### University of Nebraska - Lincoln

# DigitalCommons@University of Nebraska - Lincoln

Historical Research Bulletins of the Nebraska Agricultural Experiment Station

Extension

2-1984

# Evaluation of Crested Wheatgrass Introductions for Forage Yield and Quality

K. P. Vogel USDA ARS

P. E. Reece University of Nebraska-Lincoln

J. F. S. Lamb University of Nebraska-Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/ardhistrb

Part of the Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons

Vogel, K. P.; Reece, P. E.; and Lamb, J. F. S., "Evaluation of Crested Wheatgrass Introductions for Forage Yield and Quality" (1984). *Historical Research Bulletins of the Nebraska Agricultural Experiment Station*. 12.

https://digitalcommons.unl.edu/ardhistrb/12

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Research Bulletins of the Nebraska Agricultural Experiment Station by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

# Research Bulletin 304

February 1984

## Evaluation of Crested Wheatgrass Introductions for Forage Yield and Quality

by K.P. Vogel P.E. Reece J.F.S. Lamb



The Agricultural Experiment Station
Institute of Agriculture and Natural Resources
University of Nebraska-Lincoln
Irvin T. Omtvedt, Director



### **CONTENTS**

| ummary1                   |
|---------------------------|
| ntroduction2              |
| Taterials and Methods     |
| esults and Discussion     |
| iterature CitedIBC        |
| Issued February 1984, 600 |

# Evaluation of Crested Wheatgrass Introductions for Forage Yield and Quality

K. P. Vogel, P. E. Reece, and J. F. S. Lamb<sup>1</sup>

### SUMMARY

Crested wheatgrass, Agropyron cristatum and A. desertorum, are among the most important cool-season forage grasses in the United States and Canada, particularly for reseeding arid range sites. Further improvement in this grass by breeding depends on identifying sources of genetic variability for forage yield and quality. Foreign introductions are an obvious source of genetic variation since crested wheatgrasses are introduced species.

In this study 38 accessions (PI lines) and 8 Nebraska experimental lines were evaluated for forage quality as measured by *in vitro* dry matter digestibility (IVDMD) and protein content and for forage yield. The cultivars 'Ruff' and 'Nordan' and two clonal lines were included as checks. The strains were evaluated at Lincoln and Alliance, NE., which differ markedly in climate.

There were large differences among strains evaluated for all traits including first- and second-cut forage yield, IVDMD, protein content, heading date, height and first year basal spread. The bulk (70%+) of the forage was harvested in the first cut. First-cut yields and IVDMD values were used to develop an index value (NI) which was used to rate strains for both forage yield and quality. The accessions, PI 369167, PI 369170, and PI 325180, had NI values as high as those of Ruff and Nordan. These five strains were the most promising germplasm identified in this study for improving the yield and forage quality of the crested wheatgrasses. The three superior accessions had mean IVDMD values 1 to 4 percentage points higher than that of Nordan which was the second highest yielding strain averaged over locations. Utilization of PI 369167, PI 369170, Ruff, and Nordan in a breeding program could result in crested wheatgrasses with improved forage yield and quality.

<sup>1/</sup>Research agronomist, USDA-ARS; assistant professor; and graduate research assistant; Department of Agronomy, University of Nebraska, Lincoln, NE 68583. Contribution of the Agricultural Research Service, U.S. Department of Agriculture and the Department of Agronomy, University of Nebraska-Lincoln.

### INTRODUCTION

Crested wheatgrass is a genetic complex of several taxa of which the most important in North America are Agropyron cristatum (L.) Gaertn. spp. pectinatum (Bieb) Tzvel. and A. desertorum (Fisch. ex Link) Schult. (Asay and Dewey, 1983; Dewey, 1983). The widely grown cultivar 'Nordan' typifies the A. desertorum type while 'Fairway' typifies the A. cristatum spp. pectinatum type. Dewey (1983) described the current taxonomic classification and gave the botanical description of these grasses. Both the A. cristatum and A. desertorum types have the same genome but the former are usually diploids while the latter are tetraploids (Dewey, 1983). These grasses have been seeded into more than six million hectares of abandoned or depleted farm and rangeland in the Plains and Intermountain West of the United States and Canada because they have the ability to become established, persist, and be productive under arid rangeland conditions (Dewey and Asay, 1975; Rogler and Lorenz, 1983).

Crested wheatgrasses are native to Europe and Asia. All of the crested wheatgrasses in North America are the products of germplasm introduced after 1900 (Rogler and Lorenz, 1983; Dewey and Asay, 1975). More than 270 accessions (numbered lines or strains) were brought into the United States before 1971 (Dewey and Asay, 1975). Since that time, additional accessions have been introduced into the U.S. (Dewey and Plummer, 1980). Despite the large number of accessions that have been brought into the U.S., the germplasm base of the strains currently being used originated from less than a dozen introductions (Dewey and Asay, 1975). According to Hanson (1972) only two cultivars of A. cristatum, Fairway and 'Parkway' had been released in the U.S. and Canada up to 1972. The A. cristatum cultivar 'Ruff', which was listed as the experimental strain 'Nebraska 3576' by Hanson (1972), has since been released by the Nebraska Agricultural Experiment Station. Two A. desertorum cultivars, Nordan and 'Summit', have been released (Hanson, 1972). These strains were released primarily because of their seed and forage yields and their establishment capability.

Although the crested wheatgrasses are used primarily as forages, there has been only limited research on the genetic variability for forage yield and quality in the complex. Coulman and Knowles (1974) found significant differences in *in vitro* organic matter digestibility (IVOMD) among eight strains of crested wheatgrass which were primarily advanced lines. They also indicated that post-anthesis sampling gave the maximum differences among strains for *in vitro* dry matter digestibility (IVDMD). Junk and Austenson (1971) found differences in IVDMD among five crested wheatgrass strains grown in six locations in Saskatchewan or Alberta, Canada. Schaff *et. al.* (1962) reported that variation in forage yield among the strains studied was less than the variation in seed yield. Ranges in yields expressed as a percentage of the mean were 21% for forage yield and 71% for

seed yield. Differences among experimental strains and released cultivars for forage yield have been reported in various experiment station bulletins and circulars.

The potential gain that can be made in a plant breeding program depends upon the available genetic variability for economic traits. Because crested wheatgrasses are not native species, plant introductions are a primary source of genetic diversity for their possible improvement. One objective of this study was to evaluate a set of crested wheatgrass accessions and experimental lines for forage yield and quality and to document the results. Another objective was to determine the relative magnitude of genotype and genotype x environment interaction effects on crested wheatgrass for the same traits; the results of this part of the study have been reported previously (Lamb et al., 1984).

In summary, there were significant differences among strains for first-cut (harvest) forage yield, IVDMD, and protein (Lamb et al., 1984). In the analyses over years and locations, strain x location interaction effects were significant only for first harvest forage yield and for this trait the interaction component was only 0.3 of the magnitude of the variance component for strains. Strain x year interaction effects were not significant for these traits. Forage yield and quality characteristics of a set of 50 crested wheat-grasses evaluated at Lincoln and Alliance, NE, are described in this bulletin.

### MATERIALS AND METHODS

Procedures used in this study were described by Lamb et al. (1984). In brief, an array of 50 crested wheatgrasses representing the mix of germplasm available to breeders were evaluated. The 50 strains included 38 accessions (PI lines) obtained from the USDA Plant Introduction Station at Pullman, Washington, 8 Nebraska experimental strains, 2 check cultivars, Ruff and Nordan, and 2 clonal lines from 'Nebraska 10' (Table 1). The Nebraska experimental lines are predominately the products of the openpollinated hybridization of Nebraska 10 with the plants selected from the synthesis of two Turkish accessions, PI 172691 and PI 180794 (Newell, 1966). The strains were evaluated at Lincoln and Alliance, Nebraska, which is located 540 km west of Lincoln. The climatic variables of the two locations are listed in Table 2. Seven accessions and one experimental strain were not included in the Alliance nursery because of insufficient seedlings.

Seedlings of the strains were started in a greenhouse in the winter of 1979 and transplanted into the field nurseries at Lincoln and Alliance in the spring of 1979. Plots were single rows of 10 plants with plants and rows spaced 1.1 m apart. The experimental design at both locations was a randomized complete block with four replicates. Nurseries were not harvested the establishment year. Weeds were controlled by hoeing, cultivation, and

Table 1. Descriptions and means from overall combined analysis for crested wheatgrass strains evaluated in the Lincoln and Alliance nurseries for 1980 and 1981.

| Strain     |         |               |          |         |               | First cut mean | s       |                      |
|------------|---------|---------------|----------|---------|---------------|----------------|---------|----------------------|
|            | Origin  | Species       | Pedigree | Yield   | Dry<br>matter | IVDMD          | Protein | Selection index (NI) |
|            |         |               |          | g/plant | 9%            | 970            | 9/0     |                      |
| PI 172690  | Turkey  | A. cristatum  |          | 177     | 50            | 50.8           | 10.5    | 1.06                 |
| PI 172691  | " "     | 44            |          | 169     | 50            | 50.9           | 11.1    | 0.95                 |
| PI 173621‡ | " "     | **            |          |         |               |                |         |                      |
| PI 203439  | " "     | "             |          | 120     | 51            | 47.6           | 10.1    | -1.86                |
| PI 203443  | " "     | "             |          | 130     | 50            | 48.9           | 10.3    | -0.94                |
| PI 206396  | " "     | "             |          | 111     | 48            | 49.0           | 10.8    | -1.26                |
| PI 229521  | Iran    | "             |          | 152     | 48            | 42.6           | 10.1    | -4.00                |
| PI 277352‡ | " "     | 44            |          |         |               |                |         |                      |
| PI 314596  | USSR    | "             |          | 197     | 48            | 50.5           | 11.1    | 1.29                 |
| PI 314597  | " "     | "             |          | 171     | 49            | 47.2           | 10.5    | -1.06                |
| PI 314602  | " "     | "             |          | 113     | 57            | 47.1           | 8.7     | -2.28                |
| PI 315066  | 44 22   | "             |          | 182     | 50            | 49.2           | 10.5    | 0.27                 |
| PI 325180  | ** **   | **            |          | 252     | 49            | 50.5           | 11.1    | 2.39                 |
| PI 369167  | ** **   | "             |          | 181     | 46            | 53.8           | 11.8    | 2.80                 |
| PI 369168  | "       | 6.6           |          | 170     | 47            | 50.4           | 10.5    | 0.70                 |
| PI 369169  | "       | " "           |          | 116     | 46            | 48.8           | 12.5    | -1.27                |
| PI 369170  | "       | " "           |          | 245     | 48            | 51.0           | 10.6    | 2.52                 |
| PI 273730  | 44 33   | 44            |          | 164     | 47            | 50.1           | 11.0    | 0.41                 |
| PI 273731  | "       | A. desertorum |          | 189     | 50            | 47.1           | 10.2    | -0.76                |
| PI 277354  | "       | 44            |          | 210     | 51            | 46.0           | 10.0    | -0.95                |
| PI 283162‡ | UK      | "             |          |         |               |                |         |                      |
| PI 284868‡ | Denmark | "             |          |         |               |                |         |                      |
| PI 314187‡ | USSR    | "             |          |         |               |                |         |                      |
| PI 314603‡ | " "     | "             |          |         |               |                |         |                      |
| PI 314604  | ** **   | "             |          | 176     | 51            | 47.6           | 9.5     | -0.74                |
| PI 314927  | " "     | "             |          | 142     | 53            | 44.6           | 9.5     | -3.09                |
| PI 315068  | " "     | "             |          |         |               | 45.9           | 10.0    | -1.54                |

4

S

Table 1. (Continued)

|               |           |              |                                            | First cut means |               |       |         |                      |  |  |  |  |
|---------------|-----------|--------------|--------------------------------------------|-----------------|---------------|-------|---------|----------------------|--|--|--|--|
| Strain        | Origin    | Species      | Pedigree                                   | Yield           | Dry<br>matter | IVDMD | Protein | Selection index (NI) |  |  |  |  |
|               | ****      |              |                                            | g/plant         | %             | %     | 970     |                      |  |  |  |  |
| PI 316121     | Australia | **           |                                            | 187             | 50            | 47.4  | 9.9     | -0.63                |  |  |  |  |
| PI 340059     | Turkey    | 66           |                                            | 169             | 49            | 47.7  | 10.0    | -0.82                |  |  |  |  |
| PI 340060     | " "       | "            |                                            | 208             | 49            | 47.4  | 10.2    | -0.21                |  |  |  |  |
| PI 345584     | USSR      | "            |                                            | 168             | 51            | 47.5  | 10.3    | -0.96                |  |  |  |  |
| PI 370645     | "         | 64           |                                            | 244             | 51            | 48.0  | 10.8    | 0.84                 |  |  |  |  |
| PI 383538     | Turkey    | "            |                                            | 191             | 49            | 49.5  | 10.7    | 0.56                 |  |  |  |  |
| PI 383540     | " "       | 66           |                                            | 172             | 48            | 48.8  | 10.4    | -0.15                |  |  |  |  |
| PI 401001‡    | "         | "            |                                            |                 |               |       |         |                      |  |  |  |  |
| PI 401002     | " "       | **           |                                            | 164             | 51            | 47.0  | 9.7     | -1.31                |  |  |  |  |
| PI 401003     | " "       | "            |                                            | 209             | 50            | 50.0  | 11.4    | 1.25                 |  |  |  |  |
| PI 401004     | "         | 4.6          |                                            | 157             | 49            | 47.3  | 10.1    | -1,29                |  |  |  |  |
| NE #1         |           |              | Syn-2((102Rx10a Syn-2)<br>x (7x10a Syn-2)) | 183             | 49            | 49.2  | 9.7     | 0.46                 |  |  |  |  |
| NE #2‡        |           |              | 10a x Siberian Blue                        |                 |               |       |         |                      |  |  |  |  |
| NE #3         |           | "            | Nebr. 10a                                  | 250             | 49            | 48.3  | 10.6    | 1.13                 |  |  |  |  |
| NE #4         |           |              | Ne. (7x10a) Syn-3                          | 216             | 50            | 50.4  | 10.4    | 1.62                 |  |  |  |  |
| NE #5         |           |              | Ne. (1,2,3x10a) Syn-4                      | 204             | 50            | 50.9  | 9.6     | 1.65                 |  |  |  |  |
| NE #6         |           |              | Ne. (2 x 10b) Syn-4                        | 204             | 50            | 48.8  | 9.8     | 0.49                 |  |  |  |  |
| NE #7         |           |              | Ne. (7 x 102R) Syn-2                       | 191             | 50            | 49.2  | 10.3    | 0.45                 |  |  |  |  |
| NE #8         |           |              | (5 x 10a) Syn-2                            | 191             | 50            | 49.0  | 10.0    | 0.34                 |  |  |  |  |
| Ruff          |           | A. cristatum | · , •                                      | 243             | 48            | 51.0  | 10.7    | 2.49                 |  |  |  |  |
| Nordan        |           | A desertorum |                                            | 267             | 49            | 49.4  | 10.9    | 2.08                 |  |  |  |  |
| 0b-1          |           | 44           | clone of Nebr. 10                          | 294             | 44            | 48.7  | 11.2    | 2.23                 |  |  |  |  |
| 0b-2          |           | 44           | clone of Nebr. 10                          | 250             | 48            | 41.8  | 9.8     | -2.48                |  |  |  |  |
| Mean          |           |              |                                            | 188             | 49            | 48.5  | 10.4    |                      |  |  |  |  |
| L.S.D. (0.05) | )         |              |                                            | 58              | 3             | 2.1   | 0.8     |                      |  |  |  |  |
| C.V.%         |           |              |                                            | 26.4            | 4.6           | 6.5   | 3.8     |                      |  |  |  |  |

<sup>&</sup>lt;sup>‡</sup>Strains not used in overall combined analysis of Lincoln and Alliance nurseries for 1980 and 1981.

Table 2. Climatic variables for Lincoln and Alliance, Nebraska, and the soils in the research fields.

|                                 | Lo                                                          | cation                                                 |
|---------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| Climatic variable <sup>a/</sup> | Lincoln                                                     | Alliance                                               |
| Altitude                        | 351 m                                                       | 1226 m                                                 |
| Annual precipitation            | 740 mm                                                      | 400 mm                                                 |
| Average annual'temperature      | 11 C                                                        | 8 C                                                    |
| Growing season                  | 160 days                                                    | 120 days                                               |
| Soils                           | Kennebac fine<br>silty mixed<br>soil (Cumulic<br>Hapludoll) | Keith fine<br>silty mixed<br>soil Typic<br>Argiustoll) |

a/National Oceanic and Atmospheric Administration (10).

by the use of herbicides. The nurseries were fertilized annually as described by Lamb et al. (1984).

Plants were harvested at a cutting height of 13 cm. First cuts or harvests were made after all plants in the nurseries had headed. This was the latter part of June at Lincoln and the first part of July at Alliance. Second cuts of forage were harvested after a heavy frost had ended the growing season—the last week of October in Alliance and the first week of November at Lincoln. A second cut was not harvested in 1980 at Alliance because of insufficient regrowth. Regrowth in 1981 was minimal at both locations and forage quality analyses were conducted only on 24 strains that yielded 230 g/plant or more in three of the four replications at each location.

Forage subsamples taken at time of harvest were used to determine dry matter, protein and IVDMD (Lamb et al., 1984). The Kjeldahl procedure (A.O.A.C., 1960) was used to determine % N which was converted to crude protein by multiplying by 6.25. The Tilley and Terry (1963) procedure was used to determine IVDMD.

Heading date was the number of days between April 30 and the date when the majority of spikes had emerged from the boot of individual plants. Plant width was measured in April 1980 at Lincoln and in May 1980 at Alliance and represents first year basal spread of the plants. Plant height (height to the top of the spike) was measured for all plants in both years at Lincoln and in 1981 at Alliance. In 1980, only 10 strains which were harvested on an individual plant basis at Alliance were measured for plant height.

All results were expressed and analyzed as individual plant means per plot to simplify comparisons among strains and to compensate for missing plants.

Analyses of variance procedures were used to evaluate results at each

location for each year, over years for a location, and over years and locations. The appropriate error mean square from each analysis was used to calculate LSD values for comparing the corresponding set of means.

The selection index developed by Roth (1971) for combining yield and IVDMD into a single index was also calculated for each strain. The index which we shall label the 'NI' value for Nebraska index is:

$$NI = \frac{Yield - \overline{X} \text{ (yield)}}{s(\text{yield})} + \frac{IVDMD - \overline{X} \text{ (IVDMD)}}{s(\text{IVDMD})}.$$

 $\overline{X}$  is the mean and s is the square root of the error mean square in the F test for the appropriate trait.

### RESULTS AND DISCUSSION

The traits in which we were primarily interested and for which we have two years' data for both locations were first-cut forage yield, IVDMD, and protein. The overall means of strains evaluated in this study for those traits were listed in Table 1. First- and second-cut means as well as heading date and plant height and width for the strains for the Lincoln and Alliance nurseries are listed in Tables 3 and 4, respectively. In the combined analyses over years and locations, there were significant differences among strains for these traits (Lamb et al., 1984) (Table 1). Several introductions had yields or IVDMD values as high or higher than those of the released cultivars and experimental strains. There was also variation among strains evaluated for protein content but the range in variation was not as large as that for yield and IVDMD. We consider IVDMD to be a better measure of forage quality than protein content. Since there is more variation for IVD-MD than for protein content, improving the forage quality of crested wheatgrass by breeding for IVDMD might be more likely to be successful than breeding for protein content. Breeding for IVDMD could also result in improved protein content since there was a low positive correlation between these traits ( $r = 0.36^{2/}$  and 0.24 for Alliance and Lincoln, respectively). The correlation between first-cut yield and IVDMD was low and nonsignificant (r = 0.10 and -0.17 for Alliance and Lincoln, respectively) indicating that it should be possible to concurrently improve both first-cut yield and IVDMD in crested wheatgrass by breeding.

Index values are often used in plant breeding programs involving selection for two or more traits. The index (NI) used in this study weighs both first-cut forage yield and IVDMD equally. Strains with high positive NI values usually have both high yield and IVDMD values. The opposite is true for strains with negative NI values. Three introductions, PI 369167, PI

<sup>&</sup>lt;sup>2</sup>/Significance at the 0.05 level of probability.

œ

Table 3. Means and other statistics for traits of crested wheatgrass introductions and experimental strains evaluated at Lincoln, Nebraska, averaged over 1980 and 1981.

|           |                 | Means       |        |                |         |               |           |         |                            |         |               |        |         |  |  |  |
|-----------|-----------------|-------------|--------|----------------|---------|---------------|-----------|---------|----------------------------|---------|---------------|--------|---------|--|--|--|
|           |                 | Pl          | ant    |                |         |               | First cut |         |                            |         | Seco          | nd cut |         |  |  |  |
| Strain    | Heading<br>date | Width<br>a/ | Height | Total<br>yield | Yield   | Dry<br>matter | IVDMD     | Protein | Selection<br>Index<br>(NI) | Yield   | Dry<br>matter | IVDMD  | Protein |  |  |  |
|           | days            | cm          | cm     | g/plant        | g/plant | 0/0           | %         | 0%      |                            | g/plant | 9%            | 07/0   | 970     |  |  |  |
| PI 172690 | 26              | 18          | 65     | 263            | 171     | 48            | 52.1      | 11.9    | 0.22                       | 92      | 39            | 55.7   | 18.5    |  |  |  |
| PI 172691 | 26              | 19          | 68     | 302            | 184     | 48            | 51.0      | 12.3    | 0.11                       | 118     | 40            | 53.7   | 18.9    |  |  |  |
| PI 173621 | 25              | 20          | 60     | 270            | 191     | 47            | 53.0      | 12.0    | 0.72                       | 79      | 42            | _      |         |  |  |  |
| PI 203439 | 26              | 17          | 62     | 216            | 148     | 38            | 48.6      | 10.8    | -1.00                      | 68      | 38            | _      |         |  |  |  |
| PI 203443 | 26              | 16          | 66     | 221            | 165     | 49            | 51.5      | 11.0    | -0.02                      | 56      | 40            | _      | _       |  |  |  |
| PI 206396 | 27              | 17          | 61     | 192            | 130     | 46            | 52.1      | 11.4    | -0.34                      | 61      | 41            | _      |         |  |  |  |
| PI 229521 | 22              | 19          | 63     | 239            | 164     | 47            | 42.9      | 10.9    | -2.24                      | 76      | 41            | 53.7   | 18.3    |  |  |  |
| PI 277352 | 18              | 18          | 65     | 182            | 141     | 55            | 44.9      | 8.9     | -2.04                      | 41      | 45            | _      | -       |  |  |  |
| PI 314596 | 22              | 19          | 66     | 326            | 229     | 48            | 51.1      | 12.6    | 0.75                       | 88      | 40            |        | _       |  |  |  |
| PI 314597 | 24              | 20          | 63     | 285            | 177     | 48            | 48.2      | 11.7    | -0.70                      | 96      | 42            | _      |         |  |  |  |
| PI 314602 | 18              | 19          | 61     | 185            | 117     | 55            | 47.7      | 9.8     | -1.65                      | 68      | 42            | 57.9   | 18.9    |  |  |  |
| PI 315066 | 22              | 23          | 69     | 324            | 188     | 48            | 51.2      | 12.2    | 0.22                       | 136     | 48            | 44.9   | 15.8    |  |  |  |
| PI 325180 | 29              | 25          | 58     | 484            | 313     | 46            | 51.7      | 12.8    | 2.06                       | 172     | 46            | 44.8   | 16.1    |  |  |  |
| PI 369167 | 30              | 20          | 50     | 256            | 189     | 44            | 55.7      | 13.9    | 1.39                       | 67      | 42            | 51.3   | 17.4    |  |  |  |
| PI 369168 | 23              | 22          | 65     | 235            | 154     | 44            | 51.8      | 12.3    | -0.09                      | 79      | 38            |        |         |  |  |  |
| PI 369169 | 24              | 17          | 56     | 140            | 105     | 46            | 51.4      | 14.1    | -0.87                      | 37      | 41            |        | _       |  |  |  |
| PI 369170 | 28              | 23          | 64     | 406            | 296     | 46            | 51.9      | 12.8    | 1.88                       | 110     | 42            | 51.1   | 17.8    |  |  |  |
| PI 273730 | 25              | 20          | 62     | 272            | 196     | 47            | 51.7      | 12.6    | 0.46                       | 82      | 41            | _      | _       |  |  |  |
| PI 273731 | 23              | 22          | 66     | 285            | 198     | 49            | 47.8      | 11.7    | -0.52                      | 89      | 41            |        | _       |  |  |  |
| PI 277364 | 21              | 21          | 73     | 360            | 244     | 52            | 45.8      | 11.4    | -0.40                      | 110     | 40            | _      | _       |  |  |  |
| PI 283162 | 24              | 21          | 68     | 180            | 149     | 48            | 48.2      | 11.3    | -1.08                      | _       | _             | _      |         |  |  |  |
| PI 284868 | 25              | 18          | 65     | 198            | 136     | 54            | 50.1      | 10.7    | -0.78                      | _       | _             | _      |         |  |  |  |
| PI 314187 | 22              | 23          | 67     | 277            | 182     | 52            | 46.5      | 10.7    | -1.07                      | 101     | 41            | _      | _       |  |  |  |
| PI 314603 | 26              | 19          | 71     | 270            | 182     | 50            | 47.3      | 10.5    | -0.87                      | 84      | 41            | _      | _       |  |  |  |
| PI 314604 | 25              | 20          | 70     | 280            | 208     | 50            | 49.4      | 10.3    | 0.03                       | 66      | 46            | _      |         |  |  |  |
| PI 314927 | 19              | 18          | 62     | 226            | 150     | 52            | 46.1      | 10.3    | -1.61                      | 68      | 46            | _      | _       |  |  |  |
| PI 315068 | 21              | 20          | 65     | 269            | 180     | 49            | 45.9      | 11.2    | -1.25                      | 89      | 43            | 47.2   | 17.3    |  |  |  |

Table 3. (Continued)

|               |                 |             |        |                |         |               | Mea       | ns      |                            |            |               |       |         |  |  |
|---------------|-----------------|-------------|--------|----------------|---------|---------------|-----------|---------|----------------------------|------------|---------------|-------|---------|--|--|
|               |                 | Pl          | ant    |                |         |               | First cut |         |                            | Second cut |               |       |         |  |  |
| Strain        | Heading<br>date | Width<br>a/ | Height | Total<br>yield | Yield   | Dry<br>matter | IVDMD     | Protein | Selection<br>Index<br>(NI) | Yield      | Dry<br>matter | IVDMD | Protein |  |  |
|               | days            | cm          | cm     | g/plant        | g/plant | %             | 07/0      | 9/0     |                            | g/plant    | 0/0           | 9/0   | 970     |  |  |
| PI 316121     | 23              | 21          | 70     | 269            | 185     | 44            | 48.9      | 11.5    | -0.41                      | 84         | 49            | _     | -       |  |  |
| PI 340059     | 27              | 19          | 63     | 264            | 166     | 47            | 48.6      | 10.9    | -0.74                      | 98         | 43            | _     |         |  |  |
| PI 340060     | 27              | 21          | 71     | 309            | 211     | 48            | 48.7      | 11.4    | -0.11                      | 98         | 40            | 54.1  | 18.1    |  |  |
| PI 345584     | 22              | 21          | 66     | 300            | 175     | 52            | 49.0      | 11.9    | -0.52                      | 101        | 43            | 48.0  | 17.9    |  |  |
| PI 370645     | 20              | 21          | 71     | 366            | 286     | 51            | 49.2      | 12.4    | 1.05                       | 83         | 48            | 46.1  | 16.1    |  |  |
| PI 383538     | 26              | 19          | 56     | 281            | 192     | 48            | 49.5      | 11.8    | -0.16                      | 89         | 40            | 54.4  | 18.5    |  |  |
| PI 383540     | 24              | 17          | 68     | 216            | 165     | 48            | 50.3      | 11.6    | -0.33                      | 51         | 42            |       | _       |  |  |
| PI 401001     | 23              | 19          | 67     | 266            | 156     | 46            | 50.2      | 11.0    | -0.48                      | 110        | 41            |       |         |  |  |
| PI 401002     | 25              | 17          | 68     | 256            | 179     | 50            | 49.4      | 10.8    | -0.37                      | 75         | 44            | 52.6  | 17.8    |  |  |
| PI 401003     | 27              | 17          | 69     | 333            | 242     | 49            | 50.2      | 12.4    | 0.70                       | 96         | 48            | 49.5  | 18.3    |  |  |
| PI 401004     | 25              | 20          | 66     | 235            | 164     | 47            | 49.4      | 11.4    | -0.57                      | 74         | 44            | 47.9  | 17.4    |  |  |
| NE #1         | 24              | 20          | 69     | 293            | 191     | 47            | 50.1      | 11.2    | -0.02                      | 91         | 44            | _     | _       |  |  |
| NE #2         | 19              | 22          | 72     | 319            | 212     | 49            | 46.1      | 10.8    | -0.76                      | 104        | 41            |       | _       |  |  |
| NE #3         | 21              | 20          | 70     | 416            | 297     | 48            | 49.3      | 12.1    | 1.22                       | 116        | 44            | 47.3  | 16.3    |  |  |
| NE #4         | 24              | 21          | 72     | 350            | 234     | 48            | 51.4      | 11.4    | 0.90                       | 115        | 37            | 54.1  | 19.0    |  |  |
| NE #5         | 25              | 19          | 72     | 314            | 224     | 49            | 54.1      | 10.8    | 1.46                       | 90         | 38            | 53.8  | 19.8    |  |  |
| NE #6         | 23              | 19          | 71     | 303            | 191     | 49            | 50.7      | 11.1    | 0.13                       | 112        | 37            | 52.2  | 19.3    |  |  |
| NE #7         | 22              | 20          | 71     | 302            | 201     | 49            | 52.0      | 11.6    | 0.60                       | 101        | 37            | 51.4  | 19.0    |  |  |
| NE #8         | 24              | 20          | 75     | 320            | 209     | 48            | 51.0      | 11.0    | 0.46                       | 110        | 39            | 53.5  | 19.2    |  |  |
| Ruff          | 28              | 23          | 65     | 442            | 285     | 46            | 51.9      | 12.5    | 1.73                       | 157        | 43            | 50.8  | 17.1    |  |  |
| Nordan        | 22              | 25          | 73     | 428            | 310     | 48            | 50.4      | 12.3    | 1.68                       | 116        | 44            | 46.8  | 16.3    |  |  |
| l0b-1         | 19              | 21          | 78     | 458            | 378     | 42            | 48.4      | 12.6    | 2.10                       | 79         | 43            | _     |         |  |  |
| 10b-2         | 17              | 15          | 76     | 321            | 324     | 45            | 44.7      | 10.7    | 0.42                       | 38         | 52            | _     |         |  |  |
| Mean          | 24              | 20          | 66     | 293            | 202     | 48            | 49.6      | 11.6    |                            | 90         | 42            | 52.5  | 17.8    |  |  |
| L.S.D. (0.05) | 5               | 3           | 8      | 110            | 85      | 5             | 4.5       | 1.3     |                            | 55         | NS            | 9.2   | 2.8     |  |  |
| C.V. %        | 18.2            | 11.6        | 10.5   | 31.9           | 36.0    | 9.8           | 7.8       | 9.5     |                            | 52.5       | 17.2          | 14.9  | 13.5    |  |  |

a/Measured in the spring of 1980 and represents first year basal spread.

5

Table 4. Means and other statistics for traits of crested wheatgrass introductions and experimental strains evaluated at Alliance, Nebraska, in 1980 and 1981.

|           |                               | Means a | veraged (     | over 1980 | and 198 | 1                       |      | 1981 Means |                |         |               |       |         |         |               |       |         |  |  |
|-----------|-------------------------------|---------|---------------|-----------|---------|-------------------------|------|------------|----------------|---------|---------------|-------|---------|---------|---------------|-------|---------|--|--|
|           |                               |         | Fire          | st cut    |         |                         |      |            | First cut      |         |               |       |         |         | Second cut    |       |         |  |  |
| Strain    | Plant<br>width <sup>a</sup> / | Yield   | Dry<br>matter | IVDMD     | Protein | Selection<br>index (NI) |      | Height     | Total<br>yield | Yield   | Dry<br>matter | IVDMD | Protein | Yield   | Dry<br>matter | IVDMD | Protein |  |  |
|           | em                            | g/plant | 0/0           | 070       | 070     |                         | days | em         | g/plant        | g/plant | 0/0           | 0/0   | 0/0     | g/plant | 0/0           | 0/0   | 070     |  |  |
| PI 172690 | 21                            | 183     | 50            | 48.7      | 8.9     | 0.83                    | 36   | 54         | 231            | 185     | 56            | 55.2  | 9.6     | 35      | 58            | 49.5  | 11.2    |  |  |
| PI 172691 | 18                            | 152     | 42            | 50.8      | 10.0    | 1.08                    | 37   | 54         | 196            | 176     | 56            | 55.9  | 10.0    | 20      | 52            | 47.9  | 13.1    |  |  |
| PI 203439 | 13                            | 92      | 52            | 46.5      | 9.4     | -1.80                   | 34   | 46         | 120            | 107     | 56            | 51.2  | 9.6     | 13      | 59            |       |         |  |  |
| PI 203443 | 15                            | 95      | 51            | 46.3      | 9.7     | -1.82                   | 34   | 50         | 132            | 117     | 55            | 50.8  | 9.4     | 15      | 61            |       |         |  |  |
| PI 206396 | 12                            | 91      | 51            | 45.9      | 10.2    | -2.05                   | 35   | 48         | 126            | 108     | 55            | 49.9  | 10.2    | 18      | 63            |       |         |  |  |
| PI 229521 | 16                            | 140     | 48            | 42.3      | 9.2     | -2.48                   | 30   | 54         | 207            | 159     | 50            | 47.6  | 9.3     | 48      | 59            | 42.7  | 12.7    |  |  |
| PI 314596 | 17                            | 164     | 49            | 50.0      | 9.6     | 0.96                    | 30   | 54         | 177            | 152     | 52            | 55.3  | 9.6     | 25      | 61            |       | _       |  |  |
| PI 314597 | 19                            | 164     | 50            | 46.3      | 9.2     | -0.46                   | 31   | 58         | 222            | 192     | 55            | 49.5  | 8.8     | 31      | 57            | _     | _       |  |  |
| PI 314602 | 16                            | 110     | 58            | 46.6      | 7.6     | -1.41                   | 27   | 50         | 148            | 121     | 59            | 51.1  | 7.6     | 27      | 56            | 55.0  | 11.7    |  |  |
| PI 315066 | 21                            | 176     | 52            | 47.2      | 8.9     | 0.12                    | 29   | 58         | 234            | 193     | 56            | 52.2  | 9.1     | 41      | 53            | 48.4  | 12.4    |  |  |
| PI 325180 | 21                            | 191     | 52            | 49.3      | 9.5     | 1.22                    | 34   | 44         | 208            | 178     | 56            | 53.4  | 9.4     | 29      | 59            | 47.6  | 9.8     |  |  |
| PI 369167 | 22                            | 173     | 49            | 51.9      | 9.7     | 1.87                    | 36   | 45         | 205            | 175     | 52            | 55.7  | 9.7     | 30      | 61            | 47.0  | 10.0    |  |  |
| PI 369168 | 20                            | 185     | 50            | 49.0      | 8.6     | 0.99                    | 30   | 57         | 254            | 212     | 57            | 52.6  | 10.0    | 42      | 51            |       | _       |  |  |
| PI 369169 | 18                            | 127     | 46            | 46.3      | 10.9    | -1.19                   | 29   | 56         | 168            | 138     | 50            | 50.1  | 12.1    | 30      | 54            |       |         |  |  |
| PI 369170 | 22                            | 194     | 51            | 50.0      | 8.5     | 1.55                    | 35   | 51         | 206            | 184     | 54            | 53.8  | 8.5     | 22      | 59            | 48.8  | 10.1    |  |  |
| PI 273730 | 17                            | 132     | 48            | 48.5      | 9.4     | -0.24                   | 31   | 56         | 181            | 158     | 53            | 53.7  | 9.9     | 23      | 56            | _     | _       |  |  |
| PI 273731 | 19                            | 181     | 50            | 45.7      | 8.8     | -0.36                   | 31   | 66         | 273            | 215     | 54            | 51.1  | 8.4     | 58      | 56            | _     |         |  |  |
| PI 277354 | 20                            | 175     | 51            | 46.2      | 8.6     | -0.29                   | 29   | 63         | 230            | 202     | 55            | 51.8  | 8.9     | 27      | 58            | _     | _       |  |  |
| PI 314604 | 16                            | 147     | 51            | 45.9      | 8.8     | -0.95                   | 32   | 65         | 207            | 177     | 53            | 47.9  | 8.8     | 31      | 56            | _     | _       |  |  |
| PI 314927 | 17                            | 135     | 54            | 43.2      | 8.6     | -2.22                   | 38   | 54         | 202            | 182     | 59            | 47.7  | 8.2     | 20      | 61            | _     | _       |  |  |
| PI 315068 | 19                            | 186     | 51            | 45.8      | 8.8     | -0.22                   | 32   | 57         | 271            | 229     | 54            | 50.8  | 9.0     | 42      | 55            | 52.4  | 11.6    |  |  |
| PI 316121 | 17                            | 189     | 51            | 45.9      | 8.4     | -1.13                   | 31   | 61         | 304            | 265     | 55            | 51.2  | 8.4     | 39      | 55            | `     |         |  |  |
| PI 340059 | 18                            | 171     | 51            | 46.7      | 9.1     | -0.17                   | 33   | 58         | 240            | 194     | 54            | 51.4  | 9.7     | 46      | 50            | _     | _       |  |  |
| PI 340060 | 20                            | 204     | 50            | 46.2      | 9.0     | 0.28                    | 32   | 62         | 250            | 214     | 54            | 52.5  | 9.5     | 36      | 51            | 48.6  | 13.1    |  |  |
| PI 345584 | 17                            | 162     | 51            | 46.0      | 8.7     | -0.62                   | 30   | 59         | 231            | 191     | 54            | 51.5  | 8.8     | 41      | 54            | 51.3  | 12.3    |  |  |

Table 4. (Continued)

|               |                               | Means a | veraged o     | over 1980 | and 1981 |             |                 |        | 1981 Means     |         |               |       |         |            |               |       |         |  |
|---------------|-------------------------------|---------|---------------|-----------|----------|-------------|-----------------|--------|----------------|---------|---------------|-------|---------|------------|---------------|-------|---------|--|
|               |                               | -       | Fire          | st cut    |          |             |                 |        |                |         | First cut     |       |         | Second cut |               |       |         |  |
| Strain        | Plant<br>width <sup>a</sup> / | Yield   | Dry<br>matter | IVDMD     | Protein  | Selection I | Heading<br>date | Height | Total<br>yield | Yield   | Dry<br>matter | IVDMD | Protein | Yield      | Dry<br>matter | IVDMD | Proteir |  |
|               | cm                            | g/plant | 0/0           | 0%        | 070      |             | days            | cm     | g/planı        | g/plant | 970           | 0%    | 0/0     | g/plant    | 070           | 0%    | 0/0     |  |
| PI 370645     | 19                            | 201     | 51            | 46.8      | 9.1      | 0.45        | 29              | 63     | 254            | 221     | 54            | 51.3  | 8.7     | 33         | 61            | 53.7  | 12.3    |  |
| PI 383538     | 18                            | 190     | 51            | 49.6      | 9.7      | 1.32        | 37              | 52     | 276            | 226     | 54            | 54.7  | 10.0    | 50         | 52            | 49.6  | 11.6    |  |
| PI 383540     | 17                            | 179     | 48            | 47.2      | 9.3      | 0.18        | 36              | 59     | 226            | 209     | 53            | 51.4  | 9.1     | 17         | 56            | _     |         |  |
| PI 401002     | 17                            | 143     | 52            | 44.0      | 8.6      | -1.76       | 32              | 55     | 200            | 180     | 56            | 48.4  | 8.6     | 19         | 51            | 53.6  | 12.5    |  |
| PI 401003     | 18                            | 176     | 51            | 49.9      | 10.3     | 1.16        | 34              | 57     | 228            | 188     | 53            | 54.1  | 9.9     | 40         | 50            | 56.7  | 14.0    |  |
| PI 401004     | 17                            | 150     | 51            | 45.2      | 8.7      | -1.16       | 33              | 55     | 205            | 172     | 54            | 50.3  | 9.1     | 33         | 55            | 47.1  | 11.7    |  |
| NE #1         | 18                            | 176     | 50            | 48.2      | 8.3      | 0.50        | 31              | 62     | 240            | 206     | 56            | 52.2  | 8.6     | 34         | 54            |       |         |  |
| NE #3         | 20                            | 202     | 51            | 47.3      | 9.0      | 0.67        | 27              | 65     | 257            | 214     | 54            | 31.4  | 8.9     | 43         | 53            | 56.4  | 12.5    |  |
| NE #4         | 18                            | 197     | 52            | 49.5      | 9.3      | 1.41        | 33              | 62     | 278            | 230     | 55            | 55.2  | 9.8     | 48         | 52            | 53.5  | 13.4    |  |
| NE #5         | 18                            | 184     | 51            | 47.6      | 8.4      | 0.43        | 33              | 65     | 228            | 203     | 54            | 52.4  | 9.1     | 33         | 50            | 53.2  | 13.3    |  |
| NE #6         | 20                            | 217     | 51            | 46.8      | 8.5      | 0.77        | 32              | 63     | 289            | 233     | 55            | 52.2  | 8.8     | 56         | 49            | 56.1  | 13.5    |  |
| NE #7         | 18                            | 180     | 52            | 46.4      | 9.0      | -0.11       | 31              | 61     | 245            | 204     | 55            | 50.9  | 9.5     | 41         | 52            | 53.8  | 12.8    |  |
| NE #8         | 17                            | 172     | 52            | 48.7      | 9.1      | 0.62        | 33              | 63     | 238            | 195     | 56            | 53.0  | 9.2     | 44         | 52            | 50.9  | 12.€    |  |
| Ruff          | 20                            | 203     | 51            | 50.0      | 8.8      | 1.72        | 33              | 55     | 247            | 204     | 55            | 53.9  | 8.8     | 43         | 58            | 48.9  | 9.5     |  |
| Nordan        | 19                            | 223     | 50            | 48.5      | 9.4      | 1.54        | 30              | 63     | 264            | 229     | 54            | 52.2  | 9.4     | 36         | 50            | 54.2  | 13.5    |  |
| 10b-1         | 16                            | 210     | 46            | 49.1      | 9.9      | 1.52        | 31              | 66     | 290            | 247     | 50            | 52.7  | 9.4     | 42         | 55            |       | _       |  |
| 10b-2         | 16                            | 178     | 51            | 38.9      | 8.9      | -3.04       | 23              | 61     | 240            | 217     | 54            | 43.2  | 8.1     | 24         | 59            | _     | _       |  |
| Mean          | 18                            | 170     | 51            | 47.2      | 9.1      |             | 32              | 57     | 225            | 191     | 54            | 51.8  | 9.2     | 34         | 55            | 51.1  | 12.1    |  |
| L.S.D. (0.05) | 2                             | 60      | 3             | 3.0       | 1.4      |             | 2               | 4      | 52             | 44      | 3             | 3.1   | 0.9     | 17         | 6             | 6.1   | 1.6     |  |
| C.V. %        | 11.6                          | 22.9    | 5.5           | 5.4       | 13.2     |             | 5.8             | 6.5    | 19.6           | 19.6    | 5.1           | 5.2   | 8.0     | 43.9       | 9.1           | 10.2  | 10.9    |  |

369170, and PI 325180 had higher NI values than Nordan (Table 1). PI 369167 also had a higher NI value than Ruff. The NI values were not analyzed using analyses of variance procedures because they are non-parametric statistics. These three introductions, Nordan and Ruff, and the clonal line 10b-1 were the only strains in the study that had NI values greater than 2.0. PI 369167 had the highest IVDMD value of any strain in this study; Nordan and the clonal line 10b-1 had the highest forage yields (Table 1). Ruff, PI 369170, and PI 325180 had both high yields and high IVDMD values. Ruff, Nordan, PI 369167, PI 369170, and PI 325180 performed well at both locations indicating that they have broad adaptability (Tables 3 and 4).

There were significant differences among strains for second cut or regrowth forage yields and quality traits at both locations (Tables 3 and 4). The second-cut yields at Lincoln were higher than those at Alliance because of the higher precipitation and probably more representative of the regrowth potential of the strains evaluated. At both locations, the bulk of the forage was produced in the first cut. First- and second-cut forage yields were positively correlated ( $r = 0.33^{3/}$  and  $0.61^{3/}$  for Lincoln and Alliance, respectively) in 1981, while first- and second-cut IVDMD values were not correlated at either location. Selection for first-cut forage yield and IVDMD could improve both first-cut forage yield and quality and second-cut yields.

There were significant differences among strains for first year width, height, and maturity by heading date. The correlations of these traits with the forage yield and quality traits are given by Lamb et al. (1984). Strains with the highest first-cut yields also had high second-cut yields and were taller but earlier in maturity than the low yielding strains. Plant width was positively correlated with first-year yields. Later maturing strains tended to be higher in IVDMD. Most of the differences among strains for IVDMD were probably due to factors other than maturity because most of the strains headed within the same week.

Although we have evaluated only a part of the accessions of crested wheatgrasses available for use by breeders, we have identified several accessions that are equal to, if not superior to, the released cultivars Ruff and Nordan for both first-cut forage yield and quality. Incorporation of these accessions in crested wheatgrass breeding programs by using procedures described by Asay and Dewey (1983) should result in the development of crested wheatgrasses with improved forage yield and quality. Further comprehensive evaluation of crested wheatgrass introductions could result in the identification of additional accessions with both high forage yield and quality characteristics.

<sup>&</sup>lt;sup>3/</sup>Significance at the 0.5 level of probability.

#### LITERATURE CITED

- 1. Asay, K.H., and D. R. Dewey. 1983. Pooling the genetic resources of the crested wheatgrass complex. p. 124-127. *In* J. A. Smith and V. W. Hays (eds.) Proceedings of the XIV Int. Grassland Congress. Westview Press, Boulder, Colorado.
- Association of Official Agricultural Chemists. 1960. Official methods of analyses of the A.O.A.C. 9th ed. Washington, DC.
- Coulman, B. E., and R. P. Knowles. 1974. Variability for in vitro digestibility of crested wheatgrass. Can. J. Plant Sci. 54:651-657.
- 4. Dewey, D. R. 1983. Historical and current taxonomic perspectives of *Agropyron*, *Elymus*, and related genera. Crop Sci. 23:637-642.
- 5. Dewey, D. R., and K. H. Asay. 1975. The crested wheatgrasses of Iran. Crop Sci. 15:844-849.
- Dewey, D. R., and A. P. Plummer. 1980. New collection of range plants from the Soviet Union. J. Range Management 33:89-94.
- Hanson, A. A. 1972. Grass varieties in the United States. USDA Agricultural Handbook No. 170. Washington, DC.
- 8. Junk, R. J. G., and H. M. Austenson. 1971. Variability of grass quality as related to cultivar and location in western Canada. Can. J. Plant Sci. 51:309-315.
- Lamb, J. F. S., K. P. Vogel, and P. E. Reece. 1984. Genotype and genotype x environment interaction effects on forage yield and quality of crested wheatgrasses. Crop Sci. (In Press).
- National Oceanic and Atmospheric Administration. Climatological Data Annual Summaries 1979, 1980, 1981. Asheville, NC.
- Newell, L. C. 1966. A gene bank for grasses. Farm, Ranch, and Home Quarterly, Nebr. Exp. Sta. Publ. QR 119:3-4.
- 12. Rogler, G. A., and R. J. Lorenz. 1983. Crested wheatgrass—early history in the United States. J. Range Management 36:91-93.
- 13. Roth, L. S., 1971. Development and application of selection criteria for improvement of corn forage. Ph.D. Diss., Univ. of Nebraska-Lincoln.
- 14. Schaff, H. M., G. A. Rogler, and R. J. Lorenz. 1962. Importance of variation in forage yield, seed yield, and seed weight to the improvement of crested wheatgrass. Crop Sci. 2:67-71.
- 15. Tilley, J. A., and R. A. Terry. 1963. A two stage technique of the *in vitro* digestion of forage crops. J. Brit. Grassland Soc. 18:104-111.