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This dissertation studies three main issues related to renewable energy in the 

United States and in Sub Sahara Africa.  

The first chapter seeks to provide answers to a very fundamental question for 

second generation biofuels: “How much crop residue can farmers harvest from their 

fields for sale to cellulosic ethanol companies without affecting current levels of 

production?” The model developed is applied to 101 counties from four Midwestern 

states in the United States (Colorado, Iowa, Nebraska and Wyoming). Results show that 

soil organic matter significantly contributes to explaining changes in technical efficiency 

and total factor productivity. Furthermore, average crop residue harvest potentials were 

33%, 53%, 35% and 8% in Colorado, Iowa, Nebraska and Wyoming respectively.  

The second chapter analyzes the market and welfare effects of foreign biofuel 

investments in Sierra Leone. A log-linear comparative static displacement model was 

used to carry out the analysis and a 30% demand shock was introduced into the system to 

represent an increase in biofuel demand. Results revealed large welfare enhancing gains 

for consumers of inedible biofuels but resulted in welfare losses in the staples and edible 

biofuel consumer markets. Producers generally reported welfare gains by virtue of 

owning factor inputs (land and other). Equilibrium quantities of inedible biofuels, edible 

biofuels and food increased by about 8.8%, decreased by 0.22% and increased by 0.6% 



 
 

respectively. Prices for both inputs and outputs increased while quantities of inputs also 

increased.  

The third chapter determines the degree of responsiveness of farm energy input 

prices and corn prices to changes in crude oil prices using time series techniques. An 

Error Correction Model (ECM) and a VAR (vector autoregressive model) was fitted.  The 

VAR was used to deduced variance decompositions for the six variables considered 

(prices of crude oil, diesel, gasoline, natural gas, electricity and corn) to determine the 

various contributions to the respective error variances. Results showed that the variables 

converged to a long run stable equilibrium. The strongest relationship was estimated for 

crude oil prices and diesel and gasoline prices. Prices for natural gas, electricity and corn 

had small and negative association with crude oil prices. 
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Chapter 1: Measuring Crop Residue Harvest Potentials. 

1.1: Introduction 

With reported increases in production levels of corn and soybeans (USDA 2011), 

coupled with favorable policies and socio-economic factors, there has been rapid growth 

in the biofuel industry in the Midwestern states of the United States (Nebraska, Iowa, 

Colorado, Wyoming) over the last seven years. While this production-pull effect creates a 

ready market for corn farmers, there are concerns over how sustainable and 

environmentally efficient are the ensuing farming practices.  

This issue has been increasingly debated lately after studies have shown that the 

current mode of producing biofuels (corn based biofuels) is not a panacea to the energy 

and environmental problems when compared to fossil fuels as had earlier been envisaged 

(Gorter H. et. al. 2009; U.S Energy Bill 2007). Advances in cellulosic ethanol production 

technologies are testimonies to the attempts by researchers to provide remedies to these 

shortcomings or possible complements to the current methods. With regards to policy, 

despite the Volumetric Ethanol Excise Tax Credit’s (VEETC’s
1
) support for second 

generation biofuels like cellulosic ethanol (through the $1.01 a gallon credit), some critics 

argue that, this policy created bottlenecks for the development of more cutting-edge 

technologies. With the subsidy expired at the end of 2011, the resulting repercussions are 

yet to be seen.  

Assuming the commercial production of cellulosic ethanol comes to fruition, 

there would be an increase in the demand for all forms of biomass, including all post-

harvest residues that are normally being reburied into the soil and contribute to the 

                                                           
1
 VEETC = The Volumetric Ethanol Excise Tax Credit is a policy to subsidize the production of ethanol in 

the United States. The mandates have been continuously renewed but the subsidy expired in December of 

2011. 
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formation of soil organic matter (SOM). Consequently, the question then becomes: what 

happens to agricultural productivity should crop residue be commercially harvested for 

the purpose of cellulosic ethanol? This issue would not be contentious if SOM had no 

effect on agricultural productivity. The optimum thing then to do would be to grow and 

market as much crop residue as profitable. However, what if SOM really affects 

agricultural productivity? Then the decision bundle that farmers face would be 

completely different. Should the latter scenario play out, the need to restrict the amount 

of crop residue harvested by farmers would become very crucial. Such policy 

determination would rely mainly on knowing the level of crop residue required to 

maintain current production levels. This scenario (SOM affects agricultural productivity) 

we hypothesize to be the most plausible and the progress made with second generation 

biofuel technologies creates a suitable platform for its realization. Agronomists and soil 

scientists, as summarized in W. W. Wilhelm et. al. (2004), see this as a solution to the 

energy, environmental and food problems faced globally.  Wilhelm argues that despite 

their increasing scientific research efforts, there is still need to obtain a methodology that 

can be used to obtain that optimum crop residue harvest level. 

This study aims at incorporating SOM characteristics when estimating 

agricultural performance. The reasons for doing this are threefold: i) Yields depend 

crucially on soil carbon content which is directly related to SOM, (FAO (2003)); ii) SOM 

contains sequestered carbon which becomes very important when greenhouse gases and 

climate change are currently important issues (A. Picollo et.al (1999)); iii) SOM enhances 

water holding capacity of soils which has implications for irrigation. 
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We initially test the effects of SOM on technical efficiency and agricultural 

productivity. We then use these SOM characteristic variables to determine the relative 

amount of crop residue harvest potentials that do not affect current production levels over 

the targeted regions for 2010. Our main hypothesis is that “soil organic matter 

significantly contributes to explaining changes in technical efficiency and total factor 

productivity”. This is mainly based on agronomic studies and long held beliefs that 

manure and other forms of crop residue improve yields. This fundamental question has 

not been answered in the literature from an economic standpoint. The inclusion of 

fertilizer in our model is very important because it helps us capture the contributions of 

SOM to explaining changes in technical efficiency and productivity change which might 

be confused with the effects of fertilizer had we chosen to exclude fertilizer.  

Obtaining estimates of SOM across counties that go back as far as 1970 was one of 

the challenges faced by this research. This is because it has not been measured
2
 

consistently for all these years and in the respective geographic regions in the United 

States. The most referenced data source is the soil survey geographic database 

(SSURGO) hosted by the United States Department of Agriculture’s National Resource 

Conservation Service. The SOM values reported by SSURGO represent only current year 

estimates (2010). Also, because of variations in soil types across counties, a standard way 

of comparing SOM levels across counties was required.   Therefore an SOM panel was 

constructed using available soil dynamic models in the literature. Initial values were 

obtained from SURRGO and adjusted for bulk density using GIS software methods. 

These methodologies would be discussed later in the paper. 

                                                           
2
 SOM values are obtained by conducting soil sample tests in specific locations. There is no database that 

catalogs these values as far back as 1970 and at the county level.  
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This research has three main contributions. Firstly, we obtain SOM estimates for 101 

counties from 1970 to 2010 and include SOM characteristic variables while 

characterizing productivity performance at the county level. Secondly, we develop a 

methodology that can be used by policy makers to determine relative amount of crop 

residue harvest potentials that do not affect current production levels at the county level. 

Lastly, the Malmquist productivity index is bootstrapped following the approach by 

Simar and Wilson (2000a, 200b, 2007.) This paper provides support about the ability of 

this semi-parametric approach to estimating technical efficiency and productivity by 

adding the possibility of making statistical inferences from the results. 

The rest of the paper is presented in the following format: we first present a section 

(Section two) on relevant literature on the topic, methodology and documented trends 

from the states considered in this study. Section three outlines the methodology proposed 

for the study. Section four has all the relevant results and analytic discussions and lastly 

section five summarizes and concludes the study. 

1.2: Literature Review 

Three main sections are considered: a brief review on efficiency measures; an 

attempt to describe the relevance of SOM and its relationship to fertilizer application and 

agronomic practices; and an update on the state of county level agricultural performance 

in mid-western states of the US.  

 

1.2.1: Efficiency Measures 

Theoretical and empirical methodologies for the estimation of efficiency across 

economic units have come through decades of development tracing as far back as Farrell 
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(1957). Here (Farrell, (1957)), single output and multiple input efficiency measures were 

estimated. However, this methodology was criticized due to its extremely restrictive 

nature (Coelli, (2005)) and limited dimensionality. Some of the developments that have 

followed include the use of multiple outputs and multiple inputs in the estimation of 

efficiency; the estimation of scale efficiency; environmental efficiency; congestion under 

parametric, semi-parametric and non-parametric measure; the use of expenditure and 

revenue variables instead of the traditional input and output variables; to name a few. 

Technical Efficiency (TE) is a description of the success of a farm to produce maximum 

output from a given set of inputs, and Allocative Efficiency (AE), the success of a farm to 

optimize on the use of inputs given their respective prices (M. Graham (2004)). There are 

several efficiency measures in use and others are still being developed today. More 

specifically and in a non-parametric context, TE is an estimation of the distance a given 

allocation is from the production frontier relative to those of other decision making units 

(DMUs) (as defined by Farrell). Shepherd (1970), on the other hand, uses the inverse of 

the distance function to define TE. Allocations on the frontier are considered as being 

perfectly efficient and the degree of efficiency decreases moving away from the frontier 

(Färe, Grosskopff and Lovell (1996)).  

1.2.2:  Parametric vs Nonparametric 

From the vast literature on methods of efficiency estimation, all the techniques 

that have been employed in the estimation of technical efficiency and productivity have 

fallen between these two extremes: parametric and non-parametric measures. The hybrid 

forms between these two extremes are referred to as semi-parametric methods. The main 

differences between the two extremes depend on assumptions of whether the enumerator 
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has a reliable understanding of the distribution of the dataset. If so, parametric measures 

are the most preferred and if not, the safest next step is to use non-parametric techniques. 

These properties have their advantages and disadvantages depending on the problem 

being analyzed. Parametric methods, first introduced by Aigner, Lovell & Schmidt 

(1977) and Meeusen & Van den Broeck (1977), require the specification of a functional 

form (a process which introduces uncertainties into the modeling process – Hildreth et al 

(1998), R.C Griffin et al. (1998)) while nonparametric measures (Charnes & Rhodes 

(1978)) do not. Given the need for functional specificity and problems of data 

availability, parametric measures have been further divided into primal and dual methods.  

Nonparametric measures assume that all deviations from the efficient allocation 

are due to inefficiency, while the stochastic parametric measures allow for statistical 

noise (Coelli (1995)). Therefore, a fundamental problem with non-parametric efficiency 

measures is that any measurement error, and any other source of stochastic variation in 

the dependent variable, is embedded in the one-sided component making the resulting TE 

estimates sensitive to outliers (Greene, 1993). Also, sampling errors occur as a result of 

best performers being excluded from the initial sample. Another characteristic of these 

Data Envelopment Analysis (DEA) methods is the potential sensitivity of efficiency 

scores to the number of observations as well as to the number of outputs and inputs 

(Nunamaker, 1985). As a way of correcting for these problems inherent in non-

parametric methods, there have been growing uses of mid-way solutions. Some of these 

include the use of bootstrapping methods on the Malmquist total factor productivity and 

technical efficiency estimates obtained from DEA to account for the power or level of 

significance of these estimates. These bootstrapping procedures and software have been 
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extensively studied by Simar and Wilson (1998, 2000a, 2000b). We use one of their 

smoothing methodologies to obtain bias corrected technical efficiency estimates and total 

factor productivity estimates as shown in Simar and Wilson (2000a, 2000b, and 2007), 

Hollingsworth, Harris and Gospodarevskaya (2002), and Gonzalez and Miles (2002). 

Furthermore, an alternative semi-parametric methodology commonly used in parts of the 

literature is the two-stage technique in which the efficiency estimates are obtained in the 

first stage and these estimates are regressed on covariances. Simar and Wilson (2007) 

show that the standard inference is invalid due to unknown serial correlation among the 

estimated efficiencies. They further propose the single or double bootstrap methods as 

preferable approaches. One of these we employ in this paper. 

1.2.3: SOM: Measures, Fertilizer, Carbon Sequestration, and Agronomic Practices 

There has been considerable inattention placed on the role that soil structure plays 

in determining agricultural performance. The United Nations’ Food and Agricultural 

Organization describes SOM as the key to drought-resistant soil and sustained food 

production. SOM is an important input in agriculture because it helps reduce soil erosion, 

maintain the constitution of soils and support physiological processes that improve soil 

productivity. A good soil should have high soil carbon content. There is a linear 

relationship between SOM and soil carbon. Recent studies reveal a 2 to 1 approximate 

conversion ratio between the two. This means dividing SOM by two approximately 

yields the estimate of soil carbon (SOC) (A. Liska (2011)).  

Organic matter enhances water and nutrient holding capacity of soils, which 

improves soil structure. This improves yields and environmental quality, while at the 

same time reduces the severity and costs of natural phenomena, such as droughts, floods, 
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and diseases. In addition, increasing soil organic matter levels can reduce atmospheric 

CO2 levels that contribute to climate change (STATSGO Database). By emphasizing 

organic matter management technology, soil loss can be reduced on those lands that still 

suffer excessive erosion. Moderate erosion rates can harm air quality, water quality, and 

wildlife habitat. 

There has been growing evidence of the potentials to sequester soil organic 

carbon when no-tillage practices are employed and crop residue is reintroduced into the 

soil through minimum tillage (Rattan Lal et al. 2004). This has been particularly true for 

the top 10cm to 15cm soil depth region.  This study, though it would not categorically 

provide relevant answers to the carbon sequestration question, would provide some 

insights into soil carbon holding capacities of soils (an integral component of carbon 

sequestration) at the county level which would be helpful for future research on SOM and 

Soil Carbon. 

Some studies have suggested that the negative effects of biomass harvest on 

yields (Fahnestock et al. (1995)) may be nullified by increased fertilizer application while 

others argue that even with fertilizer application, SOM is still crucial in keeping soils 

compact, maintaining nutrients and preventing erosion. Although both inputs, to some 

extent, work as complements to one another, they also have their limitations in terms of 

production and environmental consequences. Also, since our focus is on capturing the 

contribution of SOM, it is important that we include fertilizer in our analysis. 

1.2.4: Agricultural Productivity across mid-western states (NE, IA, WY and CO) 

There are very few studies, if any, that have been conducted on agricultural 

efficiency and productivity at the county level in the mid-western regions of the United 

States. The few available ones have either targeted the state level, national level or the 
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firm level. None have looked at what the trends are at the county level. We discuss the 

few available studies that have investigated issues of agricultural productivity in these 

states. These include the following: Ball et al 1994, 1997, 2004, Shaik and Perrin (1999); 

Fulginiti, and Plastina (2012); Ball, Wang, Fulginiti, and Plastina (2012); Rezek and 

Perrin (2004) and Shaik and Perrin (2001).  

 

Ball et al (1994, 1997, and 2004): These studies made invaluable contributions towards 

creating an understanding of US agricultural productivity at the state level. Furthermore 

and in relation to our study, Ball et all 1994 and 2004 estimate Malmquist productivity 

indices for 48 states for a benchmark scenario with conventional and procured inputs and 

other Malmquist indices with environmental variables included. Compared to the 

proposed study, we estimate Malmquist indices with a similar benchmark case but use 

SOM as the environment variable for the alternative Malmquist index. Considering 

interstate productivity comparisons from their 2004 study, Nebraska reported TFP growth 

of 2.8%, Iowa a growth of 1.6%, Colorado 2.5% and Wyoming 0.8%. While our study 

follows their 2004 methodology closely, it however considers a different scale (county 

level), a different environmental variable, SOM, and uses a semi-parametric approach 

(Bootstrapping).  

 

Shaik and Perrin (1999) - In this study, they directly estimate productivity changes non-

parametrically using DEA, and also recover shadow prices of environmental variables 

from this approach to modify the traditional indexing measure of productivity changes. 

Their results showed that nonparametric productivity methods provide unrealistic 
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measurements of environmentally-adjusted productivity gains, but do offer shadow prices 

that seem to be plausible values for adjusting the standard productivity index approach. 

 

Shaik and Perrin (2001) - In this study they showed that Traditional TFP misrepresents the 

true change in agricultural productivity to the extent that environmental bads jointly 

produced with desirable outputs are unaccounted. Nonparametric productivity measures 

incorporating environmental bads are evaluated for Nebraska agriculture. The results 

indicate that prior to the 1980's the traditional TFP measures overstate productivity 

growth while it is underestimated afterwards, reflecting peak use of chemicals. 

 

Rezek and Perrin (2004) -This study adjusts agricultural productivity gains in a panel of 

Great Plains states to account for the discharge of pesticide and nitrogen effluents into the 

environment. Using a translog distance function approach that allows for a comparison 

between traditional versus environmentally adjusted productivity gains, they showed that 

technical change has been increasingly biased towards environmentally friendly 

production. Adjusted productivity in the late 90’s outpaced the traditional measure, 

reflecting the pro-environment bias in technical change. 

 

Plastina and Fulginiti (2012): This article develops a framework that can be used to 

obtain the returns to local public goods using the Rothbart’s concept of virtual prices. 

They estimate the internal rate of return to public investments in agricultural R&D for 

each of the 48 continental US states. From their results, they obtained an average own-

state rate of 17% and a social rate of 29% that compare well to the 9 and 12% average 
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returns of the S&P500 and NASDAQ composite indexes during the same period. Similar 

to the other studies mentioned, the Plastina and Fulginiti (2012) study is carried out at the 

state level while our research focusses at the county level. 

 

Ball, Wang, Fulginiti, and Plastina (2012): This article alongside some of Alston and 

Pardew’s (2010) work looks at the contributions of R&D to US agricultural productivity 

growth. Their key finding was that extension activities, road density, and R&D spill-ins 

play an important role in enhancing the benefit of public R&D investments. 

 

Different from these studies, this research obtains productivity estimates at the 

county level. We also use SOM as an additional input in determining agricultural 

performance which has not been used in the efficiency and productivity literature. We use 

Simmer and Wilson (1998)’s bootstrapping procedures to obtained bias corrected 

technical efficiency estimates and total factor productivity change estimates.   

1.3: Methodology 

1.3.1: Brief Summary 

This study initially uses DEA to estimate technical efficiency and total factor 

productivity. The effects of SOM characteristic variables on efficiency and productivity 

are then tested. This is used as a basis to estimate crop residue harvest potentials across 

counties.  DEA approaches have the unique advantage of not having to make assumptions 

about specific functional forms but it is a deterministic approach. However, with the use 

of semi-parametric measures we are able to introduce an element of stochasticity.   
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 We develop an output-based TE measure using DEA for three outputs and six 

inputs. These include corn, all hay and an index of all other outputs and fertilizer, 

irrigation area harvested, non-irrigated area harvested, chemicals, average temperature 

and SOM (either SOM-Liska or SOM-Martellato) as inputs. The first five inputs are the 

traditional inputs and the remaining two (alternative SOM proxies) are separately 

included to test their effects on TE and TFP variation.  

Two SOM proxies were calculated and used in this study. They both characterize 

the level of SOM from 1970 to 2010. The methods used in obtaining the respective SOM 

values are discussed in detail below.  

  TFP change is being estimated by a Malmquist index approach and disaggregated 

into Pure Technical Change (TC) and Efficiency Change (EC). These two analyses are 

carried out including the SOM characteristic variables and excluding them to see clearly 

the contribution of SOM in the measurement of TFP and TE. Bootstrapping was then 

carried out on the TE estimates to obtain confidence intervals and correct them for the 

presence of bias using Wilson’s FEAR software. Crop residue harvest potentials were 

then estimated for all the counties targeted and correct for the presence of bias. These 

estimates were only calculated for 2010. 

Despite the deterministic nature of DEA methods, the efficiency scores computed 

are relative to an “estimated” frontier and not a “true” frontier. This makes them subject 

to sampling variation of the estimated frontier (Simar and Wilson, (1998)). It is in a bid to 

correct for this anomaly that we obtain bias corrected TE estimates as shown in Simar 

and Wilson (1998). Furthermore, since the estimates result from some data-generating 

process (DGP), the statistical properties of the estimated efficiency measures are essential 
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for their interpretations. In the general multi-output multi-input framework, the bootstrap 

seems to offer the only means of inferring these properties (i.e. to estimate the bias and 

variance, and to construct confidence intervals). The bootstrap process will, therefore, 

generate values that mimic the distributions which would be generated from the 

unobserved and unknown DGP (Simar and Wilson (1998), (2000a, b)). The estimated 

TFP values were also bootstrapped using similar methods but accounting for time 

dependencies. The rest of this section describes the methods used in much detail. 

1.3.2: Data Structure 

  This section describes the nature of the data set used in the study. Some of the 

variables were constructed and the processes and steps are described in this section.   

1.3.2.1: Constructing SOM Panel 

Obtaining a robust variable for SOM stock levels that go as far back as 1970 was 

a big challenge for the study. This is because there are no inventories of experiments 

conducted to capture the level of SOM across counties in the United States for all the 

years targeted. The closest that is available are point estimates from 1995 to 2003 which 

are not very useful when county level data are needed. For the purpose of this study, we 

constructed SOM variables using two different methodologies. Both methodologies share 

the same pattern of obtaining an initial stock level of SOM in period t (2010) and using a 

rate of carbon mineralization as a discounting rate to obtain the t-n SOM stock levels (n = 

1 to 40). These methods are basically retroactive traces of the dynamics of SOM. Based 

on their pioneers/authors, these models we label as the Yang-Liska (2011) model and the 

Martellato (2010)/M. Milner (2010).  

Soil carbon and hence soil organic matter dynamics have been studied extensively 

over the last five decades by soil scientists as evident in the literature. Some of these 
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include Kortlevan J. (1963); Jenkinson D.J. (1977); Patron W.J. (1987); and more 

recently, Janssen and Yang (2000). Through their efforts, together with few others, the 

most commonly used models today are the MINIPa
3
, MINIPb

4
, CESAR

5
, RECAFS

6
, 

CNGRAS, ANIMO, NUCSAM and the CENTURY
7
 models. These models are broadly 

categorized into two main groups. One group uses a single component as the main input 

substrate while the other uses multiple components. The single component forms (like 

CESAR) have faced criticism in the past because they used one fixed mineralization rate 

constant (k) depending on the substrate. The alternative, (like CENTURY) however, uses 

multiple rates of mineralization for the respective components used. However, the latter 

models have proved to be very large and case specific. Therefore, lots of assumptions are 

made in their development which cannot be easily generalized and adapted to represent 

other situations. In the MINIPb model however, Yang and Janssen (2000) developed a 

framework to obtain a mineralization rate k that changes across time and substrate. This 

is the version we adapt in this study to obtain one of the variables of SOM. The 

adaptations follow those of Liska et al. (2011) because it was modified for the agronomic 

and physical properties of the targeted region.  We also use a fixed mineralization rate to 

obtain the second SOM variable for comparison purposes. These latter versions are 

different from MINIPa. It uses a rate obtained from experimental data across some 

regions in Nebraska (Martellato (2010)). This rate is then applied to current soil organic 

matter levels obtained from the SSURGO database and traced backwards. We describe 

these two methodologies in more detail in the following section.  

                                                           
3
 Janssen 1984, 1986. 

4 Yang and Janssen 1996, 2000. 
5 Vleeshouwers and Verhagon 2001, 2002 
6 Conijin 1995 
7 Patron W.J. 1996 
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1.3.2.2: SOM Initial Values
8
 

2010 SOM initial values were extracted at 10 m
2
 map resolutions and at 30 cm 

soil depth. An initial SOM grid that had been corrected for bulk density and at the 

required soil depth and resolution was obtained from the National Conservation Resource 

Society NCRS (S. Waltman (2010)).This was then converted to a soil carbon (SOC) grid 

(S. Waltman and M. Milner (2010)). This grid was masked 
9
over a crop-land area grid for 

2010 from the same region making sure that the extents matched perfectly. The resulting 

grid was then clipped
10

 by county to obtain the county level grids. The final SOC values 

where then extracted from these county level grids. Figure 1 below displays the values 

obtained. As can be seen, SOM levels increase from West to East.  

 1.3.2.3: SOM: Liska’s adaptation of Yang-Jensen 

Yang and Janssen (2000) developed a model for the mineralization of carbon 

from experimental data. Mineralization can be defined as the breakdown of organic 

residues by oxidation to form soluble or gaseous chemical compounds which may then 

take part in further soil processes or be utilized by plant life. In their model, they treated 

organic matter as a single component. The logarithm of the average relative 

mineralization rate, K, or rate constant, of a substrate considered as a whole was found to 

be linearly related to the logarithm of time, t, provided prevailing soil conditions 

remained unchanged. This relationship can be represented by: 

                                                           
8
 M. Milner from the University of Nebraska was very helpful in computing these SOM initial values. 

9
  In ArcGIS, Masking is a means of identifying areas to be included in analysis. 

10In ArcGIS, Clipping is a means by which one extracts features from one feature class that reside entirely 

within a boundary defined by features in another feature class. 
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where:  

 R (dimension     ) represents K at t=1 

S (dimensionless, 1>=S>=0) is a measure of the rate at which K decreases over time, also 

called the speed of aging of the substrate.  

The quantity of the remaining substrate, Yt, is calculated by: 

             
                                                                                                                    

where: 

Yo is the initial quantity of the substrate and 

k is the actual relative mineralization rate. 

 

The actual relative mineralization rate, k, at time t is proportional to K, according to: 

                                                                                                                    

 

Using Liska’s adaptations to the Yang - Jensen model, we get  

           
                                                                                      

 

A more developed form of equation [2] is equation [4], which includes a 

“temperature coefficient” (Q10 = 2, chemical reaction rate increase per 10°C; Ta, daily 

average; Tr = 10°C, yearly average reference temperature) and has an exponential term 

(1-S) to adjust the intensity of R over time (to predict C level at any time point [t] the 
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daily values for the temperature coefficient [Q10Ta-Tr/10 • t] must be summed). Multiple 

linear regression models were developed by Liska (2011) generalize daily modeled 

outputs from the simulation models. To estimate changes in SOC, initial soil carbon (Y0) 

and carbon inputs from crop yields for all counties were used to develop a multiple linear 

regression equation for each crop with an annual time step. The calibrated relationships 

are: 

 

 

 

 

 

Where C1 = annual carbon input and  

 C0 = initial carbon level.  

Using crop residue data from crop yields reported by the National Agricultural 

Statistical Services database (NASS) 1970 to 2010, ΔSOC values were obtained. The 

graph below (figures two and three) represents plots of the calculated SOM values for 

some counties. In the Yang 2000 model, no account was taken of yearly SOM recharge. 

Therefore in constructing this series, we accounted for recharge at a rate of 40% of total 

crop residue (W. W. Wilhelm, (2007), Schlesinger, (1985)). Also, the assumption of 

constant physiological conditions over time is not a feasible condition in our targeted 

ecosystems particularly when we are using a 41 year time period. Figures two and three 

below gives plots of the values obtained at both the annual and daily steps respectively.  

1.3.2.4: SOM: Martellato (2010)/M. Milner (2010) 

Soy Beans:   ΔSOCMLR = -0.0815 – 0.00701*C0 + 0.219*CI                             6. 

Wheat:   ΔSOCMLR = -1.321 – 0.00134*C0 + 0.937*CI                                    7. 
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A constant depreciation rate as defined by Martellato (2010) was applied to all 

2010 SOM values and traced backwards up to 1970. The average rate of SOC change 

used was 0.046 SOC for corn and soybeans. This is the average of corn and soybeans 

values as described in the graph to the right on figure four below. This rate was obtained 

from Martellato (2010) who measured the rate of carbon change for corn and soybeans in 

Mead Nebraska.  The results provide evidence of a declining trend in soil carbon over the 

years. Different from the SOM values obtained in the previous case, here the SOM values 

decrease steadily. This implies that these values predict a continuous decrease in net 

SOM levels for the coming years. The graphs in figure four show plots of SOM trends for 

two representative counties and SOC changes (right) of figure 4 from Martellato (2010).  

 

1.3.3: Descriptive Statistics 

The rest of the variables: corn, hay and other outputs; fertilizer, chemicals, 

irrigated and non-irrigated areas harvested and average annual temperature for inputs, are 

obtained from National Statistics (NASS) website and the Fulginiti-Perrin Research 

Group Database – University of Nebraska – Lincoln (FPRGD). Table 1 gives brief 

descriptive statistics of the variables. 

 1.3.4: Sample Area 

Nebraska has a total of 93 counties, Iowa 99, Colorado 64 and 23 in Wyoming. Of 

these 279 counties, a sample of 101 counties was selected to carry out the research. This 

represents 36% of the total number of counties. This selection was based on earlier 

studies which showed that the degree of heterogeneity in physiological characteristics 

increases as one moves from east to west than from north to south. This can be seen by 
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N
x 

M
u 

looking at the longitudinal and latitudinal length/width variations of the map shown 

below (figure 1).  

1.3.5: Representation of the Technology 

Farmers are constrained by a production technology transforming a vector of N 

inputs x = (x1, x2 … xN)    
  into a vector of M outputs u = (u1, u2,…,uM)    

  

Observed combinations of inputs used and outputs produced (xj,uj) are taken to be 

representative points from the feasible production technology. In this study we use DEA 

to infer the boundaries of the feasible technology set from the observed points, as 

outlined in Färe, et al. (1994). 

Observations from the technology consist of a sample of 101 DMUs producing 

outputs that have been categorized into three output variables (corn, hay and other) and 

using five conventional inputs in addition to SOM. These inputs are irrigated land area, 

non-irrigated land area, fertilizer, chemicals, average annual temperature, and the two 

types of SOM computed. The production technology can be represented by the graph 

denoting the collection of all feasible input and output vectors x and u: 

 

   {        
          }                                                                            8. 

  

where L(u) is the input correspondence which is defined as the collection of all input 

vectors                                   that yields at least the output vector                        .                                                                       
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Figure 2 SOC Levels by county across 41st || 

Figure 1: SOC Levels From 1970 to 2010 (Martellato) SOC Levels from 1970 to 2010 (Yang-Liska) 
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Table 1: Basic Descriptive Statistics for all Variables 

Variables (per county) N Mean Variance Min Max 

Corn (Tons) 4141 164080.57 9765569907 528.37 773810.5 

Hay All (Tons) 4141 29596.06 678452948.5 1375.93 243013.7 

Other  (Tons) 4141 46955.44 1998939671 273.14 476343.3 

Irrigated Area harvested (Hectares) 4141 61386.59 1427551194 0.01 190161.8 

Non-Irrigated Area Harvested 
(Hectares) 

4141 19821.49 784830363.2 0.01 162602.7 

Fertilizer Index (Per hectare) 4141 20511.99 96446357.91 1263.49 65118.96 

Chemicals Index (Per hectare) 4141 12186.15 47809450.78 318.7 65118.96 

Mean Temp (oF) 4141 50.28 2.963948881 44.44 54.98 

SOM1 (Mg C Ha -1) 4141 133.6 2187.47 46.55 298.87 

SOM2 (Mg C Ha-1) 4141 244.51 12366.03 46.61 732.44 
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1.3.6: Returns to Scale and Disposability 

Throughout the literature, the choice of the prevailing returns to scale and 

disposability characteristics that represent the technology have always been dependent 

upon some knowledge that the researcher has about the technology set or for purposes of 

convenience in estimation. For this technology (shown in figure 5 above), we assume 

constant returns to scale mainly because there are no documented reasons why the size of 

a county affects the returns to scale. We also assume strong disposability because there 

are no laws levying fines against farmers producing less than the stipulated amount of 

biomass needed to produce soil organic matter. This means that there are no associated 

costs involved in the incorporation of SOM in the production process.   

 

1.3.7: Technical Efficiency 

There are several forms of TE measurements available in the literature. The 

version one uses depends on the type of data available and the particular problem 

investigated. For this analysis, we carry out an output based Shephard measure of TE as 

Jju*

x 

Figure 4: Graph Measure of TE with Constant Returns to Scale and 

Strong Disposability 
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defined by Färe, Grosskopff and Lovell (1994). TE (output based), conditional on 

constant returns to scale technology and strong disposability, can be defined using the 

following linear programming relationship: 

 

                                                                                                                            

   

for j = 1, 2 …J 

This measure, as illustrated in Figure 6, measures the efficiency of u
j
 produced 

from x
j
 when the technology is assumed to satisfy constant returns to scale and strong 

disposability.  It does so by radially expanding u
j
 as much as technologically possible and 

then by computing the ratio of the expanded to the observed output. 

 

 

 

 

 

 

 

 

The intersection between u
j
 and the frontier is the efficient level of output corresponding 

to input x
j
. That is        

u
j*

=u
Jθ*j
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Figure 5: Output TE Measure 
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As described in Fare, Groskopf and Lovell (1994), the properties of this output measure 

of technical efficiency are summarized below: 

 

1)     
     |            

    |           

2)                                                                  

3)                                                                                    

4)  

5)  is independent of unit of measurement.      

In other words, doubling all output quantities cuts the output efficiency measure into 

half, increasing one output while holding the others constant decreases the measure 

(Strict Monotonicity); the measure compares each feasible output to an efficient output 

vector. 

More explicitly, the output measure of technical efficiency is obtained by finding a 

solution to the problem: 

 

Such that 

 

  

                                                                                                 

1.3.8: Malmquist Productivity Index 

This is an index number that is used to measure total factor productivity (TFP) 

growth of an industry, firm or any economic agent over time. Productivity growth is 
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defined as output per unit of input. It can be decomposed into two main sub categories 

which include technological change (TC) and efficiency change (EC).  

The output based Malmquist index is used in this study and follows closely that 

developed by Färe and Grosskopff and Lovell (1994) and Lindgren and Roos (1992). The 

two contributors above used as their basis the pioneering works of Farrell (1957) and 

Christensen & Diewert (1982).  Färe et al. (1992) merged efficiency theory as developed 

by Farrell (1957) with the Malmquist index of Caves et al. (1982) to propose a Malmquist 

index of productivity change that is now commonly used in the literature. Contrary to 

Färe et al. (1992), who considered an input based Malmquist index, we use an output 

based Malmquist index in the current paper.  

We start by considering firms which use n-inputs to produce m-output. Denote 

 and as, respectively, the input vector and output vector of those firms. The 

set of production possibilities of a firm at time t can be written as: 

 

 

Färe, Grosskopff, Norris & Zhang (1994) followed Shepherd (1970) to define the 

output distance function at time t as: 

                   

 

where the subscript o is used to denote the output-based distance function.
 
Note that 

 if and only if , and if and only if is on 

the frontier of the technology.  
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To define the Malmquist index, Färe et al. (1994) defined distance functions with respect 

to two different time periods: 

 

   

             and 

            

The distance function above measures the maximum proportional change in output 

required to make  feasible in relation to technology at time t. Similarly, the 

distance function in the last equation above measures the maximal proportional change in 

output required to make  feasible in relation to technology at time t + 1.  The 

output Malmquist TFP productivity index can then be expressed as: 

 

 

The term outside the brackets shows the change in technical efficiency while the 

geometric mean of the two ratios inside the brackets measures the shift in technology 

between the two periods t and t + 1; this could be called technological progress. Hence: 

Efficiency change =                                                                    

Technical change        =                         

In each of the formulas above, a value greater than one indicates an improvement and a 

value smaller than one represents deteriorations in performance over time. 
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To test the degree to which the SOM variables contribute towards variations in 

TE and TFP change, a benchmark run was carried out that includes only the five 

traditional inputs (Irrigated land area, non-irrigated land area, fertilizer, chemicals and 

average annual temperature). These estimates are represented as TE1 and TFPΔ1. Then 

the two different SOM variables are separately included as inputs and estimates obtained. 

1.3.9: Amount of SOM That Does Not Affect Current Production Levels 

The main hypothesis of this paper is that soil organic matter contributes to 

changes in technical efficiency and total factor productivity. Should the results fail to 

reject this hypothesis, the following question then becomes, at what level of SOM would 

output levels be maintained? That is, what minimum level of SOM would ensure that 

production levels are maintained while some of the crop residue is being harvested for the 

production of cellulosic ethanol? 

Data Envelopment Analysis is used to shed light on these hypotheses. This we 

denote as the graph measure of SOM Efficiency. 

1.3.9.1: Graph Measure of SOM Efficiency  

The linear programming objective to solve this problem is given by the 

relationship below: 

      ( 
            |   )     

   
  

Such that 
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Sub-vector analysis as shown in Fare et al (1994) allows us to partition the input matrix 

into SOM and all other inputs. Also, mirroring the theory of undesirable outputs that 

allows one to obtain environmental efficiency, a similar method is employed to estimate 

SOM efficiency. In this case, we are only contracting x
SOM

 as shown in the second 

constraint above and leaving outputs and other inputs unchanged at their observed values. 

 

 

 

 

 

 

In the graph above, A represents the most feasible frontier exhibiting constant 

returns to scale and strong disposability. B, C and D represent three observed levels of 

SOM and output for three counties. The farther away these points are from A 

(horizontally), the less efficient they are in the use of SOM. The horizontal distance to the 

frontier represents the amount of SOM that could be discarded and still produce the same 

level of output.  So this measure, the ratio of the potential to the observed input-output 

pair, represents the percentage of SOM, hence crop residue, which can be harvested by a 

given county without affecting current production levels. An efficiency (“SOM 

Efficiency”) estimate λ (between 1 and 0) represent a (1- λ) % SOM harvest potential by 

that county. Counties on the frontier represent those counties that need all their current 

levels of SOM to produce their prevailing levels of output. Their biomass harvest 

B 
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Figure 6: Graph Measure of SOM Efficiency 
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potential is thus zero. This analysis suggests that counties that are relatively “SOM 

inefficient” have higher biomass harvest potentials than those that are relatively “SOM 

efficient”. 

1.3.10: Bootstrapping 

The semi-parametric procedures developed by Simar and Wilson (1998) for the 

bootstrapping of distance functions were used in this study to obtain bias corrected TE 

estimates. A similar methodology was also used to bootstrap the Malmquist index 

estimates of TFP and their respective disaggregation accounting for the inherent time 

dependencies of the dataset. For a better insight into the theoretical basis for these 

approaches, we refer to Simar and Wilson (1998, 1999, 2000a, 2000b). In the next 

paragraph, we try to describe the most important components of the bootstrap algorithm 

in an output measure of TE framework and maintaining Fare et al (1994) notations.  

The process is initiated by the estimation of the efficiency scores using the linear 

programming (LP) shown in equation 16. These estimates can be used to trace their 

respective levels as shown in equation 11 (u
j*

 = u
Jθk

*j
). Using Monte Carlo techniques 

and selecting with replacement from the initial efficiency scores, a set of “Pseudo-

samples” of efficiency scores are obtained θk
*j

; say B= (1…n), where B is the number of 

pseudo-sample scores estimated. A smoothing operation is then carried out on these 

estimates to correct for distributional anomalies that are normally associated with high 

initial efficiency scores. These pseudo-samples are then used to obtain their respective 

efficiency levels (equation 11). Lastly, these estimates are used to construct their 

respective input-output data sets.    
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Once the number of desired samples is generated, the bias of the original estimate 

of theta is calculated as follows:                                                                                                                                                                                                                                                                 

            ∑ (   
  
)     

 

   
                                ---------    23 

Where: 

B= Number of pseudo-sample scores, 

θkb
*j

 =
 
Initial Efficiency Scores

 
from pseudo sample or bootstrapped values as in Simar 

and Wilson 1998. The b subscript simply signifies that the estimate is biased, and 

θk = Original estimator 

 

Using Simmer and Wilson (2000), we can obtain our bias corrected technical efficiency 

estimates 

                θk
*j 

= θk –bias θk                                                                                        24 

and plugging equation 23 into 24 yields 

  
  
        ∑ (   

  
)

 

   
                                   -                         25 

The key assumption behind this approach is that the empirical bootstrap 

distribution will mimic the original unknown distribution if the assumed data generating 

process (DGP) is a consistent estimator of the unknown DGP. 

We use Wilson’s FEAR software to carry out this bootstrapping procedure. FEAR 

creates an opportunity to estimate TE and TFP estimates and performs bootstrapping 

from these estimates. It has a routine that generates confidence intervals, biases and bias 

corrected TE estimates. Results are presented in the next section. 
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1.4: Results and Discussions 

In this section we present results from the analysis carried out in the order as 

outlined in the methodology section above. That is, we first present results describing the 

state of agricultural productivity and technical efficiency along the four mid-western 

states targeted. Only state level comparisons are reported for the particular years. The rest 

of the results (county level) are presented in the appendix. We then present results with 

both SOM proxy variables in calculations of TE and TFP. For the former (TE), we 

present only bias corrected estimates. TFP estimates (TFP without SOM and with the two 

SOM variables) were tested for significant difference from one another at 90%, 95% and 

99% levels. The reported values are those significant at the 90%. This was done only to 

accommodate more significant values. Lastly and most importantly, we present results 

for SOM efficiency and crop residue harvest potentials for 2010. This analysis was done 

with three different software packages, FEAR/R for the bootstrapping and bias correction 

estimates, GAMS for SOM efficiency and DEAP to confirm our Malmquist estimates. 

The respective codes are presented in appendix D. 

1.4.1: Output Technical Efficiency 

Three main statistical software packages were used to obtain TE and TFP 

1.0000 1.0500 1.1000 1.1500 1.2000
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TE1 

TE1

Figure 7: Benchmark (no SOM) Average Technical Efficiency, average 

for counties in NE and IA (Bias Corrected) 
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estimates for comparison purposes. These were the DEAP software from Coelli, GAMs 

(self-coded) and FEAR/R software from Simar and Wilson (1998). The results obtained 

from all three sources where exactly the same. 

The results of TE are obtained from equation (13) above. Output technical 

efficiency estimates as defined by Shepherd (1970) are measures that are bounded 

downwards by 1 and are open ended upwards. An output efficiency measure of 1 

represents the maximum production of outputs for the given set of inputs.  Deviations 

from 1 represent the percentage by which outputs can be increased if production is 

reorganized, given the same level of inputs.  

The technical efficiency estimates reported in figure 8 above have already been 

corrected for biases. In the graph, Shephard’s output TE levels are reported at the state 

level. Because the samples used for Colorado and Wyoming are less representative we 

chose to compare only Nebraska and Iowa. Clearly, Iowa performed better than Nebraska 

on the basis of minimizing current year inputs to produce a given quantity of outputs. 

Please refer to the appendix for county level comparisons. Also, note that all means are 

geometric averages. 

When SOM is included as an additional input we calculate three alternative 
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Figure 8: Three Measures of Technical Efficiency Compared, no SOM (TE1), 

SOM1 (TE2), SOM2 (TE3), average for counties in NE and IA 
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Shephard (1970) output oriented technical efficiency measures. TE1 represents technical 

efficiency in the absence of any measure of SOM. TE2 represents technical efficiency 

with SOM1, calculated following the procedure in Yang-Jansen-Liska, included as an 

input. TE3 represents the technical efficiency estimates including SOM2, calculated 

following Milner/Martellato. These results are shown in figure 9 below. Similar to the 

earlier graph (figure 8), only the average Nebraska and Iowa results were plotted. County 

level calculations can be seen in the appendix. The inclusion of an additional input to 

capture SOM leads to the efficiency measures tending towards the frontier.  This means 

that the inclusion of this input has helped explain differential performance between the 

counties that defined the best practice frontier and those that do not. What appeared as 

inefficiency when SOM was not explicitly included (TE1) was, in part, due to differences 

in SOM levels across counties. 

This can also be seen when all the county estimates are plotted, for the 

corresponding years, with SOM and without SOM. The graph below makes this analogy: 
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Figure 9: County TE estimates with (red) and without (blue) SOM, 1980  
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Figure10 above shows TE estimates with and without SOM for all 101 counties 

targeted for 1980. The spots in blue represent values without SOM and those in red 

represent those with SOM. Taking county # 93 (Seward county, Nebraska), the blue point 

is farther away from the frontier than the red point. This confirms our previous results, 

that when SOM is included as an additional input the counties are closer to the best 

practice frontier. Note that counties with TE estimates of 1 define the frontier. The table 

below shows the number of counties that lie on the frontier for 1970, 1980, 1990, 2000 

and 2010. The efficiency scores for these years are presented in Appendix A. 

Table 2: Number of Counties on the Frontier for TE1 (no SOM) 

Number of Counties on the Frontier 

States  1970 1980 1990 2000 2010 

Colorado 1 1 2 1 2 

Iowa 15 16 22 25 5 

Nebraska 10 8 12 8 15 

Wyoming 2 3 3 2 2 

 

Similarly, we present the number of counties on the frontier when SOM1 is in the model.   

Table 3: Number of Counties on the Frontier for TE2 (SOM1) 

Number of Counties on the Frontier 

States  1970 1980 1990 2000 2010 

Colorado 3 1 1 1 2 

Iowa 21 17 22 25 5 

Nebraska 12 8 13 8 16 

Wyoming 3 3 3 2 2 

 

Table 4: Number of Counties on the Frontier for TE3 (SOM2) 

Number of Counties on the Frontier 

States  1970 1980 1990 2000 2010 

Colorado 3 1 1 1 2 

Iowa 21 17 22 25 5 

Nebraska 12 8 12 8 16 

Wyoming 3 3 3 2 2 
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Tables 2, 3 and 4 above report the number of counties per state that define the frontiers of 

TE1, TE2 and TE3 for 1970, 1980, 1990, 2000 and 2010. Two distinct observations can 

be made. One is that the introduction of an additional input variable, SOM, to the model 

brings more counties to the frontier for all the years. This means that differential 

performance is better understood. Furthermore, Iowa’s counties had better performance 

than Nebraska’s from 1970 through 2000. From 2010 on, Nebraska’s performance, on 

average, has been better than Iowa’s. This can be attributed to the rapid adoption of 

irrigation technology in Nebraska over the last ten years that has significantly affected 

yield levels.  

1.4.1: Total Factor Productivity, Efficiency Change and Technological Change 

 In this section, we report total factor productivity change estimates from the 

Malmquist indices computed from equation (19) above. Recall that productivity growth is 

defined as the growth rate of output minus the grow rate of inputs. Most of the literature 

on inter-country agricultural productivity performance has attributed growth in TFP for 

United States agriculture to strong technological change. Here we provide evidence of 

TFP change at the county level for a sample of 101 counties (DMUs) in Nebraska, Iowa, 

Wyoming and Colorado considering production data from 1970 to 2010. A TFP value 

greater than one represents productivity increases and a value less than one represents 

productivity decreases.  
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Table 5: Average Malmquist Total Factor Productivity, Technical Change and 

Efficiency Change Estimates, counties on the 41 parallel North, in IA, NE, 

Wyoming, and Colorado  

States Group 
1970 – 1980 1980 – 1990 1990 - 2000 2000 - 2010 

TFP EFF TECH TFP EFF TECH TFP EFF TECH TFP EFF TECH 

Co 

No SOM 0.945 0.976 0.968 0.998 1.005 0.993 1.002 1.008 0.994 1.219 0.996 1.224 

SOM1 0.941 0.976 0.964 0.994 1.005 0.989 1.002 1.015 0.987 1.219 0.994 1.226 

SOM2 0.945 0.974 0.970 0.988 0.997 0.991 1.005 1.015 0.990 1.232 0.994 1.239 

Wy 

No SOM 0.9936 1 0.994 1.016 1 1.016 1.0074 0.9851 1.023 1.0577 1.0146 1.042 

SOM1 0.994 1 0.994 1.015 1 1.015 1.005 0.996 1.009 1.074 1.015 1.058 

SOM2 1.006 1 1.006 1.020 1 1.020 1.009 0.996 1.013 1.08 1.014 1.065 

IA 

No SOM 1.012 0.998 1.014 1.000 1.005 0.995 1.007 1 1.007 1.004 0.982 1.022 

SOM1 1.015 0.999 1.016 0.999 1.003 0.996 1.007 0.998 1.009 1.004 0.982 1.022 

SOM2 1.006 0.999 1.007 1.001 1.004 0.997 1.009 0.998 1.011 1.006 0.982 1.024 

Ne 

No SOM 0.99 1.003 0.987 1.006 1.017 0.989 0.983 0.995 0.988 1.083 1.004 1.079 

SOM1 0.988 1.003 0.985 1.006 1.017 0.989 0.984 1.002 0.982 1.083 1.004 1.079 

SOM2 0.971 1.002 0.969 1.005 1.017 0.988 0.984 1.002 0.982 1.092 1.006 1.085 

 

Table 5 above shows total factor productivity change, technological change and 

efficiency change estimates without SOM and in the presence of both SOM measures. 

The county averages for the whole period are presented in Appendix B (B1, B2 and B3). 

These estimates are the original estimates that have not yet been corrected for biases. 

Table 6 represents the biased corrected version that reports significant estimates at 90% 

confidence interval. Both tables show only state level aggregations for ten year averages 

from 1970 to 2010 for the 101 counties considered in this study (41 parallel North in IA, 

NE, WY and CO). These are reported to show the contributions of technical change 

relative to efficiency change across time. It is important to remember that the best 

practice frontier is obtained from a subset of 101 counties in these four states (42 in Iowa, 

42 in Nebraska, 4 in Colorado, and 3 in Wyoming, see list of counties in the appendix 

section). For the estimates without SOM, all the studied counties in all states show 

gradual improvements from the 70’s into the 2000s. Counties under study for Colorado, 

Wyoming and Nebraska reported declines, on average, in TFP in the 70’s but have 

enjoyed increasing TFP over the last three decades. Counties in Iowa, on the other hand 
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enjoyed steady increases in TFP throughout the period targeted. On average, for all 

counties considered in these states, it is very clear that technical change has been the 

driver of growth.  

Comparing Nebraska and Iowa over the last two decades, some interesting results 

emerge. In the last decade alone, counties in Nebraska have enjoyed, on average, a TFP 

growth increase of 8.3% (6.2% for 90% level of significance estimates) with the majority 

of this growth being attributed to technological change. It is important to note that this 

comes after a decade of declining growth for the counties in this state. Iowa on the other 

hand only continued to grow at its normal growth trajectory as had been the case in the 

past three decades. One possible reason for Nebraska’s rapid growth can be the rapid 

degree of irrigation that was undertaken in the state during this period. For all four states, 

there has been an average growth in the counties considered in this study of 1.1% for the 

original estimates and 1.6% for bias corrected estimates (these estimates are without 

SOM). Both of these rates have been driven predominantly by technological change. 

Comparing the estimates of TFP with and without SOM in Table 6 below, it can be seen 

that accounting for SOM as a production input  has resulted in a slight increase of the 

measured rate of growth of agricultural productivity in these counties.  
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Table 6: Average Malmquist Total Factor Productivity, Technical Change and 

Efficiency Change Estimates, Counties on the 41 parallel north, in IA, NE, 

Wyoming, and Colorado, biased corrected and significant at 90%  

States Periods 

No SOM SOM1 SOM2 

effch Techch Tfpch Effch Techch tfpch effch Techch tfpch 

Colorado 

70/71-79/80 0.976 0.968 0.945 0.976 0.964 0.941 0.976 0.967 0.944 

80/81-89/90 1.005 0.994 0.998 1.005 0.990 0.994 1.005 0.993 0.997 

90/91-99/00 1.008 0.994 1.002 1.010 0.992 1.002 1.010 0.995 1.004 

00/01-09/10 0.996 1.203 1.198 0.994 1.205 1.198 0.994 1.213 1.206 

      
 

    
 

    
 

  

Iowa 

70/71-79/80 0.998 1.014 1.013 0.999 1.016 1.015 0.999 1.017 1.016 

80/81-89/90 1.005 0.995 1.000 1.003 0.996 0.999 1.003 0.997 1.001 

90/91-99/00 1.000 1.006 1.006 1.000 1.007 1.007 1.000 1.008 1.008 

00/01-09/10 0.982 1.022 1.004 0.982 1.023 1.004 0.982 1.024 1.005 

      
 

    
 

    
 

  

Nebraska 

70/71-79/80 1.003 0.987 0.990 1.003 0.985 0.988 1.003 0.986 0.989 

80/81-89/90 1.017 0.988 1.006 1.017 0.989 1.006 1.017 0.990 1.007 

90/91-99/00 0.995 0.988 0.983 0.995 0.989 0.984 0.995 0.990 0.985 

00/01-09/10 1.004 1.058 1.062 1.004 1.057 1.062 1.004 1.059 1.064 

      
 

    
 

    
 

  

Wyoming 

70/71-79/80 1.000 0.994 0.993 1.000 0.994 0.994 1.000 0.996 0.996 

80/81-89/90 1.000 1.016 1.016 1.000 1.015 1.015 1.000 1.017 1.017 

90/91-99/00 0.985 1.023 1.007 0.985 1.020 1.005 0.985 1.023 1.008 

00/01-09/10 1.015 1.043 1.058 1.015 1.059 1.074 1.015 1.064 1.079 

           
Geometric Average >> 0.999 1.017 1.016 0.999 1.017 1.017 0.999 1.020 1.019 

 

From the biased corrected Malmquist index results in Table 6 above,  it is evident 

here too that the main contributing factors to agricultural productivity growth in the 

counties studied has been technological change.  It includes innovations that allowed 

increased irrigation in states like Nebraska, Wyoming and Colorado, as well as the 

introduction of hybrid seeds, new pesticides, and several other ongoing innovations in the 

agricultural industry. Please refer to the appendix for the county level results. 

1.4.2: SOM Efficiency and Crop Residue Harvest Potentials 

 These results are obtained from equation (22) above.  Tables 7 and 8 below 

show state level aggregated results for SOM efficiency estimates and hence crop residue 
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harvest potentials obtained from the methodology outlined in the previous section. The 

county level estimates can be found in appendix C. Recall that harvest potential refers to 

the percentage by which one can further shrink SOM (hence harvest crop residue) 

without affecting production levels. Table 7 presents the percentage of counties that fall 

within certain harvest potential groups. The groups we identified are 0 to 10 %, 11% to 

30%, 31% to 50% and above 50%. Although we report all four states, we focus our 

comparisons on Nebraska and Iowa for the same reasons outlined above. As can be seen 

from table 7, most Iowa counties have ample harvest potential. 

Table 7: Percentage of counties in IA, NE, WY and CO (41 parallel North) in four 

harvest potential groups 

% of Counties within given harvest potentials  

State 0 - 10% 11% - 30% 31%-50% >50% 

Co 50 0 0 50 

Ia 10.64 2.13 27.66 59.57 

Wy 66.67 33.33 0 0 

Ne 34.78 13.04 13.04 39.13 

:  

 

 About 60% of the counties in Iowa have crop residue harvest potentials 

above 50% of their current SOM levels. For Nebraska, there is an even split between the 

two extreme groups (zero to ten, and above fifty); about one third of the counties fall 

Figure 10: Map Showing Crop Residue Harvest Potentials across the 41st Parallel 
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within these two extreme categories. These represent 20% more than Iowa in the 0-10% 

group and the same proportion less than Iowa in the above 50% grouping. This means 

that Nebraska has 20% more counties than Iowa with almost zero SOM harvest potential. 

It also has about 20% less counties than Iowa with harvest potentials above 50% of their 

current SOM levels.  Table 8 presents the average harvest potentials and the associated 

biomass quantities by state. As shown, the average crop residue harvest potentials were 

33%, 53%, 35% and 8% in Colorado, Iowa, Nebraska and Wyoming respectively. Figure 

11 above confirms that counties in Iowa reported higher harvest potentials while the 

counties studied in Wyoming reported the lowest. 

Table 8: Crop Residue Harvest Potentials by state 

State HP SOC(Mg C/Ha) Crop Residue (Mg/Ha) 

Co 32.45% 13.79 34.48 

IA 53.16% 41.56 103.9 

Ne 34.93% 17.55 43.87 

Wy 7.97% 2.25 5.63 

HP = Harvest Potential   

 

 On average, 104 Mg per hectare of crop residue, in Iowa, was the highest 

quantity of crop residue that can be harvested while maintaining the same level of outputs 

and other inputs. This is equivalent to 42 Mg of SOC per hectare. The other states had 

values of crop residue available for extraction for given outputs and inputs, ranging from 

104 Mg to 6 Mg. While the county level results fall within expected ranges for Iowa, 

Colorado and Wyoming, a few counties in western Nebraska have un-anticipated harvest 

potentials. Banner, Cheyenne and Deuel counties show high harvest potentials. A 

plausible explanation for this result is that low yields in these counties are as a result of 

having highly porous soils.  As a consequence little farming activities are ongoing in 

these counties resulting to the low SOM levels needed to produce the prevailing low 
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yields. In this sample, Iowa had the highest SOM harvest potentials while Wyoming had 

the lowest. Policy that targets crop residues policy should be county specific rather than 

state specific.  

1.5: Conclusion 

The main objective of this paper is to determine how much crop residue farmers 

can harvest from their fields on an annual basis without affecting negatively agricultural 

yields. The model developed was applied to 101 counties across four states in the mid-

western region of the United States (41 parallel North of Nebraska, Iowa, Colorado and 

Wyoming). We first calculate technical efficiency and productivity growth at the county 

level with and without the inclusion of soil organic matter as an additional input in 

production. 

We calculate soil organic matter by county as a proxy for crop residue and include 

this information in the calculation of technical efficiency and agricultural productivity 

growth rates. If productive efficiency is not affected by different SOM levels then a 

recommendation to farmers would be to harvest all crop residues for the production of 

cellulosic ethanol.  If otherwise, there is need for information on which counties can 

afford, and to what degree, to harvest residuals while maintaining production levels. 

Once this information is available we obtain a measure of crop residue harvest potentials 

by county. This information is an important ingredient in the decision to supply biomass 

for second generation biofuels. 

We also use this study as an opportunity to give an account of the status of inter-

county agricultural productivity in this region. These calculations are novel as most 
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productivity studies for the region have been done at state rather than county level and 

none has included SOM as a productive input.  

  From this analysis we conclude that including soil organic matter as an additional 

input in production does help explain variations in performance (technical efficiency) 

across counties. The inclusion of either of the two proposed SOM proxy variables in the 

model shows as a reduction in inefficiency.  This means that SOM explains a portion of 

the heterogeneity in agricultural performance across counties.  Including SOM also 

slightly changes the estimated rates of agricultural productivity growth for these counties. 

Over the years, counties in these three states have enjoyed a growth in TFP of 1.1%, the 

main driver being technological innovations. This is consistent with results obtained at 

the state and national level in the United States.  

In summary, when SOM is included as an additional input in gauging county 

performance, technical efficiency (TE) shows that the performance of each county to 

those on the best practice frontier is better understood, while TFP growth rates  do not 

change much.  

Results suggest that the commercial harvest of biomass for cellulosic ethanol will 

be very much affected by the differential ability of each county to provide it with 

minimal effect on output produced, given the different levels of soil organic matter 

present.  In this vein, the most important conclusion is that crop residue harvest potentials 

vary considerably across counties. On average, 35%, 50%, 11% and 67% of the counties 

in Nebraska, Colorado, Iowa and Wyoming respectively had zero crop harvest potentials. 

Iowa counties have the ability to produce the highest levels of biomass, on average 104 

Mg per hectare, while maintaining yields. The harvest potentials for the other states 
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ranged from under 104 Mg to 6 Mg per hectare of biomass. Our results indicate that Iowa 

had the highest SOM harvest potential while Wyoming had the least potential. These 

results should be of use when polies regarding second generation biofuels are designed or 

modified in the future.  
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Chapter 2: The New Frontier: Welfare Effects of Foreign Biofuel Investments in 

Africa (Case Study: Sierra Leone). 

2.1: Introduction 

  Africa is the second largest continent by landmass and second most populous 

continent next to Asia. With an area of about 11.7 million sq. miles (about three billion 

hectares), it covers 6% of the earth’s total surface area and 20.4% of the total land area 

(A.P World History 2008). 30.3% of the continent’s land mass, which represents 906 

million hectares of land, is potentially suitable for rain-fed agriculture. Unfortunately, 

only 10% of this land is considered prime land for rain-fed agriculture, leaving about 800 

million hectares of non-prime land for agriculture. As Mckinsey (2010) puts it, about 

60% of the world’s available landmass suitable for rain-fed agriculture is from Africa.    

Such estimates may suggest that issues of land access for either agricultural purposes or 

other enterprises would not be such a big problem in the continent. However, recent 

studies have shown that land access inequality happens to be a major bottleneck for 

economic development in some African countries (ECA 2004). This reality has been 

attributed to several factors. One most commonly referred is the legacy of Africa’s 

colonial system of land tenure.   

While this communal land ownership system has the advantage of protecting communal 

welfare for current and future generations, it has been shown to hinder private sector 

investment, particularly foreign direct investment, as a result of poorly designed and 

enforced property rights.   
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With the world tending towards cleaner energies and a growing demand for 

biofuel products, has resulted in increases in the demand for land. This has resulted in 

food crops being substituted for biofuel crops (a politically sensitive option) and on 

seeking new land frontiers. Recent trends in Africa confirm that there is a growing shift 

towards the latter from both foreign investment companies and foreign government 

initiatives.  

This interest in land investments in Africa has raised an even more sensitive 

question about the role western nations and stronger emerging economies are playing 

towards the development or demise of African nations in their search for these new 

frontiers. Countries like Switzerland in Sierra Leone, South Korea in Sudan, India and 

Saudi Arabia in Ethiopia, China in Zambia and Congo, to name a few (IFPRI 2009); land 

is being leased from the government or individuals to grow crops for biofuels like 

sugarcane, jatropha, palm oil and more, in land previously used to growfood crops like 

rice, wheat, cassava etc. In return, these companies/governments promise to provide jobs 

to these displaced farmers, build local infrastructure in addition to the taxes they pay to 

the government and the rent on the land leased.  

Some African leaders see these investments as sources of foreign capital which 

would help their local economies not just in the short run but in the long term as well. An 

initial survey in Sierra Leone showed that farmers who lost their land to foreign investors 

but had rent acquisition rights see themselves better-off after giving up their land when 

compared to their status when they were farming the land. Farmers who had only farming 

rights (communal ownership or family ties) to the land but had no rights to claiming rents 

are upset because they have lost their main source of income in the process. This points 
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towards the prevailing land tenure and property rights system having a significant role in 

determining the market and welfare effects of these investments. Given that these land 

acquisition leases are reported to be for long periods (40 to 50 years), the long term 

economic and environmental effects are crucial in understanding the true welfare effects 

of these investments. 

For a better understanding of the implications of these investments and to 

adequately guide policy makers towards either encouraging more land investments or 

curtailing them, it is but proper to carry out country specific empirical studies to capture 

the likely market and welfare effects of these investments both in the short term and in 

the long-term.  

In this research, the objective is to study the short-term positive and normative 

effects of an increase in the demand for biofuels in Sierra Leone.  

To accomplish this, we use an equilibrium displacement model representing the 

agricultural economy of the country. Log-linear comparative static techniques are used to 

represent output and input markets. The model allows the introduction of different shocks 

to the system to test how equilibrium prices and quantities as well as the welfare of 

producers and consumers respond to these shocks. This model assumes that as a result of 

the biofuel investments (increased demand) farmers had to decide on reallocating their 

land to incorporate this increased biofuel demand and in the process increases the supply 

of biofuel products. Therefore several assumptions are made; we assume farmers do not 

lose their land forcefully. They make rational decisions to reallocate their inputs based on 

market forces. There is no “free” or unused land in Sierra Leone. This makes sure that all 
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market effects are a result of reallocation of available resources due to the introduction of 

shocks such as an increase in the demand of biofuel crops 

2.2: Literature Review 

2.2.1: Background 

Land tenure systems (land rights) are institutional laws that define a set of rules 

that determine the use of land, duration of tenure and under what conditions (ECA 

(2004)). There are different standards upon which these rules are based. For the most 

part, these benchmarks depend on sociopolitical and economic factors defining the 

prevailing human relationships between the different potential users and custodians. Land 

can be privately owned, communally owned or lack a clear definition of ownership -open 

access (D. Brautigam, (1992)). In developed countries, where the rights of land owners 

trump all other interests, very liberal systems like the “conveyance system” (U.S) and 

“conveyance with land registration system” (Germany, England, Australia etc.) have 

been in use for decades (Onsrud, Harlan J. (1989)). Both of these systems protect buyers 

from potential fraud through the use of title insurances in the case of the US and land 

registration regime for European countries (D. Brautigam, (1992)). These systems grant 

equal opportunity to its citizens to own land independent of status.   

However, the case for Sierra Leone and other Sub-Saharan African countries is 

very different. Most African countries still carry a colonial heritage and customary 

traditions that strongly influence the laws of the land. There is a high degree of 

discrepancy over whether statutory rights should prevail over customary rights to owning 

physical property like land. In most urban cities in Africa, statutory rights prevail and 

define the ownership of land. However as one goes inland the degree of customary rights 
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increases while statutory rights become less recognized. In between, this continuum 

exists a buffer region with conflicting and unclear land tenure rules. This creates room for 

opportunistic behavior for some risk lovers leading to land grabbing and the multiple sale 

of land from multiple owners to multiple potential users. This is made even worse in the 

absence of transparent enforcement regimes. The prevailing enforcement mechanisms 

tend to be biased towards the rich and powerful for urban-like settlements and towards 

chiefs and traditional elders for rural communities, with the ultimate victims being the 

poor and less influential. Most customary rules distribute land based on caste, seniority 

and gender (Lund C.(2001), prohibiting women from owning land in some African 

countries. This accounts for the prevailing inequality in land tenure across gender. Given 

that staggering averages of about 40% to 60% of households are headed by women, the 

situation is made even worse for women and children in the continent. Customary 

systems also create restrictions to commercial farming as land cannot be bought and sold 

freely because communal ownership does not clearly define rights to sell land. This 

accounts for the small farm holdings, low productivity and subsistence nature of the 

agricultural practices of most African countries.  (E.H.P. Frankema 2006). For cases 

where provincial land is leased by the government to potential private users, chiefs and 

village elders insist on additional forms of payments from these new tenants before 

granting them permission to use the land. This to some extent discourages private sector 

investment in agriculture. 

For most sub-Saharan African countries, agriculture is the main economic activity 

for households. This makes access to land a fundamental means whereby the poor can 

ensure household food supplies and generate income (Cotula L., Toulmin C. & Quan J., 
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(2006)). Therefore land access is an issue of survival which in the absence of well-

defined and enforced property rights, as is the case in Africa, can lead to continued civil 

unrest. This has been the reason for wars and civil and political unrests in countries like 

Zimbabwe, Chad, Ivory Coast, Uganda, etc. and for countries with better property rights 

like South Africa, Ghana, Botswana, etc., has been the engine of growth (E.H.P. 

Frankema, (2006)).  

By the late 90s and increasingly so in recent years, due to changes in population 

dynamics, increasing urbanization of African societies, increased levels of privatization 

and a host of other factors, there have been growing calls for land reforms in different 

countries in Africa, including Sierra Leone. In Sierra Leone, the Chiefdom Councils Act, 

Section 28 (d) of the Local Government Act 1994 and the Provinces Lands Act (Cap 122) 

require a company wanting to lease land to pay surface rent to local authorities. This 

includes the paramount chief, the district Council and the land owners. Rents for these 

leases are renegotiated every seven years.  

Given this shift, the future of land access in Africa is very promising should 

African leaders be empowered with accurate research to strike deals that would enhance 

welfare not just in the short-run but the long-run as well. About 70% of countries in 

Africa have adopted or are on the verge of adopting land reforms which are moving away 

from colonial ownership regimes. This has attracted substantial foreign direct 

investments. This is evident in the current flow of investment from emerging economies 

like China and India and some countries in Europe into different parts of Africa. These 

systems have led to Africa being seen as the new frontier for investments not just in the 

agriculture sector but most significantly in the industrial and service sectors.  
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2.2.2: Equilibrium Displacement Model: There has been a long list of contributions 

made towards the general equilibrium displacement model literature. The literature can 

be traced as far back as Buse (1958) who developed a system of reduced form elasticities 

from supply and demand equations for two commodities. He then contrasted his “total 

elasticities” with Marshallian ceteris paribus elasticities. Some reviews however pay 

more homage to Muth (1964) who developed the reduced forms for proportional 

displacements from equilibrium for a system of equations of supply and demand for a 

product dependent on two factors of production and exogenous shifters for each of the 

functions. Both of these contributions we think were very significant and paved the way 

for several other contributions to their methods.  

Several developments have followed these pioneering contributions by Muth and 

Buse. Some of these include Perrin 1997’s application of these techniques to develop a 

framework that can be used to obtain impacts of technological change, either ex ante or 

ex post.  

This research follows closely the model developed in Perrin (1997) and in 

Perrin’s updated class notes for the graduate course AECN 840 “Applied Welfare and 

Policy Analysis” at the University of Nebraska, Lincoln. The latter have been a widely 

used tool box for practitioners. In this research, we use a very simple multi-market model 

representing a system of demand and supply equations in a set of output and input 

markets. Using matrix algebraic methods and sensitivity analysis, we obtain calculate the 

market and welfare effects of increased demand of a biofuel crop in the agricultural 

sector in Sierra Leone   
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2.3:  Methodology 

2.3.1: The displacement model 

In this paper the whole agricultural sector in Sierra Leone is modeled as 

consisting of three output markets and two input markets.  The agriculture industry 

produces energy crops, and staple crops while using land and other inputs.  We specify 

three main output markets; one for non-edible energy crops, one of edible energy crops 

and one for other staples; and two input markets; land and others 

Consider a biofuel influenced farming industry producing three outputs, Qb, a 

product solely used as biofuel input, Qf,  an edible oil product, and food staples, S, using 

two inputs, land L
Q
 and other O

Q
.  (Example of Qb can be Jatropha while that for Qf can 

be either sugar cane or palm oil).   We model this farming industry as having one 

underlying technology that can be represented by the cost function C(S,Qb,Qf,w
L
,w

O
), 

where the w's are prices of land and other inputs.  

The equilibrium equations consist of demand equations for the three outputs: 

Qb=f(p
Qb

,p
Qf

) + shock due to biofuel (β) 

Qf=g(p
Qf

,p
S
)  

S= h(p
Qf

,p
S
) 

and "supply" equations, production chosen so as to set marginal cost equal to price: 

CQb = p
Qb

,  

CQf = p
Qf

 

CS = p
S
 

Output-constant, derived demand equations for land and other inputs, using Shephard’s 

lemma, are: 
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CwL = L, 

CwO = O, 

And the input supply equations are: 

L = g(wL
,) ,      

O = f(wL
,) 

This system of  5 markets with 5 equilibrium conditions provides solutions to 10 

unknowns (dlnQ
b
,
 
dlnQ

f
, dlnS, dlnP

Qb
, dlnP

Qf
,
 
dlnP

S 
, dlnW

L 
, dlnW

o 
, dlnL, dlnO). We 

introduce an increase in demand of inedible biofuel as a shock to the system.  We then 

solve the system of equations to obtain the change in prices and quantities in the five 

markets as well as the producer and consumer welfare changes.  

2.3.2: Log-linear comparative static equations: 

The following is a key describing the variables presented in the equations below: 

Q
b
 = Equilibrium quantity of Inedible Biofuel  

Q
fb

 = Equilibrium quantity of edible biofuel  

S = Equilibrium quantity of Staples 

P
Qb

 = Equilibrium Price of inedible biofuel 

P
R
 = Equilibrium Price of edible biofuel 

P
S
 = Equilibrium Price for Staple 

W
L
 = land prices 

W
o
 = price of other inputs. 

L = Total Land used by all three industries 

O = other inputs used by all three industries 
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Demand Equations (H=Elasticity) 

dlnQ
b
 =HQb/p

Qb
 dlnP

Qb
 + HQb/P

Qf
dlnP

Qf
 + HQb/P

S
dlnP

S
 + β   --------------------------------------------1 

dlnQ
fb

 = HQfb/P
Qf

dlnP
Qf

 + HQfb/P
Qb

dlnP
Qb

 + HQfb/P
S
dlnP

S
      ------------  ------------------------------2 

dlnS =  HS/P
Qf

dlnP
Qf

 + HS/P
S
dlnP

S
 + HS/p

Qb
 dlnP

Qb
        -------------------------------------------------3 

Equations one to three represent demands for biofuels, edible biofuels and staple products 

respectively.  

Supply equations (∑=Elasticity) 

(∑Qb
s
/P

Qb
)

-1
dlnQ

bs
 + (∑Qf

s
/P

Qb
)

-1
dlnQ

fs
 + (∑S

s
/P

Qb
)

-1
dlnS

s
+ (∑W

L
/P

Qb
)

-1
dlnW

L
+ (∑W

o
/P

Qb
)

-1
dlnW

o
 = dlnP

Qb
----4 

(∑Qb
s
/P

Qf
)

-1
dlnQ

bs
 + (∑Qf

s
/P

Qf
)

-1
dlnQ

fs
 + (∑S

s
/P

Qf
)

-1
dlnS

s 
+ (∑W

L
/P

Qf
)

-1
dlnW

L
 + (∑W

o
/P

Qf
)

-1
dlnW

o
 = dlnP

Qf
----5 

(∑Qb
s
/P

S
)

-1
dlnQ

bs
 + (∑Qf

s
/P

S
)

-1
dlnQ

fs
 + (∑S

s
/P

S
)

-1
dlnS

s 
+ (∑W

L
/P

S
)

-1
dlnW

L
 + (∑W

o
/P

S
)

-1
dlnW

o
 = dlnP

S
----------6 

On the supply side, one cost function was used for all three crops and the first order conditions 

maintained (MC=P). The general forms for all three equations  are:  CQb (Qb, Qf, S, w
L
, w

O
) and. 

CQf (Qb, Qf, S, w
L
, w

O
), CS (Qb, Qf, S, w

L
, w

O
).  

Output Constant Derived Demand 

ZL/Qb dlnQ
bs

 + ZL/Qf dlnQ
fs
 + ZL/S dlnS

s
 + ZL/W

L
 dlnW

L
 + ZL/W

o
dlnW

o
 = dlnL ------------------------------- 7 

ZO/Qb dlnQ
bs

 + ZO/Qf dlnQ
fs
 + ZO/S dlnS

s
 + ZO/W

L
 dlnW

L
 + ZO/W

o
dlnW

o
 = dlnO ------------------------------ 8 

Using Shephard’s lemma, the above output constant equations were derived. The general forms 

are:     CwL = L; CwO = O. 

Supply and Market Clearing Conditions 

dlnL = ΩL
T

/W
L
 dlnW

L
 + ΩL

T
/W

o
 dlnW

o
 -----------------------------------------------------------------------------9 

dlnO = ΩO
T

/W
o
 dlnW

o
 + ΩO

T
/W

L
 dlnW

L
 ----------------------------------------------------------------------------10 

dlnQb = dlnQb
s
 --------------------------------------------------------------------------------------------------------11 
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dlnQf = dlnQf
s
 --------------------------------------------------------------------------------------------------------12 

dlnS = dlnS
s
 -----------------------------------------------------------------------------------------------------------13 

Based on the above log-linear relationships, the graphs below try to describe the 

relationships with the shock introduced. 

The graphs show the three output markets (staples, edible biofuel and inedible 

biofuel markets) and two input markets (land and other). The bolded black plots represent 

demand and supply curves describing the benchmark (that is, without the shock) while 

the other lines (dashed) represent the changes as a result of the shock (orange in graph). 

 

2.3.3: Market Effects 

 

 

 

 

 

 

 

 

 

And the matrix of elasticities corresponding to a system representing two input markets and three 

output markets is as shown below:  

C(Q
b
, Q

f
, S, w

L
, w

O
) 

 

 

Inedible Biofuel Market 
Edible Biofuel Market Staple Market 

P
s

 P
Qf

 

Land Market Market for Other 

Inputs 

W
L

 
W

O

 

L O 

Q
f

 Q
S

 

P
Qb

 

Q
f

 

Figure 11: Resulting Market Effects 
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Table 9: Matrix Containing Elasticities and Shares for a System of Three Output 

and Two Input Markets 

 
dlnQb dlnQf dlnS dlnPQb dlnPQf dlnPS dlnWL dlnWo dlnL dlnO 

 
   

 
               

-1 0 0 -HQb/p
Qb -HQb/P

Qf -HQb/P
S 0 0 0 0 

  

dlnQb 

= 

Β 

0 -1 0 -HQf/P
Qb

 -HQf/P
Qf

 -HQf/P
S
 0 0 0 0 dlnQ

f
 0 

0 0 -1 -HS/P
Qb -HS/P

Qf -HS/P
S 0 0 0 0 dlnS 0 

(∑Qb
s
/P

Qb)-1  (∑Qf
s
/P

Qb)-1  (∑S
s
/P

Qb)-1 -1 0 0  (∑W
L
/P

Qb)-1 (∑W
o

/P
Qb)-1 0 0 dlnPQb 0 

(∑Qb
s
/P

Qf)-1 (∑Qf
s
/P

Qf)-1  (∑S
s
/P

Qs)-1 0 -1 0 (∑W
L
/P

Qf)-1 (∑W
o

/P
Qf)-1 0 0 dlnPQf 0 

(∑Qb
s
/P

S
)

-1
 (∑Qf

s
/P

S
)

-1
  (∑S

s
/P

S
)

-1
 0 0 -1 (∑W

L
/P

S
)

-1
 (∑W

o
/P

S
)

-1
 0 0 dlnP

S
 0 

ZL/Qb   ZL/Qf   ZL/S  0 0 0 ZL/W
L   ZL/W

o -1 0 dlnWL 0 

ZO/Qb   ZO/Qf   ZO/S  0 0 0 ZO/W
L
   ZO/W

o
 0 -1 dlnW

o
 0 

0 0 0 0 0 0 -ΩL/W
L - ΩL/W

o 1 0 dlnL 0 

0 0 0 0 0 0 -ΩO/W
L - ΩO/W

o 0 1 dlnO 0 

 

β represent the potential shock to the system, the increase in the demand of 

inedible biofuels. The inedible biofuel market is affected by an increase in foreign 

investments into Sierra Leone’s biofuel industry and we represent this by an increase in 

demand (parallel outward shift of the demand curve). Solving the equation A10x10*X10x1= 

b10X1 helps us characterize the market (positive) effects of the shock introduced on 

equilibrium prices and quantities in all five markets. The resulting estimates of X (market 

effects) represent the percentage by which the prices and quantities in the five market 

change as a result of exogenous shock. Given the linear relationship between X and b, 

doubling b11 (the shock) would double X11. We therefore only introduced one shock to the 

system (30%) to illustrate.  As the size of the shock increases, however the accuracy of 

the linear approximation of the system deteriorates. 

2.3.3: Welfare Analysis 

The measurement of welfare has seen decades of evolution particularly as 

practitioners’ attempt to narrow the gap between theory and application. These tools have 

been central to most public policy applications. Slesnick D.T (1998) agrees that full 

A X b 
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consideration of policies like taxes, subsidies, transfer programs, health care reform and 

more, must ultimately address the question of how these policies affect the well-being of 

individuals. These welfare tools become very handy in conducting these types of policy 

analysis.  Due to data limitations, we suggest the use of classic welfare measurement 

techniques “change in Consumer and Produce Surplus”.  

 

 

 

 

 

 

Consumer Surplus and producer Surplus 

: 

 

Consumer surplus is a measure of an individual consumer’s willingness to pay for 

the consumption of a given good or service over what he/she actually pays to consume 

that good. This can be shown by area colored pink in figure 13 above. Similarly, producer 

surplus is a measure of a producer’s willingness to produce a commodity or provide a 

service at a cost less than what h/she actually spends in producing that good or service 

(Varian (1992)). This can also be shown by the area colored purple in figure 13. 

The welfare effects of an equilibrium change are generally approximated as the 

changes in consumer and producer surplus. In a multimarket framework using log-linear 

Figure 12: Graph Illustrating Consumer Surplus and Producer Surplus 
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comparative static techniques as discussed in Perrin (1997) and in Perrin’s updated class 

notes, welfare changes as a result of exogenous shocks can be expressed as fractions of 

the initial value of the good. If demand and supply curves are stationary, the relationship 

used to compute these welfare measures are as shown below: 

 

Δ Consumer Welfare/ Pi
0
Qi

0 
= (-dlnpi

d
(1+lnQi/2)                   -             -       - 14 

Δ Producer Welfare/Pi
0
Qi

0 
= (dlnpi

s
(1+lnQi/2)                       -             -       - 15 

where: 

P
0
=initial price before the shock was introduced for market i. 

Qi
0
= initial quantity before the shock was introduced for market i. 

 

 This computation of change in consumer surplus is obtained by summing the 

rectangle measured by the change in equilibrium product price times initial quantity (area 

of rectangle) and the triangle measured by half of the change in price times the change in 

equilibrium quantity (area of triangle). Changes in producers’ surplus in each of the input 

markets are measured by a comparable trapezoid under the new price for that input. To 

understand the computation of the welfare measures above, see figures 14a and 14b 

below. In 14a the change in producer surplus is represented by the area P0P1AB which is 

a trapezoid. In 14b the change in consumer surplus is represented by the trapezoid 

P1EFB. The price change indicated by E - P1 is calculated as dlnP= dlnQ/eta, where eta 

represents demand elasticities:  
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      Hence dlnPi=dlnQ/eta ------------------------------16  

Figure 13: Illustrating Computation of Consumer Surplus and Producer Surplus. 

  

 A B 

 

 

 

Our welfare measures (changes in consumer surplus and producer surplus as 

percentages of the initial values of the respective products) are obtained considering the 

effects in the three output markets (for consumer surplus effects) and the effects in the 

two input markets (for producer surplus effects). That is, we obtain five welfare measures 

with three being percentage changes in consumer surplus from the three output markets 

while two being percentage changes in producer surplus from the two input markets.  

 

2.3.4: Elasticities: 

Three main methods that have been employed in the literature towards obtaining 

the elasticities and shares needed to populate the matrix of elasticities and shares above. 

These include an estimation of the elasticities through econometric methods, using 

secondary estimates from other studies in the literature or the use of micro economic 

theory and assumptions based on knowledge of the prevailing markets. Due to data 
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limitations, we use a mixture of the last two methods to develop the elasticities and shares 

for the matrix. In the next section, we discuss all the considerations we considered to 

populate the different parts of this matrix. 

Demand Elasticities 

Homogeneous of degree zero in prices: i.e.: horizontal sum of elasticities should 

equal to zero. Because of downward sloping demands the own price elasticity of demands 

should be negative. By symmetry (Young’s theorem) the signs of  HQb/P
Qf

 and HQf/P
Qb

 , 

HQb/P
S
 and HS/P

Qb
,  HQf/P

S
 and HS/P

Qf
 are the same but comprise different magnitudes. 

 

 

Table 10:Matrix of Demand Elasticities 

dlnP
Qb

 dlnP
Qf

 dlnP
S
 

 -1 0 0 dlnQ
b
 

0 -1.5 1.5 dlnQ
f
 

0 0.375 -0.375 dlnS 

 

The above matrix was populated using mainly our knowledge of the Sierra Leone 

food industry and some references from the literature. Some relevant references used in 

this vein include: FAO 2011 outlook on Rice in developing countries, an article by 

Ambiyah Abdullah 2009 on demand and supply elasticities for Indonesia palm oil sector 

and World Bank (D.R Larson -1996).   

Supply 

By constant returns to scale (CRS), cost is linearly homogenous with respect to 

output and supply is homogenous of degree 0 with respect to prices. Therefore inverse 
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supply elasticities horizontally sum to zero. Also by young’s theorem, we assume 

reciprocity. By CRS the following input cost shares of land and other inputs are obtained: 

𝑊 𝑂

𝑊 𝑂 +𝑊 𝐿
+

𝑊 𝐿

𝑊 𝑂 +𝑊 𝐿
   

The share of producer costs that goes towards expenses on land and other inputs 

were obtained from apriori knowledge of the land prices and expected costs on labor, 

machinery and other inputs needed to produce all three crops.  

 

 

 

 

Table 11: Matrix of Supply Elasticities and Cost Shares of Inputs 

Shares 
dlnWL dlnWo 

 0.4 0.6 dlnPQb 

0.4 0.6 dlnPQf 

0.4 0.6 dlnPS 

 

 

Input Demand Elasticities and Shares 

By constant returns to scale, the first three elasticities in the input demand system 

represent output shares: 

𝑄 𝑃 
𝑄 𝑃 + 𝑄 𝑃 +  𝑃 

+
𝑄 𝑃 

𝑄 𝑃 + 𝑄 𝑃 +  𝑃 
+

 𝑃 
𝑄 𝑃 + 𝑄 𝑃 +  𝑃 

   

Supply Elasticities 

dlnQb dlnQf dlnS 

 2.1 -0.5 -0.6 dlnPQb 

-0.22 2.12 -0.9 dlnPQf 

-0.34 -1.15 2.5 dlnPS 
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The inputs derived demands are homogenous of degree zero in input prices. 

Therefore; the derived demand elasticities should sum to zero and reciprocity is imposed. 

The diagonal is negative because the cost function is assumed concave. 

Table 12: Matrix of Input Demand Elasticities and Shares. 

Input Demand Elasticities                            Shares 

dlnQb dlnQf dlnS 
 0.2 0.45 0.35 dlnWL 

0.2 0.45 0.35 dlnWo 

 

Elasticities of Inputs Supply  

For the same reasons discussed above under output own supply elasticities, Input 

own elasticities are assumed positive. 

Table 13: Matrix of Input Supply Elasticities 

dlnWL dlnWo 
 0.1 0 dlnL 

0 2 dlnO 

 

Table 14: Matrix of Elasticities and Shares 

dlnQb dlnQf dlnS dlnPQb dlnPQf dlnPS dlnWL dlnWo dlnL dlnO 

    -1 0 0 -1 0 0 0 0 0 0   dlnQ
b
 

= 

-0.3 

0 -1 0 0 -1.5 1.5 0 0 0 0   dlnQ
f
 0 

0 0 -1 0 0.375 -0.375 0 0 0 0   dlnS 0 

2.10 -0.50 -0.60 -1 0 0 0.4 0.6 0 0 

 
dlnP

Qb
 0 

-0.22 2.12 -0.90 0 -1 0 0.4 0.6 0 0 

 
dlnP

Qf
 0 

-0.34 -1.15 2.50 0 0 -1 0.4 0.6 0 0 

 
dlnP

S
 0 

0.2 0.45 0.35 0 0 0 -0.3 0.3 -1 0 
 

dlnWL 0 

0.2 0.45 0.35 0 0 0 0.20 -0.20 0 -1 

 
dlnWo 0 

0 0 0 0 0 0 0.1 0 -1 0 

 
dlnL 0 

0 0 0 0 0 0 0 2 0 -1 

 
dlnO 0 

 

Description of Different Players 

dlnWL dlnWo 

 -0.3 0.3 dlnWL 

0.2 -0.2 dlnWo 
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For a better understanding of the potential losers and winners of the 30% increase 

in demand of inedible biofuels, it is important to describe or identify the different players 

in both the input and output markets.  

In the output market, the consumers of staples are mainly all Sierra Leoneans as 

this staple may include a crop, like rice, which is the main staple product of the country. 

Consumers of edible biofuels are also all Sierra Leoneans. This is because palm oil is 

used to produce most dishes that are being eaten with rice. That is, there is some 

complementarity in the consumption of rice and palm oil. Consumers of inedible biofuels 

are mainly owners of the biofuel industry. Given that the biofuel processing industry is 

not well developed in Sierra Leone, these biofuel products are being exported hence 

making foreign biofuels industry the end consumers of inedible biofuels. It is important 

to note that farmers are also consumers of staples and palm oil.  

Producers of all three products are local Sierra Leonean farmers. These farmers 

are also the consumers of the inputs in the production of the three outputs. Identifying 

input suppliers may not be very easy as an input like land does not have well defined 

property right in some regions of Sierra Leone. The traditional communal land ownership 

regime makes it complicated. On average, most farmers in Sierra Leone have user rights 

to the land but may not have ownership rights (cannot sell the land.) Supplier of labor are 

farmers and other hired agricultural workers. The above should help us better understand 

potential winners and losers as discussed in the next section. 
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2.4:  Analysis of Results 

In this section, we present results obtained from the analysis and provide 

explanations for these results. We first present the market effects as a result of 

introducing a 30% increase in demand shock to the system. Following these, we then 

present results from our welfare measures (percentages change in consumer surplus and 

producer surplus).  

2.4.1: Market Effects 

This section presents results representing changes in equilibrium quantities and 

prices in the five markets in this analysis as a result of a shock, an increase in the demand 

for inedible biofuels introduced to the system. The primary focus in this analysis is to 

determine the directions of change in the prices and quantities in each market when the 

shock of interest is introduced into the system. 

Introducing the Shock 

As shown in equation one above and the matrix of elasticities (table 14), a 30% 

increase in demand of inedible biofuels was introduced. This represents a parallel 

outward shift of the demand curve in this market (as shown in figure 12). The ensuing 

market effects are shown in table 15 below: 

Table 15: Market Effects from a 30% Demand Increase of Inedible Biofuel 

 Effects β = 30% 

dlnQ
b
 8.76% 

dlnQ
f
 -0.22% 

dlnS 0.06% 

dlnP
Qb

 21.24% 

dlnP
Qf

 0.31% 

dlnP
S
 0.16% 

dlnW
L
 5.10% 
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dlnW
o
 1.22% 

dlnL 0.51% 

dlnO 2.45% 

 

The results indicate that with a 30% increase in the demand of inedible biofuels, 

the equilibrium quantity of inedible biofuels increases by about 8.8%, the equilibrium 

quantity of edible biofuels decrease by about 0.22%, while the equilibrium quantity of 

staples increases by 0.6%. Furthermore, as a result of this shock, equilibrium prices for 

both inputs and outputs increase with the largest effects being a 21% increase in inedible 

biofuel prices and a 5% increase in land prices. Equilibrium quantities of inputs also 

increased, with that of land increasing by 0.5% and that of other inputs by 2.45%.  Figure 

12 above presents these shifts. 

  

2.4.4: Consumer Surplus and Producer Surplus 

This section presents results from the welfare analysis. 

2.4.4.1: Consumer Surplus  

Results for changes in consumer surplus for the whole system, computed as 

shown in the methodology section above, are presented in this section. These expressed 

as a percentage of the initial market value of the commodity. They represent the 

consumer and producer welfare effects for the whole system. The results obtained are as 

shown below: 
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Table 16: Change in Consumer Surplus as a results of a 30% Increase in Demand 

for Inedible Biofuels, as a percent of the value of the commodity 

 
% Change 

% ∆ CS STAPLE > -0.16 

% ∆ CS EDIBLE BIOFUEL > -0.31 
% ∆ CS INEDIBLE BIOFUEL > 9.14 

 

Note that these percentage changes are relative to the value of the commodity. 

The results show that consumers of staples loose by 0.16% while consumers of edible 

biofuels loose by 0.31%. This means that the 30% shock to the inedible biofuel market is 

welfare dis-enhancing to consumers of staples and edible biofuels by 0.16% and 0.31% 

respectively. On the other hand, the consumers of inedible biofuels gained by 9.14% as a 

result of the shock. This means the shock to the inedible biofuel industry is welfare 

enhancing to consumers of inedible biofuels.  We also graphically represent the results in 

figure 15 below: 

 

Figure 14: Change in Consumer Surplus as a percentage of the value of commodity 

in Output Markets 
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Here we present results from the estimation of the changes in producer surplus 

expressed as a percentage of the original output value. These represent the whole 

system’s producer welfare effects because changes in producer surpluses from the output 

markets are returns to inputs. 

Table 17: Changes in Producer Surplus as a percentage of the value of commodity 

due to a 30% increase in demand for Inedible Biofuels 

  % Change 

% ∆ PS LAND > 5.11 

%∆ PS OTHER > 1.24 

The results reveal that the welfare effects on all producers (owners of land and of 

other inputs) were positive. This means that the demand shock to the biofuel industry 

enhanced welfares of all land owners and owners of other inputs, which are primarily 

labor. The magnitudes of these effects were however very different. The effects 

associated with land were welfare enhancing by 5% while those associated with other 

inputs enhanced welfare by 1.24 % 

Figure 15: Graphs Showing Change In Producer Surplus in Input Markets 
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2.5:  Discussion of Results and Conclusion 

Over the last five to ten years, there has been an influx of foreign investments into 

Africa by different natural resource seeking industries. The worldwide increase in 

demand for energy, in particular for biofuels, has resulted in an induced increase in the 

demand for arable land. This trend continues to persist as western countries continue their 

investments on clean energy sources and as the rate of growth of developing countries 

like China continues strong. The induced increase in demand for land and other natural 

resources in the developing world in general, and in particular in Africa, has been a very 

contentions issue as the societal effects of these investments have not been thoroughly 

studied .  

This paper attempts to answer a simple but fundamental question: what are the 

short run market and welfare effects in the agricultural sector of a developing country like 

Sierra Leone of an induced increase in the demand for arable land due to an increase in 

the demand of biofuels.  

In achieving these objectives, a log-linear comparative static system is developed 

and used to measure market and welfare effects.  One shock (an increase in demand of 

inedible biofuels) is applied to the system and the market and welfare effects measured. 

The magnitude of the shock tested is 30%. That is we investigate how prices and 

quantities in agricultural input and output markets would respond to a 30% increase in 

demand of inedible biofuels. We also trace out the effects of this increase on consumers 

and producers’ welfare. 

From the market effect estimates shown above, an increase of 30% in the demand 

of inedible biofuel, given representative elasticities for these markets, resulted in 

increased quantity demanded of both inedible biofuels (8.7%) and staples and a small 
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reduction in the quantity demanded of edible biofuels (0.22%). Prices in all three output 

markets increased; the highest being in the inedible biofuel market (21%). Sierra 

Leoneans, who are mainly consumers of staples and edible oils, are affected negatively 

by these price increases. Farmers that are net producers of staples and of edible and 

inedible oils are benefited. The bigger price increase in the inedible biofuels market will 

induce a shift from production of staples and edible biofuels to that of inedible biofuels.  

Quantity demanded of all inputs used in production of these three outputs increased as 

well as their prices. In particular, land prices increased by 5%. This means that input 

costs have increased.  Returns to landowners increase as well as returns to other 

productive inputs (labor) although much less than the increase of landowners. 

From the welfare analysis carried out, percentage changes in consumer surplus 

were largely positive for the inedible biofuel industry (9%) but negative and very small 

for the consumers of edible oils and staples. This means that the shock to the inedible 

biofuel industry had large welfare enhancing effects on consumers of inedible biofuels 

but had small welfare dis-enhancing effects on the other two sets of consumers. From a 

food security stand point, the shock would have negative welfare effects on food 

consumers (every Sierra Leonean).   

From the point of view of the owners of resources, changes in producer surplus of 

land and other input owners were welfare enhancing. However, as a result of the increase 

in demand for inedible biofuels (like Jathropa), land owners benefited more (welfare of 

land owners enhanced by 5%) than owners of other resources, like labor (where welfare 

of laborers enhanced by 1%).   
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Table 18: Winners and Losers from a Welfare Perspective 

Welfare Effects Winners and Losers 

% ∆ CS Staples -0.16 Welfare of consumers of staples decreases. This includes all 

Sierra Leoneans 

% ∆ CS Edible 

Biofuels 
-0.31 

Welfare of consumers of edible biofuels decreasesmore than 

the welfare of staple consumers. Edible oil is a complement 

to staples in the Sierra Leoneans diet. 

% ∆ CS Inedible 

Biofuels 
9.14 

Welfare of consumers of inedible biofuels is largely 

enhanced. These consumers are mainly the biofuels industry.  

A large share is foreign demand.  

% ∆ PS Land 5.11 
Welfare of owners of land is significantly enhanced. These 

are mainly farmers who own land. 

%∆ PS Other  1.24 Welfare of owners of other inputs (like labor) is also 

enhanced but not as much as that of landowners. 

 

Looking at the gains to consumers and producers (table 18); clearly there are 

winners and losers as a result of an increase in the demand for inedible biofuels. Welfare 

effects on farmers are dependent upon ownership of factor inputs. Land owners, in 

particular, gain the most while owners of other resources like labor gain but not as much 

as land owners.  This means that farmers that own land that also work on their own farms 

and also produce inedible biofuels gain the most. The next tier down is those that own 

only land and produce inedible biofuels. The lowest category of winners is laborers that 

work on these inedible biofuel farms.   For consumers, only those that demand inedible 

biofuels presumably for energy production can be considered winners. Consumers of 

staples and edible biofuels, mainly Sierra Leoneans, clearly have their welfare decreasing 

as a result of this increased demand in inedible biofuels. Given that majority of the 

inedible biofuel product is demanded by foreign companies, these gains go to foreigners. 

Given that some consumers are also producers, the gains as a result of owning some 

factors of production, can off-set the losses from consumption. Consumers that are not 
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involved in the production process and producers that do not have ownership rights to 

factor inputs (like land) stand the loose the most.  

Hence, for the average Sierra Leonean consumer, this increase in demand for an 

energy crop results in higher prices of staples and edible oils, main ingredients of their 

diet and a loss in their welfare, even though labor income might increase slightly. Sierra 

Leoneans farmers that are net producers gain as well as biofuel producers, most of them 

foreign companies. These results, that only consider the short run effects of the 

worldwide increase in demand of biofuels, indicate potential severe implications for food 

security in the country. It would be important to follow with a study of the long run 

implications for the resident country of foreign investments in extractive industries.  
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Chapter 3: Response of Farm Energy Input Prices and Food Prices to Crude Oil 

Prices (A Vector Error Correction Approach). 

3.1: Introduction 

Over the last five years, crude oil price spikes and fluctuations have been center 

stage in all attempts to revive the US and world economy (including those of developing 

countries). This has been mainly as a result of the inherent rippling effects crude oil price 

variations have on other commodity prices. Some of these include its influence on world 

food prices (Bhattacharya et al (2003); Cullen et al (2005); Gicheva et al (2010); Beatty 

et al (2011)), its influence on other energy prices, to name few. In a bid to reduce the US 

dependence on crude oil and with continued setbacks encountered on developing 

renewable energy, there have been renewed resilience and effort made by all actors in the 

biofuel industry in the United States towards the commercial production of cellulosic 

ethanol. This continues to be a contentious subject as researchers grapple with issues 

related to energy balance and the need to increase biofuel productivity (per unit of land 

and feedstock employed); D. Pimentel and T.W. Patzek (2005), Cassman (2008). The 

2008 Food, Conservation and Energy Act (which has been extended through September 

2013) and the Energy Independence and Security Act of 2007 have both been very 

instrumental in obtaining the current results and technological improvements observed in 

the US towards the attainment of economically viable biofuel products. However there 

are still significant milestones yet to be reached to see the complete realization of this 

objective. Khana (2008) argues that the success of all these government incentives to 

stimulate production of cellulosic biofuels will crucially depend on the price of gasoline, 

the costs at which it will be commercially viable to convert cellulosic feedstock into fuel 

and the costs of producing corn–based ethanol. 
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From a farmer’s stand point, energy costs have become a significant part of total 

farm expenditures (H.W. Downs et al 2011). Expenditures related to energy are now very 

important as farmers try to make optimal decisions on the farm. For instance, decisions 

about adoption of new technologies to be used on the farm will depend not only on the 

price of the new technology in comparison with the older technology, but also on the 

variations in the prices of fuel these technologies use. In the case of technologies that use 

forms of renewable energies, one should think of energy price effects as being carried 

over or passed on from the inputs in terms of the feedstock used to produce the biofuel 

and in terms of energy used for their production. Hence not only is the price of the 

feedstock important but also the price of the energy inputs used.   

This research seeks to determine the degree of responsiveness of these farm 

energy prices (including corn prices), to crude oil prices both in the short run and in the 

long-run. We think this is important because in the absence of strong responses of farm 

energy prices to crude oil prices, farmers and other energy end users can safely make 

decisions furthering the use of such energy sources even as crude oil prices continue to rise. 

The reverse would be expected if otherwise. For the renewable energy industry, such results 

would guide the choice of feedstock used and the input energies used in the production of 

these renewable energy products. For instance, if some of these energy inputs happen to have 

large responses to crude oil prices, it would become wise for them to use energy inputs that 

may have lesser responses to crude oil price spikes. 

The EIA reported in 2008 that given the then prevailing technologies for the 

production of cellulosic ethanol and with the prevailing government subsidies, cellulosic 

ethanol could compete commercially only if oil prices rose to $145.98/barrel. Given the 

technological change that has taken place in the last three years, that estimate has been 
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reduced considerably. The Danish company Novozymes, in collaboration with M&G, is in 

the process of building the world’s first commercially viable cellulosic ethanol producing 

plant and they expect to start production in 2012 at a price much cheaper than what 

earlier technologies suggested (below USD 2.00 per gallon for the initial commercial-

scale plants). Knowledge of the degree of responsiveness of farm energy prices to crude 

oil prices would help other companies in the biofuel industry to better develop lesser 

crude oil dependent biofuel production systems or technologies. 

  As an addendum to this study, we also include corn prices in our system of prices 

to test how they respond to crude oil prices and other related farm input prices. We think 

the inclusion of corn prices is important because they affect feedstock supply, prices and 

hence energy prices. This represents the second objective of this analysis. Research on 

food prices and their relationship to energy prices in a world where food crops are 

increasingly being used for the production of biofuel, have seen great attention in the 

applied economics literature over the last five years.  

 Given that this analysis targets prices averaged over all states in the United States, 

cluster analysis is performed to study the energy price variations observed at a state level. 

This we think is very important because some unique information or trends get lost when 

the respective price variables are averaged over 51 states. Carrying out such an analysis 

would help support the other results in this study and provide relevant information for 

future studies.  
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3.1.1: Objectives: 

 Determine the degree of responsiveness of farm energy input prices and corn 

prices to crude oil prices in the United States. 

 Analyze state level clustering based on energy prices in the United States 

3.2: Literature Review 

3.2.1: Introduction 

In this section, we review some relevant literature to this research. Areas we focus 

on include recent issues on the dynamics of crude oil prices in relation to food prices and 

other energy prices, renewable energies in relations to first and second generation 

biofuels and lastly on the intended methodology of choice, vector autoregressive models 

and vector error correction models. 

Issues that have been investigated, similar to our research question, include questions 

like the role that the biofuel industry plays in rising food prices, the degree of 

substitutability between food and fuel, the economic effects of crude oil price shocks on 

food security and many others. On the drivers of food prices, very ambiguous results 

have been reported; while Wes Harrison (2009), P.C Timmer (2009) and some others 

have evidence of significant causation of demand for biofuels on food prices, Fortenbery 

et al. (2009), Power et al. (2009), Benjamin. et al. (2009), J . Dewbre et al. (2008) and 

others showed that the relationship is not clear-cut. Others like Baek and Koo (2009), 

Simla et al (2009), and Kimberly (2008); think this relationship can only be significant in 

the long run and not in the short-run. In retrospect, what can be gathered from these 

results is a confirmation that there are multiple factors accounting for the rise in food 

prices. However, some factors should have higher impacts than others. Although Timmer 
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(2009) argues that these factors are crop-specific, this claim can be questioned due to the 

fact that these price hikes were not for selectively few crops.  For the most part, most of 

these scholars seem to be in agreement over the following drivers of food prices:  

 Increased demand for biofuels as a result of rising prices of crude oil and growing 

world demand for energy. 

 Increased demand for food due to high income growth from emerging economies 

like China and India. 

 Exchange rate and world macroeconomic factors. 

Other factors that have also been suggested include: 

 Poor crop seasons (tight global supplies not matching growing demand).  

 Speculative actions of future price changes.  

 Increased marketing costs (R. Harisson (2009)) due to increased prices of crude 

oil. 

Although this research asks a much more fundamental question, it contributes to this 

literature by providing estimates for the long run response of corn prices to crude oil and 

other farm energy prices. We also provide information on the percentage of the 

fluctuations in corn prices that can be attributed to crude oil price shocks and other farm 

energy price shocks in selected time horizons. 

Over the last two years, several studies including Kilan (2007) and others have focused on 

the economic impacts of energy price shocks. In all these varying and very useful 

contributions, the choice of variables and the methodologies have been very different. Theirs 

focused on the use of panel data techniques including macroeconomic variables in their 

system while here our main focus is on energy prices. The few time series studies have 
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selected variables that seem not to cointegrate. This has restricted most of these studies to the 

use of vector autoregressive models. On the other hand, in this study, a system of six 

equations is modeled, two long-run relationships are identified due to the presence of 

cointegration and a vector error correction model is fitted instead of the VAR levels.  

 

3.2.2: VAR and VECM Models 

Two main complementing time series analysis methodologies were applied in this 

study. We initially estimated a structural vector autoregressive (SVAR) model. However 

when cointegaration tests were carried out on the system, there was strong evidence of 

the variables cointegrating. A vector error correction model (VECM) was chosen then for 

the analysis.  Within the framework of the VECM, the series of interest were then 

forecasted to obtain expected prices over a ten year period. This suggests that there is 

normally some a priori information about the number of cointegrating vectors and most 

practical work involves pre-testing to determine the cointegrating rank of the system as 

well as the lag order in the autoregressive component that embodies the system of 

equations. These order selection decisions can be made by sequential likelihood ratio 

tests (e.g. Johansen (1988), for rank determination) or the application of suitable 

information criteria (Phillips (1996)). The latter approach has several advantages such as 

joint determination of the cointegrating rank and autoregressive order, consistent 

estimation of both order parameters (Chao and Phillips, (1999)), robustness to 

heterogeneity in the errors, and the convenience and generality of semi-parametric 

estimation in cases where the focus is simply the cointegrating rank (Cheng and Phillips, 

(2010)).  

The general forms of both equations that will be used in this analysis are as shown below: 
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VAR                                  Yt= A1Yt-1 + et       --------------------------------------- 1 

VECM                             yt= πyt-1 + ∑           
 

    + et     ----------------------------       2 

The structure of these equations would be discussed in detail in the methodology section. 

 

3.2.3: Cluster Analysis 

Cluster analysis groups data objects based only on information found in the data 

that describes the objects and their relationships. The goal is that the objects within a 

group be similar to one another and different from the objects in other groups. The 

greater the degree of homogeneity within a group and the greater the difference between 

these groups, the better or more distinct are the clusterings. This technique divides data 

into groups that are meaningful to the investigator. If meaningful groups are the goal, 

then the clusters should capture the natural structure of the data. The type of cluster 

analysis used in carrying out this study follows closely studies like Jože Rovan and Jože 

Sambt (2003), Brian G. Raub and William W. Chen (2005) and more.  

These techniques have been used for different kinds of analysis from different 

disciplines and for different purposes. In some cases, cluster analysis is only a useful 

starting point for other purposes, such as data summarization. It helps give a priori 

information about the nature of the dataset that can be used for the main analysis. Some 

of the disciplines that have strongly used this methodology either for understanding data 

or utility include: Psychology and other Social Sciences, Biology, Statistics, Information 

Retrieval Data Mining, and more. In the applied economics literature, these techniques 

are increasingly being used also. Dos Santos et al, (2010) used this technique to group 

farmers, according to some relevant characteristics, as a pre-requisite for extrapolation 
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and modeling their behavior from a sample to the whole population (Dos Santos et al, 

2010). 

3.3: Methodology 

3.3.1: Introduction 

This section provides a description of the methodology used to carry out this 

analysis. Firstly, a preliminary, descriptive statistics analysis was carried out. This 

analysis helped in fine tuning the dataset and getting it ready for the types of analysis that 

followed. A traditionally necessary step is to analyze the individual series using 

univariate time series analysis. Hence we carried out an initial univariate time series 

analysis using the ARIMA framework. Due to its limitations in achieving the objectives, 

multivariate techniques were employed. The sequence of methods described in this 

section is a discussion on the data structure and some descriptive statistics, univariate 

techniques (ARIMA), multivariate techniques (VAR and VEC) and lastly forecasting 

(impulse response and variance decomposition).    

 

3.3.2: Data Structure 

The main data sources for this study were the US Department of Energy and the 

Nebraska Department of Energy websites. The five energy variables of interest (Crude 

Oil, Diesel, Natural Gas, Gasoline and Electricity) were measured in Nominal Dollars per 

Million BTU. This is to enhance effective comparison of all the variables with the 

standard energy unit. The following conversions were used: Electricity: 1kilowatthour = 

3412 BTU, crude oil: 1 barrel = 42 U.S gallons = 5800000 BTU and diesel fuel: 1 gallon 

= 138690 BMT. The series used was monthly over the period 1981 to 2010. Corn price 
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data was obtained from the University of Wisconsin dairy market information website 

and was measures in dollars per bushel.  

Table 18: Descriptive Statistics of all variables, all U.S. 1980-2010 

Variable N Mean Std Dev Min Max 

Lngas 384 1.08 0.09 0.91 1.33 

Lelect 384 1.58 0.06 1.47 1.72 

Lgasol 384 1.28 0.12 1.05 1.58 

Ldiesel 384 1.23 0.12 0.99 1.52 

Lcrude 384 0.89 0.23 0.37 1.38 

Lcorn 384 0.42 0.15 0.15 0.88 

 

 

Figure 16: Plot of Log Energy Prices from 1980 to 2010 
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Figure 17: Graph Showing Monthly Crude Oil and Corn Prices from Jan 1980 to 

Dec 2012. 

 

 

 

 

 

 

 

 

 

 

 

3.3.3: Correlations 

The correlation matrix of the six variables is shown in Table 27. It reports a very 

high correlation amongst three of the six variables. It registers a correlation of 98% 

between crude oil and diesel prices. A similar average (98%) was also obtained for the 

correlation between crude oil and gasoline. Second higher correlations were observed for 

corn and gasoline/diesel followed by natural gas and diesel/crude. The lowest correlation 

was observed for corn and electricity. 
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Table 19: Table of Correlations of prices of gasoline, electricity, diesel, crude oil and 

corn, U.S. 1980-2010 

                 Correlations (Spearman) 

  Lngas Lelect Lgasol ldiesel Lcrude lcorn 

Lngas 1           

Lelect 0.087 1         

Lgasol 0.548 0.135 1       

Ldiesel 0.548 0.135 1 1     

Lcrude 0.479 0.14 0.98 0.98 1   

Lcorn 0.199 -0.055 0.637 0.637 0.621 1 

 

3.3.4: Univariate Time series Analysis 

To obtain an initial impression of the dataset, a preliminary, univariate, time 

series analysis was carried out using a standard ARIMA (p,d,q) framework. ARIMA 

models are the most general class of models for forecasting a time series which can be 

stationarized by transformations such as differencing and logging.  

The acronym ARIMA stands for "Auto-Regressive Integrated Moving Average." 

Lags of the differenced series appearing in the forecasting equation are called "auto-

regressive" terms, lags of the forecast errors are called "moving average" terms, and a 

time series which needs to be differenced to be made stationary is said to be an 

"integrated" version of a stationary series. A nonseasonal ARIMA model is classified as 

an "ARIMA (p,d,q)" model, where: 

 p is the number of autoregressive terms, 

 d is the number of nonseasonal differences, and 

 q is the number of lagged forecast errors in the prediction equation. 
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To identify the appropriate ARIMA model for a time series, you begin by 

identifying the order(s) of differencing needing to stationarize the series and remove the 

gross features of seasonality, perhaps in conjunction with a variance-stabilizing 

transformation such as logging or deflating. If you stop at this point and predict that the 

differenced series is constant, you have merely fitted a random walk or random trend 

model. However, the best random walk or random trend model may still have 

autocorrelated errors, suggesting that additional factors of some kind are needed in the 

prediction equation. 

Given the existence of strong correlation amongst variables as reported in table 21 

above, a multivariate approach seemed most preferable. Therefore two main 

complementing multivariate time series methodologies were applied: a vector 

autoregressive (VAR) model and a vector error correction model (VEC). From the 

augmented Dickey-Fuller (ADF) and Johansson cointegration (JC) test results obtained, a 

vector error correction (VEC) model was more appropriate than a vector auto regression 

(VAR) model to characterize the multivariate relationships among the six series (Engle 

and Granger, 1987; Enders, 1995). This was mainly due to the presence of cointegration 

amongst the variables.  

3.3.5: Vector Autoregression 

Two main complementing time series analysis methodologies were applied in this 

study. We initially estimated a Structural Vector Autoregressive (SVAR) model. 

However when cointegaration tests were carried out on the system, there was strong 

evidence of the variables cointegrating. In correcting for this anomaly, a vector error 

correction model (VECM) was preferred for the analysis.   
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According to Enders (1995), the general VAR form of the model can be written as: 









































































1

1

1

1

1

1

56

46

36

26

16

65

45

35

25

15

64

54

63

53

43

62

52

42

61

51

41

343231

242321

141312








































































t

t

t

t

t

t

Cn

Ng

El

Gs

Dl

Cr

=

























1

1

1

1

1

1

56

46

36

26

16

65

45

35

25

15

64

54

63

53

43

62

52

42

61

51

41

343231

242321

141312




















































































1

1

1

1

1

1

t

t

t

t

t

t

Cn

Ng

El

Gs

Dl

Cr

 +  



























6

5

4

3

2

1













 

 

This can be written as: BYt= 1Yt-1 + t ,                                                                                          

and in more standard form: Yt= A1Yt-1 + et                                                                                                       3 

where: 

A1=B
-1
1           and 

et = B
-1t 

3.3.6: The Vector Error Correction Model 

A VECM is a restricted form of a VAR model. The VECM restricts long-run 

behavior of the dependent variables so that they converge to their long run equilibrium 

and allow short run dynamics. It is particularly useful for forecasting purposes, more so 

when some degree of cointegration is suspected in the system. The General VEC model 

can be represented as shown below. 

                       yt= πyt-1 + et      ,                                                                         4 

where: 

Contemporaneous Effects 
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 yt= yt - yt-1 and 

π=pi-weights which account for vector error correction terms 

The extended form can be written as: 
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Note that the above system assumes an optimum lag length of 1. For the more general 

form, see equation 2 above. 

In equation 4 above, the π-weights represent the error correction term. The π.1 parameters 

represent the speed of adjustment parameters while the rest of the π contains the speed of 

adjustment parameters and the cointegrating equations. More explicitly, the cointegrating 

term would be (Crt-1 – π.2Dlt-1 - π.3Gst-1 - π.4Elt-1 - π.5Ngt-1 - π.6Cnt-1).  This is the error 

correction term since the deviation from long run equilibrium is corrected gradually 

through short-run adjustments. In this framework Crt, Dlt, Gst, Elt, Ngt, and Cnt are treated 

as being endogenous. 

 From the results, there were four cointegrating relationships (r=2). Hence the resulting 

π matrix can be divided into a 6x2 matrix of  s and a 2x6 vector of  s.  
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From equation 4 above, π can we written as αβ’ 

                                           yt= πyt-1 + ∑           
 

    + et             ---------------------------------5 

 6x1    6x6 6x1            6x6 6x1      6x1 

3.3.7: Impulse Response 

Impulse response functions help to identify how variables in the system respond 

to a unit change/increase/shock in one of the variables. For our case, it would show how a 

unit increase in crude oil prices would affect the remaining five variables We use it to 

confirm nonstationarity of the system before running the model of choice and re-run the 

impulse functions. This should give us a notion of how stationary the forecasted part of 

the system is. 

From our recovered VAR system, if the process yt is I(0), the effects of shocks in 

the variables of a given system are most easily seen in this moving average 

representation: 

Yt = φ0Ut + φ1Ut-1 + φ2Ut-2 + … 

where: 

Φ0=Ik    and  

   ∑ (      )
 

   
  s = 1,2, … 

The coefficients of this representation may be interpreted as reflecting the 

responses to impulses hitting the system. 

3.3.8: Variance Decomposition: 

There is some relationship between impulse response and variance 

decomposition. While impulse response functions trace the effects of a shock to one 
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endogenous variable onto the other variables in the VAR, variance decomposition 

separates the variation in an endogenous variable into the component shocks to the VAR. 

Variance decomposition refers to the breakdown of the forecast error variance for a 

specific time horizon. Variance decomposition can indicate which variables have short-

term and long-term impacts on another variable of interest.  Basically, variance 

decomposition can tell a researcher the percentage of the fluctuation in a time series 

attributable to other variables at select time horizons. 

Let’s assume the h-step forecast error from a VAR to be  

YT+h - YT+h| T = UT+h + φ1UT+h-1 +…+ φh-1Ut+1 . 

The corresponding forecast variance is: 

       ∑(  
    

+ +  
    

)

 

   

 

 

The term (  
    

+ +  
    

) is interpreted as the contribution of variable j 

to the h-step forecast error variance of variable k. Dividing the preceding terms by the 

forecast variance above gives the percentage contribution of variable j to the h-step 

forecast error variance of variable k. 
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3.3.6: Cluster Analysis 

There are different types of cluster models used to carry out cluster analysis. The 

choice of the model mainly depends on the type of dataset that the researcher is 

analyzing. Some common models include connectivity models, centroid models, 

distribution models, density models and graph based models, to name a few. Given our 

objectives, the model of choice was the graph based model that uses average hierarchical 

linkage clustering techniques to obtain the distances between clusters and form the 

clusters.     The relationship is given as: 

 

        
 

       
∑∑ (    )  

  

   

  

   

 

           

where: 

 D(x,y) is the distance between objects x=X and y=Y, 

 X and Y are two sets of objects (clusters) and 

 Nx and Ny are the numbers of objets in clusters X and Y respectively.  
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3.4: Data Analysis 

In this section, we present and discuss all the results from the analysis. We follow 

the order used in the previous section. Please note that this analysis was carried out in 

SAS and the codes are presented in appendix E1.   

3.4.1: Univariate Analysis 

As discussed above, to help understand the characteristics of the dataset, we 

initially performed a univariate ARIMA analysis. The Enders (1995) and Hendry (1986) 

‘‘General to Specific’’ procedure was the basis for the identification process. Different 

models were tested and, based on the most suitable AIC and Schwartz criteria, the time 

series processes were identified.  We used the Proc ARIMA procedure in SAS statistical 

software and followed the eye-ball method of viewing the ACF/PACF graphs to select by 

how much to difference the series to attain a stationary series. From the analysis carried 

out, the following results were obtained: The lcrude series was best characterized as 

ARIMA (3,1,1), the ldiesel series was an ARIMA (2,1,1), the lngas was ARIMA (2,1,0), 

the lelect was seasonal ARIMA (0,12,1) and the lnatural  was also seasonal ARIMA 

(0,12,1). As evident from viewing the graphs of natural gas and electricity, they both 

proved to be seasonal. We then carried out a univariate Augmented Dickey Fuller test to 

test for the presence of unit roots. The test results showed that unit roots were very 

unlikely for all the series given that all of the p-values were small enough. Hence one 

cannot reject the null hypothesis that the series had unit roots and can be considered non-

stationary. 

Below we present plots of the different series after being stationarized by differencing. 



94 
 

Figure 18: Stationary Time series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moving Average Factors 

Factor 1: 1 + 0.15728 B**(1) 

Factor 2: 1 - 0.68543 B**(12) 

 

 

Autoregressive Factors 

Factor 1: 1 - 1.36892 B**(1) + 0.49691 B**(2) - 0.03979 B**(3) 

  

Moving Average Factors 

Factor 1: 1 - 0.9277 B**(1) 

Autoregressive Factors 

Factor 1: 1 - 0.43446 B**(1) + 0.22978 B**(2) 

  

Moving Average Factors 

Factor 1: 1 + 0.07987 B**(1) 

Autoregressive Factors 

Factor 1: 1 - 0.49171 B**(1) + 0.26849 B**(2) 

Moving Average Factors 

Factor 1: 1 - 0.32257 B**(1) 

Factor 2: 1 - 0.79513 B**(12) 

ARIMA(3,1,1) 

ARIMA (2,1,1) 

ARIMA (2,1,0) 

ARIMA (0, 12, 1) 

ARIMA (0, 12, 1) 
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Despite having stationary series from this univariate analysis, we had to use 

multivariate techniques to better address our research questions. The next section presents 

results from the multivariate analysis. 

What we have done thus far is to initially test for stationarity of the univariate 

series. The results show that all the variables were non-stationary. We then performed 

ARIMA analysis on each variable to have them stationarized as shown in the figure 19 

above. The next step is to treat these variables as a system and apply multivariate time 

series techniques to depict these relationships and trends. 

3.4.2: Multivariate Time Series: 

The main research question would not be answered adequately with univariate 

time series techniques. All the variables considered do have some relationship as theory 

suggests. Analyzing them in a system would either prove the presence of these 

relationships, describe their nature or would prove their independence. We therefore 

resorted to using multivariate time series techniques for our analysis. Analyzing and 

modeling the series jointly enables you to understand the dynamic relationships over time 

among the series and to improve the accuracy of forecasts for individual series by using 

the additional information available from the related series and their forecasts. 

Autoregressive Factors 

Factor 1: 
1 - 1.06024 B**(1) + 0.37848 
B**(2) 

  

Moving Average Factors 

Factor 1: 1 - 0.58333 B**(1) 

ARIMA (2,1,1) 
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3.4.2.1: Vector Autoregressive Modeling: 

VAR models are frequently used or better suited for systems that do not have 

some or all of the variables converging to some long term relationship (cointegration). 

Therefore a necessary first step to guide whether to use VAR models or Vector Error 

Correction is to test for the presence of cointegration amongst the variables. The VAR 

model basically represents the variables in their levels while the error correction model 

allows for differencing the system of variables in a bid to correct for cointegration.  

3.4.2.2: Test for Cointegration (Dickey Fuller and Johansen Cointegration Tests) 

Here we present results for both the Dickey-Fuller and the Johansen tests. The 

Dickey-Fuller test is a test for stationarity/non-stationarity while the Johansen test is the 

test for the presence of cointegration in the system of equations. 

Table 20: Unit Root Test Results (Dickey-Fuller Unit Root Tests) 

Variable Type Rho Pr<Rho Tau Pr<Tau 

Lcrude Zero Mean -9.41 0.0328 -2.17 0.0289 

  Single Mean -12.95 0.0643 -2.55 0.1041 

  Trend -14.4 0.2016 -2.81 0.1947 

Ldiesel Zero Mean -3.22 0.2173 -1.31 0.1766 

  Single Mean -16.16 0.0287 -2.87 0.0499 

  Trend -18.53 0.0899 -3.23 0.0799 

Lngas Zero Mean -2.11 0.3183 -1.07 0.2559 

  Single Mean -15.81 0.0314 -2.85 0.0524 

  Trend -18.18 0.0996 -3.22 0.083 

Lelect Zero Mean -0.29 0.617 -0.60 0.4574 

  Single Mean -15.8 0.0314 -2.78 0.0625 

  Trend -50.23 0.0007 -5.00 0.0003 

Lnatural Zero Mean -68.95 <0.0001 -5.84 <0.0001 

  Single Mean -137.82 0.0001 -8.20 <0.0001 

  Trend -149.22 0.0001 -8.44 <0.0001 

Lcorn Zero Mean -2.41 0.2859 -1.15 0.2296 

  Single Mean -17.42 0.0209 -2.76 0.0658 

  Trend -22.43 0.0397 -3.33 0.0639 
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In the Dickey-Fuller test output above (test for non-stationarity of each series), the 

second column specifies three types of models, which are zero mean, single mean, or 

trend. The third column (Rho) and the fifth column (Tau) are the test statistics for unit 

root testing. Other columns are their p-values. Except for the zero mean model for 

electricity prices, the Rho estimates are smaller (more negative) than the Tau estimates. 

This implies that the series have unit roots meaning that they are all non-stationary. 

Table 21: Cointegration Rank Testing 

Cointegration Rank Test Using Trace 

H: 
Rank =r 

H1: 
Rank>1 Eigenvalue Trace 

5% Critical 
Value 

Drift in 
ECM 

Drift in 
Process 

0 0 0.1328 121.8456 82.61 Noint Constant 

1 1 0.0927 68.5586 59.24     

2 2 0.0572 32.1631 39.71     

3 3 0.0172 10.1172 24.08     

4 4 0.009 3.6124 12.21     

5 5 0.0006 0.2186 4.14     

 

 

When the system was tested for the presence of cointegration, it was clear that 

there are two cointegrated processes. This means the time series are cointegrated with 

rank = 2. In the cointegration rank test, the last two columns explain the drift in the model 

or process. Since the NOINT option is specified, the model is 

yt= πyt-1 + ЃΔ yt-1  et 

From table 23, the column drift in ECM means there is no separate drift in the 

error correction model, and the column drift in process means the process has a constant 

drift before differencing. 

 

3.4.2.3 Vector Error Correction Model 
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A Vector Error Correction Model (VECM) can lead to a better understanding of 

the nature of any nonstationarity among the different component series and can also 

improve longer term forecasting over an unconstrained model. 

Observing the schematic representations of the partial autoregression and partial cross 

correlations, it was revealed that the system was stationary after being differenced by 10. 

Therefore the p in VECM (p) was equal to ten, i.e. VECM (10). 

Table 22: Partial Cross Correlation to Identify Stationary Lag Length 

 

Our best model to fit became the VECM (10) with order r=2.  

 

                                           yt= πyt-1 + ∑           
    

    + et             ---------------------------------5 

 6x1    6x6 6x1            6x6 6x1      6x1 

3.4.3: Long run relationships 

We chose to the ldiesel variable to normalize the system. As noted in the methods 

section, this normalization does not affect the intrinsic relationship between the different 

variables. The second beta estimates are 1s because they represent those of ldiesel which 

was used in the normalization. As a general rule, having beta = 1 means that, over the 

long run, those two variables follow each other on a one to one basis. Recall that the 

betas represent the cointegration parameters and (Crt-1 – π.2Dlt-1 - π.3Gst-1 - π.4Elt-1 - π.5Ngt-
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1 - π.6Cnt-1) is the error correction term. Also recall that in the π matrix, the “.j” subscript 

represents the betas.  The alpha coefficients capture the speed of adjustments towards the 

long run equilibrium path. It is also very important to note that the signs of the alpha 

estimates reveal departures from the equilibrium price gaps.  

Table 23: Alpha and Beta Estimates 

Long-Run Parameter Beta Estimates When Adjustment Coefficient Alpha Estimates 

RANK=2 When RANK=2 

Variable 1 2 Variable 1 2 

Lcrude -0.05146 -0.06192 lcrude 0.4436 0.56104 

Ldiesel 1 1 ldiesel -0.28856 -0.14811 

Lngas -0.98549 -0.92294 lngas -0.2032 -0.06919 

Lelect 0.09352 0.03388 lelect -0.20099 0.18934 

Lnatural 0.02881 0.09234 lnatural -0.54892 -0.3998 

Lcorn 0.00978 0.00744 lcorn -1.25864 -1.27903 

 

From the results obtained above, the following two long-run relationships were obtained 

from    β * yt: 

 

1) ldiesel = 0.05146 lcrude + 0.98549 lngas - 0.09352lelect – 0.02881lnatural – 

0.00978lcorn 

2) ldiesel = 0.06192 lcrude + 0.92294 lngas - 0.03388lelect – 0.09234lnatural – 

0.00744lcorn 

 

 

Table 26 below shows the intrinsic long run relationships between all of the variables. 

 

 

Table 24: Long Run Equilibrium Relationships 
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  Ldiesel Lcrude lngas lelect Lnatural Lcorn 

Ldiesel 1 0.05146 0.98549 -0.09352 -0.0288 -0.0098 

Lcrude 19.4326 1 19.1506 -1.81733 -0.5599 -0.1901 

Lngas 1.0147 19.1506 1 -0.0949 -0.0292 -0.0099 

Lelect -10.6929 -0.5503 -10.5377 1 0.3081 0.1046 

Lnatural -34.7102 -1.7862 -34.2065 3.2461 1 0.3395 

Lcorn -102.25 -5.2618 -100.766 9.5624 2.9458 1 

 

From these relationships, the following observations can be made (please recall that 

these are long-run relationships): 

 A unit increase in crude oil prices would increase diesel prices by 19.4 units.  

 A unit increase in crude oil prices would increase gasoline prices by about the 

same units as diesel (19.1 units). 

 A unit increase in crude oil prices would decrease electricity prices by 1.8 units. 

 A unit increase in crude oil prices would decrease natural gas prices by 0.6 units 

 A unit increase in crude oil prices would decrease corn prices by 0.2 units. 

It must be noted that the adjustment process does not occur quickly and it may take 

considerable amounts of time to converge to these long run equilibria. Also, the 

interpretations above represent only one of the cointegrating relationships. However, 

similar conclusions can be made for the second cointegrating relationship. 

Table 25: Parameter Estimates for π 

Variable lcrude Ldiesel lngas lelect lnatural Lcorn 

Lcrude -0.05757 1.00464 -0.95496 0.06049 0.06459 0.00851 

Ldiesel 0.02402 -0.43667 0.42107 -0.032 -0.02199 -0.00392 

Lngas 0.01474 -0.2724 0.26412 -0.02135 -0.01224 -0.0025 

Lelect -0.00138 -0.01165 0.02332 -0.01238 0.01169 -0.00056 

Lnatural 0.053 -0.94872 0.90995 -0.06488 -0.05273 -0.00834 

Lcorn 0.14397 -2.53767 2.42084 -0.16104 -0.15437 -0.02183 
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  Table 28 above shows parameter estimates in terms of lag one coefficients, , 

and the ten lags first differenced coefficients, are shown in the appendix section. "Alpha 

* Beta " indicates the coefficients of  and is obtained by multiplying the "Alpha" and 

"Beta" estimates. From the coefficients presented in appendix 1, the parameter 

AR1_i_j corresponds to the elements in the "Alpha * Beta " matrix. The values and -

values corresponding to the parameters AR1_i_j are missing since the parameters 

AR1_i_j have non-Gaussian distributions. The parameter AR2_i_j corresponds to the 

elements in the differenced lagged AR coefficient matrix. The "D_" prefixed to a variable 

name implies differencing. 

3.4.4: Model estimate VECM (10) r = 2: 

Below we present some of the coefficient estimates (rest in the appendix.)  

Table 26: Parameter estimates of VECM (10) r=2 

Model Parameter Estimates 

Equation Parameter Estimate 
Standard 
Error t Value Pr > |t| Variable 

 D_lcrude AR1_1_1 -0.05757 0.03193     lcrude(t-1) 

  AR1_1_2 1.00464 0.55644     ldiesel(t-1) 

  AR1_1_3 -0.95496 0.52975     lngas(t-1) 

  AR1_1_4 0.06049 0.03782     lelect(t-1) 

  AR1_1_5 0.06459 0.03938     lnatural(t-1) 

  AR1_1_6 0.00851 0.00478     lcorn(t-1) 

  AR2_1_1 0.57693 0.06602 8.74 0.0001 D_lcrude(t-1) 

  AR2_1_2 -0.43344 0.69215 -0.63 0.5316 D_ldiesel(t-1) 

  AR2_1_3 -0.1649 0.70486 -0.23 0.8152 D_lngas(t-1) 

  AR2_1_4 0.16635 0.46166 0.36 0.7189 D_lelect(t-1) 

  AR2_1_5 0.03732 0.12379 0.3 0.7632 D_lnatural(t-1) 

  AR2_1_6 -0.00082 0.03413 -0.02 0.9809 D_lcorn(t-1) 

  AR3_1_1 0.15505 0.07333 2.11 0.0353 D_lcrude(t-2) 

  AR3_1_2 -0.56752 0.78177 -0.73 0.4684 D_ldiesel(t-2) 

  AR3_1_3 0.23623 0.78793 0.3 0.7645 D_lngas(t-2) 

  AR3_1_4 -0.26535 0.46631 -0.57 0.5697 D_lelect(t-2) 

  AR3_1_5 -0.14955 0.12452 -1.2 0.2306 D_lnatural(t-2) 

  AR3_1_6 -0.00905 0.03705 -0.24 0.8071 D_lcorn(t-2) 

  AR4_1_1 -0.03613 0.07423 -0.49 0.6267 D_lcrude(t-3) 

  AR4_1_2 -1.74049 0.82758 -2.1 0.0363 D_ldiesel(t-3) 

  AR4_1_3 2.03325 0.85355 2.38 0.0178 D_lngas(t-3) 

  AR4_1_4 -0.3874 0.45943 -0.84 0.3997 D_lelect(t-3) 

  AR4_1_5 0.04804 0.12431 0.39 0.6994 D_lnatural(t-3) 

  AR4_1_6 -0.0093 0.03677 -0.25 0.8006 D_lcorn(t-3) 
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When estimated, the model is as shown below: 
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The structure of this equation is exactly the same as that represented in equation 5. For parameter values, see the appendix section. 

Its VAR (10) counterpart becomes: 

 

 

                                              Yt= A1Yt-1 + A2Yt-2  + … + A10Yt-10  +  et 

 

 

where the respective estimates can be found in  Appendix E.  
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3.4.5: Impulse Response 

Here we present some of the results from the impulse response and forecast 

outputs. The rest of the results can be seen in the appendix. As shown in the table below 

and on the graphs below, a unit increase in crude oil prices would have increasing effects 

on all other variables except for corn in the first lag. The greatest effects are observed 

with diesel and gasoline. Electricity and natural gas responses are infinitesimally small 

and even negative in the second lag. 

Table 27: Simple Impulse Response Outputs 

Simple Impulse Response 

Lag 
Variable 

Lcrude Ldiesel lngas lelect lnatural lcorn 
Response\Impulse 

1 Lcrude 1.51936 0.57119 -1.11986 0.22684 0.10191 0.0077 

  Ldiesel 0.17895 0.75484 0.3667 -0.21821 -0.05764 0.01081 

  Lngas 0.16548 0.67381 0.4259 -0.23645 -0.05654 0.01493 

  Lelect 0.00823 0.02248 -0.03624 0.72127 0.04555 0.00231 

  Lnatural 0.01128 -0.37983 0.47029 -0.72832 1.14234 -0.02507 

  Lcorn -0.0918 -1.02523 0.54328 -1.00286 -0.01987 1.43734 

2 Lcrude 1.80579 0.36886 -1.52397 0.13478 0.12494 0.00194 

  Ldiesel 0.32585 0.74392 -0.06286 -0.21668 -0.06059 0.01857 

  Lngas 0.31281 0.56795 0.08458 -0.17498 -0.02221 0.01793 

  Lelect -0.00615 0.02473 -0.0331 0.6594 0.07864 -0.00176 

  Lnatural -0.02122 -0.58568 0.70466 -0.6794 1.04377 -0.03335 

  Lcorn -0.00173 -1.46593 0.64672 0.60091 -0.05557 1.52053 
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From the forecast results, crude oil prices are expected to drop briefly around the 

months of March and April 2013 and would increase slightly through the end of the year. 

A similar pattern would also be observed in 2014 and 2015. That is, there would be a 

brief fall in prices by the end and start of the New Year but would recover and get 

slightly higher after April. 

3.4.6: Variance Decomposition: 

Variance decomposition refers to the breakdown of the forecast error variance for 

a specific time horizon. Variance decomposition can indicate which variables have short-
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term and long-term impacts on another variable of interest.  Basically, variance 

decomposition can tell a researcher the percentage of the fluctuation in a time series 

attributable to other variables at select time horizons. 

Table 28: Innovation Contributions 

           Orthogonal Innovation Contribution 

Lcrude ldiesel lngas lelect lnatural lcorn VAR 

16.39268 4.493282 10.35922 0.766927 0.064981 0.049438 32.12652 

1.644242 2.626744 0.689593 1.648694 0.00491 0.018465 6.632648 

1.479538 2.348898 1.694883 1.452412 0.005256 0.017105 6.998091 

0.001085 0.00331 0.022065 2.700288 0.007242 0.000112 2.734101 

0.117832 0.339345 3.153121 7.103953 3.222058 0.018325 13.95463 

1.78878 1.623751 12.05932 35.4201 -6.0844 16.21019 61.01775 

 

Table 30 above shows the different innovation contributions of all variables on 

their counterparts. The price of crude oil’s own innovation contribution is 16.4 and the 

gasoline innovation contribution to the crude oil is 10.4.  

For an understanding of the contribution of innovations in the th variable to MSE see 

table 31 below.  

Table 29: Innovation Account 

Innovation Account 

  lcrude ldiesel lngas lelect lnatural lcorn 

lcrude 51.03% 13.99% 32.25% 2.39% 0.20% 0.15% 

ldiesel 24.79% 39.60% 10.40% 24.86% 0.07% 0.28% 

lngas 21.14% 33.56% 24.22% 20.75% 0.08% 0.24% 

lelect 0.04% 0.12% 0.81% 98.76% 0.26% 0.00% 

lnatural 0.84% 2.43% 22.60% 50.91% 23.09% 0.13% 

lcorn 2.93% 2.66% 19.76% 58.05% -9.97% 26.57% 

 

Innovations in the third variable (gasoline) explain 32.25% of the error variance 

of the first variable (crude oil), while the innovations in the fourth variable (electricity) 
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explain 98.76% of its own error variance. For all the variables, the own contributions are 

the greatest. That is the error variances in all the variables are being explained by their 

own innovations the most. The results for corn seem interesting. Innovations in natural 

gas seem to serve as disincentive to corn prices. Innovations in electricity have a larger 

effect on the error variance on corn than all the other variables. As expected, innovations 

in diesel and gasoline account for the largest contributions to explaining the error 

variances of crude oil. The graph below presents these percentages. 

Figure 19: Graph of Innovations: 

 

 

3.4.7: Cluster Analysis 

Cluster analysis was performed on two sets of variables. The first was done on 

three energy price variables, namely, electricity, natural gas and diesel. The first two 

were both seasonal. We therefore wanted to see how these variables influenced clustering 

across states. If very clear clustering are observed, it means some vital variable or trend 

may be prevalent at the state level that might have been hidden as a result of averaging 

across states. The second sets of analyses were done on electricity prices for a four year 
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period. This is mainly to see whether there were large price swings across states for these 

periods. 

 

Figure 20: Dendrogram Showing Cluster of Electricity, Diesel and Natural Gas 

Prices 

 

Although the Dendrogram above and table 39 reveal about 30 small clusters, we 

were able to identify four large clusters from which some inferences can be made. These 

clusters are shown in table 38 below.  These clusters provide some very useful insights. 

Cluster one represent the states with the highest electricity, diesel and natural gas prices. 

One next step this research suggests is to understand the dynamics or drivers of these 

prices in these states. Cluster two represents the list of states with the lowest prices. 

These states, except Nebraska and Missouri, happen to be the leading producers of coal in 

the United States. This reveals that the inclusion of coal prices would help provide more 
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information for any similar research in the future. The other two groups (3 and 4) 

certainly may have very good information that is worth investigating to producer 

improved results in the future. 

Table 30 Clusters 

No Clusters 

1 Texas, Florida, Maryland, California 

2 
Utah, North Dakota, Nebraska, Missouri, Wyoming, West Virginia and 

Kentucky 

3 Illinois, Pennsylvania, Michigan, Arizona, 

4 All other States 

 

The next clustering, as shown in figure 25 below, uses only electricity prices for 

four different years (2006, 2007, 2008, 2009 and 2010). From the Dendrogram results 

shown below, it was observed that the second clustering identified above persisted even 

when electricity prices were considered singly over years.   

Figure 21: Dendrogram Showing Clusters of States for Electricity Prices Over Five 

Year Period 
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Table 31: Main Clusters 

Cluster History 

Number of Clusters Clusters Joined Freq 

Norm RMS 

Tie 
Distance 

  

30 Arizona Michigan 2 0.0524   

29 Arkansas Oregon 2 0.0542   

28 North Dakota Utah 2 0.0652   

27 New Mexico Tennessee 2 0.0933   

26 Colorado Louisiana 2 0.0999   

25 Alabama Ohio 2 0.1016   

24 Indiana Oklahoma 2 0.1042   

23 Kansas Montana 2 0.1224   

22 CL26 Mississippi 3 0.1284   

21 Missouri Nebraska 2 0.1324   

20 Kentucky West Virginia 2 0.1456   

19 CL29 CL24 4 0.1471   

18 CL22 CL27 5 0.163   

17 CL20 Wyoming 3 0.1652   

16 CL23 Virginia 3 0.1909   

15 CL21 CL28 4 0.2119   

14 CL25 CL18 7 0.219   

13 CL30 Pennsylvania 3 0.2347   

12 CL13 Illinois 4 0.2558   

11 CL19 South Dakota 5 0.2579   

10 CL17 CL15 7 0.2941   

9 CL11 CL16 8 0.3325   

8 CL14 CL9 15 0.3557   

7 Florida Texas 2 0.3607   

6 California Maryland 2 0.4645   

5 CL8 CL12 19 0.5079   

4 CL5 CL10 26 0.6217   

3 CL6 CL7 4 0.7243   

2 CL4 CL3 30 1.3483   

1 CL2 New York 31 2.5502   
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Results from this chapter showed that a multivariate time series approach was 

preferable to analyzing such a research question than univariate forecast techniques. Two 

complementing multivariate time series techniques were used: Vector Autoregressive 

model – VAR(p) and Vector Error Correction Models (VECM). The starting point 

always is the development of the VAR system. However after testing for the presence of 

cointegration, it was clear that some form of cointegration existed. This means the 

variables converged to a long-run equilibrium or steady state. The order of the 

cointegrating relationships identified was two. This justified the use of a VEC model. 

After carrying out tests for stationarity in the VEC system, it was clear that the two 

seasonal variables had significant influence on the whole system. The system became 

stationary after the 10
th

 difference. Therefore the model of choice was a VECM (10) with 

cointegration order 2. We learned that: 

Long-run relationships 

 A unit increase in crude oil prices would increase diesel prices by 19.4 units.  

 A unit increase in crude oil prices would increase gasoline prices by about the 

same units and diesel (19.1 units). 

 A unit increase in crude oil prices would decrease electricity prices by 1.8 units. 

 A unit increase in crude oil prices would decrease natural gas prices by 0.6 units 

 A unit increase in crude oil prices would decrease corn prices by 0.2 units. 

Clearly, by virtue of the presence of cointegration, some long run equilibrium exists for 

the system of equations and the inherent price gaps are reported to be stable. The largest 

long-run effects on crude oil prices were reported for gasoline and diesel. The other three 

prices reported positive but with small effects. 
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Impulse response and forecasts 

The forecast results showed that crude oil prices would have moderate increases in the 

next three years. Some seasonal pattern would be observed with prices falling slightly by 

the start of 2013, 2014 and 2015 and then starting to rise by April of these years. They 

would peak in the summer and then slowly decrease toward the end of the year and the 

start of the other year. A unit increase in crude oil prices would have increasing effects on 

all other variables except for corn in the first lag. The greatest effects are observed with 

diesel and gasoline. Electricity and natural gas responses are infinitesimally small and 

even negative in the second lag. 

Variance Decomposition 

Except for corn, the largest drivers of the error variances of all the variables were their 

own innovations. For corn, the largest driver happened to be electricity prices. For crude 

oil, innovations in diesel and gasoline happened to explain crude oil’s error variance the 

most. 

Cluster Analysis  

The most important result that was rational and explainable in the context of this study 

was the cluster of states that produce coal the most. This is very revealing because this 

effect may be the reason why the variance decomposition results for corn had innovations 

in electricity as the largest driver. This would be a necessary next step to this research 

(the inclusion of coal prices to the current system of equations). 
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3.5: Conclusion 

Crude oil price shocks have been shown to affect several sectors. Even in the 

growing biofuel industry, the use of crude oil products at several stages of the production 

of these biofuel products sometimes defeats the principle purpose of producing these 

biofuels both from an economic and crude oil substitutability standpoint as well as from 

an environmental standpoint. Also, these energy crude oil price shocks are increasingly 

affecting farmers’ decisions with regards to technology adoption and other decisions 

related to the use of energy. These concerns can be better addressed with knowledge of 

the degree of responsiveness of farm energy prices to crude oil prices. This is the main 

objective of this paper. Multivariate time series techniques were employed and some 

cluster analysis carried out at the end to see how states cluster with respect to some 

variables that had produced peculiar results from the time series analysis. A vector error 

correction model was fitted; its associated levels were recovered by presenting its VAR 

counterpart and variance decomposition performed. 

Clearly, diesel and gasoline had the greatest long-run relationship with crude oil 

prices. The other variables reported very small and sometimes infinitesimal effects. 

However these long run gaps were shown to be present and significant. For the impulse 

response function results, a unit increase in crude oil prices induces moderate increases in 

diesel and gasoline prices but no effects on the other variables. The forecast results 

showed that crude oil prices would have moderate increases in the next three years. Some 

seasonal pattern would be observed with prices falling slightly by the start of 2013, 2014 

and 2015 and then starting to rise by April of these years. The variance decomposition 

results showed that apart from corn, own innovations accounted the most for variations 

reported in the error variance. For crude oil, the largest contributors of innovation to its 
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error variance were diesel and gasoline. Electricity prices were completely driven by 

innovations in their own industry. 

The general implication of these results in the broader context is that these price 

gaps are here for the long run and are stable.  Crude oil price hikes will continue driving 

energy costs of industries that use diesel and gasoline as inputs. However, if substitution 

of these energy sources with gas were possible, those industries would protect themselves 

from the oil market price hikes. Electricity prices uniquely contribute very little to 

variations in crude oil prices. The inclusion of coal prices to this system is a necessary 

next step that the cluster analysis revealed. Corn prices happened to be influenced greatly 

by innovations in the electricity industry. This is a little less intuitive. However we think 

the inclusion of coal prices to the system would help fix this situation. 

Potential next steps: 

Two main necessary next steps were identified at the end of this study. 

 Introduction of Coal prices in the system and re-estimating model. 

o As revealed by the across state cluster analysis, we think the inclusion of 

coal prices would help improve on the results obtained. 

 Seasonality. 

o The way seasonality was addressed in this study may be inadequate. We 

therefore propose testing other techniques like the introduction of 

dummies as proposed in Lutkepohl (2007) or the use of spectral analysis.  
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Appendix A: Bias Corrected Technical Efficiency Estimates for 1970, 1980, 1990, 

2000 and 2010.  

 

Table 32: Ten Years Interval Bias-Corrected Technical Efficiency Estimates (1970 to 2010) 

State County No TE_70 TE_80 TE_90 TE_00 TE_10 

Colorado Logan 1 1 1.049 1.385 1.019 1 

Colorado Phillips 2 1.01 1.468 1.284 1.339 1.364 

Colorado Sedgwick 3 1 1.704 1.233 1.167 1.393 

Colorado Weld 4 1 1 1 1 1 

Iowa Adair 5 1.017 1.012 1.053 1.008 1.014 

Iowa Adams 6 1.22 1.143 1.015 1 1.214 

Iowa Audubon 7 1 1.346 1.091 1 1.144 

Iowa Benton 8 1 1 1 1 1.017 

Iowa Boone 9 1 1 1.024 1.05 1.159 

Iowa Carroll 10 1 1 1 1 1 

Iowa Cass 11 1.009 1.116 1.035 1.006 1.057 

Iowa Cedar 12 1.212 1.124 1.006 1 1.149 

Iowa Clarke 13 1 1 1 1 1.035 

Iowa Clinton 14 1 1 1 1 1.031 

Iowa Crawford 15 1.178 1.157 1 1.078 1 

Iowa Dallas 16 1.029 1.12 1 1 1.326 

Iowa Des Moines 17 1.019 1.125 1 1.057 1.517 

Iowa Greene 18 1 1 1 1.033 1.135 

Iowa Guthrie 19 1.127 1.153 1.092 1 1.267 

Iowa Harrison 20 1.342 1.266 1.144 1.046 1.144 

Iowa Henry 21 1.155 1.156 1.099 1.08 1.642 

Iowa Iowa 22 1 1.222 1 1.057 1.299 

Iowa Jackson 23 1 1 1 1 1 

Iowa Jasper 24 1.011 1.028 1.053 1 1.167 

Iowa Jefferson 25 1.074 1.076 1.041 1 1.497 

Iowa Johnson 26 1.14 1.183 1.045 1.103 1.404 

Iowa Jones 27 1 1.12 1.027 1 1.036 

Iowa Keokuk 28 1.139 1.093 1.133 1.018 1.379 

Iowa Linn 29 1.062 1.018 1 1 1.155 

Iowa Louisa 30 1.106 1.129 1 1.076 1.631 

Iowa Lucas 31 1 1 1 1 1.276 

Iowa Madison 32 1 1 1.043 1.062 1.155 

Iowa Mahaska 33 1 1.058 1.035 1.008 1.439 

Iowa Marion 34 1.033 1.06 1 1 1.385 

Iowa Marshall 35 1 1.088 1.034 1 1.122 

Iowa Mills 36 1.121 1.121 1.03 1 1.117 

Iowa Monona 37 1.104 1 1 1 1 
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Iowa Monroe 38 1 1 1 1 1.605 

Iowa Montgomery 39 1.175 1.199 1.034 1.005 1.185 

Iowa Muscatine 40 1.208 1.112 1.052 1.044 1.65 

Iowa Polk 41 1 1 1.04 1.02 1.751 

Iowa Pottawattamie 42 1 1 1 1 1 

Iowa Poweshiek 43 1 1 1 1 1.071 

Iowa Scott 44 1.245 1.064 1 1 1.6 

Iowa Shelby 45 1.036 1.282 1.059 1.075 1.083 

Iowa Story 46 1 1.007 1 1 1.199 

Iowa Tama 47 1 1 1.087 1.002 1.085 

Iowa Union 48 1.06 1.138 1.017 1.079 1.104 

Iowa Wapello 49 1.019 1 1 1.129 1.495 

Iowa Warren 50 1.02 1.022 1 1 1.183 

Iowa Washington 51 1.16 1.079 1.013 1.106 1.558 

Nebraska Adams 52 2.066 1.441 1.126 1.06 1 

Nebraska Banner 53 1 1 1.362 1 3.378 

Nebraska Boone 54 1.808 1.61 1.144 1.558 1.214 

Nebraska Buffalo 55 1 1.252 1.182 1.175 1.024 

Nebraska Burt 56 1.934 1.852 1.401 1.529 1.183 

Nebraska Butler 57 2.141 1.812 1.23 1.3 1 

Nebraska Cass 58 1 1 1 1 1 

Nebraska Chase 59 1.818 1.555 1.348 1.149 1.05 

Nebraska Cheyenne 60 1 1.105 1.381 1 2.488 

Nebraska Clay 61 1.98 1.37 1.06 1.414 1.168 

Nebraska Colfax 62 1.605 1.686 1.087 1.068 1.047 

Nebraska Cuming 63 1 1 1.034 1.211 1 

Nebraska Custer 64 1.019 1.225 1.06 1.014 1 

Nebraska Dawson 65 1 1 1 1 1 

Nebraska Deuel 66 1 1.242 1.353 1.08 2.232 

Nebraska Dodge 67 1.887 1.422 1.323 1.215 1.209 

Nebraska Douglas 68 1.546 1.618 1.183 1.397 2.049 

Nebraska Fillmore 69 2.398 1.558 1.381 1.259 1.096 

Nebraska Frontier 70 1.988 1.712 1.302 1.712 1.129 

Nebraska Gosper 71 1.764 1.623 1.252 1.513 1.11 

Nebraska Greeley 72 1.511 1.316 1.153 1.314 1.232 

Nebraska Hall 73 1.253 1.389 1 1 1 

Nebraska Hamilton 74 1.266 1.307 1 1.045 1 

Nebraska Hayes 75 1.239 1.669 1.508 1.46 1.264 

Nebraska Howard 77 1.001 1.287 1 1.399 1.22 

Nebraska Kearney 76 1.389 1.379 1.11 1.129 1.136 

Nebraska Keith 78 1.205 1.504 1.548 1.359 1.259 

Nebraska Kimball 79 1 1 1 1 1 

Nebraska Lancaster 80 1 1 1 1 1.115 

Nebraska Lincoln 81 1 1 1.131 1.003 1 

Nebraska Madison 82 1.439 1.575 1.149 1.621 1.157 

Nebraska Merrick 83 1.305 1.536 1.11 1.332 1.156 

Nebraska Nance 84 2.075 1.433 1.036 1.761 1.186 

Nebraska Perkins 85 1.247 1.757 1.325 1.218 1.149 
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Nebraska Phelps 86 1.623 1.214 1 1.02 1 

Nebraska Platte 87 1.721 1.61 1.22 1.456 1.054 

Nebraska Polk 88 1.56 1.88 1.211 1.416 1.119 

Nebraska Saline 89 1.745 1.776 1.355 1.351 1.004 

Nebraska Sarpy 90 1.845 1.289 1.099 1.35 1.333 

Nebraska Saunders 91 1.862 1.511 1.119 1.135 1 

Nebraska Scotts Bluff 92 1 1 1 1 1 

Nebraska Seward 93 2.463 1.73 1.186 1.229 1 

Nebraska Sherman 94 1.217 1.305 1 1.224 1.124 

Nebraska Stanton 95 1.274 1.391 1 1.241 1.067 

Nebraska Valley 96 1.217 1.395 1.244 1.244 1.269 

Nebraska Washington 97 1 1.185 1.235 1.176 1.16 

Nebraska York 98 1.957 1.418 1 1.031 1 

Wyoming Goshen 99 1 1 1 1 1 

Wyoming Laramie 100 1 1 1 1.57 1.017 

Wyoming Platte 101 1 1 1 1 1 
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Appendix B: Average Malmquist Results Showing Total Factor Productivity 

Change and its Components (Efficiency Change and Technological Change). 

B1: Average Malmquist Productivity Results without SOM 

 

Table 33: Malmquist Results without SOM 

State County 
Efficiency 
Change 

Technological 
Change 

Total Factor 
Productivity 
Change 

Colorado Logan 1 0.999 0.999 

Colorado Phillips 0.993 0.991 0.984 

Colorado Sedgwick 0.992 1.164 1.154 

Colorado Weld 1 0.998 0.998 

Iowa Adair 1 1.013 1.013 

Iowa Adams 1 1.015 1.015 

Iowa Audubon 0.997 1.004 1 

Iowa Benton 1 1.025 1.024 

Iowa Boone 0.996 1.007 1.004 

Iowa Carroll 1 1.006 1.006 

Iowa Cass 0.999 1.006 1.005 

Iowa Cedar 1.001 1.007 1.008 

Iowa Clarke 0.999 1.012 1.011 

Iowa Clinton 0.999 1.002 1.001 

Iowa Crawford 1.004 1.017 1.021 

Iowa Dallas 0.994 1.016 1.009 

Iowa Des Moines 0.99 1.008 0.998 

Iowa Greene 0.997 1.013 1.01 

Iowa Guthrie 0.997 1.003 1 

Iowa Harrison 1.004 1.01 1.014 

Iowa Henry 0.991 1.005 0.996 

Iowa Iowa 0.993 1.004 0.998 

Iowa Jackson 1 0.996 0.996 

Iowa Jasper 0.996 1.018 1.015 

Iowa Jefferson 0.992 1.011 1.002 

Iowa Johnson 0.995 1.006 1 

Iowa Jones 0.999 1.005 1.004 

Iowa Keokuk 0.995 1.011 1.006 

Iowa Linn 0.998 1.012 1.01 

Iowa Louisa 0.99 1.013 1.003 

Iowa Lucas 0.994 1.008 1.002 

Iowa Madison 0.996 1.009 1.005 
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Iowa Mahaska 0.991 1.003 0.993 

Iowa Marion 0.993 1.013 1.006 

Iowa Marshall 0.997 1.005 1.002 

Iowa Mills 1 1.009 1.01 

Iowa Monona 1.002 1.007 1.01 

Iowa Monroe 0.988 1.013 1.001 

Iowa Montgomery 1 1.017 1.017 

Iowa Muscatine 0.992 1.008 1 

Iowa Polk 0.986 1.007 0.993 

Iowa Pottawattamie 1 1.015 1.015 

Iowa Poweshiek 0.998 1.001 1 

Iowa Scott 0.994 1.007 1.001 

Iowa Shelby 0.999 1.01 1.009 

Iowa Story 0.995 1.008 1.004 

Iowa Tama 0.998 1.022 1.02 

Iowa Union 0.999 1.009 1.008 

Iowa Wapello 0.99 1.011 1.001 

Iowa Warren 0.996 1.008 1.004 

Iowa Washington 0.993 1.008 1 

Nebraska Adams 1.018 0.998 1.016 

Nebraska Banner 0.97 0.987 0.958 

Nebraska Boone 1.01 0.998 1.008 

Nebraska Buffalo 0.999 1.001 1.001 

Nebraska Burt 1.012 1.004 1.016 

Nebraska Butler 1.019 0.984 1.003 

Nebraska Cass 1 1.203 1.203 

Nebraska Chase 1.014 0.997 1.011 

Nebraska Cheyenne 0.977 0.968 0.946 

Nebraska Clay 1.013 1.002 1.016 

Nebraska Colfax 1.011 0.992 1.002 

Nebraska Cuming 1 1.008 1.008 

Nebraska Custer 1 1.002 1.002 

Nebraska Dawson 1 1.001 1.001 

Nebraska Deuel 0.98 1.129 1.106 

Nebraska Dodge 1.011 0.992 1.003 

Nebraska Douglas 0.993 1.012 1.005 

Nebraska Fillmore 1.02 0.997 1.016 

Nebraska Frontier 1.014 0.99 1.005 

Nebraska Gosper 1.012 0.988 0.999 

Nebraska Greeley 1.005 0.998 1.003 

Nebraska Hall 1.006 1 1.006 

Nebraska Hamilton 1.006 1.001 1.007 

Nebraska Hayes 1 0.991 0.99 

Nebraska Howard 0.995 0.987 0.982 

Nebraska Kearney 1.005 1.005 1.01 

Nebraska Keith 0.999 0.99 0.989 

Nebraska Kimball 1 1.127 1.127 

Nebraska Lancaster 0.997 0.99 0.988 
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Nebraska Lincoln 1 0.987 0.987 

Nebraska Madison 1.005 0.994 0.999 

Nebraska Merrick 1.003 0.992 0.995 

Nebraska Nance 1.014 0.988 1.002 

Nebraska Perkins 1.002 0.986 0.988 

Nebraska Phelps 1.012 1.004 1.016 

Nebraska Platte 1.012 0.986 0.998 

Nebraska Polk 1.008 0.995 1.003 

Nebraska Saline 1.014 0.981 0.995 

Nebraska Sarpy 1.008 1.008 1.016 

Nebraska Saunders 1.016 0.999 1.014 

Nebraska Scotts Bluff 1 1.198 1.198 

Nebraska Seward 1.023 0.993 1.016 

Nebraska Sherman 1.002 0.996 0.998 

Nebraska Stanton 1.004 0.997 1.002 

Nebraska Valley 0.999 1.008 1.007 

Nebraska Washington 0.996 1.006 1.002 

Nebraska York 1.017 1.002 1.019 

Wyoming Goshen 1 1.038 1.038 

Wyoming Laramie 1 0.996 0.996 

Wyoming Platte 1 1.022 1.022 

  

Mean 1 1.01 1.011 

 

 

B2: Average Malmquist Productivity Results with SOM 1 (Liska) 

 

 

Table 34: Malmquist Results with SOM 1 (Liska) 

SOM 1 

States Counties 
Efficiency 
Change 

Technological 
Change 

Total Factor 
Productivity 

Change 

Iowa Adair 1 1.013 1.013 

Iowa Adams 1 1.015 1.015 

Nebraska Adams 1.018 0.998 1.016 

Iowa Audubon 0.997 1.007 1.003 

Nebraska Banner 0.97 0.99 0.96 

Iowa Benton 1 1.024 1.024 

Iowa Boone 0.996 1.008 1.004 

Nebraska Boone 1.011 0.997 1.009 

Nebraska Buffalo 0.999 1.001 1.001 

Nebraska Burt 1.012 1.004 1.016 
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Nebraska Butler 1.019 0.983 1.002 

Iowa Carroll 1 1.007 1.007 

Iowa Cass 0.999 1.007 1.006 

Nebraska Cass 1 1.204 1.204 

Iowa Cedar 1.001 1.012 1.013 

Nebraska Chase 1.014 0.997 1.011 

Nebraska Cheyenne 0.977 0.967 0.945 

Iowa Clarke 0.999 1.012 1.011 

Nebraska Clay 1.013 1.002 1.016 

Iowa Clinton 0.999 1.001 1 

Nebraska Colfax 1.011 0.992 1.002 

Iowa Crawford 1.001 1.019 1.02 

Nebraska Cuming 1 1.01 1.01 

Nebraska Custer 1 1.002 1.002 

Iowa Dallas 0.993 1.016 1.009 

Nebraska Dawson 1 1.001 1.001 

Iowa Des Moines 0.99 1.008 0.998 

Nebraska Deuel 0.98 1.129 1.106 

Nebraska Dodge 1.011 0.991 1.002 

Nebraska Douglas 0.993 1.012 1.005 

Nebraska Fillmore 1.02 0.997 1.016 

Nebraska Frontier 1.014 0.99 1.005 

Wyoming Goshen 1 1.042 1.042 

Nebraska Gosper 1.012 0.988 0.999 

Nebraska Greeley 1.005 0.998 1.003 

Iowa Greene 0.997 1.013 1.01 

Iowa Guthrie 0.997 1.004 1.001 

Nebraska Hall 1.006 0.999 1.005 

Nebraska Hamilton 1.006 1.003 1.009 

Iowa Harrison 1 1.018 1.018 

Nebraska Hayes 1 0.991 0.99 

Iowa Henry 0.991 1.005 0.997 

Nebraska Howard 0.995 0.987 0.982 

Iowa Iowa 0.993 1.006 0.999 

Iowa Jackson 1 0.996 0.996 

Iowa Jasper 0.996 1.017 1.013 

Iowa Jefferson 0.992 1.011 1.002 

Iowa Johnson 0.995 1.006 1.001 

Iowa Jones 0.999 1.005 1.005 

Nebraska Kearney 1.006 1.001 1.007 

Nebraska Keith 1 0.989 0.989 

Iowa Keokuk 0.995 1.012 1.007 

Nebraska Kimball 1 1.127 1.127 

Nebraska Lancaster 0.999 0.989 0.988 

Wyoming Laramie 1 1 0.999 

Nebraska Lincoln 1 0.987 0.987 

Iowa Linn 0.998 1.012 1.01 

Colorado Logan 1 0.998 0.998 
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Iowa Louisa 0.99 1.013 1.003 

Iowa Lucas 0.994 1.008 1.002 

Iowa Madison 0.996 1.009 1.005 

Nebraska Madison 1.005 0.994 0.999 

Iowa Mahaska 0.991 1.004 0.995 

Iowa Marion 0.993 1.016 1.008 

Iowa Marshall 0.997 1.008 1.005 

Nebraska Merrick 1.003 0.992 0.995 

Iowa Mills 1 1.012 1.012 

Iowa Monona 1.002 1.006 1.009 

Iowa Monroe 0.988 1.013 1.001 

Iowa Montgomery 1 1.018 1.018 

Iowa Muscatine 0.992 1.009 1.001 

Nebraska Nance 1.014 0.988 1.002 

Nebraska Perkins 1.002 0.986 0.988 

Nebraska Phelps 1.012 1.003 1.016 

Colorado Phillips 0.993 0.99 0.983 

Wyoming Platte 1 1.023 1.023 

Nebraska Platte 1.014 0.984 0.998 

Iowa Polk 0.986 1.007 0.993 

Nebraska Polk 1.008 0.995 1.003 

Iowa Pottawattamie 1 1.017 1.017 

Iowa Poweshiek 0.998 1.003 1.001 

Nebraska Saline 1.014 0.98 0.994 

Nebraska Sarpy 1.008 1.009 1.017 

Nebraska Saunders 1.009 0.997 1.006 

Iowa Scott 0.994 1.007 1.001 

Nebraska Scotts Bluff 1 1.198 1.198 

Colorado Sedgwick 0.992 1.165 1.155 

Nebraska Seward 1.023 0.988 1.011 

Iowa Shelby 0.998 1.012 1.01 

Nebraska Sherman 1.002 0.996 0.998 

Nebraska Stanton 1.004 0.997 1.001 

Iowa Story 0.995 1.008 1.004 

Iowa Tama 0.998 1.021 1.018 

Iowa Union 0.999 1.009 1.008 

Nebraska Valley 0.999 1.008 1.007 

Iowa Wapello 0.99 1.011 1.002 

Iowa Warren 0.996 1.008 1.004 

Iowa Washington 0.993 1.01 1.002 

Nebraska Washington 0.997 1.004 1 

Colorado Weld 1 0.992 0.992 

Nebraska York 1.017 1.002 1.019 

  

Mean 1 1.011 1.011 
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B3: Average Malmquist Productivity Results with SOM 2 (Martellato) 

 

Table 35: Malmquist Results with SOM 2: (Martellato) 

SOM 2 

States Counties 
Efficiency 
Change 

Technological 
Change 

Total Factor 
Productivity 
Change 

Iowa Adair 1 1.013 1.013 

Iowa Adams 1 1.015 1.016 

Nebraska Adams 1.018 0.998 1.016 

Iowa Audubon 0.997 1.009 1.006 

Nebraska Banner 0.97 0.991 0.961 

Iowa Benton 1 1.025 1.024 

Iowa Boone 0.996 1.008 1.004 

Nebraska Boone 1.011 0.999 1.011 

Nebraska Buffalo 0.999 1.001 1.001 

Nebraska Burt 1.012 1.004 1.016 

Nebraska Butler 1.019 0.983 1.002 

Iowa Carroll 1 1.009 1.009 

Iowa Cass 0.999 1.009 1.008 

Nebraska Cass 1 1.207 1.207 

Iowa Cedar 1.001 1.014 1.015 

Nebraska Chase 1.014 0.998 1.013 

Nebraska Cheyenne 0.977 0.969 0.948 

Iowa Clarke 0.999 1.012 1.012 

Nebraska Clay 1.013 1.002 1.016 

Iowa Clinton 0.999 1.003 1.002 

Nebraska Colfax 1.011 0.992 1.002 

Iowa Crawford 1.001 1.026 1.027 

Nebraska Cuming 1 1.016 1.016 

Nebraska Custer 1 1.002 1.003 

Iowa Dallas 0.993 1.017 1.01 

Nebraska Dawson 1 1.004 1.004 

Iowa Des Moines 0.99 1.008 0.998 

Nebraska Deuel 0.98 1.129 1.106 

Nebraska Dodge 1.011 0.991 1.002 

Nebraska Douglas 0.993 1.012 1.005 

Nebraska Fillmore 1.02 0.997 1.016 

Nebraska Frontier 1.014 0.99 1.005 

Wyoming Goshen 1 1.049 1.049 

Nebraska Gosper 1.012 0.988 0.999 

Nebraska Greeley 1.005 0.998 1.003 

Iowa Greene 0.997 1.013 1.01 

Iowa Guthrie 0.997 1.004 1.001 

Nebraska Hall 1.006 1.002 1.007 

Nebraska Hamilton 1.006 1.012 1.018 

Iowa Harrison 1 1.022 1.022 
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Nebraska Hayes 1 0.991 0.99 

Iowa Henry 0.991 1.005 0.997 

Nebraska Howard 0.995 0.987 0.982 

Iowa Iowa 0.993 1.007 1.001 

Iowa Jackson 1 0.999 0.999 

Iowa Jasper 0.996 1.019 1.015 

Iowa Jefferson 0.992 1.011 1.003 

Iowa Johnson 0.995 1.007 1.002 

Iowa Jones 0.999 1.006 1.005 

Nebraska Kearney 1.006 1.004 1.01 

Nebraska Keith 1 0.99 0.99 

Iowa Keokuk 0.995 1.014 1.009 

Nebraska Kimball 1 1.128 1.128 

Nebraska Lancaster 0.999 0.996 0.994 

Wyoming Laramie 1 1.001 1.001 

Nebraska Lincoln 1 0.987 0.987 

Iowa Linn 0.998 1.012 1.01 

Colorado Logan 1 1 1 

Iowa Louisa 0.99 1.013 1.003 

Iowa Lucas 0.994 1.008 1.002 

Iowa Madison 0.996 1.009 1.005 

Nebraska Madison 1.005 0.994 0.999 

Iowa Mahaska 0.991 1.005 0.996 

Iowa Marion 0.993 1.018 1.01 

Iowa Marshall 0.997 1.01 1.007 

Nebraska Merrick 1.003 0.992 0.995 

Iowa Mills 1 1.013 1.013 

Iowa Monona 1.002 1.009 1.011 

Iowa Monroe 0.988 1.013 1.001 

Iowa Montgomery 1 1.019 1.019 

Iowa Muscatine 0.992 1.009 1.001 

Nebraska Nance 1.014 0.988 1.002 

Nebraska Perkins 1.002 0.986 0.988 

Nebraska Phelps 1.012 1.004 1.017 

Colorado Phillips 0.993 0.993 0.986 

Wyoming Platte 1 1.025 1.025 

Nebraska Platte 1.014 0.988 1.001 

Iowa Polk 0.986 1.007 0.993 

Nebraska Polk 1.008 0.995 1.003 

Iowa Pottawattamie 1 1.023 1.023 

Iowa Poweshiek 0.998 1.004 1.003 

Nebraska Saline 1.014 0.981 0.995 

Nebraska Sarpy 1.008 1.009 1.018 

Nebraska Saunders 1.01 1.003 1.013 

Iowa Scott 0.994 1.008 1.001 

Nebraska Scotts Bluff 1 1.199 1.199 

Colorado Sedgwick 0.992 1.166 1.156 

Nebraska Seward 1.023 0.99 1.013 
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Iowa Shelby 0.998 1.017 1.015 

Nebraska Sherman 1.002 0.996 0.998 

Nebraska Stanton 1.004 0.997 1.002 

Iowa Story 0.995 1.009 1.004 

Iowa Tama 0.998 1.022 1.02 

Iowa Union 0.999 1.009 1.008 

Nebraska Valley 0.999 1.008 1.007 

Iowa Wapello 0.99 1.012 1.002 

Iowa Warren 0.996 1.008 1.004 

Iowa Washington 0.993 1.011 1.003 

Nebraska Washington 0.997 1.006 1.002 

Colorado Weld 1 1.001 1.001 

Nebraska York 1.017 1.003 1.02 

  

Mean >> 1 1.012 1.012 

Appendix C: SOM Efficiency and Harvest Potentials for 101 Counties across the 

41
st
 || 

C1: SOM Efficiency and Harvest Potential (One output dimension-(production)) 

Table 36: SOM Efficiency and Harvest Potential (One Output Dimension) 

State County No SOM Efficiency Harvest potentials 

Colorado Logan 58 0.641 35.90% 

Colorado Phillips 75 0.256 74.40% 

Colorado Sedgwick 87 0.184 81.60% 

Colorado Weld 100 1 0.00% 

Iowa Adair 1 0.313 68.70% 

Iowa Adams 2 0.241 75.90% 

Iowa Audubon 4 0.425 57.50% 

Iowa Benton 6 0.513 48.70% 

Iowa Boone 7 0.309 69.10% 

Iowa Carroll 12 0.533 46.70% 

Iowa Cass 13 0.446 55.40% 

Iowa Cedar 15 0.517 48.30% 

Iowa Clarke 18 0.164 83.60% 

Iowa Clinton 20 0.601 39.90% 

Iowa Crawford 22 1 0.00% 

Iowa Dallas 25 0.273 72.70% 

Iowa Des Moines 27 0.15 85.00% 

Iowa Greene 36 0.323 67.70% 

Iowa Guthrie 37 0.29 71.00% 

Iowa Harrison 40 0.662 33.80% 

Iowa Henry 42 0.171 82.90% 

Iowa Iowa 44 0.441 55.90% 

Iowa Jackson 45 1 0.00% 

Iowa Jasper 46 0.551 44.90% 

Iowa Jefferson 47 0.16 84.00% 
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Iowa Johnson 48 0.343 65.70% 

Iowa Jones 49 0.477 52.30% 

Iowa Keokuk 52 0.302 69.80% 

Iowa Linn 57 0.387 61.30% 

Iowa Louisa 59 0.195 80.50% 

Iowa Lucas 60 0.115 88.50% 

Iowa Madison 61 0.2 80.00% 

Iowa Mahaska 63 0.283 71.70% 

Iowa Marion 64 0.231 76.90% 

Iowa Marshall 65 0.49 51.00% 

Iowa Mills 67 0.342 65.80% 

Iowa Monona 68 1 0.00% 

Iowa Monroe 69 0.109 89.10% 

Iowa Montgomery 70 0.306 69.40% 

Iowa Muscatine 71 0.254 74.60% 

Iowa Polk 78 0.16 84.00% 

Iowa Pottawattamie 80 1 0.00% 

Iowa Poweshiek 81 0.467 53.30% 

Iowa Scott 85 0.299 70.10% 

Iowa Shelby 89 0.775 22.50% 

Iowa Story 92 0.312 68.80% 

Iowa Tama 93 0.544 45.60% 

Iowa Union 94 0.155 84.50% 

Iowa Wapello 96 0.145 85.50% 

Iowa Warren 97 0.17 83.00% 

Iowa Washington 98 0.309 69.10% 

Nebraska Adams 3 0.72 28.00% 

Nebraska Banner 5 0.042 95.80% 

Nebraska Boone 8 0.652 34.80% 

Nebraska Buffalo 9 0.676 32.40% 

Nebraska Burt 10 0.322 67.80% 

Nebraska Butler 11 0.551 44.90% 

Nebraska Cass 14 1 0.00% 

Nebraska Chase 16 0.503 49.70% 

Nebraska Cheyenne 17 0.091 90.90% 

Nebraska Clay 19 0.454 54.60% 

Nebraska Colfax 21 0.345 65.50% 

Nebraska Cuming 23 1 0.00% 

Nebraska Custer 24 1 0.00% 

Nebraska Dawson 26 1 0.00% 

Nebraska Deuel 28 0.043 95.70% 

Nebraska Dodge 29 0.432 56.80% 

Nebraska Douglas 30 0.056 94.40% 

Nebraska Fillmore 31 0.487 51.30% 

Nebraska Frontier 32 0.269 73.10% 

Nebraska Gosper 34 0.379 62.10% 

Nebraska Greeley 35 0.24 76.00% 

Nebraska Hall 38 0.933 6.70% 

Nebraska Hamilton 39 1 0.00% 

Nebraska Hayes 41 0.221 77.90% 
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C2: SOM Efficiency and Harvest Potential Estimates (Three output dimensions) 

Table 37: SOM Efficiency and Harvest Potentials (Three output Dimensions) 

State County SOM Efficiency Harvest Potential 

Colorado Logan 1 0.00% 

Colorado Phillips 0.479 52.10% 

Colorado Sedgwick 0.223 77.70% 

Colorado Weld 1 0.00% 

Iowa Adair 0.567 43.30% 

Iowa Adams 0.35 65.00% 

Iowa Audubon 0.556 44.40% 

Iowa Benton 0.517 48.30% 

Iowa Boone 0.335 66.50% 

Iowa Carroll 1 0.00% 

Iowa Cass 0.533 46.70% 

Iowa Cedar 0.529 47.10% 

Iowa Clarke 0.36 64.00% 

Iowa Clinton 0.658 34.20% 

Iowa Crawford 1 0.00% 

Iowa Dallas 0.285 71.50% 

Iowa Des Moines 0.204 79.60% 

Nebraska Howard 43 0.346 65.40% 

Nebraska Kearney 50 0.663 33.70% 

Nebraska Keith 51 0.496 50.40% 

Nebraska Kimball 53 0.208 79.20% 

Nebraska Lancaster 54 0.658 34.20% 

Nebraska Lincoln 56 0.94 6.00% 

Nebraska Madison 62 0.467 53.30% 

Nebraska Merrick 66 0.279 72.10% 

Nebraska Nance 72 0.333 66.70% 

Nebraska Perkins 73 0.301 69.90% 

Nebraska Phelps 74 0.693 30.70% 

Nebraska Platte 77 0.813 18.70% 

Nebraska Polk 79 0.413 58.70% 

Nebraska Saline 82 0.618 38.20% 

Nebraska Sarpy 83 0.244 75.60% 

Nebraska Saunders 84 1 0.00% 

Nebraska Scotts Bluff 86 1 0.00% 

Nebraska Seward 88 1 0.00% 

Nebraska Sherman 90 0.393 60.70% 

Nebraska Stanton 91 0.461 53.90% 

Nebraska Valley 95 0.284 71.60% 

Nebraska Washington 99 0.604 39.60% 

Nebraska York 101 1 0.00% 

Wyoming Goshen 33 1 0.00% 

Wyoming Laramie 55 0.402 59.80% 

Wyoming Platte 76 1 0.00% 
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Iowa Greene 0.342 65.80% 

Iowa Guthrie 0.32 68.00% 

Iowa Harrison 0.688 31.20% 

Iowa Henry 0.239 76.10% 

Iowa Iowa 0.494 50.60% 

Iowa Jackson 1 0.00% 

Iowa Jasper 0.6 40.00% 

Iowa Jefferson 0.25 75.00% 

Iowa Johnson 0.399 60.10% 

Iowa Jones 0.556 44.40% 

Iowa Keokuk 0.386 61.40% 

Iowa Linn 0.406 59.40% 

Iowa Louisa 0.211 78.90% 

Iowa Lucas 0.315 68.50% 

Iowa Madison 0.359 64.10% 

Iowa Mahaska 0.33 67.00% 

Iowa Marion 0.336 66.40% 

Iowa Marshall 0.52 48.00% 

Iowa Mills 0.468 53.20% 

Iowa Monona 1 0.00% 

Iowa Monroe 0.262 73.80% 

Iowa Montgomery 0.389 61.10% 

Iowa Muscatine 0.266 73.40% 

Iowa Polk 0.163 83.70% 

Iowa Pottawattamie 1 0.00% 

Iowa Poweshiek 0.58 42.00% 

Iowa Scott 0.307 69.30% 

Iowa Shelby 0.793 20.70% 

Iowa Story 0.327 67.30% 

Iowa Tama 0.571 42.90% 

Iowa Union 0.334 66.60% 

Iowa Wapello 0.244 75.60% 

Iowa Warren 0.326 67.40% 

Iowa Washington 0.342 65.80% 

Nebraska Adams 1 0.00% 

Nebraska Banner 0.056 94.40% 

Nebraska Boone 0.717 28.30% 

Nebraska Buffalo 0.706 29.40% 

Nebraska Burt 0.386 61.40% 

Nebraska Butler 1 0.00% 

Nebraska Cass 1 0.00% 

Nebraska Chase 0.931 6.90% 

Nebraska Cheyenne 0.108 89.20% 

Nebraska Clay 0.484 51.60% 

Nebraska Colfax 0.494 50.60% 

Nebraska Cuming 1 0.00% 

Nebraska Custer 1 0.00% 

Nebraska Dawson 1 0.00% 
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Nebraska Deuel 0.061 93.90% 

Nebraska Dodge 0.493 50.70% 

Nebraska Douglas 0.087 91.30% 

Nebraska Fillmore 0.515 48.50% 

Nebraska Frontier 0.338 66.20% 

Nebraska Gosper 0.483 51.70% 

Nebraska Greeley 0.285 71.50% 

Nebraska Hall 1 0.00% 

Nebraska Hamilton 1 0.00% 

Nebraska Hayes 0.306 69.40% 

Nebraska Howard 0.358 64.20% 

Nebraska Kearney 0.77 23.00% 

Nebraska Keith 0.592 40.80% 

Nebraska Kimball 1 0.00% 

Nebraska Lancaster 0.876 12.40% 

Nebraska Lincoln 1 0.00% 

Nebraska Madison 0.575 42.50% 

Nebraska Merrick 0.373 62.70% 

Nebraska Nance 0.455 54.50% 

Nebraska Perkins 0.47 53.00% 

Nebraska Phelps 1 0.00% 

Nebraska Platte 1 0.00% 

Nebraska Polk 0.602 39.80% 

Nebraska Saline 0.806 19.40% 

Nebraska Sarpy 0.329 67.10% 

Nebraska Saunders 1 0.00% 

Nebraska Scotts Bluff 1 0.00% 

Nebraska Seward 1 0.00% 

Nebraska Sherman 0.424 57.60% 

Nebraska Stanton 0.488 51.20% 

Nebraska Valley 0.319 68.10% 

Nebraska Washington 0.695 30.50% 

Nebraska York 1 0.00% 

Wyoming Goshen 1 0.00% 

Wyoming Laramie 0.761 23.90% 

Wyoming Platte 1 0.00% 

C3: Results of SOM Efficiency One Output Dimension 

 

Table 38: Crop Residue Harvest Potentials and Associated Soil Carbon and Crop 

Residue by State (One output dimension) 

State HP SOC(Mg C/Ha) Crop Residue (Mg C/Ha) 

Co 48% 20 51 

IA 61% 47 119 

Ne 45% 23 57 

Wy 20% 6 14 

HP = Harvest Potential 
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Table 39: Percentage of Counties within selected harvest potential groups 

 

 

 

 

 

 

Figure 22: SOM Efficiency Scores in Two Dimensions (X-axis = SOM, Y-axis = 

Total Production Index) 

  

Blue circle represents cluster of some IOWA counties (hence highest harvest potential) 

 

 

 

 

 

 

 

% of Counties within given harvest potentials  

State 0 - 10% 11% - 30% 31%-50% >50% 

Co 25% 0% 25% 50% 

Io 9% 2% 15% 74% 

Ne 23% 4% 19% 54% 

Wy 67% 33% 0% 0% 
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Appendix D: Codes 

D1: Bootstrap Malmquist Index with Confidence Intervals 

 

library(FEAR)  #this line is introduced to mainly download the software FEAR into R 

 

malq1 <- read.table("c:/malq1.csv", header=T, sep=",")  #Here we are reading the dataset from a csv file 
 

 

#1970/1971 (Repeat this for every pair of years…. Please mind overlaps) 

#The next set of code lines (8) tries to partition the dataset into matrices without SOM and including the two 

SOM variables. They also represent two periods (year t and year t+1). 

 

xa1=t(matrix(c(malq1$x11,malq1$x21,malq1$x31,malq1$x41,malq1$x51),nrow=101,ncol=5)) 

xs11=t(matrix(c(malq1$x11,malq1$x21,malq1$x31,malq1$x41,malq1$x51,malq1$x61),nrow=101,ncol=6)) 

xs12=t(matrix(c(malq1$x11,malq1$x21,malq1$x31,malq1$x41,malq1$x51,malq1$x71),nrow=101,ncol=6)) 

y1=t(matrix(c(malq1$y11,malq1$y21,malq1$y31),nrow=101,ncol=3)) 

xa2=t(matrix(c(malq1$x12,malq1$x22,malq1$x32,malq1$x42,malq1$x52),nrow=101,ncol=5)) 

xs21=t(matrix(c(malq1$x12,malq1$x22,malq1$x32,malq1$x42,malq1$x52,malq1$x62),nrow=101,ncol=6)) 

xs22=t(matrix(c(malq1$x12,malq1$x22,malq1$x32,malq1$x42,malq1$x52,malq1$x72),nrow=101,ncol=6)) 

y2=t(matrix(c(malq1$y12,malq1$y22,malq1$y32),nrow=101,ncol=3)) 

 

# the next two lines give unique identifications for periods. (Periods 1 and 2) 

 

id1=c(1:101) 

id2=c(1:101) 

 

#The next three lines perform the malmquist and bootstrap operations for the three different scenarios 

 

m1=malmquist.components(X1=xa1,Y1=y1,ID1=id1,X2=xa2,Y2=y2,ID2=id2,ORIENTATION=2,NREP=1000) 

m2=malmquist.components(X1=xs11,Y1=y1,ID1=id1,X2=xs21,Y2=y2,ID2=id2,ORIENTATION=2,NREP=1000) 

m3=malmquist.components(X1=xs12,Y1=y1,ID1=id1,X2=xs22,Y2=y2,ID2=id2,ORIENTATION=2,NREP=1000) 

 

#The following three lines compute the confidence intervals at the 0.01, 0.05 and 0.1 significant levels 

 

som1=malmquist(LIST=m1,alpha=c(0.1,0.05,0.01)) 

som2=malmquist(LIST=m2,alpha=c(0.1,0.05,0.01)) 

som3=malmquist(LIST=m3,alpha=c(0.1,0.05,0.01)) 

 

#the following three lines identifies parts of the output that are relevant to our research 

 

outag1=t(matrix(c(som1$malm,som1$ci.malm,som1$eff,som1$ci.eff,som1$tech,som1$ci.tech),nrow=101,ncol=21)) 

outag2=t(matrix(c(som2$malm,som2$ci.malm,som2$eff,som2$ci.eff,som2$tech,som2$ci.tech),nrow=101,ncol=21)) 

outag3=t(matrix(c(som3$malm,som3$ci.malm,som3$eff,som3$ci.eff,som3$tech,som3$ci.tech),nrow=101,ncol=21)) 

 

#We then export three output files into CSS files 

 

write.table(outag1,file="out1_00.csv") 

write.table(outag2,file="out2_00.csv") 

write.table(outag3,file="out3_00.csv") 
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D2.GAMS Code: SOM Efficiency (One Dimension) 

 

# The first eight lines are meant to declare all input-output variables to be used. 
 

Set inout /y1,x1*x6/ 

Output(inout) /y1/ 

Input(inout) /x1,x2,x3,x4,x5/ 

Input1(inout)/x6/ 

Obs /1*200/ 

Subobs(obs) /1*101/ 

Actobs(obs); 

Alias (subobs, subobs1) 

 

# Here we introduce the dataset 

 

Table act(obs,inout) input output table 

 

          y1                         x1                   x2                 x3                x4                x5             x6 

    

1        247672.44        83733.51        0.0001        18603.41        16702.43        49.06        165.68 

   .             .                        .                          .                       .              .                      .                . 

101        457869.49     16996.79696    105461.0783   27219.77        22330.53        48.6        89.47; 

 

#We then describe the different variables 

Variables 

Lambda efficiency score 

 Weight(obs) intensity variable; 

 Positive variable weight; 

 Equations 

 

#Here we list the constraints 

 

 Constr1(output,obs) DEA constraint for each output 

 Constr2(input,obs) DEA constraint for each input 

 Constr3(input1,obs) Dea constraint for som; 

 Constr1(output,actobs).. sum(subobs,weight(subobs)*act(subobs, output)) =G= act(actobs,output); 

 Constr2(input,actobs).. sum(subobs,weight(subobs)*act(subobs,input)) =L= act(actobs,input); 

 Constr3(input1,actobs).. sum(subobs,weight(subobs)*act(subobs,input1)) =L= lambda*act(actobs,input1); 

 

Parameter 

 Score1(obs) efficiency scores; 

 Model tedea /constr1, constr2, constr3/; 

 Loop (subobs1, 

 Actobs(obs)=no; 

 Actobs(subobs1)=yes; 

 Option LP=OSL; 

 Solve tedea minimizing lambda using LP; 

 Score1(subobs1)=lambda.l; 

 ); 

 Display score1; 

D3: Code GAMS Technical Efficiency 
 

# The first eight lines are meant to declare all input-output variables to be used. 
 

Set inout /y1*y3,x1*x6/ 

Output(inout) /y1,y2,y3/ 

Input(inout) /x1,x2,x3,x4,x5/ 

Input1(inout)/x6/ 
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Obs /1*200/ 

Subobs(obs) /1*101/ 

Actobs(obs); 

Alias (subobs, subobs1) 

 

#Here we call the data from a csv file 

 

Table act(obs,inout) input output table 

$ondelim 

$include "SOMDATA.csv" 

$offdelim 

Variables 

Lambda efficiency score 

 Weight(obs) intensity variable; 

 Positive variable weight; 

 Equations 

 

#Introduce constraints 

 

 Constr1(output,obs) DEA constraint for each output 

 Constr2(input,obs) DEA constraint for each input 

 Constr3(input1,obs) Dea constraint for som; 

 Constr1(output,actobs).. sum(subobs,weight(subobs)*act(subobs, output)) =G= act(actobs,output); 

 Constr2(input,actobs).. sum(subobs,weight(subobs)*act(subobs,input)) =L= act(actobs,input); 

 Constr3(input1,actobs).. sum(subobs,weight(subobs)*act(subobs,input1)) =L= lambda*act(actobs,input1); 

 

Parameter 

 Score1(obs) efficiency scores; 

 Model tedea /constr1, constr2, constr3/; 

 Loop (subobs1, 

 Actobs(obs)=no; 

 Actobs(subobs1)=yes; 

 Option LP=OSL; 

 Solve tedea minimizing lambda using LP; 

 Score1(subobs1)=lambda.l; 

 );  Display score1; 

 

 

 

 

Appendix E: Results obtained from estimating Error Correction Model 
 

 

Long-Run Parameter Beta Estimates When 

RANK=2 

Variable 1 2 

lcrude -0.05146 -0.06192 

ldiesel 1 1 

lngas -0.98549 -0.92294 

lelect 0.09352 0.03388 

lnatural 0.02881 0.09234 

lcorn 0.00978 0.00744 
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Adjustment Coefficient Alpha Estimates 

When RANK=2 

Variable 1 2 

lcrude 0.4436 0.56104 

ldiesel -0.28856 -0.14811 

lngas -0.2032 -0.06919 

lelect -0.20099 0.18934 

lnatural -0.54892 -0.3998 

lcorn -1.25864 -1.27903 

 

Coefficient of Granger Representation 

Variable Lcrude ldiesel lngas lelect lnatural lcorn 

lcrude 0.66191 7.14049 -7.21258 0.83526 0.02734 0.07645 

ldiesel 0.11771 -1.66549 2.74326 -0.36028 0.04144 -0.03045 

lngas 0.06634 -1.55658 2.61634 -0.22408 0.03877 -0.01832 

lelect -0.0559 0.8134 -0.71758 0.99597 0.10875 0.00481 

lnatural 0.27956 -6.14812 6.27926 -0.78502 1.04659 -0.06842 

Lcorn 0.81181 -17.4045 17.65356 -2.10584 0.00788 0.8109 

Parameter Alpha * Beta' Estimates 

Variable Lcrude ldiesel lngas lelect lnatural lcorn 

lcrude -0.05757 1.00464 -0.95496 0.06049 0.06459 0.00851 

ldiesel 0.02402 -0.43667 0.42107 -0.032 -0.02199 -0.00392 

lngas 0.01474 -0.2724 0.26412 -0.02135 -0.01224 -0.0025 

lelect -0.00138 -0.01165 0.02332 -0.01238 0.01169 -0.00056 

lnatural 0.053 -0.94872 0.90995 -0.06488 -0.05273 -0.00834 

Lcorn 0.14397 -2.53767 2.42084 -0.16104 -0.15437 -0.02183 

 

 

 

AR Coefficients of Differenced Lag 

DIF Lag Variable lcrude ldiesel lngas lelect lnatural lcorn 

1 lcrude 0.57693 -0.43344 -0.1649 0.16635 0.03732 -0.00082 

  ldiesel 0.15493 0.19151 -0.05437 -0.18621 -0.03565 0.01474 

  lngas 0.15074 0.9462 -0.83821 -0.2151 -0.04429 0.01744 

  lelect 0.00961 0.03413 -0.05957 -0.26634 0.03386 0.00286 

  lnatural -0.04172 0.5689 -0.43966 -0.66344 0.19507 -0.01672 

  lcorn -0.23576 1.51244 -1.87756 -0.84182 0.13449 0.45917 

2 lcrude 0.15505 -0.56752 0.23623 -0.26535 -0.14955 -0.00905 



144 
 

  ldiesel 0.01657 0.01045 -0.33648 -0.06581 0.02576 0.00181 

  lngas 0.02502 0.62318 -0.98688 -0.03554 0.0552 -0.00189 

  lelect -0.0133 0.06507 -0.07279 -0.09723 0.02607 -0.0025 

  lnatural -0.09913 0.37116 -0.33339 0.01508 -0.02988 0.01328 

  lcorn 0.13596 1.99536 -1.99695 1.83497 0.15684 -0.08075 

3 lcrude -0.03613 -1.74049 2.03325 -0.3874 0.04804 -0.0093 

  ldiesel 0.10558 -0.06325 -0.12698 0.12699 0.02742 0.02996 

  lngas 0.0921 0.39843 -0.579 0.09068 0.03261 0.03422 

  lelect 0.02097 -0.00427 -0.06865 -0.17738 0.0244 0.00291 

  lnatural -0.02485 0.197 -0.08108 0.49653 -0.12052 0.0051 

  lcorn -0.16821 2.33431 -1.90481 -0.51631 0.04962 -0.07968 

4 lcrude -0.06117 -1.63454 1.60251 0.16026 0.13783 -0.01371 

  ldiesel -0.02857 0.03225 0.02192 -0.21676 0.05693 -0.02581 

  lngas -0.02785 0.35628 -0.32478 -0.21382 0.04365 -0.01839 

  lelect 0.00776 0.03868 -0.04893 -0.16947 0.00406 0.00364 

  lnatural 0.02815 -0.1886 0.30024 -0.06316 -0.18776 -0.00174 

  lcorn 0.08431 0.89247 -1.44334 -1.04856 0.10279 0.07928 

5 lcrude 0.17515 -1.26819 0.80378 0.46665 -0.25827 0.08464 

  ldiesel 0.0025 -0.09797 -0.14977 -0.20588 -0.00981 0.04233 

  lngas 0.00994 0.1668 -0.42328 -0.18317 -0.0413 0.0322 

  lelect 0.00236 0.04493 -0.0692 -0.18123 0.01289 0.00127 

  lnatural -0.05623 -0.33548 0.46785 -0.59806 -0.18453 -0.02059 

  lcorn -0.02233 0.60196 -0.11495 -0.70966 -0.04079 -0.0191 

6 lcrude 0.01842 -0.68364 0.67764 -0.08113 -0.35889 -0.02539 

  ldiesel 0.04493 0.24879 -0.35842 -0.10952 -0.10096 0.00914 

  lngas 0.03275 0.50353 -0.6131 -0.10333 -0.09434 0.00657 

  lelect 0.00154 -0.0208 0.00597 -0.35467 -0.0216 0.00225 

  lnatural -0.06769 -0.15473 0.17805 -0.83489 -0.04459 -0.00045 

  lcorn -0.22101 0.98454 -0.95446 0.46347 0.39617 0.06431 

7 lcrude 0.07454 -0.47847 0.12158 -0.62173 0.38455 -0.01963 

  ldiesel 0.03805 0.32081 -0.39485 -0.61356 0.09467 -0.00922 

  lngas 0.04034 0.56003 -0.62448 -0.52958 0.08864 -0.00777 

  lelect 0.00347 0.0318 -0.05869 -0.29873 -0.01477 -0.00199 

  lnatural -0.02765 0.06715 0.00099 -0.61631 -0.12649 0.01974 

  lcorn 0.17705 0.63585 -1.00042 0.0325 -0.16658 0.07919 

8 lcrude 0.07219 0.34498 -0.34094 0.05728 0.01368 0.03732 

  ldiesel -0.01373 0.48437 -0.6073 -0.17259 0.08717 -0.00342 

  lngas -0.00894 0.68453 -0.80486 -0.11715 0.10076 -0.00304 

  lelect 0.00248 0.06738 -0.07734 -0.27356 0.02359 0.00135 

  lnatural 0.0436 0.16909 -0.16666 -0.11244 -0.10462 0.0196 

  lcorn -0.02845 1.12354 -0.81028 1.4159 0.06783 -0.1844 
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9 lcrude 0.10532 -0.13465 -0.07616 -0.18751 -0.08183 -0.01845 

  ldiesel 0.01584 0.14813 -0.23603 -0.31083 0.00104 0.00732 

  lngas 0.00375 0.22931 -0.29037 -0.24715 -0.01505 -0.00062 

  lelect 0.01082 -0.02968 -0.0115 -0.21278 0.07439 -0.00228 

  lnatural -0.0664 0.00675 0.0956 -0.35093 -0.1424 -0.02427 

  lcorn -0.2264 0.99744 -1.06712 0.81981 0.01739 0.11061 

 

Schematic Representation of Parameter Estimates 

Variable/Lag AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 AR10 

Lcrude ****** +..... +..... .-+... ...... +...-+ ....-. ....+. ...... ...... 

Ldiesel ****** +..... ...... +....+ .....- .....+ ....-. ...-+. .+-.+. ...... 

Lngas ****** ++-... .+-... +.-..+ ...... .....+ ..-.-. .+--+. .+-.+. ...... 

Lelect ****** ...-+. ...... +..-.. ...-.. ...-.. ...-.. ...-.. ...-.. ...-+. 

lnatural ****** ...-+. -..... ...+-. ....-. ...--. -..-.. ...--. ....-. -...-. 

Lcorn ****** -....+ ...+.. ...... ...... ...... ....+. ...... .....- -....+ 

+ is > 2*std error,  - is < -2*std error,  . is between,  * is N/A 

 

 

 

 

Model Parameter Estimates 

Equation Parameter Estimate 

Standard 

t Value Pr > |t| Variable Error 

D_lcrude AR1_1_1 -0.05757 0.03193     lcrude(t-1) 

  AR1_1_2 1.00464 0.55644     ldiesel(t-1) 

  AR1_1_3 -0.95496 0.52975     lngas(t-1) 

  AR1_1_4 0.06049 0.03782     lelect(t-1) 

  AR1_1_5 0.06459 0.03938     lnatural(t-1) 

  AR1_1_6 0.00851 0.00478     lcorn(t-1) 

  AR2_1_1 0.57693 0.06602 8.74 0.0001 D_lcrude(t-1) 

  AR2_1_2 -0.43344 0.69215 -0.63 0.5316 D_ldiesel(t-1) 

  AR2_1_3 -0.1649 0.70486 -0.23 0.8152 D_lngas(t-1) 

  AR2_1_4 0.16635 0.46166 0.36 0.7189 D_lelect(t-1) 

  AR2_1_5 0.03732 0.12379 0.3 0.7632 D_lnatural(t-
1) 

  AR2_1_6 -0.00082 0.03413 -0.02 0.9809 D_lcorn(t-1) 

  AR3_1_1 0.15505 0.07333 2.11 0.0353 D_lcrude(t-2) 

  AR3_1_2 -0.56752 0.78177 -0.73 0.4684 D_ldiesel(t-2) 
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  AR3_1_3 0.23623 0.78793 0.3 0.7645 D_lngas(t-2) 

  AR3_1_4 -0.26535 0.46631 -0.57 0.5697 D_lelect(t-2) 

  AR3_1_5 -0.14955 0.12452 -1.2 0.2306 D_lnatural(t-
2) 

  AR3_1_6 -0.00905 0.03705 -0.24 0.8071 D_lcorn(t-2) 

  AR4_1_1 -0.03613 0.07423 -0.49 0.6267 D_lcrude(t-3) 

  AR4_1_2 -1.74049 0.82758 -2.1 0.0363 D_ldiesel(t-3) 

  AR4_1_3 2.03325 0.85355 2.38 0.0178 D_lngas(t-3) 

  AR4_1_4 -0.3874 0.45943 -0.84 0.3997 D_lelect(t-3) 

  AR4_1_5 0.04804 0.12431 0.39 0.6994 D_lnatural(t-
3) 

  AR4_1_6 -0.0093 0.03677 -0.25 0.8006 D_lcorn(t-3) 

  AR5_1_1 -0.06117 0.07586 -0.81 0.4207 D_lcrude(t-4) 

  AR5_1_2 -1.63454 0.84141 -1.94 0.053 D_ldiesel(t-4) 

  AR5_1_3 1.60251 0.87169 1.84 0.0669 D_lngas(t-4) 

  AR5_1_4 0.16026 0.44858 0.36 0.7211 D_lelect(t-4) 

  AR5_1_5 0.13783 0.12382 1.11 0.2665 D_lnatural(t-
4) 

  AR5_1_6 -0.01371 0.03713 -0.37 0.7123 D_lcorn(t-4) 

  AR6_1_1 0.17515 0.07543 2.32 0.0209 D_lcrude(t-5) 

  AR6_1_2 -1.26819 0.84505 -1.5 0.1344 D_ldiesel(t-5) 

  AR6_1_3 0.80378 0.87339 0.92 0.3581 D_lngas(t-5) 

  AR6_1_4 0.46665 0.44452 1.05 0.2946 D_lelect(t-5) 

  AR6_1_5 -0.25827 0.12331 -2.09 0.037 D_lnatural(t-
5) 

  AR6_1_6 0.08464 0.03709 2.28 0.0232 D_lcorn(t-5) 

  AR7_1_1 0.01842 0.07553 0.24 0.8075 D_lcrude(t-6) 

  AR7_1_2 -0.68364 0.82266 -0.83 0.4066 D_ldiesel(t-6) 

  AR7_1_3 0.67764 0.85294 0.79 0.4275 D_lngas(t-6) 

  AR7_1_4 -0.08113 0.44863 -0.18 0.8566 D_lelect(t-6) 

  AR7_1_5 -0.35889 0.12541 -2.86 0.0045 D_lnatural(t-
6) 

  AR7_1_6 -0.02539 0.03807 -0.67 0.5053 D_lcorn(t-6) 

  AR8_1_1 0.07454 0.07419 1 0.3158 D_lcrude(t-7) 

  AR8_1_2 -0.47847 0.76752 -0.62 0.5335 D_ldiesel(t-7) 

  AR8_1_3 0.12158 0.80069 0.15 0.8794 D_lngas(t-7) 

  AR8_1_4 -0.62173 0.47284 -1.31 0.1895 D_lelect(t-7) 

  AR8_1_5 0.38455 0.12432 3.09 0.0022 D_lnatural(t-
7) 

  AR8_1_6 -0.01963 0.03787 -0.52 0.6046 D_lcorn(t-7) 

  AR9_1_1 0.07219 0.07266 0.99 0.3212 D_lcrude(t-8) 

  AR9_1_2 0.34498 0.66742 0.52 0.6056 D_ldiesel(t-8) 

  AR9_1_3 -0.34094 0.69029 -0.49 0.6217 D_lngas(t-8) 

  AR9_1_4 0.05728 0.49748 0.12 0.9084 D_lelect(t-8) 

  AR9_1_5 0.01368 0.12644 0.11 0.9139 D_lnatural(t-
8) 
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  AR9_1_6 0.03732 0.03713 1.01 0.3156 D_lcorn(t-8) 

  AR10_1_1 0.10532 0.07143 1.47 0.1414 D_lcrude(t-9) 

  AR10_1_2 -0.13465 0.48766 -0.28 0.7826 D_ldiesel(t-9) 

  AR10_1_3 -0.07616 0.51489 -0.15 0.8825 D_lngas(t-9) 

  AR10_1_4 -0.18751 0.48293 -0.39 0.6981 D_lelect(t-9) 

  AR10_1_5 -0.08183 0.12391 -0.66 0.5095 D_lnatural(t-
9) 

  AR10_1_6 -0.01845 0.03391 -0.54 0.5868 D_lcorn(t-9) 

D_ldiesel AR1_2_1 0.02402 0.01076     lcrude(t-1) 

  AR1_2_2 -0.43667 0.18758     ldiesel(t-1) 

  AR1_2_3 0.42107 0.17858     lngas(t-1) 

  AR1_2_4 -0.032 0.01275     lelect(t-1) 

  AR1_2_5 -0.02199 0.01328     lnatural(t-1) 

  AR1_2_6 -0.00392 0.00161     lcorn(t-1) 

  AR2_2_1 0.15493 0.02226 6.96 0.0001 D_lcrude(t-1) 

  AR2_2_2 0.19151 0.23333 0.82 0.4124 D_ldiesel(t-1) 

  AR2_2_3 -0.05437 0.23761 -0.23 0.8191 D_lngas(t-1) 

  AR2_2_4 -0.18621 0.15563 -1.2 0.2324 D_lelect(t-1) 

  AR2_2_5 -0.03565 0.04173 -0.85 0.3936 D_lnatural(t-
1) 

  AR2_2_6 0.01474 0.0115 1.28 0.2011 D_lcorn(t-1) 

  AR3_2_1 0.01657 0.02472 0.67 0.5032 D_lcrude(t-2) 

  AR3_2_2 0.01045 0.26354 0.04 0.9684 D_ldiesel(t-2) 

  AR3_2_3 -0.33648 0.26561 -1.27 0.2062 D_lngas(t-2) 

  AR3_2_4 -0.06581 0.15719 -0.42 0.6758 D_lelect(t-2) 

  AR3_2_5 0.02576 0.04198 0.61 0.5398 D_lnatural(t-
2) 

  AR3_2_6 0.00181 0.01249 0.15 0.8848 D_lcorn(t-2) 

  AR4_2_1 0.10558 0.02502 4.22 0.0001 D_lcrude(t-3) 

  AR4_2_2 -0.06325 0.27898 -0.23 0.8208 D_ldiesel(t-3) 

  AR4_2_3 -0.12698 0.28774 -0.44 0.6593 D_lngas(t-3) 

  AR4_2_4 0.12699 0.15488 0.82 0.4129 D_lelect(t-3) 

  AR4_2_5 0.02742 0.0419 0.65 0.5134 D_lnatural(t-
3) 

  AR4_2_6 0.02996 0.0124 2.42 0.0162 D_lcorn(t-3) 

  AR5_2_1 -0.02857 0.02557 -1.12 0.2648 D_lcrude(t-4) 

  AR5_2_2 0.03225 0.28364 0.11 0.9096 D_ldiesel(t-4) 

  AR5_2_3 0.02192 0.29385 0.07 0.9406 D_lngas(t-4) 

  AR5_2_4 -0.21676 0.15122 -1.43 0.1527 D_lelect(t-4) 

  AR5_2_5 0.05693 0.04174 1.36 0.1735 D_lnatural(t-
4) 

  AR5_2_6 -0.02581 0.01252 -2.06 0.04 D_lcorn(t-4) 

  AR6_2_1 0.0025 0.02543 0.1 0.9217 D_lcrude(t-5) 

  AR6_2_2 -0.09797 0.28487 -0.34 0.7311 D_ldiesel(t-5) 
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  AR6_2_3 -0.14977 0.29442 -0.51 0.6113 D_lngas(t-5) 

  AR6_2_4 -0.20588 0.14985 -1.37 0.1704 D_lelect(t-5) 

  AR6_2_5 -0.00981 0.04157 -0.24 0.8136 D_lnatural(t-
5) 

  AR6_2_6 0.04233 0.0125 3.39 0.0008 D_lcorn(t-5) 

  AR7_2_1 0.04493 0.02546 1.76 0.0786 D_lcrude(t-6) 

  AR7_2_2 0.24879 0.27732 0.9 0.3703 D_ldiesel(t-6) 

  AR7_2_3 -0.35842 0.28753 -1.25 0.2135 D_lngas(t-6) 

  AR7_2_4 -0.10952 0.15124 -0.72 0.4695 D_lelect(t-6) 

  AR7_2_5 -0.10096 0.04228 -2.39 0.0175 D_lnatural(t-
6) 

  AR7_2_6 0.00914 0.01283 0.71 0.4768 D_lcorn(t-6) 

  AR8_2_1 0.03805 0.02501 1.52 0.1291 D_lcrude(t-7) 

  AR8_2_2 0.32081 0.25874 1.24 0.2159 D_ldiesel(t-7) 

  AR8_2_3 -0.39485 0.26992 -1.46 0.1445 D_lngas(t-7) 

  AR8_2_4 -0.61356 0.1594 -3.85 0.0001 D_lelect(t-7) 

  AR8_2_5 0.09467 0.04191 2.26 0.0246 D_lnatural(t-
7) 

  AR8_2_6 -0.00922 0.01277 -0.72 0.4705 D_lcorn(t-7) 

  AR9_2_1 -0.01373 0.02449 -0.56 0.5756 D_lcrude(t-8) 

  AR9_2_2 0.48437 0.22499 2.15 0.0321 D_ldiesel(t-8) 

  AR9_2_3 -0.6073 0.2327 -2.61 0.0095 D_lngas(t-8) 

  AR9_2_4 -0.17259 0.1677 -1.03 0.3042 D_lelect(t-8) 

  AR9_2_5 0.08717 0.04262 2.05 0.0417 D_lnatural(t-
8) 

  AR9_2_6 -0.00342 0.01252 -0.27 0.7849 D_lcorn(t-8) 

  AR10_2_1 0.01584 0.02408 0.66 0.511 D_lcrude(t-9) 

  AR10_2_2 0.14813 0.16439 0.9 0.3682 D_ldiesel(t-9) 

  AR10_2_3 -0.23603 0.17357 -1.36 0.1749 D_lngas(t-9) 

  AR10_2_4 -0.31083 0.1628 -1.91 0.0571 D_lelect(t-9) 

  AR10_2_5 0.00104 0.04177 0.02 0.9802 D_lnatural(t-
9) 

  AR10_2_6 0.00732 0.01143 0.64 0.5226 D_lcorn(t-9) 

D_lngas AR1_3_1 0.01474 0.01046     lcrude(t-1) 

  AR1_3_2 -0.2724 0.18229     ldiesel(t-1) 

  AR1_3_3 0.26412 0.17354     lngas(t-1) 

  AR1_3_4 -0.02135 0.01239     lelect(t-1) 

  AR1_3_5 -0.01224 0.0129     lnatural(t-1) 

  AR1_3_6 -0.0025 0.00157     lcorn(t-1) 

  AR2_3_1 0.15074 0.02163 6.97 0.0001 D_lcrude(t-1) 

  AR2_3_2 0.9462 0.22674 4.17 0.0001 D_ldiesel(t-1) 

  AR2_3_3 -0.83821 0.23091 -3.63 0.0003 D_lngas(t-1) 

  AR2_3_4 -0.2151 0.15124 -1.42 0.1559 D_lelect(t-1) 

  AR2_3_5 -0.04429 0.04055 -1.09 0.2756 D_lnatural(t-
1) 
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  AR2_3_6 0.01744 0.01118 1.56 0.1198 D_lcorn(t-1) 

  AR3_3_1 0.02502 0.02402 1.04 0.2984 D_lcrude(t-2) 

  AR3_3_2 0.62318 0.2561 2.43 0.0155 D_ldiesel(t-2) 

  AR3_3_3 -0.98688 0.25812 -3.82 0.0002 D_lngas(t-2) 

  AR3_3_4 -0.03554 0.15276 -0.23 0.8162 D_lelect(t-2) 

  AR3_3_5 0.0552 0.04079 1.35 0.1769 D_lnatural(t-
2) 

  AR3_3_6 -0.00189 0.01214 -0.16 0.8763 D_lcorn(t-2) 

  AR4_3_1 0.0921 0.02432 3.79 0.0002 D_lcrude(t-3) 

  AR4_3_2 0.39843 0.27111 1.47 0.1427 D_ldiesel(t-3) 

  AR4_3_3 -0.579 0.27962 -2.07 0.0392 D_lngas(t-3) 

  AR4_3_4 0.09068 0.15051 0.6 0.5473 D_lelect(t-3) 

  AR4_3_5 0.03261 0.04072 0.8 0.4239 D_lnatural(t-
3) 

  AR4_3_6 0.03422 0.01205 2.84 0.0048 D_lcorn(t-3) 

  AR5_3_1 -0.02785 0.02485 -1.12 0.2633 D_lcrude(t-4) 

  AR5_3_2 0.35628 0.27564 1.29 0.1971 D_ldiesel(t-4) 

  AR5_3_3 -0.32478 0.28556 -1.14 0.2563 D_lngas(t-4) 

  AR5_3_4 -0.21382 0.14695 -1.46 0.1467 D_lelect(t-4) 

  AR5_3_5 0.04365 0.04056 1.08 0.2827 D_lnatural(t-
4) 

  AR5_3_6 -0.01839 0.01216 -1.51 0.1316 D_lcorn(t-4) 

  AR6_3_1 0.00994 0.02471 0.4 0.6877 D_lcrude(t-5) 

  AR6_3_2 0.1668 0.27683 0.6 0.5473 D_ldiesel(t-5) 

  AR6_3_3 -0.42328 0.28612 -1.48 0.14 D_lngas(t-5) 

  AR6_3_4 -0.18317 0.14562 -1.26 0.2094 D_lelect(t-5) 

  AR6_3_5 -0.0413 0.0404 -1.02 0.3074 D_lnatural(t-
5) 

  AR6_3_6 0.0322 0.01215 2.65 0.0085 D_lcorn(t-5) 

  AR7_3_1 0.03275 0.02474 1.32 0.1867 D_lcrude(t-6) 

  AR7_3_2 0.50353 0.2695 1.87 0.0626 D_ldiesel(t-6) 

  AR7_3_3 -0.6131 0.27942 -2.19 0.029 D_lngas(t-6) 

  AR7_3_4 -0.10333 0.14697 -0.7 0.4825 D_lelect(t-6) 

  AR7_3_5 -0.09434 0.04108 -2.3 0.0223 D_lnatural(t-
6) 

  AR7_3_6 0.00657 0.01247 0.53 0.599 D_lcorn(t-6) 

  AR8_3_1 0.04034 0.0243 1.66 0.0979 D_lcrude(t-7) 

  AR8_3_2 0.56003 0.25144 2.23 0.0266 D_ldiesel(t-7) 

  AR8_3_3 -0.62448 0.2623 -2.38 0.0179 D_lngas(t-7) 

  AR8_3_4 -0.52958 0.1549 -3.42 0.0007 D_lelect(t-7) 

  AR8_3_5 0.08864 0.04073 2.18 0.0303 D_lnatural(t-
7) 

  AR8_3_6 -0.00777 0.01241 -0.63 0.5317 D_lcorn(t-7) 

  AR9_3_1 -0.00894 0.0238 -0.38 0.7074 D_lcrude(t-8) 

  AR9_3_2 0.68453 0.21864 3.13 0.0019 D_ldiesel(t-8) 
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  AR9_3_3 -0.80486 0.22614 -3.56 0.0004 D_lngas(t-8) 

  AR9_3_4 -0.11715 0.16297 -0.72 0.4728 D_lelect(t-8) 

  AR9_3_5 0.10076 0.04142 2.43 0.0155 D_lnatural(t-
8) 

  AR9_3_6 -0.00304 0.01216 -0.25 0.803 D_lcorn(t-8) 

  AR10_3_1 0.00375 0.0234 0.16 0.8726 D_lcrude(t-9) 

  AR10_3_2 0.22931 0.15976 1.44 0.1522 D_ldiesel(t-9) 

  AR10_3_3 -0.29037 0.16868 -1.72 0.0861 D_lngas(t-9) 

  AR10_3_4 -0.24715 0.15821 -1.56 0.1192 D_lelect(t-9) 

  AR10_3_5 -0.01505 0.04059 -0.37 0.711 D_lnatural(t-
9) 

  AR10_3_6 -0.00062 0.01111 -0.06 0.9552 D_lcorn(t-9) 

D_lelect AR1_4_1 -0.00138 0.00335     lcrude(t-1) 

  AR1_4_2 -0.01165 0.05843     ldiesel(t-1) 

  AR1_4_3 0.02332 0.05562     lngas(t-1) 

  AR1_4_4 -0.01238 0.00397     lelect(t-1) 

  AR1_4_5 0.01169 0.00414     lnatural(t-1) 

  AR1_4_6 -0.00056 0.0005     lcorn(t-1) 

  AR2_4_1 0.00961 0.00693 1.39 0.1669 D_lcrude(t-1) 

  AR2_4_2 0.03413 0.07268 0.47 0.639 D_ldiesel(t-1) 

  AR2_4_3 -0.05957 0.07401 -0.8 0.4215 D_lngas(t-1) 

  AR2_4_4 -0.26634 0.04847 -5.49 0.0001 D_lelect(t-1) 

  AR2_4_5 0.03386 0.013 2.6 0.0096 D_lnatural(t-
1) 

  AR2_4_6 0.00286 0.00358 0.8 0.4246 D_lcorn(t-1) 

  AR3_4_1 -0.0133 0.0077 -1.73 0.0851 D_lcrude(t-2) 

  AR3_4_2 0.06507 0.08209 0.79 0.4286 D_ldiesel(t-2) 

  AR3_4_3 -0.07279 0.08273 -0.88 0.3796 D_lngas(t-2) 

  AR3_4_4 -0.09723 0.04896 -1.99 0.0479 D_lelect(t-2) 

  AR3_4_5 0.02607 0.01307 1.99 0.047 D_lnatural(t-
2) 

  AR3_4_6 -0.0025 0.00389 -0.64 0.5218 D_lcorn(t-2) 

  AR4_4_1 0.02097 0.00779 2.69 0.0075 D_lcrude(t-3) 

  AR4_4_2 -0.00427 0.0869 -0.05 0.9608 D_ldiesel(t-3) 

  AR4_4_3 -0.06865 0.08962 -0.77 0.4443 D_lngas(t-3) 

  AR4_4_4 -0.17738 0.04824 -3.68 0.0003 D_lelect(t-3) 

  AR4_4_5 0.0244 0.01305 1.87 0.0625 D_lnatural(t-
3) 

  AR4_4_6 0.00291 0.00386 0.75 0.4519 D_lcorn(t-3) 

  AR5_4_1 0.00776 0.00797 0.97 0.3307 D_lcrude(t-4) 

  AR5_4_2 0.03868 0.08835 0.44 0.6619 D_ldiesel(t-4) 

  AR5_4_3 -0.04893 0.09153 -0.53 0.5933 D_lngas(t-4) 

  AR5_4_4 -0.16947 0.0471 -3.6 0.0004 D_lelect(t-4) 

  AR5_4_5 0.00406 0.013 0.31 0.755 D_lnatural(t-
4) 
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  AR5_4_6 0.00364 0.0039 0.93 0.3506 D_lcorn(t-4) 

  AR6_4_1 0.00236 0.00792 0.3 0.766 D_lcrude(t-5) 

  AR6_4_2 0.04493 0.08873 0.51 0.613 D_ldiesel(t-5) 

  AR6_4_3 -0.0692 0.09171 -0.75 0.4511 D_lngas(t-5) 

  AR6_4_4 -0.18123 0.04668 -3.88 0.0001 D_lelect(t-5) 

  AR6_4_5 0.01289 0.01295 1 0.3203 D_lnatural(t-
5) 

  AR6_4_6 0.00127 0.00389 0.33 0.7452 D_lcorn(t-5) 

  AR7_4_1 0.00154 0.00793 0.19 0.8461 D_lcrude(t-6) 

  AR7_4_2 -0.0208 0.08638 -0.24 0.8098 D_ldiesel(t-6) 

  AR7_4_3 0.00597 0.08956 0.07 0.9469 D_lngas(t-6) 

  AR7_4_4 -0.35467 0.04711 -7.53 0.0001 D_lelect(t-6) 

  AR7_4_5 -0.0216 0.01317 -1.64 0.1019 D_lnatural(t-
6) 

  AR7_4_6 0.00225 0.004 0.56 0.5747 D_lcorn(t-6) 

  AR8_4_1 0.00347 0.00779 0.45 0.6559 D_lcrude(t-7) 

  AR8_4_2 0.0318 0.08059 0.39 0.6934 D_ldiesel(t-7) 

  AR8_4_3 -0.05869 0.08407 -0.7 0.4857 D_lngas(t-7) 

  AR8_4_4 -0.29873 0.04965 -6.02 0.0001 D_lelect(t-7) 

  AR8_4_5 -0.01477 0.01305 -1.13 0.2588 D_lnatural(t-
7) 

  AR8_4_6 -0.00199 0.00398 -0.5 0.6167 D_lcorn(t-7) 

  AR9_4_1 0.00248 0.00763 0.33 0.7453 D_lcrude(t-8) 

  AR9_4_2 0.06738 0.07008 0.96 0.3371 D_ldiesel(t-8) 

  AR9_4_3 -0.07734 0.07248 -1.07 0.2868 D_lngas(t-8) 

  AR9_4_4 -0.27356 0.05224 -5.24 0.0001 D_lelect(t-8) 

  AR9_4_5 0.02359 0.01328 1.78 0.0765 D_lnatural(t-
8) 

  AR9_4_6 0.00135 0.0039 0.35 0.7297 D_lcorn(t-8) 

  AR10_4_1 0.01082 0.0075 1.44 0.15 D_lcrude(t-9) 

  AR10_4_2 -0.02968 0.0512 -0.58 0.5626 D_ldiesel(t-9) 

  AR10_4_3 -0.0115 0.05406 -0.21 0.8317 D_lngas(t-9) 

  AR10_4_4 -0.21278 0.05071 -4.2 0.0001 D_lelect(t-9) 

  AR10_4_5 0.07439 0.01301 5.72 0.0001 D_lnatural(t-
9) 

  AR10_4_6 -0.00228 0.00356 -0.64 0.5232 D_lcorn(t-9) 

D_lnatural AR1_5_1 0.053 0.01318     lcrude(t-1) 

  AR1_5_2 -0.94872 0.22975     ldiesel(t-1) 

  AR1_5_3 0.90995 0.21873     lngas(t-1) 

  AR1_5_4 -0.06488 0.01562     lelect(t-1) 

  AR1_5_5 -0.05273 0.01626     lnatural(t-1) 

  AR1_5_6 -0.00834 0.00197     lcorn(t-1) 

  AR2_5_1 -0.04172 0.02726 -1.53 0.1269 D_lcrude(t-1) 

  AR2_5_2 0.5689 0.28579 1.99 0.0474 D_ldiesel(t-1) 
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  AR2_5_3 -0.43966 0.29103 -1.51 0.1319 D_lngas(t-1) 

  AR2_5_4 -0.66344 0.19062 -3.48 0.0006 D_lelect(t-1) 

  AR2_5_5 0.19507 0.05111 3.82 0.0002 D_lnatural(t-
1) 

  AR2_5_6 -0.01672 0.01409 -1.19 0.2361 D_lcorn(t-1) 

  AR3_5_1 -0.09913 0.03028 -3.27 0.0012 D_lcrude(t-2) 

  AR3_5_2 0.37116 0.32279 1.15 0.2511 D_ldiesel(t-2) 

  AR3_5_3 -0.33339 0.32533 -1.02 0.3063 D_lngas(t-2) 

  AR3_5_4 0.01508 0.19254 0.08 0.9376 D_lelect(t-2) 

  AR3_5_5 -0.02988 0.05141 -0.58 0.5615 D_lnatural(t-
2) 

  AR3_5_6 0.01328 0.0153 0.87 0.3862 D_lcorn(t-2) 

  AR4_5_1 -0.02485 0.03065 -0.81 0.4181 D_lcrude(t-3) 

  AR4_5_2 0.197 0.34171 0.58 0.5647 D_ldiesel(t-3) 

  AR4_5_3 -0.08108 0.35243 -0.23 0.8182 D_lngas(t-3) 

  AR4_5_4 0.49653 0.1897 2.62 0.0093 D_lelect(t-3) 

  AR4_5_5 -0.12052 0.05133 -2.35 0.0195 D_lnatural(t-
3) 

  AR4_5_6 0.0051 0.01518 0.34 0.7372 D_lcorn(t-3) 

  AR5_5_1 0.02815 0.03132 0.9 0.3696 D_lcrude(t-4) 

  AR5_5_2 -0.1886 0.34742 -0.54 0.5876 D_ldiesel(t-4) 

  AR5_5_3 0.30024 0.35992 0.83 0.4048 D_lngas(t-4) 

  AR5_5_4 -0.06316 0.18522 -0.34 0.7333 D_lelect(t-4) 

  AR5_5_5 -0.18776 0.05112 -3.67 0.0003 D_lnatural(t-
4) 

  AR5_5_6 -0.00174 0.01533 -0.11 0.9099 D_lcorn(t-4) 

  AR6_5_1 -0.05623 0.03114 -1.81 0.072 D_lcrude(t-5) 

  AR6_5_2 -0.33548 0.34892 -0.96 0.337 D_ldiesel(t-5) 

  AR6_5_3 0.46785 0.36062 1.3 0.1955 D_lngas(t-5) 

  AR6_5_4 -0.59806 0.18354 -3.26 0.0012 D_lelect(t-5) 

  AR6_5_5 -0.18453 0.05092 -3.62 0.0003 D_lnatural(t-
5) 

  AR6_5_6 -0.02059 0.01532 -1.34 0.1797 D_lcorn(t-5) 

  AR7_5_1 -0.06769 0.03119 -2.17 0.0307 D_lcrude(t-6) 

  AR7_5_2 -0.15473 0.33968 -0.46 0.6491 D_ldiesel(t-6) 

  AR7_5_3 0.17805 0.35218 0.51 0.6135 D_lngas(t-6) 

  AR7_5_4 -0.83489 0.18524 -4.51 0.0001 D_lelect(t-6) 

  AR7_5_5 -0.04459 0.05178 -0.86 0.3899 D_lnatural(t-
6) 

  AR7_5_6 -0.00045 0.01572 -0.03 0.977 D_lcorn(t-6) 

  AR8_5_1 -0.02765 0.03063 -0.9 0.3673 D_lcrude(t-7) 

  AR8_5_2 0.06715 0.31691 0.21 0.8323 D_ldiesel(t-7) 

  AR8_5_3 0.00099 0.3306 0 0.9976 D_lngas(t-7) 

  AR8_5_4 -0.61631 0.19524 -3.16 0.0018 D_lelect(t-7) 

  AR8_5_5 -0.12649 0.05133 -2.46 0.0143 D_lnatural(t-
7) 
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  AR8_5_6 0.01974 0.01564 1.26 0.2076 D_lcorn(t-7) 

  AR9_5_1 0.0436 0.03 1.45 0.1472 D_lcrude(t-8) 

  AR9_5_2 0.16909 0.27557 0.61 0.5399 D_ldiesel(t-8) 

  AR9_5_3 -0.16666 0.28502 -0.58 0.5592 D_lngas(t-8) 

  AR9_5_4 -0.11244 0.20541 -0.55 0.5845 D_lelect(t-8) 

  AR9_5_5 -0.10462 0.05221 -2 0.0459 D_lnatural(t-
8) 

  AR9_5_6 0.0196 0.01533 1.28 0.2021 D_lcorn(t-8) 

  AR10_5_1 -0.0664 0.02949 -2.25 0.025 D_lcrude(t-9) 

  AR10_5_2 0.00675 0.20135 0.03 0.9733 D_ldiesel(t-9) 

  AR10_5_3 0.0956 0.2126 0.45 0.6533 D_lngas(t-9) 

  AR10_5_4 -0.35093 0.1994 -1.76 0.0794 D_lelect(t-9) 

  AR10_5_5 -0.1424 0.05116 -2.78 0.0057 D_lnatural(t-
9) 

  AR10_5_6 -0.02427 0.014 -1.73 0.084 D_lcorn(t-9) 

D_lcorn AR1_6_1 0.14397 0.04761     lcrude(t-1) 

  AR1_6_2 -2.53767 0.82977     ldiesel(t-1) 

  AR1_6_3 2.42084 0.78997     lngas(t-1) 

  AR1_6_4 -0.16104 0.0564     lelect(t-1) 

  AR1_6_5 -0.15437 0.05873     lnatural(t-1) 

  AR1_6_6 -0.02183 0.00713     lcorn(t-1) 

  AR2_6_1 -0.23576 0.09846 -2.39 0.0172 D_lcrude(t-1) 

  AR2_6_2 1.51244 1.03213 1.47 0.1438 D_ldiesel(t-1) 

  AR2_6_3 -1.87756 1.05109 -1.79 0.075 D_lngas(t-1) 

  AR2_6_4 -0.84182 0.68844 -1.22 0.2223 D_lelect(t-1) 

  AR2_6_5 0.13449 0.1846 0.73 0.4668 D_lnatural(t-
1) 

  AR2_6_6 0.45917 0.05089 9.02 0.0001 D_lcorn(t-1) 

  AR3_6_1 0.13596 0.10935 1.24 0.2147 D_lcrude(t-2) 

  AR3_6_2 1.99536 1.16578 1.71 0.088 D_ldiesel(t-2) 

  AR3_6_3 -1.99695 1.17496 -1.7 0.0902 D_lngas(t-2) 

  AR3_6_4 1.83497 0.69536 2.64 0.0087 D_lelect(t-2) 

  AR3_6_5 0.15684 0.18568 0.84 0.3989 D_lnatural(t-
2) 

  AR3_6_6 -0.08075 0.05525 -1.46 0.1449 D_lcorn(t-2) 

  AR4_6_1 -0.16821 0.11069 -1.52 0.1296 D_lcrude(t-3) 

  AR4_6_2 2.33431 1.2341 1.89 0.0595 D_ldiesel(t-3) 

  AR4_6_3 -1.90481 1.27282 -1.5 0.1355 D_lngas(t-3) 

  AR4_6_4 -0.51631 0.6851 -0.75 0.4516 D_lelect(t-3) 

  AR4_6_5 0.04962 0.18537 0.27 0.7891 D_lnatural(t-
3) 

  AR4_6_6 -0.07968 0.05483 -1.45 0.1472 D_lcorn(t-3) 

  AR5_6_1 0.08431 0.11313 0.75 0.4567 D_lcrude(t-4) 

  AR5_6_2 0.89247 1.25472 0.71 0.4774 D_ldiesel(t-4) 
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  AR5_6_3 -1.44334 1.29987 -1.11 0.2677 D_lngas(t-4) 

  AR5_6_4 -1.04856 0.66893 -1.57 0.118 D_lelect(t-4) 

  AR5_6_5 0.10279 0.18464 0.56 0.5781 D_lnatural(t-
4) 

  AR5_6_6 0.07928 0.05537 1.43 0.1532 D_lcorn(t-4) 

  AR6_6_1 -0.02233 0.11248 -0.2 0.8427 D_lcrude(t-5) 

  AR6_6_2 0.60196 1.26014 0.48 0.6332 D_ldiesel(t-5) 

  AR6_6_3 -0.11495 1.30241 -0.09 0.9297 D_lngas(t-5) 

  AR6_6_4 -0.70966 0.66288 -1.07 0.2852 D_lelect(t-5) 

  AR6_6_5 -0.04079 0.18389 -0.22 0.8246 D_lnatural(t-
5) 

  AR6_6_6 -0.0191 0.05531 -0.35 0.7301 D_lcorn(t-5) 

  AR7_6_1 -0.22101 0.11263 -1.96 0.0506 D_lcrude(t-6) 

  AR7_6_2 0.98454 1.22676 0.8 0.4228 D_ldiesel(t-6) 

  AR7_6_3 -0.95446 1.27192 -0.75 0.4536 D_lngas(t-6) 

  AR7_6_4 0.46347 0.669 0.69 0.489 D_lelect(t-6) 

  AR7_6_5 0.39617 0.18702 2.12 0.0349 D_lnatural(t-
6) 

  AR7_6_6 0.06431 0.05677 1.13 0.2582 D_lcorn(t-6) 

  AR8_6_1 0.17705 0.11063 1.6 0.1105 D_lcrude(t-7) 

  AR8_6_2 0.63585 1.14454 0.56 0.5789 D_ldiesel(t-7) 

  AR8_6_3 -1.00042 1.19399 -0.84 0.4027 D_lngas(t-7) 

  AR8_6_4 0.0325 0.70511 0.05 0.9633 D_lelect(t-7) 

  AR8_6_5 -0.16658 0.18539 -0.9 0.3696 D_lnatural(t-
7) 

  AR8_6_6 0.07919 0.05647 1.4 0.1618 D_lcorn(t-7) 

  AR9_6_1 -0.02845 0.10835 -0.26 0.7931 D_lcrude(t-8) 

  AR9_6_2 1.12354 0.99526 1.13 0.2598 D_ldiesel(t-8) 

  AR9_6_3 -0.81028 1.02937 -0.79 0.4318 D_lngas(t-8) 

  AR9_6_4 1.4159 0.74184 1.91 0.0572 D_lelect(t-8) 

  AR9_6_5 0.06783 0.18855 0.36 0.7193 D_lnatural(t-
8) 

  AR9_6_6 -0.1844 0.05537 -3.33 0.001 D_lcorn(t-8) 

  AR10_6_1 -0.2264 0.10652 -2.13 0.0343 D_lcrude(t-9) 

  AR10_6_2 0.99744 0.72721 1.37 0.1712 D_ldiesel(t-9) 

  AR10_6_3 -1.06712 0.76781 -1.39 0.1656 D_lngas(t-9) 

  AR10_6_4 0.81981 0.72015 1.14 0.2558 D_lelect(t-9) 

  AR10_6_5 0.01739 0.18477 0.09 0.9251 D_lnatural(t-
9) 

  AR10_6_6 0.11061 0.05057 2.19 0.0295 D_lcorn(t-9) 
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Information 
Criteria 

AICC -50.8122 

HQC -49.7288 

AIC -51.1286 

SBC -47.603 

FPEC 6.32E-23 

 

 

 

Infinite Order AR Representation 

Lag Variable lcrude ldiesel lngas lelect lnatural lcorn 

1 Lcrude 1.51936 0.57119 -1.11986 0.22684 0.10191 0.0077 

  Ldiesel 0.17895 0.75484 0.3667 -0.21821 -0.05764 0.01081 

  Lngas 0.16548 0.67381 0.4259 -0.23645 -0.05654 0.01493 

  Lelect 0.00823 0.02248 -0.03624 0.72127 0.04555 0.00231 

  Lnatural 0.01128 -0.37983 0.47029 -0.72832 1.14234 -0.02507 

  Lcorn -0.0918 -1.02523 0.54328 -1.00286 -0.01987 1.43734 

2 Lcrude -0.42188 -0.13407 0.40113 -0.4317 -0.18687 -0.00824 

  Ldiesel -0.13836 -0.18107 -0.28211 0.1204 0.06142 -0.01293 

  Lngas -0.12572 -0.32302 -0.14867 0.17956 0.09949 -0.01933 

  Lelect -0.0229 0.03094 -0.01323 0.16912 -0.00779 -0.00536 

  Lnatural -0.05741 -0.19773 0.10627 0.67852 -0.22496 0.03 

  Lcorn 0.37172 0.48292 -0.11939 2.67679 0.02235 -0.53992 

3 Lcrude -0.19118 -1.17297 1.79702 -0.12205 0.19759 -0.00024 

  Ldiesel 0.08901 -0.07369 0.2095 0.1928 0.00165 0.02815 

  Lngas 0.06707 -0.22476 0.40788 0.12622 -0.02259 0.03611 

  Lelect 0.03427 -0.06934 0.00415 -0.08015 -0.00167 0.0054 

  Lnatural 0.07428 -0.17416 0.25231 0.48145 -0.09064 -0.00818 

  Lcorn -0.30417 0.33895 0.09214 -2.35128 -0.10722 0.00107 

4 Lcrude -0.02503 0.10594 -0.43074 0.54766 0.08979 -0.00441 

  Ldiesel -0.13414 0.09549 0.1489 -0.34375 0.02951 -0.05577 

  Lngas -0.11994 -0.04215 0.25423 -0.3045 0.01104 -0.05261 

  Lelect -0.01321 0.04295 0.01972 0.00791 -0.02034 0.00074 

  Lnatural 0.053 -0.3856 0.38132 -0.55969 -0.06724 -0.00684 

  Lcorn 0.25252 -1.44184 0.46147 -0.53225 0.05317 0.15896 

5 Lcrude 0.23632 0.36635 -0.79872 0.30639 -0.3961 0.09835 

  Ldiesel 0.03107 -0.13022 -0.17168 0.01087 -0.06674 0.06814 

  Lngas 0.03779 -0.18948 -0.0985 0.03066 -0.08495 0.05059 

  Lelect -0.0054 0.00625 -0.02027 -0.01176 0.00883 -0.00238 
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  Lnatural -0.08437 -0.14688 0.16761 -0.5349 0.00323 -0.01886 

  Lcorn -0.10664 -0.29051 1.3284 0.33891 -0.14358 -0.09838 

6 Lcrude -0.15673 0.58455 -0.12615 -0.54778 -0.10062 -0.11003 

  Ldiesel 0.04243 0.34676 -0.20865 0.09636 -0.09115 -0.03319 

  Lngas 0.0228 0.33673 -0.18982 0.07984 -0.05304 -0.02563 

  Lelect -0.00082 -0.06573 0.07517 -0.17344 -0.03449 0.00098 

  Lnatural -0.01146 0.18075 -0.2898 -0.23683 0.13995 0.02014 

  Lcorn -0.19868 0.38258 -0.83951 1.17313 0.43696 0.08341 

7 Lcrude 0.05612 0.20517 -0.55606 -0.5406 0.74343 0.00576 

  Ldiesel -0.00689 0.07202 -0.03643 -0.50404 0.19564 -0.01837 

  Lngas 0.00759 0.0565 -0.01138 -0.42625 0.18298 -0.01433 

  Lelect 0.00193 0.0526 -0.06466 0.05594 0.00684 -0.00424 

  Lnatural 0.04003 0.22188 -0.17706 0.21858 -0.0819 0.0202 

  Lcorn 0.39806 -0.34869 -0.04596 -0.43097 -0.56276 0.01488 

8 Lcrude -0.00234 0.82345 -0.46252 0.67901 -0.37087 0.05695 

  Ldiesel -0.05178 0.16355 -0.21245 0.44097 -0.0075 0.00581 

  Lngas -0.04928 0.1245 -0.18038 0.41243 0.01212 0.00473 

  Lelect -0.00099 0.03558 -0.01865 0.02517 0.03836 0.00334 

  Lnatural 0.07125 0.10194 -0.16765 0.50387 0.02187 -0.00015 

  Lcorn -0.20549 0.48769 0.19014 1.3834 0.23441 -0.26359 

9 Lcrude 0.03312 -0.47963 0.26479 -0.24479 -0.09551 -0.05577 

  Ldiesel 0.02957 -0.33623 0.37127 -0.13824 -0.08613 0.01074 

  Lngas 0.0127 -0.45521 0.51449 -0.13 -0.11582 0.00241 

  Lelect 0.00834 -0.09706 0.06584 0.06078 0.0508 -0.00362 

  Lnatural -0.11 -0.16234 0.26225 -0.2385 -0.03778 -0.04387 

  Lcorn -0.19796 -0.1261 -0.25685 -0.59609 -0.05044 0.29501 

10 Lcrude -0.10532 0.13465 0.07616 0.18751 0.08183 0.01845 

  Ldiesel -0.01584 -0.14813 0.23603 0.31083 -0.00104 -0.00732 

  Lngas -0.00375 -0.22931 0.29037 0.24715 0.01505 0.00062 

  Lelect -0.01082 0.02968 0.0115 0.21278 -0.07439 0.00228 

  Lnatural 0.0664 -0.00675 -0.0956 0.35093 0.1424 0.02427 

  Lcorn 0.2264 -0.99744 1.06712 -0.81981 -0.01739 -0.11061 

11 Lcrude 0 0 0 0 0 0 

  Ldiesel 0 0 0 0 0 0 

  Lngas 0 0 0 0 0 0 

  Lelect 0 0 0 0 0 0 

  Lnatural 0 0 0 0 0 0 

  Lcorn 0 0 0 0 0 0 

12 Lcrude 0 0 0 0 0 0 

  Ldiesel 0 0 0 0 0 0 

  Lngas 0 0 0 0 0 0 



157 
 

  Lelect 0 0 0 0 0 0 

  Lnatural 0 0 0 0 0 0 

  Lcorn 0 0 0 0 0 0 

Simple Impulse Response 

Lag 

Variable 

lcrude ldiesel lngas lelect lnatural lcorn Response\Impulse 

1 Lcrude 1.51936 0.57119 -1.11986 0.22684 0.10191 0.0077 

  Ldiesel 0.17895 0.75484 0.3667 -0.21821 -0.05764 0.01081 

  Lngas 0.16548 0.67381 0.4259 -0.23645 -0.05654 0.01493 

  Lelect 0.00823 0.02248 -0.03624 0.72127 0.04555 0.00231 

  Lnatural 0.01128 -0.37983 0.47029 -0.72832 1.14234 -0.02507 

  Lcorn -0.0918 -1.02523 0.54328 -1.00286 -0.01987 1.43734 

2 Lcrude 1.80579 0.36886 -1.52397 0.13478 0.12494 0.00194 

  Ldiesel 0.32585 0.74392 -0.06286 -0.21668 -0.06059 0.01857 

  Lngas 0.31281 0.56795 0.08458 -0.17498 -0.02221 0.01793 

  Lelect -0.00615 0.02473 -0.0331 0.6594 0.07864 -0.00176 

  Lnatural -0.02122 -0.58568 0.70466 -0.6794 1.04377 -0.03335 

  Lcorn -0.00173 -1.46593 0.64672 0.60091 -0.05557 1.52053 

3 Lcrude 1.78121 -0.89117 -0.06237 -0.08841 0.21056 -0.00571 

  Ldiesel 0.48893 0.36147 -0.12015 0.02087 -0.01961 0.04076 

  Lngas 0.45227 0.15505 0.11581 -0.02698 0.00579 0.04505 

  Lelect 0.01004 -0.06877 0.01551 0.49268 0.09849 -0.00125 

  Lnatural -0.00645 -0.87627 1.03458 -0.16029 0.83266 -0.03238 

  Lcorn 0.07332 -1.16762 0.6213 0.44242 -0.07314 1.4154 

4 Lcrude 1.58109 -1.10712 0.59903 -0.15038 0.3833 -0.0275 

  Ldiesel 0.47511 0.06985 0.23412 -0.25098 0.07006 0.02121 

  Lngas 0.44066 -0.11038 0.43098 -0.26004 0.06585 0.03137 

  Lelect 0.00605 -0.06711 0.03236 0.42373 0.09215 0.00017 

  Lnatural 0.07638 -1.25043 1.47892 -0.08288 0.56784 -0.02862 

  Lcorn 0.29726 -1.83415 1.02077 -0.80705 -0.16502 1.36112 

5 Lcrude 1.5354 -0.99901 0.37576 0.25069 0.29589 0.0416 

  Ldiesel 0.41054 -0.08853 0.38848 -0.50319 0.07881 0.03283 

  Lngas 0.38643 -0.25172 0.55352 -0.45569 0.05122 0.03017 

  Lelect 0.01229 -0.07609 0.04172 0.3492 0.0804 0.00145 

  Lnatural 0.1204 -1.32556 1.54507 -0.52904 0.32916 -0.04977 

  Lcorn 0.54197 -3.24601 2.27569 -1.9845 -0.40727 1.33601 

6 Lcrude 1.45072 -0.60536 -0.19248 0.66994 -0.0136 0.11612 

  Ldiesel 0.38436 -0.02218 0.22238 -0.46566 -0.07304 0.05926 

  Lngas 0.35255 -0.10259 0.31937 -0.39683 -0.06925 0.05738 

  Lelect 0.00921 -0.17055 0.16399 0.08597 0.02787 0.00059 
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  Lnatural 0.13555 -1.16336 1.209 -1.22191 0.23692 -0.06191 

  Lcorn 0.62682 -3.27115 2.26997 -1.31397 -0.29228 1.37268 

7 Lcrude 1.44195 -0.17267 -0.93185 0.61914 0.21218 0.15144 

  Ldiesel 0.40623 0.17425 -0.03697 -0.4946 -0.08233 0.07501 

  Lngas 0.38257 0.06698 0.11166 -0.45736 -0.08126 0.0744 

  Lelect 0.00872 -0.09535 0.07933 -0.00908 -0.01443 -0.00248 

  Lnatural 0.11018 -0.97572 0.99183 -1.62358 0.15987 -0.05021 

  Lcorn 0.83937 -3.80834 2.56056 -1.00686 -0.27966 1.43907 

8 Lcrude 1.38517 0.53584 -1.56442 0.33477 0.39697 0.15373 

  Ldiesel 0.41469 0.47088 -0.38165 -0.39813 0.03088 0.05861 

  Lngas 0.39329 0.32879 -0.21544 -0.43757 0.04965 0.05957 

  Lelect 0.01385 -0.06544 0.05349 -0.09883 -0.00641 -0.00332 

  Lnatural 0.13623 -0.77534 0.80286 -1.3489 0.12048 -0.01413 

  Lcorn 0.92935 -4.20203 2.92435 0.89289 -0.40529 1.3268 

9 Lcrude 1.38077 0.70591 -1.76602 -0.22196 0.40705 0.14798 

  Ldiesel 0.39781 0.24413 -0.19616 -0.65299 0.05427 0.04577 

  Lngas 0.36168 0.04607 0.03931 -0.60546 0.05108 0.03842 

  Lelect 0.02008 -0.12373 0.1067 -0.11629 0.0497 -0.00537 

  Lnatural 0.0976 -0.72517 0.78097 -1.09911 -0.00582 -0.01341 

  Lcorn 0.94708 -4.08216 2.60724 2.7695 -0.59162 1.2962 

10 Lcrude 1.355 1.30185 -2.23042 -0.16841 0.40103 0.16058 

  Ldiesel 0.3625 0.07043 0.03691 -0.45962 0.00133 0.03996 

  Lngas 0.34088 -0.09567 0.23212 -0.42726 0.00612 0.04194 

  Lelect 0.01225 -0.08041 0.07544 0.06451 0.03594 -0.00597 

  Lnatural 0.09825 -0.49369 0.50991 -0.33133 -0.04762 -0.02578 

  Lcorn 0.89464 -4.90889 3.45849 3.0768 -0.61465 1.28546 

11 Lcrude 1.36328 1.81263 -2.52166 0.1269 0.42597 0.17969 

  Ldiesel 0.36542 0.29085 -0.03543 -0.08412 0.02011 0.04675 

  Lngas 0.33914 0.11702 0.16371 -0.08049 0.02839 0.04562 

  Lelect 0.00692 -0.05645 0.07151 0.24915 0.03096 -0.00551 

  Lnatural 0.13362 -0.43606 0.40535 0.07443 0.16865 -0.04752 

  Lcorn 0.95468 -5.67801 3.92668 2.85887 -0.35944 1.30552 

12 Lcrude 1.32138 1.78392 -2.26964 0.16097 0.4216 0.17296 

  Ldiesel 0.38651 0.47101 -0.13551 0.20409 0.0359 0.05628 

  Lngas 0.36007 0.28513 0.05674 0.21568 0.04111 0.05467 

  Lelect 0.0039 -0.02168 0.05759 0.48631 0.04112 -0.00653 

  Lnatural 0.16043 -0.49149 0.40854 0.29319 0.49516 -0.0683 

  Lcorn 1.06822 -5.97259 3.96293 2.58553 -0.21559 1.3021 
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Forecasts 

Variable Obs Time Forecast 

Standard 
95% Confidence 

Limits Error 

lcrude 385 Jan-13 0.20003 0.03506 0.13131 0.26875 

  386 Feb-13 0.17804 0.06112 0.05824 0.29784 

  387 Mar-13 0.15504 0.08359 -0.0088 0.31888 

  388 Apr-13 0.1751 0.10123 -0.0233 0.3735 

  389 May-13 0.18171 0.11408 -0.04189 0.4053 

  390 Jun-13 0.1988 0.12467 -0.04554 0.44315 

  391 Jul-13 0.20865 0.13315 -0.05232 0.46961 

  392 Aug-13 0.21489 0.14067 -0.06081 0.49059 

  393 Sep-13 0.21405 0.14742 -0.07488 0.50299 

  394 Oct-13 0.21027 0.15385 -0.09127 0.5118 

  395 Nov-13 0.20114 0.16003 -0.11252 0.5148 

  396 Dec-13 0.19119 0.16645 -0.13505 0.51742 

  397 Jan-14 0.18321 0.17252 -0.15492 0.52134 

  398 Feb-14 0.18316 0.17785 -0.16542 0.53175 

  399 Mar-14 0.19072 0.18258 -0.16713 0.54857 

  400 Apr-14 0.20271 0.18711 -0.16402 0.56944 

  401 May-14 0.21407 0.1913 -0.16086 0.589 

  402 Jun-14 0.22247 0.19516 -0.16003 0.60497 

  403 Jul-14 0.22779 0.19882 -0.1619 0.61748 

  404 Aug-14 0.22704 0.20248 -0.16982 0.62389 

  405 Sep-14 0.22068 0.20609 -0.18325 0.62461 

  406 Oct-14 0.2112 0.20954 -0.19948 0.62188 

  407 Nov-14 0.20134 0.21287 -0.21588 0.61856 

  408 Dec-14 0.19332 0.21616 -0.23035 0.617 

  409 Jan-15 0.18855 0.2194 -0.24147 0.61858 

  410 Feb-15 0.18947 0.22255 -0.24673 0.62566 

  411 Mar-15 0.19591 0.22565 -0.24636 0.63818 

  412 Apr-15 0.20498 0.22875 -0.24335 0.65331 

  413 May-15 0.21406 0.23183 -0.24031 0.66843 

  414 Jun-15 0.22077 0.2349 -0.23962 0.68116 

  415 Jul-15 0.2237 0.23798 -0.24273 0.69014 

  416 Aug-15 0.22177 0.24108 -0.25075 0.69428 

  417 Sep-15 0.21577 0.24417 -0.2628 0.69434 

  418 Oct-15 0.20733 0.24723 -0.27722 0.69189 
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  419 Nov-15 0.19842 0.25026 -0.29208 0.68892 

  420 Dec-15 0.19127 0.25327 -0.30513 0.68766 

ldiesel 385 Jan-13 0.35915 0.01182 0.33598 0.38231 

  386 Feb-13 0.37053 0.02105 0.32927 0.41179 

  387 Mar-13 0.36617 0.02732 0.31262 0.41972 

  388 Apr-13 0.3711 0.03332 0.3058 0.4364 

  389 May-13 0.37306 0.03835 0.29789 0.44823 

  390 Jun-13 0.37434 0.04194 0.29214 0.45654 

  391 Jul-13 0.37662 0.04476 0.28889 0.46434 

  392 Aug-13 0.37478 0.0476 0.28148 0.46808 

  393 Sep-13 0.36698 0.05018 0.26863 0.46532 

  394 Oct-13 0.35764 0.05237 0.255 0.46028 

  395 Nov-13 0.35312 0.05419 0.24691 0.45932 

  396 Dec-13 0.35243 0.05623 0.24223 0.46264 

  397 Jan-14 0.35307 0.05857 0.23827 0.46787 

  398 Feb-14 0.35769 0.06083 0.23846 0.47692 

  399 Mar-14 0.36506 0.06286 0.24185 0.48826 

  400 Apr-14 0.37447 0.06476 0.24755 0.50139 

  401 May-14 0.38087 0.06658 0.25038 0.51136 

  402 Jun-14 0.3836 0.06831 0.24972 0.51748 

  403 Jul-14 0.38205 0.06997 0.24491 0.51918 

  404 Aug-14 0.37662 0.07162 0.23624 0.517 

  405 Sep-14 0.36867 0.07323 0.22513 0.51221 

  406 Oct-14 0.36019 0.07475 0.21367 0.5067 

  407 Nov-14 0.35412 0.07619 0.20479 0.50345 

  408 Dec-14 0.35144 0.07762 0.19931 0.50357 

  409 Jan-15 0.35254 0.07903 0.19766 0.50743 

  410 Feb-15 0.35774 0.08038 0.2002 0.51528 

  411 Mar-15 0.3659 0.08169 0.20579 0.52601 

  412 Apr-15 0.37447 0.08299 0.21181 0.53713 

  413 May-15 0.38082 0.08428 0.21564 0.546 

  414 Jun-15 0.38354 0.08555 0.21586 0.55122 

  415 Jul-15 0.38209 0.08684 0.21189 0.5523 

  416 Aug-15 0.37657 0.08814 0.20382 0.54932 

  417 Sep-15 0.36869 0.08942 0.19344 0.54395 

  418 Oct-15 0.36066 0.09065 0.18299 0.53833 

  419 Nov-15 0.35444 0.09185 0.17442 0.53447 

  420 Dec-15 0.35142 0.09303 0.16908 0.53376 

lngas 385 Jan-13 0.39365 0.01149 0.37114 0.41616 

  386 Feb-13 0.40523 0.02036 0.36532 0.44514 

  387 Mar-13 0.40318 0.02627 0.35168 0.45467 
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  388 Apr-13 0.40778 0.03186 0.34534 0.47023 

  389 May-13 0.41003 0.03659 0.33831 0.48175 

  390 Jun-13 0.41054 0.03998 0.33218 0.4889 

  391 Jul-13 0.41248 0.04256 0.32906 0.4959 

  392 Aug-13 0.41047 0.04535 0.32159 0.49935 

  393 Sep-13 0.40306 0.04785 0.30928 0.49685 

  394 Oct-13 0.39336 0.04981 0.29573 0.49099 

  395 Nov-13 0.38973 0.05158 0.28864 0.49082 

  396 Dec-13 0.38882 0.05351 0.28394 0.4937 

  397 Jan-14 0.38932 0.05571 0.28014 0.49851 

  398 Feb-14 0.39439 0.05781 0.28109 0.50768 

  399 Mar-14 0.40195 0.05969 0.28496 0.51895 

  400 Apr-14 0.41042 0.06148 0.28993 0.53091 

  401 May-14 0.41648 0.06319 0.29263 0.54034 

  402 Jun-14 0.41905 0.06481 0.29202 0.54608 

  403 Jul-14 0.41721 0.06638 0.28711 0.54731 

  404 Aug-14 0.41202 0.06795 0.27885 0.5452 

  405 Sep-14 0.4043 0.06947 0.26815 0.54045 

  406 Oct-14 0.3964 0.07089 0.25746 0.53534 

  407 Nov-14 0.39058 0.07224 0.24899 0.53217 

  408 Dec-14 0.3883 0.07359 0.24407 0.53253 

  409 Jan-15 0.38947 0.07491 0.24264 0.5363 

  410 Feb-15 0.39452 0.07619 0.24519 0.54385 

  411 Mar-15 0.40237 0.07743 0.25062 0.55413 

  412 Apr-15 0.41044 0.07865 0.25628 0.5646 

  413 May-15 0.41633 0.07987 0.2598 0.57286 

  414 Jun-15 0.41871 0.08107 0.25981 0.57761 

  415 Jul-15 0.41716 0.08229 0.25587 0.57845 

  416 Aug-15 0.4118 0.08352 0.24811 0.5755 

  417 Sep-15 0.40432 0.08472 0.23827 0.57038 

  418 Oct-15 0.39681 0.08588 0.22848 0.56514 

  419 Nov-15 0.39102 0.08702 0.22047 0.56157 

  420 Dec-15 0.38832 0.08813 0.21558 0.56106 

lelect 385 Jan-13 0.41825 0.00368 0.41103 0.42546 

  386 Feb-13 0.42098 0.00462 0.41193 0.43003 

  387 Mar-13 0.42561 0.00542 0.41499 0.43623 

  388 Apr-13 0.43232 0.00597 0.42063 0.44402 

  389 May-13 0.43819 0.00636 0.42573 0.45066 

  390 Jun-13 0.4442 0.00663 0.43122 0.45719 

  391 Jul-13 0.44325 0.00668 0.43015 0.45634 

  392 Aug-13 0.44166 0.0067 0.42852 0.45479 



162 
 

  393 Sep-13 0.43664 0.00673 0.42345 0.44983 

  394 Oct-13 0.43043 0.00682 0.41706 0.4438 

  395 Nov-13 0.42401 0.00687 0.41053 0.43748 

  396 Dec-13 0.42017 0.00698 0.40649 0.43384 

  397 Jan-14 0.41981 0.00727 0.40556 0.43406 

  398 Feb-14 0.42206 0.00771 0.40694 0.43718 

  399 Mar-14 0.42751 0.00821 0.41143 0.44359 

  400 Apr-14 0.43437 0.00864 0.41744 0.45131 

  401 May-14 0.44057 0.00894 0.42305 0.4581 

  402 Jun-14 0.44458 0.0091 0.42674 0.46243 

  403 Jul-14 0.4449 0.00917 0.42693 0.46288 

  404 Aug-14 0.44236 0.00923 0.42427 0.46044 

  405 Sep-14 0.43716 0.0093 0.41893 0.45539 

  406 Oct-14 0.43071 0.00939 0.41231 0.44912 

  407 Nov-14 0.42501 0.00947 0.40644 0.44358 

  408 Dec-14 0.42131 0.00961 0.40248 0.44015 

  409 Jan-15 0.4208 0.00986 0.40147 0.44013 

  410 Feb-15 0.42351 0.01022 0.40348 0.44355 

  411 Mar-15 0.42901 0.01062 0.4082 0.44982 

  412 Apr-15 0.43571 0.01098 0.41419 0.45722 

  413 May-15 0.44164 0.01124 0.41961 0.46367 

  414 Jun-15 0.44528 0.0114 0.42293 0.46764 

  415 Jul-15 0.44577 0.01151 0.42322 0.46833 

  416 Aug-15 0.44306 0.0116 0.42032 0.4658 

  417 Sep-15 0.43791 0.01171 0.41496 0.46086 

  418 Oct-15 0.43169 0.01182 0.40851 0.45487 

  419 Nov-15 0.42611 0.01195 0.40268 0.44954 

  420 Dec-15 0.42262 0.01213 0.39885 0.4464 

lnatural 385 Jan-13 -0.02667 0.01448 -0.05504 0.0017 

  386 Feb-13 -0.02546 0.02213 -0.06884 0.01792 

  387 Mar-13 -0.00385 0.02703 -0.05683 0.04912 

  388 Apr-13 0.03326 0.02993 -0.0254 0.09192 

  389 May-13 0.07277 0.03178 0.01049 0.13505 

  390 Jun-13 0.1073 0.03319 0.04225 0.17235 

  391 Jul-13 0.1296 0.0344 0.06218 0.19702 

  392 Aug-13 0.13092 0.03542 0.0615 0.20035 

  393 Sep-13 0.11348 0.03625 0.04244 0.18452 

  394 Oct-13 0.07752 0.03677 0.00545 0.14959 

  395 Nov-13 0.03899 0.03704 -0.0336 0.11159 

  396 Dec-13 0.01008 0.03751 -0.06343 0.08359 

  397 Jan-14 -0.00716 0.03879 -0.08318 0.06886 
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  398 Feb-14 -0.00509 0.04077 -0.085 0.07482 

  399 Mar-14 0.01278 0.04279 -0.0711 0.09665 

  400 Apr-14 0.04266 0.04455 -0.04466 0.12998 

  401 May-14 0.07378 0.0459 -0.01619 0.16374 

  402 Jun-14 0.10038 0.04693 0.00841 0.19235 

  403 Jul-14 0.11457 0.04784 0.0208 0.20834 

  404 Aug-14 0.11309 0.0488 0.01745 0.20873 

  405 Sep-14 0.09494 0.0496 -0.00228 0.19215 

  406 Oct-14 0.06625 0.05018 -0.0321 0.16459 

  407 Nov-14 0.03571 0.05058 -0.06342 0.13483 

  408 Dec-14 0.01185 0.05104 -0.08819 0.11189 

  409 Jan-15 0.00098 0.05179 -0.10054 0.10249 

  410 Feb-15 0.00593 0.05286 -0.09768 0.10954 

  411 Mar-15 0.02461 0.05406 -0.08135 0.13056 

  412 Apr-15 0.0516 0.05514 -0.05649 0.15968 

  413 May-15 0.07932 0.05596 -0.03036 0.189 

  414 Jun-15 0.1008 0.05657 -0.01007 0.21168 

  415 Jul-15 0.11043 0.05715 -0.00158 0.22244 

  416 Aug-15 0.10514 0.05778 -0.00812 0.21839 

  417 Sep-15 0.08629 0.0584 -0.02816 0.20074 

  418 Oct-15 0.05923 0.05889 -0.05619 0.17465 

  419 Nov-15 0.03167 0.05928 -0.08451 0.14785 

  420 Dec-15 0.0112 0.05967 -0.10576 0.12815 

lcorn 385 Jan-13 -0.17832 0.05228 -0.2808 -
0.07585 

  386 Feb-13 -0.15553 0.0917 -0.33526 0.02421 

  387 Mar-13 -0.15157 0.12133 -0.38938 0.08624 

  388 Apr-13 -0.14929 0.14204 -0.42769 0.1291 

  389 May-13 -0.15293 0.15922 -0.465 0.15915 

  390 Jun-13 -0.18529 0.1753 -0.52887 0.1583 

  391 Jul-13 -0.2127 0.19073 -0.58653 0.16113 

  392 Aug-13 -0.23809 0.20691 -0.64363 0.16745 

  393 Sep-13 -0.26204 0.22035 -0.69391 0.16983 

  394 Oct-13 -0.27049 0.23276 -0.72668 0.18571 

  395 Nov-13 -0.25623 0.2444 -0.73523 0.22278 

  396 Dec-13 -0.22797 0.25585 -0.72943 0.27349 

  397 Jan-14 -0.20549 0.26706 -0.72891 0.31793 

  398 Feb-14 -0.17988 0.27818 -0.7251 0.36535 

  399 Mar-14 -0.16883 0.28915 -0.73555 0.39789 

  400 Apr-14 -0.17315 0.29973 -0.76061 0.41431 

  401 May-14 -0.18815 0.31003 -0.7958 0.4195 

  402 Jun-14 -0.21007 0.31988 -0.83702 0.41688 
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  403 Jul-14 -0.23595 0.32934 -0.88143 0.40954 

  404 Aug-14 -0.25907 0.33851 -0.92253 0.40439 

  405 Sep-14 -0.27054 0.34741 -0.95146 0.41038 

  406 Oct-14 -0.26907 0.35608 -0.96698 0.42884 

  407 Nov-14 -0.25469 0.36461 -0.96932 0.45994 

  408 Dec-14 -0.23 0.37294 -0.96096 0.50095 

  409 Jan-15 -0.20236 0.38105 -0.94921 0.54448 

  410 Feb-15 -0.17846 0.38911 -0.9411 0.58418 

  411 Mar-15 -0.16551 0.39714 -0.94389 0.61287 

  412 Apr-15 -0.16629 0.40507 -0.96022 0.62763 

  413 May-15 -0.17933 0.41275 -0.9883 0.62964 

  414 Jun-15 -0.20088 0.42015 -1.02436 0.6226 

  415 Jul-15 -0.22544 0.42731 -1.06296 0.61208 

  416 Aug-15 -0.24708 0.43431 -1.09831 0.60415 

  417 Sep-15 -0.25976 0.44118 -1.12446 0.60494 

  418 Oct-15 -0.25955 0.44791 -1.13743 0.61834 

  419 Nov-15 -0.24627 0.45449 -1.13705 0.64451 

  420 Dec-15 -0.22321 0.46096 -1.12667 0.68024 

 

E1: SAS Code for Time Series Analysis 
 

*Please note that all bolded texts are notes describing parts of the code 

We initially define and import the dataset into SAS from an excel sheet.; 

 

data final; 

set work.series; 

 

*We then transform all the variables to logs and view the dataset that has been transformed to logs.; 

 

lcrude=log(Crude);                                                                                                                        

ldiesel=log(Diesel);                                                                                                                         

lngas=log(Gasoline);                                                                                                                             

lelect=log(Electricity); 

lnatural=log(Natural); 

lcorn=log(Corn); 

 

proc print data= final;                                                                                                                                          

run;   

 

*Univariate analysis: This is how we carry out the univariate ARIMA analysis. We use the Augmented Dickey 

Fuller test to test for stationarity and from the respective plots, using the eyeball method and AIC criteria, we 

identify the suitable ARIMA model; 

                                                                                                                                       

    ods graphics on;                                                                                                                                           

   proc arima data=final plots;  

 identify var=lcrude; 

 identify var =ldiesel; 

 identify var = lngas; 

 identify var = lelect; 

 identify var = lnatural; 
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 identify var = lcorn; 

run; 

proc arima data= final plots; 

 *IDENTIFY VAR=lcrude(1) stationarity=(adf=(1)); 

    *estimate p=3 q=1; 

 *identify var=ldiesel(1) stationarity=(adf=(1)); 

 *estimate p=2 q=1; 

 *identify var=lngas (1) stationarity=(adf=(1)); 

 *estimate p=2; 

 *identify var=lelect(1,12)stationarity=(adf=(1,12)); 

 *estimate q=(1) (12); 

 *identify var=lnatural (1,12)stationarity=(adf=(1,12)); 

 *estimate q=(1) (12); 

 *identify var=lcorn (1) stationarity=(adf=(1)); 

 *estimate p=2 q=1; 

run; 

 

 

 

 

 

 

*Here we estimate relevant descriptive statistics;                                                                                                                    

                                                                                                                                           

proc corr pearson spearman kendall;                                                                                                          

     var lcrude ldiesel lngas lelect;                                                                                                        

   run;                                                                                                                                      

  

 

*In this section, we carry out vector autoregressing estimation. We initially test for the presence of cointegration 

in the code below.; 

 

 

*****VAR************* 

 

*Cointegration Test: and test for the p (order); 

 

 proc varmax data=final; 

      model lcrude ldiesel lngas lelect lnatural lcorn / p=10 print=(parcoef pcorr pcancorr) lagmax=15 noint dftest 

cointtest=(johansen); 

   run; 

 

  *Identification of lag-length;                                                                                                             

 ods graphics on;                                                                                                                            

 proc varmax data=crude   plots =(forecast model);                                                                                           

        id years interval=obs;                                                                                                               

        model  ldiesel lcrude lngas lelect / p=1 print =(parcoef pcorr pcancorr) lagmax=6 noint cointtest=(johansen);                        

        run;    

 

*Fitting the Error Correction Model; 

                                                                                                                             

ods graphics on; 

proc varmax data=final plot(unpack)=(residual model forecasts impulse); 

 id Date interval=month; 

    model lcrude ldiesel lngas lelect lnatural lcorn / p=10 noint lagmax=12 

        ecm=(rank=2 normalize=ldiesel) 

           

 print=(iarr estimates); 

output lead=36; 

run; 
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 /*Used to Compute Variance Decomposition*/                                                                                                            

                                                                                                                                             

proc varmax data=crude plots=(model residual)plots = impulse(simple) plots = forecasts;                                                      

     id years interval=obs;                                                                                                                  

                                                                                                                                             

   *model lelect lngas ldiesel =lcrude / p=1 noint lagmax=3;                                                                                 

   *model lcrude lelect = ldiesel lngas/ p=1 noint lagmax=3;                                                                                 

    model lelect ldiesel lngas = lcrude/ p=1 noint lagmax=3                                                                                  

                                                                                                                                             

                 ecm=(rank=3 normalize=lelect)                                                                                               

                print=(iarr estimates impulse (6)) ;                                                                                         

                                                                                                                                             

   output out=forecasts lead=10;                                                                                                             

run;                                                                                                                                         
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