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Radio Frequency Identification (RFID) has emerged as an important technology 

with many possible applications in a wide variety of fields. It is said that RFID can 

perform well in transportation system. Nebraska Department of Motor Vehicles 

(NEDMV) is using this technique to perform an analysis on utilizing RFID license 

plates to assist with Commercial Vehicle Information Systems and Networks (CVISN) 

program with the cooperation of many other stakeholders. Previous House of Quality 

(HOQ) analysis evaluates stakeholders’ needs and provides the pairwise comparison 

values of six important technical requirements for each stakeholder. Based on these, 

this research aims to seek for the comprehensive ranking of the six technical 

requirements. 

The weights of different technical requirements vary a lot according to different 

stakeholders. As a result, assumptions are made to make it possible that fuzzy analytic 

hierarchy process (AHP) approach could be used to give weight rankings of this 

multiple-criteria decision making problem. Problem comes out naturally that whether 

or not fuzzy AHP is appropriate to solve this problem. To verify the feasibility of 



 

application of fuzzy AHP to CVISN project problem, benchmarking comparison of 

classical AHP and fuzzy AHP approaches is performed. The comparison bases on a 

series of statistical models with 240 randomly generated statistical data. Results of 

comparison indicate that the pairwise weight values of AHP approach positively affect 

the difference between the two approaches, and fuzzy AHP could narrow the 

differences of weights among different criteria.  

Benchmarking models provide basic parameters, based on which prediction 

intervals are built to verify the outcomes of CVISN project given by fuzzy AHP. 

Results show that fuzzy AHP is an appropriate approach for CVISN project. Finally a 

comprehensive weight vector of six technical requirements is provided by fuzzy AHP, 

catering to the requirements of further research on choosing a best RFID system.  
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CHAPTER 1. INTRODUCTION 

Radio Frequency Identification (RFID) was commercially introduced in the early 

1980’s and it has become a mature technology as a replacement for other technologies 

such as barcodes (Stone et al.). Its application has been intended to many fields.  

A RFID system contains four components: RFID tags, RFID antennas, RFID 

readers, and middleware. RFID tags have the ability to read, write, transmit, store and 

upload information. With such advantages compared to bar codes, RFID technology 

offers an inexpensive and non-labor intensive way to track and identify objectives in 

real time without contact or line-of-sight. 

The transportation system, which requires a high level of accurate and reliable 

tracking information, is a preeminent field which allows RFID technology to 

showcase its advantages. RFID is a useful technology to improve the transportation 

efficiency, safety and visibility. In order to utilize automated technologies for more 

effective roadside enforcement, pertinent information must be accessible and 

collected in a reliable way. Therefore studies on the factors that influence data gaining 

are important to the implementation of RFID technology in the transportation system. 

Nebraska has currently attained Commercial Vehicle Information Systems and 

Networks (CVISN) Core Compliance, with the aim of offseting the costs of 

conducting a feasibility study on RFID embedded license plates in transportation 

systems that may ultimately be expanded for national use. Previous studies on this 

project showed that six significant technical factors affected the performance of 

embedding RFID into license plates most. These factors are: the RFID tag 
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(transponder) and reader distance, physical limitation, read rate, display of relevant 

information, RFID tag number, and manufacturing cost. This research studies further 

on the importance of these six factors to find out which one is the most important to 

the embedding of RFID systems into license plates. Results of this research provide 

theoretical foundation to future study on selecting the best RFID system on the basis 

of the factors, which can be seen as multiple criteria. 

The factors given by previous studies were in the form of house of quality 

(HOQ). However, they were weighted differently among stakeholders, making the 

criteria ranking confusing. In order to avoid misleading solutions, a fuzzy Analytic 

Hierarchy Process (AHP) was used, which considered more possible pairwise 

comparisons presented by different stakeholders. 

AHP is an approach for decision making under complex criteria at different 

levels. It gives the ranking of multiple criteria by multiple decision makers based on 

pairwise comparison of these criteria. Thus, it is a robust way to mathematically 

transform decision makers’ judgments and references into numerical results. 

Unfortunately, some of the decision data cannot be assessed exactly in reality, or 

different decision makers may express their opinions differently by means of 

preference relations [1]. To avoid these uncertainties, fuzzy AHP is developed and 

applied under those fuzzy circumstances, with respect to possible pairwise 

comparison values among different stakeholders. 

Instead of restricted comparison value, Fuzzy AHP allows decision makers to 

present their references within a reasonable interval if they are not sure about them. 
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These intervals result in fuzzy judgment matrix, corresponding to the constant value 

judgment matrix of classical AHP. The significance of difference stakeholders are 

equal to each other. Thus, the comparison values given by difference stakeholders for 

a certain pair of factors are considered as the interval of the comparison value for such 

pair of factors given by a virtual single decision maker. In this way, fuzzy AHP can be 

applied to rank the factors based on HOQ for CVISN project. 

This research is divided into three parts. First, this research compares fuzzy AHP 

approach with classical AHP approach based on a series of randomly generated data. 

Results include what factors that affect the difference between these two approaches 

most and in what way they affect the difference. In addition, statistical models about 

the relationship between the factors and the difference are also built to present the 

visually numerical influence. Second, this research ranks the six factors given by 

previous HOQ studies by both AHP and fuzzy AHP approaches for CVISN project. 

Likewise, statistical data about independent and predicted variables according to the 

models in the first part, which need to be verified, were calculated. Third, this 

research estimates the predicted intervals for each predicted variable based on the 

models. Then the intervals were used to verify the results given by part two. Finally, 

conclusions about whether fuzzy AHP was appropriate for CVISN project and the 

rank of six factors were provided. 
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CHAPTER 2. BACKGROUND 

2.1. History of AHP and Fuzzy AHP 

2.1.1. Multiple-Criteria Decision Making (MCDM) and AHP 

Decision situations involve a multitude of objectives or decision criteria which 

may be incommensurate and conflict with one another [2]. Decision analysis 

considers the paradigm in which an individual decision maker (or decision group) 

contemplates a choice of action in an uncertain environment. Decision analysis is 

designed to help the individual make a choice among a set of pre-specified 

alternatives. The decision making process relies on information about the alternatives. 

The quality of information in any decision situation can vary from the 

scientifically-derived hard data to subjective interpretations; from certainty about 

decision outcomes (deterministic information) to uncertain outcomes represented by 

probabilities and fuzzy numbers. This diversity in type and quality of information 

about a decision problem calls for methods and techniques that can assist in 

information processing. Ultimately, these methods and techniques such as 

Multiple-Criteria Decision Making (MCDM) may lead to better decisions [3].  

MCDM is often supported by a set of techniques to help decision makers who 

are faced with such decision situations of making numerous and sometimes 

conflicting evaluations. MCDM aims at identifying these conflicts, comparing and 

evaluating these alternatives according to the diverse criteria, deriving a way to come 

to a best compromise solution in a transparent process [4]. 

Unlike methods that assume the availability of measurements, measurements in 

MCDM are derived or interpreted subjectively as indicators of the strength of various 
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preferences. Preferences differ from decision maker to decision maker, so the 

outcome depends on who is making the decision and what their goals and preferences 

are [5]. Since MCDM involves a certain element of subjectiveness, the morals and 

ethics of the persons implementing MCDM play a significant part in the accuracy and 

fairness of MCDM's conclusions. The ethical point is very important when one is 

making a decision that seriously impacts on other people, as opposed to a personal 

decision.
 
 

There are many MCDM methods in use today, the main one of which is Analytic 

Hierarchy Process (AHP). AHP method, which was pioneered by Satty in 1971, is 

developed to meet the great challenges of decision situations that are brought by 

multiple or even conflicting criteria [6]. Rather than prescribing a "correct" decision, 

the AHP helps the decision makers find the one that best suits their needs and their 

understanding of the problem.  

AHP approach is most useful where teams of people are working on complex 

problems, especially those with high stakes, involving human perceptions and 

judgments, whose resolutions have long-term repercussions [7]. It has unique 

advantages when important elements of the decision are difficult to quantify or 

compare, or where communication among team members is impeded by their 

different specializations, terminologies, or perspectives. It is a widely used decision 

making analysis aid that models unstructured problems in political, economic, social, 

and management sciences [8]. It aims to rank decision alternatives and select the best 

one for a complex multi-criteria decision-making problem [9] by using pairwise 
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comparison of those criteria.  

Decision situations to which the AHP can be applied include the following six 

aspects [10]. 

(1) Choice - The selection of one alternative from a given set of alternatives, 

usually where there are multiple decision criteria involved. 

(2) Ranking - Putting a set of alternatives in order from most to least 

desirable. 

(3) Prioritization - Determining the relative merit of members of a set of 

alternatives, as opposed to selecting a single one or merely ranking them. 

(4) Resource allocation - Apportioning resources among a set of alternatives. 

(5) Benchmarking - Comparing the processes in one's own organization with 

those of other best-of-breed organizations. 

(6) Quality management - Dealing with the multidimensional aspects of 

quality and quality improvement. 

The AHP provides a comprehensive and rational framework for structuring a 

decision problem, for representing and quantifying its elements, for relating those 

elements to overall goals, and for evaluating alternative solutions. The essence of AHP 

process is to create a hierarchy tree based on the decomposition of a complex problem, 

with the goal at the top, criteria and/or sub-criteria at levels, and decision alternatives 

at the bottom, as shown in Figure 2.1. Elements are then compared in pairs to assess 

their relative preference and decisions are made according to the comparison and 

calculation.  
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Figure 2.1.  Structure of AHP process 

The basic principle of AHP includes the following procedures [11, 12, 13, and 

14]: 

(1) Define the unstructured problem and state clearly the goal of the 

problem;  

(2) Identify the factors that influence the overall goal; 

(3) Decompose the complex overall evaluation goal into hierarchical 

structure with detailed decision criteria and variables, which are 

manageable;  

(4) Select a scale method, employ pairwise comparisons among decision 

criteria and form comparison matrices;  

(5) Estimate the relative priorities of the decision criteria by using method 

like eigenvalue or the geometric mean;  

(6) Check the consistency property of matrices to ensure the judging 

consistence; aggregate the relative priorities of decision criteria; 

(7) Aggregate the final weight coefficient vector which represents the 

relative importance of each alternative with respect to the goal stated at 

the top of the hierarchy. 
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Among all, the pairwise comparison matrix is particularly important because it is 

the key to transform subjective priorities to computable values according to decision 

makers’ preferences. 

These pairwise comparisons are usually gained by experts via questionnaire and 

other approach like Delphi methodology. They are made by using a preference scale to 

assign numerical values to different levels of preference [15]. Usually, scale used for 

AHP is from 1 to 9 to reflect the importance of one factor over another. The 

fundamental scale for pairwise comparisons is shown in Table 2.1.  

Table 2.1.  Fundamental scale for pairwise comparisons 

Intensity of 

Importance 
Definition Explanation 

1 Equal importance Two elements contribute equally to the objective 

3 Moderate importance 
Experience and judgment slightly favor one element 

over another 

5 Strong importance 
Experience and judgment strongly favor one element 

over another 

7 Very strong importance 
One element is favored very strongly over another; its 

dominance is demonstrated in practice 

9 Extreme importance 
The evidence favoring one element over another is of 

the highest possible order of affirmation 

Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities 1.1, 1.2, 1.3, 

etc can be used for elements that are very close in importance. 

The reciprocals, such as 1/3, 1/5, 1/7, 1/9, etc., indicate the opposite respectively 

of the values 3, 5, 7, 9, etc. [16].  

Selection of numerical scale provided by the experts is important in the validity of 

the decision making tool. It aims to quantify the priorities of the linguistic pairwise 

comparisons and it can be presented by means of different numerical scales and the 

geometrical scale is the most commonly used ones [17, 18]. Technically, the priorities 
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must capture the dominance of the order expressed in the judgments of pairwise 

comparisons, and for classic AHP method they should be unique [19].  

2.1.2. Fuzzy Set Theory (FST) and Fuzzy AHP 

Nevertheless, there is an extensive literature which addresses the situation in the 

real world where the comparison ratios are imprecise judgments. In many practical 

cases, the human preference is uncertain or decision makers might be reluctant or 

unable to assign exact numerical values to the comparison judgments or individual 

judgments in group decision making might be variant. Since some of the evaluation 

criteria are subjective and qualitative in nature, it is very difficult for the decision 

maker to express the preferences using exact numerical values and to provide exact 

pairwise comparison judgments. It is more desirable for the decision maker to use 

interval or fuzzy evaluations [20]. Essentially, the uncertainty in the preference 

judgments gives rise to uncertainty in the ranking of alternatives as well as difficulty in 

determining consistency of preferences [21]. The classical deterministic AHP method 

tends to be less effective in conveying the imprecision and vagueness characteristics. 

This led to the development of Fuzzy Set Theory (FST) by Zadeh (1965), who 

proposed that the key elements in human thinking are not numbers but labels of fuzzy 

sets.  

FST is a powerful tool to handle imprecise data and fuzzy expressions that are 

more natural for humans than rigid mathematical rules and equations [19]. It has been 

used to model systems that are hard to define precisely. As a methodology, it 

incorporates imprecision and subjectivity into the model formulation and solution 
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process. FST is now applied to problems in extensive fields, involving engineering, 

business, medical and related health sciences, and the natural sciences [22].  

FST permits the gradual assessment of the membership of elements in a set; this is 

described with the aid of a membership function valued in the real unit interval [0, 1]. 

Fuzzy sets generalize classical sets, since the indicator functions of classical sets are 

special cases of the membership functions of fuzzy sets, if the latter only take values 0 

or 1 [23].  

FST defines set membership as a possibility distribution. On the basis of the 

possibility distribution of FST, fuzzy AHP technique is developed as an advanced 

analytical method developed from the traditional AHP. Despite the convenience of 

AHP in handling both quantitative and qualitative criteria of multiple criteria decision 

making problems based on decision makers’ judgments, fuzzy AHP can reduce or 

even eliminate the fuzziness and vagueness existing in many decision making 

problems may contribute to the imprecise judgments of decision makers in 

conventional AHP approaches [24]. 

There are researches compare fuzzy AHP and classical AHP. These research 

studies are divided mainly into two aspects. The first are the methods to make fuzzy 

comparison matrices. Early studies on fuzzy AHP approach were classified in that 

aspect. Researchers worked on the theoretical methods and what the differences were 

between the two approaches. Once the factors that affected the differences were 

understood, methods based on the factors were made to improve the fuzzy AHP. The 

second aspect was the practical application of both approaches. Later studies were 
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mainly categorized in this second aspect. Research was focused simply on the 

difference between the results given by these two approaches, in the form of two 

weight vectors given by corresponding approaches. The connection between these 

two aspects is a gap in previous studies. This paper combined them together to 

explore how the factors that give rise to the differences affect the weight vector given 

by Fuzzy AHP and the differences.  

The earliest method work in fuzzy AHP appeared in a paper by van Laarhoven and 

Pedrycz, who suggested a fuzzy logarithmic least squares method (LLSM) to obtain 

triangular fuzzy weights from a triangular fuzzy comparison matrix. Then Lootsma's 

logarithmic least square was used to derive local fuzzy priorities. Later, Buckley 

utilized the geometric mean method to calculate fuzzy weights. Recently in 1996, 

Chang used the extent analysis method and the principle of Triangular Fuzzy Numbers 

(TFN) comparison to obtain the priorities of alternatives from pairwise comparisons 

[25, and 26]. Among all, Chang’s extent analysis method is the most popular one 

because the steps of this approach are simpler and also it has been successfully applied 

in many fields [21]. 

Chang’s extent analysis on fuzzy AHP depends on the degree of possibilities of 

each criterion. On the basis of different possible weight values gained by different 

decision makers, for a particular level on the hierarchy the pairwise comparison 

matrix is constructed and the corresponding TFN for the criterion are placed, which 

contains three levels of comparison values. These values are following the scale 

showed in Table 2.2. Then definite steps are conducted to find the overall triangular 
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fuzzy values for each criterion. After the weights are obtained, they are normalized 

and called the final importance weights. At last, according to the criterion weights, the 

weights for each alternative are calculated and a final decision made. 

Table 2.2.  Triangular Fuzzy Number (TFN) value 

statement TFN 

absolute (7/2,4,9/2) 

very strong (5/2,3,7/2) 

fairly strong (3/2,2,5/2) 

weak (2/3,1,3/2) 

equal (1,1,1) 

While comparing Chang’s fuzzy AHP and classical AHP, Ozdagoglu [27] says 

that the result of the fuzzy intersection can be obtained as zero which means that the 

corresponding criterion has no importance. What is more, it concludes that if the 

information evaluations are certain, classical method should be preferred; if the 

information evaluations are not certain, fuzzy method should be preferred. Meixner 

[28] also shows that by use of Chang’s method, putting an emphasis on the most 

important criteria could be an advantage. Also, there is a slight shift from less 

important to more important criteria. In addition, the use of the geometric mean 

instead of a minimum and maximum operation seems to be of advantage when 

aggregating fuzzy numbers. Otherwise the calculated weights tend to exceed a 

tolerable range because of isolated runaway values. On the contrary, paper by Wang 

etc. [25] argues about the disadvantages of Chang’s method by giving three adverse 

numerical examples. These examples show that the weights determined by the extent 

analysis method do not represent the relative importance or the method could not 

make full use of all the fuzzy comparison matrices information.  
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Once the factors that influence the difference between classical AHP and fuzzy 

AHP and the numerical weight results gained by these two approaches are defined, 

the problem is how the factors affect the difference. The relationship between these 

two parts is a gap in knowledge. If the effects of the factors were know, the 

application of fuzzy AHP will be used more properly in situations that are more 

suitable to utilize fuzzy AHP other than classical AHP. 

 

2.2. Literature review of Ratio Frequency Identification (RFID) 

2.2.1. History of RFID 

RFID technologies originated from radar theories that were discovered by the 

allied forces during World War II and have been commercially available since the 

early 1980’s. Over the last three decades, RFID has been used for a wide variety of 

applications such as transportation freight tracking, retail theft prevention, library 

systems, automotive manufacturing, postal services, animal tracking, and so on [29] 

to improve the efficiency of object tracking and management.  

The demonstration of the first continuous wave radio generation and 

transmission of radio signals by Ernst F.W. Alexanderson in 1906 indicated the 

beginning of modern radio communication. Later in the early 20th century, 

technologies of radar appeared. They were used to detect and locate objects by 

sending out radio waves and receiving the reflection of them. Then the position and 

speed of the objective could be determined by the radio wave reflection. Since RFID 

is based on the combination of radio broadcast technology and radar, it is not 
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unexpected that the convergence of these two radio disciplines and the thoughts of 

RFID occurred on the heels of the development of radar [30].  

In 1945 Léon Theremin invented an espionage tool for the Soviet Union. This 

device converted listening by retransmitting incident radio waves with audio 

information. The principle that supported this device was that sound waves vibrated a 

diaphragm which slightly altered the shape of the resonator and the resonator 

modulated the reflected radio frequency. This device, even though it was not an 

identification tag, was considered to be a predecessor of RFID technology, because it 

was likewise passive, being energized and activated by electromagnetic waves from 

an outside source [31].  

Another early work exploring RFID is the landmark paper by Harry Stockman, 

―Communication by Means of Reflected Power,‖ published in 1948, where the author 

stated that ―Evidently, considerable research and development work has to be done 

before the remaining basic problems in reflected-power communication are solved, 

and before the field of useful applications is explored.‖ 

The 1960s were the prelude to the RFID explosion of the 1970s. In the 1970s 

developers, inventors, companies, academic institutions, and government laboratories 

were actively working on RFID, and notable advances were being realized at research 

laboratories and academic institutions [32]. 

In 1973, Mario Cardullo received the patent for his device, which was typically 

the first true ancestor of modern RFID. This is because the device was a passive radio 

transponder with memory that can be read and wrote [33]. At the same year, another 
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patent was awarded to Charles Walton who used a passive transponder to unlock a 

door without a key. Walton embedded a transponder storing a valid identity number 

into a card so as to communicate a signal to a reader near the door. Then the door 

would be unlocked when the reader detected this number. Also at the year of 1973, 

Steven Depp, Alfred Koelle, and Robert Freyman showed reflected power RFID tags 

for both passive and semi-passive at the Los Alamos National Laboratory.  

The first patent to be associated with the abbreviation RFID was granted to 

Charles Walton in 1983 [34]. The decade of the 1980s, RFID technology had been 

fully implemented and entered the mainstream as a commercially application. Untill 

the 1990s, the standards of RFID emerged, which allowed this technology extent to 

international wide deployment.  

Nowadays, RFID explosion is continuing. The application is trying to break new 

paths to different fields, calling for new advanced techniques to back up. A typical 

way for future application is the micro of RFID, which requests special raw material 

and manufacturing technique. Reasonable assumptions state that this micro RFID has 

a brilliant application foreground in the field of medicine.  

2.2.2. Component of RFID 

RIFD is basically a technology to identify or track objects such as a product, 

animal, or person automatically using communication via electromagnetic waves 

without human intervention. A RFID system allows wireless data communication 

between a stationary location and a movable object or between movable objects from 

a distance [30, 35].  
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A RFID system comprises three components, tags, readers, antennas, and 

middleware software, as shown in Figure 2.2. The components are introduced here 

one by one. 

 

Figure 2.2.  Structure of a RFID system 

2.2.2.1. RFID tags 

RFID tags are the heart of an RFID system due to their duty of storing the basic 

information of the tracked object, which consist of identity, location, date, price, state, 

speed, etc. Tags often consist of a microchip with an internally attached coiled 

antenna. This digital memory chip stores the information of a unique object. RFID 

tags could be in different shapes for different purpose. 

Some tags include batteries, expandable memory, and sensors [36]. According to 

the capability, tags are divided into the following types [37]. 

2.2.2.1.1. Passive tags 

Passive tags have no battery and the communication range of them is limited to 

approximately 3 meters or less. Once the passive tag enters the response range of a 

reader, RF signal powers the tag and the chip inside modulates the waves and 

transmits the information, which was captured by the reader who then sends back to 
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the terminal system. Figure 2.3 shows two samples of passive tags. 

 

Figure 2.3.  Passive RFID tags 

2.2.2.1.2. Active tag 

Active tags have a battery inside and are usually strong enough to be read in a far 

distance around 100 meters or more. Other than passive tags, active tags can directly 

broadcasts RF signals wirelessly on their own when they enter the response range of a 

reader. Figure 2.4 shows two samples of active tags, coming from RF Code and Savi 

companies respectively. 

 

Figure 2.4.  Active RFID tags 

2.2.2.1.3. Read-only tags 

Read-only tags contain data that are pre-written onto them by the tag 

manufacturer or distributor. The lack of capability of being rewritten with any 

additional information all through the whole supply chain makes them the least 

expensive RFID tags.  

2.2.2.1.4. Write-once tags 

Write-once tags could be added with information by the user for just one time.  
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2.2.2.1.5. Full read-write tags 

Full read-write tags enable the users to rewrite data whenever needed.  

2.2.2.2.  RFID antennas 

A RFID antenna is a conductive element that permits data exchanging between 

tags and readers. Coiled antenna is used for passive tags. By using the energy 

provided by the reader's carrier signal, coiled antenna emits electromagnetic range to 

activate the passive tags which enter in this response range. Then it receives 

information which is broadcasted by the tags’ antenna and transmits them back to 

readers. Sometimes RFID antennas are attached to RFID readers as an integrative 

component.  

2.2.2.3. RFID readers 

RFID readers have the function of converting radio waves from RFID tags into a 

form that can be passed to middleware. They interrogate tags’ information by 

broadcasting a specific RF signal. Then the tags will respond to this signal by 

transmitting back a unique serial number or Electronic Product Code (EPC). Finally 

RFID readers receive the information and convert and send them to middleware uses 

as CPU data [38].  

There are two types of RFID readers according to the capacity of removability.  

2.2.2.3.1. Mobile readers 

Mobile readers are usually in the form of two common devices. One is handheld 

reader which is the same as handheld barcode scanner; and the other one is readers 

attached to a mobile device such as a forklift embedding RFID reader. Mobile readers 
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have the advantage of portability. Figure 2.5 shows a handheld RFID reader and 

Figure 2.6 shows a forklift RFID reader. 

 

Figure 2.5.  Handheld RFID reader 

 

Figure 2.6.  Forklift RFID reader 

2.2.2.3.2. Fix readers 

Fix readers are stationary and mounted to strategic fixed position such as the 

portal RFID readers. Readers capture information when objects with RFID tags pass 

by or near the position. Fixed readers have advantage of larger reading range [39]. 

Generally, fixed readers have their antenna attached to them. Figure 2.7 is a fixed 

reader and antenna of Savi Company. 

 

Figure 2.7.  Fix reader and antenna of Savi Company 
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2.2.2.4. RFID middleware 

RFID middleware is ―system software that collects a large volume of raw data 

from heterogeneous RFID environments, filters them and summarizes into meaningful 

information, and delivers the information to application services‖ [38]. Middleware 

software has the function of managing the flow of data and sending them to back-end 

management systems. 

2.2.3. Advantages of RFID 

An advanced automatic identification system based on RFID has several 

advantages over other data capturing technologies such as a bar coding system.  

(1) The visibility provided by the RFID system allows for an accurate 

knowledge on the inventory level by eliminating conflicts between physical 

inventory and recorded inventory.  

(2) RFID reduces the source of errors by eliminating some of the human 

interaction in the process. This reduces the labor costs, the inventory 

inaccuracies, and simplifies the business as a whole.  

(3) RFID provides higher security because each tag is extremely unique and 

almost impossible to duplicate [40].  

(4) RFID has higher durability because that the container of bar codes, which are 

usually paper products or hard metals, exposes them to harsh environments 

and makes them vulnerable. 

2.2.4. Application of RFID in transportation system 

The RFID market is already a multimillion dollar industry and the applications of 

smart chip technologies are limitless. A wide range of emerging applications in the 
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RFID field are being improved by RFID such as: identification of passports at port of 

entry, tracking baggage, tracking people in a secure environment, animal 

identification, health care and usage at public facilities (libraries and transportation). 

The transportation system, which requires a high level of accurate and reliable 

tracking information, is a preeminent field which allows RFID technology to 

showcase its advantages. Compared to other data capture technology, RFID is more 

efficient with higher accuracy and security for inspection and tracking purposes. 

RFID can increase substantially the accuracy of current location data as well as the 

carrier name and unit number. This ability enables RFID system to perform real time 

surveillance which allows fleet data capture and also improves transportation process 

efficiency. 

The applications of RFID system in transportation are usually used for traffic 

management such as toll road RFID system, public transit (such as bus, subway and 

rail) RFID system, and Car-sharing service RFID system.  

 

2.3. Previous research of CVISN project 

Nebraska has currently attained Commercial Vehicle Information systems and 

Networks (CVISN) Core Compliance. Nebraska Department of Motor Vehicles 

(NEDMV) is the lead agency with the Motor Carrier Services Division the primary 

contact. CVISN project requests NEDMV to perform a stakeholder analysis on 

utilizing Radio Frequency Identification (RFID) license plates to assist with CVISN 

objectives at roadside. The project also requires cooperation between the University 
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of Nebraska (Transportation Center and Radio Frequency Supply Chain Logistics 

(RfSCL) lab), the NEDMV, the Nebraska Department of Roads (NDOR), The 

Nebraska Department of Corrections, Cornhusker State Industries (CSI) and the 

Nebraska State Patrol (NSP)) to perform stakeholder analysis, RFID license plate 

prototype testing, software and database security testing, and a return on investment 

analysis in comparison to other technologies.  

This program aims to offset the costs of conducting a feasibility study on RFID 

embedded license plates that may ultimately be expanded for national use. The goal of 

this program is to investigate the variability of embedding RFID tags into license 

plates so that strategically located readers alongside streets and roads within the state 

can capture tag information, and finally select a most valuable RFID system to embed 

into license plates of the whole nation. 

Previous studies have worked on stakeholder analysis. First, questionnaires were 

designed and stakeholders’ requirements were collected during the kickoff meeting. 

Second, for each stakeholder House of Quality (HOQ) analysis was performed to 

evaluate the technical requirements. Finally, a ranking of technical requirements was 

tallied.  

Six technical requirements were highlighted to be the most significant to the 

implementation of RFID system over the national wide. They were separately RFID 

tag (transponder) reader distance, physical limitation, read rate, display relevant 

information, RFID tag number, and manufacturing cost. Then considering special 

customer concerns of each stakeholder, questionnaires were designed aiming at 
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collecting stakeholders’ requirements according to the technical requirements.  

Once the stakeholders’ requirements were gathered, HOQ analyses were 

implemented, from which the ordinal ranking of the six technical requirements were 

gained for each stakeholder. Basically, we had the tally results of the technical 

requirements as in Table 2.3. 

Table 2.3.  Relative priorities of individual stakeholder of CVISN project scenario 

Criteria 
Stakeholder  

CED CSI DMV NDR-ITS NDR-Tr NSP 

A 0.16 0.2 0.03 0.03 0.23 0.2 

B 0.1 0.21 0.09 0.03 0.23 0.12 

C 0.17 0.1 0.03 0.06 0.09 0.18 

D 0.23 0.21 0.38 0.37 0.22 0.19 

E 0.3 0.08 0.38 0.45 0.22 0.28 

F 0.04 0.21 0.09 0.06 0.02 0.03 

Further studies will focus on the decision making analysis of different RFID 

systems, which calls for a comprehensive ranking of the six technical requirements 

concerning every stakeholders’ priorities. For this decision making problem, 

stakeholders are decision makers, and technical requirements are multiple criteria, 

based on which the best alternative RFID system will be chosen. 
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CHAPTER 3. RESEARCH QUESTIONS 

3.1. Need for Research 

Previous CVISN research systemically chose six technical requirements which 

were the most important to the implementation of RFID systems. In addition, previous 

research built House of Quality analysis for these technical requirements according to 

the customer requirements of each stakeholder. As a result, these technical 

requirements were tallied respectively by different stakeholders. Future research 

concentrates on choosing the best RFID system according to these technical 

requirements. In this decision making problem, technical requirements are playing the 

role of multiple criteria, which are the crucial keys to solving this problem. Previous 

research developed the rankings of the criteria by each stakeholder, who are the 

decision makers in this decision making problem. These separate scores represent 

only the priorities of the individual stakeholders, which are not general enough to be 

utilized in the final decision making. Consequently, a comprehensive ranking of these 

criteria needs to be prudentially decided.  

Classical AHP is thought to be a robust way to solve determined decision making 

problem. However, it neglects the uncertainty and vagueness caused by subjective 

preference of decision maker in criteria scoring. Accordingly, fuzzy AHP was used to 

improve this situation.  

For the CVISN project, there are six decision makers who had the equal power to 

contribute to the final decision. Although classical multiple decision makers AHP 

approach could solve this problem, its pairwise comparison value seems not strong 
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enough to cover most decision makers’ options. This is because that there are too 

many decision makers and the comparison value for classical AHP is constant. 

Therefore, this research builds a fuzzy AHP scenario for CVISN project by assuming 

that the weights of the criteria given by different decision makers are possible weights 

given by a fictitious decision maker. In this way, this multiple decision maker problem 

is turned into a one decision maker with a range of comparison values problem, which 

can be solved by fuzzy AHP approach. Whether or not fuzzy AHP approach is suitable 

for this situation is then considered.  

To verify the applicability of fuzzy AHP to this specified problem, the research 

first compares classical AHP and fuzzy AHP with a series of random data. The 

comparison is then used as critical models. By calculating prediction intervals for 

each individual outcome, the fuzzy AHP approach results of CVISN project are 

judged. If the results are within the prediction intervals, it tells that fuzzy AHP is 

appropriate; otherwise, it is not appropriate to this specified problem, and the results 

of classical AHP is accepted.  

 

3.2. Overall Research Objective  

This research is a pilot study for further research of the CVISN project. The 

overall research objective is to provide a comprehensive rank of the six significant 

technical requirements, which is the basic criterion for further RFID system chosen.  

The methods used in this research are both fuzzy AHP and classical AHP 

approaches, and results given by the more proper one will be the final rank. 
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3.3. Specific Objectives 

The main goal of this research will be reached by meeting the following specific 

objectives.  

SO#1 Compare classical AHP and fuzzy AHP approaches with randomly 

generated data to seek for the relationship between the hypothetic potential factors 

and the differences of the two approaches’ outcomes by building statistical models. 

SO#2 Compute the ranking of six significant technical requirements for CVISN 

project by both classical AHP and fuzzy AHP approaches. 

SO#3 Evaluate the results of SO#2 determining whether or not each outcome is 

within the prediction interval on the basis of the critical models given by SO#1. If the 

results given by fuzzy AHP approach are appropriate, select them; otherwise, select 

results given by classical AHP approach. Finally, the overall ranking of the six 

significant technical requirements is given by the verified method. 

 

3.4. Hypothesis Statements 

This research proposes that the differences between classic AHP and fuzzy AHP 

are raised by two potential factors. One, it has been illustrated by previous studies that 

if the weight of one criterion is weaker than the weights of the others, fuzzy AHP may 

give extreme factor weight to this criterion such as zero [5]. This situation does not 

happen to classical AHP. So this paper takes the pairwise comparison of one criterion 

over another given by AHP as a factor. Two, fuzzy AHP can provide the decision 

makers with flexible value options which are in-between a certain range, rather than 
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deterministic value options. This gives an advantage over classic AHP in solving 

fuzzy problems. The range of the fuzzy number for pairwise comparison is hence the 

second factor. In this paper, the influences of these two factors are evaluated. 

In conclusion, there are two hypotheses in this research. First, we hypothesize 

that two factors affect the difference between the outcomes given by classical AHP 

and fuzzy AHP approaches, which are the pairwise comparison of one criterion over 

another given by AHP and the range of the fuzzy number for pairwise comparison 

given by fuzzy AHP. Second, we hypothesize that fuzzy AHP approach is suitable for 

CVISN project and it provides decision makers with more effective and accurate 

assistance for selecting RFID system. It is envisioned that, taking into all 

stakeholders’ preferences, fuzzy AHP provides a more comprehensive ranking of the 

six significant technical requirements for CVISN project. 
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CHAPTER 4. METHOD 

4.1. Rationale of AHP approach, fuzzy AHP approach and prediction intervals 

This research uses both classical AHP approach and Chang’s extent fuzzy AHP 

approach as the basic methodologies to find the criteria weights of the multiple 

decision making problem for CVISN project. Then prediction intervals are used as a 

judgment to evaluate weight results gained by fuzzy AHP approach compared with 

classical AHP approach. 

4.1.1. AHP approach  

Let n be the number of criterion and z1, z2, …, zn be their corresponding relative 

priority given by one decision maker. Then the judgment matrix A which contains 

pairwise comparison value aij for all i, j ∈ ｛1,2,…,n｝is given by (1). 
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21 22 2 2 1 2 n

1 2 n 1 n 2

1 z /z z /z

z /z 1 z /z
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z /z z /z 1
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   (1) 

For multiple decision makers, let h be the number of decision maker and aij
k
 be 

the pairwise comparison value of criteria i and j given by decision maker k, where k = 

1, 2, …, h. Then by using geometric mean of the aij
k
 conducted by each decision 

maker, we have a new judgment matrix with element given by (2). 

1 2 k h 1/h h k 1/h

k 1=( * *...* *...* ) ( )ij ij ij ij ij ija a a a a a     (2) 

The basic procedure for AHP approach by the mean of normalized values 

method is given as following: 

(1) Normalize each column to get a new judgment matrix A’. 
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where 
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  is the sum of column j of judgment matrix A. 

(2) Sum up each row of normalized judgment matrix A’ to get weight vector V. 
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(3) Define the final normalization weight vector W. 
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   (5) 

4.1.2. Chang’s extent fuzzy AHP approach 

Like classical AHP approach, fuzzy AHP also has a judgment matrix, using 

triangle fuzzy number (TFN) instead of constant pairwise comparison value. Let A  

represent the n*n-judgment matrix containing TFN ija
for all i, j ∈ ｛1,2,…,n｝, as 

shown in (6). 
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where ija =(lij, mij, uij) with lij is the lower and uij is the upper limit and mij is the most 

likely value, where we use the geometric mean of lij and uij in this paper. So 

ij ij ijm l *u . 

Assume that 1M
 and 2M

 are two triangular fuzzy numbers with 1M
=(l1, m1, 

u1) and 2M
=(l2, m2, u2). The basic operations are given by (7)~(9). 
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The basic procedure of Chang’s extent fuzzy AHP approach is given as following 

[18, 27]. 

(1) Sum up each row of fuzzy judgment matrix A  to get the fuzzy number 

vector RS. 
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(2) Normalize the row fuzzy number vector RS to get the fuzzy synthetic extent 

value vector S. 
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where 1

=1
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  is the derivative of the sum of the fuzzy number vector RS and it is 

calculated by (12).  
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(3) Compute the degree of possibility to get the non-fuzzy weight vector V. 

 

1 1

2 2

minV(S S )

minV(S S )
V= =

minV(S S )

k

k

n n k

v

v

v

  
  

  
  
  

    

 (13) 

where for element i, the subscript k ∈ ｛1,2,…,n｝ and k   i. Also the degree of 

possibility of 
2S = (l2, m2, u2)   

1S  = (l1, m1, u1) is obtained by (14). 
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(4) Define the final non-fuzzy normalization weight vector W. 
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4.1.3. Prediction interval principles 

Assume a simple linear regression model with one response variable Y and one 

independent variable X. In general, this model can be written as: 

 
0 1Y= + X      (16) 

where 0  is the intercept of the regression and 1  is the slope of X. These 

parameters can be unbiased as b0 and b1estimated by a series of data set (xi, yi), where i 

indicates the i
th

 number of data set and i∈ ｛1,2,…,n｝, where n is the total number of 

set. 

With this regression model, the predicted interval of any single predicted value 

can be calculated on the basis of a population with n data by the following procedure. 

(1) Estimate model parameters. 
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(2) Calculate the predicted value Ŷ  for all i. 
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(3) Calculate the mean square of error (MSE). 
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   
 
  


    (24) 

(6) Calculate prediction interval of the single independent variable kx
 at 

confidence level  . 
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 / 2, 2
2

1

( )1
ˆ MSE 1
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k
at x n n

i

i

x x
y t

x x
 



 
 
   
 
  


   (24) 

where / 2, 2nt   is the statistic value for t distribution, where n-2 is the degree of 

freedom. This critical value can be found out at all most every statistic textbook or via 

internet. 

 

4.2. Research procedure 

This research is divided into three scenarios, which are respectively random data 

scenario, CVISN project scenario, and prediction interval demonstration scenario. The 

first scenario is running comparison models for classical AHP and fuzzy AHP 

approaches with randomly generated simulation data to search for the relationship 

between input variables and output variables so as to give technique supports for the 

following two parts. The second scenario is dealing with the real multiple-decision 

problem for CVISN project by both classical AHP and fuzzy AHP approaches. The 

third scenario is building models with significant input variables and output variables 

for the CVISN project to check whether the fuzzy AHP approach fits this real 

problem.  

Followings are the detailed procedure of each scenario and the whole research 

procedure can be demonstrated as a flow chart shown in Figure 4.1. 
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Figure 4.1.  Research procedure 
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comparison models between classical AHP and fuzzy AHP approaches.  

(1) Generate simulation random data with Excel to represent TFNs for fuzzy 

AHP approach. 

(2) Calculate weight values for both AHP and fuzzy AHP approaches based on 

the data from step 1. 

(3) Collect input data, which are range and AHP pairwise weight values, as well 

as output data, which includes fuzzy AHP pairwise weight values, difference 

of the pairwise weight values between the two approaches, and absolute 

difference of pairwise weight values between the two approaches, for 

modeling.  

(4) Built six models for each pair of input and output data. 

(5) Check whether the input variables are significant or not to the each output 

variable.  

(6) If the input variable is significant, find the relationship between it and the 

output variables; otherwise take it off.  

4.2.2. CVISN project scenario  

The following steps are used to apply both classical AHP and fuzzy AHP to 

CVISN project and obtain the final weight vectors.  

(1) Analysis previous CVISN project data and denote the multiple decision 

making problem. 

(2) Create TFNs for fuzzy AHP approach by house of quality from previous 

research. 
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(3) Calculate weight values for both AHP and fuzzy AHP approaches based on 

the data from step 1. 

(4) Collect input and output data for modeling. 

(5) Build models with output variables and input variables which have been 

proved significant in step 5 of random data scenario. 

4.2.3. Prediction interval demonstration scenario 

The following three steps are verify the outcomes of CVISN project, using 

benchmark comparison models.  

(1) For every model in step 5 of CVISN project scenario, calculate prediction 

interval for each single output value based on the modeling data from step 6 

of random data scenario. 

(2) Check whether the output values are in-between their corresponding 

prediction intervals.  

(3) If the output values are in-between the prediction intervals, it proves that the 

fuzzy AHP is appropriate for CVISN project; otherwise use classic AHP 

approach to solve this problem. 

 

4.3. Analysis plan 

Analysis plan gives the explanation of input and output variables, detailed 

analysis steps, as well as final models for each scenario.  

4.3.1. Random data scenario  

4.3.1.1 Basic assumption 

This set uses random data to represent the totally arbitrary decision makers’ 
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preferences when weighing pairwise criteria. Excel® is used in the generation of the 

random data as well as the simulation.  

The following assumptions are made before conducting the simulation and 

modeling: 

(1) Four criteria and one decision maker are considered in this research to 

simplify the model; 

(2) Random data are generated to represent the TFNs for each pair of criteria, 

given by the decision maker with totally arbitrary preference; 

(3) In order to make the simulation more reasonable and common, the random 

data are generated from 0 to 10, with the higher value reflecting the stronger 

importance of one criterion over another and lower value reflecting the 

weaker importance of one criterion over another. This makes the simulation 

make sense according to the standard preference scales of pairwise 

comparison used for classical AHP approach ; 

(4) In order to weigh the comparison more fairly, each random data has the 

probability between (0, 1) equal to 0.5 and the probability between (1, 10) 

equal to 0.5. In this way, for instance, the importance of criterion A over 

another one B has the same chance to be larger than one and to be smaller 

than one, which means that criterion A has the same chance to be more 

important than B and less important than B;  

(5) Geometric mean is used to gain the AHP pairwise values from the TFNs; 

(6) All TFNs and AHP pairwise values, including both aij and its corresponding 
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reciprocal aji, are taken into statistic analysis for the final comparison. 

4.3.1.2 Notation 

The following notations are used to represent different parameters. 

i, j: the subscript for criterion i and criterion j. Since there are four criteria in this 

research simulation, i, j = 1, 2, 3, 4; 

ija
: TFN for criterion i over criterion j of fuzzy AHP approach; 

aij : pairwise comparison value for criterion i over criterion j of AHP approach; 

T

FW : Final weight values vector of fuzzy AHP approach; 

T

AW : Final weight values vector of AHP approach; 

VFij (V-F in short): pairwise weight value for criterion i over criterion j of fuzzy 

AHP approach; 

VAij (V-A in short): pairwise weight value for criterion i over criterion j of AHP 

approach; 

Rij (R in short): The range of fuzzy number for criterion i over criterion j of 

fuzzy AHP approach; 

Diffij (D in short): Difference of the pairwise weight value for criterion i over 

criterion j between Fuzzy AHP approach and AHP approach, and 

ABS-Diffij (ABS-D in short): Absolute difference of pairwise weight value for 

criterion i over criterion j between fuzzy AHP approach and AHP approach. 

4.3.1.3 Analysis step 

The section of analysis step shows the specific steps of calculation. 

(1) For each pairwise comparison of criteria i and j, two random data, rij1 and rij2, 
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are created, with the meaning of the importance of criterion i over criterion j 

(i, j = 1, 2, 3, 4); 

(2) For fuzzy AHP approach, ija
= (lij, mij, uij) is then formed by lij = minimum 

(rij1, rij2), mij = geometric mean (rij1, rij2) and uij = maximum (rij1, rij2); 

(3) For classical AHP approach, aij = geometric mean (rij1, rij2); 

(4) The importance of criterion j over criterion i for each approach is then given 

by jia
=1/ ija

=(1/ uij, 1/mij, 1/lij) and aji = 1/ aij; 

(5) Calculation results by using Chang’s extent fuzzy AHP approach and 

classical AHP approach are two vectors of weights 
T

FW =(WF1, WF2, WF3, 

WF4) and 
T

AW =(WA1, WA2, WA3, WA4);  

(6) Pairwise weight values between criterion i and criterion j for the two 

approaches are computed by VFij = WFi/ WFj and VAij = WAi/ WAj; 

(7) Range of pairwise TFNs of Fuzzy AHP for criterion i over criterion j is given 

by Rij = uij - lij, and  

(8) Difference and absolute difference of pairwise weight values are then 

calculate by Diffij = VFij - VAij and ABS-Diffij = absolute (Diffij). 

4.3.1.4 Data collection 

The following parts are used for data generation and specification. 

(1) Generate initial data: a series of 240 data are generated randomly, and then 

another 240 accordingly reciprocal data are calculated. Since two random 

data are necessary to represent one pairwise comparison value, these 480 data 

are used to form 240 sets of pairwise comparison values for both fuzzy AHP 
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and AHP, including 20 groups of scenarios, each of which contains 12 

pairwise comparison values (since there are 4 criteria).  

(2) Calculate statistic model data: calculate the following five variable values 

group by group: V-A, R, V-F, D, and ABS-D, the first two of which are input 

random variables for the modeling and the last three are output variables. 

(3) In order to analyze the variables’ effects more specifically, the data are 

divided into two subgroups, one includes 120 series of data with comparison 

weight values given by AHP approach greater than 1 and the other group 

includes the left 120 series of data with comparison weight values given by 

AHP approach smaller than 1. To distinguish them, this research describes 

every parameter in the first group with subscript 1 and the second group with 

subscript 2. In this way, there are 6 models in total. 

4.3.1.5 Demonstrated sample calculation and procedure 

This set gives the data collection and calculation procedure for one of the 24 

group scenarios as a demonstrated sample.  

(1) Let A, B, C, D represent the four criteria of the first group scenario. 

(2) Generate two random data rij1 and rij2 for each pairwise comparison values of 

criterion i over criterion j, so there are totally 12 data for the six pariwise 

comparison, as shown in Table 4.1. 

Table 4.1. Pairwise comparison values for group one scenario of random dara scenario 

Series 

No. 

Pairwise  

Comparison 

Random Data Fuzzy AHP (
ija ) AHP (aij) 

rij1 rij2 lij mij uij aij 

1 A/B 3.962  5.005  3.962  4.453  5.005  4.453  

2 A/C 3.276  6.886  3.276  4.749  6.886  4.749  
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3 A/D 1.140  0.165  0.165  0.433  1.140  0.433  

4 B/C 2.688  0.120  0.120  0.569  2.688  0.569  

5 B/D 9.151  4.923  4.923  6.712  9.151  6.712  

6 C/D 0.160  2.059  0.160  0.574  2.059  0.574  

7 B/A 0.252  0.200  0.200  0.225  0.252  0.225  

8 C/A 0.305  0.145  0.145  0.211  0.305  0.211  

9 D/A 0.877  6.075  0.877  2.308  6.075  2.308  

10 C/B 0.372  8.307  0.372  1.758  8.307  1.758  

11 D/B 0.109  0.203  0.109  0.149  0.203  0.149  

12 D/C 6.250  0.486  0.486  1.742  6.250  1.742  

(3) Calculate the reciprocals of the 12 data as the pairwise comparison values of 

criterion j over criterion i, so there are 24 data in total. 

(4) Generate judgment matrix A for AHP approach and judgment matrix A  

with TFNs for fuzzy AHP approach, as shown in Table 4.2 and 4.3. 

Table 4.2. Judgment matrix for ahp approach of random dara scenario 

Criterion  A B C D 

 No. 1 2 3 4 

A 1 1.000 4.453 4.749 0.433 

B 2 0.225 1.000 0.569 6.712 

C 3 0.211 1.758 1.000 0.574 

D 4 2.308 0.149 1.742 1.000 

Table 4.3. Judgment matrix for fuzzy ahp approach of random dara scenario 

Criterion  A B C D 

 No. 1 2 3 4 

A 1 (1.000,1.000,1.000) (3.962,4.453, 5.005) (3.276, 4.749, 6.886) (0.165, 0.433, 1.140) 

B 2 (0.200, 0.225, 0.252) (1.000,1.000,1.000) (0.120, 0.569, 2.688) (4.923, 6.712, 9.151) 

C 3 (0.145, 0.211, 0.305) (0.372, 1.758, 8.307) (1.000,1.000,1.000) (0.160, 0.574, 2.059) 

D 4 (0.877, 2.308, 6.075) (0.109, 0.149, 0.203) (0.486, 1.742, 6.250) (1.000,1.000,1.000) 

(5) For AHP approach, the calculations of final weight vector WT are as 

following: 

 Get a new judgment matrix A’. 

4

1

1

i

i

a


 = 1+0.225+0.211+2.308 = 3.743,  
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4

2

1
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a
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4

1
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 = 8.060, 
4
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 (16) 

 Get weight vector V. 
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   (17) 

 Get final normalization weight vector W. 
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   (18) 

(6) For fuzzy AHP approach, the calculations of final weight vector WT are as 

following: 

 Get fuzzy number vector RS. 

rs1 = 
4 4 4

1 1 1

1 1 1

( , , )j j j

j j j

l m u
  

    
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= ((1+3.962+3.276+0.165), (1+4.453+4.749+0.433), (1+5.005+6.886+1.140)) 

= (8.403, 10.636, 14.031) 

4 4 4

1 1 1

1 1 1

4 4 4
1

2 2 2

1 1 12

4 4 4
3

3 3 3

1 1 14

4 4 4

4 4 4

1 1 1
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 
 
 
 
 
 

(19)  

 Get fuzzy synthetic extent value vector S. 

4

=1

rs j

j

 = (8.403, 10.636, 14.031) (6.243, 8.505, 13.092) 

 (1.677, 3.534, 11.672) (2.472, 5.199, 13.528) 

= (8.403+6.243+1.677+2.472, 10.636+8.505+3.534+5.199, 

14.031+13.092+11.672+13.528) 

= (18.794, 27.883, 52.323) 

1s = 
4

1

1

=1

rs ( rs )j

j

   

= (8.403, 10.636, 14.031)   (18.794, 27.883, 52.323)
-1 

= (8.403, 10.636, 14.031)   (1/52.323, 1/27.883, 1/52.323) 

= (8.403/52.323, 10.636/27.883, 14.031/52.323) 

= (0.161, 0.381, 0.747) 
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(20) 

 Get non-fuzzy weight vector V. 

V( 1 2S S ) = 1, V( 1 3S S ) = 1, V( 1 4S S ) = 1; 

V( 2 1S S ) = 0.875, V( 2 3S S ) = 1, V( 2 4S S ) = 1; 

V( 3 1S S ) = 0.644, V( 3 2S S ) = 0.738, V( 3 4S S ) = 0.906; 

V( 4 1S S ) = 0.741, V( 4 2S S ) = 0.835, V( 4 3S S ) = 1; 
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 Get final non-fuzzy weight vector W. 
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   (22) 

(7) Collect and calculate input and output variables, which are shown in Table 

4.4. 
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Table 4.4. Input and output variables of random dara scenario 

Subgroup No. Pairwise  

Comparison 

Input Variable Output Variable 

R V-A V-F D ABS-D 

1 A/B 1.043 10.968 6.040 -4.927 4.927 

1 A/C 3.610 8.346 2.562 -5.784 5.784 

2 A/D 0.975 0.708 0.752 0.045 0.045 

2 B/C 2.568 0.761 0.424 -0.337 0.337 

2 B/D 4.228 0.065 0.125 0.060 0.060 

2 C/D 1.899 0.085 0.294 0.209 0.209 

2 B/A 0.052 0.091 0.166 0.074 0.074 

2 C/A 0.160 0.120 0.390 0.271 0.271 

1 D/A 5.198 1.413 1.329 -0.084 0.084 

1 C/B 7.935 1.314 2.358 1.044 1.044 

1 D/B 0.094 15.501 8.027 -7.474 7.474 

1 D/C 5.764 11.796 3.404 -8.392 8.392 

 

4.3.2. CVISN project scenario  

4.3.2.1 Basic assumptions 

Previous research of CVISN project built House of Quality (HOQ) for each of 

the six stakeholders via questionnaires to analyze the importance of six significant 

technical requirements (which are denoted as capital A to capital F in the following 

research). The numerical results for the technical requirements from the HOQ are in 

the form of relative priorities for each stakeholder as seen in the pre-mentioned table 

in the previous research of CVISN project section of chapter 2.  

In order to further analyze the importance of the six technical requirements in a 

more comprehensive perspective, the following assumptions are made. 

(1) The weights for the six stakeholders are the same to each other. This means 

that they have the equal right to evaluate the technical requirements. 

(2) This problem can be considered as a multiple decision maker with multiple 

criteria decision making problem. In this way, classical AHP approach could 
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be applied to solve it. 

(3) This problem can be considered as a single decision maker with multiple 

criteria decision making problem. In this way, weights of the six technical 

requirements given by an individual stakeholder are considered as one 

possible series of weights given by this fictitious decision maker. So there are 

six possible series of weights given by the decision maker. Therefore, fuzzy 

AHP approach could be applied to solve it. 

(4) Geometric mean method is applied to calculate the most likely value when 

obtaining the TFNs of fuzzy AHP approach. 

4.3.2.2 Notation 

The following notations are used to represent different parameters. 

i, j: the subscript for criterion i and criterion j. Since there are six criteria in this 

research simulation, i, j = 1, 2, 3, 4, 5, 6; 

k: the superscript for the k
th

 decision maker for AHP approach. There are six 

stakeholders, so k = 1, 2, 3, 4, 5, 6; 

zik: relative priority of criterion i given by the k
th

 decision maker; 

ija
: TFN for criterion i over criterion j of fuzzy AHP approach; 

aijk : pairwise comparison value for criterion i over criterion j given by decision 

maker k of AHP approach; 

T

FW : Final weight values vector of fuzzy AHP approach; 

T

AW : Final weight values vector of AHP approach; 

VFij (V-F in short): pairwise weight value for criterion i over criterion j of fuzzy 
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AHP approach; 

VAij (V-A in short): pairwise weight value for criterion i over criterion j of AHP 

approach; 

Rij (R in short): The range of fuzzy number for criterion i over criterion j of 

fuzzy AHP approach; 

Diffij (D in short): Difference of the pairwise weight value for criterion i over 

criterion j between fuzzy AHP approach and AHP approach, and 

ABS-Diffij (ABS-D in short): Absolute difference of pairwise weight value for 

criterion i over criterion j between fuzzy AHP approach and AHP approach. 

4.3.1.3 Analysis steps 

The section of analysis step shows the specific steps of calculation. 

(1) Gain judgment matrix Ak with element aijk = zik/zjk for each stakeholder by 

(1); 

(2) For fuzzy AHP approach, ija
= (lij, mij, uij) is then formed by lij = minimum 

(aijk), mij = geometric mean (aijk) and uij = maximum (aijk), for k = 1~6; 

(3) Gain judgment matrix A  with TFNs for Fuzzy AHP approach; 

(4) For classical AHP approach, aij = geometric mean (aijk) , for k = 1~6; 

(5) Gain new judgment matrix A for AHP approach. 

(6) Calculation results by using Chang’s extent fuzzy AHP approach and 

classical AHP approach are two vectors of weights 
T

FW =(WF1, WF2, WF3, 

WF4) and 
T

AW =(WA1, WA2, WA3, WA4);  

(7) Pairwise weight values between criterion i and criterion j for the two 
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approaches are computed by VFij = WFi/ WFj and VAij = WAi/ WAj; 

(8) Range of pairwise TFNs of Fuzzy AHP for criterion i over criterion j is given 

by Rij = uij - lij; 

(9) Difference and absolute difference of pairwise weight values are then 

calculate by Diffij = VFij - VAij and ABS-Diffij = absolute (Diffij). 

4.3.2.4 Data collection 

Table 4.5~4.10 give the judgment matrix given by individual stakeholder. These 

are the initial data for the following analysis and calculation, by which the input and 

output variables for the modeling could be obtained. For example, the comparison 

value of criterion A over criterion B given by CED is calculated based on Table 2.3, 

which is 0.16/0.1 = 1.6. 

Table 4.5. Judgment matrix given by CED of CVISN project scenario 

Criteria 
CED 

A B C D E F 

A 1.000 1.600 0.941 0.696 0.533 4.000 

B 0.625 1.000 0.588 0.435 0.333 2.500 

C 1.063 1.700 1.000 0.739 0.567 4.250 

D 1.438 2.300 1.353 1.000 0.767 5.750 

E 1.875 3.000 1.765 1.304 1.000 7.500 

F 0.250 0.400 0.235 0.174 0.133 1.000 

Table 4.6. Judgment matrix given by CSI of CVISN project scenario 

Criteria 
CSI  

A B C D E F 

A 1.000 0.952 2.000 0.952 2.500 0.952 

B 1.050 1.000 2.100 1.000 2.625 1.000 

C 0.500 0.476 1.000 0.476 1.250 0.476 

D 1.050 1.000 2.100 1.000 2.625 1.000 

E 0.400 0.381 0.800 0.381 1.000 0.381 

F 1.050 1.000 2.100 1.000 2.625 1.000 

Table 4.7. Judgment matrix given by DMV of CVISN project scenario 
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Criteria 
DMV 

A B C D E F 

A 1.000 0.333 1.000 0.079 0.079 0.333 

B 3.000 1.000 3.000 0.237 0.237 1.000 

C 1.000 0.333 1.000 0.079 0.079 0.333 

D 12.667 4.222 12.667 1.000 1.000 4.222 

E 12.667 4.222 12.667 1.000 1.000 4.222 

F 3.000 1.000 3.000 0.237 0.237 1.000 

Table 4.8. Judgment matrix given by NDR-ITS of CVISN project scenario 

Criteria 
NDR-ITS 

A B C D E F 

A 1.000 1.000 0.500 0.081 0.067 0.500 

B 1.000 1.000 0.500 0.081 0.067 0.500 

C 2.000 2.000 1.000 0.162 0.133 1.000 

D 12.333 12.333 6.167 1.000 0.822 6.167 

E 15.000 15.000 7.500 1.216 1.000 7.500 

F 2.000 2.000 1.000 0.162 0.133 1.000 

Table 4.9. Judgment matrix given by NDR-Tr of CVISN project scenario 

Criteria 
NDR-Tr 

A B C D E F 

A 1.000 1.000 2.556 1.045 1.045 11.500 

B 1.000 1.000 2.556 1.045 1.045 11.500 

C 0.391 0.391 1.000 0.409 0.409 4.500 

D 0.957 0.957 2.444 1.000 1.000 11.000 

E 0.957 0.957 2.444 1.000 1.000 11.000 

F 0.087 0.087 0.222 0.091 0.091 1.000 

Table 4.10. Judgment matrix given by NSP of CVISN project scenario 

Criteria 
NSP 

A B C D E F 

A 1.000 1.667 1.111 1.053 0.714 6.667 

B 0.600 1.000 0.667 0.632 0.429 4.000 

C 0.900 1.500 1.000 0.947 0.643 6.000 

D 0.950 1.583 1.056 1.000 0.679 6.333 

E 1.400 2.333 1.556 1.474 1.000 9.333 

F 0.150 0.250 0.167 0.158 0.107 1.000 

4.3.2.5 Demonstrated sample calculation and procedure 

This set gives example of calculations and demo-procedure of this senario.  

(1) Combine the six judgment matrixes given by different stakeholders together 
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to gain pairwise comparison values for both classical AHP and fuzzy AHP 

approaches. Table 4.11 shows the half of the pairwise comparison values, the 

other half should be the reciprocals of these values. 

Table 4.11. Pairwise comparison values of CVISN project scenario 

Pairwise 

Comparison 

Stakeholder Fuzzy AHP ( ija
) AHP  

CED CSI DMV NDR-ITS NDR-Tr NSP lij mij uij aij 

A/B 1.600 0.952 0.333 1.000 1.000 1.667 0.333 0.973 1.667 0.973 

A/C 0.941 2.000 1.000 0.500 2.556 1.111 0.500 1.178 2.556 1.178 

A/D 0.696 0.952 0.079 0.081 1.045 1.053 0.079 0.409 1.053 0.409 

A/E 0.533 2.500 0.079 0.067 1.045 0.714 0.067 0.417 2.500 0.417 

A/F 4.000 0.952 0.333 0.500 11.500 6.667 0.333 1.911 11.500 1.911 

B/C 0.588 2.100 3.000 0.500 2.556 0.667 0.500 1.211 3.000 1.211 

B/D 0.435 1.000 0.237 0.081 1.045 0.632 0.081 0.420 1.045 0.420 

B/E 0.333 2.625 0.237 0.067 1.045 0.429 0.067 0.428 2.625 0.428 

B/F 2.500 1.000 1.000 0.500 11.500 4.000 0.500 1.965 11.500 1.965 

C/D 0.739 0.476 0.079 0.162 0.409 0.947 0.079 0.347 0.947 0.347 

C/E 0.567 1.250 0.079 0.133 0.409 0.643 0.079 0.354 1.250 0.354 

C/F 4.250 0.476 0.333 1.000 4.500 6.000 0.333 1.622 6.000 1.622 

D/E 0.767 2.625 1.000 0.822 1.000 0.679 0.679 1.019 2.625 1.019 

D/F 5.750 1.000 4.222 6.167 11.000 6.333 1.000 4.674 11.000 4.674 

E/F 7.500 0.381 4.222 7.500 11.000 9.333 0.381 4.585 11.000 4.585 

(2) Generate judgment matrix A for AHP approach and judgment matrix A  

with TFNs for fuzzy AHP approach, as shown in table 4.12 and 4.13. 

Table 4.12. Judgment matrix for AHP approach of CVISN project scenario 

Criterion A B C D E F 

A 1.000 0.973 1.178 0.409 0.417 1.911 

B 1.028 1.000 1.211 0.420 0.428 1.965 

C 0.849 0.826 1.000 0.347 0.354 1.622 

D 2.446 2.379 2.882 1.000 1.019 4.674 

E 2.399 2.334 2.827 0.981 1.000 4.585 

F 0.523 0.509 0.616 0.214 0.218 1.000 

Table 4.13. Judgment matrix for fuzzy AHP approach of CVISN project scenario 

Criterion A B C D E F 

A (1.000,1.000,1.000) (0.333,0.973,1.667) (0.500,1.178,2.556) (0.079,0.409,1.053) (0.067,0.417,2.500) (0.333,1.911,11.500) 

B (0.600,1.028,3.000) (1.000,1.000,1.000) (0.500,1.211,3.000) (0.081,0.420,1.045) (0.067,0.429,2.625) (0.500,1.965,11.500) 
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C (0.391,0.849,2.000) (0.333,0.826,2.000) (1.000,1.000,1.000) (0.079,0.347,0.947) (0.079,0.354,1.250) (0.333,1.622,6.000) 

D (0.950,2.446,12.667) (0.957,2.379,12.333) (1.056,2.882,12.667) (1.000,1.000,1.000) (0.679,1.019,2.625) (1.000,4.674,11.000) 

E (0.400,2.399,15.000) (0.381,2.334,15.000) (0.800,2.827,12.667) (0.381,0.981,1.474) (1.000,1.000,1.000) (0.381,4.585,11.000) 

F (0.087,0.523,3.000) (0.087,0.509,2.000) (0.167,0.616,3.000) (0.091,0.214,1.000) (0.091,0.218,2.625) (1.000,1.000,1.000) 

(3) The following procedures to compute the final weight vector WA for AHP 

approach and non-fuzzy weight vector WF for fuzzy AHP approach are 

totally the same as previous steps for random data scenario part.  
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   (23) 
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4.3.3. Prediction interval demonstration secario 

The following five steps are used to specify the procedure of prediction interval 

part. 

(1) Assume the confidence level α=0.05 for this research. 

(2) The six simple linear regression models for each combination of input and 

output variables obtained in random data scenario part are used to illustrate 

the relationship of these variables and to predict the single response variables 

in the CVISN project scenario part. 
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(3) Prediction intervals for every single response variables in each model are 

calculated based on the six models. 

(4) Check whether or not the actual response values of the CVISN project that 

are attained by fuzzy AHP approach are in-between the predicted intervals. 

(5) Since all of these calculations in this part are based on the previous two parts, 

detailed calculations will be posted later in the result chapter. 
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CHAPTER 5. RESULTS 

5.1. Random data scenario 

A series of linear regression models are built with SPSS statistic software to seek 

the relationship between different dependent variables and the two factors: V-A and R. 

Three variables V-F, D, and ABS-D, are evaluated as dependent variables with respect 

to the two factors. For each pair of input variables and one output variable, one model 

is built. In addition, the 120 pairs of comparison weight values are divided into two 

parts, one of which contains values less than 1 and other one contains values larger 

than 1. Therefore, there are 6 models in total. 

5.1.1. Model 1: V-F1 vs R1 and V-A1 

The independent parameters of the first model are R1 and V-A1 and the 

predicted parameter is V-F1. 

5.1.1.1. Data base for this model is shown in Figure 5.1. 

Figure 5.1 shows the independent and predicted parameters of model 1. It shows 

the visual examination of the relationship between these parameters. 
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Figure 5.1.  Data base for model 1. 
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5.1.1.2. SPSS output 

Table 5.1 and 5.2 shows the ANOVA and coefficient table. Useful information of 

the output includes Mean Square of Error/Residual (MSE) from ANOVA table, the 

coefficients and the significant of each independent parameter from coefficient table. 

Table 5.1. ANOVA table for model 1 

Model 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Regression 16.441 2 8.221 45.727 .000 

Residual 21.034 117 .180   

Total 37.475 119    

Table 5.2. Coefficient table for model 1 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. 
a
 Beta 

Const. .687 .110  6.248 .000 

R1 -2.331E-03 .015 -.011 -.155 .877 

V-A1 .372 .039 .661 9.522 .000 

a. Standard Error 

5.1.1.3 Numerical model 

Since the significance for R1 is 0.877, which is larger than the α level (0.05), it is 

not significant to the dependent variable V-F1, which means that it has no influence to 

V-F1. Also from the coefficient table it is easy to see that the coefficient of 

independent parameter V-A1 is 0.372 and the coefficient of the constant parameter is 

0.687, as a result, the model for V-F1 is presented as: V-F1 = 0.687 + 0.372 V-A1. 

5.1.2. Model 2: D1 vs R1 and V-A1 

The independent parameters of the first model are R1 and V-A1 and the 

predicted parameter is D1. 
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5.1.2.1. Data base for this model is shown in Figure 5.2. 

Figure 5.2 shows the independent and predicted parameters of model 2. It shows 

the visual examination of the relationship between these parameters. 
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Figure 5.2.  Data base for model 2. 

5.1.2.2. SPSS output 

Table 5.3 and 5.4 shows the ANOVA and coefficient table. 

Table 5.3. ANOVA table for model 2 

Model 
Sum of  

Squares 
df 

Mean  

Square 
F Sig. 

Regression 46.503 2 23.252 129.337 .000 

Residual 21.034 117 .180   

Total 67.537 119    

Table 5.4. Coefficient table for model 2 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. a Beta 

Const. .687 .110  6.248 .000 

R1 -2.331E-03 .015 -.008 -.155 .877 

V-A1 -.628 .039 -.830 -16.05 .000 

5.1.2.3. Numerical model 

R1 is not significant to D1, so the model for D1 is then presented as: D1 = 0.687 

– 0.628 V-A1. 
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5.1.3. Model 3: ABS-D1 vs R1 and V-A1 

The independent parameters of the first model are R1 and V-A1 and the 

predicted parameter is ABS-D1. 

5.1.3.1. Data base for this model is shown in Figure 5.3. 

Figure 5.3 shows the independent and predicted parameters of model 3. It shows 

the visual examination of the relationship between these parameters. 
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Figure 5.3.  Data base for model 3. 

5.1.3.2. SPSS output 

Table 5.5 and 5.6 shows the ANOVA and coefficient table. 

Table 5.5. ANOVA table for model 3 

Model 
Sum of  

Squares 
df 

Mean  

Square 
F Sig. 

Regression 45.055 2 22.528 160.505 .000 

Residual 16.422 117 .140   

Total 61.477 119    

Table 5.6. Coefficient table for model 3 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. a Beta 

Const. -.591 .097  -6.088 .000 

R1 -4.526E-03 .013 -.016 -.342 .733 

V-A1 .616 .035 .855 17.83 .000 
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5.1.3.3. Numerical model 

R1 is not a significant parameter to ABS-D1, and the model for ABS-D1 is then 

presented as: ABS-D1 = -0.591 + 0.616 V-A1. 

5.1.4. Model 4: V-F2 vs R2 and V-A2 

The independent parameters of the first model are R2 and V-A2 and the 

predicted parameter is V-F2. 

5.1.4.1. Data base for this model is shown in Figure 5.4. 

Figure 5.4 shows the independent and predicted parameters of model 4. It shows 

the visual examination of the relationship between these parameters. 
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Figure 5.4.  Data base for model 4. 

5.1.4.2. SPSS output 

Table 5.7 and 5.8 shows the ANOVA and coefficient table. 

Table 5.7. ANOVA table for model 4 

Model 
Sum of  

Squares 
df 

Mean  

Square 
F Sig. 

Regression 3.226 2 1.613 77.439 .000 

Residual 2.437 117 .021   

Total 5.663 119    
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Table 5.8. Coefficient table for model 4 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. a Beta 

Const. .327 .038  8.630 .000 

R2 5.596E-03 .005 .076 1.175 .242 

V-A2 .688 .062 .724 11.18 .000 

5.1.4.3. Numerical model 

R2 has only slight influence on V-F2, so the model for V-F2 is then presented as: 

V-F2 = 0.327 + 0.688 V-A2. 

5.1.5. Model 5: D2 vs R2 and V-A2 

The independent parameters of the first model are R2 and V-A2 and the 

predicted parameter is D2. 

5.1.5.1. Data base for this model is shown in Figure 5.5. 

Figure 5.5 shows the independent and predicted parameters of model 5. 
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Figure 5.5.  Data base for model 5. 

5.1.5.2. SPSS output 

Table 5.9 and 5.10 shows the ANOVA and coefficient table. 

Table 5.9. ANOVA table for model 5 

Model 
Sum of  

Squares 
df 

Mean  

Square 
F Sig. 
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Regression .545 2 .273 13.092 .000 

Residual 2.437 117 .021   

Total 2.983 119    

Table 5.10. Coefficient table for model 5 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. a Beta 

Const. .327 .038  8.630 .000 

R2 5.596E-03 .005 .105 1.175 .242 

V-A2 -.312 .062 -.453 -5.073 .000 

5.1.5.3. Numerical model 

R2’s influence is not significant, so the model for D2 is then presented as: D2 = 

0.327 - 0.312 V-A2. 

5.1.6. Model 6: ABS-D2 vs R2 and V-A2 

The independent parameters of the first model are R2 and V-A2 and the 

predicted parameter is ABS-D2. 

5.1.6.1. Data base for this model is shown in Figure 5.6. 

Figure 5.6 shows the independent and predicted parameters of model 6.  
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Figure 5.6.  Data base for model 6. 

5.1.6.2. SPSS output 

Table 5.11 and 5.12 shows the ANOVA and coefficient table. 
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Table 5.11. ANOVA table for model 6 

Model 
Sum of  

Squares 
df 

Mean  

Square 
F Sig. 

Regression .469 2 .234 19.092 .000 

Residual 1.436 117 .012   

Total 1.905 119    

a. R-Square = 0.246 

Table 5.12. Coefficient table for model 6 

Model 

Unstandardized 

Coefficients 

Standardized  

Coefficients t Sig. 

B S.E. a Beta 

Const. .345 .029  11.88 .000 

R2 -1.045E-03 .004 -.025 -.286 .775 

V-A2 -.268 .047 -.487 -5.67 .000 

5.1.6.3. Numerical model 

R2 hardly affects ABS-D2, so the model for ABS-D2 is then presented as: 

ABS-D2 = 0.345 - 0.268 V-A2. 

5.1.7. Results 

Results show that the range of fuzzy values for fuzzy AHP approach has no 

significant affect in all models, so it is not an important factor to the difference of the 

two approaches. Thus, it is omitted from the model.  

On the other hand, the pairwise weight value of AHP is an important factor to all 

six models. In conclusion, in the following research there is only one input variable 

V-A. 

 

5.2. CVISN project scenario 

Previous study in Chapter 4 has worked out the final weight vector WA for 

classical AHP approach and non-fuzzy weight vector WF for fuzzy AHP approach, 
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which are listed below. 
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Then by previous definition of input and output variables, the input and output 

variables for CVISN project are collect and calculate in Table 5.13.  

Table 5.13. Input and output variables of CVISN project scenario 

Subgroup 1 Subgroup 2 

Pairwise  

Comparison 

Input Variable Output Variable Pairwise  

Comparison 

Input Variable Output Variable 

R V-A V-F D ABS-D R V-A V-F D ABS-D 

A/C 2.056 1.178 1.122 -0.056 0.056 A/B 1.333 0.973 0.986 0.013 0.013 

A/F 11.167 1.911 1.160 -0.751 0.751 A/D 0.974 0.409 0.863 0.455 0.455 

B/C 2.500 1.211 1.138 -0.073 0.073 A/E 2.433 0.417 0.870 0.453 0.453 

B/F 11.000 1.965 1.177 -0.787 0.787 B/D 0.964 0.420 0.876 0.456 0.456 

C/F 5.667 1.622 1.034 -0.588 0.588 B/E 2.558 0.428 0.883 0.454 0.454 

D/E 1.946 1.019 1.008 -0.012 0.012 C/D 0.868 0.347 0.770 0.423 0.423 

D/F 10.000 4.674 1.344 -3.330 3.330 C/E 1.171 0.354 0.776 0.422 0.422 

E/F 10.619 4.585 1.333 -3.251 3.251 C/A 1.609 0.849 0.891 0.043 0.043 

B/A 2.400 1.028 1.015 -0.014 0.014 F/A 2.913 0.523 0.862 0.339 0.339 

D/A 11.717 2.446 1.158 -1.288 1.288 C/B 1.667 0.826 0.879 0.053 0.053 

E/A 14.600 2.399 1.149 -1.250 1.250 F/B 1.913 0.509 0.849 0.340 0.340 

D/B 11.377 2.379 1.142 -1.238 1.238 F/C 2.833 0.616 0.967 0.350 0.350 

E/B 14.619 2.334 1.133 -1.201 1.201 E/D 1.093 0.981 0.992 0.011 0.011 

D/C 11.611 2.882 1.299 -1.582 1.582 F/D 0.909 0.214 0.744 0.530 0.530 

E/D 11.867 2.827 1.289 -1.537 1.537 F/E 2.534 0.218 0.750 0.532 0.532 

These variables will be divided into six models consistent with the ones in 

random rata part and will be evaluated in the next section. 
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5.3. Predicted interval senario 

In this section, basic variables for six statistical models are calculated by 

pre-introduced methods firstly. Then for each model, prediction intervals of every 

output variable are calculated for CVISN project. Finally, all output variables are 

verified based on the prediction intervals. 

5.3.1. Basic variables for statistical models 

Basic variables for statistical models that are required to calculate prediction 

intervals in the future include: mean of all input data from the population data ( x ), 

sum of mean square of input variable (Sxx), mean square error (MSE) of population 

data, and the critical value of t test ( 0.05/ 2, 2nt  ).  

Since only one input variable is significant, the mean of input data, sum of mean 

square of input variable and the MSE indicate the mean, sum of mean square and the 

MSE of V-A. What is more, every three models come from one subgroup which 

consists of 120 data, so the degree of freedom for t distribution is 120-2=118 stays the 

same for all six models.  

The confidence level is α = 0.05, which is the most common level for judgment 

in practice.  

These variables for the six models are calculated and given in Table 5.14.  

Table 5.14. Basic output variables for six models 

Model 
Output Variables 

x  Sxx MSE 0.05/ 2,120 2t 
 

V-F1 vs V-A1 1.9482 118.2269 0.180 1.98 

D1 vs V-A1 1.9482 118.2269 0.180 1.98 

ABS-D1 vs V-A1 1.9482 118.2269 0.140 1.98 

V-F2 vs V-A2 0.6168 6.2846 0.021 1.98 

D2 vs V-A2 0.6168 6.2846 0.021 1.98 
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ABS-D2 vs V-A2 0.6168 6.2846 0.012 1.98 

 

5.3.2. Prediction intervals for output variables 

Based on Table 5.1, prediction intervals for every output variable are calculated 

for each model. Prediction intervals are represented by two characteristic values: 

lower prediction limit (LPL) and upper prediction limit (UPL). To obtain these two 

values, predicted values ( ŷ ) and square of the difference between the specific input 

value and x  ((xi- x )
2
) should be calculated first. 

Prediction intervals for six models are shown in Table 5.15~5.20. 

5.3.2.1 Model 1: V-F1 vs V-A1 

Table 5.15 shows the prediction intervals of each predicted parameter, that is 

V-F1 based on the SPSS outcome of Model 1 in the random data scenario.  

Table 5.15. Prediction interval for model 1 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/C 1.1252 0.5932 0.2796 1.9709 

A/F 1.3978 0.0014 0.5543 2.2414 

B/C 1.1376 0.5432 0.2921 1.9830 

B/F 1.4178 0.0003 0.5743 2.2614 

C/F 1.2904 0.1064 0.4465 2.1343 

D/E 1.0663 0.8625 0.2197 1.9128 

D/F 2.4258 7.4315 1.5564 3.2953 

E/F 2.3926 6.9520 1.5248 3.2604 

B/A 1.0695 0.8465 0.2229 1.9160 

D/A 1.5970 0.2480 0.7526 2.4414 

E/A 1.5796 0.2036 0.7353 2.4238 

D/B 1.5721 0.1858 0.7279 2.4163 

E/B 1.5551 0.1486 0.7111 2.3992 

D/C 1.7590 0.8714 0.9124 2.6056 

E/D 1.7385 0.7715 0.8922 2.5847 

5.3.2.2 Model 2: D1 vs V-A1 
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Table 5.16 shows the prediction intervals of each predicted parameter, that is D1 

based on the SPSS outcome of Model 2 in the random data scenario. LPL and UPL 

represent the lower and upper bonds of prediction limits. 

Table 5.16. Prediction interval for model 2 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/C -0.0528  0.5932  -0.8984  0.7928  

A/F -0.5130  0.0014  -1.3565  0.3305  

B/C -0.0736  0.5432  -0.9191  0.7718  

B/F -0.5468  0.0003  -1.3903  0.2968  

C/F -0.3317  0.1064  -1.1756  0.5123  

D/E 0.0468  0.8625  -0.7998  0.8933  

D/F -2.2484  7.4315  -3.1179  -1.3790  

E/F -2.1923  6.9520  -3.0601  -1.3245  

B/A 0.0413  0.8465  -0.8052  0.8878  

D/A -0.8492  0.2480  -1.6936  -0.0048  

E/A -0.8198  0.2036  -1.6641  0.0244  

D/B -0.8072  0.1858  -1.6513  0.0370  

E/B -0.7786  0.1486  -1.6226  0.0655  

D/C -1.1227  0.8714  -1.9693  -0.2761  

E/D -1.0881  0.7715  -1.9343  -0.2418  

5.3.2.3 Model 3: ABS-D1 vs V-A1 

Table 5.17 shows the prediction intervals of each predicted parameter, that is 

ABS-D1 based on the SPSS outcome of Model 3 in the random data scenario.  

Table 5.17. Prediction interval for model 3 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/C 0.1347  0.5932  -0.6111  0.9803  

A/F 0.5861  0.0014  -0.1579  1.4296  

B/C 0.1551  0.5432  -0.5905  1.0005  

B/F 0.6192  0.0003  -0.1247  1.4627  

C/F 0.4082  0.1064  -0.3361  1.2521  

D/E 0.0370  0.8625  -0.7096  0.8836  

D/F 2.2884  7.4315  1.5216  3.1578  

E/F 2.2333  6.9520  1.4680  3.1011  
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B/A 0.0423  0.8465  -0.7042  0.8889  

D/A 0.9159  0.2480  0.1712  1.7603  

E/A 0.8870  0.2036  0.1425  1.7313  

D/B 0.8746  0.1858  0.1301  1.7188  

E/B 0.8466  0.1486  0.1022  1.6906  

D/C 1.1841  0.8714  0.4375  2.0307  

E/D 1.1502  0.7715  0.4038  1.9964  

5.3.2.4 Model 4: V-F2 vs V-A2 

Table 5.18 shows the prediction intervals of each predicted parameter, that is 

V-F2 based on the SPSS outcome of Model 4 in the random data scenario.  

Table 5.18. Prediction interval for model 4 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/B 0.9962  0.9518  0.7052  1.2871  

A/D 0.6083  2.3698  0.3191  0.8974  

A/E 0.6137  2.3453  0.3247  0.9028  

B/D 0.6162  2.3345  0.3272  0.9052  

B/E 0.6218  2.3095  0.3329  0.9107  

C/D 0.5657  2.5638  0.2760  0.8555  

C/E 0.5704  2.5422  0.2807  0.8601  

C/A 0.9110  1.2085  0.6217  1.2004  

F/A 0.6871  2.0302  0.3987  0.9754  

C/B 0.8950  1.2601  0.6059  1.1842  

F/B 0.6772  2.0713  0.3888  0.9656  

F/C 0.7512  1.7734  0.4630  1.0393  

E/D 1.0018  0.9357  0.7107  1.2930  

F/D 0.4742  3.0077  0.1824  0.7660  

F/E 0.4771  2.9932  0.1853  0.7688  

5.3.2.5 Model 5: D2 vs V-A2 

Table 5.19 shows the prediction intervals of each predicted parameter, that is D2 

based on the SPSS outcome of Model 5 in the random data scenario.  

Table 5.19. Prediction interval for model 5 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/B 0.0235  0.9518  -0.2674  0.3145  
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A/D 0.1995  2.3698  -0.0896  0.4886  

A/E 0.1970  2.3453  -0.0921  0.4860  

B/D 0.1959  2.3345  -0.0931  0.4849  

B/E 0.1933  2.3095  -0.0956  0.4822  

C/D 0.2187  2.5638  -0.0710  0.5085  

C/E 0.2166  2.5422  -0.0731  0.5063  

C/A 0.0621  1.2085  -0.2272  0.3515  

F/A 0.1637  2.0302  -0.1246  0.4520  

C/B 0.0694  1.2601  -0.2197  0.3585  

F/B 0.1682  2.0713  -0.1202  0.4566  

F/C 0.1347  1.7734  -0.1535  0.4228  

E/D 0.0210  0.9357  -0.2702  0.3121  

F/D 0.2603  3.0077  -0.0315  0.5520  

F/E 0.2590  2.9932  -0.0328  0.5507  

5.3.2.6 Model 6: ABS-D2 vs V-A2 

Table 5.20 shows the prediction intervals of each predicted parameter, that is 

ABS-D2 based on the SPSS outcome of Model 1 in the random data scenario.  

Table 5.20. Prediction interval for model 6 

Pairwise Comparison Predicted Value ŷ  (xi- x )2 
Prediction Interval 

LPL UPL 

A/B 0.0843  0.9518  -0.1356  0.3043  

A/D 0.2354  2.3698  0.0169  0.4540  

A/E 0.2333  2.3453  0.0148  0.4518  

B/D 0.2324  2.3345  0.0139  0.4508  

B/E 0.2302  2.3095  0.0118  0.4486  

C/D 0.2520  2.5638  0.0330  0.4710  

C/E 0.2502  2.5422  0.0312  0.4692  

C/A 0.1175  1.2085  -0.1012  0.3362  

F/A 0.2047  2.0302  -0.0132  0.4227  

C/B 0.1237  1.2601  -0.0948  0.3423  

F/B 0.2086  2.0713  -0.0094  0.4266  

F/C 0.1798  1.7734  -0.0380  0.3976  

E/D 0.0821  0.9357  -0.1379  0.3022  

F/D 0.2877  3.0077  0.0671  0.5082  

F/E 0.2865  2.9932  0.0660  0.5071  

 

5.3.3. Verification of output variables 

In this section, output variables of CVISN project are verified according to their 
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corresponding models. To perform the verification, output values and prediction 

intervals are needed. If the output value is within its prediction interval, it is said to be 

qualified and is evaluated as 1; otherwise, it is said to be unqualified and is evaluated 

as 0. 

Verification results for six models are shown in table 5.21~5.26, respectively. 

Table 5.21. Verification for model 1 

Pairwise Comparison V-F1 
Prediction Interval 

Verification Value 
LPL UPL 

A/C 1.1217  0.2796 1.9709 1  

A/F 1.1603  0.5543 2.2414 1  

B/C 1.1381  0.2921 1.9830 1  

B/F 1.1773  0.5743 2.2614 1  

C/F 1.0344  0.4465 2.1343 1  

D/E 1.0078  0.2197 1.9128 1  

D/F 1.3439  1.5564 3.2953 0  

E/F 1.3334  1.5248 3.2604 0  

B/A 1.0146  0.2229 1.9160 1  

D/A 1.1582  0.7526 2.4414 1  

E/A 1.1492  0.7353 2.4238 1  

D/B 1.1416  0.7279 2.4163 1  

E/B 1.1327  0.7111 2.3992 1  

D/C 1.2992  0.9124 2.6056 1  

E/D 1.2891  0.8922 2.5847 1  

Table 5.22. Verification for model 1 

Pairwise Comparison D1 
Prediction Interval 

Verification Value 
LPL UPL 

A/C -0.0563  -0.8984  0.7928  1  

A/F -0.7505  -1.3565  0.3305  1  

B/C -0.0730  -0.9191  0.7718  1  

B/F -0.7874  -1.3903  0.2968  1  

C/F -0.5877  -1.1756  0.5123  1  

D/E -0.0117  -0.7998  0.8933  1  

D/F -3.3304  -3.1179  -1.3790  0  

E/F -3.2514  -3.0601  -1.3245  0  

B/A -0.0135  -0.8052  0.8878  1  

D/A -1.2880  -1.6936  -0.0048  1  
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E/A -1.2502  -1.6641  0.0244  1  

D/B -1.2377  -1.6513  0.0370  1  

E/B -1.2011  -1.6226  0.0655  1  

D/C -1.5824  -1.9693  -0.2761  1  

E/D -1.5374  -1.9343  -0.2418  1  

Table 5.23. Verification for model 1 

Pairwise Comparison ABS-D1 
Prediction Interval 

Verification Value 
LPL UPL 

A/C 0.0563  -0.6111  0.9803  1  

A/F 0.7505  -0.1579  1.4296  1  

B/C 0.0730  -0.5905  1.0005  1  

B/F 0.7874  -0.1247  1.4627  1  

C/F 0.5877  -0.3361  1.2521  1  

D/E 0.0117  -0.7096  0.8836  1  

D/F 3.3304  1.5216  3.1578  0  

E/F 3.2514  1.4680  3.1011  0  

B/A 0.0135  -0.7042  0.8889  1  

D/A 1.2880  0.1712  1.7603  1  

E/A 1.2502  0.1425  1.7313  1  

D/B 1.2377  0.1301  1.7188  1  

E/B 1.2011  0.1022  1.6906  1  

D/C 1.5824  0.4375  2.0307  1  

E/D 1.5374  0.4038  1.9964  1  

Table 5.24. Verification for model 1 

Pairwise Comparison V-F2 
Prediction Interval 

Verification Value 
LPL UPL 

A/B 0.9856  0.7052  1.2871  1  

A/D 0.8634  0.3191  0.8974  1  

A/E 0.8701  0.3247  0.9028  1  

B/D 0.8760  0.3272  0.9052  1  

B/E 0.8829  0.3329  0.9107  1  

C/D 0.7697  0.2760  0.8555  1  

C/E 0.7757  0.2807  0.8601  1  

C/A 0.8915  0.6217  1.2004  1  

F/A 0.8619  0.3987  0.9754  1  

C/B 0.8786  0.6059  1.1842  1  

F/B 0.8494  0.3888  0.9656  1  

F/C 0.9668  0.4630  1.0393  1  

E/D 0.9922  0.7107  1.2930  1  

F/D 0.7441  0.1824  0.7660  1  

F/E 0.7499  0.1853  0.7688  1  
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Table 5.25. Verification for model 5 

Pairwise Comparison D2 
Prediction Interval 

Verification Value 
LPL UPL 

A/B 0.0130  -0.2674  0.3145  1  

A/D 0.4546  -0.0896  0.4886  1  

A/E 0.4534  -0.0921  0.4860  1  

B/D 0.4557  -0.0931  0.4849  1  

B/E 0.4544  -0.0956  0.4822  1  

C/D 0.4227  -0.0710  0.5085  1  

C/E 0.4219  -0.0731  0.5063  1  

C/A 0.0426  -0.2272  0.3515  1  

F/A 0.3385  -0.1246  0.4520  1  

C/B 0.0530  -0.2197  0.3585  1  

F/B 0.3404  -0.1202  0.4566  1  

F/C 0.3503  -0.1535  0.4228  1  

E/D 0.0113  -0.2702  0.3121  1  

F/D 0.5302  -0.0315  0.5520  1  

F/E 0.5318  -0.0328  0.5507  1  

Table 5.26. Verification for model 6 

Pairwise Comparison ABS-D2 
Prediction Interval 

Verification Value 
LPL UPL 

A/B 0.0130  -0.1356  0.3043  1  

A/D 0.4546  0.0169  0.4540  0  

A/E 0.4534  0.0148  0.4518  0  

B/D 0.4557  0.0139  0.4508  0  

B/E 0.4544  0.0118  0.4486  0  

C/D 0.4227  0.0330  0.4710  1  

C/E 0.4219  0.0312  0.4692  1  

C/A 0.0426  -0.1012  0.3362  1  

F/A 0.3385  -0.0132  0.4227  1  

C/B 0.0530  -0.0948  0.3423  1  

F/B 0.3404  -0.0094  0.4266  1  

F/C 0.3503  -0.0380  0.3976  1  

E/D 0.0113  -0.1379  0.3022  1  

F/D 0.5302  0.0671  0.5082  0  

F/E 0.5318  0.0660  0.5071  0  
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CHAPTER 6. DISCUSSION 

6.1. Comparison of AHP and fuzzy AHP approaches 

In the first scenario of this research, a comparison of classic AHP and fuzzy AHP 

approaches were performed to give a numerical illustration on how some factors 

affect the difference given by the two approaches. In this way, it adds useful 

knowledge to the relationship between two existing problems: (1) What factors bring 

the difference between classic AHP and Fuzzy AHP? (2) How different the results are 

given by the two approaches? 

According to the hypothesis given by Chapter 3, result in this part concludes that 

in general situation, the pairwise weight values of AHP approach is a significant 

factor to the differences while the range of fuzzy values for Fuzzy AHP approach is 

not. Furthermore, the fuzzy AHP narrows the span of the criteria weights, excluding 

two extreme circumstances in which fuzzy AHP may increase the comparative 

weights of specific criterion.  

To be specify, the first subgroup of model illustrates that, for fuzzy AHP, the 

pairwise weight values increase when the pairwise weight values of AHP increase; but 

the incremental rate is smaller, which means that the larger the pairwise weight values, 

the larger the differences between the two approaches are. The second subgroup of 

models illustrates that, for fuzzy AHP, the pairwise weight values decrease when the 

pairwise weight values of AHP decrease; but the decremental rate is smaller, which 

means that the smaller the pairwise weight values, the larger the differences between 

the two approaches are.  
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In conclusion, fuzzy AHP approach produces the weight for each pair of criteria 

with the same tendency as classic AHP approach, but it narrows them. This outcome 

is attributed to the uncertainty of evaluators’ preferences on the criteria. The 

uncertainty results in the span of fuzzy pairwise comparison numbers which balances 

the weights of each criterion. 

There are two extreme situations, under which the conclusion by previous 

modeling does not hold true.  

(1) Weight value equals to 0  

There is one extreme circumstance that if one criterion whose weight is weaker 

than all of the others, fuzzy AHP will have the weight of this criterion equals to 0. For 

example, for criterion i, aij < 1 for all j, then Wi = 0. In this situation, fuzzy AHP 

enlarges the comparative weight of this criterion.  

(2) Weight value equals to 1 

There is another extreme circumstance that if one criterion whose weight is 

stronger than all of the others, fuzzy AHP will have the weight of this criterion equals 

to 1. For example, for criterion i, aij < 1 for all j, then Wi = 1. In this situation, fuzzy 

AHP also magnifies the comparative weight of this criterion. 

 

6.2. Criteria ranking for CVISN project 

The verification based on prediction intervals suggested that fuzzy AHP is an 

appropriate approach to deal with the multiple criteria decision making problem for 

CVISN project. This conclusion is on the basis of the assumption that the pairwise 
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comparison values gained from stakeholders, who have the equal influence on the 

scores of criteria, are considered to be a series of possible pairwise comparison values 

obtained by a fictitious decision maker. Only in this way can this problem be solved in 

a fuzzy AHP circumstance.  

The detailed information for fuzzy AHP being appropriate in this specified 

problem is stated below: 

(1) For each of the first subgroup of models which have the pairwise comparison 

value larger than 1, 13 out of 15 predicted variables are within prediction 

intervals.  

(2) The only two predicted variables that are out of prediction intervals are the 

pairwise comparison value between D and F, and E and F. By careful 

observation of these three criteria, it is easy to find out from the final weight 

vector gained by classical AHP that criteria D and E are the most important 

criteria with the highest scores (0.297 and 0.291 respectively) while criterion 

F is the weakest criteria with the lowest score (0.063). As well, fuzzy AHP 

approach provided the same trend results that criteria D and E get the highest 

scores (0.191 and 0.189 respectively) and criterion F gets the lowest score 

(0.142), even though these results are greatly narrowed.  

(3) This fact makes the existence of these two outliers make sense. Firstly, fuzzy 

AHP narrows the weights among criteria; secondly, the more extreme the 

weights given by classical AHP are, the greater the fuzzy AHP narrows them; 

thirdly, these two pairs of criteria are all the combinations of the most 
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important criterion and the least important criterion, which means that they 

are all combinations of criterion with extreme weight. As a result, the 

differences between fuzzy AHP and classical AHP on these two pairs of 

criteria are large enough to go beyond the predicted intervals.  

(4) For the first two of the second subgroup of models which have the pairwise 

comparison value smaller than 1, all 15 predicted variables are within the 

prediction intervals. These two models indicate that this problem is well 

satisfied by fuzzy AHP. 

(5) For the last model, there are 6 predicted variables out of 15 failed to be 

within the prediction intervals. 

(6) It is obviously that these 6 variables do not exceed the prediction intervals a 

lot. Hence, it is hard to confirm the conclusion that according to this model, 

fuzzy AHP is not suitable.  

 

6.3. Overall conclusions 

First, this research works on the comparison of classical AHP and fuzzy AHP 

with 240 randomly generated data. By building a series of statistic models, this 

research concludes that criteria weights given by fuzzy AHP follow the same 

tendency as the ones given by classic AHP approach; they concentrate to a smooth 

vector of weights. This conclusion is not acceptable for two extreme situations. These 

models are benchmarks for the application of these two approaches into CVISN 

project. 
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Second, this research uses both classical AHP and fuzzy AHP approaches to deal 

with the multiple criteria decision making problem of CVISN project. Two weight 

vectors show the same trends, which are coincident with the outcomes from the 

random data. 

Third, according to the benchmark, this research verifies the results of the 

CVISN project using prediction interval. Except two pairs of extreme criteria, other 

predicted variables are all within the prediction interval. Moreover, these two outliers 

are understandable and acceptable. Hence, fuzzy AHP is appropriate for CVISN 

project. 

In conclusion, fuzzy AHP is a suitable approach for the CVISN project based on 

some assumptions. Again, it takes care of more stakeholders’ preferences compared 

with classical AHP. As a result, this research takes the weight vector of the criteria 

given by fuzzy AHP approach to provide support for further research.  

The final weight ranking of the six technical requirements is: 
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6.4. Limitations 

There are three limitations for this research. 

(1) The number of criterion was arbitrarily chosen as 4. This limitation came 

from the assumption. 



76 

(2) Consistency Ration (CR) was not taken into account to judge the consistency 

of the system. 

(3) Confidence level α is chosen as 0.05, which is most common used. But under 

this confidence level, the outputs are not very well. Once we changed the for 

a little bit, from 0.05 to 0.02, then the critical value of t test ( 0.02/ 2, 2nt  ) will be 

changed to 2.33 and the prediction interval for the last model will be changed 

in Table 6.1. 

Table 6.1. VERIFICATION FOR MODEL 6 WITH DIFFERENT CONFIDENCE LEVEL 

Pairwise Comparison ABS-D2 
Prediction Interval 

Verification Value 
LPL UPL 

A/C 
0.0130  

-0.1745  0.3432  1  

A/F 0.4546  -0.0217  0.4926  1  

B/C 0.4534  -0.0238  0.4904  1  

B/F 0.4557  -0.0247  0.4894  1  

C/F 0.4544  -0.0269  0.4872  1  

D/E 0.4227  -0.0058  0.5098  1  

D/F 0.4219  -0.0075  0.5079  1  

E/F 0.0426  -0.1399  0.3749  1  

B/A 0.3385  -0.0517  0.4612  1  

D/A 0.0530  -0.1335  0.3809  1  

E/A 0.3404  -0.0479  0.4651  1  

D/B 0.3503  -0.0765  0.4361  1  

E/B 0.0113  -0.1768  0.3411  1  

D/C 0.5302  0.0281  0.5472  1  

E/D 0.5318  0.0271  0.5460  1  

In the future, the number of criterion can be considered as another factor that 

may affect the differences between classical AHP and fuzzy AHP approaches. What is 

more, system consistency can be another aspect to extend this research. Also, the 

confidence level will be considered with more values to specify the results of the 

CVISN project. 
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CHAPTER 7. CONTRIBUTION TO THE BODY OF KNOWLEDGE 

Decision making problem is one of most common problem in Operations 

Research field. AHP approach is an effective and popular way to deal with this 

problem. As a result, it is well known in Operations Research field as a decision 

structuring tool. In 2008, the major international society for operations research 

formally recognized AHP's broad impact on its field. 

This paper works on the differences between classical AHP and fuzzy AHP 

approaches, with the purpose of finding out how the factors influence the differences 

between the two approaches. In this way, this paper contributes to the development of 

Operations Research.  

In addition, based on the comparison, this paper provides the CVISN project 

with reasonable and comprehensive criteria ranking of six important technical 

requirements. As a result, this paper has practical contribution. 

The two AHP approaches used in this paper have been maturely developed and 

well applied into many fields. Also their operations are proved to be simple. One is 

classical AHP approach, with the geometric mean as the average of different pairwise 

comparison values. The other one is Chang’s extent Fuzzy AHP approach.  

Literature research has found that there are many studies on the differences 

between classical AHP and fuzzy AHP. These studies can be divided into two aspects. 

One is about the theoretical methods, which is focusing on how the differences come 

out; the other one is about the final results, which is emphasizing the differences 

between two weight vectors given by corresponding approaches. The connection 
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between these two aspects is a gap in previous studies.  

The detailed contributions to the Operation Research of this paper are listed 

below. 

In the first place, this paper proposes two potential impacts which affect the 

differences between classical AHP and fuzzy AHP approaches. They are the pairwise 

comparison of one criterion over another given by classical AHP and the range of the 

fuzzy number for pairwise comparison given by fuzzy AHP.  

In the second place, this paper generates useful information for the relationship 

between the two aspects of previous researches. This paper explores how the factors 

that give rise to the differences affect the weight vectors given by these two AHP 

approaches. In other words, this paper works out the relationships between the two 

proposed impacts and the differences coming from classical AHP and fuzzy AHP. 

Results show that the range of fuzzy values of fuzzy AHP approach is not an 

important factor to the differences of the two approaches while the pairwise 

comparison values of classical AHP significantly affect the differences. Moreover, 

fuzzy AHP approach produces the weight for each pair of criteria with the same 

tendency as classic AHP approach, but it narrows them. 

In the third place, data used in the comparison are randomly generated data. 240 

random data are more enough to perform statistic modeling. Simple linear regression 

models are built to generate the relationships between the differences given by the 

two approaches and the potential impacts. Hence, this paper compares the differences 

between classical AHP and fuzzy AHP approaches in a statistical way and the 
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differences are in the form of statistical linear regression models.  

In the forth place, this paper is a case study of the comparison of classical AHP 

and fuzzy AHP approaches. Data coming from CVISN project are used to be an 

example to conduct the comparison.  

In the fifth place, prediction intervals are used to verify the results given by the 

CVISN project. Prediction interval is a common method for validation of any single 

predicted value in statistics. 240 random data are data population to create the 

benchmark for prediction intervals by building the statistical regression models.  

In the sixth place, this paper meets the research objective and provides the 

CVISN project with a comprehensive ranking of the six technical requirements. This 

ranking will be used in future research of CVISN project for the purpose of RFID 

system selection. 



80 

CHAPTER 8. REFERENCES 

[1] E. Herrera-Viedma, F. Herrera, F. Chiclana, and M. Luque, ―Some issues on 

consistency of fuzzy preference relations,‖ European Journal of Operational 

Research, vol., 2004, pp. 98-109.  

[2] H. R. Weistroffer and S. C. Narula, Implementation of mcdm methodology in 

decision support systems, systems, Man and Cybernetics, IEEE, Vol. 3, 1989, pp. 

1011-1014. 

[3] R. L. Keeney and H. Raïffa, Decisions with multiple objectives, Cambridge 

University Press, Business & Economics, 1993.  

[4] Y. Chen, D. M. Kilgour, and K. W. Hipel, Using a benchmark in case-based 

multi-criteria ranking, IEEE transactions on systems, man, and cybernetics, vol. 

39, no. 2, march 2009, pp. 358-368. 

[5] T. L. Saaty, Theory and applications of the analytic network process: decision 

making with benefits, Opportunities, Costs, and Risks, Pittsburgh, Pennsylvania: 

RWS Publications, 2005, pp. ix. 

[6] S. T. Chen, and C. L. Hwang, Fuzzy multiple attribute decision making methods 

and applications, New York: Springer-Verlag, 1992, pp. 1-5. 

[7] N. Bhushan and R. Kanwal, Strategic decision making: applying the analytic 

hierarchy process. London: Springer-Verlag, January 2004. 

[8] C. Yu and C. Li, A group decision making fuzzy AHP model and its application to 

a plant location selection problem, IFSA World Congress and 20th NAFIPS 

International Conference, Vol 1, 2001, pp. 76–80. 



81 

[9] B. Taylor, Introduction to management science, Pearson Education Inc., New 

Jersey, 2004. 

[10] E. H. Forman and S. I. Gass, The analytical hierarchy process—an exposition. 

Operations Research, Vol 49, 2001, pp. 469–487. 

[11] H. Y. Kang and A. H. I. Lee , Priority mix planning for semiconductor fabrication 

by fuzzy AHP ranking, Expert Systems with Applications, 2006, 

http://www.sciencedirect.com/science/journal/09574174.  

[12] Z. Luo and S. Yang, Comparative study on several scales in AHP, Systems 

Engineering - Theory & Practice, 2004, 9, pp. 51-60. 

[13] Y. Ge, Q. Xu, and H. Li, The design and application of a generic AHP evaluation 

system, IEEE transitions on Wireless Communications, Networking and Mobile 

Computing, Oct 2008, pp. 1-4. 

[14] Pohekar, S. D., and Ramachandran, M., Application of Multi-Criteria Decision 

Making to Sustainable Energy Planning, A Review Renewable and Sustainable 

Energy Reviews, 8, 2004, pp.365-381. 

[15] H. A. Taha, Operations research, Pearson Education Inc., Fayetteville, 2003.  

[16] J. Sarkis and S. Talluri, Evaluating and selecting e-commerce software and 

communication systems for a supply chain, European Journal of Operational 

Research, 159, 2004, pp. 318-329. 

[17] A. I. Olcer, and A. Y. Odabasi, ―A new fuzzy multiple attributive group decision 

making methodology and its application to propulsion/manoeuvring system 



82 

selection problem,‖ European Journal of Operational Research, Vol, 166, 2005, pp. 

93-114. 

[18] D. Chang, Extent analysis and synthetic decision, optimization techniques and 

applications, World Scientific, Singapore, Vol 1, 1992, pp. 352. 

[19] V. B. Kreng and C. Y. Wu, ―Evaluation of knowledge portal development tools 

using a fuzzy AHP approach: The case of Taiwanese stone industry,‖ European 

Journal of Operational Research, Vol, 176, 2007, pp. 1795-1810. 

[20] F. T. S. Chan and N. Kumar, Global supplier development considering risk factors 

using fuzzy extended AHP-based approach, Omega, Volume 35, Issue 4, 2007, pp. 

417-431. 

[21] Y. Ding, Z. Yuan, and Y. Li, ―Performance evaluation model For transportation 

corridor based on Fuzzy-AHP approach,‖ IEEE Computer Science, Fifth 

International Conference on Fuzzy Systems and Knowledge Discovery, 2008, pp. 

608-612. 

[22] A. L. Guiffrida and R. Nagi, Fuzzy set theory applications in production 

management research: A Literature Survey, Journal of Intelligent Manufacturing, 

Vol9, No. 1, 1998, pp. 39-56. 

[23] D. Dubois and H. Prade, Fuzzy sets and systems. Academic Press, New York, 

1988. 

[24] D. Bouyssou, P. Perny, and M. Pirlot, Nontransitive deomposable conjoint 

measurement as a general framework for MCDM and decision under uncertainty. 

Communication to EURO XVII, Budapest, Hungary, July 2000. 

[25] Y. M. Wang, Y. Luo, and Z. Hua, On the extent analysis method for fuzzy AHP 

and its applications, European Journal of Operational Research, Vol 186, 2008, pp. 

735-747. 



83 

[26] L. C. Leung, and D. Cao, On consistency and ranking of alternatives in fuzzy 

AHP, European Journal of Operational Research, Vol, 124, 2000, pp. 102-113. 

[27] A. ÖZDAĞOĞLU, G. ÖZDAĞOĞLU, Comparison of AHP and Fuzzy AHP for 

the multi-criteria decision making processes with linguistic evaluations, İstanbul 

Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl, 2007/1, pp. 65-85 

[28] O. Meixner, fuzzy AHP group decision analysis and its application for the 

evaluation of energy sources, Proceedings of the 10
th

 International Symposium on 

the Analytic Hierarchy/Network Process, Pittsburtgh/PA, 2009. 

[29] H. Smith and B. Konsynski, Developments in practice X: Radio Frequency 

Identification (RFID) – An Internet for Physical Objects. Communications of the 

Association for Information Systems, Vol 12, 2003, pp. 301-311. 

[30] J. Landt, The history of RFID, IEEE, Vol. 24, 2005, pp. 8-11. 

[31] B. Hatch, J. B. Lee, and G. Kurtz, Hacking exposed linux: linux security secrets & 

solutions, third edition, McGraw-Hill Osborne Media, 2008, pp. 298. 

[32] J. Landt, Shrouds of time: the history of RFID, AIM Inc. 2001. 

[33] Cardullo et al. Transponder apparatus and system, U.S. Patent 3,713,148, 1973. 

[34] C. A. Walton, Portable radio frequency emitting identifier, U.S. Patent, issue date 

May 17, 1983. 

[35] B. Nath, F. Reynolds, and R. Want, RFID technology and applications, IEEE 

Pervasive Computing, Vol 5, 2006, pp. 22-24. 

[36] Paul G. Ranky, An introduction to radio frequency identification (RFID) methods 

and solutions, Assembly Automation, Vol. 26, 2006, pp.28-33. 



84 

[37] Knowledgeleader, What Every Internal Auditor Should Know About RFID. 2006. 

Overview of RFID components. [Online] June 2006. [Cited: 1 November, 2010] 

http://www.theiia.org/download.cfm?file=93793. 

[38] G. Oh, D. Kim, S. Kim, and S. Rhew, A quality evaluation technique of rfid 

middleware in ubiquitous computing, IEEE Computer Science on Hybrid 

Information Technology, 2006, pp. 730-735. 

[39] M. Schneider, Radio Frequency Identification (RFID) Technology and its 

Applications in the Commercial Construction Industry, University of Kentucky 

Civil Engineering Department, Master’s of Science in Civil Engineering 

Examination, April 24, 2003, pp. 6-7. 

[40] Durfee Adam and Paul Goodrum, ―RFID, MEMS, and their Applications in the 

Field of Construction‖, White Paper, 11 January, 2002. 

 

 

http://www.theiia.org/download.cfm?file=93793

