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Figure 8. MIDV of (a) Tmax and (b) Tmin (°C) of the individual stations during  

2008–2012 throughout the growing season. 

 

Figure 9. Scatterplot of Tmax MIDV vs. Tmax RMSE (°C), of all individual stations 

included in this study during 2008 to 2012. 

 

Figure 10. Scatterplot of estimation error (estimated Ta minus observed Ta) of Tmax (a) 

and Tmin (b) vs. the IDV of the current day (Equation (3)), and estimation error of Tmax (c) 

and Tmin (d) vs. the IDV of the next day (Equation (3)), for crop area during 2008–2012 

throughout the growing season. 
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In addition, irrigation might have contribute to the low Tmax estimation accuracy in eastern Nebraska. 

The relationship between observed and estimated Tmax in this area was examined and it was found that 

the Ts of these stations (e.g., Columbus 3 NE, Friend 3 E, and Surprise) that are dominated by irrigated 

crop land, tends to underestimate the Tmax, especially in 2012, due to irrigation. According to the 2007 

Census of Agriculture, of approximately 55 million acres under irrigation nationally, about 15% are 

located in Nebraska (8.56 million acres) [46]. About three out of eight cropland acres in Nebraska are 

under irrigation [46]. Thus, it is reasonable to expect Ts would underestimate Ta in heavily irrigated 

landscapes where targeted water applications result in significant cooling effect on the land surface as 

well as the canopy, as more energy is partitioned to the latent heat flux via evapotranspiration [41]. The 

air will be cooled after irrigation as well, but compared to the decrease of Ts value, the decrease of Ta 

is very small. 

As for Tmin estimation, there is no apparent relation spatially. In addition, there is no obvious relation 

between Tmin IDV and Tmin estimation errors (Figure 10b,d). Landsberg [38] stated that, as compared 

to changes in Tmax, changes in the Tmin are less affected by air masses but much more affected by local 

conditions such as proximity to water bodies and mountains orographic tendencies for inversion 

formation, and other environmental characteristics. This may be a possible reason for the low accuracy 

in Tmin estimation in northwestern Iowa. While at a regional scale, the trends of Tmin MIDV from May 

to September (2.75 °C, 2.24 °C, 1.87 °C, 2.10 °C, and 2.60 °C, respectively) agree well with that of 

Tmin estimation accuracy (Figure 3). 

There may also be some other possible reasons leading to the low estimation accuracy. Though 

combining both Ts-day and Ts-night to estimate Tmax reduced the impact of land-cover types and 

vegetation cover changes, vegetation variables might still have impact on the Ta estimation accuracy.  

It is shown from Table 2 that by integrating DOY information, the estimation accuracy of models for 

both Tmax and Tmin were improved, especially in crops areas and forest areas. As vegetation had been 

variously contributed to latent heat flux, canopy resistance to transpiration [19]. DOY included the 

information of vegetation cover changes with seasons. Remaining clouds (pixel and sub-pixel) negatively 

affect the model performance. Though only pixels marked as cloud-free were selected and the cloud 

cover of the 13-by-13 pixel window was less than 10%, there were still some cloud-contaminated pixels 

included. Thin or sub-pixel cloud cover detection is difficult [47] and the LST retrieved under these 

conditions often corresponds to top-of-cloud temperature [4,48]. In addition, most undetected  

cloud-contaminated LST outliers occur in cloud edges and a large proportion of the pixels with higher 

errors occurred near identified clouds [33,49]. However, cloud-edge elimination, such as considering a 

10-km buffer [48], could limit data availability significantly. Thus, some errors and uncertainty have 

been brought into this study by cloud contamination in order to collect a sufficient sample size of pixels. 

Other factors could also explain some of the errors in Ta estimation from Ts. Prihodko and Goward [19] 

observed deviations of 0.6 °C at horizontal distances of 6-km from a dense spatial ground network of 

meteorological stations. The temperature in the 13-by-13 windows is quite homogeneous in flat terrain 

conditions. However, temperature may show larger spatial variations in hilly areas (e.g., the northwest 

of Iowa) [22]. 
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6. Conclusions 

In this study, the relationships between Tmax, Tmin and both daily Ts-day and Ts-night were 

analyzed and discussed. The results of this study can be considered promising, given the simplicity of 

the statistical models employed and the high accuracy achieved with RMSE of Tmax estimation  

2.27 °C, 2.19 °C and 2.33 °C and RMSE of Tmin estimation 1.76 °C, 1.82 °C and 1.82 °C, for crops, 

deciduous forest and developed areas respectively. 

Interestingly, Ts-night had higher correlation coefficient with daily Tmax than Ts-day in all the  

three land-cover types. Combining both Ts-day and Ts-night to estimate Tmax achieved even better 

accuracy than either variable individually. Compared to using only Ts-night, combining Ts-day and  

Ts-night have little improvement on Tmin estimation accuracy, as Ts-day was not relevant for Tmin 

estimation. Taken DOY into consideration, slight improvement of both Tmax and Tmin estimation 

accuracy was observed in crops and forest areas rather than developed areas. Both Ts-day and Ts-night 

from Terra are better explanatory variables for Tmax, while Ts-night from Aqua is a slight better  

(~0.2 °C) proxy for Tmin. The models had a general tendency to have lower performance of Tmax 

estimation in stations located in irrigated land and the areas with higher IDV, but a better performance 

of Tmax estimation during the period from June to August (the middle of the growing season) than  

either May or September (the beginning or end of the growing season) due to the spatial and temporal 

difference of air masses as well as irrigation. While there was no distinct spatial distribution pattern of 

Tmin estimation across the Corn Belt. Some other factors such as cloud cover and other local conditions 

might also contribute to the difference of estimation accuracy of Tmin.  

As for the TVX method, a wide range of vegetation index (VI) variability in the window, uniform 

atmospheric forcing and moisture conditions are required to build the regression relation between Ta 

and VI [19]. But Corn Belt, mostly covered by crops, has small range of VI variability. This study 

provides a feasible and improved way to estimate Tmax and Tmin in this study area. Through the 

analysis of Ts and Ta relations over crop, deciduous forest, developed area and the spatial and temporal 

variability of Ta estimation accuracy in the Corn Belt, the Ts and Ta relations are better understood in 

this area. A wide range of applications can benefit from this study, especially in agriculture. The 

estimated Ta can be used as an input for GDD in large area based on remotely sensed data. 

Based on the spatial and temporal analysis of Ta estimation accuracy, this work highlighted future 

possible improvements of Ta based on remote sensing data such as (1) take the changes of current Ta 

compared to that of previous days and later days, and surface energy balance process into consideration; 

(2) integrate vegetation variables into Ta estimation model; (3) integrate water stress of vegetation into 

Ta estimation model. 
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