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Abstract
Food allergens are proteins that are well tolerated by most, but can cause severe 

reactions in sensitive individuals. Since there is no cure for food allergy, strict 

adherence to an allergen-free diet is the only safe choice currently available for 

allergic consumers. Accurate food labeling can help consumers avoid foods con-

taining an allergenic ingredient. Regulatory agencies have mandated the labeling of 

major food allergens on packaged foods to help with safe food choices. However, 

the inadvertent presence of an allergen in food due to cross-contact and labeling 

error can jeopardize consumer health. Analytical methods are developed for aller-

gen detection and quantitation to ensure food safety and labeling compliance. TheseTh

methods are mostly based on immunochemistry, mass spectrometry and genomic 

amplifi cation. Thfi  is chapter details the general principles and advances in the devel-Th

opment of allergen detection methods. Th e validation of these analytical methodsTh

and challenges associated with accurate allergen quantitation is also discussed.

Keywords: Food allergens, immunoassay, mass spectrometry, PCR

4.1 Introduction 

Food allergy has become a major health concern for consumers due 
to the increase in reported cases of food allergy sensitization in a wide 

*Corresponding author: Girdhari.Sharma@fda.hhs.gov

proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.



66 Food Safety: Innovative Analytical Tools

variety of foods. Currently, adherence to a strict allergen-free diet is the 
only reliable mode of treatment for aller gic consumers. Recent reports 
suggest the prevalence of food allergy is approximately 5% in adults and 
8% in children [1, 2]. Most food allergies are caused by specific classes fi
of proteins in food that are otherwise harmless to a non-allergic per-
son. The amount of allergen needed to trigger an allergic reaction varies Th
among individuals and diff erent allergens. Recent studies have sought to ffff
identify the minimum eliciting dose levels for many food allergens [3, 
4]. Though more than 160 foods have been associated with food aller-Th
gies, major food allergens, including milk, egg, fish, crustacean shell-fi
fi sh, peanut, tree nuts, wheat and soy, account for about 90% of food fi
allergies [5, 6]. Various allergenic proteins have been identified in these fi
foods (Table 4.1). Th e Food Allergen Labeling and Consumer Protection Th
Act (FALCPA) of 2004 mandated the declaration of these major food 
allergens on labels of foods regulated by the U.S. Food and Drug 
Administration. Inclusion of additional food allergens may depend on 
factors such as allergy prevalence and severity in a particular geographic 
region. For example, the European Union includes sesame, shellfish/ fi
mollusks, mustard, celery, and lupine as priority food allergens in addi-
tion to the “Big 8” [5]. Allergic consumers use food labels to identify 

Table 4.1 Proteins identifi ed as food allergens in major allergenic food sourcesfi a.

MILK

Allergen Biochemical name Allergen Biochemical name

Bos d 4 α-lactalbumin Bos d 9 αS1-casein

Bos d 5 β-lactoglobulin Bos d 10 αS2-casein

Bos d 6 Serum albumin Bos d 11 β-casein

Bos d 7 Immunoglobulin Bos d 12 κ-casein 

Bos d 8 Caseins

EGG

Allergen Biochemical name Allergen Biochemical name

Gal d 1 Ovomucoid Gal d 4 Lysozyme C

Gal d 2 Ovalbumin Gal d 5 Serum albumin

Gal d 3 Ovotransferrin Gal d 6 YGP42

FISHb

Allergen Biochemical name Allergen Biochemical name

Yellowfin tuna Atlantic codfi

Th u a 1Th β-parvalbumin Gad m 1 β-parvalbumin

Th u a 2Th β-enolase Gad m 2 β-enolase

Th u a 3 Aldolase A Gad m 3 Aldolase ATh
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Atlantic salmon Baltic cod

Sal s 1 β-parvalbumin 1 Gad c 1 β-parvalbumin

Sal s 2 β-Enolase

Sal s 3 Aldolase A

CRUSTACEAN SHELLFISHb

Allergen Biochemical name Allergen Biochemical name

Black tiger shrimp American lobster

Pen m 1 Tropomyosin Hom a 1 Tropomyosin

Pen m 2 Arginine kinase Hom a 3 Myosin light chain 2

Pen m 3 Myosin light chain 2 Hom a 6 Troponin C 

Pen m 4 Sarcoplasmic Ca binding protein Spiny lobster

Pen m 6 Troponin C Pan s 1 Tropomyosin

Crab

Cha f 1 Tropomyosin

PEANUT

Allergen Biochemical name Allergen Biochemical name

Ara h 1 7S globulin Ara h 10 16 kDa oleosin

Ara h 2 2S albumin Ara h 11 14 kDa oleosin

Ara h 3 11S globulin Ara h 12 Defensin

Ara h 4 renamed Ara h 3.02 Ara h 13 Defensin

Ara h 5 Profi lin Ara h 14 Oleosinfi

Ara h 6 2S albumin Ara h 15 Oleosin

Ara h 7 2S albumin Ara h 16 nsLTP2

Ara h 8 PR-10 Ara h 17 nsLTP1

Ara h 9 nsLTP1

TREE NUTSb

Allergen Biochemical name Allergen Biochemical name

Almond Brazil nut

Pru du 3 nsLTP1 Ber e 1 2S albumin 

Pru du 4 Profi lin Ber e 2 11S globulin fi

Pru du 5 60s acidic ribosomal protien P2 Hazelnut

Pru du 6 Amandin, 11S globulin Cor a 1 PR-10

Cashew nut Cor a 2 Profilinfi

Ana o 1 7S globulin Cor a 8 nsLTP1

Ana o 2 11S globulin Cor a 9 11S globulin

Ana o 3 2S albumin Cor a 11 7S globulin

Pecan Cor a 12 17 kDa oelosin

Car i 1 2S albumin Cor a 13 14-16 kDa oleosin

Table 4.1 Cont.

(Continued)
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Car i 2 7S globulin Cor a 14 2S albumin

Car i 4 11S globulin English walnut

Pistachio Jug r 1 2S albumin

Pis v 1 2S albumin Jug r 2 7S globulin

Pis v 2 11S globulin Jug r 3 nsLTP1

Pis v 3 7S globulin Jug r 4 11S globulin

Pis v 4 manganese superoxide dismutase Jug r 5 PR-10

Pis v 5 11S globulin

WHEAT

Allergen Biochemical name Allergen Biochemical name

Tri a 14 nsLTP1 Tri a 37 α purothionin

Tri a 18 Agglutinin isolectin 1 Tri a 40 α amylase inhibitor

Tri a 19 ω-5 gliadin Tri a 41 Mitochondrial ubiquitin 

ligase activator of NFKB 1

Tri a 20 γ gliadin Tri a 42 Hypothetical protein

Tri a 25 Th ioredoxin Tri a 43 Hypothetical proteinTh

Tri a 26 High molecular weight glutenin Tri a 44 Endosperm transfer cell 

specific PR60 precursorfi

Tri a 36 Low molecular weight glutenin GluB3-23 Tri a 45 Elongation factor 1 (EIF1)

SOY

Allergen Biochemical name Allergen Biochemical name

Gly m 3 Profi lin Gly m 6 11S globulinfi

Gly m 4 PR-10 Gly m 7 Seed biotinylated protein 

Gly m 5 7S globulin Gly m 8 2S albumin 

aAdapted from http://www.allergen.org/index.php; accessed on September 14, 2016.
bSelect  common sources of fi sh, crustacean shellfifi  sh, and tree nuts are listed.fi

Table 4.1 Cont.

allergens in packaged foods and make safe food selections. Undeclared 
allergens, however, can inadvertently appear in a product from cross-
contact during manufacturing, ineffective equipment sanitation, and ffff
incorrect labeling. To effectively safeguard the food-allergic population, ffff
the food industry and regulatory bodies require reliable analytical meth-
ods for allergen detection.

Th e methods commonly used for the detection of allergens in food are Th
based on the detection of markers (i.e., proteins, peptides, DNA) to indicate 
the presence of allergenic ingredients (Figure 4.1). Despite the abundance 
of analytical tools, the selection of an appropriate method for allergen 
detection can be challenging, due in part to the inherent complexity of 
food. Food composition and the manner in which the food has been pro-
cessed can mask or alter allergen markers, thereby impairing the solubil-
ity, detection, and quantitation of food allergens. Other factors that affect ffff
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allergen quantitation in foods include allergen reference materials, target 
analyte selection, and the reporting units used in quantitation. Quantitative 
methods must be rigorously evaluated using incurred reference materi-
als (allergen ingredient added prior to processing) and characterized in 
numerous commercially relevant target matrices. The major analytical Th
methods, including enzyme-linked immunosorbent assay (ELISA), mass 
spectrometry (MS) and polymerase chain reaction (PCR) are discussed in 
detail in this chapter. While the majority of  commercially available aller-
gen detection methods are single allergen assays, multi-allergen detection 
methods have recently been developed using a  multiplex enzyme immu-
noassay [7–10], MS [11–16] or DNA amplifi cation [17, 18]. Understanding fi
the limitations of available methods for food allergen quantitation, specifi-fi
cally with respect to sample extraction, thermal processing, and biomarker 
selection, will improve method selection, establish appropriate allergen 
control plans, and ultimately protect  allergic consumers.

4.2 Immunochemical Methods

4.2.1 Lateral Flow Device (LFD)/Dipstick

Th e LFD/dipstick is a qualitative or semi-quantitative method commonly Th
implemented in food analysis due to the relative ease of use, portability, and 
cost-effectiveness. Thffff  is method uses a membrane (usually nitro cellulose, Th
nylon, or polyvinylidene difluoride) on which test antigen/analyte and fl
antibody are applied. The role of diffTh erent components of LFD and their use ffff
in food allergen detection have been discussed by Baumert and Tran [19]. 
Th e assay can be a sandwich [20–22] or competitive  format [23]. In the Th
sandwich assay, immunoreactants [analyte and detector antibody (enzyme 
labeled or coupled to latex or colloidal metal)] migrate along a test strip. 
Th is complex reacts with an immobilized analyte-specifiTh  c capture antibody fi

Food allergen detection

Protein-based DNA-based

Conventional

PCR

Real-time

PCR
Immunochemical

Lateral flow

device

Mass

spectrometry

Sandwich

ELISA

SandwichCompetitive Competitive

Top-down Bottom-up Probe-based Dye-based

TargetedGlobal

DDA DIA pSRM MRM PRM

Figure 4.1 Classification of methods commonly used for food allergen detection in foods.fi
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(test zone) and with an immobilized detector antibody-specific antibody fi
(control zone), producing color at each zone. Th e colorimetric intensity Th
at the test zone is proportional to the amount of analyte present in the 
sample. For a competitive assay, the immobilized analyte is used as a cap-
ture reagent at the test line that competes with the analyte in the migrat-
ing analyte-detector antibody complex. Hence, for competitive assays, the 
intensity of the test line color is inversely related to the amount of analyte 
present in the sample.

4.2.2 ELISA

The most commonly used method platform for both qualitative and quan-Th
titative detection of allergens in food is ELISA [24, 25]. Laboratories and 
food manufacturers prefer ELISA to monitor food products for the pres-
ence of allergen residues because of its high level of sensitivity and ease 
of use [26]. ELISAs use monoclonal or polyclonal antibodies generated in 
mammals that recognize select food proteins as markers for the presence 
of an allergenic food. Monoclonal antibodies are specific for a particularfi
protein epitope whereas polyclonal antibodies can detect multiple epit-
opes on either a single protein or a mixture of proteins. Allergenic foods 
constitute a number of allergenic and non-allergenic proteins. Moreover, 
allergenic foods such as egg, milk and peanut have several major aller-
genic proteins while shrimp and fi sh have primarily one major allergenic fi
protein. Allergenic proteins are commonly targeted by ELISA as an appro-
priate analyte for food allergen analysis. The affiTh   nity and specififfi  city of the fi
 generated antibodies towards the target analyte is vital for the development 
of a sensitive and robust ELISA.

The ELISA format can be either a sandwich (s-ELISA) or competitive Th
(c-ELISA). Th e selection of an ELISA format depends on various fac-Th
tors including the food matrix, desired sensitivity, and characteristics of 
selected antibody and target analyte [27, 28]. In s-ELISA, food allergens 
in the sample are captured by an immobilized antibody on the microwell 
plate and detected by a second enzyme-labeled allergen-specifi c antibody.fi
The intensity of the colored product generated aftTh  er adding the substrate ft
is proportional to the amount of allergen in the food sample. The c-ELISA Th
is an approach where the target allergen in the sample binds to the spe-
cific antibody in solution and competes with the immobilized allergen on fi
the well of the plate. In this format, the intensity of the colored product is 
inversely proportional to the concentration of allergen in the food sample. 
Th ese two assay formats can be direct, indirect, or enhanced. ThTh e detec-Th
tor antibody is labeled with an enzyme (hydrogen peroxidase or alkaline 
phosphatase) for direct ELISA and unlabeled for indirect ELISA, where 
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the detector antibody binds with a second labeled antibody that is immu-
noglobulin specific. For enhanced ELISA formats, the detector antibody fi
is attached to a molecule, such as biotin, which binds with four molecules 
of enzyme-conjugated streptavidin, thereby enhancing sensitivity [29, 30].

The sensitivity and specifiTh city of all ELISA formats is highly dependent on fi
the biophysical and chemical properties (e.g., solubility, structure, confor-
mation, and chemical alteration) of target allergens. Food  processing may 
cause allergen conformational changes, denaturation, aggregation, chemi-
cal modifi cation of epitopes, or interactions with food matrix components. fi
Th ese changes impact protein extractability and antibody recognition of Th
allergenic proteins. Several reports have shown thermal processing dur-
ing food manufacture can markedly affect the performance of commercial ffff
ELISA kits, resulting in reduced food allergen recovery [15, 31–35]. Non-
thermal processing, such as hydrolysis, can also alter the epitope-binding 
region of target proteins, affecting the antibody interaction necessary for ffff
accurate quantitation [36, 37]. Complete extraction of allergenic proteins 
is a diffi  cult task from complex processed food matrices. Denaturing (e.g., ffi
sodium dodecyl sulfate or guanidine hydrochloride) and reducing (e.g., 
β-mercaptoethanol) agents have been used to increase the extraction effi-ffi
ciency in thermally processed and complex food matrices for improved 
food allergen recovery by ELISA [38–40]. The selection of appropriate tar-Th
get analytes and detection antibodies along with suitable extraction meth-
ods are the key components to improve the sensitivity and specifi city of fi
immunochemical methods. Some examples of protein markers used for 
major food allergen detection by ELISA are discussed below.

4.2.2.1 Milk 

The major milk-protein fractions are casein (80%) and whey (20%). Casein Th
is a thermostable protein and further subdivided into α, β and κ isoforms. 
On the other hand, β-lactoglobulin from whey is thermolabile and irrevers-
ibly denatured or aggregated with casein micelles and α-lactalbumin upon 
heat treatment [41–43]. Hefl e and Lambrecht [44] developed an s-ELISA fl
using rabbit (capture) and goat (detector) anti-casein antibodies with a 
limit of detection (LOD) of 0.5 parts per million (ppm; μg/g) casein, which 
was successful in quantifying casein in all food products associated with 
milk-allergic consumer complaints. Comparison of the ELISA formats 
using anti-β-lactoglobulin antibodies revealed a lower detection limit by 
the sandwich format, whereas the β-lactoglobulin concentration measured 
by the competitive format was 3 to 5 times higher than that by the sand-
wich format for skim milk powder in cured sausage, bread and pâté [45]. 
It was suggested that this difference was due, in part, to the properties of ffff
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the ELISA format, thermal processing conditions, and the use of whole 
 anti-serum (competitive) or β-lactoglobulin adsorbed antibodies (sand-
wich) in the ELISA. Several commercial ELISA kits are available to quan-
tify milk allergen residues. Th ese assays employ diffTh erent extraction buffffff  ers ffff
and use monoclonal or polyclonal antibodies mostly directed against casein 
or β-lactoglobulin to quantify milk proteins in foods. Polyclonal antibod-
ies directed against potassium caseinate have been successfully developed 
to detect casein fining residues in wines by ELISA [46, 47].fi

4.2.2.2 Egg

Proteins from egg white are more allergenic than those from egg yolk. 
Allergenic proteins ovalbumin, ovotransferrin, ovomucoid, and lysozyme 
account for 54, 12, 11, and 3.4% of egg white protein, respectively [48]. 
ELISA kits based on polyclonal antibodies with specifi city to a single egg fi
protein (ovomucoid or ovalbumin) or multiple egg proteins are commer-
cially available. Although these assays may have less than a 1 ppm limit of 
quantitation (LOQ), their use in egg quantitation may be governed by anti-
body specificity. For example, an ELISA targeting egg white proteins may fi
fail to detect egg yolk proteins in foods and thus is not suitable for foods 
that may have cross-contact with egg yolk proteins alone. Monoclonal 
antibody-based ELISAs targeting egg allergens such as ovalbumin [49] and 
lysozyme [50] with an LOD of 0.51 ng/mL and 2.73 ng/mL, respectively, 
have also been developed. Food processing dramatically reduced the per-
formance of commercial ELISA kits in baked foods and pasta [15, 33, 51]. 
In general, antibodies generated against processed or denatured egg pro-
teins showed higher affi  nity for egg proteins extracted from processed food ffi
samples [32, 33, 40, 50, 52–54]. The abundance and associated allergenicity Th
of ovalbumin and ovomucoid makes them suitable as effective markers for ffff
detection of egg by ELISA.

4.2.2.3 Fish

In the U.S., fi sh allergy is most frequently associated with tuna, catfifi sh, andfi
salmon [55]. Parvalbumins (β-subtype), a major fi sh allergenic protein,fi
show high structural homology across different marine and freshwater fiffff  shfi
[55]. Research on quantitative detection of fish and fifi  sh roe by ELISA using fi
an anti-parvalbumin antibody and other fish proteins for antibody genera-fi
tion have been developed in recent years [56–61]. An ELISA employing an 
anti-cod parvalbumin antibody has been reported to detect a wide range of 
fish species, which may be a useful screening tool for fifi  sh allergens [56, 62]. fi
However, the parvalbumin content in fish varies with the species and mus-fi
cle type (white or dark) [58, 60]. This may affTh ect the quantitation of fiffff sh in fi
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foods depending on the fi sh source used for antibody generation and cali-fi
bration standards in ELISA. Variable cross-reactivity with 45 different fiffff  shfi
extracts from 17 fish orders has been observed for polyclonal antibodies fi
raised against parvalbumins from different fiffff  sh species [63]. Fish proteins fi
other than parvalbumin have also been used as a target analyte for detec-
tion of fish in foods. Polyclonal antibodies raised against a thermostable fi
36 kDa muscle protein purified from equal amounts of muscle from 10 dif-fi
ferent fi sh species reacted to 63 raw and cooked fifi  sh species and the devel-fi
oped s-ELISA had an LOD of 0.1 ppm [59]. Shimizu et al. [61] developed 
an s-ELISA with LOD of 0.78 ppm using polyclonal IgG antibodies against 
the chum salmon β -component to detect chum salmon yolk protein from 
diff erent processed foods.ffff

4.2.2.4 Crustacean Shellfishfi

Shrimp, crab, and lobster are common sources of crustacean shellfish aller-fi
gens. Tropomyosins were identifi ed as major allergens, exhibiting a high fi
degree of molecular homology between shellfish species. Fewer immunoas-fi
says have been developed for the detection of crustacean in food as com-
pared to other allergens. Polyclonal antibodies raised against tropomyosin 
from prawn (Penaeus latisulcatus) [64] and shrimp (Pandalus borealis) [65] 
have been used to develop an s-ELISA with a 1 ppm LOD for the detection of 
crustacean shellfish protein in foods. Seiki fi et al. [66] developed an s-ELISA 
with a 0.29 ppm LOD using monoclonal (capture) and polyclonal (detec-
tor) antibodies against black tiger prawn tropomyosin with 28.5–114.3% 
reactivity to Decapoda group (prawn, shrimp, lobster, crab) and negligible 
reactivity with select mollusk groups (Cephalopoda, Bivalvia, Gastropoda). 
Th ermal treatment has been reported to increase the immunoreactivity of Th
tropomyosin from crustacean and mollusk species with monoclonal anti-
insect tropomyosin antibody [67]. Th e relative abundance of tropomyosin Th
in shellfi sh makes it a suitable candidate marker for detection of crustacean fi
shellfi sh in foods by ELISA, but its homology and conserved structure may fi
result in cross-reactivity with mollusk and insects [65, 67, 68]. The epit-Th
ope from the N-terminal region of crustacean tropomyosin was suggested 
to react with specific monoclonal antibodies that do not bind molluskan fi
tropomyosin, making these antibodies potential tools for use in labeling 
compliance of crustacean shellfish allergens in foods [67].fi

4.2.2.5 Peanut

Various allergens belonging to different protein families have been identi-ffff
fied in the peanut kernel (Table 4.1). Ara h 1 and Ara h 2 allergens can cause fi
95% of peanut allergy reaction in sensitive individuals [69]. The abundance Th
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and allergenicity of these proteins does not necessarily correlate with the 
detectability by the immunoassay. Peanut allergens vary in their protein 
conformation and chemical modifi cation by commercial food processing fi
procedures, posing a signifi cant challenge in the selection of candidate fi
peanut protein markers for immunoassay development. Changes in pro-
tein solubility and immunoreactivity resulting from thermal processing 
has been shown to limit the ability of ELISA kits to accurately quantify 
the amount of peanut protein in roasted peanut flour [70–72]. Ara h 1 is fl
susceptible to heat and thermal process, such as roasting, induced rapid 
denaturation or aggregation of this protein [73], whereas Ara h 2 and Ara 
h 6 are relatively heat stable. Th e degree and manner of processing limits Th
the extractability of peanut proteins when compared to their extractabil-
ity from raw peanuts [74]. ELISA methods for the detection of peanut 
residues in food employ polyclonal or monoclonal antibodies against raw 
peanut, processed peanut, or purified peanut proteins [75, 76]. Most com-fi
mercial ELISA kits employ polyclonal antibodies in a sandwich format 
to detect peanut proteins with LOQs from 0.3 to 2.5 ppm. Investigation 
of antibody reactivity of six commercial ELISA kits against purified pea-fi
nut allergens (Ara h 1, Ara h 2, Ara h 3, and Ara h 6) demonstrated that 
five commercial kits were most sensitive in detecting Ara h 3 followed fi
by Ara h 1, whereas one kit showed greater sensitivity in the detection of 
Ara h 2 and Ara h 6 [77].

4.2.2.6 Tree Nuts

Various ELISA methods have been developed for commonly con-
sumed tree nuts, including almond [78–81], Brazil nut [81–83], cashew 
nut [81, 84, 85], hazelnut [81, 86–88], macadamia nut [89], pecan [90], 
pistachio [91], and walnut [92, 93]. As with peanut, the associated aller-
genicity and abundance of seed storage proteins in tree nuts make them 
candidate proteins for the detection of tree nuts in foods. Amandin, an 
11S globulin, is the major storage protein in almond and has been used 
as a marker protein for almond detection by ELISA with an LOD of 3 ng 
almond  protein/mL [80]. Th e presence of amandin in diffTh erent almondffff
varieties has been reported, though immunoreactivity varied signifi cantly fi
among different almonds by s-ELISA using a rabbit anti-almond poly-ffff
clonal as the capture antibody and a mouse anti-amandin monoclonal as 
detector antibody [94]. A sensitive s-ELISA based on chicken yolk anti-
bodies against hazelnut 11S globulin (Cor a 9) with an LOD of 4 ng/mL 
was successful in detecting hazelnut protein in cookies spiked with as low 
as 1 ppm hazelnut protein [95]. The formation of advanced glycation end Th
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products (Maillard reaction) following the thermal processing of hazelnut 
proteins in the presence of glucose reduced the recovery of hazelnut mea-
sured by four different commercial ELISA kits [96]. Ben Rejeb ffff et al. [81] 
developed a c-ELISA for the simultaneous detection of almond, Brazil nut, 
cashew and hazelnut along with peanut in chocolate matrix with an LOD 
of 1 μg/g protein for each allergen. The antibodies used in their ELISA did Th
not display cross-reactivity with other foods tested, except that the almond 
antibody exhibited slight cross-reactivity with a cashew protein extract. 
Antibody cross-reactivity is commonly found among proteins from dif-
ferent tree nuts due to homologous amino acid sequences among tree nuts 
belonging to the same family, such as walnut and pecan [92] and cashew 
nut and pistachio [85]. 

4.2.2.7 Wheat (Gluten)

Wheat proteins are traditionally grouped as albumin, globulin, gliadin, and 
glutenin, based on their differences in solubility. Thffff  e gliadin and glutenin Th
fractions collectively form gluten. Although several wheat allergens belong 
to the albumin and globulin fractions, most immunochemical methods 
employ gluten as a protein marker for detection of wheat in foods. This is Th
partly because gluten also causes celiac disease in genetically predisposed 
individuals. For regulatory compliance, gluten is defi ned as the storagefi
proteins from wheat, rye, barley, and their crossbreeds that is insoluble in 
water and dilute salt solutions. Hence the ELISA methods used for gluten 
detection in foods utilize antibodies that bind to common gluten epitopes 
found in wheat, rye, and barley. Some of the well-characterized mono-
clonal antibodies used in commercial ELISA kits include Skerritt or 401/21 
[97], R5 [98], and G12 [99]. The variable reactivity of these anti-gluten Th
anti bodies towards gluten from diff erent grain sources of wheat, rye, and ffff
barley may result in under- or overestimation of gluten in foods [100, 101]. 
Since gluten is not soluble in common aqueous buffers, the extraction of ffff
gluten from foods for quantitation by ELISA is achieved by either aqueous 
ethanol alone or in combination with denaturing and reducing agents at 
high temperature. ELISA methods using aqueous alcohol alone may have 
significantly reduced gluten extraction effifi   ciency in thermally processed ffi
foods, resulting in an underestimation of gluten [39, 102]. Moreover, using 
gliadin as a calibrant may compromise gluten quantitation from rye and 
barley if the antibody affi  nity to gluten varies with the grain source. A well-ffi
characterized calibrant and an antibody displaying equal affi  nity towards ffi
gluten from wheat, rye, and barley will help improve current ELISA meth-
ods for gluten quantitation in foods.
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4.2.2.8 Soy

Soy or its derivative is extensively used as an ingredient in a wide variety 
of food formulations. Apart from soy allergens listed in Table 4.1, other 
allergens identifi ed in soybean include Gly m Bd 30K (vacuolar storage fi
protein P34), Gly m Bd 28K (26kDa glycoprotein), and Kunitz trypsin 
inhibitor (KTI) [103]. ELISA methods and commercial assay kits have 
been developed for the detection of soy using antibodies against total 
soy protein [104] or individual soy proteins, such as glycinin [105, 106], 
β-conglycinin [107, 108], Gly m 4 [109], Gly m Bd 30K [110–113], Gly m 
Bd 28K [114, 115], and KTI [116, 117]. Soy proteins are often modifift  ed by fi
processing, which may affect their interaction with antibody and quantita-ffff
tion by ELISA. A significant reduction in soy protein immunoreactivity fi
was observed by a commercial ELISA upon hydrolysis with papain and 
bromelain or glycation of soy proteins [118, 119]. Recently, an anti-trypsin 
inhibitor-antibody-based s-ELISA was developed to quantify soy proteins 
in surimi and fish balls with 100–122% recovery [117]. KTI may serve as fi
a marker for the detection of soy traces in processed food as its thermal 
denaturation is reversible upon cooling [120], which may help maintain 
the conformation needed for antigen-antibody interactions. However, the 
characteristics (native or modifi ed) of the antigen used for antibody gen-fi
eration and that of the target analyte in food may dictate the suitability of a 
particular ELISA application. A c-ELISA developed using antibodies pro-
duced in eggs (IgY) from hens immunized with soybean proteins modi-
fied by the Maillard reaction and interaction with lipid oxidation products fi
demonstrated improved recovery in spiked cookies as compared to anti-
bodies against KTI [121], emphasizing the importance of protein marker 
selection in immunochemical method development.

4.3 Mass Spectrometry (MS) Methods

Mass spectrometry has served a prominent role in the field of biological fi
proteomics promoting large-scale identifications, characterization, and fi
quantitation of peptides and proteins [122]. Due to advancements in MS 
technology and improvements to data informatics, food allergenomics 
has emerged as a complementary technology to immunochemical and 
genomic-based methodologies for the detection of allergens in complex 
food samples. MS for allergen detection encompasses both discovery-based 
proteomics and target-analyte methods providing an analysis platform for 
highly-multiplexed allergen detection with molecular-level specifi city.fi
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In a discovery-based proteomics platform, protein identification is per-fi
formed using either a top-down or bottom-up approach. Top-down pro-
teomics uses gas-phase ionization and fragmentation of intact proteins for 
high-resolution mass measurement of analytes. Th e direct analysis of intact Th
allergen proteins enables the elucidation of higher-order protein structure 
(isoforms and post-translational modifications) and rapid screening meth-fi
odologies for allergen detection using a matrix-assisted laser desorption 
ionization (MALDI) or electrospray ionization (ESI) source coupled to a 
high-resolution mass analyzer [123–128]. The conventional peptide-based Th
bottom-up proteomics platform incorporates a site-specifi c endoprotease fi
to digest allergen protein extracts into component peptides. Early pioneer-
ing bottom-up proteomic studies applied two-dimensional gel electropho-
resis with western blotting enrichment for the identifi cation of allergen fi
proteins by MS [129–136]. Electrophoretic-based experiments; however, 
are hindered by limitations in resolution, protein bias, and dynamic range, 
making relative quantitation between multiple protein samples and paral-
lel experiments nontrivial.

In recent years, bottom-up discovery-based proteomic methods have 
been transformed by significant instrumental advances, specififi cally asfi
it applies to sensitivity, throughput, mass accuracy, and mass resolution 
[137]. Given the versatility and tunability of available MS platforms, care-
ful consideration should be given to the type of instrument, fragmenta-
tion method, and overall strategy with respect to the contingent analytical 
inquiry. In a traditional bottom-up proteomics method, proteolytic pep-
tides are chromatographically separated and introduced as gas phase ions 
into a mass spectrometer. Precursor ions are selected based upon user-
defined criteria (data-dependent acquisition, DDA) and fragmented via fi
collisions with uncharged gas atoms (collision-induced dissociation or 
higher-energy collisional dissociation). An alternative to DDA is data 
independent acquisition (DIA) whereby MS/MS scans are collected sys-
tematically and independently of precursor information. Product ions are 
detected in a mass analyzer and searched against custom protein databases 
to identify peptide sequences and subsequently infer the presence of a par-
ticular protein using statistical scoring algorithms [138–140]. 

Bottom-up proteomic experiments enable the identifi cation of allergenfi
proteins including sequence-specific variations between protein isoforms fi
and the characterization of post-translational modifications [26, 141–143]. fi
A limitation of many immunochemical methods is the inability to dif-
ferentiate between homologous, cross-reactive allergens. Global pro-
teomic screening methodologies; however, can be performed to compare 
allergen-containing food samples to spectral libraries generated from 
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target reference materials, providing a distinct advantage for molecular 
identification between closely related species [144]. Compared to model fi
organisms, such as yeast (Saccharomyces cerevisiae) and humans, pro-
teomic research in plants has not advanced at the same rate. As a result, the 
limited availability of non-redundant and accurately annotated genomes 
for many of the allergen species restricts the comprehensive identification fi
of proteins and corresponding isoforms.

Relative quantitation of proteins using a differential bottom-up pro-ffff
teomics platform can be performed using in-vivo metabolic labeling with
stable isotope-labeled amino acids (SILAC) [145], chemical labeling (e.g., 
isotope-code affi  nity tag (ICAT) [146], isobaric tags for relative and abso-ffi
lute quantitation (iTRAQ) [147], and tandem mass tags (TMT) [148]), or 
label-free methods. Label-free comparative proteomics uses MS1 ion cur-
rent or MS2 spectral counting to identify differentially abundant peptides ffff
[149–151]. In a differential proteomics experiment, ion-abundance ratios ffff
are compared between two or more samples for the relative quantitation 
of post-translational modifi cations, processing-induced changes in aller-fi
gen protein content, and varietal diff erences between allergen materials ffff
[152–154]. Characterizing the fundamental changes in protein chemistry 
induced by food processing using a global proteomics platform enables 
the selection of specific allergen peptide targets (biomarkers) for reliable fi
allergen detection and improved analytical performance in complex food 
systems.

A paradigm shift  to targeted MS methods has been driven by the ft
need for orthogonal confirmatory technologies for allergen quantita-fi
tion. Targeted MSn experiments harness the capability of MS for multi-
plex quantitation in a single analytical experiment. In triple quadrupole 
selected- or multiple-reaction monitoring (SRM or MRM) experiments, 
the fi rst and third quadrupoles act as fifi lters to select predefifi nedfi m/z values z
corresponding to the precursor ion (Q1) and product ion (Q3) of a pep-
tide, where the second quadrupole serves as the collision cell. Each peptide 
undergoes collision-induced dissociations (CID) to produce characteristic 
b- and y-ions. Combinations of intact peptide ions (precursors) and result-
ing fragment ions (products) constitute a transition pair that is specific for fi
the monitored peptide sequence. The peak area for MRM experiments are Th
integrated to infer peptide abundance and, in combination with peptide 
ion ratios and retention time alignments, serve as the basis for quantitative 
analysis. Variants of MRM assays can also exist for ion trap instruments 
(pseudo-selected reaction monitoring, pSRM) or quadrupole-Orbitrap 
hybrid instruments (parallel reaction monitoring, PRM). PRM is a tar-
geted proteomics strategy where all products of a precursor peptide are 
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simultaneously monitored under conditions that offer high resolution and ffff
high mass accuracy [155]. Preliminary reports suggest that PRM analyses 
exhibit dynamic range and performance characteristics that rival those of 
MRM analyses performed on triple quadrupole instruments [155, 156].

Targeted allergen methods depend on the pre-selection of proteotypic 
peptides for monitoring analytes in fortified (spiked) or allergen-incurred fi
food matrices. Th e selection of representative peptides, typically ≤5 pep-Th
tides per protein, is assigned as a fi ngerprint for the protein of interest. fi
While proteotypic peptides exhibit a range of physiochemical proper-
ties (size, charge, hydrophobicity, and ionization effi ciency) and chemi-ffi
cal stabilities, the co-selection of multiple peptides across the full-protein 
sequence validates high specifi city to the targeted protein. Recommended fi
criteria for signature peptide marker selection include: unique amino 
acid composition, protein specificity, proteolytic cleavage reproducibility, fi
optimization of chromatographic and mass spectrometric performance, 
and characterization of protein post-translational modifications [157]. fi
Considering the diversity of proteotypic peptide structural and chemical 
behaviors, the selection of appropriate peptide targets must balance theo-
retical guidelines with practical limitations [158].

For complex food samples, processing eff ects (e.g., thermal and non-ffff
thermal), relative allergen protein abundance, isoform equivalence, and 
structural diversity introduce additional considerations for allergen target 
selection. Characterizing the effects of processing, with respect to the bio-ffff
physical, chemical, and immunological modifi cations of allergen proteins, fi
by MS facilitates the development of reliable extraction and allergen detec-
tion methods in industry-processed food samples [153, 159–162]. Whereas 
no single extraction condition may be optimally effective for all food aller-ffff
gens, matrix components, and processing conditions, MS promotes the use 
of more stringent extraction conditions for protein solubilization in ther-
mally processed foods when used in conjunction with adequate sample 
cleanup procedures.

Th e challenge of target-analyte methods is the requirement for internal Th
standards and reference materials for reliable protein quantitation. Stable 
isotope-labeled internal standards (e.g., AQUA peptides, concatenated 
peptide constructs, and recombinant proteins) are commonly utilized for 
robust protein quantitation with consistent linearity spanning 4–5 orders 
of magnitude, measurement coeffi cients that vary <10%, and LODs in the ffi
sub-ppm range. Nonradioactive stable isotope labels such as 13C and 15N
are commonly incorporated for synthetic enrichment. The absolute quan-Th
tifi cation (AQUA) of peptides relies on the selection and chemical synthe-fi
sis of isotope-labeled peptide surrogates. With respect to retention time, 
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ionization effi  ciency, and fragmentation mechanism, AQUA peptides are ffi
chemically and physically indistinguishable from their endogenous native 
counterpart [163–165]. Synthetic peptide standards are typically incor-
porated into the sample prior to proteolysis or directly preceding LC-MS 
analysis. Since the standard is added at late stages of the analytical process, 
labeled peptide methods are oft en less compatible with sample prepara-ft
tion platforms requiring pre-fractionation. Solubilization and stability of 
synthetic peptide standards are sequence-dependent and oft en negatively ft
impact measurement precision (e.g., degradation or modification during fi
storage). To optimize quantitative effi  ciency, individual peptide standards ffi
for stable isotope dilution must meet the demands of high chemical purity 
(>95%) and concentration standardization by amino acid analysis [166] 
prior to investigation. Concatenated peptides (QConCAT) [167, 168] are 
chimeric proteins comprising different proteotypic peptides from mul-ffff
tiple protein targets. QConCAT constructs are synthesized to empiri-
cally balance the order, codon selection, and natural fl anking sequences fl
to maximize expression yield and emulate the native protein [169–171]. 
Concatamers are typically added to the sample immediately prior to pro-
teolysis whereby endoprotease cleavage induces the release of isotope-
labeled peptides and allows parallel quantitation of multiple peptides in a 
single analytical experiment. A third labeling methodology, protein stan-
dard absolute quantifi cation (PSAQ), is a strategy which relies on fi in-vitro
synthesis of isotope-labeled, full-length proteins as standards [172]. TheTh
synthesized standards can be introduced at the onset of the experiment, 
thus providing fl exibility in extraction optimization, endoprotease selec-fl
tion, and target peptide assignment while limiting variability of digestion 
yields between the isotopic standard and the endogenous protein.

Th e choice of an MS-based approach towards protein quantitation Th
depends on the application, associated cost, and reliability of the method. 
While the majority of current MS methods are based upon single analyte 
detection, as reviewed with representative experiments from each major 
allergen class below, multi-allergen LC-MS/MS methods have recently 
emerged as an efficient alternative for method development. Thffi e fiTh  rst qual-fi
itative LC-MS/MS screening method for the simultaneous detection of 
seven diff erent allergenic materials (almond, egg, hazelnut, milk, peanut, ffff
soy, and walnut) was published by Heick et al. [11]. Unique tryptic pep-
tide markers were selected through the survey of reference standards and 
a triple-quadrupole MRM method was developed to detect allergen con-
centrations ranging from 10–1000 μg/g in a processed bread material [11]. 
Using isotopically labeled synthetic peptide standards, Parker et  al. [15]
compared the quantitation of egg, milk, and peanut in industrial processed 
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allergen-incurred foods at various processing stages using ELISA kits and 
a multi-allergen MRM method. Protein extraction from allergen-incurred 
cereal bars and muffi  ns was optimized for egg (ovalbumin and lyso-ffi
zyme C), milk (αS1-casein and β-lactoglobulin), and peanut (Ara h1, Ara h 
2, and Ara h 3) allergens, considering influences from thermal processing fl
and matrix interference. Th e custom LC-MS/MS-based method demon-Th
strated unbiased protein extraction for egg, milk, and peanut, with minor 
concessions to sample recovery for the final product (baked) cereal bars fi
and muffi  ns [15]. As MS-based methods transition towards use as con-ffi
firmatory or quantitative applications for allergen detection, the need for fi
harmonization between methods and validation through interlaboratory 
trials will ultimately help to establish robust analytical methods in support 
of allergen management in the food industry [173].

4.3.1 Milk

Huber et al. [174] used capillary electrophoresis (CE)-ESI-MS to perform 
early experiments on quantitating allergenic whey proteins using external 
calibration curves derived from commercial whey beverages. Optimizing 
sample preparation using ion exchange chromatography and a centriprep 
device, Weber et al. [175] developed a DDA method for the detection of 
αS1-casein in milk- containing cookie matrices on a quadrupole time-of-
flight mass spectrometer. Further, SRM experiments were developed for fl
the quantitation of milk peptides from αS1-casein, αS2-casein, β-casein, 
κ-casein, α-lactalbumin, and/or β-lactoglobulin found in milk-spiked 
wine and food samples [176–181]. Lutter et al. [182] designed a method 
for the quantitation of αS2-casein, β-casein, κ-casein, and β-lactoglobulin 
using 13C15N-labeled peptide standards. A simplifi ed extraction containing fi
ammonium bicarbonate and urea was validated in protein-rich infant cere-
als without additional enrichment or solid-phase purifi cation. Optimizing fi
the detection of αS1-casein, allergen peptides derived from milk-incurred 
cookie samples were quantitated using 13C15N-labeled peptide standards 
and a stable isotope-labeled protein [183]. Isotope-labeled 15N-αS1-casein
improved SRM analysis with regards to extraction recovery; however, it 
did not eliminate the underestimation of allergen concentration arising 
from thermal processing during baking. Extraction conditions were opti-
mized for the detection of casein in allergen-incurred cookie samples with 
an LOQ < 3 ppm of nonfat dry milk and an estimated recovery between 
60–80% [183]. Alternatively, Zhang et al. [184] designed a peptide con-
struct for α-lactalbumin with flanking amino acid sequences at the C- and fl
N-termini. Th e internal standard was added prior to sample extraction and Th
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cleaved into the surrogate proteotypic peptide aft er digestion; however, ft
matrix infl uences on tryptic digestion prevented accurate quantitation. fl
Comparing methods for milk quantitation, Chen et  al. [185] developed 
an MRM assay for the detection of fi ve signature peptides from bovine fifi
β-casein. Th ree standards were evaluated including a stable isotope labeled Th
peptide, a stable isotope-labeled peptide construct (with proteolytically 
cleavable flanking sequences), and a human fl β-casein homolog. While the 
synthetic isotope-labeled peptide was successful in many baked foods—
for items containing egg, cacao, or a high level of oil—the extended stable 
isotope-labeled peptide was down-selected as the preferred strategy for 
quantitating bovine β-casein [185].

4.3.2 Egg

Food processing and matrix interactions have been shown to reduce per-
cent recovery in egg-containing food products [52, 186, 187]. Azarnia 
et al. [51] used LC-MS/MS to identify marker peptides suitable for the 
determination of ovalbumin before and after thermal treatment in egg-ft
incurred pasta. Hindered by the presence of interfering phenolic com-
pounds, tannins, and polysaccharides, LC-MS/MS assays were developed 
for the detection of egg proteins in various red [188] and white fined wines fi
[177]. Commercial wine samples were screened and allergen detection 
confirmed by extracted ion chromatograms of selected tryptic peptides. fi
Complimentary methods have been developed for the simultaneous deter-
mination of allergenic milk casein and egg proteins (lysozyme and ovalbu-
min) in commercial wines [177, 181, 188].

4.3.3 Fish and Crustacean Shellfishfi

Parvalbumins (fi sh) and tropomyosins (crustaceans) are the major aller-fi
gens responsible for eliciting an adverse immunological response in sea-
food allergic patients. Carrera et al. [189, 190] developed a rapid detection 
method for the purification of fi β-parvalbumin via heat treatment and 
accelerated in-solution trypsin digestion under an ultrasonic field. Peptide fi
markers were monitored using selected ion monitoring MS and enabled 
the unequivocal identification of closely related fifi sh species in processed fi
seafood products.

Th e molecular weight, sequence information, and peptide markers Th
of tropomyosin were characterized in snow crab and black tiger prawns 
using MS [191, 192]. Isotope dilution MS was utilized to quantitate con-
centrations of snow crab tropomyosin in an industrial processing plant 
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using a d
3
-l-alanine peptide homolog [192, 193]. Due to the homology of 

tropomyosin sequences in crustaceans, Ortea et al. [194, 195] developed 
a method to distinguish among seven different Decapoda prawn species ffff
using the secondary allergen arginine kinase. Incorporating tropomyosin 
and arginine kinase marker peptides from snow crab as deuterated chemi-
cal surrogates for MRM quantitation, a method for occupational allergen 
testing in a crab processing plant was developed [192, 196]. Similarly, a 
targeted LC-MS/MS method was established for tropomyosin and arginine 
kinase in crustacean shellfi sh, promoting the difffi erentiation from species ffff
such as krill or insects [197].

4.3.4 Peanut

Shefcheck et al. [198, 199] selected Ara h 1 peptides for the detection of 
peanut in vanilla ice cream and dark chocolate using selected ion moni-
toring. Increasing the selectivity of allergen identification, optimal mark-fi
ers for the detection of peanut allergens Ara h 1, Ara h 2, and/or Ara h 3 
varied based upon selection criteria, including peptide abundance, epit-
ope recognition, thermal processing, and isoform equivalence [200–202]. 
Using MS-based methods, the propensity for thermal treatments to induce 
advanced glycation end product (AGE) modifications was identififi  ed for fi
peanut allergens Ara h 1 and Ara h 3 [153, 162]. Hebling et al. [153] con-
cluded the incorporation of a protein denaturant (urea) augmented pro-
tein solubility in thermally processed peanut flour as compared to more fl
traditional (e.g., phosphate-buffered saline) extraction systems. Recently, ffff
Monaci et al. [203] developed a high-resolution MS method suitable as a 
screening tool for the detection of peanut in a mixture of tree nuts down 
to 4 μg/g of matrix.

4.3.5 Tree Nuts

Due to cross-reactivity between homologous botanical families, concur-
rent allergen sensitization to more than one tree nut is common among 
food-allergic patients [204]. A multiplex MS assay for the simultaneous 
analysis of almond (Pru du 1), cashew (Ana o 2), hazelnut (Cor a 9),  peanut 
(Ara h 3), and walnut (Jug r 3) was evaluated in breakfast cereal, biscuit, and 
dark chocolate samples [13, 205]. Samples were fortifi ed prior to extraction fi
and quantitation was performed by monitoring two selected peptides for 
each target protein. Improving the selectivity for hazelnut, marker peptides 
from Cor a 8, Cor a 9, and Cor a 11 were monitored using LC-MS/MS 
in SRM mode [206]. Analytical method performance was compared by 
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Costa  et al. [207] for hazelnut-spiked chocolate samples by LC-MS/MS, 
ELISA, and PCR, providing appropriate quantitation at 1 mg/kg for all 
methods. Commercial food samples were evaluated using a comprehensive 
LC-MS/MS assay developed by Sealey-Voyksner et al. [14] for the simul-
taneous detection of 11 tree nuts (almond, Brazil nut, cashew, chestnut, 
coconut, hazelnut, macadamia nut, pecan, pine nut, pistachio, walnut) and 
peanut. To confi rm peptide identity and provide relative quantitation of fi
tree nut concentration, isotopically labeled peptide standards were selected 
and synthesized. Peptide markers were chosen based on conserved peptide 
sequence and extraction recovery in thermally processed flours [14].fl

4.3.6 Wheat

MS-based methods have been developed for the characterization of chemi-
cal changes in gluten proteins upon industrial food preparation [208] and 
the determination of clinically immunogenic peptides [209–211]. Using 
a pepsin, trypsin, and chymotrypsin protease cocktail to model gastric 
and duodenal protein digestion in humans, consumer products were sur-
veyed for gluten using quantitation by six immunogenic peptides [210]. 
Identifying grain-specific (wheat, barley, and rye) chymotryptic peptide fi
markers, Fiedler et al. [212] demonstrated low ppm detection of wheat 
contamination of oat flour in ethanol protein extracts. In fermented bever-fl
ages, the absence of reference materials for hydrolyzed gluten complicates 
the development of analytical methods for quantitation. Confirmatory fi
LC-MS/MS methods for hydrolyzed gluten detection in beer have been 
developed [213–215] and continue to be explored [37] for the detection of 
barley and wheat-specific peptide markers in fermented beverages.fi

4.3.7 Soy

Houston et al. [216] evaluated the natural variation of ten soy allergens 
among twenty commercial soybean varieties. Relative quantitation was 
performed with a spectral counting method referencing bovine serum 
albumin as an internal standard, and absolute quantitation was performed 
using an MRM method with isotopically labeled peptide standards. TheTh
isotope dilution method reduced technical variance, confirming dif-fi
ferential expression for targeted allergens across soybean varieties. To 
improve the detection of soybean in processed food, Cucu et al. [217] 
used MALDI-TOF/MS and MS/MS to identify tryptic peptide markers: 
401Val-Arg410 from G1 glycinin (Gly m 6) and the 518Gln-Arg528 from the 
α chain of β-conglycinin (Gly m 5) as stable markers. Soybean genotype 
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and environmental influences on allergen and anti-nutritional proteins fl
in soybean were evaluated in four varieties of non-genetically engineered 
soybeans grown in six geographically distinct regions [218, 219]. Absolute 
quantitation of eight soybean allergens by MRM using an isotopically 
labeled synthetic peptide standard demonstrated the effects of environ-ffff
ment to be greater than breeding condition for most soy allergens.

4.4 DNA-Based Methods

Polymerase chain reaction (PCR) is a technique in which a particular seg-
ment of DNA is amplified using sequence-specififi c primers which flfi ank fl
the target region and a polymerase enzyme which synthesizes new DNA. 
In real-time PCR, an additional sequence-specific, flfi  uorogenic probe is fl
included within the target region. Specifi city of a PCR-based method is fi
controlled by the researcher: primers and probes for PCR can be designed 
using DNA sequences which are highly specific to a single target or aller-fi
genic food, or they can be less specifi c and detect a group of allergenic fi
foods. Th e probes used in real-time PCR generate a flTh uorescent signal as fl
new PCR products are created; this signal is recorded with each cycle of 
PCR, in real time. Use of probes in real-time PCR negates the need for 
post-PCR analysis and adds an additional level of sequence specificity. fi
Real-time PCR results in an assay which is more rapid and more sensi-
tive than conventional PCR, and can be used to quantitate targets through 
generation of a linear standard curve. Th e standard curve is analyzed with Th
respect to linear range, statistical R2 value, and slope; slope is used to deter-
mine reaction effi  ciency [220, 221]. Thffi e optimal real-time PCR reaction Th
has a linear range spanning 6–8 orders of magnitude, an R2 value of 0.98 or 
higher, and reaction effi ciency of 100 ± 10%. ffi

As PCR detects DNA, and the allergenic molecules in food are proteins, 
PCR does not detect allergens directly. Th e suitability of PCR-based detec-Th
tion therefore depends on the allergenic food. For some allergenic foods, 
such as eggs and milk, DNA content is inherently low. For other allergenic 
foods, such as wheat and soy, the protein fraction is commonly used in 
food products. DNA-based assays such as PCR are less appropriate for 
these foods. However, other allergenic foods contain high levels of DNA 
in conjunction with allergenic proteins, so DNA is a good indicator of the 
presence of allergenic proteins. These foods are good candidates for PCR-Th
based detection and include fi sh, crustacean shellfifi  sh, peanut, and tree fi
nuts. In cases for which PCR is appropriate, it has signifi cant advantages fi
over techniques which detect allergenic proteins directly. Protein-based 
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detection methods are dependent on knowledge of specific protein prop-fi
erties, yet many allergenic proteins have not been discovered, and many of 
those which have been discovered are not well characterized. Since it is a 
DNA-based method, PCR is more straightforward. The DNA of diffTh  erentffff
allergenic foods and food matrices has variation in nucleotide sequence 
but not in the chemical properties which affect extraction, response to pro-ffff
cessing, or interactions between allergen and matrix. The same methods Th
can therefore be used to extract DNA from a variety of allergenic foods in a 
variety of different food matrices. DNA is more stable than proteins, so it is ffff
better able to withstand both rigorous laboratory extraction methods and 
food processing methods. Important aspects of PCR-based allergen detec-
tion are DNA extraction, DNA target region, PCR product size, internal 
controls, and optimization of PCR conditions. Each of these is discussed in 
greater detail below.

An important early step in PCR-based allergen detection is DNA extrac-
tion, as samples used for PCR must be free of substances which may break 
down the DNA or interfere with PCR. The DNA should be extracted with Th
high effi ciency from a variety of food matrices in order to maximize sensi-ffi
tivity of the method; highly effi  cient extraction is especially important for ffi
quantitative methods based on real-time PCR. Numerous techniques have 
been used for DNA extraction in allergen detection methods, including 
both classical organic extraction using phenol-chloroform and commercial 
silica-column-based methods. DNA extraction based on protease diges-
tion, guanidine hydrochloride treatment, and cleanup on a silica-based 
column provides excellent results and outperforms other DNA extraction 
methods [222–225]. An additional salt extraction step has also been used 
to isolate DNA from complex food matrices [226–228]. These techniques Th
have been used successfully with both plant-based and animal-based aller-
genic foods and in a variety of food matrices. 

Initial selection of an appropriate target region of the genome is an 
aspect of PCR assay design which has important implications for method 
performance. Genes which code for an allergenic protein are frequently 
used, however, these allergen genes may not necessarily be the best tar-
gets. Th e best target is one which provides optimal levels of specifiTh city andfi
sensitivity. The greatest sensitivity can be achieved by targeting genes or Th
DNA regions which have many copies in the genome or cell of an organ-
ism. These may be high copy number targets from the nuclear genome or Th
targets from the genomes of abundant organelles, such as chloroplasts and 
mitochondria. Design and in-silico cross-reactivity testing of PCR primers 
and probes are greatly facilitated by the use of genes or gene regions for 
which sequence data are available from a large number of species. Targets 
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for detection of allergenic foods have been located in both nuclear and 
organellar genomes, and have included genes that code for proteins, genes 
that code for ribosomal RNAs, and noncoding regions of the genome.

Numerous PCR-based allergen methods target the genes encoding aller-
genic proteins [223, 224, 229–235]. Allergen genes are nuclear. They are Th
not often high copy number, and therefore do not yield the most sensitive ft
assays. Nested PCR is a technique which has been used to improve the sen-
sitivity of assays targeting allergen genes. During nested PCR, a first phase fi
of PCR is used for initial amplification of a longer target, and it is followed fi
by a second phase for amplification of a shorter target internal to the fifi rst.fi
Sensitivity is improved because the first phase provides “pre-amplififi cation”fi
of the longer target, which is then used as a template for amplification of fi
the shorter detection target in the second phase. Nested PCR can also yield 
improved specifi city because it requires the use of two pairs of sequence-fi
specific primers: one for the longer target, and one for the shorter target. fi
In real-time PCR assays for tree nuts and peanuts, nested PCR improves 
sensitivity by 2–5 fold [236–239]. Among non-allergen nuclear genes, the 
most common high copy number target used in detection of allergenic 
foods has been the internal transcribed spacer region, or ITS-1. ITS-1 
is a non-coding region of DNA located between the 18S and 5.8S ribo-
somal RNA genes in the nucleus. Since the ITS-1 region is known to be 
highly variable, it can also be used to distinguish closely related allergens. 
Targeting of ITS-1 has yielded highly successful conventional PCR assays 
for peanut, soy, and wheat, as well as real-time PCR assays for buckwheat 
and several tree nuts [225, 240–243]. Real-time PCR assays using ITS-1 
have performed well, with linearity spanning 5–9 orders of magnitude and 
an LOD as low as 0.1 ppm.

In addition to nuclear targets, several diff erent genes have been targeted ffff
in abundant organelles, such as mitochondria and chloroplasts, each con-
taining their own genomes. While suffi cient high-quality nuclear genome ffi
sequence data can be scarce for some species, in many cases high qual-
ity sequence data are readily available for the smaller, more manageable 
genomes of mitochondria and chloroplasts. Mitochondrial targets used in 
allergen detection have included the 12S and 16S ribosomal RNA genes, as 
well as the cytochrome b and cytochrome oxidase I protein coding genes 
for detection of fish and crustaceans [227, 228, 244–246]. Thfi e mitochon-Th
drial nad1 gene has been used for detection of hazelnut and the atpA gene 
for detection of soy [247, 248]. Th e chloroplast matK gene has been used Th
for detection of walnut [249]. Assays targeting mitochondrial genes have 
achieved linearity over 6–8  orders of magnitude and an LOD as low as 
0.1 ppm in complex food matrices. Direct comparisons of nuclear and 
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mitochondrial gene targets have shown that allergen detection using mito-
chondrial targets is 10–100 times more sensitive than detection using an 
allergen gene or commercial kit targeting nuclear DNA [227, 247].

The size of the PCR product produced is another relevant aspect of Th
selecting an optimal target. In general, assays using smaller PCR products 
perform better. Th e role of PCR product size in assay performance becomes Th
most salient during the analysis of processed foods in which DNA is likely 
to be degraded; PCR amplifi cation of degraded DNA is more likely to be fi
successful with small products of approximately 120 bp or less [250]. Rapid 
cycling, which is oft en preferred in real-time assays, also seems to be more ft
successful with smaller PCR products: short cycling limits the amount of 
time available for primer binding and polymerase activity [251]. 

Internal controls for PCR-based detection assays can be designed to 
indicate the presence of inhibitors in the DNA sample or to determine 
suitability of extracted DNA for PCR amplification. Internal controls fi
must amplify independently of the assay target and therefore do not share 
sequence similarity. Controls to detect PCR inhibition are based on detec-
tion of exogenous DNA, which is added directly to PCR reactions after ft
DNA extraction. Exogenous template DNA can be cloned into a plasmid 
or obtained directly from a commercial supplier, and a published universal 
internal control based on exogenous DNA has been shown to work well 
in allergen detection assays [227, 228, 235, 252]. Controls used to confirmfi
suitability of extracted DNA for PCR are based on amplification of a con-fi
served region of endogenous DNA, which is expected to amplify regardless 
of whether the intended allergenic target is present. In allergen assays, such 
controls have targeted nuclear 18S, mitochondrial 16S, and plant chloro-
plast DNA [225, 235, 241, 245, 253]. In addition to these, a unique type of 
internal control has been based on the seeds of an ornamental plant, not 
likely to be found in food products, which were spiked into foods prior to 
DNA extraction [240].

Optimization of the reaction itself is an overlooked and underreported 
aspect of developing a successful PCR method. This includes determin-Th
ing the most favorable concentrations of all reaction components, includ-
ing magnesium, primers, probes, deoxynucletides (dNTPs), and template 
DNA, as well as determining optimal cycling conditions. For real-time 
assays, thorough optimization of reaction components should be carried 
out not only to determine conditions which yield successful amplifica-fi
tion for a given sample, but those which yield the best standard curve for 
samples across a wide range of concentrations. Several published stud-
ies have demonstrated the importance of optimizing the PCR protocol. 
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In conventional PCR, a specially designed high-Mg2+ buffer containing ffff
9 mM Mg and EGTA has been shown to improve sensitivity of hazel-
nut detection [248]. Excess amounts of template DNA can actually inter-
fere with PCR, and this is especially relevant for real-time assays [222]. 
Cycling conditions also affect results: rapid cycling can have adverse ffff
eff ects on assay performance, and annealing temperature may affffff ect ffff
cross-reactivity [227, 248, 251].

Any allergen detection method faces the signifi cant challenges of detect-fi
ing trace amounts of an allergenic food against a high background of a 
complex food matrix material, and must work well with processed foods 
in order to be useful in practice. Well-designed PCR-based methods have 
proven to be more than capable of meeting these demands. With respect 
to the eight major allergenic foods, the vast majority of work conducted 
on PCR-based allergen detection has been focused on crustacean shellfishfi
and tree nuts.

4.4.1 Crustacean Shellfishfi

Crustacean shellfi sh—including shrimp, crab, and lobster—have fi
been detected in complex food matrices using both conventional and 
real-time PCR. Real-time PCR assays for shrimp, lobster, and blue crab 
have achieved linearity over 6–8 orders of magnitude, high reaction 
effi ciencies, and an LOD of 0.1 ppm for crustaceans spiked into soups, ffi
noodles, sauces, juices, and prepared seafood products [227, 228]. These Th
assays have high specifi city for the intended targets and have been unaf-fi
fected by heat and pressure treatment, including baking, boiling, micro-
waving, and autoclaving. Cao et al. [244] also determined that heat 
treatment did not have an adverse eff ect on real-time PCR-based detec-ffff
tion of shrimp. A notable exception occurs with the nearly complete loss 
of signal observed after heat treatment in an acidic food matrix [228]. ft
Th is is likely a result of the accelerated degradation of DNA which has Th
been shown to occur in acidic conditions and to aff ect PCR results [254, ffff
255]. Conventional PCR has achieved a detection limit of 10 ppm for 
shrimp and crab spiked into soup mix, meat, rice, condiment paste, and 
a pastry/bread product [246]. Cross-reactivity analysis for this assay was 
carried out using PCR simulation software with sequences for over 70 ft
species of crustaceans used for food. In one of very few multi-laboratory 
validation studies of PCR-based qualitative allergen detection methods, 
100% of samples incurred at 10 ppm produced positive results from 9 
participating laboratories using this assay [256].
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4.4.2 Tree Nuts

Real-time PCR assays for detection of almond, cashew, and macadamia 
nuts in fl our have achieved reaction effifl   ciencies of 92–107%, linearity over ffi
7 orders of magnitude, and lower LOD at 0.1 ppm [225, 242]. These assays Th
were not adversely aff ected by roasting, showed high specififfff  city for numer-fi
ous species and cultivars of the target tree nuts, and did not cross-react with 
any other foods tested, including a wide variety of non-target tree nuts, 
legumes, fruits, vegetables, grains, and meat products. Detection of walnut 
in sponge cake has been reported with high reaction effi  ciency, linearity ffi
over 5 orders of magnitude, and a lower LOD at 5 ppm; assay performance 
was not adversely affected by baking [238]. Real-time PCR-based detec-ffff
tion of pistachio has been reported in a pastry matrix with linearity over 7 
orders of magnitude and a lower LOD of 4 ppm; this assay tested positive 
for 11 different cultivars of pistachio and did not cross-react with non-ffff
target tree nuts, peanuts and other legumes, fruits, grains, or meat [243]. 
Detection of hazelnut was successfully reported in chocolate at 10  ppm 
[248]. Other real-time PCR-based methods for detection of cashew, hazel-
nut, pecan, and walnut reported signifi cantly higher LOD, near 100 ppm fi
[229–231, 233, 234]. Differences in assay performance do not reflffff ect fun-fl
damental differences between tree nuts, but rather diffffff erences in labora-ffff
tory methods and assay design as discussed above. In particular, the more 
sensitive tree nut detection methods cited here employed high-copy targets 
such as ITS-1 or mitochondrial genes, or enhanced sensitivity through the 
use of nested PCR, while others targeted allergen genes.

4.5 Method Validation

Analytical method development should be followed by validation to 
assess the performance characteristics and reliability of the assay. A 
single- laboratory validation is generally conducted in-house to determine 
method parameters such as specificity, sensitivity, LOD, LOQ, quantita-fi
tion range, robustness/ruggedness, accuracy, precision, and stability of the 
assay. A multi-laboratory validation involves multiple laboratories analyz-
ing assay performance, especially accuracy and precision, under different ffff
work settings such as location and personnel. Among the methods devel-
oped for food allergen quantitation, only a few have been evaluated by 
multi-laboratory validation (Table 4.2). Most of these studies used ELISA 
as the method of analysis. Diff erences in the validation study design make ffff
it diffi cult to compare method performance when detecting a common ffi
allergen. The inherent diffTh  erence in the ELISA-based allergen detection ffff
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methods (such as antibody, calibration standard, extraction methods and 
buffer) contributes partly to these diffffff erences. However, diffffff erences also ffff
arise due to study design-related variables such as choice of food matrix, 
number of  participating laboratories, availability and choice of spiking 
material for recovery studies, and sample preparation (spiked vs. incurred). 
Harmonized guidelines and requirements to validate methods of analy-
sis have been published [257–259] and can be adopted for validation of 
food allergen quantitation methods. Specifi c guidelines for validation of fi
food allergen and gluten quantitation by ELISA have been published in 
recent years [260, 261]. Some of the key terms evaluated in the validation 
of methods for allergen quantitation are described below.

4.5.1 Specifi city and Cross-Reactivityfi

In allergen detection methods, specificity may be sometimes referred to the fi
allergen detected by the method. For example, a method detecting peanut 
may have specificity towards the Ara h 1 allergen. However, in validation fi
studies, specificity refers to the response produced by the target allergen fi
as compared to other matrix/sample components. This is in contrast to Th
cross-reactivity, which refers to the signal/response produced by compo-
nents other than target allergen that may be caused by nonspecific interac-fi
tions. The matrix components selected for studying cross-reactivity varies Th
with the allergen and primarily depends on the homology with the target 
allergen, and likelihood of the component to be present along with the tar-
get allergen in the food [260]. High specifi city and no cross-reactivity are fi
optimal assay characteristics for accurate allergen detection.

4.5.2 Robustness and Ruggedness

Robustness and ruggedness refers to the performance of method under 
minor changes in method parameters and sample type. These terms are gen-Th
erally used interchangeably and measured by assessing the eff ect of change in ffff
experimental conditions on the accuracy and precision of the method [262]. 
For food allergen and gluten detection by ELISA, the  recommended varia-
tions to assess ruggedness include ± 5 to 10% for time and volume-related 
parameters and ± 3 to 5 °C for the temperature parameter [260, 261].

4.5.3 Sensitivity, LOD and LOQ

Sensitivity refers to the change in signal with respect to the change in aller-
gen concentration. It can be measured by the slope of a calibration curve, 
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but is generally not used in validation studies [257, 262]. LOD and LOQ 
are the most commonly used terms when validating quantitative assay for 
food allergens. As the names suggest, the terms LOD and LOQ are the low-
est amount of allergen that can be detected (LOD) and quantitated (LOQ) 
with defi ned certainty. For constant and normally distributed variances, fi
the LOD and LOQ of an assay can be calculated from the standard devia-
tion of the blank or zero concentration level, while an advanced calculation 
can be used where variance increases with an increase in the mean value 
[260, 261].

4.5.4 Accuracy and Trueness

Accuracy and trueness refers to the closeness of the measured amount 
to the actual or true amount of an allergen. Accuracy can be measured 
by calculating the percent recovery or from the slope of linear regression 
analysis of the straight line plot between the spiked and measured con-
centrations [263]. A recovery of 100% implies that the method is accurate, 
whereas values below or above 100% suggest under- and overestimation, 
respectively. A recovery of 80–120% is ideal, but due to the complexity of 
food matrices and processing conditions, a recovery of 50–150% may be 
considered as an acceptable range for ELISA [260]. Trueness refers to the 
bias and is measured as diff erence between the measured amount and the ffff
true amount [262]. Trueness or accuracy can be derived from measur-
ing allergen amount in the spiked samples, certified reference material,fi
or by comparing measured values with another reference method [258]. 
However, determining trueness of allergen may be challenging in the 
absence of a reference material and reference method. Since the actual or 
true value may vary depending on the allergen material used for spike-
recovery studies by various detection methods, one should be cautious in 
interpreting the accuracy of the method or comparing accuracy between 
methods. Availability of a certified reference material and its use in valida-fi
tion studies may help towards achieving consistent accuracies that could 
be comparable between methods.

4.5.5 Precision

Precision refers to the closeness of measured values to each other at a 
given allergen concentration, and is measured by calculating the relative 
standard deviation (RSD) or coeffi cient of variation (CV) of the measured ffi
value. The RSD is independent of concentration and thus more suitable Th
to measure the precision when comparing assay performance at various 
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allergen concentrations [258, 263]. In a multi-laboratory validation, the 
RSD is further characterized by repeatability RSD (RSD

r
) and reproducibil-

ity RSD (RSD
R
), which is the measure of variance associated within a labo-

ratory and between laboratories, respectively. The RSDTh
R
 tends to be greater 

R

than the RSD
r
 as higher variability is associated between the laboratories 

as compared to within a laboratory (Table 4.2). Typically high RSDs have 
been observed for samples with zero or very low level of allergen content. 
For example, in Table 4.2, the RSD

R
 of 2348% and 236% was associated 

R

with gluten-free chocolate cake [264] and gluten-free starch syrup [265], 
respectively. It is important to ensure the homogeneity of spiked samples in 
order to prevent high RSD associated with poor homogeneity. Th ough not Th
used in validation studies, total variance can be divided into sampling and 
analytical variance, where the latter can give a better measure of analytical 
precision by eliminating the sample-related variations [263].
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