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Abstract Lignin is known to impede conversion of
lignocellulose into ethanol. In this study, forage sorghum
plants carrying brown midrib (bmr) mutations, which
reduce lignin contents, were evaluated as bioenergy feed-
stocks. The near-isogenic lines evaluated were: wild type,
bmr-6, bmr-12, and bmr-6 bmr-12 double mutant. The bmr-
6 and bmr-12 mutations were equally efficient at reducing
lignin contents (by 13% and 15%, respectively), and the
effects were additive (27%) for the double mutant.
Reducing lignin content was highly beneficial for improv-
ing biomass conversion yields. Sorghum biomass samples
were pretreated with dilute acid and recovered solids
washed and hydrolyzed with cellulase to liberate glucose.
Glucose yields for the sorghum biomass were improved by

27%, 23%, and 34% for bmr-6, bmr-12, and the double
mutant, respectively, compared to wild type. Sorghum
biomass was also pretreated with dilute acid followed by
co-treatment with cellulases and Saccharomyces cerevisiae
for simultaneous saccharification and fermentation (SSF)
into ethanol. Conversion of cellulose to ethanol for dilute-
acid pretreated sorghum biomass was improved by 22%,
21%, and 43% for bmr-6, bmr-12, and the double mutant
compared to wild type, respectively. Electron microscopy
of dilute-acid treated samples showed an increased number
of lignin globules in double-mutant tissues as compared to
the wild-type, suggesting the lignin had become more
pliable. The mutations were also effective for improving
ethanol yields when the (degrained) sorghum was pre-
treated with dilute alkali instead of dilute acid. Following
pretreatment with dilute ammonium hydroxide and SSF,
ethanol conversion yields were 116 and 130 mg ethanol/g
dry biomass for the double-mutant samples and 98 and
113 mg/g for the wild-type samples.

Keywords Bioenergy crops . Bioethanol . Brownmidrib .

Lignin . Sorghum bicolor

Introduction

There is a resurgent interest in renewable fuels as means to
dampen price volatility in transportation fuels, mediate
economic and security concerns related to importing oil from
a small cohort of producers, and reduce carbon dioxide
emissions along with associated risks of climate change and
global oceanic acidification. As a consequence, ethanol
production capacity in the USA has more than tripled in the
past 5 years expanding from 3.4 (2004) to 10 billion gallons
(2009) (Renewable Fuel Association; www.ethanolrfa.org;
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accessed on Jan. 12, 2009). Almost all of US ethanol is
manufactured from corn grain, and producing 10 billion
gallons of ethanol would consume over 30% of the corn
harvest [37]. By contrast, this amount of ethanol would only
reduce domestic gasoline demand by 4.8% J/J. Therefore,
additional feedstocks need to be developed for ethanol
production, and only lignocellulose is available in quantities
that rival corn. Lignocellulosic feedstocks include agricul-
tural residues, forestry and wood pulp wastes, and energy
crops. A governmental study estimates that enough lignocel-
lulose can be made available to substitute 30% J/J of the US
petroleum consumption with biofuels [25]. Life cycle
analysis studies estimate that biofuels derived from ligno-
cellulose have a high net energy output and are effective for
reducing net carbon dioxide emissions [12].

Forage sorghum has attracted interest as a potential
energy crop. It can be grown under conditions that are
unfavorable for corn production, is already established as
an industrial crop, and has high biomass yields—sorghum
plants can grow 6–15 ft tall [28, 33]. Forage sorghum is
grown on 6 million acres in the USA (2007) with a total
production of 58 million tons of biomass. Of particular
interest are the brown midrib (bmr) varieties, which have
lower lignin contents and increased forage quality (e.g.,
rumen digestibility) [20, 21, 26]. Plants carrying the bmr
mutations are named for the characteristic reddish brown
coloration present in the vascular plant tissue. Sorghum bmr
mutants were first isolated from a chemically mutagenized
population at Purdue University [26], and three (bmr-6,
bmr-12, and bmr-18) have been incorporated into commer-
cial lines [28]. They are recommended for use as bioenergy
crops because it is reasonable to suppose that their reduced
lignin contents would improve sugar and ethanol yields and
require less severe pretreatments.

Manufacturing ethanol from lignocelluloses is a multistep
process (for review, see [6]). The biomass is milled to reduce
particle size, wetted, and pretreated prior to enzyme
processing. During pretreatment, the biomass is subjected
to a combination of physical, thermal, and chemical
conditions that open up the plant cell wall structure and
expose the hemicellulose and cellulose fibers. Subsequently,
the pretreated biomass is hydrolyzed to sugars using
cellulases and possibly hemicellulases. When the biomass
is pretreated in the presence of dilute acid (e.g., H2SO4), acid
catalysis directly converts the xylan into monosaccharides.
The liberated sugars are fermented to ethanol and the ethanol
recovered by distillation. Alternately, enzymes and ferment-
ing microbe are co-added, allowing the saccharified sugars to
be fermented instantly; simultaneous saccharification and
fermentation (SSF) minimizes end product inhibition of the
enzymes and microbial contamination.

Biomass needs to be pretreated prior to saccharification
because carbohydrases are unable to effectively penetrate

native plant cell walls and access their targeted carbohy-
drates. In warm season grasses, primary cell walls are
composed of cellulose, glucurono-arabinoxylans (GAX),
and phenolic residues. GAX consists of a β1,4-linked
xylose backbone with arabinose and glucuronic acid side
chains [34]. The p-coumaric and ferulic phenolic acids are
bound to the arabinans through ester and ether bonds, and
significantly, the ferulic acids also dimerize thereby
crosslinking adjacent xylan strands [34]. The secondary
cell walls are located inside of primary cell walls of
vascular and supporting tissue and, in addition to cellulose
and GAX, often contain lignin. Lignin is a complex
hydrophobic polymer of p-hydroxyphenyl, guaiacyl, and
syringyl residues that fills in the spaces between the
cellulose fibers and hemicellulose. Lignin is highly
resistant to chemical cleavage and is thought to be the
major barrier protecting cellulose fibers from cellulase
hydrolysis to glucose [3]. Lignin retards the action of
cellulases in multiple ways: acting as a physical barrier,
impeding swelling of cellulose fibers, and nonspecifically
binding cellulase proteins [33]. Therefore, reducing lignin
content of plants could potentially increase sugar yields,
allow for reduced pretreatment severity, and possibly
lower enzyme loadings. Two recent papers demonstrate
that bmr mutations appearing singly promote increased
glucose yields when dilute-acid pretreated samples are
hydrolyzed with cellulases [5, 27]. What has not yet been
investigated is the direct impact of bmr mutations on
ethanol yields.

In the present study, we investigated near-isogenic
bmr-6, bmr-12, and bmr-6 bmr-12 mutants as bioenergy
crops. This is the first report on the use of a double bmr
sorghum mutant for ethanol production. bmr-6 encodes for
a cinnamylalcohol dehydrogenase [29], and bmr-12
encodes an O-methyl-transferase that is apparently specif-
ic to 5-hydoxyconiferyl aldehyde [2, 23]. Both bmr-6 and
bmr-12 are null mutations leading to the absence of active
enzymes in tissues [23, 29]. Loss of enzyme activity
results in increased soluble phenolics and lower incorpo-
ration of p-coumaric and ferulic acids as well as lignin into
cell walls, where the greatest effect is observed in bmr-6
bmr-12 plants [23]. In these plants, lignification in stem
tissues was also significantly impaired [23, 29]. Lowered
total lignin in some of these near-isogenic lines has been
correlated to increased dry matter digestibility by rumi-
nants [20, 21, 24]. Here, we evaluated the effect of dilute-
acid pretreatment of the three mutants (bmr-6, bmr-12, and
bmr-6 bmr-12 genotypes) and the parental line for
conversion to glucose and ethanol, where ethanol yields
were measured by SSF cultures using the yeast Saccha-
romyces cerevisiae. The effect of the bmr-6 bmr-12
genotype on ethanol yield was further investigated using
a promising alkaline pretreatment.
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Materials and Methods

Enzymes and Chemicals

Cellulase GC220 was kindly donated by Genencor, Inc.
(Rochester, NY) and Novo188 β-glucosidase (Novozymes
A/S, Denmark) was purchased from Sigma Chemicals (St.
Louis, MO). Other reagents and chemicals were purchased
from Sigma Chemicals or Fisher Scientific (Pittsburgh, PA)
and were research quality.

Sorghum Biomass

Development of the single- and double-mutant stocks has
been previously described [24]. Lines of the cultivar Atlas
near-isogenic for the single- and double-mutant stocks
were grown at the University of Nebraska Agricultural
Research and Development fields near Lincoln, NE, in the
summer of 2005. Seeds from individual genotypes were
planted in a randomized complete block design on March
18. Plots consisted of three 7.6-m rows spaced 76 cm
apart. Each plot was seeded with a precision vacuum
planter calibrated to deliver 120 seeds per row (240,000
seeds ha−1). Propachlor [2-chloro-N-(1-methylethyl)-
N-phenylacetamide] and atrazine [6-chloro-n-ethyl-N′-
(1-methylethyl)-1,3,5-triazine-2,4,diamine] were applied
at 3.36 and 1.1 kg ha−1, respectively, immediately after
planting for weed control. After all plots reached the hard-
dough stage of maturity, duplicate plots were harvested on
September 29 to yield plants with grain or after removal of
the seed heads to give plants without grain. Plants were
harvested with a flail chopper, and plant materials were
subsequently oven dried at 50°C and ground to pass
through a 1-mm screen using a Wiley mill.

Compositional Analysis

Starch was estimated following treatment with amylases
[14]. Structural carbohydrates (cellulose, xylan, and ara-
binan), Klason lignin, and ash were determined according
to the analytical procedure of the National Renewable
Energy Laboratory (NREL) [31]. Lipid content was
determined by exhaustive extraction with hexane. Nitrogen
content was determined by combustion, and crude protein
concentration was estimated as Nx6.25 [22]. Soluble sugars
were extracted in water by treating in an ultrasound bath for
5 min and measured by HPLC. Samples were processed for
detergent fiber analysis according to standard methods [32].
Measurements included neutral detergent fiber (NDF), acid
detergent fiber (ADF), and acid detergent lignin (ADL).
Detergent hemicellulose (xylan) was estimated from the
difference of ADF and NDF and detergent cellulose from
the difference of ADF and ADL.

Dilute-Acid Pretreatment, Enzymatic Hydrolysis,
and Ethanol Fermentation

Sorghum samples were pretreated in dilute sulfuric acid
solution (1.75% w/v) by combining 1 g with 9.0 ml
acid buffer (5% w/v solid loading) for digestion experi-
ments and 1.5 g with 8.5 ml acid buffer (15% w/v solid
loading) for fermentation experiments. Corning PyrexTM

solution bottles (25 ml) were used as reaction vessels,
and lids were tightened prior to heating. Samples were
heated at 121°C in an autoclave for an hour. Solids were
recovered by centrifugation (23,000×g for 20 min) and
washed three times with equal volumes of distilled water,
once again using centrifugation to recover the pellet
between washes.

Cellulose digestibility was determined using a modified
version of a NREL procedure [30]. The suspected pellet
was weighed and brought up to a final weight of 15 g by
addition of sodium citrate buffer (50 mM, pH 4.8)
supplemented with the antibacterial agent thymol
(350 mg/l). The enzymatic digestion was initiated by
adding GC220 cellulase (50 FPU/g cellulose) and Novo188
β-glucosidase (40 U/g cellulose). The reaction was con-
ducted at 50°C for 72 h while stirring at 125 rpm using an
incubator/shaker (Innova®, New Brunswick Scientific, NJ).
Following 72 h, the digestion was sampled and analyzed
for soluble carbohydrates and monosaccharides.

Ethanol efficiencies were determined using a modified
version of the NREL procedure [11]. The recovered pellet
was diluted with 18 ml of sodium citrate buffer (50 mM,
pH 4.8) and 2 ml of yeast extract and peptone solution (YP,
10 g/l yeast extract and 20 g/l peptone final concentrations).
Next, the following enzymes were added: GC220 Cellulase
(15 FPU/g cellulose) and Novo188 β-glucosidase (40 U/g
cellulose). The enzyme loadings are reduced from those
used for the digestions because fermentations were con-
ducted to minimize end product inhibition. The culture was
inoculated with S. cerevisiae D5A (ATCC200062) to a
beginning OD600 of 0.5. The fermentation flask was capped
with a rubber stopper, which was pierced with a 22-g
needle to allow for CO2 to exhaust. The simultaneous
saccharification and fermentation culture was incubated at
35°C for 72 h while mixing at 125 rpm, also using an
Innova shaker/incubator. The inoculum was prepared by
transferring a colony grown on solid YP2D (YP supple-
mented with 20 g/l dextrose and 2.0% Bacto agar) to a
liquid YP5D (YP supplemented with 50 g/l dextrose). The
liquid culture was grown 18 h at 35°C and 200 rpm, and the
cells were harvested by centrifugation and suspended as a
concentrated cell solution (50 OD600) in diluent (saline,
phosphate, peptone (0.4%)). Following the fermentation,
the cultures were analyzed for ethanol and glucose
concentrations.
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Alkaline Pretreatment and Fermentation

Sorghum samples were treated at 15% w/w solids in 4.0%
ammonium hydroxide solution at 170°C for 20 min. The
reactions were conducted using stainless steel tube reactors
and a fluidized heating bath previously described for dilute-
acid pretreatments [7]. After cooling, samples were air
dried at 25°C for 48 h to remove ammonia. Dried biomass
was suspended at 13.6% w/w solids in sodium citrate buffer
(pH 4.8, 50 mM) and YP. Cellulase GC220 (15 FPU/g
cellulose), Novo188 β-glucosidase (40 U/g cellulose),
and glucoamylase Distillase L-400 (14.7 mg/g biomass,
Genencor Inc.) were added and the culture fermented as
described above for dilute-acid pretreated samples. Fer-
mentations were ended following 72 h and broths analyzed
for glucose, xylose, and ethanol concentrations.

Analytical Methods

Cellulase and β-glucosidase activities were measured as
previously reported [7, 9]. Total soluble carbohydrates
were analyzed by HPLC after being hydrolyzed by
treating with 2 N trifluoroacetic acid for 60 min at
100°C. Samples were analyzed for sugars and acetic acid
using a HPLC equipped with an organic acids column
(Bio-Rad Laboratories, CA) and a refractive index
detector, as previously described [8].

Calculations

Samples were washed following dilute-acid pretreatment to
remove acid and glucose released during acid hydrolysis.
The glucan content of the washed pellet recovered
following the pretreatment was calculated by subtracting
glucose released into the hydrolysis from the beginning
glucan content of the sample. Glucose efficiencies were
then calculated from the ratio of glucose released following
cellulase treatment and the beginning cellulose content,
adjusted for the weight gained through hydrolysis. Ethanol
efficiencies for fermentations of the dilute-acid pretreated
samples were calculated from the ratio of ethanol produced
and maximum possible ethanol. The maximum theoretical
ethanol was calculated by multiplying the glucan content of
the washed pellet by the theoretical conversion coefficient
for ethanol production (0.567 g ethanol/g glucan). Aqueous
ammonium pretreated samples were not washed prior to
fermentation, and for these experiments, the ethanol yield
was calculated by dividing the final amount of ethanol
produced (milligrams of ethanol) by the starting biomass
(grams biomass, dry basis). Compositions of the wild type,
single mutants, and double mutants were compared for
differences using the Duncan’s multiple range test (P<0.05)
(SigmaStat 3.5, Systat Software, Point Richmond, CA).

Electron Microscopy

Biomass samples were dilute-acid treated as described
above, washed with water, and lyophilized. Lyophilized
tissues were post-treated with 1% osmium tetroxide in
0.1 M sodium cacodylate, pH 7.4 for 2 h. Samples were
dehydrated in a graduated ethanol and acetone series and
embedded in Epon 812 (Electron Microscopic Sciences,
Fort Washington, PA). Thin sections (60 nm) were stained
with 2% uranyl acetate and Reynolds lead citrate and
observed under a transmission electron microscope (Hitachi
H7500-I) at 80 kv at the University of Nebraska at
Lincoln’s Microscopy Core Facility.

Results

Compositional Results

The four sorghum genotypes analyzed were wild type, bmr-6,
bmr-12, and bmr-6 bmr-12. The samples were characterized
for chemical composition using the dietary fiber system
(Table 1). As expected, significant variation was observed in
lignin contents. For degrained sorghum samples, introducing
bmr-6 reduced Klason lignin content by 15%, bmr-12 by
15%, and bmr-6 bmr-12 by 27% compared to the wild-type
plants. A similar trend was observed for plant samples
analyzed with grain intact. Interestingly, the reduction in
lignin incurred by bmr-6 and bmr-12 appears to be additive
when combined in the double mutant. The differences
between the double-mutant plants, single bmr mutant plants,
and wild-type plants were all significant, but there was no
significant difference between bmr-6 and bmr-12. Interest-
ingly, crude protein was lower for the wild type vs. other
genotypes, but unfortunately, the sample set was not large
enough to detect a statistically significant difference. No
other apparent differences were observed among the near-
isogenic lines. Total carbohydrates accounted for 65±2%
and 66±3% of the plants without and with grain removal.
The sum of the measured properties accounted for 88.5–
97.1% of the total biomass.

Samples were further analyzed for specific carbohydrate
composition (Table 2). The major observable difference
was, as expected, the grain-bearing samples contained
approximately four times more starch compared to the
degrained samples. Also, as a direct consequence of the
grain-associated starch, total glucans for the plant samples
with grain were 15% greater than those processed without
grain. However, the total amounts of carbohydrates were
similar for both sets of samples because the loss in starch
was compensated by increases in the other carbohydrate
components. Interestingly, differences in genotype did not
appear to influence carbohydrate contents. This may appear
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to be counter-intuitive given a reduction in lignin; however,
lignin only comprises 14% w/w of the biomass content for
the wild-type plants, and so even the 27% reduction
observed for the double mutant only amounts to a 3.8%
reduction on a whole plant mass basis.

Soluble sugars accounted for approximately one quarter
of the total carbohydrates (19±2% w/w biomass (degrained)
and 16±2% (with grain)). Starch accounted for 18% of the
carbohydrate pool for the samples with grain and only 4.4%
in the no-grain plant samples. The starch content, even
when including starch contributed by the grain, was less
than the amount of soluble sugars. The remaining carbohy-
drates were all associated with the cell wall. Cellulose
comprised 35±1% (with grain) and 41±1% (degrained) and
xylan 17±0.5% (with grain) and 14±0.5% (degrained) of
the total carbohydrates. From a fermentation perspective, it
is useful to consider the ratio of hexoses (including soluble,
starch, and cellulose) to pentoses because Saccharomyces
yeast does not ferment pentoses. Pentosans were 29% and
25% of total carbohydrates with and without grain
included, respectively.

The sorghum samples were also analyzed using the
detergent fiber system (Table 3). The general trends were
similar to those observed for the dietary fiber analysis. Acid
detergent lignin was reduced in the bmr mutants, and the
individual effects were additive in the double mutant. The
two lignin analyses differed in the magnitude of the observed
effects, ADL was reduced twice as much as Klason lignin;
ADL was reduced by 33% for bmr-6 or bmr-12 and by 72%

for the double mutant. Neither neutral detergent fiber nor
acid detergent fiber contents were affected by the bmr
mutations.

The detergent fiber system is not an accurate method for
determining cell wall composition when the results are
compared to those measured using the dietary fiber system.
Cellulose and hemicellulose measurements for the same
samples differed by 17.1% and 16.8%, respectively for the
two protocols. It was also observed that ADL measure-
ments were much lower than Klason lignin values.
Subsequent analyses were based upon Klason lignin
because it is considered more accurate than ADL [17].

Sugar and Ethanol Yields Following Dilute-Acid Pretreatments

The biomass samples were treated with dilute acid, and the
cellulose either converted to glucose by the addition of
cellulase enzymes or to ethanol by the co-additions of
cellulases and S. cerevisiae. Adding cellulase and S.
cerevisiae together allows for simultaneous saccharification
and fermentation of cellulose to ethanol. For both experiments,
recovered solids were washed with water following pretreat-
ment to ensure that soluble sugars and starch did not influence
the final glucose or ethanol yields. Xylose recovery was
measured directly following pretreatment of the samples
because dilute acid directly hydrolyzes xylan to xylose.

Reducing lignin had a highly beneficial effect for
converting cellulose to glucose (Fig. 1; Table 4). From the
washed pellets, only 65% of the available glucose was

Genotype Extractables Carbohydrates Klason lignin Crude protein Ash Sum

Composition (g per kg, db)

Degrained samples

DM 18 641.5±11.8 112.2±8.2 68 67.6 907.2

DM 19 641.9±20.1 100.3±1.6 68 64.6 893.8

bmr-6 21 637.0±3.5 129.1±5.6 71 67.5 925.6

bmr-6 20 637.9±4.5 119.2±3.3 53 64.7 894.8

bmr-12 15 688.8±5.5 125.1±2.7 45 53.7 926.6

bmr-12 18 666.4±5.3 128.4±3.9 54 51.6 918.4

Wild-type 16 688.2±1.9 142.5±1.0 41 53.7 941.4

Wild-type 17 666.4±7.2 148.8±1.1 44 53.8 930.0

Plant samples with grain

DM 22 663.0±7.1 96.6±7.2 65 64.0 910.5

DM 23 637.0±3.3 88.2±1.6 78 58.0 885.2

bmr-6 22 634.9±6.0 114.4±7.8 67 57.1 895.4

bmr-6 21 635.1±10.0 109.1±7.0 65 60.5 889.6

bmr-12 21 677.5±12.5 119.9±4.9 68 41.8 927.2

bmr-12 21 730.0±8.8 115.8±4.4 61 44.9 970.7

Wild-type 19 665.0±2.8 138.7±1.8 58 46.2 925.9

Wild-type 19 694.4±14.4 128.1±0.8 55 51.1 945.6

Table 1 Chemical composition
of sorghum plants (g per kg,
dry basis)

DM double mutant
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recovered by enzymatic hydrolysis for wild-type biomass.
In contrast, the recovery of glucose for the double mutant
was 88%. Glucose yields were found to be strongly
and negatively correlated with Klason lignin contents
(R=−0.971 no grain; R=−0.880 with grain). The strong
correlation is encouraging because the crops were field
grown, suggesting that the beneficial effects of lowering
lignin were not suppressed by environmental differences, at
least in this study. In contrast, reducing lignin content did
not affect xylose yields (Fig. 2; Table 4) because the xylan
was almost completely hydrolyzed for all the samples. This
result may also explain the strong correlation between
lignin reduction and glucose released by cellulase hydroly-
sis; if xylan was released during pretreatment, only lignin
and cellulose would be left behind in the washed pellet.

Ethanol yields also dramatically benefitted from reduc-
ing lignin content (Fig. 3; Table 4). Ethanol yields for the
degrained samples increased by 17% for the single bmr
mutants and 46% for the double mutant. The highest
ethanol yield (54.5%) was obtained using the double
mutant. As was the case for glucose yield, most of the
variation in ethanol yields can be attributed to differences in
Klason lignin contents. The correlations between ethanol
efficiency and lignin contents were −0.943 and −0.849 for
samples processed without and with grain, respectively.

Electron Microscopy of Wild-Type and Double-Mutant
Samples

We performed electron microscopy of dilute-acid treated
tissues to gain insight into the ultrastructural changes that
occur with samples of divergent lignin amounts. Untreated
biomass samples from both wild-type and double-mutant
plants appeared to be similar (Fig. 4a, b and e, f,
respectively). In contrast, samples subjected to dilute-acid
pretreatment exhibited less overall electron density and
showed the appearance of many electron-dense globules.
The relative amounts and size of these globules were
different for these two samples. In samples from wild-type
plants, there were a number of smaller globules dispersed
throughout the cell walls (Fig. 4c, d arrows). In the samples
from double-mutant plants, these globules were consider-
ably larger and appeared to be caught flowing toward the
periphery of cell walls (Fig. 4e, f arrows).

Ethanol Yields Following Alkaline Pretreatments

Reaction conditions for the dilute-acid pretreated applied
above was chosen to emphasize differences between
cultivars as opposed to optimize conversion yields. To
determine the yield potential that could be achieved with a

Table 2 Carbohydrate composition (g per kg, dry basis)

Genotype Soluble sugarsa Starch Xylan Arabinan Cellulose Total glucans Total carbohydrates

Composition (g/kg, db)

Degrained samples

DM 181±4 25±0 165±7 23±3 248±3 454 642

DM 173±7 32±1 168±7 23±6 246±6 451 642

bmr-6 157±26 22±1 177±0 26±3 256±3 435 638

bmr-6 171±19 19±1 173±1 23±0 251±0 441 637

bmr-12 209±1 34±1 174±1 24±4 248±4 491 689

bmr-12 205±4 29±0 166±1 22±0 244±0 478 666

Wild-type 224±3 39±1 167±1 19±1 240±1 503 688

Wild-type 210±21 31±1 163±2 20±0 242±0 483 666

Plant samples with grain

DM 136±16 143±0 143±3 21±2 220±2 499 663

DM 132±4 144±0 143±2 21±1 197±1 473 637

bmr-6 142±18 94±1 143±2 20±0 236±0 472 635

bmr-6 153±2 116±0 149±5 21±3 196±3 465 635

bmr-12 151±2 98±0 142±4 21±5 266±5 515 678

bmr-12 196±2 117±1 153±4 22±3 242±3 555 730

Wild-type 141±5 114±0 137±0 20±1 253±1 508 665

Wild-type 191±5 107±2 147±6 20±7 229±7 527 694

Total glucans = soluble sugars + starch + cellulose

DM double mutant
a Includes glucose, fructose, and sucrose
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more effective pretreatment, the biomass samples were
treated with dilute ammonium hydroxide at 170°C for
20 min. Ammonium hydroxide was selected for the higher
temperature pretreatment, in part because it produces fewer
side products that are inhibitory to subsequent fermentation.
This was an important consideration because the whole
hydrolysate was fermented (as opposed to the washed
solids) to ensure the highest possible yield. Despite the
differences in the pretreatment conditions, reduced lignin
still had a beneficial effect. There was a direct one-to-one
correspondence between greater ethanol efficiency and
reduction in lignin content (Fig. 5). The overall ethanol
yield was increased to 116.0 and 129.9 mg ethanol/g
beginning biomass, dry basis, for the double-mutant plants
compared to 98.4 and 113.2 mg/g for wild-type sorghums.
Ethanol yields do not reflect release of pentoses because S.
cerevisiae is unable to ferment them. Samples were also
evaluated using plant biomass processed with the grain
intact. While ethanol efficiencies were increased compared
to the dilute-acid pretreatment (data not shown), the benefit
of reduced lignin was not observable presumably because
much of the ethanol originated from starch present within
the grains.

Fig. 1 Glucose recovery efficiencies for wild-type and bmr mutants
with various lignin contents. Samples were pretreated with dilute acid,
washed to remove extractable materials, and treated with cellulase.
Data plotted for with grain and degrained plant samples. Experiments
were performed in triplicate

Table 3 Detergent fiber analysis composition (g per kg, dry basis)

Genotype Neutral detergent fiber Acid detergent fiber Acid detergent lignin Cellulosea Xylanb

Composition (g per kg, db)

Degrained Samples

DM 462 327 7.1 320 135

DM 478 302 8.8 293 176

bmr-6 453 317 18.1 299 136

bmr-6 457 301 19.7 281 156

bmr-12 472 287 20.3 267 185

bmr-12 463 307 17.5 290 156

Wild-type 465 288 25.4 263 177

Wild-type 473 350 30.7 319 123

Plant samples with grain

DM 428 272 13.2 259 156

DM 404 293 8.5 285 111

bmr-6 412 299 20.1 279 113

bmr-6 412 269 23.1 246 143

bmr-12 421 278 18.9 259 143

bmr-12 415 248 21.7 226 167

Wild-type 444 314 30.0 284 130

Wild-type 426 263 28.5 235 135

DM double-mutant
a Cellulose=ADF−ADL
bXylan=NDF−ADF
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Discussion

Most of the carbohydrates available for conversion to
ethanol are associated with the plant cell walls. For our
forage sorghum samples, 67.6±3.3% of the carbohydrates
originated from cell walls, excluding the contribution of the

grain. However, there are significant amounts of soluble
sugars present, which is not entirely beneficial. While these
sugars are directly available for fermentation, they may also
rapidly degrade during (especially dilute-acid) pretreatment
[7]. As such, the sugars may need to be extracted prior to
pretreatment. Releasing the structural carbohydrates for

60

55s) 55

ol
id

s
 s

o

50

he
d 50

as
h

(w
a

45ax
 

5

f M
ol

 o
f

40

an
o

E
th

a
%

 E

35 Degrained, R = -0.943
Wh l Pl R 0 849

%

Whole Plant, R = -0.849

3030
80 90 100 110 120 130 14080 90 100 110 120 130 140

Lignin (mg/g)g ( g g)

Fig. 3 Ethanol conversion efficiencies for wild-type and bmr mutants
with various lignin contents. Samples were pretreated with dilute acid,
washed to remove extractable materials, and fermented using S.
cerevisiae in the presence of cellulase. Data plotted for with grain and
degrained plant samples. Experiments were performed in triplicate

100

8080

ed
as

e
el

e

60e 
R

e
os

e
X

yl
o

40%
 X

40%

20 Degrained
Wh l Pl tWhole Plant

00
80 90 100 110 120 130 140 15090 100 110 120 130 140 150

Lignin (mg/g)g ( g g

Fig. 2 Xylose recovery efficiencies for wild-type and bmr mutants
with various lignin contents. Xylan was hydrolyzed by treating with
dilute acid. Data plotted for with grain and degrained plant samples.
Experiments were performed in triplicate

Genotype Klason lignin (g/kg) Glucose released Xylose released Ethanol efficiency

Units (% of maximum)

Degrained samples

DM 112 85.0±1.0 101.7±1.3 52.2±7.8

DM 100 89.9±4.5 101.5±0.2 56.8±8.7

bmr-6 129 78.6±3.3 94.2±2.3 44.3±2.1

bmr-6 119 79.1±4.0 97.2±5.1 43.7±5.9

bmr-12 125 77.3±1.4 89.4±4.9 45.8±4.3

bmr-12 128 77.4±3.8 104.2±4.2 40.8±5.8

Wild-type 143 64.6±1.9 95.8±1.8 36.2±3.1

Wild-type 149 65.4±2.0 96.9±5.9 38.2±2.6

Plant samples with grain

DM 97 81.3±5.1 98.8±4.4 48.9±2.5

DM 88 83.2±4.1 101.2±1.8 46.8±6.5

bmr-6 114 79.4±2.1 100.3±1.5 41.6±4.5

bmr-6 109 81.8±3.6 99.2±0.1 45.6±4.4

bmr-12 120 74.5±2.0 104.8±1.3 39.9±0.8

bmr-12 116 73.8±2.8 96.4±0.8 46.3±6.5

Wild-type 139 65.3±3.5 101.0±1.8 35.8±3.3

Wild-type 128 62.9±3.1 94.6±4.0 33.1±3.6

Table 4 Enzymatic release of
sugars and ethanol fermentation
results (% of maximum)

DM double-mutant
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fermentation is problematic because they are embedded in a
complex matrix consisting of hemicellulose, lignin (present
in secondary cell walls), and cellulose [34]. In particular,
conversion of cellulose is dependent upon enzymatic
hydrolysis of the polymer to glucose using cellulases. It is
well established that the limiting factor for enzymatic
hydrolysis of cellulose is access of the individual glucan
fibers to the cellulase enzyme [16]. The major barriers
impeding this access are the crystalline nature of cellulose,
hemicellulose (e.g., GAX), and lignin. While GAX can be

extracted from the cellulose fibers by pretreating the
biomass prior to enzyme addition, lignin is difficult to
remove because it comprises hydrophobic aromatic mono-
mers interconnected through recalcitrant chemical linkages.

In this study, a unique set of forage sorghum (cv Atlas)
samples were used to explore the role of lignin as a barrier
for cellulose hydrolysis in more detail. The set included
four near-isogenic lines: wild type, bmr-6, bmr-12, and
bmr-6 bmr-12. Because they are near isogenic, the effect of
reduced lignin could be studied independent of other

Fig. 4 TEM images of sorghum biomass samples: a, b wild-type
untreated; c, d wild-type pretreated with dilute acid and washed with
distilled water; e, f double-mutant untreated; and g, h double mutant
pretreated and washed. Arrows indicate areas of lignin coalescence

and formation of globules within and on the periphery of cell walls.
Bars at the bottom of micrographs a, c, e, and g are approximately
400 nm. Bars at the bottom of micrographs b, d, f, and h are
approximately 200 nm
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genetic loci that may affect biomass conversion yield not
associated with lignin concentration. As expected, the bmr
mutations resulted in lower lignin contents compared to the
parental line: bmr-6 or bmr-12 reduced the lignin content
by 15% and 13%, respectively, and bmr-6 bmr-12 double
mutant reduced lignin by of 27%. Therefore, bmr-6 and
bmr-12 were equally effective in reducing lignin content,
and introducing both had double the effect of either alone.
Our results are comparable to an earlier study using bmr-6
and bmr-12, which reported 17% and 13% decreases,
respectively [27]. The samples in the present study were
also analyzed for ADL, which followed a similar trend
observed for Klason lignin. These results in general were
similar to those observed by earlier studies for grain and
forage sorghum mutants bmr-6 and bmr-12 especially for
the former study [20, 21].

It is somewhat surprising that bmr-6 and bmr-12 had
nearly identical effects on lignin because each affect
independent steps in monolignol biosynthesis and alter
lignin composition in different ways. Likewise, it was
unexpected that both effects would be additive for the
double mutant because each mutant has unique lignin
compositions. The bmr-6 nearly abolishes cinnamylalco-
hol dehydrogenase activity in young internodes [23] and
causes decreased incorporation of p-coumaric acid esters
and G-, S-, and H-lignin units into cell walls but does not
appear to reduce ferulate incorporation. These data are
consistent with the hypothesis that lowered levels of
sinapyl alcohol in bmr-6 plants also interfere specifically
with sinapoyl-p-coumarate levels. Generally, bmr-6 plants
possessed greater G-indene as compared to wild-type
plants. The second mutation, bmr-12, is a null mutation of
a specific caffeic acid O-methyltransferase (COMT) [2]. This
mutation results in the complete loss of COMT protein in
stem extracts [23] and depresses p-coumarate ester levels in

cell walls but not to the extent of the bmr-6 mutation. Near-
isogenic lines of sorghum containing the bmr-12 mutation
exhibit significant reduction in S-lignin moieties and much
lower reductions in G- and H-lignin monomers. There was
also increased incorporation of 5-OHG-lignin in these plants
[23], indicating that the bmr-12 encodes for a 5-
hydroxyconiferylaldehyde-O-methyltransferase, consistent
with similar mutations in other plants [1, 18]. Finally,
all lignin moieties were reduced in the double-mutant
plants [23].

From a conversion perspective, optimal recovery of both
pentoses and hexoses is required. For biomass obtained
from these forage sorghum lines, a low-severity dilute-acid
pretreatment (e.g., 121°C for 1 h) was highly effective in
hydrolyzing xylan. On average for all samples, 98.6±4.0%
of the xylan was recovered as xylose, and individual xylose
recoveries were not correlated with lignin content. Corredor
et al. [5] also found that the bmr mutation did not affect
pentose recoveries for dilute-acid pretreated sorghum (2%
H2SO4, 140°C, 30 min), though their xylose recoveries
were only 84% and 86%. In an earlier study [7], varying
maturities of switchgrass and canary reed grass were
pretreated using similar conditions reported here. In this
study, maturity was determined not to influence xylose
recoveries even though overall lignin contents increased
with greater maturity. These data suggest that, from a
biorefinery context, lignin concentration may not exert an
influence on xylose recoveries in herbaceous energy crops
such as sorghum.

Lignin content did impact cellulose digestion by cellu-
lase. Differences in recoveries among samples were
strongly and inversely correlated with lignin content
(r=−0.971 (grain removed) and r=−0.880 (with grain)).
Another study [27] also observed a similar range of
cellulose conversion efficiencies of 59% and 71% for
bmr-6 and bmr-12 plants, respectively, when treated with
dilute sulfuric acid (1.3% w/w, 121°C, 40 min). However, a
difference was observed in the effectiveness of bmr-6 (7%)
and bmr-12 (21%) for improving glucose efficiencies. In
contrast, we observed similar results for bmr-6 and bmr-12
mutants, 12% and 16%, respectively. Notably, in the cited
study, cellulose conversions were similar for the bmr-6 and
bmr-12 mutants. So, the observed differences for bmr-6 and
bmr-12 did not originate from the mutants but rather from
differences in the bmr-6 and bmr-12 controls. In our study,
the samples were from near-isogenic lines, and the same
control sample (e.g., wild type) was used for all compar-
isons. A different study [5] also compared differences in
glucose yields for a bmr mutant vs. a wild type and
observed a 64% improvement for the former, which is a
much greater effect than was observed here. However, their
conversion efficiency for the wild type was only 48%, and
so differences between the two studies might have arisen
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from their more stringent comparison in terms of pretreat-
ment condition and cellulase loading. All three studies are
consistent in one finding: lowering lignin content improves
glucose recoveries for forage sorghum plants.

The ability of lowering lignin contents to improve the
response of cellulose to cellulase digestion appears to be
general. In one study [4], lignin-modified alfalfa plants
were evaluated for sugar yields following treatments with
dilute acid and cellulase enzymes. A total of six transgenic
lines with down-regulated lignin synthesis were constructed
by expressing antisense constructs. They also observed a
strong negative correlation between sugar release following
enzymatic treatment and lignin content (r=−0.897). In
another study [7], a set of six samples were used that varied
by species and harvest maturity. The samples were each
treated with dilute acid and cellulase and evaluated for
glucose yields. Despite the wide differences among samples,
when cellulose conversion was plotted against lignin
content, the correlation was −0.85. Other studies describing
the effect of lignin content on cellulose conversions are
discussed in the following reviews [3, 6, 19].

While the effect of lowering lignin content on rumen
digestibility and cellulose enzymatic conversion is well
established, this is not true for the effect of varying lignin
composition. There have been conflicting reports with
regards to the influence of the G to S ratio on rumen
digestibility [13] and enzymatic release of sugars from
pretreated biomass [4, 27]. In this study, the alteration to
lignin composition was not a factor that influenced product
yields because the bmr-6 and bmr-12 plants had similar
glucose yields, although they displayed marked differences
in lignin composition [23, 29].

In this study, ethanol yield efficiencies varied from
33.6% to 52.2% for the forage sorghum samples, and
ethanol yields improved directly with reduced lignin
contents (r=0.943 (degrained) and r=0.849 (with grain)).
The ethanol efficiencies were lower than observed for
glucose digestion. Some of the lower efficiency is associ-
ated with the yeast diverting carbon to products other than
ethanol. It is also possible that microbial inhibitors formed
during dilute-acid pretreatment-impeded ethanol fermenta-
tion, though there was no residual glucose detected after
fermentation (data not shown). The major cause for the
reduced yield is probably lower cellulase activities in the
SSF compared to direct digestion. As is standard, the SSFs
were conducted with 75% less cellulase per gram cellulose
than added for the direct digestions. Furthermore, the
presence of yeast in the SSFs limits the fermentation
temperature to 35°C vs. 50°C for the enzyme-only
digestions.

Electron microscopy images taken of wild-type and
double-mutant biomass samples following dilute-acid treat-
ment suggest a possible mechanism for the phenomena

observed for product yields. Prior research has shown that
droplets formed following dilute-acid pretreatment of corn
stover comprise lignin droplets [10]. The images indicate
what we can reasonably presume to be lignin coalescence
during pretreatment for wild type and the double mutant but
that the size of lignin-containing droplets were apparently
greater in the tissues obtained from double-mutant plants
compared to wild-type. These images are consistent with
acid treatment resulting in a greater release of lignin from
the biomass of double mutant relative to wild type, which
should make the cellulose fibers more accessible for
cellulase in the former.

Alkaline pretreatments are known to be particularly
effective for processing lignocellulose from warm season
grasses for ethanol fermentation [6]. However, the potential
for bmr mutations to improve process efficiencies is
unknown. For this experiment, the dilute ammonium
hydroxide pretreatment process was chosen because am-
monia can be removed following pretreatment by evapora-
tion, and the end material is highly fermentable.
Ammonium hydroxide pretreatment has been shown to be
effective for processing corn stover [15]. The double-
mutant and wild-type biomass samples were pretreated with
dilute ammonium hydroxide (170°C, 20 min) and the
glucans converted to ethanol by SSF using S. cerevisiae.
The ethanol yields ranged from 98.4 to 129.9 mg/g dry
biomass and were highest for the bmr mutant samples.
These yields could be improved if a microorganism had
been used that could ferment pentoses. Still, the ethanol
yields were higher than observed for the dilute-acid
pretreatments probably because of the greater reaction
temperature used for the ammonium hydroxide pretreat-
ment. On a relative basis, the effect of reducing lignin
content was less than that observed with the dilute-acid
pretreatment. This reduced effect is likely due to the overall
greater effectiveness of the alkali pretreatment.

From this study, it can be concluded that reducing lignin
content can greatly benefit conversion efficiencies of
lignocellulose to sugars and ethanol. The influence was
especially pronounced for samples treated with dilute acid
at lower severities, but significant gains were also found for
those treated with ammonium hydroxide. Furthermore,
conversion efficiencies were strongly correlated with lignin
content. Prior studies have also reported beneficial effects
from reducing lignin contents by genetic alterations or
pretreatment strategies. Much of the current research into
breeding superior energy crop plants [33, 35, 36] is directed
towards modifying lignin composition and/or contents.
Results from this study support this emphasis.
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