MI Model 2 8.63 1.27 10.05 1.82 8.84 1.52
Stochastic CR 8.39 0.86 10.60 1.59 8.40 1.05
AE 5.99 0.73 8.23 1.40 5.10 0.79

40–59
MI Model 1 8.07 1.10 9.21 1.69 9.11 1.56
MI Model 2 8.00 1.29 8.94 1.65 9.17 1.66
Stochastic CR 7.65 1.06 8.49 1.61 9.21 1.14
AE 5.74 0.93 7.07 1.45 5.52 0.90

≥60
MI Model 1 7.78 1.33 8.72 1.31 8.64 1.47
MI Model 2 7.67 1.41 8.16 1.36 7.83 1.47
Stochastic CR 7.94 0.75 8.87 0.73 8.07 0.98
AE 4.41 0.61 7.59 1.08 4.60 0.73

Sex
Males
MI Model 1 5.98 0.80 7.18 1.40 7.74 1.21
MI Model 2 5.81 0.84 7.52 1.52 7.41 1.30
Stochastic CR 6.05 0.62 7.31 1.28 7.86 1.02
AE 3.76 0.39 5.14 1.10 4.06 0.61

Females
MI Model 1 9.70 1.12 11.29 1.58 9.83 1.41
MI Model 2 10.11 1.41 10.45 1.55 9.77 1.58
Stochastic CR 9.40 0.93 11.05 1.33 9.38 0.96
AE 6.89 1.07 9.69 1.35 6.20 0.94

Race-ethnicity
Mexican American
MI Model 1 9.31 1.32 12.55 2.28 13.62 2.61
MI Model 2 8.28 1.99 12.22 2.66 13.13 2.94
Stochastic CR 6.85 0.62 14.10 2.41 13.72 2.66
AE 5.26 0.76 9.32 1.56 7.69 2.04

Non-Hispanic Black
MI Model 1 32.63 2.20 31.38 3.76 28.93 2.87
MI Model 2 35.54 2.78 31.47 3.42 33.15 3.86
Stochastic CR 32.63 1.38 30.22 3.04 29.40 2.79
AE 28.46 1.90 29.57 3.41 21.79 2.19

Non-Hispanic White
MI Model 1 3.96 0.60 4.93 0.84 4.59 0.84
MI Model 2 3.19 0.65 4.28 0.85 3.22 0.73
Stochastic CR 4.07 0.44 4.74 0.74 4.35 0.50
AE 2.17 0.29 3.50 0.56 2.11 0.29

(Continues)
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set to be close to 95% and the estimates to be unbiased. We have similar expectations for the complete
case approach under MCAR, although as the percent of missing data increases, we see an increase in
the average width of the confidence interval in order to maintain the 95% coverage. In addition, under
the complete case approach as the percent missing data increases (i.e., observed sample size gets smaller),
the asymptotic assumptions associated with the confidence intervals for some estimators breaks down, for
example, prevalence not having exact 95% coverage. It is also worth noting that the complete case
approach overestimates the sampling error (the traditional formula for the variance) when the sampling
frame is ordered under systematic random sampling and the order is highly correlated with the outcome
of interest [48]. While there is no unbiased way to estimate the variance from a systematic sample of an
ordered list, it is clear that the sampling variability of the sample mean is smaller than under simple
random sampling, and this is reflected by having higher than expected coverage (>95%) of the
confidence intervals, especially when the order of the sampling frame is highly correlated with the new
assay. Figure 3 compares the sampling distribution of the sample mean from data simulated from scenario
1 when there is no missing data or when only the complete cases are used (90% of the data is missing). As
expected, the sampling error associated with having no missing data (and therefore a larger sample size) is
the smallest, and the sampling error associated with the complete cases selected under the systematic
random sampling is much smaller than under the simple random sampling.

Regardless of the percent of data missing, all the imputation methods provide an unbiased estimate of
the population mean (Table V). On the other hand, the coverage of the adjustment equation’s 95%
confidence intervals is well below the expected 95% because the variability of the sample mean (i.e.,
the standard error) is severely underestimated. In fact, the adjustment equations’ average width of the
95% confidence interval is routinely smaller than the full-data scenario. This undesirable feature
demonstrates why the adjustment equation is not a viable imputation approach when any statistical
inference is a primary goal of the analysis. The severity of the undercoverage for both the adjustment
equation and stochastic conditional regression methods is related to the percent of data that is missing,
as well as the underlying true correlation between X and Y. These findings are consistent with the
literature [33].

Estimates at the tails such as the prevalence of less than 30 (Table VI), the 2.5th (Table VII), and
97.5th (Table S1) percentiles are always biased using the adjustment equation. Even the 25th and 75th
percentiles are biased (results not shown). However, it appears that this bias may be remedied with the
stochastic conditional regression approach even when the correlation is weaker. The coverage of the
95% confidence intervals continues to be poor for both these single imputation approaches because
they underestimate the uncertainty associated with the imputations. The adjustment equation method
always has the worst bias and coverage of the 95% confidence intervals. In some cases, the coverage
of the 95% confidence interval for the adjustment equation is as low as 63% when estimating the
mean (Table V) and 30% when estimating the prevalence (Table VI).

Table IV. (Continued)

Group 2001–2002 2003–2004 2005–2006

Mean SE Mean SE Mean SE

Supplement use
Yes
MI Model 1 3.06 0.63 4.22 0.94 3.77 0.87
MI Model 2 3.25 0.66 4.11 0.95 3.89 0.99
Stochastic CR 2.48 0.37 3.68 0.67 3.57 0.69
AE 1.69 0.33 2.35 0.67 1.16 0.33

No
MI Model 1 10.61 1.20 12.25 1.78 11.97 1.54
MI Model 2 10.62 1.37 11.82 1.77 11.53 1.56
Stochastic CR 10.73 1.03 12.50 1.64 11.84 1.09
AE 7.38 0.97 10.48 1.46 7.66 0.96

Abbreviations: SE, standard error; MI model 1, multiple imputation with assay data only; MI model 2, multiple
imputation with assay data, age, race, sex, and MEC survey weight; Stochastic CR, stochastic conditional regression;
AE, adjustment equation.
LC–MS/MS, Liquid chromatography–tandem mass spectrometry; NHANES, National Health and Nutrition
Examination Survey.
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In contrast, multiple imputation produces unbiased estimates for all the estimands investigated and
maintains approximately 95% coverage at all levels of missing data even when the correlation between
X and Y is low (0.5). Figure 4 compares the sampling distribution of the 2.5th percentile under
simulation scenario 1 (90% data missing). The adjustment equation’s sampling distribution is shifted
to the right of the other sampling distributions; demonstrating the severe bias in estimating features in
the tails of the distribution.

Scenario 3 allows us to investigate the impact of ignoring the non-normality or pre-transforming the
data to fit the imputation model. Under the conditions considered here (square root), the choice has
limited impact when estimating the mean. However, it is clear that estimates at the tails are impacted,
and it is preferable to use an imputation model that is faithful to the distribution of the original data.
Figure 5 compares the sampling distribution of the 2.5th percentile (90% data missing) based on the
adjustment equation, stochastic conditional regression and multiple imputation when the imputation
model transforms the data or ignores the lack of normality. As with earlier simulations, the adjustment
equation is severely biased when estimating features around the tails of the distribution, regardless of the
model. On the other hand, both the multiple imputation and stochastic conditional regression models
indicate that it is important to be loyal to the distribution of the data in order to obtain unbiased

Figure 3. Sampling distribution of the sample mean based on 1000 simulations under scenario 1 with 90%
missing data. The vertical line represents the true value of the parameter (population mean).

Figure 4. Sampling distribution of the 2.5th percentile based on 1000 simulations under scenario 1 with 90%
missing data. The vertical line represents the true value of the parameter (population 2.5th percentile).
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estimates, especially for features around the tails. As with previous simulations, only the multiple
imputation approach maintains at least 95% coverage for the confidence intervals; but even for multiple
imputation, it can be important to select an imputation model that is consistent with the distribution of
the original data.

In order to demonstrate how multiple imputation maintains the correlation between X and Y, the
Pearson correlation was estimated using data from each method. While in the context of this setting,
the correlation of X and Y may not be a parameter of direct interest, there are many other variables in
a national survey whose correlation with the new assay may be of interest. If the correlation between
X and Y is biased, then the correlation between any variable in the national survey and the newly
imputed variable will be biased. Table S2 presents the average estimated correlation between X and
Y for each method across 1000 simulations for each scenario. As expected, the correlation between
the values imputed by the adjustment equation and X is exactly 1 with no sampling variability.
Clearly, this is a result of using a linear transformation to impute the new assay from the old. The
stochastic conditional regression approach appears to improve the bias of the correlation between X
and Y but still underestimates the variability of the sample correlation leading to poor coverage of
the 95% confidence intervals. Multiple imputation, in contrast, continues to achieve unbiased
estimates, standard errors that properly reflect the uncertainty because of the imputation, and
approximate 95% coverage.

6. Discussion

This paper describes an application of multiple imputation for nutritional biomarkers in large national
surveys when there is an assay change over time and demonstrates that multiple imputation can be used

Figure 5. Sampling distribution of the 2.5th percentile based on 1000 simulations under scenario 3 with 90%
missing data comparing models that either does or does not transform the data before fitting the imputation

model. The vertical line represents the true value of the parameter (population 2.5th percentile).

M. STERNBERG

Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Statist. Med. 2017, 36 2697–2719

2713



effectively to estimate various population parameters. This is important because estimands such as
reference intervals (2.5th–97.5th percentile) are as important as central tendency, when describing
nutritional biomarkers [22]. A key, untestable assumption for multiple imputation, is an ignorable
missing data mechanism (i.e., MCAR or MAR). In our setting, the missingness is planned in advance
and so the missing data mechanism is known. There is a tremendous amount of research and discussion
about the performance of multiple imputation under far more complicated settings than the problem
addressed in this paper [2–5,36,39,49–52]. For example, multiple imputation was used to bridge changes
in the industry and occupation classification system used by the Bureau of Census [2–4] and to impute
single-race categories from multiple-race reporting in the National Health Interview Survey [5]. Our
proposal has several similarities to these papers: application to a large public-use dataset with access
to many completely observed covariates; the need to impute a single variable to assess trends; a large
percent of the data is missing; and the missing data mechanism is known. The previous work [2–5]
imputed codes for categorical variables using logistic regression primarily with categorical covariates,
where spare data can be problematic. In contrast, the imputed variable (new assay) in our setting is
continuous and based on a highly correlated continuous covariate (old assay, r > 0.9). This makes
our setting nicely suited for multiple imputation under a multivariate normal distribution using
regression methods for monotone missing data. Generally, in our setting, there is no reason to expect
changes over time in the relationship between the two assays or with the other variables, as there might
be with occupation and race codes. However, if there are assay drifts over time, as for the 25OHD RIA
assay, the quality control measures at the CDC laboratory can detect them in advance and use this
information as part of the study design, as was done for the 25OHD bridging study [16].

The simulations are intended to illustrate the improved properties of multiple imputation over the
adjustment equation approach for selected estimands. However, the simulations may not be
generalizable to complex surveys, as they are based on a simple random sample from infinite population.
Previous research has shown that multiple imputation can yield biased estimates of variance when
characteristics of the survey design are related to the variable(s) under study [53–55]. This is equally true
of single imputation methods, so multiple imputation methods still offer more advantages than
disadvantages in this regard. Simulations by Reiter et al. [55] suggest that ignoring the design variables
in an imputation model may provide reasonable inferences if the outcome and the design variables have
little correlation. These authors also estimated the bias of three estimates from NHANES by comparing
the results from imputation models that either included or excluded the design variables. The results
suggested that including design variables that are weakly associated with the outcomes led to more
conservative inferences, unlike the current adjustment equation approach, which leads to liberal
inferences. When analyzing the NHANES data in this paper, neither multiple imputation model
considered included all the design variables. Therefore, there may be biases and/or inefficiencies that
cannot be generalizable to other settings, and certainly not to other biomarkers. We showed empirically
that including some of the design variables such as age, sex, race, and the survey weights had little
practical effect on the resulting estimates, compared with a multiple imputation model with only using
assay data, although on aggregate it did appear that the standard error was larger, suggesting that some of
the covariates may be irrelevant. More research needs to be performed to determine the necessity and
impact of including the design variables and other covariates into the proposed multiple imputation
solution for this problem. An additional point, this paper primarily considered a single variable, the
old assay, in developing the imputation models. This is because the method currently in use, the
adjustment equation approach, generally only considers this variable (old assay). The primary purpose
of this paper is demonstrate how multiple imputation can be performed with the same amount of
observed information as the adjustment equation approach and provide much more valid inferences.

Using multiple imputation instead of the adjustment equation approach method with a properly
designed bridging study does not require much more effort. Developing an imputation model under
multiple imputation is equally challenging as under a single imputation method and subject to similar
assumptions. Multiple imputation naturally incorporates missing data uncertainty leading to valid
statistical inferences, unlike the adjustment equation method. In addition, the full Bayesian nature of
the proposed solution can take advantage of the wealth of data and experience in the laboratory with
the new and old assay, which can be used to inform the prior distributions of the Bayesian linear
regression model. If necessary, one can build in measurement error for X, using historical information
and a prior distribution. The selected functional form need not always be linear, as used in this paper.
Rather one could include more flexible forms such as higher order terms or splines or utilize
transformations. For example, a log transformation is useful with many nutritional biomarkers, as they
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are often skewed right. Alternatively, more robust alternatives could be considered for the imputation
model such as quantile regression [56]. The primary technical challenge with a multiple imputation
approach is ensuring convergence [57,58].

Implementing the proposed solution does have its logistical challenges. All the data in NHANES are
publically released on the internet allowing data analysts all over the world access to the data to obtain
nationally representative estimates of the civilian US population. When there is an assay change, the
online NHANES documentation is updated to provide the adjustment equation(s) developed from the
bridging study [6–10], but no new data is released (re-release of vitamin D data was an exception).
Currently, the documentation does not report the mean square error or the variance–covariance matrix
of the coefficients of the adjustment equation. One recommendation is that the NHANES documentation
publishes both the MSE and the variance–covariance matrix along with the estimated adjustment
equation. This information could be used to either perform multiple imputation (see Appendix) [37]
or at a minimum add a residual to the adjustment equation to ensure at least that estimates at the tails
are less biased. However, those solutions are still undesirable because measurements made with the
new assay are not used, because they are not publically available. We recommend that in addition to
providing the MSE and variance–covariance matrix of the adjustment equation(s) in the documentation,
the data is re-released to include the new assay values, where measured, along with the originally
measured values. In this way, the data analyst can either use these data to develop their own multiple
imputation model or use the published information in the documentation. The drawback is different
multiple imputation models will produce slightly different national estimate(s). This is because the M
multiple imputed values are simulated from the posterior conditional distribution of the missing data
given the observed data; depending on the random number generator and the seed, every analyst will
have an ever so slightly different estimate, even if the same imputation model and same statistical
method is used. One way around this is to release M publically available data sets, where the agency
develops the imputation model, as was done with the Dual X-ray data in NHANES [39,59]. There is
an advantage to have the agency develop the multiple imputation model because they have access to
far more information than the average data user including the original survey design variables and other
confidential data. With this approach to the data release, data analysts will obtain the same estimates
when using the M datasets for the same complete data statistical analysis. While this approach requires
some added storage and some additional computational requirements to implement the multiple
imputation solution, it is a minor inconvenience given software to do this is readily available in SAS,
R, SPSS, Stata, S-Plus, and SUDAAN [23].

6.1. Disclaimer

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the
official position of the Centers for Disease Control and Prevention/the Agency for Toxic Substances and
Disease Registry.

Appendix

Under a Bayesian formulation of simple linear regression model, we assume all the parameters,
μx; σ

2
x ; β0; β1; σ

2
yjx, are random, and specify prior distributions. X is completely observed, therefore it is

reasonable to assume that the parameters μx; σ
2
x

� �
are independent from β0; β1; σ

2
yjx

� �
[32]. The bivariate

normal likelihood can written as the product of the marginal normal density of X and the conditional
normal density of Y given X:

f xi; yijμ;∑ð Þ ¼ f xijμxσ
2
x

� �
f yijxi; β0; β1; σ2yjx
� �

If there is no prior information, we can specify a non-informative Jeffrey’s prior such that

P β0; β1ð Þ∝1 � ∞ < β0 < ∞; � ∞ < β1 < ∞
so

P β0; β1; σ
2
yjx

� �
∝

1

σ2yjx
σ2yjx > 0
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With this assumption in place, the joint posterior distribution of β0; β1; σ
2
yjx

� �
can be derived using the

second term of the bivariate normal likelihood:

P β0; β1; σ
2
yjxjY ;X

� �
∝∏

K

i¼1
f yijxi; β0; β1; σ2yjx
� �

P β0; β1; σ
2
yjx

� �

It can be shown from standard Bayesian theory with a Jeffrey’s prior that the posterior distribution of

σ2yjx is σ
2
yjxjY ;X∼Inv� χ2 K � 2; σ̂2yjx

� �
, where σ̂2yjx ¼

1
K � 2

∑K
i¼1 yi � β̂0 þ β̂1xi

� �� �2
. The conditional

posterior distribution of β0; β1jσ2yjx;X ;Y is bivariate normal distribution centered around the least squares

estimate for β0 , β1, such that

β0; β1jσ2yjx; Y ;X∼BVN

β̂0 ¼ y� β̂1x

β̂1 ¼
∑
K

i¼1
xi � xð Þ yi � yð Þ

∑
k

i¼1
xi � xð Þ2

2
6666664

3
7777775
;

∑
k

i¼1
x2i

n∑
k

i¼1
xi � xð Þ2

�∑
k

i¼1
xi

n∑
k

i¼1
xi � xð Þ2

�∑
k

i¼1
xi

n∑
k

i¼1
xi � xð Þ2

1

∑
k

i¼1
xi � xð Þ2

2
66666666666664

3
77777777777775
σ2yjx

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

These results suggest a way to create the multiple imputations simulated from the posterior predictive
distribution of the parameters that accounts for the sampling variability in the linear regression, as well
as uncertainty about the unknown model parameters β0; β1; σ

2
yjx.

Start with the available cases to get initial values β̂ 0ð Þ
0 ; β̂ 0ð Þ

1 ; σ̂2 0ð Þ
yjx via least squares, followed by an

iterative algorithm, known as data augmentation, that cycles between an imputation step (I-step) and
posterior step (P-step). At the jth I-step we simulate the missing values from the conditional predictive

distribution Y jð Þ
miss;ijxi; Yobs; β

j�1ð Þ
0 ; β j�1ð Þ

1 ; σ2
j�1ð Þ

yjx . The P-step involves drawing from the conditional

posterior distributions of σ̂2 jð Þ
yjx ; β̂ jð Þ

1 ; β̂ jð Þ
0 jY jð Þ

miss; Yobs, which under the Normal Bayesian linear model will

have well- known probability distributions, to obtain updated estimates β̂ jð Þ
0 ; β̂ jð Þ

1 ; σ̂2 jð Þ
yjx .

Specifically, we obtain a draw from σ2yjxjY jð Þ
miss;Yobs , by drawing from g, a chi-square random variable

on K-2 degrees of freedom, and compute σ̂2 jð Þ
yjx ¼

σ̂2 jð Þ
yjx K � 2ð Þ

g jð Þ . Next, to draw from

β jð Þ
0 ; β jð Þ

1 jσ̂2 jð Þ
yjx ; Y jð Þ

miss; Yobs; X we take two independent draws z0
( j) and z1

( j) from the standard normal

distribution and compute

β jð Þ
0

β jð Þ
1

 !
¼ β̂ j�1ð Þ

0

β̂ j�1ð Þ
1

 !
þ σ̂2 jð Þ

yjx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

i¼1
x2i

n∑
k

i¼1
xi � xð Þ2

vuuuuuut 0

�∑
k

i¼1
xiffiffiffiffiffiffiffiffiffiffi

∑
k

i¼1
x2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑

k

i¼1
xi � xð Þ2

s 1ffiffiffiffiffiffiffiffiffiffi
∑
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x2i

s

2
666666666666664

3
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z jð Þ
0
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1

 !
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Drawing from β jð Þ
0 ; β jð Þ

1 jσ̂2 jð Þ
yjx ; Y jð Þ

miss;Yobs;X can also be achieved by sampling from the conditional

posterior distribution β jð Þ
1 jσ̂2 jð Þ

yjx ;Y jð Þ
miss; Yobs;X∼N β̂ j�1ð Þ

1 ;
σ̂2 jð Þ
yjx

K∑K
i¼1 xi � xð Þ2

0
@

1
A and then from the

conditional posterior distribution of β jð Þ
0 ; jβ̂ jð Þ

1 ; σ̂2 jð Þ
yjx ; Y jð Þ

miss;Yobs;X∼∼N y� β̂ jð Þ
i x;

σ̂2 jð Þ
y xj
K

0
@

1
A.s

Now, the ith subject’s missing value can be drawn from the conditional predictive distribution

Ymiss;ijxi;Yobs; β0; β1; σ
2
yjx∼N β0 þ β1xi; σ

2
yjx

� �
by computing Y jþ1ð Þ

miss;i ¼ β̂ jð Þ
0 þ β̂ jð Þ

1 xi þ r jð Þ
i σ̂ jð Þ

yjx ,

where ri is drawn independently form standard normal distribution. In order to get M imputations for
the ith subject with the new assay, these steps are repeated for j=1…M.
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