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Energy performance of precast concrete sandwich wall panels is greatly affected by thermal
bridging at the corbel locations. The common practice for wall-corbel connection is to connect
the two wythes with a solid concrete at corbel locations. This connection significantly reduces
the energy efficiency of the panel. According to the PCI latest design handbook, the reduction in
thermal resistance caused by a solid part with an area equal to 9% of the total panel surface area
will be as-high-as 42%. This paper presents two wall-corbel connections that eliminate the ther-
mal bridging. The structural capacity of the two connections was experimentally evaluated by
testing seven full-scale specimens. Minor changes have been made during the testing program to
optimize the constructability, structural capacity, and thermal efficiency of the proposed connec-
tions. This paper presents the design, detailing, and testing results of the proposed connections.
The outcome of this research is a thermally efficient and easy to fabricate wall-corbel connection

that achieves the target load-carrying capacity for most applications.
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CHAPTER 1

1. Introduction
1.1. Background

Precast concrete insulated wall panel is a major product in the precast concrete industry. Similar
to many precast products, the insulated wall panels offer great characteristics. These desirable
characteristics attract designers, contractors and owners to use insulated wall panels in their pro-
jects. Precast insulated wall panels have been used for decades with unprecedented success due
to its architectural versatility, durability, thermal insulation, ease of production and erection, fire

resistance, and structural capacity and performance.

It is not determined exactly when first use of precast concrete insulated wall panels is. However,
the insulated wall panels were produced in North America as early as the 1960’s. The early ver-
sions of insulated wall panels used a thick internal wythe, generally a double-tee or Hollow core,
and a layer of rigid insulation and finally an external non-structural layer. Current practice in
North America typically uses solid wythes for both the internal and external layers. The structur-
al behavior of insulated wall panels is highly dependent on the connectors used to connect the

wythes.

There are three types of design approaches for the insulated panels; Non-composite panels where

each wythe behaves separately when subjected to bending moments; Composite panels where the



wythes behave as parts of a single beam and exhibit a similar stress distribution to a beam of to-
tal depth equal to the wall thickness including the insulation; the last design approach is a com-
bination of the first two approaches where the wythes behave compositely up to a certain load
limit then behaves non-compositely as the load increase. This limit is typically the connector’s

capacity.

Precast insulated wall panels are typically used to form the external periphery of the building.
The wall panels are typically supported vertically by the footings and laterally by the floor sys-
tem. Load bearing panels is a term used for panels that support the floor system and eventfully
transfers that load to the footings. The buildings periphery elevations are subject to unique load-
ing conditions. These loads include the thermal gradient between indoor and outdoor tempera-
tures, vertical reactions from the floor system (if load bearing), in plane shear forces (seismic and
wind) and lateral wind pressure (suction and pressure). Thermal gradient and wind loads result in
bending moments along the longitudinal direction of the wall which typically governs the design

of the wall cross section. In plane shear are seldom to govern the wall design.

Insulated wall panels are typically prestessed along the longitudinal direction to a minimum ef-
fective pre-compression of 225 psi, the function of the prestressing is to satisfy the strength re-
quirements and maintain the wall within acceptable cracking condition during handling and erec-
tion. Along the transverse direction, minimal non-prestessed reinforcement is frequently used to
eliminate the plastic shrinkage cracks. Plastic shrinkage reinforcement recommendation for pre-
cast elements is lower than cast-in-place elements, since the precast manufacturing process al-

lows more room for the elements to freely shrink without retrains.



The insulation layer is a main component of the insulated wall panels system. Different materials
(Polystyrene, Polyurethane, Polyisocyanurate, and Phenolic) are available in the market to be
used as thermal insulation. The extruded polystyrene (XPS) and expanded polystyrene (EPS) are
the common insulation materials used in the precast walls. Required total thermal resistance of
the wall typically governs the thickness of the insulation. The insulation thickness ranges from 2
to 4 inches in typical construction applications. Thermal conductivity is a physical property of
the insulation material which measures the time rate of heat flow by conduction only through a

unit thickness per unit area per unit temperature gradient. Thermal conductivity is measured by

Btu.inch

m] Other terms used in the thermal resistance calculations of walls are the U-

units of [

Value and R-Value, which measure how the heat transfers through an assembly of materials of a

2 o
specified thickness (U-value in units of [hr':tu' F]). R-Value is the reciprocal of U-Value(R =
Y.
1.2. Problem statement

The pursuit for better energy utilization practices are driven by two forces; the ever rising energy
cost and environmental awareness. Owners continue to invest in building operations after con-
struction completion throughout the lifetime of the building (30 to 50 years). In the last decade,
the use of holistic cost estimation methods such as Life-Cycle Cost Analysis became more domi-
nant. The operation energy costs represent a significant portion of the operation costs in addition
to maintenance and employee salaries. Investments in the capital cost (initial cost) will eventfully

payback throughout the extended period after completion. In addition to that, environmentally



aware buildings provide a better end-product for tenants. Building owners and designers include

the operation costs as part of the project cost.

Thermal efficiency of the building envelope (insulated wall panels) is a significant aspect of the
building total thermal performance. The Thermal performance of the insulation layer can be en-
hanced by providing a thicker layer of insulation; however this solution will not be always feasi-
ble due to the added cost of the materials and reduced utilized area of the building. Another issue
which affects the performance of the insulation layer is thermal bridges. Thermal bridges are lo-
cal areas where the thermal performance of the building envelope is reduced significantly. Many
design practices reduce the thermal performance of the insulation layer by imposing thermal
bridges. If these thermal bridges are eliminated totally form the design, the thermal efficiency of

the building envelope will increase with no cost increase.

Thermal bridges are usually proposed to serve a structural function. A transverse solid zone
across the panel width (no insulation) forms a thermal bridge by replacing the thermally non-
conductive material (insulation) with a conductive material (concrete). This solid zone could be
localized in critical areas. Thermal bridges could result from other thermally conductive materi-
als such as steel rebar and stainless steel inserts. There are different methods to calculate the

thermal bridging.

Figure 1-1 and Figure 1-2 show images taken by infrared imaging device for the building enve-
lope. The Light color contours areas represent warm areas on the exterior of the building. These

high-temperature areas can be considered as direct loss of heating energy and consequently cost.



Thermal bridges could be used to connect the two wythes together for the purpose of transferring
the self-weight of the external layer to the internal layer in non-load bearing panels. A common
use of the solid zones is as a shear connector between the two wythes, shear connectors transfer
internal shear force between the compression and tension fibers within the cross section. This
shear flow is originally caused by applied bending moments to the wall panel cross section. Are-
as where thermally conductive connectors are used to connect wythes are also considered a

thermal bridge.

Figure 1-1: Infrared image for thermal bridging in spandrel beams
Photo by (infraredimagingservices.com)



40.0°F

Figure 1-2: Thermal bridges caused by solid zone in precast walls
Photo by (solarcrete.com)
Corbel connections in insulated panels are usually common locations for solid zones (thermal

bridges). Designers use details which stop the insulation around the corbel. The solid zone is typ-
ically in range of 2 to 3 feet in both transverse and longitudinal direction. These large solid zones

drastically reduce the overall thermal efficiency of the insulated wall panel.

1.3. Research objectives

The objective of this research is to develop a corbel design that maintains the thermally insula-
tion of the precast insulated walls. The proposed corbel design should satisfy various objectives

to facilitate the use of the proposed design in typical precast construction.

The predefined design criterion is listed below:

e Adequate, the proposed corbel design should have the enough capacity to support the tar-
get loads. The target loads are thought to cover the majority of buildings applications

e Thermally efficient, the proposed design should maintain the thermal break

e Serviceable, the proposed corbel should exhibit no or very minor cracks and defor-

mations under service loads



¢ Durable, minimum requirements by building codes should be applied in the proposed de-
sign

e Predictable capacity, the behavior of the proposed corbel should be in line with the indus-
try design approaches

e Ease of fabrication, proposed design should easily fit into the production process of the
precast walls

e Use of commonly available materials, the introduced materials (if any) used in the design
should be readily available to the fabricators

e Architecturally acceptable, dimensions of the proposed design should be within the range

of typical design.

This research is initiated in an effort to enhance the thermal efficiency of the precast insulated
walls by eliminating the typically used solid zones at corbels. Therefore this study will address

the possibilities providing a robust corbel connection while preserving the full thermal break.

Table 1: Key Characteristics of corbels versus ledges.........cccoovviiiiiiieiciiieeiiceeeeee, 10

Table 2: Recommended shear friction coefficient by PCI Handbook (2010): ................ 24

Table 3: FEM Models - SUpport detailS .........coooeeeiiieeieeeee 47

Table 4: FEM Models - Material detailS ... 47

Table 5: TeSHNQ PrOGIAM ......uuiiiiii e e e e e e e e et e e e e e e e e e ta e e eeees 62

Table 6: TeSHNG MESUILS ..o 82
1.4. Report organization

The work done towards achieving the research objective will be presented in this thesis in the

following categories:



e Literature and current design approaches review
e Design of the proposed connections
e Experimental study

e Conclusions and design recommendations

The research will commence with collection of the previous works carried out on the corbel
strength. Research about insulated wall panels corbels will be more relevant to this study. Differ-
ent codes recommendations for corbel design will be reviewed. Design guides and recommenda-

tions of precast/pre-stressed wall panels will be review in order to use the current design practice.

The design of the proposed connections will be carried out in order to provide a sufficient ca-
pacity for typical precast construction application. Finite element method is proposed to be used
for the early stages of the design process in order to highlight the critical areas. The design will

be an iterative process based on the results of each testing cycle.

The experimental study stage will include selection of the appropriate testing setup in order to
utilize the available testing facilities. Design of the testing specimens and selection of materials
will be done at this stage. During testing the specimen behavior, observations and results will be

recorded for further analysis.

Finally, the conclusion stage will highlight the design recommendation and lesson learnt out of

the previous stages.



CHAPTER 2

2. Literature review
2.1. Background

Corbels are short cantilevers which project form columns (or walls) face to support and transfer
different reactions to the column (or wall). Typically, the corbels are designed to have a larger
total depth at the column face than the tip. The corbels are basic connection in the precast con-
struction. The concept of precast construction involves the casting of separate components (e.g.
beams, trusses, slabs and columns), then providing a way of connection among these compo-
nents. In the case of beam-column connection, the connection should be able to transfer the beam
reaction to the column. This reaction eventually transfers from the columns to the footings. This

is applicable to walls as supporting components as well.

Design methods for corbels changed over the years from using simple “good practice” rules in
the early of the 20" century to more detailed methods of design. Till more research was done in
the 1960’s, it was widely accepted to deign corbels the same way cantilevers are designed. This
design approaches used the flexural and shear strength of beams. The beam design provisions
were developed and verified against results of beam with relatively higher span/depth ratio. In
the case of corbels, the span/depth ratio is typically around the unity and may get as large as 2.
Hence, using the beam design provision to design corbels will result in uncertainty of the design

safety factors.
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Table 1: Key Characteristics of corbels versus ledges

Corbel Ledge
_ Limited, usually to column width. | Continuous over most of the beam or wall
Widh Walls have limited width corbel too length
Geometry Typically, variable depth. Shallow at | Uniform depth, might have a fraction of
Depth the tip and deeper at the supporting | inch draft for production reasons.
components (column or wall) face,
for aesthetic reasons.
Single point load, in vertical and hori- | Uniform load or a series of point load
Loading zontal directions. spaced almost equally, in vertical and hori-

zontal directions.

Design considera-

tions

Shear strength,
Cantilever bending of corbel,

Bearing strength.

Shear strength,

Transverse (cantilever) bending of ledge,
Longitudinal bending of ledge ,
Attachment of ledge to beam web,
Out-of-plane bending near beam end,

Bearing strength.

Wight, J. and Macgregor, G. (2009) mentioned that designs using the beam provisions will re-

sult in questionable design if the reinforcement ratio exceeds 1%. The beam design provisions

use vertical stirrups to capture the expected diagonal shear cracks occurs at 45 deg. On the other

hand, shear cracks in corbel occur at a much steeper angle with the horizontal direction, in many

cases cracks occur at vertical orientation of 90 deg. Since the cracks are in the same direction of

the stirrups, simply the vertical stirrups will not be able to capture these vertical cracks and fail-

ure will occur. Researcher have shown that corbels are subject to horizontal reactions in combi-

nation with the vertical forces, earlier design approaches always neglected the horizontal forces

adverse effects on the corbel capacity.
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In Europe the design was based on the recommendation of Rausch, E. (1931) in the early 1940’s,
work done by Niedenhoff, H. (1961) was the first to address the corbel as a simple truss system.

This truss consists of a horizontal tie and inclined compression strut.

It is worth mentioning that corbels and ledges may have a common function, however the design
of the two connections are quite different in many aspects. The Table 1 summarizes the main dif-

ferences between the corbels and ledges

2.2. Current connections approaches and practice

Designers have different concerns about the corbel connection in insulated wall panels; therefore
the current practice for insulated wall panels corbels usually sacrifices the thermal insulation at
the connection location. The most typical design concern is about the ability of a relatively thin
wythe to resist the applied reaction (strength wise). In other words the strength of the wall cross
section at the corbel location to resists the applied bending moment. Commonly, insulated wall

panels are prestressed with minimal prestressing to satisfy the ACI 318 (2011). The prestressing
strands (3 /. g inch diameter) are located at 2 inch from the wythe face. In non-composite walls the

thin wythe and location of strands, the wythe capacity is not expected to be much. As for the
composite wall cross sections, the strength concern is not very dominant. In composite wall cross
sections were both wythes are connected with shear connectors, the wall cross section supplies a
significant amount of structural strength. This capacity is much larger than the single wythe ca-
pacity due to the increased effective depth between the tension and compression force couple.
Figure 2-1 shows the different composite concepts in insulated walls. Thermal performance and

rotation of the corbel connection are also concerns for the designer.
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Figure 2-2 illustrates the current practice in corbels design for insulated walls;

e In case of large floor reactions the designer may choose to use of thicker load bearing

internal wythe and non-load bearing external wythe

e Use of solid part at the connection

e Use of local thickening at of the internal wythe at the connection

Bending moment

Bending moment

Bending moment

Partially-composite

Each wythe act separately,
Compression and Tension
stresses in each wythe

Both withes act together
Compression stress in one wythe
and tension stress in the other

Up to the capacity of the
connectors, both withes act
together. After that each wythe
act separately.

Stresses distribution is
combination of Non-composite
and Fully-composite.

Figure 2-1: Different composite concepts PSWP PCI Report (2011)
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2.3. Major researches on corbels behavior

2.3.1. Kriz, L. B. and Raths, C. H.

Kriz, L. B. and Raths, C. H.(1965) carried a large study on concrete corbels; their study included
the testing of 124 corbel subjected to vertical loads only in addition to 71corbels subjected to
combined vertical and horizontal loads. The purpose of Kriz, L. B. and Raths, C. H. study was
to develop rational design criteria for corbels. Total 195 corbels were tested with at the PCA
structural laboratory. The specimens were designed to have shear span to effective depth ratio
less than unity. Kriz included several variables in experimental program; Size and shape of cor-
bel, amount and detail of tension reinforcement, concrete strength, amount of stirrups, ratio of

shear span to effective depth, and ratio of horizontal to vertical force.

The outcomes of Kriz’s study were the development of 2 empirical equations and a list recom-

mendation to be followed in the design.

V, = 0 [6.5bdy/TZ (1-0.5%2) (1000p)"] Equation (1)
where p = 25550 p =002, A, = A,

bd

Equation used if corbel is subject to vertical load only
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1/ ,04H Equation (2)
1000p)(/3*7) a
V, = 065bdyT7 (1-05%) (1000p)" *
10 v

where p = %, Pmax = 0.013

Equation used if corbel is subject to vertical and horizontal load.

The recommendations developed by Kriz included proportions of the corbel dimensions, amount
and details of reinforcement and bearing stress;

e Factored design loads should be increased by a 33%. Since corbels with 1% reinforce-
ment ratio or less, experience yielding of reinforcement and visible cracks at loads equal
to 67% of the failure load. This approach is recommended to ensure the serviceability of
the corbel under moderate overloading. In other words, this recommendation could be
considered as a substitute for serviceability requirements.

e Shear span to effective depth (a/d) ratio less than unity, this design limit was mandated
by the scope of the discussed study, and not necessarily that the corbels with a/d ratio

greater than one will behavior differently — Wight, J. and Macgregor, G. (2009).
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Applied Applied
load load

Bearing Bearing
/ area area
I —— C.L.of | _ |
/ T T rebar

§A§
J °
Desirable fail . Premature failure in corbel
esirable failure in with hi/d < 0.5

C.L.of |
rebar

e
‘< |

corbel with h1/d > 0.5

e h1: Thickness of the corbel at bearing area outer edge
e d: Effective depth, distance measured from the c.g. of tension reinforcement to end of
corbel slopping face.

Figure 2-3: Premature failure by too shallow corbel depth at tip

e Depth of corbel at bearing should be at least half the effective depth (0.5 d). This recom-
mendation was included to prevent a premature crack surface. This crack could start be-
low the bearing area and propagate to the outer sloping face of the corbel or bracket ACI
318 (2011). Refer to Figure 2-3.

e Amount of tension reinforcement Ag should not be less than 0.004 bd. The minimum re-
inforcement ratio recommendation have the same purpose of the increasing the design

loads. Once the corbel cracks the reinforcement will maintain the cracks to an acceptable

width.
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e Closed stirrups A, should be provided, At least 0.5 Ag and these stirrups should be dis-
tributed within the upper two thirds of the effective depth. This recommendation was

based on the observation that horizontal stirrups are very effective

Applied Applied
loads loads

Wedded cross-bar to
develop the main
reinforcement close to
the outer face

Secondary failure due to
Primary failure bypassing reinforcement
at bend

Main reinforcement bent
to meet minimum
bending radii

Figure 2-4: Secondary failure due to poor detailing

e Tension reinforcement should be anchored as close as possible to the face of the corbel.
Kriz recommended the use of a cross-bar welded to the main reinforcement. This detail
ensures the development of the main tensile reinforcement very close to the corbel outer
face. Other details of anchorage may cause a secondary failure. Refer to Figure 2-4.

e Bearing plates should be kept at least 2 inch from the face of the corbel. Bearing stress at
the load should be less than 0.5 f. Theses recommendation is in line with the code provi-

sions for the maximum allowable bearing stress. Some specimens experienced a second-
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ary failure where the bearing plate was located at a distance closer than 2 inch. It is criti-
cal to insure that the expected rotation of the supported elements can be accommodated

within the actual distance provided (considering tolerance).
2.3.2. Mattock et al.

The work done by Mattock et al. (1976) was a continuation for the research done by Kriz, L. B.
and Raths, C. H.(1965) . Mattock et al. (1976) based his work on previous researches about the
simultaneous action of bending moment and shear-friction at the same cross section. In Mat-
tock’s work new design equations were developed to replace the empirical equations developed
by Kriz, L. B. and Raths, C. H.(1965). Figure 2-5 illustrates the forces considered by Mattock et
al. (1976). Mattock et al. (1976) carried out experimental study to verify the proposed design
equations. The main conclusion of Mattock’s study is that the corbel ultimate strength can be

taken to be the lesser of the following:

a) Shear strength of the corbel-column interface, calculated using the shear-friction provi-
sions
b) Vertical load corresponding to the ultimate flexural strength of the corbel-column inter-

face.
Z f, =0 V, = pC Equation (3)

Z fy =0 - Ny = OAf, + BAufyy — C Equation (4)
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_ _ CaN : . Equation (5)
M@c =0 - Vy.a+ Ny (h—d+ jd) = 0Af,. (d) + BApfy. (j1d)

By substituting the value of jd in Equation 5 and conservatively neglecting the contribution of

stirrups reinforcement to the flexural strength:

_ VYt Nh-d) Ny Equation (6)
S of,j'd of,
Ag = A+ A Equation (7)

Eliminating C between equations 3 and 4 and assuming f;, = f:

Vi | Ny Equation (8)
Ap = + LA
Ah = AVf + At - AS - Ah = AVf - Af Equation (9)

Where:

Ay area of reinforcement necessary to resists the applied moment [V,.a + Ny.(h — d)]

A:: area of reinforcement necessary to resists the horizontal force

Ayr: area of reinforcement necessary to resists the applied shear force using shear friction
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(h-d)

Figure 2-5: Corbel free-body diagram Mattock et al. (1976)

Mattock et al. (1976) based his recommendation for the minimum horizontal reinforcement on
previous researches done on the concrete strength of beams without stirrups. These recommenda-

tions were verified by the experimental program. Mattock et al. (1976) concluded:

s Equation (10)

: Vi , d
Pnfyy(min.) = bd 150 (fcp 5)

The experimental program of Mattock’s et al. (1976) study consisted of 28 corbel specimens, and
included variables of; Ratio of shear span to effective depth, ratio of horizontal to vertical force,

amount of tension reinforcement and stirrups and type of concrete aggregate.
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2.4. Recommended provision by various standards

2.4.1. ACI318-11

ACI 318 (2011) recognizes 4 failure modes for the corbel; shearing along the interface, yielding
of the tension tie, crushing or splitting of the compression strut and local bearing or shearing
close to the bearing plat. Two design methods are included in the ACI 318 (2011); cantilever

beam method and strut-tie method. ACI 318 (2011) classifies corbels based on the shear
span/depth ratioa"/ d into 2 categories. The corbels satisfying the condition 1.0 < a"/ { are per-
mitted to be designed using series of design equations based on tests by Kriz, L. B. and Raths, C.
H.(1965) and Mattock et al. (1976). Corbel with longer spans 1.0 < a"/d < 2.0, the strut and tie
method are the only permitted method for design. For corbels having relatively large spans 2.0 <
a"/ d the corbel design provisions are cannot be used; therefore the designer is limited to the

beam flexural and shear provisions.

The limit set on using the Cantilever-beam method 1.0 < a"/ (q Was historically adopted for (2)

reasons; (a) The Cantilever-beam method was not verified for av/ { greater than unity, (b) Hori-

zontal stirrups are insufficient for corbels with larger span since the diagonal tension cracks will

be closer to the horizontal axis. Since the Cantilever-beam method was not verified for corbels

with N“/V greater than unity, The ACI 318 (2011) adopted this horizontal to vertical force ra-
u

tio.
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Shear failures are more predominant in corbel, therefore ACI 318 (2011) adopted the use of

strength reduction factor equal to @ = 0.75.

The maximum shear-friction strength of corbel-column interface could be used as a sizing guid-
ance for the corbel cross section made of normal weight concrete. Equations 11, 12 and 13 list

the different limits for various ranges on concrete strengths.

V, < 0.2f(bd , governs for f. < 4 ksi Equation (11)
V, < (480 + 0.08f() , governs for 14 ksi > f. > 4 ksi Equation (12)
V, <1600 bd , governs for f; > 14 ksi Equation (13)

The corbel depth at outside edge of the bearing plate cannot be less than 0.5 d where d is the ef-
fective depth at the columns interface. This minimum depth is set by the ACI 318 (2011) to pro-
vide a sufficient strength against a possible vertical crack starting close to the outer edge of the

bearing area and propagating till it reaches the sloped face of the corbel.

The following reinforcement requirements are required to be calculated by ACI 318 (2011) can-

tilever-beam method:

Ay Area of shear-friction reinforcement to resist direct shear V,,
Ay : Area of flexural reinforcement to resist moment [V,.a, + Ny (h —d)]

A, : Area of tensile reinforcement to resist direct tensile force Ny,
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The placement of reinforcement in corbels is categorized in (2) locations:

Agc: Area of primary tension reinforcement, larger of A¢ + A, and 2/ 3Avr + Ap

Ay: Area of horizontal reinforcement equal to 0.5(A s — A,), placed within adjacent 2 / 3 d from the

primary reinforcement.

ACI 318 (2011) mandates a minimum primary reinforcement for corbel cross section as service-
ability requirement. This minimum requirement is used to insure against opening of cracks too
widely.

!

fe
Age min = 0.04=bd
fy

Equation (14)

Anchorage of the primary reinforcement is highlighted to be critical by ACI 318 (2011). The an-
chorage could be achieved by several ways; welding to a cross bar or armor angle and bending

the bar horizontally.

2.4.2. PCl design handbook

PCI Handbook (2010) adopts the same methods mentioned in the ACI 318 (2011). However the

design hand book simplifies the design equations further.

_ |Vu-ay + Ny(h—d) Equation (15)
f of,d

Approximation of ACI 318 (2011) provision by elimination the depth of the

compression block compression
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PCI Handbook (2010) adopts the same methods mentioned in the ACI 318 (2011). However the

design hand book simplifies the design equations further.

While PCI Handbook (2010) adopts the same shear friction concept to calculate Ay, the design

handbook recommended less conservative values for the shear friction coefficient to be used.

Table 2: Recommended shear friction coefficient by PCI Handbook (2010):

Crack interface condition Maximum e Va
Concrete to concrete, cast monolithically 34 <0.30f, bd
<1000 bd
Concrete to hardened concrete, with roughened | 2.9 <0.25f, bd
surface <1000 bd
Concrete placed against hardened concrete not | Not applicable <0.20f, bd
intentionally roughened <800 bd

A comparison is done between the two methods (Cantilever-beam and strut-tie) recommended in

the building code and the design handbook. Typically the Cantilever-beam method requires less

primary reinforcement than strut-tie method. However, additional horizontal ties are required

along the depth of the corbel which is not required in the strut-tie method. Based on the proposed

truss model for the strut-tie method the, additional column ties may be required near the bottom

of the corbel.
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2.5. Strut and Tie method

Strut and tie method is relatively a new design approach. The first introduction of the strut-tie
method into building codes was in ACI-318 in (2002) code edition based on the work done
Schlaich et al. (1987) and Wight, J. and Macgregor, G. (2009). Before that code version, a simi-

lar design method was introduced in the AASHTO code in (1994).

The practice of structural engineer generally involves the design of two distinctive members re-
gion. The first member region is the continuous member; this member region can be designed
using the beam theory (B-Region). In the B-Region, the classical principles of strain distribution
(Euler—Bernoulli beam theory, 1750) can be applied. Euler—Bernoulli’s theory state that, Plane
sections rotate but remain plane, as long as the deformations are small and shear deformations
are negligible compared to bending deformations. There are few situations where the previous
theory is not applicable because of the discontinuity. The discontinuity can be; geometric or
loading discontinuity. Examples of geometrical discontinuity are regions close to holes of sudden
change in cross section. Loading discontinuity exist near the concentrated loads, prestressing
force or reactions. Within the (D-Region) the strut-tie method could be applied successfully -

Wight, J. and Macgregor, G. (2009).

Till the 1980’s the design of the D-Regions was based on either good practice rules or empirical
equations. Several researches were carried out by Schlaich et al. (1987) and Wight, J. and Mac-
gregor, G. (2009) in an effort to develop accurate design approach for use with the D-Regions.
The extent of the D-Region is approximately defined by (Saint Venant's principle). This princi-

ple can be interrupted that the stress concentrations (disturbance) around discontinuity regions
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will eventfully change to a uniform stress within a small distance. This distance can be consid-
ered equal to the member depth on both sides of the D-Region Wight, J. and Macgregor, G.

(2009).

Corbels are considered to be D-Regions, both geometrical and loading discontinuity occurs at the
corbel regions. This classification of corbels as D-Regions allowed the use of Strut-Tie method

in designing corbels. Figure 2-6 defines the D-Regions and B-Regions for corbel connection.

B-Region

d
L (Corbel depth) L

-~ I T D—-Region

Figure 2-6: D-Regions and B-Regions in corbel connection
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D-Regions behave in an elastic manner up to the cracking. After cracking the stress flow changes
into a different orientation. These new orientation could be modeled using the strut-tie elements

in order to estimate the ultimate capacity of the region.

Strut and tie method modeling uses 3 components; Strut, Ties and Nodes. Struts are the basically
concrete members responsible for carrying the compressive stresses. Struts could be prismatic,
tapered or bottle-shaped, obviously prismatic struts have uniform width over it length. Bottle-
shaped have wider width within the middle region of the strut length. Bottle shaped struts usually
used when more stringent requirements are applied to the ends of the struts. Due to that wider
dispersion of stresses at the middle region of the bottle shaped struts, transverse tensile stresses
occur and usually reinforcement ties are provided to account for these tensile stresses. Compres-
sive strength of the strut is affected by several reasons; shape of the strut, use of transverse rein-
forcement within the strut and the presence of the strut within a tensile zone. Therefore the de-
sign provision in different building codes permits the use of a fraction of f/, in ACI 318 (2011)

the usable compressive strength of struts is defined as follows:

Fns = 0.85 B f; Equation (16)

Where ¢ ranges from 0.4 to 1.0

Tie elements are responsible for transferring the tensile forces among the joints of the chosen
truss and the supports points. Detailing and anchorage of ties are crucial for its effectiveness; ties

may fail due to lack of anchorage and the nodal zones. Prestressing reinforcement (if present)
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could be utilized as part of the ties strength. A concrete prism is required by ACI 318 (2011) to
surround the tie reinforcement; the function of this prism is to define the width of the nodal

zones and to increase the axial stiffness of the tie Wight, J. and Macgregor, G. (2009).

Fre=As fy+ Aps(foe+ Af) Equation (17)

The last component of the strut-tie model is the Node or Nodal zones. Nodal zones are the lim-
ited regions where the different truss forces meet. Nodal zones can be classified to CCC, CCT
and CTT based on the types of forces meet at the node (Compression or Tension). Hydrostatic
nodal zones are a term for the nodes where 3forces at a node and the node side length are proper-
tied to the magnitude of the force. In these nodes the stress is equal in all directions. The strength
of nodal zones according to ACI 318 (2011) is dependent on the type of forces meeting at the

node.

Fon = 0.85 B, f¢ Equation (18)
Where 3, = 0.65 for CTT, 0.80 for CCT and 1.0 for CCC

There are several possible layouts for the strut-tie truss, the layout should as close as possible to
the expected post-crack behavior. The more realistic the elements layout is considered, the less

reinforcement content required and the less crack width. ACI 318 (2010) recommends struts an-

gle ranges from 25° to 65°.
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CHAPTER 3

3. Proposed connections
3.1. Design

In order for this study to propose a sound, adequate and practical connection, the design criteria

for connections included the following aspects:

e Preservation of the thermal break

Flexural capacity

Durability and fire endurance

Expected rotation of corbel (rotation of support)

Several corbel connection proposals that satisfy the above criteria were studied and evaluated. In
general the tension element of the connection was the main variable. The selection preferences
was based on; availability of the basic components, expected strength and practicality of fabrica-

tion. Out of the studied possibilities for the tension element were:

e Threaded GFRP rod with nut, at the corbel side and/or both sides
e Bell shaped GFRP bars
e Several bend configurations for the GFRP bars

e FRP Hollow structural section (HSS)
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Corbel connections are subject to horizontal loads transferred to connections from the supported
elements. Various sources can result in that horizontal force, volume changes of the supported
element is one of the major sources for the horizontal force. The ACI 318 (2011) mandates a
minimum horizontal force equal to 20% of the vertical design force to be including in the corbel
design. Kriz, L. B. and Raths, C. H.(1965) and Mattock et al. (1976) developed a rational proce-
dure to include horizontal force in the design. In this study the horizontal force were not included
in the analysis or the testing. However, however based on the work of Kriz, L. B. and Raths, C.

H.(1965) and Mattock et al. (1976) the effect can be included in the calculations.

In real life precast construction, corbels are used basically to support the floor system compo-
nents (beams and slabs). A large part of the projects were precast construction is used have mod-
ular configuration. Parking structures, schools, data centers and industrial buildings are projects
where precast construction is commonly used in the US practice. The proposed connection was
designed with these typical building in mind, with regards to the imposed ranges, components
used and range of spans. The typical floor systems used in the building types mentioned earlier
are; Double-Tee and steel joist. As far as the connection design, Double tee is more critical. The

reason is the greater self weight reaction of Double-Tee if compared to the steel joist.

Figure 3-1 illustrates the reference components used in this study to describe the corbel connec-

tion.

The proposed connection must satisfy two limit states to be considered acceptable; Ultimate limit
state and service limit state. Similar to the typical corbel connection design, flexural strength,

shear strength and bearing strength is applicable to the proposed connection. The service limit
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strength are considered be minimizing any excessive cracking or rotation at the support. Refer to

Appendix A for the adopted loading criteria.

In addition to the mentioned limit states, since the proposed connection uses mostly GFRP bars
as a basic load carrying components. The creep rupture is included as one of the limit states.
GFRP reinforcing bars will be subjected to a constant load over time, during this constant load-
ing can GFRP suddenly fail after a time period called the endurance time. This phenomenon is
known as creep rupture. Creep rupture is insignificant with steel bars in reinforced concrete ex-
cept in extremely high temperatures. As the ratio of the sustained tensile stress to the short-term
strength of the GFRP bar increases, endurance time decreases. As will be concluded later in this

study, the creep rupture will be the governing limit state in many cases. Refer to ACI 440 (2006).

The loading and system criteria mentioned earlier are thought to be adequate for large part of the
precast construction in the US market. Based on that criteria the following loads is set to be “tar-

get loads”, and the connections is considered adequate if meets or exceeds these loads:

e Factored load =42 kip
e Service load =28 kip

e Sustained load =20 kip
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Side face

Top face

Tip

Front face

Corbel-Wall
interface

Exteri h
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Corbel-Wall
junction line

Insulation layer

Interior wythe

Figure 3-1: Geometric terms used in this study

Each of the proposed connection adopted a certain system to transfer the applied to the external
support points. Generally the connection purpose is to transfer the applied load and the corre-
sponding moment from the corbel to the wall wythes. In precast insulated walls, the wythe thick-
ness is relatively small (3 to 5 inch) if compared to the solid walls (8 to 12 inch). The transfer of
the corbel reaction to the supporting wall becomes a challenge to the designer. Typically, the

corbel rebar can be bent into the solid walls; rebar detail transfers the tension force within the bar
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to the wall through bond, mechanical interlocking between the rebar ribs and wall concrete and
by bearing at bent potion. Meanwhile, these forces usually available in the solid walls have lim-
ited capacity in the insulated walls. This limited capacity is due to the thinner concrete cross sec-
tions. The next step after transferring the load successfully to the insulated wall is to assure that
the wall will be capable to transfer these forces back to the supports. A single wythe is seldom
capable to do that. The typical single wythe thickness of 3 in. to 5 in. will mostly crack severely
or experience an excessive rotation. Therefore, a superior corbel connection design will engage
the both wall wythes to minimize the cracking and provide a limit the rotation of the corbel. The
engagement of both wythes is more effective is provided at the corbel location. However, the
composite connectors used at many locations over the wall panel offer another way to ensure the

wythes work compositely.

Specimens Al, A2, A3, A4 and A5 use similar structural system to resist the externally applied
eccentric force resulting in bending moment and shear force. The bending moment is the critical
components in corbel connections. Figure 3-2 and Figure 3-3 show a 3D view for specimen A2
components. Figure 3-4 and Figure 3-5 illustrate the load path for specimens A2 and A1 respec-

tively:

1. The vertical applied force to the corbel is transferred to the corbel by bearing to the top
surface of the corbel

2. After the cracking stage, the bending moment is resisted by tension force in the top hori-
zontal stirrups and compression stress block (Whitney’s stress block) near the corbel-

wall junction. The force in the stirrups decrease linearly as the tie distance from plastic
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neutral axis decrease. Therefore, the lowest horizontal stirrup is ignored in the calcula-
tions

. Tension force in the stirrups then transferred to the anchorage bar by direct bearing (re-
bar-rebar) and/or bearing through concrete (rebar-concrete-rebar). The stirrups are orien-
tated that the continuous side encloses the anchorage rebar. The stirrups overlapping
legs are thought to be a less strong side; therefore this side is embedded in the corbel
where enough embedment could be assured

Shear force (equal to the applied force) is transferred to the interior wythe through fric-
tion at the corbel-wall interface. However, this interface will be cracked at loads close to
failure loads; the force can still be transferred by shear friction concept in addition to
contact shear at the un-cracked part (compression stress block)

Specimen A1 anchorage bar works as a beam, loaded with 2 point loads from the stir-
rups and. This beam is supported by at 1 point with the NU-Ties and with bearing stress
between the anchorage bar and the concrete. In specimen A2, the bearing supports of the
concrete was replaced by another NU-Tie. In specimen Al, the level of the NU-tie sup-
port was lower than the applied load. This location of load caused the anchorage bar to
work in a similar way to a beam with overhang. The difference in behavior is clear in
failure diagrams in chapter 4. In case of specimen A2, the applied point loads to the an-
chorage bar are not equally spaced from the support points (NU-Ties), this eccentricity

of the loading imposes higher reaction on the lower NU-Tie.
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6. Compression stress block near the corbel-wall junction results in bearing stress applied
to the interior wythe. Large transverse rebar are used to reinforce this zone to distribute

this force to a wider area of the wythe in order to avoid possible failure in bearing.

Anchorage Reinf,

— Reinf. stirrups

Concrete

Cut NU-Tie Insulation

™

\— Transverse bearing
Reinf.

Figure 3-2: Various components of NU-Ties system for Specimen A2

Figure 3-3: Assembled NU-Ties system for Specimen A2
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Prefabricated corbel block

Tension forces in top steel stirrups

Bottom steel stirrups, conservatively ignored

Compression force/stress and corresponding friction between corbel and the interior wythe
Anchorage rebar

Reaction tension force in NU-Ties due to(2)

Not used

NU-Tie

Tension force transferred to exterior wythe by anchorage of NU-Tie

Compression force/stress and corresponding friction between corbel and the interior wythe
Transverse rebar to distribute compression force

Vertical force/stress equal to the applied load in interior wythe

Exterior wythe

Figure 3-4: Free body diagram — Specimen A2
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Tension forces in top steel stirrups

Bottom steel stirrups, conservatively ignored

Compression force/stress and corresponding friction between corbel and the interior wythe
Anchorage rebar

Tension force in NU-Ties due to bending moment by@

Bearing force/stress due to eccentric loading on the anchorage bar due to bending moment by@
NU-Tie

Tension force transferred to exterior wythe by anchorage of NU-Tie

10: Compression force/stress and corresponding friction between corbel and the interior wythe
11: Transverse rebar to distribute compression force

12: Vertical force/stress equal to the applied load in interior wythe

13: Exterior wythe

N ALN

Figure 3-5: Free body diagram — Specimen A1l

7. In specimens A3, A4 and A5, additional non-conductive compression element (GFRP
pin) were used. The purpose of this element is to enhance the compression stress sharing

between the interior and exterior wythes and reduce the deformation
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8. The NU-Ties are capable of transferring the tension force to the exterior wythe. The
NU-Ties system uses the anchorage and bearing forces between the NU-Tie and the
concrete. Large number of tests has been carried out on the NU-Ties embedment re-
quirements. The tension force transferred from the NU-ties to the walls will cause the
exterior wythe to bend towards the insulation (the wythe thickness as depth). This bend-
ing of the wythe will share part of the tension force with the interior wythe. Both wythes
will finally transfer this force as a beam to the horizontal supports

9. Shear force transferred from the corbel to the interior wythe is resisted by the wall inte-
rior wythe. This vertical force results in bearing stress in the interior wythe. Since both
wythes are designed to work compositely by providing composite connectors, this bear-
ing stress eventfully will be shared between both wythes. At the wall panel bottom sup-
port, this shear force will be transferred to the support

10. In typical precast construction the mentioned vertical supports and horizontal supports

are foundation and floor diaphragm respectively.

Figure 3-6 and Figure 3-7 show a 3D view for specimen A3, A4 and A5 components, and Fig-

ure 3-8 load path for same specimens (A3, A4 and AS).
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Anchorage Reinf. \

Reinf. stirrups

_ “— Concrete
— Framing bar

Cut NU-Tie

GFRP Pin “— Transverse bearing

Reinf.

Figure 3-6: Components of Modified NU-Ties system, Specimens A3, A4 and A5

Figure 3-7: Assembled Modified NU-Ties system, Specimens A3, A4 and A5
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Prefabricated corbel block

Tension forces in top steel stirrups

Bottom steel stirrups, conservatively ignored

Compression force/stress and corresponding friction between corbel and the interior wythe
Anchorage rebar

Reaction tension force in NU-Ties due to 2

Compression force/stress transferred through the FRP from interior wythe to exterior wythe
NU-Tie

Tension force transferred to exterior wythe by anchorage of NU-Tie

Compression force/stress and corresponding friction between corbel and the interior wythe
Transverse rebar to distribute compression force

Vertical force/stress equal to the applied load in interior wythe

Exterior wythe

Figure 3-8: Free body diagram — Specimens A3, A4 and AS

Specimen Bland B2 use a similar structural system to resist the externally applied eccentric
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APPLIED
LOAD

force. Figure 3-9 and Figure 3-10 show a 3D view for specimen B2 components. Figure 3-11 and

Figure 3-12

illustrate the load path for specimens B2 and B1 respectively:
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Figure 3-5 illustrates the path of the applied force from application till it partially transferred to

the external supports as listed next:

Figure 3-9: Assembled GFRP bars system, Specimen B2

GFRP bars

Reinf.
Transverse
Rebar

Concrete

FRP Tube

Reinf. U-Bars

Insulation

Figure 3-10: Different components of GFRP bars system, Specimen B2
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The vertical applied force to the corbel is transferred to the corbel by bearing to the top
surface of the corbel

. After the cracking stage, the bending moment is resisted by tension force in the GFRP
bars. The horizontal U-Bars of specimen B2 are not included in the flexural capacity, the
U-Bars are provided to attach the corbel to the wall after rupture of GFRP bars. A com-
pression stress block is formed near the corbel-wall junction

Tension force in the GFRP bars is transferred directly to the exterior wythe by means of
bond and bearing - Ehsani et al.(1995).

Shear force (equal to the applied force) is transferred to the interior wythe through fric-
tion at the corbel-wall interface in specimen B1. As for specimen B2, the horizontal U-
Bars provide more shear strength through shear friction concept

Compression stress block near the corbel-wall junction results in bearing stress applied
to the interior wythe. Part of the compressive stress is transferred transversely by the
wythe thickness as beam to the supports. The rest of this stress is transferred through the
compression component -plastic lumber boards for specimen B1 and structural plastic
tube for specimen B2- to the back wythe. Similar to the interior wythe, the exterior
wythe transfers the compressive stress in form of reaction to external supports
Transverse rebar are used to reinforce the zone of GFRP bars are anchored in the back
wythe. It was expected that the bars will enhance the anchorage of the GFRP bars.
However these rebar where eliminated in specimen B2 since the GFRP bars ruptured

close to the bend.
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7. Since both wythes are designed to work compositely, the vertical bearing stress caused
at the interior wythe will be shared between both wythes. This vertical bearing stress
will be transferred to the bottom support

8. The tension force transferred from the GFRP bars to the exterior wythe will cause the it
to bend towards the insulation (the wythe thickness as depth). This bending of the wythe
will share part of the tension force with the interior wythe. Both wythes will finally

transfer this force as a beam to the horizontal supports.
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Prefabricated corbel block

Tension forces in GFRP bars

Steel stirrups, conservatively ignored

Compression force/stress and corresponding friction
between corbel and the interior wythe

Compression force/stress and corresponding friction
between corbel and the interior wythe

Compression force/stress transferred through the
FRP from interior wythe to exterior wythe

Vertical force/stress equal to the applied load in
interior wythe

Exterior wythe

Figure 3-11: Free body diagram — Specimen B2
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Prefabricated corbel block

Tension forces in GFRP bars

Steel stirrups, conservatively ignored

Compression force/stress and corresponding friction
between corbel and the interior wythe

Compression force/stress and corresponding friction
between corbel and the interior wythe

Compression force/stress transferred through the
FRP from interior wythe to exterior wythe

Vertical force/stress equal to the applied load in
interior wythe

Exterior wythe

Figure 3-12: Free body diagram — Specimen B1
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This paragraph will describe some of the design consideration for the proposed connections:

1. Appendix A shows the calculations procedure for specimens A2, It can be concluded
from the calculations that the govern limit state was the Creep-rupture of the GFRP
NU-Ties.

2. The width of the corbel was chosen to be accepted architecturally. Set 3, corbel width
was changed to allow more tolerances for the anchorage bars

3. In order to fit the GFRP bars of specimens B1 and B2 in the exterior wythe, a tighter
bend radius was used. This tight bend radius was different from the recommendations
of the manufacture. However, the expected reduced capacity of the rebar due to the e
tight bend was compensated was more rebars than needed. This is thought to be ade-
quate since the GFRP bars are not expected to reach high levels of stresses similar to

steel rebar.

3.2. Analysis

The analysis is carried out using MIDAS-Gen software package. The purpose of the FEM mod-
eling is to evaluate the behavior of the specimen within the elastic range of behavior. Since the
strength was determined using the code prescribed equations and assumptions, the behavior of
the connection beyond the elastic range was not included. The governing criteria of the connec-

tions design is a creep-rupture which occurs within the elastic range.

FEM models for specimens A2 and B2 only were constructed to simulate the behavior of the dif-
ferent connections. The results of the modeling included the expected deformation up to the elas-

tic range. Other results similar to the support reactions were extracted.
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Linear elastic materials were used to model the concrete, NU-Ties, GFRP bars and structural
plastic tube. As mentioned earlier the use of elastic linear materials is suitable for the intended
purpose of the FEM models. The concrete withies were modeled as three-dimensional 8 points
solid elements. The solid elements were constructed on a 1x1x1 inch grid. NU-Ties, GFRP bars
and tube were modeled using two-dimensional truss elements. Rotational degree of freedom was

omitted at these elements ends.

Insulation layer (Expanded polystyrene) was omitted from the FEM models. The insulation ma-
terial offers a compressive strength of 25 psi at relatively low elasticity modules. This non-

structural layer can enhance the behavior of the specimen, however it was chosen not to rely on
this layer due to various reasons; degradation of the properties along time and insufficient infor-

mation about the elasticity. Figure 3-13 and Figure 3-14 show the geometry of the FEM models

used.
Table 3: FEM Models - Support details
Type Stiffness kip/in
Vertical support Compression Only 12000
Horizontal support Bottom Compression Only 1000
Horizontal support Top Tension Only 950
Table 4: FEM Models - Material details
Material Elastic Modules ksi Poison ratio
Concrete Grade C5000 4070 0.2
NU-Ties, GFRP Bars and FRP structural | GFRP 5890 0.2
tube
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Figure 3-13: FEM Models geometry, Left: A2, Right: B2

The boundary conditions of the FEM model were equal to the actual to the testing conditions.
Vertically, the full bottom edge of the wythes was used as supporting points spaced at 1x1 inch
grid. These vertical supports were assigned a springs. The spring constant is equal to the values

listed in Table 3. As explained in chapter 3, the lower 6 inch of the overlapping area between the
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wall panel and the reactions wall were used as horizontal compression-only spring support. To
form a resisting force-couple to the applied eccentric force, a top tension-only spring support was
used at the location of the reaction frame. A simplified geometry was adopted for the NU-Ties

and GFRP bars.

The theoretical cracking load at corbel-wall interface was used for the compassion purpose, the

concrete modules of rupture is calculated using:
f. =751/t ACI 318 (2011)

Figure 3-15 and Figure 3-16 illustrates the different deformation behavior of the two compared
specimens. It is obvious that use of a compression strut at the bottom of the corbel reduces the
deformation of the corbel and the rotation support. Reduction percentage of A2 deformation is
approximately equal to 9%. Therefore this strut was used in specimens A3, A4 and AS5. However

the form of the strut is different from specimen B1 and B2.



Figure 3-14: FEM Models geometry - 3D View
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Strut and Tie model was developed for specimen B2 in order to estimate the failure load. Fig-
ure 3-17 and Figure 3-18 illustrates the different components of the strut and ties method for

connection B2 along with the corresponding forces in each component.

Wersion 0.9.11 (Last Updated on 1/26/04)

0.700

0.800

'Projecl Name: B2 3/8/2013 7:30:08 PM
Printout Description: Load LC1: Forces, Reactions, Stress Ratio Values & Contours

Figure 3-17: Strut and tie results for specimen B2 at 60 kip applied load
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Version 0.9.11 (Last Updated on 1/26/04)

Project Name: B2 3/8/2013 7:30:06 PM

Printout Description: Load LC1: Forces, Reactions, Stress Ratio Values & Contours

Figure 3-18: Calculated capacity for specimen B2 equals to 74.02 kip

0.800

54



55

3.3. Materials and Fabrication

3.3.1. Materials

Self consolidated concrete (SCC) is commonly used in precast construction. SCC offer excellent
workability characteristics. The concrete workability is critical property in the concrete used to
cast relatively thin elements similar to the insulated wall wythes. Ready-mix supplied SCC was
used to cast the specimens of this study to follow the common practice in the industry. Fig-

ure 3-19 show the slump flow for the concrete used in specimens A2 and B2.

Figure 3-19: SCC Slump-Flow

As mentioned earlier in this chapter, the insulated panels are typically loaded with relatively light
reactions from the floor system. Concrete strength for precast insulated panels is typically 5000
psi to 8000 psi. The concrete strength used in specimen’s sets 1 and 2 was ordered to meet the
upper limit of this range. However, the actual concrete strength at time of testing was greater
than that. This issue was corrected in specimen set 3. The use of a concrete strength to match the

common industry practice will lead to a better utilization of the connection. Several cylinders
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4x8 inch, diameter x height were prepared during casting to be tested in order to determine the
concrete strength at time of testing. The cylinders were kept in moist room immediately after
casting. At the day of testing the cylinders were taken out of the moist room and prepared by sur-
face grinding for testing. The test was done in Compression Test Machine. The loading rate was

maintained in range of 450 1b/s = 35 psi according to ASTM C 39.

Typically, the design of insulated wall panels is governed by forces induced after the casting
(stripping and handling) and the final wind loads. Both loading conditions result in out-of-plane
stresses in the wall panel. Therefore, the common practice in the precast industry is to use longi-
tudinal prestressing in the wall panels. The longitudinal prestressing provides enough strength in
the cross section to resist the out-of-plane bending moment and provides a pre-compression force
to keep the wall panel un-cracked during operations done after casting. In this study it was cho-
sen to use non-prestressed reinforcement to reinforce the wall panels. Non-prestressed cross sec-
tion is more vulnerable to cracking. It a conservative approach to use non-prestressed cross sec-

tions since the cracking load is a main design criteria in this study.

Deformed reinforcing bars (rebar) of minimum yield strength 60,000 psi were used in this study.
Rebars are usually required to meet ASTM A615 or A996. For specimen set 1 and 2, the bent
bars (Stirrups and U-Bars) and straight bars were provided by a local rebar fabricator. For speci-

men set 3, the precast manufacture provided the bent rebar.

NU-Ties are a proprietary product of Aslan FRP. Refer to Figure 3-20.The NU-Ties are compo-
site connector designed to be stiff in one direction (one-way shear connector). NU-Ties are de-
signed to transfer the shear flow between the wall wythes and provide the required composite

action. Nu-Ties are manufactured of glass fiber reinforced polymer (GFRP). NU-Ties inherently
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Btu.inch
hr.ft2 °F

have a low thermal conductivity 0.2 [ ] as per the manufacture data, this thermal conduc-

Btu.inch
hr.ft2.°F

tivity is close to the thermal conductivity of the insulation itself 0.2 to 0.3 [ ] PSWP PCI

Report (2011) . NU-Ties were chosen due its superior performance and being commonly used in

the precast industry.

3!_7Zn

Figure 3-20: #3 NU-TIE (photo by ASLAN FRP)

Insulation boards used in this study were Extruded polystyrene foam (XPS) a product of DOW.
The manufacture data show a minimum compressive strength of 25 psi measured at 10 % defor-
mation or at yield, whichever occurs first according to ASTM D1621. The thermal conductivity

of the insulation boards is not relevant to this study. However the thermal conductivity for 1

Btu.inch
hr.ft2 °F

inch thick board is equal to 0.2 [ ] as provided by the manufacture.

3.3.2. Fabrication

The fabrication of the precast insulated panels was done in steps following the industry practice;
placement of reinforcement for bottom wythe, casting bottom wythe, placement of insulation

boards, placement of top wythe reinforcement and finally casting of the top wythe. The pre-
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fabricated corbel placement fitted the casting of wall panel at different stage. For connections
type A, no reinforcement were required in the bottom wythe. However the insulation and NU-
Ties configuration was altered to provide the required element. For connection type B, additional
reinforcement were required in the bottom wythe. The top wythe was reinforced with additional
rebars for connection type A only. More information about the fabrication details are attached in

Appendix B. Figure 3-21 shows the FRP tube placement in the insulation.

-

Figure 3-21: FRP tube placed into cut piece of insulation

The following observations were recorded during the fabrications process:

e The placement of the prefabricated corbel in type A connections was difficult due to the
method adopted. The prefabricated corbel was placed on top of the insulation boards with
no attachments to any fixed body. This approach caused the corbel in specimen Al and

A2 to tilt in the elevation view of the wall. However this tilting mandated the use of lev-
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eling grout pad at the corbel top surface. This concern could be overcome in the precast
plant by providing sufficient ties between the corbel and the forms or any fixed body.

By the time the top wythe of specimens B1 was cast, the SCC workability was reduced.
This caused the concrete to flow partially below the prefabricated corbel. This concern is
applicable to all connections where a prefabricated corbel will be used. This situation
could be avoided by maintaining the workability of the concrete specifically at casting
the corbel zone.

The stacked plastic lumber used in specimen B1 showed some irregularity in the level,
this is thought to have a significant reduction in the connection strength. In addition to
that the placement of the staked plastic boards was impractical, since the boards tend to
sink in the concrete under its self weight. These issues were solved by using the structural
plastic tube in specimen B2. The Tube fitted easily into the insulation which prevented
any movement towards the concrete or sideways.

The anchorage bars used in connections A1 and A2 had a tight tolerance. The horizontal
stirrups and the NU-Ties formed a tight envelope where the anchorage bars are prevented
from moving outside it. This tight placement is not required structurally. Therefore,
specimen A3, A4 and A5 were designed to allow more space for the anchorage bars to
move with no structural effect.

Prestressing strands pattern must be coordinated with the profile of the cut Nu ties used in
connection A. Typically, NU-Ties are placed parallel to the prestressing strands along the
longitudinal direction of the wall height. The proposed connection places the cut NU-Ties
perpendicular to the strands. Since the NU-Ties are having a wavy profile, the strands

could be placed to miss the peak on each wythe. Therefore the strands pattern will not be
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identical in the both exterior and interior wythe. This issue is applicable to any rein-
forcement in the longitudinal direction of the wall; however the rebars design exhibit
flexibility to be shifted sideways in the wall if compared to the strands.

GFRP pins used in Set 3 showed great flexibility in fabrication. The pin was placed in

hand sawn hole in the insulation board. Refer to Figure 3-22.

Figure 3-22: GFRP Pin 2” diameter x 4'4” long
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CHAPTER 4

4. Experimental study
4.1. Test specimens

In this chapter the results of testing 7 full scale specimens are addressed. There are 2 basic con-

nections included in the experimental program:

a) GFRP bars connection, 2specimens,

b) NU-Ties connection, 5 specimens.

The testing program consisted of 3 sets, the specimen of each set were cast at the same time.
Testing of each set was carried out in a limited time window, usually within a week. The first
and second sets consisted of 2 specimens, one of each of the types mentioned above. The first set
had 1 specimen of GFRP connection and 1 specimen of NU-Ties connection, this specimen con-
figuration applies to the second set as well. The third set consisted of 3 specimens of NU-Ties

connection only.

After the testing of each specimen set the results and modes of failure were studied in order to
enhance the next set of specimens. In the second and third set of specimens slight changes were
carried out in the design or detailing of the connections. The changes were mainly to facilitate

the fabrication or enhance the capacity by avoiding the mode of failure of the previous set.



Table 5 lists the configuration of each set and the types of the specimens tested.

Table 5: Testing program
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NU-Ties GFRP bars
connection connection
Specimens set 1 | Al B1 Cast and tested at University of Nebraska —
Specimens set2 | A2 B2 Omaha structural testing lab
Specimens set 3 | A3,A4 - Cast at Concrete Industries Precast manufactur-
andAS5 ing facility and tested at University of Nebraska
—Omaha structural testing lab

The specimens’ dimensions were selected to represent the most critical wythe configuration in
the current practice of precast industry. The 3 inch wythe is the usually the thinnest wythe used
in load bearing wall panels. The thinner the wythe gets the more challenging becomes the design
and detailing of the connections. One of the possible modes of failure is the pull-out of the

GFRB bars or the NU-Ties, as the wythe gets thinner this mode failure is more likely to occur.

The insulation thickness used in all specimens was 4 inch. On the contrary to the wythe, the
thicker the insulation gets the more likely the cross-wythe elements (GFRP bars, NU-Ties and
compression elements). The expanded insulation was used in this study, since it s the type wildly

used in the precast construction.

There are several types of wythe connectors available in the market, the connectors can be classi-
fied into composite and non-composite connectors. Some connector’s types are made of ther-
mally conductive materials like steel. The thermally conductive materials compromise the ther-
mal performance of the insulated panels. The NU-Ties are one of the commonly used wythe

connectors, it is considered to be composite connector since it provides a structural function.
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This type of connector was chosen for its superior structural capacity and for its excellent ther-

mal properties.

The precast insulated panels are usually made of 6 to 10 ft wide. This width is usually an archi-
tectural requirement. In many projects the spacing of the floor main structural element (steel joist
or double tee) is chose to match the width of the wall panels. The width of the specimen was
chosen to include as few as possible of the wythe-wythe connectors. Using the smallest practical
width 6 ft of the panels will assure the proposed connection can be generalized to wider panels.
The same concept is applied to the height of the specimens. The NU-Ties connectors are fabri-
cated in typical length. The standard NU-Ties are fabricated to fit into a 4 ft insulation board.

Therefore the panel of was composed of 2 standard insulation boards, to be 8 ft total height.

The wall panel reinforcement was chosen to represent a lightly reinforced cross section. The use
of light reinforcement permits the proposed connection to be used in any cross section. The use
prestressing was studied to reinforce the wall panel. However, it is thought to be a beneficial ad-
dition to the specimen especially for the cracking load. Therefore, the conventional reinforce-

ment was used.

Ready mix concrete was used in casting the wall panels. The target strength was 8000 psi. Typi-
cally, the precast insulated wall panels are cast using Self-consolidating concrete (SCC) due to

the shallow thickness of withies. SCC was used in this study.

Figure 4-1, Figure 4-2, Figure 4-3 show the reinforcement details for all specimens. Fabrication

drawings for the specimens are included in Appendix A.
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Figure 4-3: Reinforcing details of specimens A3, A4 and A5

4.2. Testing setup and procedure

Figure 4-4 and Figure 4-5 show the adopted test setup, this setup provides a clear access to the
front and back withies of the wall. A few items were considered critical for correct and safe test-
ing of the corbel. First, load eccentricity with respect to interior face of the wall of panels. Se-
cond, providing reaction couple to balance the moment caused by loading the wall at an eccen-

tricity. The test setup components are the following:

e Reaction wall
e Loading frame (beam + vertical threaded rods)
e Hydraulic jack

e Loadcell
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e Tie back frame (beam + horizontal threaded rods)

e Timber joist (for backing)

As a result of the eccentric loading applied to the corbel, the vertical reaction is accompanied
with a horizontal couple. The purpose of the loading frame is to transfer the hydraulic jack reac-
tion to the floor through the beam and the vertical threaded rods. The vertical threaded rods are
chosen to be 3 inch diameter; the vertical threaded rods are attached to the lab ground by a
threaded floor holes. The location of the floor holes determines the load position. The function of
the tie back frame and the timber joist is to provide the horizontal couple of tension and com-

pression, respectively.

The tie back frame will transfer the horizontal tension reaction near the top of panel to the reac-
tion wall, The steel tube of the tie back frame is pulled enough against the reaction wall to tightly
pick the tension reaction and transfer is to the reaction wall by bearing. Two Timber joist are

provided between the panels and the reaction walls to provide the compression reaction.

The bearing capacity of wall to the ground was not an issue. In 2 specimens the bottom side had
more irregularities than accepted, a full width grout bed was cast below the specimen, and then
the specimen was lowered in place to bear on the fresh grout. The testing was not carried out un-

til the grout achieved the required strength. Figure 4-6 show the mentioned pad.

The placement of the precast-corbel was a challenge. The corbel of GFRP system was not tied to
the form during the casting process; this caused the corbel top surface to be unparallel to bottom
side (bearing side on ground) of the wall. This issue was solved by providing a grout pad at the

corbel top surface.
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Figure 4-4: Testing setup, side View
The loading procedures were similar for all the specimens, the loading started from the unloaded
state and increased with multiple load steps each equal to 5 kip, after each load step the loading
was kept constant for minutes. Within this pause period the research team approached the speci-
mens for any sign of failure or visible cracks. Once spotted, the cracks were marked with the cur-

rent load value.



68

- LOADING
FRAME

REACTION
WALL
(I-BEAM)

Figure 4-5: Testing setup, front view

The first visible crack was recorded and referred to as “cracking load” in this study. The target
factored load capacity of these connections is 35 kip. Once the total load applied to the connec-
tion is equal to the target load 35 kip, the load was increased gradually till failure with no further
steps or checks. When the connection withstands an applied load of 35 kip, it was considered to

be adequate.
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Figure 4-6: Forming of leveling grout pad used for specimens Al, A2 and B1

4.3. Specimens behavior

4.3.1. Specimen Al

Prior to testing, early-age shrinkage cracks were observed in the exposed face of this specimen.
Refer to Figure 4-7. These plastic shrinkage cracks originated from the prefabricated corbel loca-
tion and were directed towards the vertical edges of the wall. These shrinkage cracks were ob-
served only in the top face 2 days after casting. The cracks should be considered as an adverse
factor to the capacity of the connection, since these cracks will form a weak plane across the in-

terior wythe.
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Figure 4-7: Marked plastic shrinkage cracks in specimen A1 prior to loading

The age of specimen at day of testing was 12 days. Two Concrete cylinders (4x8 inch, diameter
x height) were tested under compression loading to evaluate the average concrete strength at test-
ing. The average of the 2 cylinders compressive strength is 9.72 ksi. The bearing grout bed for
this specimen achieved a compressive strength of 6.0 ksi. The grout pad used for leveling of the

corbel achieved compressive strength of 6.3 ksi.

Specimen A1 didn’t exhibit any visible cracks up to an applied load of 20kip; the first visible
crack was 45 deg crack at the top of the corbel in interior wythe. Another main crack formed

shortly after exceeding the 20 kip, was a vertical crack starting at the top right hand side corner
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of the corbel, these two 45 deg and vertical cracks continued to grow in length with the load in-
crease till edges of the wall. Fewer cracks were observed at the compression side of the corbel
(bottom). No cracks were observed in the exterior wythe as any stage. The failure occurred with

approximately 1 in. deflection of the corbel at the tip. The failure occurred at 55.1 kip.

There was neither explosion nor loudly failure just a regular increase in the deflection of corbel.
The cracked part was the top part of the wall just above the corbel, around 10 inches vertically
from top of corbel by 16 inch horizontally almost symmetrical about the corbel center line. After
the loading was completed, the cracked part was taken-off to observe the cause of failure. The
observations were that the 2 ties in corbel were intact and the anchorage bar was bent outwards.
One bar only was obviously bent and the other bar was not clear. There was no sign of slippage

of any rebars. Refer to Figure 4-8, Figure 4-9 and Figure 4-19.

Figure 4-8: Specimen Al crack pattern at failure
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Figure 4-9: Cause of failure for specimen A1, concrete beakout

4.3.2. Specimen B1

The age of specimen at day of testing was 20 days. Although the same concrete mix and test cyl-
inder preparation method used for specimen A1 was used for specimen B1, the concrete cylinder
testing results were unrealistically low if compared to specimen Al. The available result of con-
crete strength was 5.8 ksi. The compressive strength of grout used for both bearing bed and lev-

eling pad for this specimen achieved a compressive strength of 6.0 ksi.

Similar to specimen Al, shrinkage cracks were observed in this specimen Bl. Refer to Fig-
ure 4-10. These cracks originated from the prefabricated corbel adjacent area and were directed

towards the vertical edges of the wall. The bottom face of the prefabricated corbel was intention-
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ally roughed, which provided a sort of restraint to prevent the concrete volume close to the cor-

bel from shrinking.

Up to an applied load of 15kip there were no visible cracks, cracks started in form in a similar
pattern to specimen Al. The first visible crack was an inclined crack of 45 deg near the top of the
corbel, the cracks continued to grow in length with the load increase till in reached the vertical
edge of the wall. No vertical cracks were observed in this specimen neither cracks exterior wythe
as any stage. The failure occurred with 3/4 in. deflection of the corbel at the tip; the corbel block
exhibited a slight separation 1/2 in. away from the wall exterior face. Refer to Figure 4-11.The
failure occurred at 62.1 kip. During the test the load fluctuated back as a loud noise of cracking
was heard, this fluctuation is noticeable as a drop in the load value applied to the specimen Fig-

ure 4-22.
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The prefabricated corbel could be easily separated from wall panel after loading was stopped af-
ter failure. The failure is caused by the rupture of the GFRP bars in the proximity of the bend lo-
cation; this can be seen obviously in Figure 4-12. After the corbel was disengaged from the wall,
it was noticeable that concrete of exterior wythe did not flow freely behind the corbel. The con-
crete flew behind the corbel approximately 3in. measured from the corbel faces, except that the
bottom face where concrete flew 4 inch. The casting of the exterior wythe started from the bot-
tom edge (bearing side) and then continued towards the top edge. This casting direction gave the
bottom part of the corbel advantage to allow concrete flow. In the following specimens, special

care was taken for the concrete flow behind the prefabricated corbel. Refer to Figure 4-22.

Figure 4-12: Ruptured GFRP Bars in specimen B1
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4.3.3. Specimen A2

This specimen is part of specimens set 2; Table 5 lists the contents of each set. The age of wall
panel concrete at date of casting was 9 days. The average of 2 cylinders (4” diameter by 8”

height) crushed under compression loading at the same day of testing was 10.35 ksi.

Unlike specimens set 1 specimen, this set of specimens didn’t exhibit any shrinkage cracks. The
reason for that is; the specimen was covered by plastic sheets immediately after casting to entrap

the moisture within the fresh concrete in addition to starting the curing the next day after casting.

The casting quality of set 2 was sufficient to achieve a leveled bottom edge, therefore the grout
bed was not required and the wall panel had an almost full length of bearing surface against the
lab floor. However, the corbel had a slightly inclined top surface. Therefore a grout pad was

used.

The first crack was observed at an applied load of 30kip. The failure load for this specimen was
74.8kip. Similar to set 1 specimens no cracks were observed on the back wythe. The first crack
was a 45 deg crack near the top of the corbel; At applied load close to failure load, new cracks
started to appear close the bottom of the corbel at 45 deg. The cracks started to get longer till it
reached the edge of the wall in a manner similar to specimen Al and B1. The failure occurred
with 2 in. deflection of the corbel at the tip. Refer to Figure 4-13, Figure 4-14 and Fig-
ure 4-20.Since the wall panel bottom side was not grouted for this specimen, more noise was

heard during the test. The cause of failure was the rupture of NU-Ties.



Figure 4-13:

Marked cracks at failure specimen A2
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4.3.4. Specimen B2

Age of specimen at testing was 14 days, at this age the concrete compressive strength was 11.30

ksi. This is average of 2 cylinders tested at the same day of connection testing.

Specimen B2 was cast to an acceptable quality so the bearing level was almost in full contact
with the lab floor. Leveling grout pad was not necessary for the corbel top surface, a heavy duty
neoprene pad. Similar to specimen A2, no spastic shrinkage cracks were observed in this speci-

men.

There were no visible cracks up to an applied load of 40kip. The failure occurred at 75.5kip.
There was not cracks in the back wythe. The first crack was a horizontal crack near the top of the
corbel; at later stage vertical cracks started to form the top corners of the corbel. Closer to failure
load, short and closely spaced cracks became obvious at the interface of wall-corbel which
seemed to be signs of crushing. The horizontal and vertical cracks started to get longer till it
reached the edge of the wall in a manner similar to specimen Al and B1. The failure occurred

with 1/2 in. deflection of the corbel at the tip.

The failure cause was the concrete shear break-out, this can be seen in Figure 4-15, Figure 4-16

and Figure 4-23.
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Figure 4-15: Marked Cracks at failure and failure mode of specimen B2

Figure 4-16: Corbel block on ground after cutting the GFRP bars - specimen B2
4.3.5. Specimens A3, A4 and A5

Prior to testing, cracks were observed in the exposed face of this specimen. These cracks directed

from the lifting points to the corbel block. These cracks were similar to the shrinkage cracks ob-
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served in specimens Al and B1. The reason for these cracks could be the plastic shrinkage or
induced tension stress during lifting. However, the cracks are thought to be an adverse factor to

the capacity of the connection.

The age of specimens at testing was 8, 9 and 10 days. The average concrete strength at testing is

7.73 ksi.

For specimen A3 and A5, the first observed cracking load was close to 30 kips. Specimens A4
didn’t exhibit cracks till the next checking cycle at 35 kips, The cracking load could be an inter-
mediate value between 30 and 35 kips since the wall surface were checked at 5 kips interval.
Similar to the previous specimens, the first visible crack was 45 deg crack at the top of the corbel
(interior wythe). The cracks originated from the prefabricated corbel top corner and were di-
rected towards the vertical edges of the wall. This crack continued to grow in length with the
load increase till edges of the wall. Specimen Fewer cracks were observed at the compression
side of the corbel (bottom). No cracks were observed neither in compression side of the corbel
nor the exterior wythe as any stage. The failure occurred with approximately 1/2 in. deflection of

the corbel at the tip. The failure occurred at an average load of 52.0 kip.

There was neither explosion nor loudly failure just a regular increase in the deflection of corbel.
The cracked part was the top part of the wall just above the corbel, around 2 inch vertically from
top of corbel had sloped crack surface (Break-out failure). After the loading was completed, the
cracked part was taken-off to observe the cause of failure. The observations were that the 2 ties
in corbel were bent just beyond the #5 anchorage bars. There was no sign of slippage of any

rebars. Refer to Figure 4-17, Figure 4-18 and Figure 4-27.



Figure 4-17: Break-out zone at failure in specimen A3

Figure 4-18: Bent stirrups followed by concrete breakout in specimen A5
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4.4. Summary and discussion of results

Cause of failures is listed in Table 6. The failures can be related to primary or secondary compo-
nents of the connection. The primary components are the GFRP and NU-Tie, these components
are the main focus of this study and are not feasible to change. The primary components should
be utilized to the maximum capacity prior to addressing any increase in their intrinsic capacity
(size or strength). A comparison between specimens Al and A2, show that the number of NU-
Ties was doubled; This specific change was an increase in the intrinsic capacity of the primary
components. This change was proposed to change the behavior of the connection to a more ro-
bust one. Other secondary components could be changed to enhance the connection behavior.

The secondary components should not be the weakest link in the connection.

Table 6: Testing results

Speci- | Ultimate | Observed | Wall Cause of failure
men capacity | cracking concrete
load strength
[kip] [kip] [ksi]
Al 55.1 20 5.8 Break-out of concrete due to imposed load by the longi-
tudinal #4 bar near top of corbel
B1 62.1 15 9.7 Rupture of GFRP bars
A2 74.9 30 10.3 Rupture of NU-Ties
B2 75.5 40 11.3 Break-out of a part of the wall concrete below the corbel
A3 52.7 30 7.5
. Break-out of wall concrete due to bending of #3 corbel
A4 533 35 7.8 )
stirrups
AS 50.1 30 7.9

* The wall was checked for cracks each 5 kips load step, the cracks might occur at a load be-

tween the consecutive load steps.
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As discussed in section 3.1-Design of this study, the horizontal stirrups are subjected to tension
force caused by the externally applied bending moment. This tension force should be transferred
to the anchorage bar which is supported by the NU-Ties. The NU-Ties in turn will transfer the

force back to the exterior wythe and eventually to the supports. The ideal behavior would be that

the NU-Ties will rupture (weakest link).
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Figure 4-19: Cracks diagram in specimen A1l Figure 4-20: Cracks diagram in specimen A2

In specimen Al, the horizontal tension force of the 2 top stirrups was transferred to anchorage
bar. The anchorage bar was supported by 2 NU-ties, The way the connection was detailed result-
ed in applying one of the horizontal stirrup reaction outside the span of the anchorage bar (out-
side the distance between the NU-Ties). One of the stirrups reaction application point was locat-

ed between the NU-Ties. If the reactions are applied within the distance between the NU-Ties,
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the anchorage bar will act similar to a simply supported beam on the NU-Ties. In specimen Al,
the anchorage bar was subject to a fraction of the load between the supports and the rest of the
load beyond the supports. The way the reactions were applied to the anchorage bar lead to a for-
mation of additional support by the bar embedment into the concrete above the corbel. Since this
embedment length required to form the support are relatively large, the deformation of the rebar
was significant. This significant deformation caused the concrete cover of the rebar to break-out.
Once the concrete cover was lost the embedment support significantly diminished. The anchor-
age bar exhibited excessive deformation after the loss of support and eventfully was not able to

carry any additional load. Refer to Figure 4-21.
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Figure 4-21: Loading and results of specimen Al

Specimen A2 will be discussed in this section, the failure of specimen A2 occurred due to the

rupture of the NU-Ties at the bearing point of anchorage bar. The same design concept was used
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for A1 and A2 specimen. The extent of the break-out part of the exterior wythe is very limited in
A2 if compared to specimen Al. As discussed in specimen A1, the anchorage bar was supported
by the NU-Ties close enough to the reaction application point. The anchorage bars used in spec-
imen were large in diameter if compared to specimen Al (#5 and #4 respectively). The larger
bar diameter contributed to limiting the outward bar deformation which eventually caused the
break-out. The horizontal stirrups exhibited noticeable deformation at the bearing location
against the anchorage bar. The horizontal ties reactions were fully transferred to the anchorage
bar within the distance between the NU-Ties (support points for anchorage bar). In addition to
the outward deformation of the anchorage bars, a slightly transverse deformation could be no-
ticed. This deformation is thought to be caused by the imperfect placement of the anchorage bar

within the NU-Ties bent peak. Refer to Figure 4-24.

In both specimens Al and A2, there was no sign on the effectiveness of the transverse rebars

placed close to the compression face of the corbels.

The design concept of specimens B1 and B2 is mentioned in Item 3.1 of this study. Briefly, ex-
ternal bending moment (eccentric load) is resisted by a force-couple internally in the wall. The
GFRP bars used as tension element to transfer the internal force to back wythe. Meanwhile the
compression force is taken by a thermally non-conductive material with the insulation layer. The
failure in specimen B1 occurred by the rupture of the GFPR bars close to the bent portion. The
GFRP bars were thought to be the weakest link in the connection, the testing results confirmed
that. Generally the GFRP bars require a large bend radius which represent a challenge for the
designer to fit this large radius within the wall wythe. To ensure that the proposed connection

will work for any wythe configuration and will not be limited to relatively think wythes, this



86

study adopted a relatively thin wythe (3 in.). A tight bend radius was required from the GFRP
bars manufacturer. It was expected that the GFRP bars will not develop the full strength of the

material because of the tight bend radius. Refer to Figure 4-25 and Figure 4-26.
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Figure 4-22: Cracks diagram in specimen B1 Figure 4-23: Cracks diagram in specimen B2

It was quite easy to separate the corbel from the wall panel after the GFRP bars have ruptured.
This issue was successfully addressed in the following panel by using horizontal U-Bar instead
of vertical U-Bars. It was clear after the separation of the corbel from the wall that the concrete
didn’t flow freely between the corbel and the insulation. Since the bottom part of the corbel had
nearly 3in of concrete behind it, this part is thought to be enough to provide the compression

block formed by the external bending moment. There is no sign on the effectiveness of the Plas-

tic lumber stacked boards.
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Figure 4-24: Loading and results of specimen A2

In specimen B2 the orientation of the U-Bars was changed from vertical to horizontal. The be-
havior of U-Bars was similar to the full stirrups used in specimens Al and A2. The GFRP bars
were intact at failure. This behavior is different from specimen B1. The major difference be-
tween specimens B1 and B2 are; concrete wall strength and compression element type. There is
no evidence on what changed the behavior in this specimen. However, it is expected that the
plastic tube would perform better than the stacked boards. Since the staked boards had a slight

wrapping, the final assembly of the boards had gaps in some areas.
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Figure 4-25: Loading and results of specimen B1

The failure of specimen B2 occurred due to break-out of the bottom part just below the corbel-

wall junction. This failure could be resembled to a sliding failure of soli wedge. The vertical load

is transferred to the wall by 3 components;

Bearing of the corbel on wall wythe,
Vertical friction force between the corbel and the wall at the compression block,
Clamping force across the interface generated in the horizontal stirrups and the

GFRP bars.

In order to utilize the clamping force across the interface, it is thought that quite large relative

displacement has to occur first between the corbel and the wall interface. This displacement was

not observed during the testing. Therefore this force is neglected in this study.
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Figure 4-26: Loading and results of specimen B2

Specimens A3, A4 and A5 failed due to a secondary failure. The cause of failure for these 3
specimens was identical. The failure caused by the excessive bending of the corbel stirrups as
shown in Figure 4-27. In specimens Al and A2 the anchorage bare passed through the NU-Tie
and the corbel stirrups were located very close to the bend location, this limited space is thought
to be unforgiving for any fabrication tolerances. In this specimen set the anchorage bars were
repositioned towards the interior of the corbel in order to allow more fabrication tolerances.
Eight inches long #3 framing bars were used in order to fix the stirrups in place. The corbel stir-

rups bent outward just beyond the location of the anchorage bars.

The exclusion of wall transverse and longitudinal reinforcement didn’t change nor does the
cracking load neither the failure load. Longitudinal reinforcement was provided in specimens

Al, A2, B1 and B2 at close to the mid-thickness of the concrete wythe. Therefore it didn’t affect
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the observed cracking load. In typical precast construction in US, the walls are commonly pre-
stressed longitudinally. The prestressing is expected to increase the magnitude of cracking load,
therefore the exclusion of any reinforcement in these specimen set is thought to be the worst case

scenario.
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Figure 4-27: Cracks diagram in specimen A3, A4 and AS

The premature failure of the connection due to the stirrups bending didn’t allow the test to evalu-
ate the capacity of the main connection elements. Set 3 was expected to exhibit more ultimate
capacity if compared to the Set 1 or 2 due to the enhancement in the detailing. However, the test-
ing showed high consistency of the capacity results and cracking load among the identical 3
specimens (A3, A4 and AS5). Based on the observed failure, it is recommended that the anchor-
age bars to be relocated to its original location (close to the bend of the stirrups).The option of

extending the framing bars to develop its full strength by embedment into interior wythe concrete
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will not be sufficient, the framing bars will be bent-out at large tension for the stirrups. This fail-
ure mode will be similar to the failure of the anchorage bars in specimen Al. The loading and

results for specimens of A3, A4 and A5 are shown in Figure 4-28, Figure 4-29 and Figure 4-30.
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Figure 4-28: Loading and results of specimen A3
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For all specimens the observed first crack was located close to the top of the corbel, the test setup
allows the wall panel to resist the externally applied bending moment (load x eccentricity) to a
force-couple. This force couple will create 2 bending moments with different bending direction.
In the length between the applied moment and the top reaction, the internal bending moment will
cause an outward bending moment i.e. tension stress at corbel face. The opposite will occur to
below the corbel level i.e. tension stress in the wall wythe at back face. This falls in line with the
experimental investigation. In specimens B1, A2 and B2, the crack was at 45 deg. This could be

related to the effect of the nearby support point.

The failure load is significantly higher than the factored load since the design will be govern by
the sustained or service reaction. The change in cracking load among the different specimens is
dependent on the transfer of load to the back wythe. Since the wall panel reinforcement was
identical in each specimen. The tested specimens didn’t show any sign of premature failure in the
corbels itself. Although specimen B1had only vertical stirrups, the expected vertical shear crack
didn’t’ occur. The reason for this is the relatively large depth chosen for the corbel compared to
the expected failure load. In practical situations, corbels are rarely limited to an upper limit of the
depth. Typically, engineers use the same width of the column as a corbel width to facilitate the
fabrication and forming. Specimen B2 were subject to slight bearing damage close to the failure
load, after that damage the loading continued with no-sign of failure. The ultimate failure of the

specimen was not due to the bearing.



94

CHAPTER 5

5. Conclusions and Recommendations
5.1. Conclusions

This study addressed the current practice for corbel connections in precast insulated wall panels
in order to find alternative connections that eliminate the thermal bridging problem in the current
practice. This included the design and testing of a replacement connections with full persever-

ance of the thermal break.

e Corbel connection without thermal bridging in precast insulated walls is achievable.

e The proposed connections satisfy the strength and serviceability requirements. The target
factored capacity was exceeded with a considerably large margin (120 to 180%)

e Specimens with compression element, stacked plastic boards, FRP hollow section or
GFPR pin, showed better performance regarding the failure load and observed defor-

mation.

5.2. Recommendations

The tensile stress in GFRP bars corresponding to sustained loads should not exceed recommend-
ed values for creep rupture by ACI 440 (2006). The sustained loads are considered to be the full
dead load plus a portion of the design live loads (25 to 75% of the load specified). The designer

is required to use engineering judgment to decide on the portion most likely to occur according
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to the expected building use. Compression elements provide a defined and stiff path for the com-
pression force close to corbel-wall junction line. Compression elements share the compression
force between both wythes. It is more practical to use single element to form the compression

rather than multiple elements.

Common corbel failures include a steep crack, therefore nearly all researches recommend
providing horizontal ties to capture that crack effectively. This falls in line with the observations
from this study. These few rebars enhances the redundancy of the corbel connection under loads
beyond the design loads. The presence of longitudinal reinforcement within the width of the cor-
bel will change the failure to a ductile failure based on the shear friction concept. It is also no-
ticed that reposition the anchorage bars away from the stirrups bent portion will cause the stir-

rups to bend out-ward and cause a premature failure by break-out.

None of the corbel connections tested exhibited any cracks within the corbel itself. The first
crack was typically where the corbel top face meets the wall interior wythe. The wall is the
weakest link as far as cracking concerns. Therefore, these cracks can be eliminated by increasing
the cracking capacity of the wall. Since typical precast construction practice in North America
use prestressing for the precast insulated walls, it is unlikely that cracking capacity of the wall
will govern the proposed connection. The proposed connections did exhibit negligible deflection
at service loads, as mentioned earlier the corbel connections performs elasticity (un-cracked) up

to the service loads due to the large cross section.

Proposed connections could be altered to provide larger capacities. The use of wider corbel cross
sections and multiple GFRP or NU-Ties will increase the connections capacity. The embedment

of the NU-ties should be taken into consideration in any different arrangement.
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5.3. Future work

There several areas that can be investigated to enhance the proposed connections performance as

follow:

e Consideration of the horizontal load in the testing setup of the specimens will emulate the
common loading in precast construction

e Sustained loading is the governing limit for the connections using GFRP. Therefore this
loading should be confirmed against the code requirements adopted by this study.

e Evaluating the behavior of the proposed connections if used for prestressed walls, this
behavior will emulate the majority of the precast construction.

e Various proposals for using FRP structural shapes can be included as continuation for
this study.



Appendix A

A. Design calculation

Target load calculations:

Double-Tee length = 60 ft

Double-Tee cross section, SW = 81 psf
Normal weight concrete 12° wide x 28” deep + 2 topping

Floor live load, LL= 55 psf, 25% of total live load is considered to be sustained load

Floor supper imposed dead load, SIDL = 15 psf

Dead load Reaction per corbel = % [60x12x (81 + 15)] = 17.28 kip

Live load Reaction per corbel = i [60x 12 x (55)] = 9.9 kip

Strength Combinations:

1.4D=1.4x 18.18 = 25.45 kip ASCE 7 (2005)
14D+ 1.6L=14x18.18 + 1.6 x9.9 = 41.29 kip, governs ASCE 7 (2005)
Service load combinations:

D+L =17.28 + 9.9=27.18 kip
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Sustained load combinations:
D+0.25x L=17.28 + 0.25x9.9= 19.76 kip
Theoretical load to cause cracking:
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Figure 5-1: Design forces for specimen A2
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M s = Pgus xa, = 20x5 = 100 Kkip.in

fr1 =535% = x11=2250ksi, T1=fry Ay =2250x (2x0.11) = 4.95 kip
frp=535% 5oo> x9=1842ksi,  T2=fr, Ay = 18.41x (2x0.11) =4.05 kip
P (O _fcbkd _082x10x2153
= X261.52X . =0. si, c¢= > = > =8. ip

NU-Ties forces, Refer to Figure 5-1 and Figure 5-2.

495x3.81+4.05x1.81
1 frm
6

=437kip, R, =(4.95+ 4.05) - 3.44 = 4.64 kip

Distribution of forces in the NU-Ties is dependent on the location of the Steel Ties; therefore the
detailing of the connection should consider locating the NU-ties as symmetric as possible to the
steel ties. R; and R, are calculated for the complete corbel connection, these reactions are shared

among 2 longitudinal bars which are supported by total of 4 NU-Ties.

Figure 5-2: Forces in NU-Tie



101

(%) oy

Force per NU-Tie leg T3, T;= > coso — 2 cosAn 1.67 kip
Creep ruptures capacity of NU-ties:
frs=0.2 Cg f,=0.2x 0.7 x 110 = 15.4 ksi ACI 440 (2006) Table 8.3

Trs = frs X Ar=15.4x 0.11=1.69 Kip

Flexural strength:

NU-Ties are stressed at an angle to the reaction, Equivalent to:

Ateqv.= (2 Bars) x (2 Legs per NU-Tie) x A¢x cos a, This approach ignores the bottom row of
NU-Ties (R3)

Ageqr=2%2x 0.11x cos 46 =0.31 in?
_ Ageqr. 031

pf= bd 10X15=0.00207

Where Ay area of FRP reinforcement, in.2

Erecy 8 5422 x 0.003
= 0.85x 0.65 x

e =0.0051
Ereoy+1t, 110 * 5422 x 0.003+110

fc
pp=0.85 B4 =
fu

ACI 440 (2006), Equation 8-3

. B B1ch B
Since pi<pp, — M, = A, d-T , ?=0.55
—( Fu >d—< 0.003 )15—2 647 i
D= \eten/  \0.003+0.014) T

0.65 x 2.647

M,= 0.31X110X<15— >

) = 482.16 kip.in

@M, = 0.55 x 482.16 = 265.19 kip. in

OM,  265.19

OVn= a, 5

=53 kip
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Appendix B

B. Testing specimen details
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Appendix C

C. Notations and Definitions

a, dy

@

a o » >

Shear span for applied load, distance measured from face of interior wythe to
center of concentrated load, in.

Area of reinforcement in corbel resisting factored moment, in”

Area of tension reinforcement, in®

Area of horizontal stirrups, in’

Width of corbel at wall-corbel interface, in.

Effective depth of the corbel, distance measured from centroid of tensions re-
inforcement to end of sloped face of corbel, in.

Dead load or related internal moments and forces
Distance from extreme compression fiber to neutral axis, in.

Distance from extreme compression fiber to neutral axis at balanced strain
condition, in.

Resultant concrete compression force at wall face, kip
Environmental reduction factor for various fiber type and exposure conditions
Modulus of elasticity of concrete, psi

Design or guaranteed modulus of elasticity of FRP defined as mean modulus
of sample of test specimens, psi

Modulus of elasticity of reinforcement, psi

Fraction of live load considered to be stained, varies based on the occupancy
and use

Specified compressive strength of concrete, psi

Stress in FRP reinforcement in tension, psi
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Stress level induced in FRP by sustained loads, psi

Design tensile strength of FRP, considering reductions for service environ-
ment, psi

Guaranteed tensile strength of an FRP bar defined as the mean tensile strength
of a sample of test specimens minus three times the standard deviation

Modulus of rupture of concrete, psi

Specified yield strength of reinforcement, psi
Specified yield strength of transverse reinforcement, psi
Nominal strength at face of a nodal zone, kip
Nominal strength of a strut, kip

Nominal strength of a tie, kip

Overall height of corbel at wall interface member, in.
Horizontal force applied to the corbel, kip

Gross moment of inertia, in*

Moment of inertia of transformed cracked section, in*
Live loads, or related internal moments and forces
Cracking moment, kip-in.

Nominal moment capacity, kip-in.

Moment due to sustained load, kip-in.

Factored moment at section, kip-in.

Modular ratio

Tension force applied to the corbel, kip

Shear force applied to the corbel, kip

Shear force corresponding to M,, kip

nominal shear strength at section, kip

factored shear force at section, kip

Weight of unit volume of concrete, pcf
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Distance measured from neutral axis to extreme fiber tension, in.

Factor relating depth of equivalent rectangular compressive stress block to
neutral axis depth

Factor to account for the effect of the anchorage of ties on the effective com-
pressive strength of a nodal zone

Factor to account for the effect of cracking and confining reinforcement on
the effective compressive strength of the concrete in a strut

Ultimate strain in concrete
Design rupture strain of FRP reinforcement

Modification factor reflecting the reduced mechanical properties of light-
weight concrete all relative to normal weight concrete of the same compres-
sive strength

Coefficient of friction, ACI 318 (2011)

Coefficient of friction, PCI Handbook (2010)

Ratio of A to bd

FRP reinforcement ratio producing balanced strain conditions

Strength reduction factor

American Association of State Highway and Transportation Officials

ASTM International, formerly known as the American Society for Testing
and Materials (ASTM)

Glass fiber-reinforced polymer

Proprietary product of Hughes brothers, Used as shear connector in insulated
concrete wall panel system

Extruded polystyrene foam
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