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PRECAST PRESTRESSED CONCRETE TRUSS-GIRDER
FOR ROOF APPLICATIONS
Peter Samy Samir, M.S.
University of Nebraska, 2013
Adviser: George Morcous and Maher K. Tadros

Steel trusses are the most popular system for supporting long span roofs in
commercial buildings, such as warehouses and aircraft hangars. There are several
advantages of steel trusses, such as lightweight, ease of handling and erection, and
geometric flexibility. However, they have some drawbacks, such as high material and
maintenance cost, and low fire resistance. In this paper, a precast concrete truss is
proposed as an alternative to steel trusses for spans up to 160 ft. without intermediate
supports. The proposed design is easy to produce and has lower construction and
maintenance costs than steel trusses. The proposed design is an evolution of the system
that was developed by e.Construct USA, LLC and was used in the construction of a
cement storage facility at United Arab of Emirates. The proposed truss design consists of
two segments that are formed using standard bridge girder forms (PCI and AASHTO
girders) with block-outs in the web that result in having diagonals and vertical sections.
The two segments are then connected using a wet joint and post-tensioned longitudinally.
The proposed design optimizes the truss-girder member locations, cross-sections, and
material use. A Finite Element Analysis for the truss-girder system is conducted to
investigate stresses at truss connections and the wet joint. A 30-foot long truss specimen
is constructed at the structural laboratory of UNL to investigate the constructability of the
truss and the structural capacity of the diagonals, verticals, and connections. Testing

results indicate the production and structural efficiency of the developed system.
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1.0 INTRODUCTION

Structural steel is typically and widely used to design roofs for warehouses and airplanes
hangars. Examples of each system are provided in Figure 1.1 through Figure 1.4. Design
considerations for roof support must take into account cost-effectiveness, speed of
construction, structural capacity, aesthetic appearance, fire resistance, and structural
integrity during construction and after completion. Designing using steel has been the
only practice when it comes to long-spanned roofs. The ease of handling and erection,
geometric flexibility, and lightweight of the structural steel components are all
advantages of steel structures. Concrete has not been introduced into the field of roof
supports for warehouses and airplanes hangars because of the difficulty of the
construction and design of concrete components without being extremely heavyweight
and expensive. e.Construct, USA, LLC has offered a state-of-art concrete-truss girder

system that has been built and designed for a cement storage facility in Sharjah, UAE.
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Figure 1.2 Interior of cast-in-place parking structure



Figure 1.4 Interior of closely spaced steel trusses used for roof support



1.1 PROBLEM STATEMENT
Despite the aforementioned steel sections advantages, steel construction faces some
challenges that tend to cause problems that are most often expensive to solve. These
disadvantages include:

e Low fire-resistance

e Corrosion

e High maintenance cost

e Long periods of wait for steel production

e Increasing prices for steel (see Figure 1.5)

¢/Ton Steel Prices Per Ton
1100

. /\
VAN B AVA NN
/\/ N v

600 \

500

400 T T T T T T T
Jan-09 Jul-09 Feb-10 Aug-10 Mar-11 Sep-11 Apr-12 Nov-12

Figure 1.5 Chart showing increasing steel prices for the last two years (New York State
Department of Transportation 2013)



5
All these disadvantages are addressed when comparing steel sections versus the concrete

ones. While concrete can stand against steel in many structural designs, the construction
of the concrete members has been the drawback that made concrete unable to stand up for
the competition. Concrete has very low to no maintenance cost, high fire-resistance, and
low material cost. However, the disadvantages of concrete that this research is directed to
are:

e Heavy members weight for long spans

e Aesthetics
The fact that concrete does not work efficiently in resisting tensile stress makes it very

difficult to design a truss made of solely reinforced concrete.

1.2 OBJECTIVES
The objective is to develop a precast/prestressed concrete truss for long span roofs. A set
of objectives were developed in order to summarize exactly which corners need to be
researched in order to develop the concrete truss. The spans targeted in this research
range from 110 ft till up to 160 ft. Construction time and cost is one of the major research
corners. It should be noted that these objectives are to be achieved by development of an
optimized design that addresses the aforementioned disadvantages of concrete to be able
to compete against steel. The main objective is developing a concrete truss system that is:

e Light in weight

e Fabricated using existing forms and production techniques. (economical to

fabricate)
e Has capacity for snow loads at the Midwest

e Aesthetically pleasing



2.0 LITERATURE REVIEW

2.1 LOW SPANT-TO-DEPTH TRUSSES

The use of concrete trusses was first introduced in 1978 by W. Carroll, F. Beaufait, and R.
Bryan in an ACI Journal article titled “Prestressed Concrete Trusses”. Precast concrete
trusses were first used in 1962 for the U.S. Science Pavilion (now Pavilion Science
Center) in Seattle, WA; however these trusses were non-structural trusses (PCI 2004). In
1976, Rock Island Parking Structure was built using Vierendeel trusses (PCI 2004).
Vierendeel trusses are trusses made out of rigid joints and no diagonals. The trusses used
were almost 12 ft deep and had a clear span of 32 ft and 16 in. x 22 in. cross-section
dimensions for the top, bottom, and vertical members (Shah and May 1977). The vertical
members that are resisting tension forces were post-tensioned. The Pavilion Science
Center arches and the Rock Island Parking fagade are shown in Figure 2.1 and Figure 2.2,

respectively.

Figure 2.1 Concrete trusses Pavilion Science Center in Seattle, WA



Figure 2.2 Vierendeel trusses used on the facade for the Rock Island Parking Structure

The ACI journal paper was published in 1978 by William Carroll about Prestressed
Concrete Trusses (Carroll and al. 1978). The paper discussed two prototypes for the
trusses. A prototype that had a clear span of 20 ft 4 in. and a depth of 2 ft, for a span to
depth ratio of 10. The other prototype had 60 ft 10 in. and 8 ft 6 in. for span and depth,
respectively, yielding a span to depth ratio of 7. The smaller trusses that were suggested
in the paper consisted of diagonal members only without any vertical ones; however the
bigger ones had only two verticals near the center of the trusses. Figure 2.3 and

Figure 2.4 show the two prototypes of the trusses researched.
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Figure 2.3 Concrete truss prototype-I (Carroll and al. 1978)
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Figure 2.4 Concrete truss prototype-II (Carroll and al. 1978)

The paper did not discuss any details about the construction of the truss formwork as it
only talked about the methods and locations for placing the strands and the hold-down
devices. All the top, bottom, and diagonal members were prestressed. However, the
prestressing in the diagonals was only 35% of the initial prestressing due to the stresses
lost in friction at the hold down devices, see fig, (Carroll and al. 1978). The paper stated
that the members cracked at an early stage of loading, which, according to the authors,
was due to “the fact that the diagonals were not fully prestressed” (Carroll and al. 1978).
The research stated that using concrete trusses would lower the price to almost half what

it would cost if steel was to be used for the system.

In 2007 a new idea for concrete trusses evolved. A multi-level condominium building was
built in Minneapolis, MN using what is called “ER-Post”. The ER-Post is system
invented by M. DeSutter of Erickson Roed & Associates. The purpose of the system was
to provide a column-free space for the condominiums, Figure 2.5, (Trygestad and

DeSutter 2007). DeSutter was able to merge Vierendeel trusses with pretensioning to
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design the precast/prestressed trusses used (DeSutter 2007). With a depth of 13.5 ft, the

trusses had a span of 67.33 ft, see Figure 2.6 for details. The span to depth ratio was 5.

Roof
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P |
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Figure 2.6 Elevation drawing of the ER-POST system (Trygestad and DeSutter 2007)



10
2.2 HIGH SPAN-TO-DEPTH TRUSSES

Even with the progress concrete designers has achieved, none were able to provide a
system that can compete and eventually replace the steel trusses that are used for long
spans as in warehouses, airplane hangars, and such. In 2010, a precast concrete truss-
girder was used to support the roof of a coal storage facility in Sharjah, United Arab
Emirates (UAE). Designed by e.Construct USA, LLC, the 1.5-meter (5-foot) deep truss
had a span of 50 m (165 ft) without intermediate supports. Figure 2.7 shows the truss as

fabricated while in the precast plant.

Figure 2.7 The truss designed by e.Construct USA, LLC (the view is center to end)

A full truss consists of two halves, each 25 m (82.5 ft) long. The two pieces are post-
tensioned together forming one full 160 ft span. The trusses are arranged to be 10 m (30
ft) apart. Figure 2.8 shows a 3D view of the project and trusses arrangement. Each two
halves of the truss rested on a temporary support (as shown in Figure 2.9) at the center of
the span till post-tensioning was applied. Figure 2.10 is the elevation and cross-sectional
dimensions of the top chord, bottom chord, verticals, diagonals, and end blocks as

designed by e.Construct USA, LLC. All pictures are courtesy of e.Construct USA, LLC.
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Figure 2.9 The trusses resting on the temporary supports before post-tensioning
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As claimed by e.Construct USA, LLC, the use of this system, along with Z-shape steel

purlins and metal decking resulted in about 25% saving in the building cost. Despite the
success of this project and the significant savings achieved by using concrete over the
steel frame alternative, several enhancements could be researched to optimize the cost
effectiveness of the truss-girder system for long span roof applications. This includes
optimization of precast plant production, minimization of self-weight and simplification
the construction sequence. This was the starting step towards the research that has been

done.
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3.0 SYSTEM DEVELOPMENT

Table 3-1 Comparing the existing truss-girder system in Sharjah to the proposed truss

system

POC Sharjah Truss-Girder Proposed System
A T 112,400 Ib. 151,800 Ib.
Openings
Total Truss Weight 87,800 111,200 Ib.
e
Span 165 ft 160 ft
Depth 5 ft 6 ft
Span/Depth ratio 33 26.7
Block-out Panels Varies 8 ft

Solid Continuous
Web

13.2% of total span
length on each side

11.6% of total span
length on each side

End Block

Rectangular Block

Same cross-section with
thicker bottom flange

Post-tensioning
Profile

Starts in the web then
goes down to the
bottom flange

Straight

Vertical Members

Reinforced concrete
(Compression)

Steel Threaded Rods
(Tension)

Diagonal Members

Reinforced concrete
(Tension)

Reinforced concrete
(Compression)

Girder Cross-
section

Special made form

Commonly used bridge
girder

The trusses designed by e.Construct had diagonals and verticals in tension and
compression, respectively. Span to depth ratio was 33, which means the truss was able to
resist great forces in the top and bottom flange with very little moment arm (depth),

compared to span. The original truss depth was shallow enough for the application and
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the optimized one was required to be kept at a close value. For ease of fabrication, the

truss was suggested to be made out of a girder form that already exists while using block-

outs within the form to make the opening between the diagonals and verticals.

The truss-girder developed had a different structural system than the aforementioned one,
despite the similarities. The differences and similarities are further discussed in Table 3-1.
The chapter later on discusses the reasons behind the system selection. The analysis,
design details, and construction sequence are all part of the system details. Despite the

iterations the system had been through, only the main highlights are discussed.

3.1 BUILDING LAYOUT

A building layout similar to the aforementioned coal storage facility was suggested. The
span for the trusses is set at 160 ft with a 5% slope (crowning). The building was
proposed to be 300 ft longitudinally with 10 spaces between truss-girder lines, resulting
in 30 ft spacing between every other truss-girder. Figure 3.2 is a plan view of the building

layout representation. Figure 3.3 is an elevation view of the truss resting on columns.

Proposed detail for the truss-column connection is shown in Figure 3.4. The drawing
shows 2-1” diameter headed high strength steel bars going through the bottom flanges
and inserted in metal sleeves that are embedded in the columns. The sleeves are then
filled with grout, grease, or both. A bearing pad is also shown in the drawing between the

truss and the column.
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The two truss pieces are connected together by a wet joint then post tensioning. The

construction sequence, along with the post tensioning duct profile, is further explained in
section 3.3. Each truss piece will have reinforcing bars that extend outside the concrete
towards the connection with the other piece. The bars are then bent and concrete is casted
in place to form the joint. The two trusses are then post-tensioned together for a total span
length of 160 ft. The wet joint detail is shown in Figure 3.1.
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Figure 3.1 Proposed wet joint details for the truss
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3.2 TRUSS DESIGN

The optimization of the truss was the main goal of the research. The objective of the
following work was to provide the most efficient way to analyze, design, and build the
truss.

3.2.1 Loads

The use of the truss is to support the roof for warehouses or hangars, in other words, there
is no expected floor above the trusses. To adequately design for the loads expected in
accordance to the code, the Minimum Design Loads for Buildings and Other Structures,
or as known as ASCE 7-10, manual was used (ASCE/SEI 7 2010). On one hand, vertical
loads that are expected to be applied on the roof were dead load (D), [roof] live load (L;),
and snow load (S). On the other hand, horizontal loads, such as wind and earthquakes, are
considered to be resisted by shear walls or column bracings and were out of the scope of
the study. As a result, it has been determined by the researchers that only vertical loads

are to be resisted by the truss, that is dead, live, and snow loads.

According to ASCE 7-10, a live load (L,) of 20 psf is specified for Ordinary flat, pitched,
and curved roofs as required by Table 4-1. However, in accordance with Section 4.8.1,
this load can be reduced according to the equation:

L, = L,RyR, (4.8-1) (ASCE/SEI 7 2010)
Where R;= 0.6 (for tributary area greater than 600 sq. ft), and R,=1.0 (for a slope of 5%

only). This results in a reduced roof live load of 12 psf.

0¢



21
For snow loads, and since the roof slope is only 5%, flat roof snow load, ps, was

calculated according to the equation:

pr = 0.7C.Celspgy (7.3-1) (ASCE/SEI 7 2010)
Where Ce= 0.9 (Table 7-2, exposure category B assumed), C= 1 (Table 7-3), I;= 0.8
(Table 1.5-2, importance factor I). pg, ground snow load, was determined through the
advice by the Daniel P. Jenny Fellowship committee and advisors to be 60 psf, so as to

include regions within the states that get substantial amounts of snow, resulting in design

load of 30 psf.

Dead load is not specified by ASCE 7-10, it has been, however, recommended by the
advising committee to assume a load of 15 psf for mechanical, electrical, and pluming
(MEP) loads. Since the load combinations in Section 2.3.2 specifies either the roof live
load or snow load to be used with other load cases, the snow load of 30 psf will be used
for design in load combinations instead of the roof live load of 12 psf. Load combinations
1 (1.4D) and 3 (1.2D + 1.6S) will be compared after the weight of the truss-girder is

suggested according to the preliminary design.

Roof loads are transferred to the trusses as point loads from light steel gage purlins
resting on top of the truss at the location of the vertical members. As a preliminary
design, and using the coal storage facility as a baseline, the vertical members were
suggested to be 8 ft apart. As mentioned earlier, the spacing between the trusses was 30
ft, resulting in a tributary loading area for each point load of 80 sq. ft. Hence, the design

was based on a dead load (D) of 3600 Ib (3.6 kips) and a snow load of 7200 1b (7.2 kips).

1C
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3.2.2 Analysis

As a preliminary design, and to make the truss easy to fabricate, the truss was suggested
to be constructed as a bridge girder with block-outs within the web to form the diagonal
and vertical members. NU-1350 girders were chosen for the preliminary design. NU-
1350 girders are 53.1in. (1350 mm) deep, that resulted in a span to depth ratio of 36.
Figure 3.5 below is the overall dimensions for NU girders. Table 3-2 is the dimensions

for various types of the NU girders.

-“ 48.2"

256" T
1.75" ‘A

N

459"+

NU 900-NU2000

60 - STRANDS

J’ 38.4" 'l‘

Figure 3.5 Prestressed Nebraska University (NU) girder dimensions
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Table 3-2 Dimension details for various types of NU girders

23

Height |Web Width| TOP Flange |Bottom Flange A Y, | W,
Section . . Width Width 2 . - .
in in in in in in in Kips/ft
(mm) (mm) (mm) (mm) (mm?) (mm) |(mm®*10°)| KN/m
NU 900 35.4 5.9 48.2 38.4 648.1 16.1 110,262 0.680
(900) (150) (1225) (975) (418,111) | (410) | (45,895 | (9.85)
NU 1100 43.3 5.9 48.2 38.4 694.6 19.6 182,279 0.724
(1100) (150) (1225) (975) (448111) | (a97) | (75,870) | (10.56)
NU 1350 53.1 5.9 48.2 38.4 752.7 24.0 302,334 0.785
(1350) (150) (1225) (975) (485,610) (608) (126,841) (11.44)
NU 1600 63.0 5.9 48.2 38.4 810.8 28.4 458,482 0.840
(1600) (150) (1225) (975) (523,111) | (722) | (190,835) | (12.33)
NU 1800 70.9 5.9 48.2 38.4 857.3 32.0 611,328 0.894
(1800) (150) (1225) (975) (553,111) | (814) | (254,454) | (13.03)
NU 2000 78.7 5.9 48.2 38.4 903.8 35.7 790,592 0.942
(2000) (150) (1225) (975) (583,111) | (906) | (329,069) | (13.74)

Structural analysis was performed using SAP2000 and Midas Civil structural analysis
programs. The truss frames are shown in Figure 3.6 as it was modeled in SAP2000. The
connections were all modeled as fixed. The web was widened to 8 in instead of 5.9 in so
as to fit the steel reinforcements inside the verticals and diagonals. At the ends of the
truss, the web remained continuous in order to adequately resist shear forces. The
continuous web was 23% of the whole length of the truss. In other words, the first
vertical location was 24 ft 10 in. from each end.

————
L —
11

Figure 3.6 Cocnrete truss-girder analysis model

The loads, however, were extremely high compared to the section sizes. As a result, the
tension members were chosen to be threaded rods embedded in the concrete. The axial
compression force in the top flange reached almost 1800 kips, which the top flange was
very thin to handle. To better handle the moment at the midspan, the truss depth needed

to be increased deeper than 5 ft. The orientation of the diagonal members was also

1 44
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changed so they would be in compression instead of tension and the vertical members

became tension resisting members. This change in the design facilitated the anchorage of
the threaded rod inside the concrete truss. To decrease the dead load on the truss due to
self-weight, it was found that the bottom flange did not need to have the full width on the
NU girder. The bottom flange width was decreased by 9 in. from each end, resulting in a

width of 22.5 in.

With all the modifications done to the cross-section, the stresses in the top flange were
still very high. Increasing the thickness of the top flange was an option; however, all
these modifications were only translated to construction cost. To avoid all these costs and
in the same time find an optimized section, the PCI bulb tee girders were chosen as the
bridge girder that is widely spread in most states and still matches the dimension of the
cross-section needed. To satisfy the depth needs, PCI BT-72 was the girder to be used in
design. The depth of the girder is 72 in. (1.83 m). The dimensions of the regular BT-72 is

in Figure 3.8; however, the modified one for the truss-girder is 2 inches wider.

VAV AV AV AV A SN A A

Figure 3.7 SAP2000 model for final truss-girder general design

Final analysis was done on the model shown in Figure 3.7. Service loads were self-
weight, superimposed dead loads, and snow load, totaling 10.8 kips every 8 ft in addition
to the self-weight, see Figure 3.9 for dead loads and Figure 3.10 for live loads modeling.

The ultimate loading was determined to be 1.2D + 1.6S (ASCE/SEI 7 2010). Threaded 2
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rods (vertical members) were modeled as axial load bearing members with moment

releases at the ends. Prestressing consists of 10-0.6” 270 ksi low relaxation strands
pretensioned at 0.75 the ultimate stress of the strands. Post-tensioning was designed

preliminarily as 2 ducts each with 14-0.6” strand at jacking stress of 0.75 ultimate stress.

3
|

— — ="

¥

107 a"

Figure 3.8 AASHTO-PCI BT-72 girder cross-section (PCI 2003)

Maximum axial loads on the top flange, bottom flange, vertical, and diagonal members
were 1683 kips (compression), 1698 kips (tension), 136 kips (tension), and 268 kips
(compression), respectively. The loads while handling was also analyzed. It was found
that the loads induced in the top and bottom flanges will not lead to having special
considerations will designing. However, tensile forces, with a maximum of 61 kips, acted
on diagonal members and compression forces, with a maximum of 29 kips, was resisted

by vertical members. Figure 3.11 is the member labeling for analysis results reporting.

N
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Figure 3.10 Snow loads on the truss-girder as modeled (kips)
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Figure 3.11 Members labeling for analysis reporting
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Moment diagrams for construction and ultimate loads phases are shown in Figure 3.12
and Figure 3.13, respectively. Results of frame analysis are reported in Table 3-3 and
Table 3-4 are for ultimate and construction loads, respectively. Forces due to service

loads are reported in Table 3-5.

Figure 3.12 Moment diagrams due to construction loads

Figure 3.13 Moment Diagrams due to ultimate loads



Table 3-3 Analysis results for ultimate loads

I Ultimate Loads I

Table: Element Forces - Frames
Frame P (Kips) W [Kips) M (Kip-ft)
Bi BE8.2 -B.3 44 31
B2 1023.8 0.7 324
B3 1273.7 -1.6 43 5]
B4 1425.8 -1.0 46.5
BS 15443 0.6 432
B 1628.2 -0.4 804
BT 1681.7 1.1 455
Ba 16976 -1.5 532
o1 -267.8 0.7 1.8]
oz -258.6 1.5 g2
()] -215.6 1.2 7.1
D4 -177.1 1.0 .0
DS -137.9 0.8 6.6
D -23.6 0.7 6.2
o7 -G0.7 0.5 5.4
Dz -17.5 0.5 58]
m™ -550.9 -B.4 36.2
T2 -B75.1 0.6 36.4
T3 -1095.0 -0.9 40.7
T4 -1282.1 -0.2 42 51
T5 -1432.4 0.2 44 5
Ta -15458.1 0.8 452
T7 -1632.2 1.0 47.4
Ta -1623.1 2.0 47.5
Wi 1359 -5.0 10.7
Wz 1220 -3.9 2.5
L] 006 -2.3 T.2
W4 783 -2.7 58]
Va 7.0 -2.0 4.4
Wi 352 -1.3 2.0
T i54 -0.8 1.7
VaE 238 -0.1 0.3




I Construction S5tage

Table 3-4 Analysis result for loads during construction

Table: Element Forces - Frames
Frame P (Kips) WV [Kips) M [Kip-ft)
Bi 127.3 0.4 45
B2 143.7 1.5 8.1
B3 148.3 1.5 5.0
B4 141.8 17 8.0]
B5 1240 1.8 57
Ef 4.0 20 5.1
B7 545 2.1 41
= 3.0 23 30|
D1 -28.1 0.4 0.5
D2 185 0.4 o2
D3 4.9 0.3 |
D4 8.2 03 0.2}
D5 214 02 i |
D8 348 0.2 07
D7 479 0.1 oz
DA 80.7 0.1 n.s]
T -104.3 0.4 a.9]
T2 -128.3 14 5.9
T2 _144.1 15 8.0
T4 -148.1 1.6 8.0]
T5 -141.0 1.8 57
T8 1225 19 5.0]
T7 929 20 42
T8 518 23 2.6}
V1 13.0 0.5 1.0}
V2 6.7 032 04
V3 o7 0.0 0.1
4 7.9 0.3 0.5
V5 -15.1 0.5 1.0]
V8 223 07 15
VT -20.3 0.0 2.0]
V3 -35.9 1.1 24




Table 3-5 Analysis results for service loads

I Service Loads I

Table: Element Forces - Frames
Frame P (Kips) V (Kips) | M (Kip-ft)
B1 5421 5.9 328
B2 2066 -0.5 285
B3 943.5 -1.2 32.5
B4 1056.1 -0.7 344
BS 1143.5 -0.4 357
BE& 1206.8 -0.3 3r3
BT 12457 0.& 337
B2 12575 -1.1 431
01 -158.4 0.5 1.4
o2 -1%1.5 1.1 6.1
03 -138.7 0.9 5.3
04 -131.2 0.g 52
D5 =102 0.6 4.5
o0& -73.0 0.5 4.5
o7 -45.0 0.3 4.0
oe -13.0 0.4 4.3
T1 -482.1 5.2 25.8
T2 -551.2 -0.4 27.0
T3 -514.1 -0.8 30.2
T4 -948.7 -0.1 3.7
15 -1081.0 0.z 33.0
T8 -1147.5 0.6 33.5
LK} -1208.1 0.& 35.1
T2 -1245.8 15 352
W1 100.7 0.0 0.0
W2 50.4 0.0 0.0
V3 73.8 0.0 0.0
W4 58.0 0.0 0.0
V5 422 0.0 0.0
V& 251 0.0 0.0
W7 11.4 0.0 0.0
WE 288 -0.1 0.2

Maximum deflection due to super imposed service load was found to be 6.5 in. at

midspan (equaling L/304 deflection), which satisfies 1/240 requirement (ACI 318 2011).



Table 3-6 shows deflections due to different loading conditions and the net deflections at
these stages.

Table 3-6 Deflections at different stages of loading

Type of load Deflection
Post-tensioning -7.8in
Dead Load 4.8in
Erection Deflection -5.21n

(using PCI deflection equations)

SID 3.2in

Net Deflection 3.45in

(using PCI deflection equations)

SIL 6.31in

+ve for downward and -ve for upward deflections

3.2.3 Detailing

The truss was design according to the strut and tie method explained in Appendix A in the
ACI 318-11 code. The diagonal members are designed as reinforced concrete sections,
while the vertical ones are designed as steel threaded rods with no concrete casing. The
threaded rod are made out of B7 105 kst steel, Fy= 105 ksi and F,=125 ksi. The design of
the threaded rods was based on limit state requirement ¢F, > F,. Considering handling
loads, compression in threaded rods was designed according to the AISC Steel

Construction Manual for compression members (AISC 2012).



For the tensile strength of the threaded rods, a strength reduction factor, ¢, of 0.9 was
used (AISC 2012). The minimum area required was 1.44 in® for Fy= 105 ksi. Threaded
rod diameter is reported according to the full diameter of the rod including the threads. As
a result, a 1% in. diameter rod has only 1.375 in. pitch diameter for an area of 1.49 in?,
see Table 3-7 for different sizes specifications. Despite the low tensile force carried by
the vertical members near the midspan, the rods were checked for compression during
handling and a minimum size of 1% in diameter rods was needed to avoid buckling
according to Chapter E (AISC 2012). The anchoring of the rods to the girder flanges is

explained later in the laboratory specimen construction section.

The truss system was designed to be constructed with a compressive strength of 8000 psi.
The diagonal members were design as the struts in Appendix A (ACI 318 2011). A
strength reduction factor, ¢, of 0.75 was used, as ¢F,s > F,, where F, is the strength of
the area of the concrete and the steel reinforcements added together i.e.:
Fns = feeAes + Asfs (A-5) (ACI 318 2011)

The diagonal members were designed as 8 in. x 8 in. members, to account for concrete
flowability during construction. According to equation (A-5), the area of concrete was
sufficient enough to resist the compression forces; however, Section 10.9.1 specifies a
minimum area of steel reinforcements in compression members of 0.01 the area of
concrete. The minimum area of steel rebar required for the diagonal members were found

accordingly to be 0.64 in’, i.e. 4-#4 60,000-psi steel bars.



Table 3-7 Threaded rod sizes and specifications (TSA Manufacturing 2012)

ROUND BAR STOCK WEIGHT
PITCH DIAMETER FOR ROLLED THREADS FULL DIAMETER FOR CUT THREAD
UNC THREAD PITCH WEIGHT PER UNC THREAD FULL WEIGHT PER

DIAMETER DIAMETER FOOT DIAMETER DIAMETER FOOT
Ya - 20 0.215 0.124 Ya - 20 0.250 0.167
/16 - 18 0.274 0.201 3/16- 18 0.313 0.262
Y8 -16 0.331 0.293 8 - 16 0.375 0.376
7/16- 14 0.387 0.400 7716- 14 0.438 0.513
2-13 0.445 0.529 Y2-13 0.500 0.668
S8 - 11 0.560 0.838 S8 - 11 0.625 1.044
% - 10 0.680 1.236 % - 10 0.750 1.504
75 -9 0.795 1.689 7s-9 0.875 2.046
1-8 0.910 2.213 1-8 1.000 2.673
1-Ye-7 1.025 2.808 1-Ye-7 1.125 3.383
1-Ya-7 1.145 3.504 1-Ya-7 1.250 4,176
1-%-6 1.264 4.271 1-%%-6 1.375 5.054
1-%2-6 1.375 5.054 1-%2-6 1.500 6.014

Even though calculations showed that only 4-#4 bars are required, it has been found
through analysis that construction loads will result in tension forces in the concrete
diagonal members. To design for crack control while handling, only 30,000 psi strength
was considered for the steel rebar to resist the tensile forces (PCI 2010). The area of steel
that was found to be needed for crack control during handling was 1.5 in’, i.e. 4-#6 steel

bars. #3 ties where used at 8 in. spacing in accordance to 7.10.5 (ACI 318 2011).

The truss was designed as strut and tie as well for the bottom flange (as ties) and the top

flange (as strut), with a strength reduction factor of 0.9 (ACI 318 2011). The cross-



section of the truss that the design was based on is shown in Figure 3.14. The beam was

designed to resist the forces on the deferent components.
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Figure 3.14 Corss-section of the BT-72 girder showing top and bottom chords for the
truss-girder system

The compression block (top flange) had a gross area of 270 in®. The factored strength of
the top flange was calculated to be 1690 kips, including 4-#4 60,000-psi steel bars. For
prestressing, two post-tensioning ducts were used each with 12-0.6” grade 270 low
relaxation strands. 10-0.6” grade 270 low relaxation strands are designed for prestressing
to protect the truss against cracking during the construction phase. The maximum

ultimate tension the bottom flange was designed for was 1800 kips.



Cracking load was calculated to be 1830 kips, where cracking stress for concrete is

7.5,/0.85f/ and initial prestressing of 0.75 the ultimate strands stress (PCI 2010). Total

prestressing losses were assumed to be 20%.

3.2.4 Calculations
The following figures and tables are details and design tables and calculations for the full

size truss-girder system.



Table 3-8 Member loads comparison

Table: Element Forces - Frames

Ultimate Construction Controling
Frame

P (Kips) | V (Kips) | M (Kip-ft) | P(Kips) | V (Kips) | M (Kip-ft) | Pc (Kips) | Pt(Kips) | V(Kips) | M (Kip-ft)
B1 B66.8 93 443 1273 0.4 4.5 NA B66.8 93 443
B2 1088.9 -0y 38.4 1437 15 6.1 MA 1088.9 15 38.4
B3 12737 -18 43.8 1483 1.5 6.0 MA 12737 1.5 43.8
B4 14258 -1.0 45.5 1418 1.7 6.0 MA 14258 1.7 46.5)
BS 15443 -0.8 432 1240 1.8 5.7 HA 15443 1.8 432
BE 1629.2 -0.4 50.4 549 2.0 5.1 HA 1629.2 2.0 50.4
B7 1681.7 1.1 45.5 545 21 4.1 HA 1681.7 21 45.5)
Ba 1697 .6 -1.5 58.2 3.0 23 3.0 MA 1697.6 2.3 58.2
D1 -287.9 0.y 1.8 -28.1 0.4 0.5 -267.9 NA 0.4 1.8
D2 -258.8 15 8.2 -185 0.4 0.8 -258.86 HA 0.4 8.2
D3 -215.8 1.2 7.1 -49 0.3 0.8 -215.86 HA 0.3 7.1
) -177.1 1.0 7.0 8.2 0.3 0.8 -177.1 8.2 0.3 7.0
DS -137.8 0.9 6.5 214 0.2 0.8 -137.8 21.4 0.2 6.5
D& -986 0y 6.2 3486 0.2 0.7 886 348 0.2 6.2
o7 -£0.7 0.5 5.4 479 0.1 0.8 607 479 0.1 5.4
(1] -17.5 0.5 5.8 60.7 0.1 0.8 -175 80.7 0.1 5.8
T -650.9 -5.4 6.2 -104.3 0.4 3.9 -550.9 HA -5.4 36.2
T2 -878.1 -0.5 6.4 -128.3 1.4 5.9 -878.1 NA 1.4 36.4
T3 -1098.0 -0.9 407 -144.1 1.5 6.0 -1099.0 MA 15 40.7)
T4 -12821 -0.2 428 -148.1 16 6.0 -12821 MA 16 428
5 -1432.4 0.2 445 -141.0 1.8 57 -1432.4 NA 1.8 44.5)
T6 -1548.1 0.8 452 -1225 1.9 5.0 -1548.1 MNA 19 452
i -1632.2 1.0 47.4 -829 2.0 432 -18322 NA 20 47 4
T8 -1683.1 2.0 47.5 -51.8 23 285 -1683.1 MA 23 47.5)
W1 1359 0.0 0.0 13.0 0.0 0.0 A 135.9 0.0 0.0
V2 122.0 0.0 0.0 67 0.0 0.0 NA 122.0 0.0 0.0
V3 996 0.0 0.0 07 0.0 0.0 -07 996 0.0 0.0
W 783 0.0 0.0 ] 0.0 0.0 -9 78.3 0.0 0.0
V5 57.0 0.0 0.0 -15.1 0.0 0.0 -15.1 57.0 0.0 0.0
VE 352 0.0 0.0 -223 0.7 0.0 -223 352 0.0 0.0
vT 15.4 0.0 0.0 -28.3 0.0 0.0 -23.3 15.4 0.0 0.0
Ve 40.0 -0.1 0.3 -359 1.1 2.4 -359 40.0 1.1 2.4




Table 3-9 Tables developed for vertical threaded rods design

Table: Element Forces - Frames
Ultimate Construction Controling
Frame
P (Kips) | V (Kips) | M (Kip-it) | P (Kips) | V (Kips) | M (Kip-ft) | Pc(Kips) | Pt (Kips) | V (Kips) | M (Kip-it)
W1 1359 0.0 0.0 13.0 0.0 0.0 N 135.9 0.0 0.0
V2 122.0 0.0 0.0 67 0.0 0.0 HA 122.0 0.0 0.0
V3 99.6 0.0 0.0 -0.7 0.0 0.0 -0.7 99.6 0.0 0.0
V4 723 0.0 0.0 78 0.0 0.0 7.9 783 0.0 0.0
V3 57.0 0.0 0.0 -15.1 0.0 0.0 =151 57.0 0.0 0.0
Ve 35.2 0.0 0.0 =223 0.0 0.0 =223 352 0.0 0.0
VT 15.4 0.0 0.0 -25.3 0.0 0.0 =293 15.4 0.0 0.0
VB 40.0 -0.1 0.3 -359 1.1 24 -359 40.0 1.1 2.4
Steel Properties: Design as Tension Not a moment

Fy=

105 ksi A139 BT Grade steel

Memebers resisting element

ROUND BAR STOCK WEIGHT

PITCH DIAMETER FOR ROLLED THREADS [JLL DIAMETER FOR C

UT THREA

UNCTHREAD PITCH Area WEIGHT PER |UNC THREAD FULL WEIGHT PER
DIAMETER | DIAMETER FOOT DIAMETER | DIAMETER FOOT

12 -20 | 0.215| 0.036| 0.124|% -20 0.25| 0.167
%/6-18 0.274| 0.059| 0.201%/,-18/ 0.313| 0.262
3%-16 | 0.331| 0.086| 0.293|3&-16 | 0.375| 0.376
7f.6-14 0.387| 0.118 0.4|7/, - 14| 0.438| 0.513
1%-13 | 0.445| 0.156| 0.529|%-13 0.5| 0.668
3e-11 0.56| 0.246| 0.838|%-11| 0.625| 1.044
34 - 10 0.68| 0.363| 1.236|34-10 0.75| 1.504
Za-9 0.795| 0.496| 1.689(%-9 0.875| 2.046
1-8 0.91| 0.65| 2.213| 8-Jan 1| 2.673
1-%e-7| 1.025| 0.825| 2.808|1-%-7| 1.125| 3.383
1-a-7| 1.145| 1.03| 3.504|1-%a-7| 1.25| 4.176
1-3=-6| 1.264| 1.255| 4.271|1-3&-6| 1.375| 5.054
1-1%-6| 1.375| 1.485| 5.054|1-%:-6 1.5| 6.014

~

Table from the TSA Technical
Specs website

1. Design for Tension

2. Design for Compression

Axial Design Axial Design {Buckling) AISC 13th Chapter E
Frame Pt (Kips) As (in2) TR Frame Pt (Kips) TR
W1 1359 1.44 11/2 W1 My 11/2]
V2 122.0 1.29 11/2 V2 NA 11/2
V3 99.6 1.05 11/a V3 0.7 11/4
V4 78.3 0.23 11/4 V4 7.9 11/4
VS 57.0 0.60 1 VA 151 11/2]
VB 35.2 0.27 1 V6 223 11/2]
VT 15.4 0.16 1 T 28.3 11/2]
VB £0.0 1.48|4 #6 bars va 35.9|4 #6 bars
Crack Control (fy=30 ksi})
Value shown is the minimum
Frame Pt (Kips) | As (in2) Rebar between tension and

Ve

£0.0 1.33|4 #6 bars

compression




Table 3-10 Tables developed to design the diagonal concrete members

Table: Element Forces - Frames

Ultimate Construction Controling
Frame P (Kips) | V (Kips) | M (Kip-ft) | P (Kips) | V(Kips) | M (Kip-ft) | Pc(Kips) | Pt{Kips) | V (Kips) | M (Kip-ft)
o1 -267.9 0.7 1.8 -28.1 0.4 0.5 -267.9 MA, 0.4 1.8
D2 -258.5 15 8.2 -18.5 0.4 0.5 -258.5 MA, 0.4 8.2
03 -2158 12 7.1 45 0.3 0.5 -2158 MA, 0.3 7.1
D4 1774 1.0 7.0 8.2 0.3 0.8 1774 3.2 0.3 7.0
DS 1379 0.9 6.6 21.4 0.z 0.8 1379 214 0.2 6.6
D& -98.8 0.7 6.2 345 0.z 0.7] -98.8 345 0.2 8.2
DT -50.7 0.5 5.4 479 0.1 0.8 -50.7 479 0.1 5.4
08 -17.5 05 5.8 80.7 0.1 0.8 -17.5 60.7 0.1 58
Steel Properties:
Fy=  BOksi
A#l bars 0.78in"2 d#6bars 1.77in"2 A#3 bars 3.14in"2
A4#5bars  1.23in"2 A4 #Tbars 2.41in"2 A4#9 bars 4.00in"2
1. Design for Tension
Axial Design Crack Control (fy=30 ksi)
Frame Pt (Kips) As (in2) Rebar Frame Pt (Kips) As (in2) Rebar
D1 A MA A D1 MA A HA|
o2 A MA A 02 MA A HA|
03 A MA A 03 MA A HA|
D4 8.2 0.15|4 #4 bars D4 =L 0.19(4 #4 bars
D5 21.4 0.40|4 #4 bars D5 149 0.50(4 #4 bars
Dg 346 0.64(4 #4 bars Dg 244 0.81|4 #5 bars
o7 47.9 0.89(4 #5 bars o7 338 1.12|4 #5 bars
08 60.7 1.12|4 #5 bars D8 445 1.48|4 #6 bars
2. Design for Compression Design as struts (ACI 318-11 Appendix A)
Ag = 0014, ACI10.9.1
Ast= 0.64 in"2
Axial Design Final Minimum Reinforcement
Frame Pc (Kips) | As (in2) Rebar Frame As (min) Rebar Stirrups
o1 -267.9 1.50|4-#6 Bars | 1.50|4-#6 Bars
02 -25886 1.20]4-#6 Bars 02 1.20|4-#6 Bars
D3 -2158 0.64]4 #4 bars D3 0.64|4 #4 bars .
D4 1774 0.64]4 #4 bars D4 o.6a|a s bars | e @
05 378 o.64|a#4 bars 05 odlazabars | 2"
D 88|  0.64|4 #4 bars D 0.81[a #5 bars | P28
o7 -60.7 0.64]4 #4 bars o7 1.12|4 &5 bars
D& -17.5 0.64]4 #4 bars 03 1.43|4 &6 bars

*Ties are needed for confinment according to ACI 318 7.10.5




Table 3-11 Design table for top flange

Table: Element Forces - Frames

Ultimate Construction Controling
Frame P (Kips) | Vi(Kips) | M (Kip-ft) | P(Kips) | V (Kips) | M (Kip-ft) | Pc (Kips) | PtiKips) | V(Kips) | M (Kip-ft)
T H£50.9 B4 36.2 -104.2 0.4 39 5509 Ma 5.4 352
T2 5791 -0.8 354 -128.3 1.4 59 8781 Ma 1.4 5.4
T3 -1095.0 -0.9 40.7 -144.1 1.5 g.0 -10859.0 Ma 1.5 40.7
T4 -1282.1 -0.2 428 -148.1 1.8 g.0 12821 Ma 18 428
15 -1432.4 0.2 445 -141.0 1.8 5.7 -1432.4 Ma 1.8 445
T8 -1545.1 0.8 45.2 -122.5 1.9 2.0 -1545.1 Ma 1.9 45.2
7 18322 1.0 47 4 529 2.0 42 -1832.2 Ma, 2.0 47 .4
T8 -1883.1 2.0 47.5 -51.8 23 2.8 -1883.1 Ma 2.3 47.5
Design as the compression block of a beam
Ag= 270.0 in2
Max. Compression=0.9(0.85*f'c*270)= 1652.4 Kips
Add steel reinforcement: (fy=60ksi)
Use 4 #4 rebar= 0.785398 in2
Compression in steel=0.9*fy*As=  42.4115 kips
Max. Compression=0.9{0.85*f'c*270)= 1647.593 kips
Total Compression force= 1690.005 Kips

6¢
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3.3 CONSTRUCTION

The construction of the truss is one of the main research purposes. If easy fabrication can
be achieved, time, effort, and money will be saved. The proposed method of fabrication is
using Styrofoam block-outs to make the openings in the web and have the threaded rod
pass through it. The foam can be glued to the steel form so it acts as one piece together.
To facilitate stripping, it was suggested to have the edges slopped out so the pieces can

slide out with the steel form easily.

Post-tensioning design was designed to go straight through the truss except at the ends.
The two post tensioning ducts were suggested to go up at the ends and go on top of each
other in the web. Such practice will require a bigger end block to be able to take the post-
tensioning forces. The suggested design is shown in Figure 3.19 and Figure 3.20. In
addition to this, the advising committee questioned the effect of the twist occurring in the

post-tensioning ducts in order to have them on top of each.

E = —

Figure 3.19 Preliminary suggested profile for the post-tensioning ducts
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Figure 3.20 Preliminary Suggested end block for the truss post-tensioning system

As an alternative and to optimize the truss construction, the post-tensioning ducts were
suggested to be left straight throughout the span of the truss and slightly elevated at the
ends while remaining in the bottom flange (and having a slightly thicker bottom flange).

Figure 3.21 shows the new design profile and the end block is shown in Figure 3.22.

Figure 3.21 Profile of the alternative design of the post-tensioning ducts
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Figure 3.22 The suggested alternative for the end block for the post tensioning ducts

The production of the trusses can be greatly facilitated using pre-assembled reinforcing
steel for the diagonals with a plate welded at the ends to anchor the threaded rods to it.
The plate can then have anchoring bars embedded in the concrete and welded to it.
Further details are explained in the truss shop tickets in the appendix. The laboratory

specimen construction section discusses the system and alteration that can be done.

The construction sequence is suggested to be as follows:
e After the manufacturing process at the plant the truss-girders are transported to
the project site.
e The truss-girders are erected and supported on columns from one side and on
temporary supports at the midspan.

e The wet joint is then cast in place.
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e After casting the wet joint, the post-tensioning is then applied.

e After the application of post-tensioning the temporary supports are removed and
the bracings are added.

e Light gage purlins are then used to connect the roofing material with the truss
supporting system. The purlins have to be resting on the diagonal/vertical
connection with the top flange to avoid any unnecessary moments.

e Mechanical, electrical, and pluming components are installed at the ends.

The threaded rods are recommended to be sprayed for rust resistance and fire-proofing,

according to the fire-proofing codes.
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4.0 EXPERIMENTAL INVESTIGATION

4.1 SPECIMEN ANALYSIS

The purpose of the experimental work was not only to test the truss structural adequacy,
but also to provide the best construction sequence and recommendations for the truss.
The truss was formed using Iowa type D steel forms provided through Coreslab
Structures. The form was 30 ft long. In order to avoid any extra weight, a 4 in block-out
was made at the bottom of the form to have a total depth of 4 ft 4 in. The cross-section of

the specimen is shown in Figure 4.1.

| .l_g.ll |
7 HALVES OF FOAM _ )
FOR TRUSS OPENINGS { J
(SEE ELEVATION VIEW | ——— 8" —
FOR DIMENSIONS) 1
Fi ?-Q
NN
; 0 E
BT PLYWOOD AND o -
(3) 2x4 STUDS "
FOR BLOCKQUT N
TN |
- <[

I =11 | 1

IOWA TYPE D GIRDER FORM

Figure 4.1 Cross-section of the truss specimen and foam block-out

To keep the forces resulted in the diagonal and vertical members similar to and
representable enough to the proposed system, the diagonals were designed to be at a 40°
angle from the bottom flange, see Figure 4.2 and Figure 4.3 for more details. Frame
analysis and Finite Element Analysis (FEA) were done and results are reported in this

section. A comparison between the outputs of two types of analysis is shown in Table 4-1.
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Table 4-1 Comprison between the 2-D fram analysis and the finite element analysis

output

POC 2-D Frame Analysis Finite Element Analysis
Diagonal Members | 179 kips (Compression) | 233 kips (Compression)
Vertical Members 129 kips (tension) 120 kips (tension)

Camber 0.2m. 0.20m.
Deflection 0.8 in. 0.65in
Total deflection 1in 085 in

Cracking Load 330 kaps 300 kaps
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4.1.1 2-D Analysis

The analysis was done exactly as the proposed full size truss analysis. The concrete webs
were modeled as shell members and the rest were frame elements. Only the threaded rods
had moment releases at the ends. After different trials, it was found that a point load of
400 kips will result in the forces needed to test the structural adequacy of the truss,

specifically the diagonal and vertical members.

The preliminary prestressing design included 16 0.6-in low relaxation strands. However,
due to shortage of time and materials, the strands were substituted with 12 0.7-in strands.

According to the bottom flange stresses, it was found that cracking is expected at a load

of 330 kips. The calculations were made according to the 7.5\/ﬁ stress limit for cracking
(PCI 2010). The strands jacking stress was 0.75f, and total prestress losses of 20% of the

jacking stress. Total effective prestressing was assumed to be 160 ksi.

The frame analysis showed that under dead load, a deflection of 0.03 in. occurs. Under
the design load of 400 kips, the truss is supposed to deflect 1.20 in. at midspan. Since the
analysis is done on an elastic model with no cracking taken in account, deflection is
recognized as 0.16 in every 50 kips of load till cracking. According to the predicted
cracking load of 330 kips, the deflection at midspan under elastic behavior is estimated to

be about 1 in.

Appling the 400-kip load, the maximum resulting compression force in the diagonal

members is 280 kips at the diagonals close to the middle, compared to 269 kips in the full
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size truss. The maximum tension force in the vertical members is 129 kips at the outside

verticals, compared to 136 kips in the full size truss. All the forces are shown on the truss

in Figure 4.4.

Despite the forces information provided, the analysis results do not provide a complete
picture of the stresses (shell forces) at the connections between the diagonal, vertical and
horizontal members of the truss. To better predict the behavior of the truss, as well as
compare analysis results to test results, a finite element analysis was performed on the
concrete truss specimen. The details of the analysis along with the results are further

explained in the following subsection.
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4.1.2 Finite Element Analysis

A finite element model was prepared to investigate the stresses at the connections
between the diagonal and vertical members and the top and bottom flanges. The model is
shown in Figure 4.6 and the approximated section for the shell members in Figure 4.5.
The analysis results show high tensile forces at the acute angles in the connections

between the diagonals and top and bottom flanges.

Prestressing consisted of 2 layers of 12 0.7 in. diameter strands. The bottom layer at 2 in.
for the bottom had 8 strands, and the top layer at 4 in. from the bottom had 4 strands. The
strands jacking stress was 0.75f, and total prestress losses of 20% of the jacking stress.
Total effective prestressing was assumed to be 160 ksi. According to the bottom flange

stresses, it was found that cracking is expected at a load of 300 kips. The calculations

were made according to the 7.5\/ﬁ stress limit for cracking (PCI 2010). At 300 kips, the

bottom flange stresses reached a maximum of 850 psi, while the PCI limit is 750 psi.

The connection between the diagonal end of the web and the bottom flange shows very
high tensile forces as can be seen in Figure 4.7. As a matter of fact, cracking was found in
the model to occur under a load of 170 kips, at which the tensile stress is higher than the
stress limit for the non-cracked section. These tensile stresses are predicted to cause
cracking at those location and could as well be the reason for failure. The forces were

similar to the frame analysis previously done with only slight differences.
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The differences are a due to the approximated section used for the shell elements, while

the frame model was done using the exact section. The maximum forces in the diagonal
members was 250 kips (versus 280 kips in the frame analysis). The maximum force in the
vertical members was 120 kips (compared to 136 in the frame analysis). The maximum
deflection was at the midspan and was found to be 0.8 in. (versus 1.2 in. in the frame
analysis). The camber due to prestressing was 0.2 in. As a result, the total change in
deflection that could be predicted for and compared with the testing results is 1 in. (the

0.8 in. deflection in addition to the 0.2 camber).
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Figure 4.5 Approximated section used for analysis



Figure 4.6 The FE model used to analyze the truss
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Figure 4.7 The stresses in the truss specimen at 400 kips
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4.2 SPECIMEN DESIGN

The specimen was design the same way the 160-ft span truss was designed. The diagonal
and vertical members were the same as the previous design, essentially because the goal
of the testing is to have the same forces in them as before. Detailing of the rebar was the
same, only just a shorter diagonal. Calculations showed that total prestressing losses was

13% of the jacking stress.

For the flexure design, the truss was dealt with as a beam when designing the top and
bottom (prestressing) reinforcement. The flexure strain compatibility program designed
by the Nebraska University was used for the flexure design. The moment due to the point
load of 400 kips was equal to PL/4 = 400 kips x 30 ft/4 = 3000 ft-kip. 12 0.7-in strands
were used with 4 strands in the top layer and 8 in the bottom layer of strands. 2 #8 bars
were used for the top flange reinforcements. The design flexure strength was equal to

3224 ft-kip. Refer to Error! Reference source not found. for a snapshot of the program.

The span to depth ratio is different in the 160-ft span proposed system than the specimen
we tested. As a result, the applied load needed to result in having the service load
equivalent member forces was different than the one needed to result in the same service
load stresses in the full span system at the bottom flange (for prestressing). That made it
irrelevant for the specimen to keep track of the cracking load, except for the intent of
comparing the actual deflection to the analysis model deflection. Specimen shop tickets

are shown in Figure 4.8 to Figure 4.9.
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4.3 SPECIMEN FABRICATION

Construction of the 30-ft specimen was somehow challenging, especially at the beginning
of the construction. Construction sequence had 5 phases, laying the strands in the
prestressing bed, cutting the foam block-outs and gluing them on the steel forms,
assembling the steel diagonals and fixing them with the form, casting the concrete in the
forms, and finally stripping the forms. Before putting the forms in place, the forms
needed to be raised 3.5 in. to have the center of gravity of the strands match with the
center of the jack. 4.1 in block-out made consisting of % plywood (0.625 in. thick)
screwed on three 2x4s longitudinally.

4.3.1 Fabrication Sequence

4.3.1.1 Phase 1: Strands for prestressing

The prestressing bed located at the structural lab of the Peter Kiewit Institute is 60 ft long
and 10 ft wide. The ends of the bed have steel plates anchored in the 12-in. wide side

walls of the bed as shown in Figure 4.10.

10”
[
© | Embedded Embedded
| \ steel plate steel plate ; |
| \ | o
| \ Wood floor | | 46
- —
R A o A A =1
1? ' A Concrete bed
L 138"

Figure 4.10 The ends of the prestressing bed
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At the north end of the bed, steel plates are stacked on top of each other with spacers

located were the strands are intended to be, then an anchoring steel plate is placed where
the chucks will be resting against. At the other end, the same assembly exists; however,
prestressing jacks are attached to the plates already anchored in the bed side walls. These
jacks are used for releasing the strands. The stacked plates rest against these jacks.
Figure 4.11 and Figure 4.12 show longitudinal profiles of the north and south ends. The
capacity of the prestressing bed is 1,000,000 1b with only 750,000 1b allowable maximum

prestressing force.

Anchoring
bedded Lol steel plate
Embedded steel plates 1.75" A 7 7
— - Stacked steel plates 0_75-- )
Strands 5 125"
167 praz iz | 1CG.
2.5" Chucks
Prestressing bed -1t ke 8
75"
j El.ZS" j E4%
4 r'e
’ . PR
HSS 4x4x3 | . T
o . . . 14"
Al

Figure 4.11 Longitudinal profile of the north abutment
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— HSS 4x4x3 .
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Figure 4.12 Longitudinal profile of the south abutment

12 0.7-in. diameter low relaxation strands were used for prestressing for a total jacking

force of 728 kips (0.75 of the ultimate stress of 270 ksi). The strands were anchored

against steel plates as mentioned before. The steel plates with the strands locations are

shown in Figure 4.13.

2.75"

16"

——

! o O o O

o O O O o O O O

24"

24"

Figure 4.13 Anchoring steel plates with the strands locations shown
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The strands were laid out on the bed on top of the plywood, as shown in Figure 4.14.

They were tensioned just enough to get them straight. The plywood was then centered
with the strands and one side of the steel form was put and fixed against the plywood
block-out. 2X4 timber was used to hold the steel forms in place at the bottom.
Figure 4.15 show the side of the form in place with the timber behind it to support it in
place. The strands were then tensioned to 100 ksi, half of the jacking stress, in order to
start putting the rebar together, were some would be resting on the strands. Bottom flange
stirrups were then tied on to the strands (Figure 4.16) and bearing plates were also put in

place before the end bulkheads were attached.
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Figure 4.14 Strands laid out on the grid and the block-out platform



Figure 4.15 Fixing one side of the form in place

\

Figure 4.16 The strands after tieing the stirrups and putting the end bulkheads
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4.3.1.2 Phase 2: Foam block-outs

Foam block-outs were used in order to test the constructability of the truss. The foam
pieces for the specimen were not as deep as the ones for the full size truss, as the
specimen is shallower than the full size. The block-outs were made to resemble the full
size specimen in order to adequately test the feasibility of its construction. Figure 4.17
represents the block-out made out of Styrofoam. The dimensions and shape in the 3D
drawing is for the block-outs as cut and used. This shape differs than the full-size one by
not having the sloped edges or the chamfered edges. This difference occurred due to the
shortage of time and proper equipment as the block-outs were cut and glued together in

the structural lab.

.

2'51/2"

Figure 4.17 3D graphic and dimensions of the foam block-out

The 8-in. thickness of the block-outs was divided into two 4 in. thick pieces. All the
pieces shown in the pictures are only 4 in. thick. 4’x8” boards of foam were cut into the
required shape and size. Rectangular pieces were first cut then diagonally cut again as

shown in Figure 4.18.



Figure 4.19 Two pieces of foam put together after being cut diagonally
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0.75 in. x 0.75 in. grooves were removed from the edges of the Styrofoam pieces shown

in Figure 4.19. To ease the foam removal from the concrete web, plastic sheets were
wrapped around the edges of the foam. Figure 4.20 clearly shows the grooves and the
plastic sheets in the foam pieces. Assistive lines were drawn on the steel forms prior to
gluing the foam so as to facilitate the measuring process for locating the foam block-outs.
All the foam pieces glued on the steel form are represented in Figure 4.21. The other half
of the block-outs were planned to be glued on the other side of the form. To avoid errors
in the location of the foam pieces due to slight differences in measurements between the
two form sides, the other half of the form was decided to be glued on the already existing

foam pieces after attaching the rebar.

Figure 4.20 The groove and the plastics sheet on the block-outs
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Figure 4.21 The Styrofoam block-outs after being glued on the steel form

4.3.1.3 Phase 3: Reinforcements layout

To properly test the ease of fabrication of the truss, the same amounts of rebar was to be
used. Attaching the rebar was the challenging and most time and effort consuming phase
in the construction. The diagonal members had 4 #6 bars and #3 ties spaced at 8§ in. along
the member. The vertical members were 172 in. diameter threaded rod as mentioned
before in the designs section. The rod was anchored in the top and bottom flange by
means of a ’2 in. thick 8 in. x 8 in. Gr 50 steel plate and a structural nut tacked on to the
plate. The first plan was to have the reinforcements for each diagonal preassembled and

then connected together in the form by the mean of the threaded rod.
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The diagonal reinforcements were tied together and the plates were welded in place with

the nut for the threaded rod tacked only on the plates that were to be located at the bottom
flange. The diagonals assembly had plates welded on the short ends. 2 #6 bars were also
welded 5 in. center to center on the other side of the plate. To avoid out-of-plan bending,
2 4-in. #6 bars pieces were welded on the steel plate perpendicular to and between the

outside welded bars.

The main problem that this plan caused was due to irregularity in the bars dimensions, as
the bars received from the supplier were 3 in. shorter along the diagonal part than the
aforementioned figure. One other disadvantage of this system was that it was very heavy;
hence, very hard to deal with and move to account for some tolerances. Two actions were
taken to deal with these problems. The first thing was to straighten the bars at the longer
ends, and then cut the bars to make them short. The long bars welded to the steel plates
were also shortened from 2.5 ft to 8 in. long past the edge of the plate. This fixed the
dimension problem as well as made the reinforcements assembly more lightweight. To
account for the errors in dimension that could have occurred due to changing the rebar

geometry, the reinforcing ties were untied to make the bars slide freely against each other.

The changes that were done made the fabrication process very easy. The assembly can be
seen in Figure 4.22.. These reinforcing bars were the most challenging part of the
fabrication due to the interference between the bars from the verticals and those

supporting the diagonals. Four 4 in. x 4 in W2 meshes were put at each end of the truss as
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shear reinforcements. Figure 4.23 through Figure 4.24 are different views of the final

stage in the reinforcement fabrication for the diagonal and vertical members.

Figure 4.23 All the reinforcements after being fixed in the form
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Figure 4.24 Full span of the specimen before closing the form

The top flange was designed for 4 #4 bars for the full 30-foot span specimen. Due to the
time contains, 2 #8 bars were used instead as they were already in the lab. The top flange
reinforcements were done and tied together with the stirrups as in Figure 4.25. After the
form was closed, the bars with the stirrups sat on 2 in. high chairs on the steel form. The
hats for the stirrups were not added as the supplied ones had a smaller angel than the truss
was designed for; therefore, the hats were not used for the stirrups as they did not fit in
the form. After the form was closed, 2x4 timber ties were bolted to brace the steel forms
against opening. The prestressing strands were then pretensioned to 202.5 ksi (0.75
ultimate stress of 270 ksi). Final elongation of the strands was 6 in. Figure 4.26 shows the

truss formwork right before casting the truss.
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Figure 4.25 The top flange reinforcements after assembly

Figure 4.26 The form after adding the top flange reinforcements and adding ties at the top
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4.3.1.4 Phase 4: Casting the truss

Self-consolidating concrete was delivered on March 11™, 2013 to the structural lab. The
mix was made with 3/8 in. maximum nominal size aggregates. The concrete had a spread
test of 28 in. (Figure 4.27). The concrete was patched and ordered for a 28-day strength
of 8,000 psi. Cylinders were casted for strength testing at the time of stripping and

testing.

Figure 4.27 Self-consolidating concrete spread test

Pouring the concrete started at the middle vertical as shown in Figure 4.28. Two snake
cameras were attached at the bottom of the truss, one at each end. Another camera was
recording the pouring process from the outside. The main purpose of the snake cameras
was to test the flowability of concrete through the bottom flange at the locations of the
vertical and diagonal embedment. The concrete mix passed successfully through the
bottom flange. Figure 4.29 shows the concrete flowing from the location of the pour at

the middle vertical to the location of the camera at the south bottom end of the specimen.
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Figure 4.28 Pouring the concrete through the middle vertical member

Figure 4.29 Snapshot from the south end recording while pouring

No issues were faced till the bottom flange was completely filled. However, as soon as
the concrete started to go up the diagonals and the web, the buoyant forces on the
Styrofoam block-outs was extensively high. The glue attaching the block-outs to the form
was not strong enough to hold them in place, and not very long after the concrete started
to go above the lower bottom of the block-outs, the foam was detached from its place and

floated. The buoyant force was very high that prying the foam down was not effective.



75
2x4 timber pieces were but on top of the foam as spacers between the foam and the steel

plates that were welded to the diagonals, and between the foam and the top flange steel
reinforcements. Figure 4.30 shows how the block-outs were held by means of the top
flange reinforcements. The weight of the steel reinforcement was not enough to hold the
foam in place. Timber spacers were slid between the reinforcements and the ties holding
the steel form (as shown in Figure 4.31) to prevent them from floating. Foam has proved
that it is not the efficient or suitable material for the block-outs and alternatives had to be

suggested. Alternatives are discussed in the conclusion section.

Figure 4.30 Holding down the block-outs

Figure 4.31 Holding down the steel reinforcements
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After the pouring was complete, the specimen was covered and left to gain its strength.

The concrete cylinders were kept in the curing room to be tested later at the time of
stripping and testing.

4.3.1.5 Phase 5: Stripping the formwork

The form was stripped and strands were released at a 3-day strength of 7,800 psi. The
steel forms were easily removed away from the truss. The foam, however, was embedded
in the concrete and did not come out as one piece as planned before construction. The
pressure of the concrete on the form led to the form being widened by an average
increase of 0.5 in. for a maximum widening of 1 in. at the northern end and no widening
at the southern one. That increase in thickness caused the web to be wider than the
Styrofoam at some locations, which increased the difficulty of removing the block-outs

(See Figure 4.32).

Figure 4.32 The side of the truss after moving the steel form (View is South to North)



77
Removing the Styrofoam block-outs was a more challenging task than what was planned.

Concrete shrinkage enhanced their positioning inside the concrete. The web widening led
to having some pieces covered from both side with concrete layers. The concrete layers

needed to be chipped out first as in Figure 4.33.

Figure 4.33 Chipping out the concrete layers covering the block-outs

After extensive hammering and pushing on the block-outs to try to take them out of the
concrete in one piece, the foam was cut using an electric saw shown in Figure 4.34 to

smaller pieces and these pieces were then hammered out.

Figure 4.34 Cutting through the block-outs into smaller pieces to remove them
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Even though the plastic covering on the edges of the block-outs was not as helpful as

expected in the removal process, the triangular pieces at the middle were more
challenging to remove. A small layer of the edges of block-outs in the middle could not
be removed from the concrete. The difference in the finish between the middle block-outs
and the rest of the truss can be clearly seen in Figure 4.35. A chipping hammer was used

as in Figure 4.36 to remove as much as possible without risking damage the concrete

i e g

Figure 4.35 The middle of the truss after stripping the forms

Figure 4.36 Chipping out of the Styrofoam pieces that were bonded to the concrete
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The flotation and movement of the block-outs during the casting process caused some

irregularity in the shape of the truss. Two diagonal members were widened and the other
two became thinner, along the length of the truss. The block-out locations were shifted as
well with the movement of the Styrofoam. The two vertical members at each end were

slightly rotated. A sample of the irregularity that happened during the fabrication process

is shown in Figure 4.37.

Figure 4.37 Some irregularity that occurred in the truss diagonal and vertical members
and locations of block-outs

The strands were released by means of the prestressing jack mentioned in section 4.3.1.
End zone cracking occurred at both ends, as the end zone reinforcements needed to be
closer to the ends. Cracking at the south side shown in Figure 4.38 was a little more
extensive than the north side cracking shown in Figure 4.39. Very slight cracking

occurred at the south end side of the web. No camber occurred due to prestressing.



Figure 4.38 End zone cracking at the south end

Figure 4.39 End zone cracking at the north end

Some shrinkage cracks occurred in the top flange, some of which could be barely seen,
others were very extensive. Most of the big cracks occurred at the locations were the
wood holding the Styrofoam block-outs was left. The shrinkage cracking were believed
to not be crucial when testing the truss as they occurred only in the top flange, which is a

compression member. One of the biggest cracks can be seen in Figure 4.40.
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Figure 4.40 Shrinkage cracking where a 2x4 timber piece was left

4.3.2 Lessons Learned

The truss specimen fabrication was very challenging during the starting period.
According to the reinforcing steel assembly experience, it was found that the assembly, as
specified in the shop drawings, was very heavy to handle and control. The weight of the
assembly was not the only issue; the length of the diagonal reinforcements was also very

big and caused many movement restrictions.

Assembling the reinforcements beforehand and then attaching it to the whole form looked
as one of many ways to ease fabrication. However, this research found that the assembly

when put together and tied very hard made it hard to align the verticals together. Due to
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the difficulty to add any tolerances to the assembly after tying them together, it has been

advised that the ties should only be tied to one side of the diagonals, if tied at all.

One other thing that was learned through the pouring process is that foam and concrete
do not mix. As mentioned before the foam block-outs floated in the concrete and the glue
was not strong enough to resist the buoyant forces on the block-outs, especially due to the
size of the foam combined with the depth of the beam. Even if a pre-caster was able to
find a way to glue the foam to the steel using a strong enough gluing material, stripping

would not be easy, and they might as well risk losing the foam and breaking it.

The reason why stripping could be challenging when using foam is that the concrete
shrinks on the foam when it is hardened. That shrinkage leads to having the concrete
holding on to the foam pieces. The presence of foam will also make it hard to have chairs
or supports for the reinforcements to keep cover as foam is compressible. When
considering other materials to be used, wood would not be a suitable material. Despite the
fact that wood would not be compressed like foam, wood will have the same buoyance
problem the foam had. Solutions for these problems are discussed in the conclusion

chapter.

4.4 SPECIMEN TESTING

4.4.1 Test Setup

After finishing the stripping step, the test setup was prepared. Two 3 ft high concrete
blocks were placed 29.5 ft apart center to center. A steel frame with a loading jack

mounted on it was placed midway between the two blocks. The truss was put through the
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frame resting on the concrete blocks. Steel rollers were placed between the truss and the

concrete blocks. The rollers were centered on the 6 in. bearing plates that were imbedded
in the truss at the ends. The loading jack (with a 400-kip capacity) was centered on the
middle vertical, which in turn the midspan of the truss. The test setup is shown in

Figure 4.41.

Figure 4.41 The truss testing setup

To properly interpret the test results, the western truss face was painted in white. The
paint was very helpful in tracking any cracks that occurred during loading. Strain gages
were also attached to the steel rods, the concrete members, and the top and bottom
flanges (at the midspan). On one hand, the steel rods were grinded so as to remove the
threads and make a smooth surface for the strain gage. On the other hand, the concrete
strain gages were all placed on the non-painted side of the truss. In both cases, the strain

gages were glued on the steel and concrete using Superglue.
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After soldering wires to the strain gages, the wires were soldered to stranded wires that

were connected on the other end to an Optim Megadac data acquisition system. To avoid
the strain gages getting torn or pulled out of place, the wires were securely tapped to the
members at the end that was soldered. Slippage monitors were placed on one center
strand to measure for any slippage during testing. The slippage monitors were also
connected to the Optim Megadac. The Megadac at the Peter Kiewit Institute has the

ability to interpret data on 16 channels.

A deflection gage was also installed to measure any deflection that occurred during
loading. An angle was embedded in the bottom of the truss at the midspan. A fishing line
was then connected to the gage. For the loading jack, rubber pads were placed on top of
the truss at the midspan to make a smooth surface for a uniform loading. On top of the
pad, a 2-in steel plate was placed then a load cell centered on the plate. The loading cell is
used to measure the amount of load applied by the jack. Another 3 plates were then

placed between the loading jack and the load cell.

Figure 4.42 The plates’ organization and the load cell at the point of loading
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The gages were checked and balanced and the testing was ready to start. The specimen

with the strain gages attached is shown in Figure 4.43. Cylinders were tested and the

concrete strength was found to be 10,500 psi when the testing was done.

Figure 4.43 The truss specimen with the strain gages and cells attached

4.4.2 Loading

As testing started, every 50 kips of load applied the testing was paused and cracks (if
any) were marked. After marking the loading continued, then after 50 more kips the same
procedures were done till the 250-kip load mark. Then loading continued till 385 kips

when the truss failed.

After the first 50 kips, the deflection had reached 0.19 in. There were no cracking at 50
kips loading point. The loading continued till 100 kips at 0.39 in deflection. At 100 kips,
cracking started to show at the top of far northern diagonal connection with the top flange

at the sharp angle side (Figure 4.44).
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Figure 4.44 The only cracking that occurred at 100 kips of load.

At 150 kips, the deflection reached 0.57 in. Cracking at 150 kips started at the connection
between the far north diagonal and the web (Figure 4.45). The middle vertical started to
crack as well at the top and bottom from both sides (Figure 4.46). At 200 kips the
cracking had affected all the sharp angle connections, especially at the web/diagonal
interface (Figure 4.47). At 250 kips, most cracking severity did not increase than the 200-
kip loading point except at the south diagonal/web joint where cracking increased.
Despite the cracking, the deflection at 200 kips and 250 kips was 0.75 in and 0.93 in,

respectively.



Figure 4.45 Cracking extents vs. loading points for the north diagonal to web conection

Figure 4.46 The middle vertical cracking at the 150 kip loading point
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Figure 4.47 Cracking at the southern diagonal and web interface at the 200 kip and 250
kip loading points

After the 250-kip cracking investigation point, the load increased uniformly without
interruptions with some excessive cracking at locations of the rods embedment in the
bottom flange (Figure 4.48) till failure at 385 kips of loading. The failure was rather
dramatic; however, it was not sudden as evident cracking was seen before the failure
(Figure 4.49). The failure occurred at the far south steel rod where the embedded steel
pulled out of the bottom flange and the rod snapped up causing the diagonal to snap with
it and the top flange to buckle and fail (Figure 4.50). The failure of embedment occurred
as one of the #6 short bars that were welded onto the plate sheared and the other one

pulled-out (Figure 4.51).



Figure 4.49 Excessive cracking right before and at location of failure
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Figure 4.51 The failure of the anchoring bars (one in shear while the other pullout)

The failure is believed to be associated with the fact that the stirrups hats were not placed
and the shear reinforcing mesh was not extended all the way to the bottom of the flange
to make up for the absence of the hats (Figure 4.52). The hats would have provided more

confinement for the concrete, hence, more strength. Despite the fact that the loading did
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not achieve the minimum load 400 kips for design before failure, which means the

members are not adequate to carry the axial loads for the full span truss-girder, the

analysis of results had different findings.

Figure 4.52 Location of failure
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4.4.3 Lessons Learned

Testing the structural capacity of the truss cleared a few potential problems that could
occur. The block-outs were cut with sharp edges, unlike the detail in the shop tickets.
These sharp edges caused the stress to be concentrated at these connections; hence, lead
to extreme cracking and then failure. The other thing that accelerated the failure was the

absence of the bottom flange stirrup hats.

4.5 ANALYSIS OF RESULTS

As the size of the concrete members changed, the forces expected in them changed. To
get the correct force in the concrete members, the cross-sectional area needed to be
known. Therefore, the dimensions of the members were taken and are shown in
Figure 4.53. The top dimension is the depth of the member and the bottom one is the
thickness. Also the sides are noted as south and north to facilitate the demonstration of

the results.

The need for the 400-kip load was to assess the structural adequacy of the diagonal and
vertical members and their embedment in the top and bottom flanges, as the analysis
indicated that the same axial forces induced in the diagonal and vertical members of the

full span truss-girder will be induced at such load.
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The design noted that cracking in the bottom flange would not occur till loading reaches

330 kips (300 kips in case of the FE approximated section model). Analysis of deflection
curve in Figure 4.54 shows that cracking did not occur till the load reached about 355
kips. The fact that cracking did not occur as designed means that strand slippage did not
occur, which is true according to the gages readings presented in Figure 4.55. The
accuracy of the gage is to one thousandth, which means for any value less than 0.001, no

change in strand location occurred.
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Figure 4.54 Load vs. deflection curve (black lines indicate end of elastic behavior)
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Figure 4.55 Strand Slippage

Due to the construction issues that occurred during pouring, the angles of the diagonals
and verticals were slightly changed. This change resulted in different member axial forces
than what the analysis projected. As a matter of fact, the members did not only meet, but
also exceeded the design loads for the full span model. The strain and forces in the steel
were very close, as they all were vertical with very slight differences. In Figure 4.56, the
strain in the TR at the location of failure by far the highest, which explains why the

failure occurred at that location.

All the rods reached their yield point with a force of 155 kips, which is more than the
design force of 136 kips. The design load was achieved at a testing load of approximately
290 kips. The forces induced in the TR are presented in Figure 4.57. By analyzing the
two plots, it can be notices that the south TRs yielded before the north ones, which

indicates some shift in symmetry.
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Similarly, the forces that acted on the diagonals were much higher than the design loads,

despite the lower specimen failure load. The strain plot (Figure 4.58) and forces induced
(Figure 4.59) show that the diagonals exceeded the design load of 268 kips reaching an
axial force of 325 kips. The diagonals, unlike the TRs, differed from each other in terms
of strain and forces. The difference in the diagonal than the vertical members is that the
angles varied from one to the other with the change in locations and rotation of the block-
outs while pouring. This pouring problem did not only affect orientation of the diagonals,
but also the size of the diagonals as mentioned earlier. The size change affected the

relative stiffness, which in turn is believed to have caused the shift in symmetry.
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Figure 4.58 Strains in the diagonals while loading (compression)
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5.0 CONCLUSIONS & RESOMMENDATIONS

5.1 CONCLUSIONS
This research aimed at proposing a truss system that could be successfully built and
analyzed to standard. There were three outcomes to that research. The outcomes were:
e The ability to fabricate a truss system made from reinforced/prestressed concrete
members
e Developing the system to have a maximum span of 160 ft with a span-to-depth
ratio of about 27
e Analyzing the truss system correctly and having the analysis result to match the

actual behavior of the system.

First, fabrication of the truss was the main questionable aspect of a having it made from
concrete. Through the research done, a fabrication method was introduced and developed
to prove that a truss can be fabricated from concrete. The fabrication was made possible
through the block-out system proposed and recommended later on in this section. One
key material in the fabrication is the Self-Consolidating Concrete (SCC). Using SCC was

successful in getting concrete to fill all the gaps in the truss.

Second, it can be concluded the truss-girder system can extend to a span of 160 ft.
Despite the fact that one truss piece is only 80 ft long, the span of 160 ft could be
achieved with the post-tensioning proposed in the design section. The materials used for
designing the truss are commercially available nationwide and can be used with, whether

it was the SCC, B7 steel rods, or the 0.6-in low relaxation strands.
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Finally, the presence of an analytical model that matches actual behavior while testing
was crucial to have. The analytical model developed, whether it is the frame or the shell
model, was able to accurately predict and calculate the member forces in the truss-girder
system under given loads. All in all, the research was able to provide a reliable system
that can be built and developed with accordance to the building code, while achieving the
economy, sustainability, and structural integrity of the system. The following section are

some solutions to the issues faced by the research team.

5.2 RECOMMENDATIONS

It has been found through testing that cracking occurred at the sharp angles at the
diagonals anchoring with the top and bottom flanges. As a result, having chamfered ends
instead of the sharp ones, as described in the full size truss-girder construction
section 3.3, is highly recommended to avoid stress concentrations and cracking. Another

option is to have smooth curved corners instead of the sharp ones

Another recommendation for the design is to avoid unnecessary reinforcement to
decrease the weight. It has been found that the TR anchoring mechanism provided was
able to sustain the design load efficiently with only 8 in anchoring bars welded to the

steel plate.

As the construction of the truss was a major part of the study, many practices are highly
recommended. According to the research done, the use of Styrofoam block-outs can lead

to destructive results. Even if gluing the foam to the steel was preformed successfully, the
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stripping step could waste time, effort, and money. This issue can be easily addressed by

welding steel pans (which can be light gage one) to the forms. This practice will increase
the efficiency of pouring, and allow multiple reuse of the same form, unlike the foam that

could be easily broken while stripping.

The weight of the reinforcing steel is another important issue. Assembling the rebar
completely and then attaching it as one piece to the form can be a tedious job. Even if the
measurement were done very precisely, the handling of the system can waste time and
effort. As an alternative, the diagonals can be tied together while in the form after they
have been screwed in with the vertical threaded rods (as shown in Figure 5.1). This
practice will allow the diagonals to slide against each other for some tolerances. It is
important to coordinate with the designer to achieve the optimum and minimum amount

of steel needed for development as this is the best way to achieve maximum efficiency.

Another suggestion for fabrication is to assemble all the reinforcements outside the form
with precise measurement. After the assembly is tied together, the steel can be lifted by
means of a crane and then placed in the form. Given that measurements are precise
enough and materials provided has low dimensions tolerances, this method could be the

easiest among other options.
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Figure 5.1 Tying the diagonal member reinforcements together after attching the vertical
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