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This research investigates whether a High Dynamic Range Imaging (HDRI) 

technique can accurately capture luminance values of a single LED chip. Previous 

studies show that a digital camera with exposure capability can be used as a 

luminance mapping tool in a wide range of luminance values with an accuracy of 

10%. Previous work has also demonstrated the ability of HDRI to capture a rapidly-

changing lighting environment with the sun. However, these publications don‟t 

investigate HDRI‟s ability to capture a bright light source with a narrow light 

distribution (LED lighting). 

Some of the existing concerns in LED technology today include low quality 

products on the market, inaccurate performance claims, and insufficient information 

on Solid-State Lighting (SSL) products. Division 2 in the International Commission 

on Illumination (CIE) (Physical Measurement of Light and Radiation) prepares the 

technical report (TC2-58) on measuring LED radiance and luminance; however, 

progress has not yet been published. Manufacturers do not provide luminance data on 

their products even though luminance is the most important quantity in lighting design 

and illuminating engineering. It is one of the direct stimuli to vision, and many 

measures of performance and perception. 



 

 

 

 

In this research two conventional luminance measurement methods of a single 

LED chip are implemented. One method involves the use of a luminance meter with a 

close-up lens, and the other method allows obtaining luminance through calculations 

from the illuminance measurements. Luminous intensity data can be determined using 

direct illuminance measurements taken in a created photometer. These data along with 

dimensions of an LED can then be used to calculate average luminance.  

Varying apertures and shutter speeds in a digital camera allows obtaining a 

sequence of images with different exposures. These images are combined together 

using software to create an HDRI that gives pixel by pixel luminance values. The 

HDRI of a single LED chip is obtained using a neutral density filter. The results of 

this research indicate that the HDRI technique can capture luminance values of a 

single LED chip.  
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Chapter 1: Motivation 
1.1 Introduction 

 

Light-Emitting Diode (LED) lighting is already widely used in many 

applications and locations. Colored lighting is used in theatres, stage productions, 

restaurants, casinos, and white lighting - in road and tunnel applications, sports and 

arenas, street and area, landscape and garage lighting. Among existing concerns in 

LED technology today are low quality products on the market, inaccurate 

performance claims, and insufficient information on Solid-State Lighting (SSL) 

products (Ohno 2012). Therefore, ways to characterize and measure LED products 

become very important.  

Standards not only help improve the performance of LEDs but make 

comparisons among the products easier. Some lighting measuring standards for LEDs 

governing safety and performance are available today (Ohno 2012). Among standards 

for LED lighting measurements and performance are G-2-10, LM-79-08, LM-80-08, 

TM-16-05, and TM-21-11 developed by the Illuminating Engineering Society of 

North America (IES), and 127-2007 and 177-2007 developed by the International 

Commission on Illumination (CIE). None of the standards mentioned above dictates 

the procedure for obtaining luminance values of LEDs. Division 2 in CIE (Physical 

Measurement of Light and Radiation) prepares the technical report (TC2-58) on 

measuring LED radiance and luminance (according to CIE website as of February 

2012), however progress has not yet been published. Manufacturers do not provide 

luminance data on their products, since no standard developed for LED luminance 

measurements exist.  

Luminance is the most important quantity in lighting design and illuminating 

engineering. “Luminance is a measure of the light emitting power of a surface, in a 

particular direction, per unit apparent area” (DiLaura 2011 et al., p. 5.14). It is one of 
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the direct stimuli to vision, and many measures of performance and perception 

(luminance of the source and background in glare analysis, luminance contrast for 

characterizing the task, etc.). LED is a very bright light source that introduces the 

problem of glare. The assessment of glare implies knowing the luminance value 

(DiLaura et al. 2011). Luminance of LED products must be measured in a lighting 

environment, and for the goal of obtaining luminance different approaches have to be 

considered. 

There are three traditional ways to measure luminance. In one method, 

luminance is measured with a conventional luminance meter. In the second one, it is 

derived through the illuminance measurement and subsequent calculations. And in the 

third method, luminance is obtained through digital imaging photometer 

measurement.  

High Dynamic Range Imaging (HDRI) technique introduces a new approach 

of capturing luminance values in a lighting environment. It can store the information 

of a scene with the range of many orders of magnitude, and values can be 

photometrically correct. Instead of the exhausting procedure of point by point 

measurements of light levels with a luminance meter like Minolta LS110, HDRI 

introduces the unique tool of getting thorough high resolution information about the 

existing lighting conditions in a fast and efficient way.   

The goal of this research is to investigate whether a bright light source with a 

narrow light distribution (LED) can be accurately captured by the HDRI. The results 

of this research will contribute to the current state of knowledge on how HDRI 

technique can be applied for lighting measurements and analysis (e.g. glare 

assessment). Although there are some inaccuracies in the LEDs specification, LED 
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lighting is quickly spreading on the market. The application of the HDRI technique to 

LED lighting will help measure, characterize, and specify LED products. 

1.2 Outline of Thesis 

This thesis investigates whether the HDRI technique can accurately capture 

luminance of a single LED chip. Chapter 2 provides background information on 

current research, covers the theory of the HDRI technique as well as practical 

guidelines for the successful acquisition of an HDR image. The chapter discusses 

previous research on the implementation of the HDRI technique to lighting 

measurements for both scenes with natural lighting and/or the sun and without.  

Chapter 3 describes the methodology of experiments conducted as well as 

experimental results. Luminance measurements are conducted using two traditional 

methods. One method involves the use of a luminance meter and a close-up lens. In 

the second method, average luminance is calculated from direct illuminance 

measurements in a created photometer. A detailed description of how the HDRI 

technique is implemented to capture a single LED chip is then given. The information 

on deriving the response curves for the camera/lens combination, optical vignetting 

effect assessments and fusing an HDR image in raw2hdr Perl script from a sequence 

of RAW images is provided. Finally, Chapter 4 discusses the results of these 

experiments and proposes areas for future work. 
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Chapter 2: Literature review 

This chapter discusses current challenges in LED products‟ measurements. It 

covers the theory of the HDRI technique implemented for lighting measurements in 

detail and provides practical guidelines for the successful acquisition of an HDR 

image. This chapter addresses previous research on the following topics: (1) HDRI 

with the application to lighting measurements without a bright light source in the 

scene, and (2) capturing lighting environment of natural scenes and/or the sun with 

the HDRI technique.  

2.1 Current challenges 

LED lighting is already widely used in many applications and locations. 

Colored lighting is used in theatres, stage productions, restaurants, casinos, and white 

lighting - in road and tunnel applications, sports and arena, street and area, landscape 

and garage lighting (Weinert 2010). Among existing concerns in LED technology 

today are low quality products in the market, inaccurate performance claims, and 

insufficient information on SSL products. Therefore, ways to characterize and 

measure LED products become very important. Standards help improve the 

performance of LEDs as well as compare products. 

Further development of LEDs standards and testing procedures will allow the 

improvement in implementation of the technology.  

Some lighting measuring standards governing safety and performance for 

LEDs are available today (Ohno 2012). Among standards for LEDs‟ lighting 

measurements and performance are the following:  

Developed by the Illuminating Engineering Society of North America: 

 G-2-10 Guideline for the Application of General Illumination 

(“White”) LED Technologies (IES 2010); 
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 LM-79-08 Approved Method: Electrical and Photometric Testing of 

Solid-State Lighting Devices (IES 2008); 

 LM-80-08 Approved Method: Measuring Lumen Depreciation of LED 

Light Sources (IES 2008); 

 TM-16-05 Technical Memorandum Light Emitting Diode (LED) 

Sources and Systems (IES 2005); 

 TM-21-11 Projecting Long Term Lumen Maintenance of LED Light 

Sources (IES 2011). 

Developed by the International Commission on Illumination: 

 127-2007 Measurement of LEDs (spectrum, luminous flux and 

luminous intensity curve for individual low-power LED packages 

(chips)) (CIE 2007);  

 177-2007 Color Rendering of White LED Light Sources (CIE 2007). 

LED lighting requires completely different metrics for its assessment 

compared to the conventional light sources.  Lumen output is a standard specification 

for a light fixture. Only total fixture lumens can serve as basis for valid comparisons 

between LED and conventional fixtures. For measuring conventional light sources 

and luminaires relative photometry is used, where the lumen output of a fixture‟s 

lamp is a reference, and the lumen output of the luminaire is measured relative to it. 

LEDs are typically inseparable from the luminaires, so absolute photometry has to be 

used. Only fixture lumens are measured. Therefore, fixture efficiency, which 

compares lamp lumens to fixture lumens, has no meaning for a LED luminaire (or in 

other words the efficiency is 100%). 

Luminous flux is not the best measurement of a LED luminaire, which can 

underestimate fixture‟s performance. Delivered light is the most relevant evaluation 
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of the LED luminaire‟s performance. It describes how much useful light a luminaire 

can deliver to a task area. Useful light is the amount of fixture‟s light output that is 

effectively directed to a task area, discounting any wasted light (Weinert 2010). 

A single LED has special features.  It is a very bright light source and it is 

extremely small. Glare is an issue when LED lighting is implemented. The assessment 

of glare implies knowing the luminance. “Luminance is a measure of the light 

emitting power of a surface, in a particular direction, per unit apparent area” (DiLaura 

2011 et al., p. 5.14)). It is the most important quantity in lighting design and 

illuminating engineering. Luminance is one of the direct stimuli to vision, and many 

measures of performance and perception (luminance of the source and background in 

glare analysis, luminance contrast for characterizing the task, etc.) (DiLaura et al. 

2011). 

As an example, LM-79-08 (IES) describes the procedures for performing 

standardized measurements of power, light output, and color characteristics of the 

LED technology (methods use sphere-spectroradiometer, sphere-photometer and 

goniophotometer). But none of the standards mentioned above provides procedure for 

obtaining luminances of LEDs. Division 2 in CIE (Physical Measurement of Light 

and Radiation) prepares the technical report (TC2-58) on measuring LED radiance 

and luminance (according to CIE website as of February 2012), but progress has not 

yet been published. Manufacturers do not provide luminance data on their products, 

since no standard developed for LED luminance measurements exists.  

In a lighting environment luminance of an LED product must be measured. It 

is hard to find measured luminance of an LED. However, one conference paper 

reports 9.83*10
6
 cd/m

2
 for high power white LED (Kohtaro et al. 2009). A good 

reference to compare this value to would be the luminance of the Sun. Prior to 
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atmospheric attenuation the solar disk has a luminance of 1.6*10
9
 cd/m

2
. The sun is 

roughly one-half of degree in diameter. If viewed directly sun can cause permanent 

physical damage to the eye due to sun‟s output in non-visible portion of the spectrum 

and extreme luminance (DiLaura et al. 2011).  

For the purpose of acquiring luminance of an LED different approaches have 

to be considered. There are four ways to find out the luminance of a point in a certain 

direction: 

1. To measure it with a conventional luminance meter; 

2. To derive through the illuminance measurement and subsequent 

calculations; 

3. Digital imaging photometer measurement;  

4. And the non-traditional approach – High Dynamic Range Imaging 

technique. 

Point by point measurements of light levels with a luminance meter like 

Minolta LS110 is a coarse and exhausting procedure. Performing lighting audits of 

premises requires a lot of effort and time. Moreover, these data are hard to analyze.  

The calculation of luminance through illuminance measurements and 

reflective properties of the material can‟t always be done accurately. Simple formula 

stands true only for diffuse surfaces. And even more one needs to know the materials‟ 

coefficients of reflection.  Direct illuminance measurements of a light source and 

subsequent calculations require a lot of time and effort as well. 

The other way to measure luminance is obtain it with digital imaging 

photometers. They are extremely expensive, cumbersome and require some 

experience to work with (according to Radiant Imaging website as of October 2011).  
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HDRI technique introduces the non-traditional approach of obtaining 

luminances in a lighting environment. It can store the information of a scene with the 

range of many orders of magnitude, and values can be photometrically correct.  

Scene dynamic range is defined as (Xiao et al. 2002): 

 DRscene= 
    

    
        (2.1),   where 

Ymax – maximum scene luminance, 

Ymin – minimum scene luminance. 

For natural scenes it is typical to have the range of 10000 for luminance 

distribution. As an example, window with the view of sky can have the order of 

10000 cd/m
2
, while the floor under the table might be as low as 1 cd/m

2 
(Xiao et al. 

2002).  

Term “dynamic range” for the image is the ratio between the lightest and 

darkest pixel which are considered to be outliers. The most robust definition will 

exclude certain percentage of the lightest and darkest pixels (Reinhard et al. 2010). It 

is important to understand that dynamic range of the image is affected by three main 

components in the imaging pipeline: the optics, the sensor and the color 

transformations (Xiao et al. 2002). 

HDR image can be created by taking multiple photographs of the same scene 

at different exposure levels and merging them to generate the original dynamic range 

of the captured scene (Reinhard et al. 2010, Banterle et al. 2009). The new HDRI tool 

for capturing lighting scene at a high resolution within a large field of view in a quick 

and inexpensive manner can provide researcher with lots of opportunities and 

flexibility. It allows getting thorough information about existing lighting conditions.  

HDRI can be applied in lots of scientific applications such as luminance display 

(falsecolor and isocontour), luminaire performance testing, glare analysis, luminance 
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derivation, imaged-based lighting rendering, human vision simulation and some 

others (Guglielmetti et al. 2011).  

The human visual system (HVS) can adapt to luminances in a very wide range 

(10
-6

-10
6
 cd/m

2
), while a single photograph can capture only a limited range. At any 

given eye adaptation humans can see details in regions that vary 1:10
4
. In order to 

interpret visual environment eye and brain work together, both are parts of visual 

image processing system. Optical system of the eye forms the image of the observed 

scene onto the retina. Photoreceptors absorb the light, and convert it to electrical 

signals. Optical nerve transmits electrical signals to the area of the brain called visual 

cortex that processes these signals. And then the perceived image is produced. The 

HVS is responsible for our vision. 

There are two types of photoreceptors in retina: cones and rods. They are 

responsible for photopic and scotopic vision respectively. The fovea, the central area 

in the receptive field, contains cones responsible for the daylight vision (sensitive to 

10
-2

-10
8 

cd/m
2
) numbering around 6 million. Three types of cones are responsible for 

our color vision. In photopic vision fine details are resolved in the fovea and color is 

perceived. The rods numbering around 90 million are responsible for the nighttime 

vision. They are sensitive to luminances in the range of 10
-6

-10
-2

 cd/m
2
. Fovea doesn‟t 

have any rods. In the scotopic vision there‟s no perception of color. Resolution of the 

detail occurs in the periphery. Mesopic range is the range when both types of 

photoreceptors are activated (10
-2

-10 cd/m
2
). It‟s intermediate between the photopic 

and scotopic states (Reinhard et al. 2010). 

Our eyes have the ability to dynamically adjust to a given scene, while camera 

captures a single still image (according to Cambridge in Color website as of 

September 2011).  In addition, computer display technology doesn‟t deliver images in 
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the range of luminances that HVS is capable to capture. Display range has about two 

orders of magnitude between minimum and maximum luminance. Maximum display 

luminance for the well-designed cathode ray tube (CRT) is around 100 cd/m
2
, and for 

LCD display it‟s about 300-400 cd/m
2
. These levels do not even start to approach 

daylight levels. Traditional computer image files do not store information in 

photometric units cd/m
2 

(Reinhard et al. 2010). Traditional imaging methods 

(consumer-grade cameras) are usually constrained by limitations in technology – 8 

bits per color channel or pixel. It is called low dynamic range (LDR). Therefore, 

much of the luminance information available in a scene is lost (Moeck et al. 2006). 

HDRI has revolutionized the field of computer graphics, photography, visual 

reality, visual effects, and video game industry. Now real-world lighting can be 

captured, stored, transmitted and used in various applications. Both very dark and 

very bright areas can be stored at the same time. Information in HDRI allows 

applying advanced tone mapping or calibrated false color luminance images. To 

display an HDRI image on conventional screen tone mapping is used. It is the 

operation that changes the dynamic range of the HDR content to fit the lower dynamic 

range available on the given display (Reinhard et al. 2010, Jacobs 2007).  

The initial purpose of the HDRI technique was not intended towards 

measuring luminance. Therefore, it has to be evaluated for this type of application.  

HDRI technique is already widely used in lighting research. There are studies 

on assessing HDRI‟s accuracy for various lighting applications (Inanici 2006; Moeck 

et al. 2006; Moeck 2007; Inanici 2010; Konis et al. 2011; Cai et al. 2011). The HDRI 

tool still has to be evaluated for accuracy and reliability in the lighting field to gain 

more statistical data and to expand HDRI‟s abilities.  
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This research investigates the ability of the HDRI technique to accurately 

capture luminance values of a bright light source (a single LED chip) with a narrow 

light distribution.   

2.2 Theory of High Dynamic Range Imaging with the application in Lighting 

2.2.1 Outline of making an HDRI 

The following sections cover the process of making an HDRI and provide 

practical guidelines for the HDRI acquisition.  

2.2.1.1 Process of making an HDRI 

In order to obtain High Dynamic Range Image a sequence of photographs of a 

scene with various exposure times should be taken with specific settings (see section 

2.2.1.2). Exposure is a key concept. It is determined by one of the three settings in a 

digital camera: aperture size (determines the ray cone angle; how much light can enter 

a camera); shutter speed (controls the exposure duration); and ISO-speed (controls the 

sensitivity) (according to Cambridge in Color website as of September 2011). Control 

of one of the three settings allows changing the exposure.  

Response curve (RC) of a camera is a non-linear relationship between image‟s 

irradiance and scene‟s radiance (Mitsunaga et al. 1999).Usually manufacturers do not 

provide camera‟s response function. Camera makers apply various algorithms to 

modify RC to enhance the contrast, saturation, and other parameters of the 

photographs. In order to provide softer highlights and reduce noise visibility in the 

shadows ends of the curves are modified as well. But as long as the input is not 

altered by the camera from one exposure to the other, it is possible to recover 

camera‟s response function from an appropriate sequence of images. So, the first step 

in making an HDRI is to obtain camera response function, which is done only once 

for a specific camera and lens combination (see section 2.2.2), then it can be re-used.   
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While taking photographs with various exposures, each image in a sequence 

will contain pixels that are underexposed, properly exposed, and overexposed. But the 

most important point is that every pixel will be properly exposed in one or more 

images in a sequence. If we assume that our device is linear then in order to bring 

every exposure into one domain, each pixel has to be divided by the image‟s exposure 

time. As soon as each image is in the same units of measurements, corresponding 

pixels may be averaged across exposures. Under- and overexposed pixels should be 

excluded (Reinhard et al. 2010). There are some examples of response curves from 

different manufacturers on figures 2-1 and 2-2. They illustrate that a high-order 

polynomial may be used to model the response function. 

 

Figure 2-1. Response functions of a few popular films and video  

cameras provided by their manufacturers (Mitsunaga et al. 1999) 

 

Figure 2-2. Response functions of a few popular cameras (according 

webHDR website as of September 2011) 
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In order for HDR software to merge LDR images, it has to know exposure 

values (Jacobs 2007):  

    (2.2),  where 

f – aperture, 

T – shutter speed, 

S – ISO setting. 

Standard JPEG file has all this information in exchangeable image file format 

EXIF header of the image (according to EXIF website as of October 2011). All 

parameters of the image and all the settings are stored in this standard. 

One should be aware of some errors that are introduced in the exposure value 

of an individual LDR image. The error in aperture number is the first one, which is 

caused by limited repeatability of diaphragm inside the lens. The second one is the 

exposure time. Shutter speed is rounded on the screen (eg. 1/30, 1/60, while it is 1/32, 

1/64). So, these errors add up, and additional calibration would provide more accurate 

luminance readings per pixel of an HDRI (Jacobs 2007).   

After obtaining response curve the next step is to make an absolute 

photometric calibration. This can be done by taking a reading on a grey card or 

uniform area in the scene with the luminance meter. 

In glare evaluation (physiological evaluation of the luminous environment) 

additional spatial or photogrammetrical calibration is required. Besides knowing the 

object‟s luminance it‟s necessary to know the position of a pixel with regards to the 

camera and the solid angle subtended (Jacobs 2007).  

The next step is to fuse low dynamic range images of multiple exposures with 

the obtained response curve to create an HDR image of the analyzed scene with the 

http://exif.org/
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software. Steps of making an HDRI are shown on figure 2-3. Obtained image can be 

used for various purposes like analysis of the lighting environment (falsecolor 

technique giving luminance values within the scene) (Reinhard et al. 2010).  

 

Figure 2-3. HDRI acquisition process (Jacobs 2007) 

2.2.1.2 Practical guidelines of making an HDRI 

In order to make a successful HDRI, it‟s necessary to follow some practical 

guidelines.  

First, it is necessary to obtain camera‟s responsive curve. Usually digital 

number Z is a nonlinear function of the original exposure X at the pixel (Mitsunaga et 

al. 1999). Then along with the photometric calibration with a luminance meter digital 

camera can be used as a luminance mapping tool. 

- While capturing a sequence of images, it‟s necessary to use aperture 

priority mode of a camera (user sets aperture size and ISO-speed, camera sets shutter 

speed) or manual exposure mode (all settings are set by the user). In order to create a 

successful HDRI low dynamic range images have to be identical. Changing aperture 

size introduces problems with the optical vignetting (light fall-off towards the edges). 
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The depth of field is changed as well. When ISO setting is set to a higher value more 

noise is introduced. The best option to create an HDRI is to change the exposure time; 

- Camera‟s white balance has to be fixed on daylight (D65);  

- ISO 100; 

- All settings in the camera such as color and contrast enhancement have 

to be turned off. It would be less likely for a camera to make color transformations; 

- Tripod is necessary, so there would be no movement between taking 

images, therefore less alignment would be needed later. It‟s more convenient to obtain 

a sequence automatically, for example using the autobracketing feature in a camera or 

to control it through the computer. Thereby less influence of camera and objects‟ 

movement will occur in the sequence; 

- A scene for obtaining response curve should have large grey or white 

surfaces with very bright and very dark areas. Those will provide nicely continuous 

gradients for the software to sample. The closer the scene to a neutral grey (non-

colored), the better; 

- A sequence of exposure bracketed images should be separated by 1 

exposure value (EV). This is equivalent to halving or doubling the exposure. The 

number of bracketed exposures depends on a model of a camera. The more exposures 

camera has the higher dynamic range can be captured. Most scenes can be effectively 

captured with nine exposures, or even with 5-7 (Reinhard et al. 2010). The minimum 

number of photographs needed to recover a radiance map given camera‟s response 

curve is a function of radiance range in a real scene. R – the whole range of radiance 

values of the scene, F – camera‟s working range. So, the minimum number is R/F 

(Cai et al. 2011).  
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- Photos histograms allow checking if the scene was properly captured. 

Histogram of the photo is a chart that shows the number of tones being captured at 

each brightness level (Busch 2011). Some cameras have two types of histograms: one 

is for the overall brightness of an image, and alternate version with separate red, 

green, and blue channels of the image. Horizontal axis shows the brightness level 

starting from the left 0, which is black, to the right 255, which is white. Each vertical 

line out of 256 shows the number of pixels in the image at each brightness level. If 

there are no pixels at the particular brightness level, that would be shown by no bar at 

a particular position. The more pixels of certain brightness are in the image the taller 

the bar. For example, if the image was badly underexposed, the shape of the 

histogram would be shifted to the left – to darker tones. The opposite situation occurs 

for the overexposed image; 

“If, however, on the darkest image (shortest exposure), some or all parts of the 

bright sources are either over-exposed (they have a value of 255 in the JPEG), or even 

if they are above 200, then the HDR engine can't reliably work out the true luminance 

and will simply cut it off.” The recommended range is above 27 for the longest 

exposure and below 228 for the shortest in 8-bit domain (HDRI mailing list as of 

February 2012); 

- Luminance of a uniformly lit grey card in the scene has to be measured 

with a luminance meter for the absolute calibration;  

- Determine the luminance in the HDR image;  

- Compute the calibration factor, which is simply the ratio of two: 

CF = LuminanceReal / LuminanceHDR      (2.3) 

This factor will be around 1.0 (according to webHDR website as of September 

2011, Reinhard et al. 2010).  
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2.2.2. Response curve of a specific camera and lens combination 

Non-linear relationship (or mapping) between image‟s irradiance and scene‟s 

radiance is called radiometric response function of the imaging system (Mitsunaga et 

al. 1999). Some algorithms developed by various authors derive an approximate 

response function without radiometric calibration, which implies measuring RGB 

response of the camera in the range of 380-780 nm with the monochromator.   

The relationship of the image irradiance E to scene radiance L is determined in 

the sequence provided below (“Introduction to Computer Vision” as of October 

2011). 

Due to physical property of imaging systems known as reciprocity (figure     

2-4), we have: 

                    (2.4) 

 

  

Figure 2-4. Relationship between image irradiance E and scene 

radiance L (“Introduction to Computer Vision” as of October 2011) 

Then, according to the definition of the solid angle: 

       

  
  

       

  
 

               

From the geometry: 
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Recombination: 
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Solid angle subtended by the lens:  

    
   

 

    

         
                         

Then, flux received from projected area of the scene equals to the flux 

projected to the image: 

                      (2.9) 

And image irradiance equals to: 

  (
  

   
)                            (2.10) 

To obtain the dependence of image irradiance on scene radiance, following 

steps are performed. Substitute flux (2.9) into the image irradiance definition (2.10); 

then substitute dAS/dAi (2.7) and dωL (2.8). After reducing the fraction you get the 

relationship of the image irradiance E and the scene radiance L: 

   
 

 
(
 

 
)
 

                       , where  

d – diameter of the aperture; 

f – focal length of the imaging lens; 

α – angle subtended by the principal ray from the optical axis. 

Thus, image irradiance is proportional to the scene radiance (Ko Nishino 

2010). 

For the ideal imaging system the image brightness would be (Mitsunaga 

1999): 

                                     (2.12), where  



31 

 

 

 

t – the time that image detector is exposed to the scene. 

For the ideal imaging system the radiometric response would be linear: 

                                    (2.13) 

                                 (2.14) 

                                (2.15), where 

- e is exposure of the image, which can be changed either by altering aperture 

diameter (d) or the duration of exposure (t).  

But unfortunately the relationship between image‟s irradiance and scene‟s 

radiance is not linear due to various non-linearities like “gamma” correction, image 

digitizer, inclusive of A/D conversion, etc. (Mitsunaga et al. 1999). And also 

relationship is non-linear due to manufacturers‟ applications of some tone mapping 

operators that make an image look better (Moeck et al. 2006). So, radiometric 

response function has to be derived.  

In (Debevec et al. 1997) the goal of the research was to recover camera‟s 

response curve by having only a set of photographs of various exposures, and further 

using pixel values of the image to reconstruct radiance picture of the captured scene. 

The idea of the approach was to obtain information about pixel location at various 

exposures (figure 2-5). The speed setting of the camera provides user with the relative 

exposure ratios. Thus, the shape of the camera‟s response curve is known at those 

three parts. The next step is to find a way to fit curve parts together (Moeck et al. 
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2006).

 

Figure 2-5. Recovering camera’s response curve. X - represents part of 

the g curve obtained from the digital values at one pixel for five different known 

exposures (equation 2.16). Position of the curve is arbitrary corresponding to the 

unknown lnEi. Symbols   and     represent two other pixels. The idea is to “line 

up” them into a single smooth, monotonic curve (Debevec et al. 1997) 

 

Debevec and Malik used linear optimization to find a smooth curve with a 

minimized mean-square error. 

After deriving camera‟s response curve assuming that the exposure is known, 

the function can be used to convert pixel values to relative radiance values (Debevec 

et al. 1997). 

      (   )             (2.16) , where 

Zij – pixel value (i – spatial index over pixels, j – over exposure), 

∆tj – exposure times, 

Ei – irradiance values, 

g=f
-1

, where f is tone mapping processing.  

So, in order to capture the whole high dynamic range all available exposures 

for a particular pixel should be used to compute its radiance (equation 2.17). Also, the 

weighting function is implemented to give higher weight to exposures in which 

pixel‟s value is closer to the middle of the response curve (equation 2.18).  
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         (2.17) 

 (2.18) 

Response curve g(z) will typically have a steep slope near maximum and 

minimum pixel values (Zmax and Zmin), so there‟s an expectation that it will be less 

smooth. This means the curve will fit the data more poorly near extremes. It explains 

the reason for giving higher weight to exposures in the middle of the curve. This 

algorithm by Debevec works pretty well with images that are not too noisy.  

  The other algorithm is introduced in (Mitsunaga et al. 1999). Their approach 

in deriving a polynomial approximation of the response function doesn‟t require 

precise exposure inputs. Authors resolve the exact exposure ratios in addition to the 

camera response function. 

In (Robertson et al. 2003) authors present new iterative procedure of 

recovering camera‟s response curve. Also, new weighting function for the input 

images for an HDRI reconstruction is implemented. Higher exposure times are 

weighted more heavily. The technique is based on a probabilistic formulation. 

One more way of recovering camera‟s response function is presented in 

(Herwig et al. 2009).  The focus of the paper is to recover the response curve with 

non-iterative methods with a minimum set of input values. 

Camera‟s response function in combination with the exposure information of 

the LDR images should provide radiometrically correct pixel information. 

2.2.3 Software and calculations discussion   

Currently, there‟s a great number of software available for the HDRI creation. 

Among software presented on the market are: Photosphere, Picturehaut, WebHDR, 
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hdrgen, bracket, HDR Shop, Luminance HDR, Hugin, Photomatix, CinePaint, and 

Photoshop (Guglielmetti et al. 2011). Photosphere is one of the most widely used. 

2.2.3.1 Color space 

Most cameras have their own native color space because of the various 

spectral responsitivities of the sensors. Converting between various device-dependent 

color spaces is a straight forward procedure, but it‟s more convenient to have a single 

standard color space. Unfortunately, there are a couple of standards. One version of 

image encoding is “output-referred standards”. This standard uses a color space that 

corresponds to a specific output device, so no additional resources are wasted on 

colors that are out of the device gamut. But the disadvantage of such encoding is that 

colors that can be represented on a specific device can‟t be represented on others. The 

other version of the standard is “scene referred”. The goal is to portray original 

captured scene as close as possible. But then the requirement of applying some tone 

mapping to the pixels to fit device‟s gamut occurs. Tone mapping can be represented 

by simple clamping values in a range of [0, 1] or applying compression based on the 

studies of human visual system and its operation. The major advantage of such a 

standard is that correct output can be produced on any device. 

sRGB color space is specified by the International Electrotechnical 

Commission, and many digital cameras produce images in this color space. 

Luminance of a particular pixel of an image can be computed from the linear 

combination of the RGB components. Therefore, one has to know the primaries of the 

camera-depended color space, and the white point (Moeck et al. 2006). Nonlinear 

sRGB color space is based on a virtual display. It has the following primaries and the 

white point in terms of chromaticities (x, y):  R (x=0.64, y=0.33), G (x=0.30, y=0.60), 
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B (x=0.15, y=0.06), illuminant is D65, white point (x=0.3127, y=0.3290). The 

maximum luminance for the white is 80 cd/m
2
 (Reinhard et al. 2010). 

2.2.3.2 Luminance values in the software   

A radiometer that has been optically or electronically filtered to approximate a 

spectral sensitivity function of the fovea is called a photometer. Therefore, luminance 

can either be obtained through measurements with a radiometer and a physical 

photopic filter or through electronic derivation of luminance values.  

Since a regular digital photo camera does not have a photopic filter to account 

for the human vision (CIE photopic luminous efficiency curve V(λ)), therefore a 

second way to obtain luminance is used in the HDRI technique.  

If a pixel color is specified in a device-independent RGB color space, its 

luminance may be computed from a linear combination of the red, green, and blue 

components. Photometric data can be generated from HDR images through a series of 

calculations that involve conversion from RGB to CIE XYZ values for each pixel 

(Inanici 2006). 

Photosphere derives luminance in the following sequence: 

- Obtain CIE XYZ values for each pixel from sRGB standard camera color 

space (using CIE Standard Illuminant D65, and standard CIE Colorimetric Observer 

with 2  field of view) by converting one color space to the other; 

- Then luminance can be computed since the Y component in XYZ color space 

represents luminance L (V(λ)=y (x)). Thus, L is the linear combination of the red, 

green, and blue components. 

                                 cd/m
2
          (2.19)   ,where  
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- k is a constant used to calibrate images with a physical luminance 

measurement of the selected region in the scene. Can be applied either to the 

pixel values in an image or to the camera response function. 

The calculations in Photosphere are based on CIE chromaticities for the 

reference primaries (sRGB) and CIE Standard Illuminant D65: 

R (x, y ,z) = (0.64, 0.33, 0.03); 

G (x, y, z) = (0.30, 0.60, 0.10); 

B (x, y, z) = (0.15, 0.06, 0.79); 

D65 (x, y, z) = (0.3127, 0.3290, 0.3583). 

Shooting with white balance mode set to D65 assures that measurement 

condition matches the sRGB color space. In Radiance calculations are based on equal 

energy white point (x, y, z) = (0.33 0.33 0.33). Different computation is the reason for 

minor difference between original luminance calculations in Radiance (R*0.265 + 

G*0.067 + B*0.065) and the calculations in Photosphere (R*0.2127 + G*0.7151 + 

B*0.0722) (HDRI mailing list as of September 2006).  

2.2.3.3 Optical vignetting 

Vignetting is a light fall-off towards the periphery of an image due to the 

blocking of some incident rays by the effective aperture size (Kim et al. 2008). The 

effect of optical vignetting becomes significant as the aperture size increases and vice 

versa. Some authors implement “digital filter” to reduce unwanted vignetting effect 

(Chung et al. 2010, Anaokar et al. 2005, Moeck et al. 2006, Inanici 2006).   

Zoom lens has a special featured compared to prime one.  In a zoom lens the 

aperture (d) is changed with the aperture setting as well as with the focal length (f). 

Even at the same f-stop (relative size of aperture, N= f/d) the vignetting effect can be 

different, since one aperture stop can be obtained with many different combinations of 
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aperture sizes and focal lengths. Thereby, if the aperture is set to a specific number, 

when zooming in/out the vignetting effect will be different.  

Longer focal lengths (narrow angle of view) decrease the quality of the HDR 

images of light-emitting surfaces. The trend can be improved at smaller apertures (Cai 

et al. 2011). According to author the reason for lower quality might be the increased 

light scattering and lens flare when camera is zoomed in at a light source. This can be 

alleviated by increasing the ambient light level for increased signal-to-noise ratio of 

image sensors with low light sensitivity.  Higher ambient light levels significantly 

improve quality of the HDR images of light-emitting surfaces. Average percentage 

error for light-emitting surfaces is 6.6%.  

2.2.3.4 Other issues 

Other important issues to consider are noise, point spread function and 

distortion. 

Noise in the image occurs with high ISO-setting and long exposures (when 

random photons are registered). Dark frame subtraction is recommended for 

exposures longer than one second. Photo of blank exposure with random pixels is 

compared with the original photo. Noise is represented in the pixels with the same 

characteristics in both images (Busch 2011). It is important to keep in mind that some 

information can be accidentally lost with the noise.  

Factors such as aperture size, exposure time, distance from the optical center 

all affect the point spread function (PSF). This optical effect occurs when narrow light 

beam spreads out and scatters by the lens. It is an inherent property of the optical 

systems. The result is a reduction of pixel‟s luminance due to the falling off of some 

amount of light on surrounding pixels (Chung et al. 2010, Reinhard et al. 2010, Rea et 

al. 1990, Moeck et al. 2006, Inanici 2006, Anaokar et al. 2005, Jacobs 2007). 
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Resolution of an image can be characterized by the PSF or the Modulation Transfer 

Function (MTF). 

The PSF may be determined computationally by summing up all hot pixels, 

that is, pixels above a certain threshold, in a separate grey scale image (Reinhard et al. 

2010). Then it is a straightforward procedure to remove the PSF from the HDR image 

by simply subtracting the PSF multiplied by the value of the hot pixel from its 

neighbors.  

In (Xiao et al. 2002) authors investigate how diffraction and lens flare 

influence the dynamic range. The components of the flare are illustrated on figure 2-6. 

Flare consists of (a) star-like PSF, (b) triangular ghost image, (c) haze.  

 

Figure 2-6. Images of flare components of a point light source at 

different locations (Xiao et al. 2002) 

Star-like component (a) is caused by the diffraction. The amplitude drops to 

0.1% of peak value at 1.5 degrees away from the star‟s center. Ghost images (b) are 

caused by reflections from different lens surfaces from the group of lens elements. 

The amplitude of the ghost image at 20 degree away from its peak is still 0.01% of the 

peak value. The veiling glare (c) is spread throughout the image. As aperture size 

increases, the amplitudes of these flare components slowly decrease. The limit on the 
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effective dynamic range of the capture system is set by the optical components. Thus, 

dynamic range is scene-dependent.  

Distortion plays a considerable role with the bigger field of view of the 

camera.  The distortion needs to be checked at the minimum zoom (Moeck et al. 

2006).  

2. 3 Studies of HDRI technique validation for lighting measurements 

HDRI is a valuable tool in lighting research. It offers a variety of options for 

lighting analysis such as: luminance evaluation, illuminance derivation, glare analysis, 

image-based lighting, luminaire performance testing, etc. 

In order to capture the wide luminance range of the scene with the HDRI 

photography, multiple exposure photographs are taken. Self-calibration process from 

a sequence of photographs allows the computational derivation of the camera 

response function. So, if a digital camera has a multiple exposure capability, then it 

can be used for the HDRI. Then with the known RC of the camera photograph 

sequence is combined into a single HDR image. HDRI photography was not 

specifically developed for lighting measurements. So, some studies evaluating HDRI 

technique applied to measurements of lighting environment were done by some 

authors (see table A in Appendix A).   

2.3.1 Studies of the HDRI technique validation in a scene with no bright light 

sources 

In “Evaluation of high dynamic range photography as a luminance data 

acquisition system” multiple exposure photographs were taken with a digital camera 

Nikon Coolpix 5400, and processed using software “Photosphere”. Then reference 

physical measurements were taken with a calibrated Minolta LS110 luminance meter 

with 1/3° field of view. For the determination of the camera‟s response function an 
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interior scene with daylight with large and smooth gradients was chosen. The goal of 

the study was to compare physically measured luminance of a particular part in the 

scene with the one derived from the HDR image. Measurements were taken under 

various conditions: indoors and outdoors, and with various lighting sources.  

Among measured targets were: 24 squares with reflectances in the range of 4-

87%, grey square target with 28% reflectance against white-then-black surrounding, 

and then black-then-white background. And among used targets was a Macbeth 

ColorChecker. Among light sources used in the research were an incandescent lamp, a 

projector (using 500W tungsten lamp), fluorescent T12, T8, and T5 lamps with CCT 

of 6500K, 3500K, and 3000K respectively, metal halide, and high pressure sodium 

lamps. Depending on the spectral power distribution of a light source the error 

margins for greyscale and colored targets varied. 

The total number of targets of 485 under various light sources showed the 

following results. The average percentage error for all targets was 7.3%, for greyscale 

and colored 5.8% and 9.3% respectively. Minimum target luminance was 0.5 cd/m
2
, 

while the maximum was 12870 cd/m
2
.  

Increased error was observed for the darker greyscale targets. Luminances of 

the darker regions are over-estimated due to general light scattering in the lens. And 

the luminances of the saturated color samples show the increased error.  

The research by Inanici shows that the HDRI technique gives reliable results 

capturing wide range of luminances with an accuracy of 10%. In order to have 

absolute validity this method requires calibration with the luminance meter (Inanici 

2006).   

In (Anaokar et al. 2005) authors tested the accuracy of high resolution 

luminance map generated by the Photosphere software. Besides comparing the 
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accuracy of three different cameras (Nikon Coolpix 5400 was chosen for the study), 

errors were estimated due to the usage of various colors of Munsell chips, spectral 

power distribution of a light source, optical vignetting of the camera, and spatial 

resolution of the object.  

Authors calculated the error depending on color. Six Munsell cards of 

different colors were used, each consists of 16 chips as shown on figure 2-7. 

  

                            A                                                                         B 

Figure 2-7. A- Munsell chip, B – Experiment set-up (Anaokar et al. 

2005) 

Reflectance of each chip of a Munsell card was specified for a specific light 

source. Twelve images were obtained varying shutter speed in one step increments, 

which is more reliable than changing aperture size (Debevec et al. 1997, Mitsunaga et 

al. 1999). HDRIs were obtained in the Photosphere software. Then illuminance 
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measurements were taken for the grey card of 30% reflectance. Then luminance was 

computed as: 

   
  

 
            (2.20) 

This luminance was used to calibrate the image. Generated images gave 

authors luminances that were used to compute the reflectance for each sample. Then 

obtained values were compared to the actual coefficients of reflectance. 

Results of the experiment revealed the following.  Cool hues have the largest 

errors compared to warm hues. Spectral responsivity calibration is suggested to 

overcome the problem of large errors for surfaces with reflectances less than 20% 

(Jacobs 2007). The error in reflectance increases with saturation and with the decrease 

of Munsell value. Images fused in Photosphere show higher luminances for colors 

with a low value, or darker colors of the same hue and chroma. Errors in reflectance 

were similar for light sources with various spectral power distributions. For other 

results see the paper (Anaokar et al. 2005). 

In (Moeck 2007) author investigates the accuracy of measurements done with 

the camera with CMOS (complementary metal oxide semiconductor) sensor (Canon 

EOS 350 D Digital Rebel XT, a digital SLR camera with 8 megapixels). Author 

overcomes the disadvantages of fisheye lens (cost, vignetting problems, lens flare, and 

only hemispherical field of view) by using mirror spheres. Due to dynamic outdoor 

lighting conditions it is important to capture panoramic maps that offer a full field of 

view around one axis. The paper presents results on verifying luminances of grey 

scales and matte color checkers obtained from HDR images. Luminance errors of 

spherical HDR images obtained with a mirror ball were calculated. 

The results reveal that HDR luminances of most hues can be reasonably 

estimated. Light surfaces are underestimated, and dark surfaces are overestimated. 
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Measurements of dark colors with high chroma result in severe error (dark saturated 

blue, green, purple hues). The maximum error of the complete series for dark 

saturated blue is 53%. While yellow and red hues show minimum error. 

Image sensors that are used in the camera have limited color gamut, which 

results in inaccuracies in luminance of color sample with high chroma. Color gamuts 

of CMOS color sensors (saturated blues, and greens) limit measurements of Munsell 

color samples. Also, camera‟s color sensors are just approximations of the CIE color 

matching functions that add up to the error.  

For deriving camera‟s response curve it is recommended to use grey cards and 

matte color checkers with the known reflectance and uniform illuminance. One of the 

samples with luminance determined from its reflectance and illuminance should serve 

as the reference. Surfaces of interest should use anchor with similar reflective 

properties. As paper suggests Munsell anchor N7.5 is recommended for the light 

surface elements, Munsell anchor N5 for medium reflectance elements (Moeck 2007).  

Among lighting environments that might be analyzed with the HDRI are non-uniform 

light sources, sky models, windows and luminaires, etc.  

Study on the calibration factor‟s (CF) variation over time for the HDR 

photography was investigated in research paper (Chung et al. 2010). Authors looked 

at the variations of CF in a single scene for various daylighting conditions. CF is 

determined by dividing physical luminance of a specific object in the scene by same 

region in the HDR image. In order to derive luminance of a physical scene this CF is 

multiplied by the region of the interest in the HDR image.  

The X-Rite ColorChecker chart was used in the paper (figure 2-8). Electric 

lights in the classroom were turned off; measurements were conducted with stable 

clear and overcast sky conditions.  
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Figure 2-8. X-Rite ColorChecker chart that was used in (Chung et al. 

2010) to analyze variations of calibration factor over time for the HDR 

photography in a daylit interior scene.  

The HDR image was a product of nine LDR images in the range of -4EV to 

4EV. Authors used Aperture Priority Mode varying shutter speed. Then with hdrgen 

software camera responsive curve was derived (very dark and bright areas, large 

neutral grey and white smooth gradients in the scene were used). Then with the 

known responsive curve hdrgen can combine LDR images into a single HDRI.  

Physical measurements of luminances were made by the calibrated luminance 

meter Minolta LS100 with 1 degree angle. Three measurements of each color in the 

chart were made before taking multiple exposures with the digital camera, and three 

after. Then these measurements were averaged and compared with the ones obtained 

from the HDRI. 

Authors conducted experiments on 6 days at different times. Variation of 

mean vertical illuminance of the chart was in the range of 75 to 30000 lux. No direct 

sun was present in the scene during the experiments. Then CFs were computed and 

analyzed. 

As a result, no influence of various lighting conditions was detected on 

HDRI‟s CF of any color. For any scene with a dominant color, one can achieve real 

luminance by multiplying the HDR luminance by CFcolor of that color. 
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Vignetting effect was analyzed and the proper correction („digital filter‟) was 

applied in the study as well. The applied filter prevented luminance reduction at the 

corners of the image. In order to create data for such filter authors used white paper. 

They‟ve measured luminances of nine points on the paper. And since the difference 

between measurements was less than 5%, it was assumed to be matt. Then multiple 

photos of various exposures were taken. Vignetting effect was calculated by dividing 

every pixel of the photo by the value in the center of the HDRI (figure 2-9).  

 

Figure 2-9. “Digital filter” for compensating luminance loss due to the 

vignetting effect in the study (Chung et al. 2010)  

In “Improving the quality of high dynamic range images” (Cai et al. 2011) 

after applying vignetting correction and physical calibration HDR images were 

compared with each other on a quality of luminance acquisition. Very often camera 

with a wide-angle zoom or fisheye lens is used. These systems have many aberrations: 

vignetting effect (light falling off due to cos
4
α at the periphery of an HDRI), 

diffraction of light (noticeable at small aperture), light scattering in the lens (depends 

on f-stop and the wavelength of light, and etc.), lens flare (CCD/CMOS sensors can‟t 

cover whole dynamic range), chromatic aberration (imperfect lens, or incorrect white 

balance of the camera), and radial distortion of the lens. The paper examines the 

dependence of quality of the HDR images on focal lengths and aperture sizes. The 

goal of the paper was to find an optimal combination of focal length and aperture size 
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that lead to the least error: less vignetting, scattering and light diffraction at the lens.  

With large apertures light falls in the image periphery, and depth of field is narrower. 

Small apertures have diffraction issues. Aperture stop and light wavelength both 

influence light scattering in the lens. The number of EV is determined in the paper as 

well as appropriateness of using only one calibration factor for the entire scene was 

investigated.    

This study for a specific camera and lens combination (Canon EOS 350D 

fitted with the Sigma lens 10–20mm F4-5.6 EX operating under fluorescent lighting) 

showed the following results. Higher quality HDR images are produced with larger 

apertures, while for medium apertures no significant difference was found. The 

smallest error obtained was at f/5.6 for each focal length 10, 14, and 20 mm under low 

or full fluorescent light levels. The maximum error obtained was for f/22. 

HDR images photographed with a large aperture are not influenced by focal 

length. While with the small aperture quality of the HDR images of grey and colored 

samples can be improved with longer focal lengths. On the other hand, images taken 

with longer focal lengths decrease the quality of light-emitting surfaces. This 

tendency is reduced at smaller apertures. Noise in the camera image sensor 

contributes to the HDRI‟s error when black surfaces are photographed.  

Quality of color, black, and luminous surfaces can be increased significantly 

using more EVs (starting from using 4-5 exposures). While for grey surfaces in the 

middle dynamic range (i.e. 4.8–212.9 cd/m
2
) of scenes the quality starts to reach a 

plateau with almost no further improvement. 

The targets of 12 greyscale patches on a foam board were placed on the front 

table, middle table, middle back table and on the back wall of the room. The quality 

of the HDR images of light-emitting surfaces and front grey targets can be 
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significantly improved with higher ambient light level. But for the grey targets in the 

middle, middle back or back, neither for black nor for color targets the improvement 

of quality was found with the variation of the ambient light level. 

Applying local or global physical calibration doesn‟t impact the quality of the 

HDR images. Although, local calibration might improve the accuracy as was 

suggested in the paper (Cai et al. 2011).  

In (Moeck et al. 2006) authors give an explanation how to make an 

illuminance analysis from available HDR luminance maps. Luminances in the HDRI 

can be analyzed based on pixel‟s illuminance contribution at the camera. In order to 

obtain illuminance at the camera, one has to know luminance of every pixel and the 

solid angle. The meaningful grouping of pixels is a collection of pixels that represent 

visual tasks or objects in a scene like windows, walls, columns, etc. Technique 

proposed by the authors gives new opportunities to analyze illuminance in the space.  

One has to be familiar with the limitations in the HDRI such as vignetting, 

luminance measurements of surfaces with low reflectances, and surfaces with high 

Munsell chroma. Authors used 5.1 Mpixel Nikon Coolpix 5400 (2003) with an F2.8-

F4.6 4X optical zoom lens. The focal range of the lens is 5.8 – 24 mm, which is 

equivalent to 28 - 116 mm for 35 mm film.  All images were taken with the Matrix 

Auto White Balance with TTL control, using a Munsell N9.5 grey.   

To obtain luminances from the luminance map authors used achromatic 

Munsell cards with values from two to nine. Physical measurements were done (1 

degree angle of view luminance meter) for further comparison. Three cameras were 

compared: Nikon Coolpix 5400, Canon Digital Rebel and Olympus E1. All three 

performed similarly for grey scales with different Munsell values. The performance of 

these three cameras is much better than cameras without built in thermal noise 
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suppression. But lower Munsell values are overestimated by the Nikon Coolpix, while 

the Olympus and Canon tend to underestimate them.   

Luminance measurements of dark surfaces with low reflectance below N5 or 

20% shows unreliable results for different lamp spectra (fluorescent 4100K, mercury 

vapor, and metal halide). Authors used automatic white balance. Authors suggest 

using spectral responsivity calibration to address this issue. 

The results for Munsell hue and chroma are the following. Two different 

illuminance values of 478 lx and 88 lx were used (Sylvania Octron 4100K FO32/741 

lamps). Saturated greens and blues didn‟t demonstrate reliable results. Although, 

high-to medium-reflectance blue and green hues with low chroma down to Munsell 

value N5 are within acceptable range. Warm colors with high Munsell values 

demonstrate reliable results. Fortunately, for a lot of applications this is not a major 

problem, since saturated dark hues are not often implemented in historic and modern 

buildings‟ interiors. 

Illuminance can be expressed: 

      (2.20) 
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Figure 2-10. Defining solid angles of central pixel dω c, and any other 

pixel i on a sensor dω i (Moeck et al. 2006) 

By defining solid angles (figure 2-10), one can obtain illuminance values from 

the luminance maps. Authors assessed the results on real experiments.  

Table was uniformly lit with the indirect lighting. The illuminance was 480 lx 

(figure 2-11). There was a stack of five letter sized papers on a table. Top paper had 

twelve grids (0.0508 m x 0.0762 m each). HDR image was obtained with the Nikon 

Coolpix 5400 camera out of twelve images with the shutter speeds varying from 

1/2000 to 1 second under maximum zoom. Luminance reference in the image was a 

Munsell N6 grey card with 30% reflectance. The HDR image was calibrated with the 

measured illuminance on the grey card. Minolta 1° spot meter was used to measure 

the average luminance at the center of each grid on the white paper. Then the 

illuminance was calculated with: 

  (2.21),  where  
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- area (i) is one of twelve 0.0508 m x 0.0762 m sized patches on the paper 

with the uniform illuminance of 480 lx.  

The calculated illuminance (equation 2.21) was 1.65 lx. 

 

Figure 2-11. Set-up for assessing accuracy of obtaining illuminance 

values from the luminance map 

The illuminance for all pixels from the HDR image was calculated using the 

following equation (figure 2-10): 

     (2.22) 

The sensors that were used in the camera (the CCD sensor size designated by 

1/1.8“) had dimensions of u=7.18mm and v=5.32 mm (figure 2-10). The focal length 

was 24 mm.   

The illuminance of 1.72 lx was obtained from the HDRI (equation 2.22), 

which is within 5% error with the one obtained analytically from the equation 2.21 

(table 2-1). 

Table 2-1. Validation of illuminance calculation from a luminance map obtained 

with the HDRI (Moeck et al. 2006) 
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2.3.2 Studies of the HDRI technique capturing a natural scene and/or the sun 

In (Stumpfel et al. 2004) authors state that the HDR images can accurately 

capture natural illumination including the visible sun. Capturing the scene with the 

sun has two principal challenges. The first one is the breadth of dynamic range - the 

sun can be well over five times (or seventeen stops) brighter than the sky and clouds. 

So, varying only shutter speeds doesn‟t cover the whole range. And the second 

challenge is the absolute intensity of the sun, which is much brighter than what 

cameras are designed to capture. 

Full dynamic range of the sun and sky can be preserved through careful 

selection of shutter speed, aperture size, and neutral density filter.  The full range can 

be covered in seven exposures with a standard digital camera with a 12-bit linear-

response sensor. Work addresses calibration issues such as lens vignetting, infrared 

sensitivity, and spectral transmission of neutral density filter. Time-lapse renderings 

of a complex scene illuminated by a high-resolution, high dynamic range natural 

illumination environments demonstrate positive results. 

Canon EOS-1Ds camera equipped with a 8mm Sigma fisheye lens pointing up 

was set on a roof with an unobstructed view of the horizon in all directions. Camera 

has an automatic exposure bracketing capability that varies exposure between 1 

second and 1/8000 of a second. Camera yields only 14 stops (a factor of 16384). This 

is insufficient to capture the 17 stop range (131,072x) of a typical sunny sky. The 

usage of shutter speed longer than 2 seconds doesn‟t allow capturing the scene 

accurately due to the motion of the clouds.  

Camera was controlled from a laptop. The developed program allows 

adjusting the shutter speed as well as the aperture of the camera. Varying two settings 

in the camera spanned the dynamic range of the sky. Lighting conditions of a natural 
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environment change drastically with the sun position and weather over the course of 

the day. Images are analyzed as they are downloaded to a computer. Camera settings 

are changed if necessary. 

It takes about 50 seconds to acquire and download a typical image sequence. 

To capture the sun directly a 3.0 neutral density (ND) filter was used, which reduces 

the amount of light passing through by a factor of 1000. ND filter caused a chromatic 

shift which had to be corrected. 

The full range of the sunny sky can be covered in seven exposures with a 

standard digital camera with 12-bit linear-response sensor (figure 2-12). 

 

Figure 2-12. A typical HDR sequence spanning the 17 stops of the sky 

and the sun in 7 exposures 

Obtaining faithful representation of sky luminance distributions is always a 

challenge due to the rapid changes of daylight environment (Inanici 2010). Sky 

scanners measure luminance at 145 points. These data are insufficient to represent 

actual sky conditions. There are 15 generic sky models specified by the CIE, but these 

models have the same disadvantages. The HDR imaging technique allows obtaining 

high resolution data for further analysis. Image-based lighting (IBL) is a visualization 

technique that allows using captured HDR images as light sources in a rendering 

process. IBL was not specifically developed for the lighting software, so it has to be 

evaluated for this application. Author acquired the HDR images of the sky dome. The 

main objectives of the paper were to develop technique on collecting high resolution 
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data of image based sky luminances; application of the HDR image based sky models 

in lighting simulations; and assessment of image based sky models. 

The HDRI was captured with Canon EOS 5D and fisheye lens Sigma 8 mm 

F3.5 EXDG that has 180° angle of view and equi-angle projection properties. Camera 

was mounted on a tripod.  White balance was set to daylight, ISO setting to 100, fixed 

aperture size of f/5.6 was used. Varying the shutter speed in manual exposure mode 

allowed capturing the sky. Shutter speed range is usually shortened under heavily 

cloudy sky since the dynamic range is reduced. 

Using only one fixed aperture size does not allow capturing the sun. 

Therefore, author used two different apertures (f/4.0 and f/16) while varying shutter 

speeds. Neutral density filter Kodak Wratten 2 Optical Filter was used for the 

sequence.   

About 10 images were taken with the aperture size of f/4 and shutter speeds in 

the range of 15s to 1/30‟‟, and the aperture size of f/16 with shutter speeds in the 

range 1/15-1/8000 of a second. This approach allows recording sun in the sky dome 

(intermediate and clear). Twenty-two stop range corresponds to seven logarithmic 

units. Vignetting effect was taken into consideration in this work. 

Specific calibration was used in this application. Usually sequence is 

calibrated with a single physical luminance measurement of a grey card obtained 

during the capturing process. But it is not practical to do such a calibration with the 

sky. Instead, horizontal illuminance is measured at the camera level. 

The idea of IBL technique is to use captured sky dome as a light source in the 

software. Every pixel in the HDR image corresponds to physical value of luminance 

in cd/m
2
, which contributes to the overall illuminance in a scene.   All pixels of the 

obtained sky dome represent real world lighting conditions (figure 2-13). 
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Figure 2-13. Fisheye projection and application of the HDR image as a 

light source in a computer simulation (Inanici 2010) 

The discussed research included the following: the HDR images of the sky 

dome under various sky conditions and times were captured; at the same time the 

HDR images of the daylit office were obtained for measuring the luminance 

properties of the office; the CIE sky models and captured sky images were 

implemented in the same office with physically based rendering (PBR) and IBL 

techniques; comparison between captured and simulated lighting conditions were 

made.   

The results show that image based sky models can provide reliable results for 

sky luminance distributions. This approach takes into account the influence of the 

surroundings. Also, the sun can be captured with the HDRI technique. 

In (Konis et al. 2011) authors use the HDRI to assess innovative interior and 

exterior systems in comparison to the conventional methods under the real sun and 

sky conditions using existing visual comfort metrics. 

The HDR images were obtained with Nikon 990 CCD camera with an 

equidistant fisheye lens (Nikon FC E8, 183°). Nine LDR images were taken in 

exposure-bracketed mode in 1 EV steps (special script was written for the automated 

acquisition). Each image is 1536x1536 pixels. To acquire an HDRI hdrgen software 

was used. Authors applied “digital filter” to compensate for vignetting effect. 
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Authors performed the test on accuracy of the HDRI under dynamic sky 

conditions.  

Result of this paper show that if the HDRI are corrected for the lens light fall 

off and calibrated, luminance maps acquired with this technique show reliable results 

on average under dynamic sky conditions. But this holds true if change in global 

vertical illuminance during the acquisition of the HDRI is lower than 5%. If it is not 

true, then these maps become less accurate. 

One of the possible applications of the HDRI technique for analysis is 

represented in (Van et al. 2010). Authors study preference of occupants in a daylit 

office environment and the acceptance of luminance patterns using the HDR imaging. 

Lighting information from the HDRI was used to calculate Daylighting Glare 

Probability (DGP), Daylight Glare Index (DGI), and other metrics that used three 

luminance threshold analysis methods (figure 2-14). Luminance threshold analysis 

methods were the following: 

- Mean luminance of the scene; 

- Predetermined absolute luminance threshold, for example 2000 cd/m
2
; 

- Mean luminance of the task. 
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Figure 2-14. a - Mean luminance of the scene, b – Predetermined 

absolute luminance threshold area, c – Mean luminance task area 

(desk and monitor), d – Mean luminance task area (defined as 

subtended solid angle encompassing the screen and keyboard)  

These methods were studied (along with additional metrics) for their ability to 

explain the assessments of luminance variability in the scenes under daylighting 

conditions (categories „preferred‟ and „just disturbing‟ were used). 

Of the established methods, the most consistent and effective metrics to 

explain subjective responses were found to be: mean luminance of the task, mean 

luminance of the entire scene, and DGP using 2000 cd/m
2
 as a glare source identifier. 

One hundred and fifty candidate metrics were tested and revealed the most 

effective one, which is the „mean luminance of the glare sources‟. Glare sources were 

identified as 7 times more than the mean luminance of the task position in this 

metrics.  Authors found out that DGP performed consistently better than DGI. See 

(Van et al. 2010) for further details see. 

For glare assessment with the HDRI see (Bellia et al. 2009). 
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2.3.3 Outcome of literature review 

Many studies have proved that the HDRI technique is a promising tool and 

can be used for lighting measurements providing reliable high resolution luminance 

data, even though challenges exist.  

The results of this research will contribute to the current state of knowledge on 

HDRI‟s implementation in lighting research and will allow expanding its capabilities. 

The investigation of the HDRI technique‟s ability to capture a bright light source 

(LED) with a narrow light distribution will be a valuable addition to the body of 

HDRI knowledge.  
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Chapter 3: Methodology 

3.1 Experimental design  

The purpose of this research is to investigate whether the HDRI technique is 

capable of accurately capturing luminance of a bright light source (LED) with a 

narrow light distribution. To accomplish this goal a set of experiments was conducted. 

In order to assess the results of the HDRI technique, results had to be compared to the 

ones obtained with conventional methods of luminance measurement.  

As was described in Section 2.1 there are three traditional ways to find out the 

luminance of a point in a certain direction:  

1. To measure it with a luminance meter; 

2. To derive it through the illuminance measurement and subsequent 

calculations; 

3. Digital imaging photometer measurement;  

Two methods of measuring luminance values were considered. The first one is 

to use specific close-up lens on a conventional luminance meter. Due to the small size 

of a light source (section 3.2.1) even with a luminance meter with one-third degree 

field of view, it is necessary to use a close-up lens (#135, see appendix B) that would 

allow measuring luminance of an object as small as 1.8 mm in diameter. 

The second one is through direct illuminance measurements in a constructed 

photometer. Luminance values were calculated through obtained luminous intensity 

curve and projected area of a single LED chip. Physical dimensions were measured 

and compared to the manufacturer‟s data. 

For the definition of experimental settings for capturing luminance of a single 

LED chip with the HDRI, investigations of 2 cameras and 2 lenses were performed. 

Among the conducted experiments were the following. RCs for cameras were 
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obtained in two different calibrating scenes (with and without a bright light source in 

the scene). Sequences of images were acquired with different shutter speed ranges. 

Vignetting effect was tested in various settings.  After this preliminary stage of the 

experimental settings determination, series of images of a single LED chip in GE 

Garage luminaire were fused into the HDRI.  

HDRI of a single LED chip was captured with CANON EOS 7D camera fitted 

with CANON zoom lens EF 28-105 mm 1:3.5-4.5 II USM. Neutral density filter 

NDA2-703-002 with 𝞽=0.0094 was used on the lens to capture the LED chip. The 

range of shutter speeds was 1/8000 to 30‟‟ at two aperture sizes (f/4.5 and f/16). 

Photograph histograms were checked in Photoshop CS5 to make sure that in the 

shortest exposure RGB values are lower than 228, and in the longest – higher than 27. 

RAW images were fused in hdrgen and calibrated with the hand-held measured 

luminance in Photosphere. The HDRI was analyzed and the luminance was compared 

to the one obtained with the traditional methods. 

Among conducted experiments were the following:  

Physical dimensions measurements; 

Obtaining luminous intensity curve; 

Luminance measurements with the luminance meter; 

Luminance calculations from illuminance measurements in a created photometer; 

Obtaining response curves for the different camera/lens combinations; 

Vignetting experiments; 

Uniformity of the Uniform Light Source (ULS); 

HDRIs of LED with a ND filter; 

Photoshop CS5 histograms check; 

raw2hdr Perl script fusing;  
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Photosphere analysis. 

3.2 Measurements of luminance of a single LED chip with traditional methods 

Two traditional methods of measuring luminance were considered.  

The first one is to use conventional luminance meter (LS110 with one-third 

degree field of view) with a specific close-up lens (#135). The close-up lens was used 

because of the small size of a light source (see 3.2.1). Luminance meter with a lens 

allows measuring the luminance of an object as small as 1.8 mm in diameter. 

 The second method is through direct illuminance measurements in a 

constructed photometer. Luminance values were calculated through the obtained 

luminous intensity curve and projected area of a single LED chip. Physical 

dimensions were measured and compared to the manufacturer‟s data.  

3.2.1 Measurements of a single LED chip’s dimensions 

GE Lighting provided a luminaire for this research. It is GE Evolve™ LED 

Garage fixture (EGMS-0-WL-N-60-P-C-10-white, see appendix B). CREE XP-E 

LEDs are used in this luminaire. The data on LEDs‟ sizes were obtained from the 

CREE website (figure 3-1 and appendix B), however, measurements were still 

performed. The only measurement that was impossible to acquire was the size of the 

square illuminating chip enclosed with the lens. For this dimension data was found on 

the CREE LED lighting website (figure 3-2). 

Physical measurements were conducted with a micrometer. A single CREE 

XP-E LED has the following dimensions: 

Square 3.480±0.254 mm (0.0137±0.0100)‟‟; 

Silicone lens diameter 2.540± 0.254 mm (0.10±0.01)‟‟. 
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Figure 3-1. Cree® XLamp® XP-E LEDs 

  

Figure 3-2. XP-E LED dimensions (CREE LED lighting) 

According to figure 3-2 from the CREE LED lighting website, the side of a 

single LED chip is 1.4 mm (0.055‟‟). 

3.2.2 Measuring luminance of a single LED chip in GE garage fixture 

with the luminance meter 

Goal: To obtain luminance of a single LED chip in GE garage fixture with the 

luminance meter (LS110). 
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In order to assess HDRI‟s ability to perform photometric measurements of a 

bright light source with a narrow light distribution a conventional method of 

measuring luminance with the luminance meter was considered.  

3.2.2.1 Experimental settings  

For the purpose of obtaining luminance calibrated LS110 with the close-up 

lens #135 was used (calibration certificate is in the appendix B). To account for the 

lens color correction a factor of 1.05 was set in the luminance meter. The close-up 

lens allows taking measurements as close as lminClose-up Lens = 447 mm to an object to 

measure a minimum diameter of dLmeter1=1.8 mm (figure 3-3, Appendix B). 

Single LED chip is a very bright light source. When measuring its luminance 

value, the meter shows E0 mistake on the screen. It was found that luminance of the 

LED chip exceeds the measuring range of the luminance meter (which is 999 900 

cd/m
2
 for LS110). Thus, neutral density filter had to be implemented. For this task 

NDA2-703-002 with 𝞽=0.0094 was used. The transmittance of the filter was checked 

with the uniform luminance source (ULS) and LS110 luminance meter (the accuracy 

is within 2%).  

          
  

 
 

  

    
                        (3.1) 

 

Figure 3-3. Minimum measured diameter of an object with a 

luminance meter LS110 and the close-up lens #135 at a minimum 

distance 
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The set-up for the experiment is shown on figure 3-4. The luminance meter 

was set on a tripod aimed at a single LED chip to the best ability. The distance from 

the LED chip to the sensor of the luminance meter was (447±10) mm. Camera was 

aimed normal to the LED with an error of (0±5)  . When measurements were taken, 

there was no ambient light in the room. 

 

 
 

 
Figure 3-4. The set-up for the luminance meter measurement of a 

single LED chip 

Challenges in aiming the luminance meter at a single LED chip are: 

1. A very small size of the LED chip (refer to section 3.2.1). To provide 

an accurate measurement measured area of the object should be bigger than the 

acceptance angle of the luminance meter within which it averages the reading (figure 

3-3). Since the difficulty in aiming the luminance meter exists, the right approach is to 

search for the peak value.  Besides aiming at the LED chip through the eye piece, 

looking at the luminance readings on the side of the luminance meter while adjusting 

the tripod is a good strategy to use;  
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2. A very high luminance value. Using NDA2-703-002 filter is critical for 

measuring purposes as well as for aiming purposes through the eye piece. 

The highest obtained luminance value is 6.97*10
6
 cd/m

2
.  

Outcome: It‟s impossible to get a reliable luminance measurement of a single 

LED chip with the LS110 luminance meter even with the close-up lens (#135). 

3.2.2.2 Analyzing the overlay of a single LED chip area and the measuring area 

of LS110 luminance meter 

If the luminance meter is aimed perfectly at the center of the LED chip, it still 

does not cover LED‟s whole area (see figure 3-5).   

 

Figure 3-5. Metering circle of LS110 luminance meter and the area of 

a single LED chip. Relative sizes are to scale 

Minimum metering area of the luminance meter at a minimum distance (see 

figure 3-3): 

ALmeter=  (
 

 
)
 

=   (
   

 
)
 

= 2.54 mm
2
         (3.2) 

Area of a single LED chip (section 3.2.1): 

ALEDchip=a
2
=1.4

2
=1.96 mm

2
                             (3.3) 

Compute luminance meter measuring area as 100%, the overlay of the areas 

(x, %): 

2.54 mm
2
 – 100%  

1.96 mm
2
 – x 
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x= 77% 

The emitting surface of the LED covers only 77% of the measurement target 

of the luminance meter if aligned.  Otherwise, the average luminance results in even a 

lower value, since more of the non-illuminating area around the LED chip is captured 

by a measuring circle of the luminance meter.  

Outcome: Luminance meter measures LED chip with its surroundings. It 

explains the unreliable luminance measured with LS110 and the close-up lens (#135). 

3.2.3 Luminance calculation through the luminous intensity curve and area 

measurements 

Goal: To obtain average luminance of a single LED chip in GE garage fixture 

through calculations from illuminance measurements. 

One of the ways to get luminance of a light source is to calculate it through 

direct illuminance measurements.  LED is a point light source, therefore the inverse 

cosine square law can be used: 

  
      

                 (3.4), where 

D – Distance from the light source (LED) to the sensor of the illuminance 

meter (T-10). 

Direct illuminance measurement allows the calculation of luminous intensity 

data of a point light source. Plane of the illuminance meter sensor in the created 

photometer is perpendicular to a line from the LED chip to the meter at all times 

(сosα=1), then from (3.4): 

                              (3.5) 

We assume LED chip is a uniform light source, therefore average luminance 

is: 

  
 

          
                            (3.6) 
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From (3.6): 

                                  (3.7) 

Projected area of the square LED chip: 

                             (3.8), where 

a – side of square LED chip emitting surface; 

α – angle between normal to the LED and photometer. 

And, finally, luminance can be calculated if (3.6) is substituted with (3.5) and 

(3.8):   

  
 

          
 

    

       
            (3.9). 

3.2.3.1 Description of a created photometer  

For the purpose of measuring direct illuminance from a single LED chip the 

photometer based on the apparatus used for the previous research at PKI was created 

(Eble-Hankins et al. 2009). 

 

Figure 3-6. Created photometer for measuring direct illuminance from 

a light source 

80/20 Inc.‟s extruded aluminum modular framing system was used for the 

construction of the apparatus. Created photometer (figure 3-6) has an adjustable-
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length arm (1) that can be rotated via a gear in 2.5 degree increments (2) from 90 

degrees above horizontal to 30 degrees below horizontal.  Illuminance meter (3) was 

placed on the arm of the photometer. For this purpose hole was drilled in the arm of 

the photometer and bolt was used to have a rigid and stable connection.  The tube (4) 

was placed along the operable arm covering the illuminance meter. One side of the 

tube was cut in such a way so that it can be mounted on the arm of the photometer and 

cover the sensor (figure 3-7). To aim the tube at the LED the adjustable rest (5) was 

used.  The aiming is done visually when illuminance meter is taken out (figure 3-8). 

The luminaire (6) was placed on a rigid table with adjustable legs.  The cover of the 

luminaire was taken off (figure 3-9). One of the fixtures‟ LED arrays was aligned 

with the pivot point (7) of the apparatus, so that the distance from the LED chip to the 

illuminance meter sensor is constant every time the angle of the photometer is 

changed. In order to eliminate the light from all other LEDs in arrays dark non-

transparent fabric (8) was used. At the same time fabric doesn‟t completely cover heat 

dissipation parts of the luminaire. 
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Figure 3-7. Tube covering the illuminance meter 

     

Figure 3-8. Aiming at a light source 
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Figure 3-9. GE Garage Luminaire without the cover and reflectors 

Multiple reflections in the tube add up to the indirect illuminance component. 

In order to have direct illuminance measurement only, it‟s necessary to minimize all 

reflections reaching the illuminance meter.  For this purpose a cardboard tube was 

created in a special way (figure 3-10).  It is 8.255 cm (3 ¼‟‟, C) diameter, 86 cm 

(34‟‟, A) height cardboard tube.  In order to eliminate reflections inside the tube two 

baffles were placed inside. One is located at the far end of the tube (its diameter is 

8.255 cm (3 ¼‟‟, C) with the aperture of 2.86 cm (1 1/8”, D) in the middle, the other 

one is located 27.94 cm (11‟‟, B) away from the sensor, so all reflections can be 

absorbed before they reach the illuminance meter‟s sensor. On the other hand, the 

areas of the apertures were picked in such a way that the diameter of baffles is big 

enough for the whole sensor area to be illuminated; this would give the correct 

measurement.  
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Figure 3-10. Dimensions of the created cardboard tube  

    

Figure 3-11. Changing gear in 2.5 degree increments  

Measurements of illuminance were taken twice moving photometer both 

directions every 2.5 degrees (figure 3-11). Then measurements were averaged (table 

3-1). There was no ambient light in the room during the measurements. To make sure 

LED chip was aimed at the center of the tube‟s aperture the aiming at LED was 

checked every 15 degrees. Re-aiming was performed when necessary.  

Every array in the luminaire is angled (figure 3-12), thus the normal angle to 

the array from the horizontal had to be determined. Goniometer was used to find the 
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angle, which is 47.5 degrees from horizontal. Then angles of the photometer were 

recalculated, so that normal to the LED is 0º. 

 

Figure 3-12. Normal to the LED array 

After obtaining illuminance values, luminous intensity curve (figure 3-13) and 

luminance values of the LED were calculated using formulas 3.5 and 3.9 (the results 

are in the table 3-1). 

An experiment of the variability of the light output over time of a single LED 

was conducted to make sure the output of the LED was constant. Both output and 

source voltage were measured in a 7-hour period (appendix C).  

3.2.3.2 Analysis of direct illuminance measurements from a single LED chip 

Table 3-1 has all measured illuminance levels and calculated luminance 

values. 

 Measured distance between the illuminance meter sensor and a single LED 

chip used in equation 3.9 is D =1.55 m (61‟‟).  

The LED chip has the same luminance values with 5% error within the 

investigated angles (-40 to 42.5 º) (table 3-1, figure 3-14). 
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Such a drastic difference in calculated average luminance value (19.44*10
6
 

cd/m
2
) and value measured with the luminance meter (6.97*10

6
 cd/m

2
) has to be 

explained (see sections 3.2.2.2 and 3.4.5.2).  
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Table 3-1. Measurements of direct illuminance from a single LED and calculations of luminous intensity, projected area and luminance 

values (measured on the 2/3/2012, 3-5:30pm) 

Measured values Redefined 

angle 

Calculated values 

Angles of 

photometer, 

degrees 

E, lux 

(from 

7.5 to 

90º) 

E, lux 

(from 

90 to 

7.5º) 

Angles from 

the normal to 

a single LED 

chip, degrees 

Eaverage, lux I(α), cd Projected area of 

the LED chip, m
2
 

L of a chip, cd/m
2
 

7.5 13.09 12.51 -40 12.8 29.36 1.50*10
-6 

19.55*10
6 

10 13.68 13.08 -37.5 13.38 30.69 1.55*10
-6

 19.73*10
6
  

12.5 14.14 13.51 -35 13.83 31.71 1.61*10
-6

 19.75*10
6
 

15 14.44 13.79 -32.5 14.12 32.37 1.65*10
-6

  19.58*10
6
 

17.5 14.67 13.99 -30 14.33 32.86 1.70*10
-6

 19.36*10
6
 

20 14.99 14.3 -27.5 14.65 33.59 1.74*10
-6

 19.32*10
6
  

22.5 15.26 14.59 -25 14.93 34.23 1.78*10
-6

 19.27*10
6
 

25 15.47 14.83 -22.5 15.15 34.75 1.81*10
-6

 19.19*10
6
 

27.5 15.69 15.03 -20 15.36 35.23 1.84*10
-6

  19.13*10
6
 

30 15.86 15.21 -17.5 15.54 35.63 1.87*10
-6

  19.06*10
6
  

32.5 16.03 15.31 -15 15.67 35.94 1.89*10
-6

  18.98*10
6
 

35 16.35 15.59 -12.5 15.97 36.63 1.91*10
-6

  19.14*10
6
 

37.5 16.45 15.845 -10 16.15 37.03 1.93*10
-6

  19.18*10
6
 

40 16.59 16.04 -7.5 16.32 37.42 1.94*10
-6

  19.26*10
6
 

42.5 16.68 16.12 -5 16.4 37.61 1.95*10
-6

  19.26*10
6
 

45 16.69 16.14 -2.5 16.42 37.64 1.96*10
-6

  19.22*10
6
 

47.5 16.59 16.2 0 16.40 37.60 1.96*10
-6

 19.18*10
6
 

50 16.55 16.21 2.5 16.38 37.57 1.96*10
-6

 19.18*10
6
 

52.5 16.52 16.17 5 16.35 37.49 1.95*10
-6

  19.20*10
6
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55 16.48 16.13 7.5 16.31 37.39 1.94*10
-6

  19.24*10
6
 

57.5 16.43 16.08 10 16.26 37.28 1.93*10
-6

  19.31*10
6
 

60 16.31 16.015 12.5 16.16 37.06 1.91*10
-6

  19.37*10
6
 

62.5 16.09 15.9 15 16.00 36.68 1.89*10
-6

  19.38*10
6
 

65 15.95 15.78 17.5 15.87 36.38 1.87*10
-6

  19.47*10
6
 

67.5 15.74 15.58 20 15.66 35.91 1.84*10
-6

  19.50*10
6
 

70 15.55 15.4 22.5 15.48 35.49 1.81*10
-6

  19.60*10
6
 

72.5 15.3 15.15 25 15.23 34.92 1.78*10
-6

 19.66*10
6
 

75 14.98 14.78 27.5 14.88 34.12 1.74*10
-6

  19.63*10
6
 

77.5 14.73 14.5 30 14.62 33.52 1.70*10
-6

  19.75*10
6
 

80 14.44 14.24 32.5 14.34 32.89 1.65*10
-6

 19.90*10
6
 

82.5 14.11 13.91 35 14.01 32.13 1.61*10
-6

 20.01*10
6
 

85 13.58 13.39 37.5 13.49 30.93 1.55*10
-6

 19.89*10
6
 

87.5 13.02 12.84 40 12.93 29.65 1.50*10
-6

 19.75*10
6
 

90 12.73 12.55 42.5 12.64 28.99 1.45*10
-6

 20.06*10
6
 

      Maximum 

luminance value, 

cd/m
2 

20.06*10
6
 

      Minimum  

luminance value, 

cd/m
2
 

18.98*10
6
 

 

      Error, % 5.37 

      Average 

luminance value, 

cd/m
2
 

19.44*10
6
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Figure 3-13. Luminous intensity curve of a single LED chip, cd  
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Figure 3-14. Calculated luminance values of a single LED chip depending on the angle, cd/m
2
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Manufacturer‟s data on luminous intensity (appendix B) and 

measured/calculated data were compared to check the correspondence between the 

values. The manufacturer‟s data is given in relative units in the form of a graph. For 

accurate comparison GetData software was used to obtain relative values (GetData 

Graph Digitizier software). Calculated luminous intensity values were translated into 

the relative units. Both sets of data were put onto one graph (figure 3-17).  

Manufacturer‟s data on luminous intesity curve was scanned. Numbers were 

assigned to the specified axes (figure 3-15). Origin of coordinates correspond to (0,0) 

and maximum values to (1,1). 

 

Figure 3-15. Specification of the axes over the scanned manufacturer’s 

data on luminous intensity curve (GetData Graph Digitizier software) 

The next step was to indicate points on the given curve with the point capture 

mode (figure 3-16). The software will estimate values according to the previously set 

coordinate system.  
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Figure 3-16. Obtaining data from the luminous intensity curve with 

the point capture mode (GetData Graph Digitizier software) 

Then obtained points of manufacturer‟s data were put on the graph in relative 

units along with the experimental data (figure 3-17). The graph gives an indication in 

a relative manor that the measured data is similar to the manufacturer‟s data. 
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Figure 3-17. Digitalized manufacturer’s and measured/calculated intensity curves of a single LED chip, relative units
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Outcome: With the assumption that the LED is a uniform light source the 

luminance value was obtained through direct illuminance measurements and 

subsequent calculations. The average luminance is 19.44*10
6
 cd/m

2
 .This value can 

be used in the comparison with the HDRI measurements.  

3.3 The implementation of the HDRI technique for lighting measurements 

This section discusses the implementation of the HDRI technique in lighting 

research.  Two cameras and lenses were tested in various experiments to determine 

best technique to capture a single LED chip. Then HDRI acquisition of a single LED 

chip was performed (section 3.4).  

3.3.1 Response curves for cameras and lenses 

Goal: To derive the response curves for two cameras with two lenses. 

The first step was to obtain camera response curves. The photographs were 

taken on the 2/10/12 sunny morning at 9:30 am in Omaha, NE.  For deriving RCs 

interior office environment with windows was chosen. Office had neutral black and 

white colors with smooth gradients and very bright and dark areas. Settings of the 

experiments and measurements are provided in the tables 3-2 – 3-5.  

Table 3-2. Settings for the response curve experiments 

Camera  CANON EOS Rebel T1i 500D 

Lens  CANON zoom lens EF28-105mm 1:3.5-4.5 II USM 

Luminance 

meter 

Minolta LS110 

Reflectance 

standard 

Labsphere (SRS-99-020, SRS-40-020,SRS-2-020), 99%, 40%, 

2% 

Scene Interior daylighting, neutral colors, big smooth gradient, very 

dark and very bright 

Lighting 

conditions 

Clear sunny day, no clouds 

ISO 100 

WB 6000K 

Aperture size F/8.0 

Quality Large  

Resolution 15M 4752x3168 

Metering mode Evaluative 

E correction Peripheral illumination correction is enabled 
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Sequence was 

taken 

Through the computer without touching the camera 

Focal length 28mm 

Focus 2m, 8‟ 

Shutter speeds 1/4000, 1/2000, 1/1000, 1/500, 1/250, 1/125, 1/60, 1/30, 1/15, 

1/8, ¼, ½, 1‟‟, 2‟‟,4‟‟ 

Mode Manual 

  

 

Figure 3-18. Experimental set-up for deriving the response curve 

Luminance meter and the camera were set on the tripods (figure 3-18). Photos 

were taken through computer with CANON EOS Utility Software. Measurements of 

reflectance standards‟ luminance values (with the luminance meter LS110) were taken 

before and after the image sequence (figure 3-19). Then obtained measurements were 

averaged (see tables 3-3 and 3-5). Image sequence took no more than 1.5 minutes per 

camera. 

Table 3-3. Luminance meter measurements of the reflectance standards 

Reflectance 

standard 

measurements with 

the luminance 

meter, cd/m
2
 

White 99% Grey 40% Black 2% 

Before the sequence 

of photos 

408.3 188 17.57 

After the sequence 

of photos 

398 184.9 16.72 

Average 403.15 186.45 17.145 
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Figure 3-19. Reflectance standards (99%, 40%, 2%) 

Photographs were fused in Photosphere. Measured RC coefficients can be 

obtained from Go>>Library>>Preferences>>Photosphere (Mac OS). 

red(r) = -6.439693e-03+ 4.521897e-01*r + -1.292528e+00*r^2 + 

1.804436e+00*r^3; 

green(g) = --5.809676e-03+ 4.179402e-01*g + -1.177586e+00*g^2 + 

1.723113e+00*g^3; 

blue(b) = -4.380568e-03+ 3.787649e-01*b + -1.076614e+00*b^2 + 

1.659887e+00*b^3. 

Then hand-held calibration was made at the grey standard (186.45 cd/m
2
) with 

the luminance meter. Calibration coefficient (CF) is 0.96. 

See tables 3-4 and 3-5 for the second camera and lens settings and 

measurements. 

Table 3-4. Settings for the response curve experiments 

Camera  CANON EOS 7D 

Lens  Canon EF 16-35mm f/2.8L II USM 

Luminance 

meter 

Minolta LS110 

Reflectance 

standard 

Labsphere (SRS-99-020, SRS-40-020,SRS-2-020), 99%, 40%, 

2% 

Scene Interior daylighting, neutral colors, big smooth gradient, very 

dark and very bright 

Lighting 

conditions 

Clear sunny day, no clouds 

ISO 100 

WB Custom 6500K 

Aperture size F/8.0 

Quality Large + RAW 
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Resolution 17.9 M 5184x3456 

Metering mode Evaluative 

E correction Peripheral illumination correction is enabled 

Sequence was 

taken 

Through the computer without touching the camera 

Focal length 16mm 

Focus 2m, 8‟ 

Shutter speeds 1/8000,1/4000, 1/2000, 1/1000, 1/500, 1/250, 1/125, 1/60, 1/30, 

1/15, 1/8, ¼, ½, 1‟‟, 2‟‟, 4‟‟ 

Mode Manual 

 

Table 3-5. Luminance meter measurements of the reflectance standards 

Reflectance 

standard 

measurements with 

the luminance 

meter, cd/m
2
 

White 99% Grey 40% Black 2% 

Before the sequence 

of photos 

421.8 192.8 18.75 

After the sequence 

of photos 

413.2 190.4 18.2 

  Average 417.5 191.6 184.8 

 

The sequence of images for the second camera and lens was calibrated at the 

grey card (191.6 cd/m
2
).  CF=1.038. 

RC coefficients: 

red(r) = -4.884809e-03 + 4.246084e-01*r + -1.162948e+00*r^2 + 

1.781711e+00*r^3; 

green(g) = -4.765016e-03 + 4.014215e-01*g + -1.095227e+00*g^2 + 

1.737057e+00*g^3; 

blue(b) = -2.361507e-03+ 3.261316e-01*b + -8.961151e-01*b^2 + 

1.610831e+00*b^3. 

Outcome: After obtaining response curves and making hand-held calibrations 

with the luminance meter, cameras can be used as luminance mapping devices. 

3.3.2 Optical vignetting  

Goal: To check optical vignetting effect under various conditions. 
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3.3.2.1 Description of experimental setting 

Vignetting effect can be assessed by making an HDRI of a uniformly lit 

surface. For this research vignetting effect was assessed by making an HDR image of 

the uniform luminance source. 

 Experimental setting for vignetting experiments is shown on figure 3-20. 

Uniform light source was set to have a certain level of luminance. Camera was set 

next to the sphere on a tripod, and the sequence of photos was taken through the 

computer with no ambient light on.  

 

Figure 3-20. Experimental set-up for evaluating optical vignetting 

effect 

The description of ULS can be found in Appendix B. 

3.3.2.2 Checking uniformity of the ULS  

Even though ULS is a variation of an integrating sphere and should in theory 

be very uniform, an experiment checking this was conducted.  

Ambient light was turned off.  Incandescent lamp had to be turned on for 

about 45 minutes in the sphere to stabilize the light output. Then measurements of 
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luminance were taken in five points with the calibrated LS110 luminance meter 

without any close-up lenses. Luminance meter was set on a tripod 1 meter away from 

the sphere.  

Luminance readings were taken in five points (see figure 3-21 and table 3-6). 

 

Figure 3-21. Five points of ULS of an exit port where luminance va lues 

are measured 

Table 3-6. Luminance readings of uniform luminance source in five points of an 

exit port 

Measuring point of the 

ULS exit port 

L, cd/m
2
 (before 

vignetting experiments) 

L, cd/m
2
 (between 

vignetting 

experiments) 

A 8418 8413 

B 8404 8405 

C 8427 8426 

D 8439 8440 

E 8410 8424 

 

To calculate the error of non-uniformity the following formula was used: 

Error = 
|     |

  
                 (3.10) 

Outcome: The non-uniformity of ULS is less than 1%. ULS can be 

considered perfectly uniform field to test the optical vignetting effect of the 

camera/lens combination.  
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3.3.2.3 Build-in peripheral illumination correction experiment 

Interesting aspect to investigate is the built-in peripheral illumination 

correction that should compensate vignetting effect within the camera (according to 

Canon website as of January 2011). CANON manual reports that camera has a profile 

for 25 lenses in the memory and more can be uploaded from the website. 

For the purpose of this experiment two HDRIs of ULS were obtained with the 

EOS7D CANON camera and CANON 16-35 mm zoom lens with peripheral 

illumination correction on and off (table 3-7). Other camera settings were set as 

recommended in section 2.2.1.2.   

Table 3-7. Camera settings to test the built-in peripheral illumination correction 

Camera  CANON EOS 7D 

Lens Canon EF 16-35mm f/2.8L II USM 

Goal Test the built-in peripheral illumination correction results for 

EOS7D and the lens 16-35mm  

WB 6500K 

Focal length 16mm 

Aperture size F/8.0 

Focus Manual, 0.28m 

Peripheral 

Illumination 

correction 

On/off  

Shutter speed 1/8000 – 4‟‟ (separated by 1 EV) 

 

Picoammeter readings were made before and after the photo sequence was 

taken to check the stability of the incandescent lamp voltage, so the light level was 

constant. It was found that voltage was stable during all the experiments (0.01% 

error). 

The HDRI was obtained by fusing LDR photos with the known response curve 

for the camera and lens combination in Photosphere. Photosphere provides some 

statistical data of the selected area (mean, median, minimum, maximum values and 

standard deviation in logarithm domain (see appendix E)) along with the histogram 

for luminance and the RGB values. By highlighting certain part of the image in 
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Photosphere, histogram is updated automatically according to the information within 

the selected rectangle.   

 

Figure 3-22.  HDRI of ULS with peripheral Illumination correction on 

(CANON EOS 7D with zoom lens 16-35 mm) 

 

Figure 3-23. HDRI of ULS and the analyzed areas 

To estimate the error due to the optical vignetting effect in the image, mean 

values for corner and center selected areas were obtained in Photosphere (figure 3-

23).  The highlighted area is about 350 pixels x 350 pixels. 

Mean value of the center is L1=7950 cd/m
2
.  
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Mean value of the corner is L2=5990 cd/m
2
.  

Error1 = 
|     |

  
      = 25% light fall off (figure 3-22). 

 

Figure 3-24. HDRI of ULS with peripheral Illumination correction off  

(CANON EOS 7D with zoom lens 16-35 mm) 

Mean value of the corner is 5320 cd/m
2
. 

Mean value of the center is 8050 cd/m
2
. 

Error2 = 
|     |

  
      = 34% light fall off (figure 3-24). 

For the convenient comparison both HDRIs were scaled to the same pseudo 

colors range (8500-5000 cd/m
2
). By comparing the two images it can be clearly seen 

that peripheral illumination correction does improve the quality of HDRI. 

The difference between the errors in luminance values due to the optical 

vignetting effect for two obtained images with peripheral illumination correction on 

and off is about 9%.  

Built-in peripheral illumination correction does improve the quality of HDRI, 

but not as it is necessary for photometric measurements. It doesn‟t compensate light 

fall off within the acceptable error. 
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 Initially camera is not developed for luminance measurements, so 

manufacturer wouldn‟t account for the accurate photometric measurements. Visually 

one can‟t see light fall off towards the edges on the photograph.  

Outcome: Image sequence used for creating HDRI should be taken with 

enabled built-in peripheral illumination correction in the camera, but this capability is 

not enough to compensate for vignetting effect during photometric measurements.  

3.3.2.4 Optical vignetting effect with different zoom settings 

Optical vignetting effect was checked for CANON EOS7D camera with the 

lens 16-35 mm lens at different zoom settings (table 3-8).  

Table 3-8. Camera settings to test the vignetting effect for one camera/lens 

combination with different zoom settings 

Camera CANON EOS7D 

Lens Canon EF 16-35mm f/2.8L II USM 

Goal Check the vignetting effect at different zooms 

WB 6500K 

Focal length 16mm/26mm/35mm 

Focus Manual, 0.28m 

Shutter speed 1/8000 – 4‟‟ (separated by 1 EV) 

Peripheral 

illumination 

correction 

On 

 

 

Figure 3-25. HDRI of ULS at 16 mm focal length 
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Analyzed areas are the same as in previous section (center and corner 350 

pixels by 350 pixels).  

Mean value of the corner is 5990 cd/m
2
. 

Mean value of the center is 7950 cd/m
2
. 

Error1 = 
|     |

  
      = 25% light fall off. 

 

Figure 3-26. HDRI of ULS at 26 mm focal length 

Mean value of the corner is 6720 cd/m
2
. 

Mean value of the center is 7980 cd/m
2
. 

Error2 = 
|     |

  
      = 16% light fall off. 
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Figure 3-27. HDRI of ULS at 35 mm focal length 

Mean value of the corner is 6760 cd/m
2
. 

Mean value of the center is 7710 cd/m
2
. 

Error3 = 
|     |

  
      = 12 % light fall off. 

All three images were scaled to the same pseudo color ranges (5000-8500 

cd/m
2
).  

Outcome: For EOS7D fitted with CANON zoom lens 16-35mm vignetting 

effect is reduced when zoomed in, which is consistent with some publications (Moeck 

et al. 2006). 

Vignetting effect depending on different variables should be thoroughly tested 

to accumulate more statistical data. This can be a separate study.  

3.3.3 Defining the experimental settings for capturing an HDRI of a single LED 

chip in GE garage fixture 

This section investigates experimental settings for capturing a single LED. 
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3.3.3.1. Capture of a single LED chip trial 

The luminaire was placed on a table. Only one LED chip was uncovered, all 

others were covered by non-transparent black fabric. Tripod was used for the camera 

EOS 7D fitted with CANON zoom lens16-35 mm (figure 3-28). Camera was aimed 

normal to the LED chip. The sequence of images of the LED was taken with the 

shutter speeds 1/8000-4‟‟, and the aperture size f/8 (other settings were set as 

recommended in section 2.2.1.2). The RC for this combination of camera/lens was 

used to fuse images in Photosphere (figure 3-29).    

 

Figure 3-28. Experimental setting for obtaining an HDRI of the LED 
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Figure 3-29. Pseudo colors HDRI of a single LED chip (obtained with 

CANON EOS 7D at 16 mm, normal to the LED) 

 

Figure 3-30. Statistical data for a single LED in Photosphere 

Luminance values of a single LED chip are (figure 3-30): 

Mean = 4.73*10
5
 cd/m

2
  

Min = 4.64*10
5
 cd/m

2 

Max= 4.75*10
5
 cd/m

2 
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Median = 4.75*10
5
 cd/m

2
 

Outcome: According to sections 3.2.2, 3.2.3, where luminance is measured 

with traditional methods, obtained HDRI luminance is underestimated. Therefore, 

further analysis has to be conducted. 

3.3.3.2 Analysis of a scene used for obtaining the response curve  

When RC for a specific combination of camera/lens is obtained, the maximum 

value within the calibrating scene is 1.01*10
5
cd/m

2
 (figure 3-31). 

 

Figure 3-31. Pseudo colors HDRI of camera calibration scene for 

obtaining RC for EOS 7D camera fitted with CANON zoom lens  16-35 

mm 

LED luminance in the HDRI is underestimated (section 3.3.3.1). Such a big 

error (98 % compared to the calculated luminance in section 3.2.3) might occur 

because the scene didn‟t have very high luminance values for camera to sample. 

In many scenes it is enough to give a wide range of luminances for camera to 

sample without providing extreme values. Extension to those extremes is not critical 

in most cases. Algorithm recovers the RC of the camera based on the given data. But 
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it might be critical to give very high values for the camera to sample in case of 

capturing a bright light source.  

Outcome: To try a calibration scene with a wider dynamic range for the 

purpose of obtaining the RC.  

3.3.3.3 Scene with a wider dynamic range 

Brighter scene will expand the luminance range for the camera to sample. The 

scene should include the sun, although, afternoon sun should not be used, because it 

will damage the sensor. In addition it is too bright. The chosen scene included the sun 

before the sunset. Measurements were taken on the 2/18/2012 at 4:21pm-4:25pm 

(figure 3-32). 

   

Figure 3-32. Calibration scene with a wider dynamic range for 

obtaining the RC of camera/lens combination 

The results for EOS 7D digital camera at 16 mm focal length are shown in the 

tables 3-9 and 3-10. Table 3-9 shows measurements of reflectance standards with the 

LS110 luminance meter. Luminance values obtained from the HDRI without applying 

the CF in Photosphere are shown in table 3-10. 

Table 3-9. Measurements with the LS110 luminance meter 

Reflectance 

standards/ 

L, cd/m
2
 

White 99% White 80% Grey 40% Black 2% 

Before the 

sequence of photos 

973.9 774.6 421.6 32.79 

After the sequence 

of photos 

989.5 774.4 424.7 32.65 
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Average 981.7 774.5 423.15 32.72 

  

Table 3-10. HDRI luminance values without applying the CF in Photosphere  

Reflectance 

standards/ 

L, cd/m
2
 

White 

99% 

White 

80% 

Grey 

40% 

Black 

2% 

Maximum value 

within captured 

scene 

Minimum 

value within 

captured 

scene 

Luminance in 

Photosphere 

without 

applying the 

CF 

1260 1220 787 288 411000 0.342 

 

From the obtained results it is clearly seen that reflectance standards are 

overestimated, while the luminance for the Sun is underestimated. Calibration will not 

solve the problem since CF will scale all values by the same amount (appendix D).  

Outcome: The scene with a wider dynamic range doesn‟t solve the problem. It 

is confirmed with the following experiment (not described in this work). The HDRI of 

LED fused with the RC obtained from this scene (with a wider dynamic range) is still 

low (the LED luminance value is 4.78*10
5
 cd/m

2
). Histograms of the shortest and 

longest exposures have to be checked.  

3.3.3.4. Exposures analysis with the histograms in Photoshop CS5 

Photoshop allows opening CR2 images (RAW image format for Canon digital 

cameras) without making adjustments to the color space. It allows viewing detailed 

histograms of the photo: 

Image>>Adjustments>>Levels. 

The shortest and the longest exposures were chosen from the sequence of the 

LED photographs used for fusing into the HDRI. They were checked in Photoshop 

CS5 (figures 3-33 to 3-36). 
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Figure 3-33. Histogram of the RGB values in the shortest exposure 

(1/8000’’) of the LED sequence 

 

Figure 3-34. Enlarged histogram of the RGB values in the shortest 

exposure (1/8000’’) of the LED sequence  
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Figure 3-35. Histogram of the RGB values in the longest exposure (4’’) 

of the LED sequence 

 

Figure 3-36. Enlarged histogram of the RGB values in the longest 

exposure (4’’) of the LED sequence 

According to section 2.2.1.2 Practical guidelines and appendix D, LED was 

not properly captured in this sequence. 

Outcome: Technique to capture a single LED chip was determined. The LED 

should be properly captured with the neutral density (ND) filter and RAW images 

(see appendix D for more details). 
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3.4 Measurements of a single LED chip in GE garage fixture with the HDRI 

technique 

ND filter NDA2-703-002 with τ=0.0094 that fits 28-105mm lens was used to 

make an HDRI of the LED. CANON EOS7D camera was used out of two available 

cameras because it allows taking a photograph with the shortest exposure of 

1/8000‟‟compared to 1/4000‟‟ for EOS T1i Rebel CANON camera. 

Response curve for this camera/lens combination had to be obtained and 

vignetting experiments had to be conducted. 

3.4.1 Response curve for Canon EOS 7D fitted with 28-105 mm CANON zoom 

lens 

Photographs for obtaining RC for Canon EOS 7D fitted with 28-105 mm 

CANON zoom lens were taken on the 3/5/2012 (table 3-11, figure 3-37). The 

procedure was similar to the one in section 3.3.1.  

Table 3-11. Settings for the response curve experiments 

Camera  CANON EOS7D 

Lens  CANON zoom lens EF28-105mm 1:3.5-4.5 II USM 

Luminance 

meter 

Minolta LS110 

Reflectance 

standard 

Labsphere (SRS-99-020, SRS-40-020,SRS-2-020), 99%, 40%, 

2% 

Scene Interior daylighting, neutral colors, big smooth gradient, very 

dark and very bright 

Lighting 

conditions 

Clear sunny day, no clouds 

ISO 100 

WB 6500K 

Aperture size f/8.0 

Quality Large + RAW 

Resolution 15M 4752x3168 

Metering mode Evaluative 

E correction Peripheral illumination correction is enabled 

Sequence was 

taken 

Through the computer without touching the camera 

Focal length 28mm 

Focus Appr. 2m, 8‟ 

Shutter speeds 1/8000 - 1‟‟ 
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Mode Manual 

 

RC coefficients: 

red(r) = 5.344807e-03  + -6.434375e-02*r + 2.280451e+00*r^2 + -

5.606413e+00*r^3+4.404040e+00*r^4; 

green(g) = 4.634515e-03+ -2.500448e-02*g + 1.946005e+00*g^2 +                             

-4.784106e+00*g^3+3.877550e+00*g^4; 

blue(b) = 3.387779e-03+ -2.147793e-02*b + 1.796577e+00*b^2 + -

4.638576e+00*b^3+3.879167e+00*b^4. 

Then hand-held calibration was made with the LS110 luminance meter at the 

grey standard (353.8 cd/m
2
). CF is 1.019. 

Table 3-12 Measurements of reflectance standards with LS110 luminance meter 

Reflectance 

standard 

measurements with 

the luminance 

meter, cd/m
2
 

White 99% Grey 40% Black 2% 

Before the sequence 

of photos 

672.6 351.1 23.75 

After the sequence 

of photos 

681.6 356.5 24.55 

Average 677.1 353.8 24.15 

 

 

Figure 3-37. Experimental set-up for deriving the response curve for 

EOS 7D and 28-105 CANON zoom lens combination 



101 

 

 

 

Outcome: After obtaining response curve and making hand-held calibration 

with the luminance meter, camera can be used as a luminance mapping device. 

3.4.2 Using raw2hdr Perl script for fusing a sequence of images 

The outcome of determining experimental conditions to capture the LED is to 

use RAW images and neutral density filter. A new approach uses raw2hdr in 

command-line tool on Macintosh computer (the script is written by G. Ward). The 

Perl script uses dcraw with the command-line HDR image builder hdrgen, and also 

requires the use of exiftool. It allows fusing RAW images into an HDR image 

(Photosphere doesn‟t accept RAW format). Then obtained HDRI was analyzed in 

Photosphere, where it can be calibrated (refer to appendix D - HDRI mailing lists, 

appendix E for Perl script settings and anyhere software website). 

In order to fuse a sequence of images the following line has to be typed in the 

command-line of the Mac Terminal (see appendix E for settings): 

raw2hdr –f –g –o image.hdr IMG_0???.CR2 

Digital images undergo many transformations during their lifetime (Reinhard 

et al. 2010). RAW format can be compared to film photography as being 

photography‟s digital equivalent of a negative. This format contains all “raw” pixel 

information from the digital camera‟s sensor. Sequence of adjustments has to be made 

for RAW format to be “developed” to JPEG or TIFF.  Those adjustments include: 

demosaicing, white balance, tone curves, contrast, color saturation, sharpening, 

conversion to 8-bit JPEG compression (lossy compression – image sizes are small, 

some image data is discarded), TIFF compression (lossless compression – info is 

preserved, it can be 16 bits per channel) (according to Cambridge in Color Website as 

of September 2011). JPEG processing has inherent color issues. RAW files bypass the 

problems of correction manipulations entirely because the data is linear (appendix E). 
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Working with RAW images is a reasonable way to get around most of the in-camera 

processing that undermines absolute CIE color accuracy (HDRI mailing lists as of 

September 2006).  

3.4.3 The HDRI capture of an incandescent light source 

The accuracy of measurements of a light source in the scene that can be 

obtained with raw2hdr was tested by capturing an incandescent light source (see 

appendix F). The results give confidence in using this approach. 

3.4.4 Optical vignetting effect 

The results of optical vignetting experiments were obtained for two software 

(Photosphere with JPEG images and raw2hdr Perl script with RAW). Then vignetting 

effect was analyzed for the area of the image where LED and reflectance standard 

were located. Experiments were conducted with the ULS same as in section 3.3.2.   

3.4.4.1 Comparing optical vignetting effect experiment results for two software  

Goal: To compare luminance measurement error due to optical vignetting 

effect for RAW images (raw2hdr Perl script) and JPEG images (Photosphere). 

Four HDR images were obtained for the purpose of this experiment. Camera 

EOS 7D with CANON zoom lens 28-105 mm was used. Photographs were made with 

two aperture sizes (f/4.5 and f/16) at 105 mm zoom. JPEG Images were fused in 

Photosphere with the known RC for the camera/lens combination and RAW images 

were merged with raw2hdr Perl script. HDRIs were calibrated in Photosphere. 

Then nine areas (300x280 pixels) of each HDRI were analyzed (figures 3-38 

and 3-39).  

Mean values of nine areas of each HDRI were obtained from Photosphere and 

put onto one graph (table 3-13, figure 3-40).   
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Figure 3-38. Nine areas (300x280 pixels) used for the vignetting 

analysis 

 

Figure 3-39. 1/4
th

 of an image for the vignetting analysis



 

 

 

 

1
0
4
 

Table 3-13. Mean, minimum, maximum values and average standard deviation of HDRIs fused with RAW and JPEG images 

Position 

on the 

image 

Fused with Hdrgen 

@105 mm 

aperture 4.5 

Fused with Hdrgen 

@105 mm 

aperture 16 

Fused with 

Photosphere @105 

mm aperture 4.5 

Fused with 

Photosphere @105 

mm aperture 16 

 Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1 7170 6690 7590 7850 7240 8300 6770 6210 7640 7420 6690 8830 

2 7430 6960 7890 7980 7380 8360 7060 6260 7760 7660 6770 8970 

3 7630 7070 8080 8080 7380 8590 7340 6610 8290 7830 6900 9180 

4 7850 7270 8300 8200 7580 8660 7630 6850 8790 8000 7120 9070 

5 8040 7470 8500 8290 7580 8730 7910 7150 9030 8140 7070 9620 

6 8200 7680 8600 8360 7790 8730 8110 7400 9030 8260 7260 9550 

7 8310 7770 8800 8390 7790 8870 8260 7290 9180 8300 7380 9620 

8 8420 7890 9010 8440 7880 9040 8380 7640 9180 8360 7380 9260 

9 8470 7890 9010 8480 7880 9180 8460 7640 9510 8480 7430 9400 

Average 

SD for 9 

positions 

109 113 101 115 

 



 

 

 

 

1
0
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Figure 3-40. Mean luminance values and standard deviations for 9 zones of four HDRIs (two are fused in Photosphere 

and - two in raw2hdr)
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Position in the image (edge - left, center - right) 

Vignetting effect for two aperture sizes and two software 

raw2hdr Aperture 4.5

raw2hdr Aperture 16

Photosphere Aperture 4.5

Photosphere Aperture 16

All images are taken @105mm zoom 



106 

 

 

 

Outcome: For the same aperture size optical vignetting effect is smaller for 

the HDRI created with RAW images. More detailed research on vignetting effect for 

different software, aperture sizes and other variables can be performed in a future 

work.  

3.4.4.2 Analysis of the critical area of the HDRI where LED and reflectance 

standard’s calibration zone are located  

Vignetting effect was analyzed for the area of the image where the LED and 

reflectance standard‟s calibration zone are located (figures 3-41 and 3-42). 

Experiments were conducted with ULS as in section 3.3.2.  The size of the selected 

area can be observed in the upper right corner in Photosphere (pixels). RAW images 

of the ULS were taken with two different aperture sizes (f/4.5 and f/16) at 105 mm 

focal length and fused with raw2hdr. 

 

Figure 3-41. Part of the image with locations of the LED and 

reflectance standard’s calibration zone 
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Figure 3-42. HDRI of ULS with the area of the LED and reflectance 

standard’s calibration zone’s locations (in pseudo colors) 

The position of the LED and reflectance standard‟s calibration zone were 

estimated based on pixel locations. LED is located in the area 7 on the other half of 

the image; while reflectance standard‟s calibration zone is located in area 5 (figure 3-

43). 

 

Figure 3-43. Mean luminance values and standard deviations for 9 

zones of four HDRIs of the LED and reflectance standard calibration 

zone’s location 
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Figures 3-44 – 3-47 show HDRIs of ULS with locations of LED and 

reflectance standard‟s calibration zone. 

 

Figure 3-44. The LED location on the image testing optical vignetting 

effect (aperture 4.5, fused in raw2hdr @105mm) 

 

Figure 3-45. Reflectance standard’s calibration zone location on the 

image testing optical vignetting effect (aperture 4.5, fused in raw2hdr 

@105mm) 
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Figure 3-46. The LED location on the image testing optical vignetting 

effect (aperture 16, fused in raw2hdr @105mm) 

 

Figure 3-47. Reflectance standard’s calibration zone location on the 

image testing optical vignetting effect (aperture 16, fused in raw2hdr 

@105mm) 

To calculate the error between luminance values due to the optical vignetting 

effect (HDRI of ULS), mean values of areas with locations of the LED and 

reflectance standard‟s calibration zone were used (table 3-14). 

Error = 
|           |

     
                   (3.11) 
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Table 3-14. Mean values used for calculating the luminance error due to the 

optical vignetting effect (in red) 

Position 

on the 

image 

Fused with Hdrgen 

@105mm aperture 

4.5 

Fused with Hdrgen 

@105mm aperture 

16 

 Mean Min Max Mean Min Max 

1 7170 6690 7590 7850 7240 8300 

2 7430 6960 7890 7980 7380 8360 

3 7630 7070 8080 8080 7380 8590 

4 7850 7270 8300 8200 7580 8660 

5 8040 7470 8500 8290 7580 8730 

6 8200 7680 8600 8360 7790 8730 

7 8310 7770 8800 8390 7790 8870 

8 8420 7890 9010 8440 7880 9040 

9 8470 7890 9010 8480 7880 9180 

 

For the aperture f/4.5 the error equals to 3.2%, for aperture f/16 - error 1.2% 

Outcome: For the purpose of this research vignetting effect is not taking into 

consideration since all the HDRI measurements are taken in the parts of the image, 

where luminance error due to vignetting effect is less than 5%.  

3.4.5   Capturing a single LED chip with the ND filter in RAW format and fusing 

images with raw2hdr Perl script 

3.4.5.1 Experimental setting 

The LED was captured with CANON EOS 7D fitted with 28-105 mm at 105 

mm focal length. If to use only one aperture size (for example f/16) while capturing 

the LED chip on the long exposure end (so that there are no RGB values below 28), 

exposure time has to be too long (more than 5 minutes for one photograph). This is 

unacceptable for making images of fast-changing lighting environments (for e.g. the 

sun and sky). In this experiment two aperture sizes were used (f/4.5 and f/16). Similar 

approach is used in literature (Stumphel et al. 2004, Inanici 2010). Shutter speeds 

used were 1/8000-1/15‟‟ at the aperture size f/16, and 1/30-30‟‟ at the aperture size 

f/4.5. Neutral density filter NDA2-703-002 with τ=0.0094 was used. Camera was 

normal to the LED (figure 3-48). Image sequence was fused in raw2hdr (appendix E) 
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and calibrated in Photosphere at white reflectance standard (ρ = 99%) = 155.3 cd/m
2
 

(figure 3-49). 

   

Figure 3-48. Experimental setting for making an HDRI of a single LED 

chip 

 

Figure 3-49. HDR image of a single LED chip and reflectance standard 

(ρ = 99%). Calibration at white reflectance standard 
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Figure 3-50. HDR image of a single LED chip and reflectance standard 

(ρ = 99%) in pseudo colors 

To make sure that there are no RGB values lower than 28 for the longest 

exposure (RAW format) and no values higher than 227 for the shortest, histograms 

were checked in Photoshop CS5 (figures 3-51 - 3-54).  

 

Figure 3-51. Histogram of the RGB values of the shortest exposure 

(1/8000’’, f/16, ND NDA2-703-002) in a single LED sequence 
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Figure 3-52. Enlarged histogram of the RGB values in the shortest 

exposure (1/8000’’, f /16, ND NDA2-703-002) in a single LED sequence 

 

Figure 3-53. Histogram of the RGB values in the longest exposure 

(30’’, f/4.5, ND NDA2-703-002) in a single LED sequence 
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Figure 3-54. Enlarged histogram of the RGB values in the longest 

exposure (30’’, f/4.5, ND NDA2-703-002) in a single LED sequence 

From figures 3-52 and 3-54, for the shortest exposure all RGB values are 

below 127.5, and the longest exposure histogram doesn‟t have values below 70. 

Outcome: Histograms show that sequence used for the HDRI acquisition was 

captured properly, now it can be fused for further analysis.  

3.4.5.2 Analysis of average luminance measurements with the HDRI 

Image sequence was fused with raw2hdr and calibrated in Photosphere at 

white reflectance standard (ρ = 99%) = 155.3 cd/m
2
 (figure 3-49). Then LED chip 

was enlarged, and HDRI was viewed in pseudo colors (figure 3-55).  

Depending on the area within which the measurement is averaged in 

Photosphere, the readings change dramatically.  

Mean value obtained for the selected area smaller than the LED chip is 

2.04*10
7
 cd/m

2
 (figure 3-55).  

The size of the LED chip in the image is 48 pixels x 48 pixels (Photosphere).  

The area that LS110 luminance meter measures is 23% more than the size of LED 

chip (section 3.2.2). It corresponds to a size of about 53 pixels x 53 pixels in the 

image. 
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Figures 3-56(A-E) show the mean luminance values when this area is moved 

around the LED chip. It can be compared with the value measured with LS110 and 

the close-up lens. 

Aiming at the LED with the luminance meter is very difficult (section 3.2.2). 

This unreliable result is confirmed by luminance values obtained from the HDRI 

when selected area is moved around the LED chip (it measures LED with the borders 

outside of the chip). The range of mean values is (7.46-9.85)*10
6
 cd/m

2
. 

 
Figure 3-55. Selected area (39x37 pixels) is smaller than the LED chip 

(1.4 mm x 1.4 mm, 48 pixels x 48 pixels).  Mean value 2.04*10
7
 cd/m

2
. 

 

Figure 3-56A. Selected area (51x49 pixels) is moved around the LED 

chip. Mean value 9.32*10
6
 cd/m

2
. 
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Figure 3-56B. Selected area (51x49 pixels) is moved around the LED 

chip. Mean value 9.85*10
6
 cd/m

2
. 

 

Figure 3-56C. Selected area (51x49 pixels) is moved around the LED 

chip. Mean value 7.46*10
6
 cd/m

2
. 
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Figure 3-56D. Selected area (51x49 pixels) is moved around the LED 

chip. Mean value 8.04*10
6
 cd/m

2
. 

 

Figure 3-56E. Selected area (51x49 pixels) is moved around the LED 

chip. Mean value 8.17*10
6
 cd/m

2
. 

The next sequence (figures 3-57 A-D) shows the LED chip in pseudo colors 

with scale reduced in every subsequent image. It shows the non-uniformity of a single 

LED chip and LED‟s brightest parts. 
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Figure 3-57A. The non-uniformity of a single LED chip 

 

Figure 3-57B. The non-uniformity of a single LED chip 
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Figure 3-57C. The non-uniformity of a single LED chip 

 

 

Figure 3-57D. The non-uniformity of a single LED chip 
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The size of the LED chip in the image is 48x48 pixels (Photosphere) (figure 3-

58). Obtained mean luminance value is 19.74*10
6
 cd/m

2
.  

 

Figure 3-58. Selected area of the LED chip (48x48 pixels) in pseudo 

colors 

Then image was cropped to obtain only a single LED chip in the image (figure 

3-59).  

The analysis of the HDR image was performed with the pvalue Radiance tool 

(appendix E). Pixel-by-pixel values were obtained with the following code in the 

terminal: 

pvalue –o –pG chipONLY.hdr 

This will give 3 columns of data: x position, y position and green channel 

values. Green channel values have to be multiplied by *179 (see appendix D) in order 

to obtain luminance values. If only green channel values are needed without x,y 

coordinates, the following has to be typed: 

pvalue –o –pG –d chipONLY.hdr 

And the maximum and minimum values can be found with pextrem tool (then 

multiplied by 179 as well): 
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pextrem –o image.hdr 

 

Figure 3-59. Cropped image of a single LED chip in pseudo colors (48 

pixels by 48 pixels) 

The data obtained with the pvalue Radiance tool was put onto the graph to see 

the distributions of luminance values along the x axis (figure 3-60, 3-61).  
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Figure 3-60. Luminance values obtained with the pvalue Radiance tool 

from a cropped HDRI of a single LED (48 pixels by 48 pixels) 

 

Figure 3-61. X coordinate on the cropped HDRI of a single LED 

(pseudo colors) 
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Then luminance values were sorted in an ascending order in Excel. The data 

was described with the frequency distribution histogram (figure 3-62). Bins were 

made in 2*10
6
 cd/m

2
 increments (table 3-15); the number of pixels in every bin was 

calculated to obtain the frequency histogram.   

Table 3-15. Bins of luminance values and number of pixels in every bin 

Bins 

Frequency 

(number of 

pixels in the 

range) 

1000000-3000000 3 

3000000-5000000 6 

5000000-7000000 8 

7000000-9000000 4 

9000000-11000000 5 

11000000-13000000 12 

13000000-15000000 38 

15000000-17000000 168 

17000000-19000000 657 

19000000-21000000 880 

21000000-23000000 369 

23000000-25000000 136 

25000000-27000000 79 

27000000-29000000 33 

29000000-31000000 2 

 

 



 

 

 

 

1
2
3

 
 

 

Figure 3-62. Frequency distribution of luminance values within a single LED chip obtained with the pvalue Radiance 

tool from a cropped HDRI 
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Mean luminance for the LED chip obtained from the HDRI is 19.74*10
6 

cd/m
2
. 

The error of the calculated average luminance value (section 3.2.3) compared 

to the mean luminance value of a single LED chip obtained from the HDRI was 

calculated: 

Error = 
|                           |

                
                  (3.12) 

Error = 
|                   |

              =1.5%                (3.13)     

Outcome: The HDRI captured a single LED (CANON EOS 7D fitted with 

CANON zoom lens 28-105mm at 105 mm, shutter speed 1/8000-1/15‟‟ at the aperture 

size f/16, and 1/30-30‟‟ at the aperture size f/4.5; neutral density filter NDA2-703-002 

with τ=0.0094 was used, sequence was fused with raw2hdr) with an error of about 

1.5% compared to the calculated value (obtained through illuminance measurements). 

Peak values in HDRI correspond to non-uniformity of a single LED chip. Low values 

in the luminance meter measurements indicate averaging areas of the LED luminance 

with its non-illuminating surroundings.  
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Chapter 4 Results and discussion 

This chapter discusses the challenges and results of current research and gives 

ideas for future work.  

4.1 Discussion of results and recommendations 

Challenges in measuring the luminance of a single LED chip are the 

following: 

1. LED chip has a very small emitting surface (1.4 mm square side).   

2. LED chip has a very high luminance (average luminance is in the range of 

(19.44-19.74)*10
6
 cd/m

2
).  

Two ways of measuring luminance with traditional methods were considered.  

 Measuring luminance of a single LED chip with a LS110 luminance 

meter even with a specific close-up lens (#135) gives unreliable results due to 

inability of the meter‟s measuring area “fit” into the measured area of a light source 

(meter can measure a minimum diameter of 1.8 mm at minimum distance of 447 

mm). 

If the luminance meter is aimed perfectly at the center of the LED chip the 

emitting chip covers only 77% of the LS110 measurement circle.  If it is not aimed 

accurately, the average luminance will result in an even lower value since more of the 

non-illuminating area around the LED chip will be captured by a measuring circle of 

the luminance meter.  

When measuring luminance of the LED chip, it exceeds the measuring range 

of the luminance meter (which is 999900 cd/m
2
 for LS110). Thus, neutral density 

filter has to be implemented. For this task NDA2-703-002 with 𝞽=0.0094 is used.  

The highest obtained luminance is 6.97*10
6
 cd/m

2
.  
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 The second method of measuring LED luminance is through direct 

illuminance measurements in a constructed photometer. Luminances are calculated 

through obtained luminous intensity curve and projected area of a single LED chip. 

LED is a point light source which allows using inverse cosine square law. The 

assumption that LED chip is a uniform light source is made.  

Luminous intensity curve for the measured LED chip has a cosine shape in 

polar coordinate system. The chip has same luminance values within the investigated 

angles (-40 to 42.5 degrees) with 5% error. 

The average luminance obtained from illuminance measurements in a created 

photometer and subsequent calculations is 19.44*10
6
 cd/m

2
 .  

Such a drastic difference in calculated average luminance (19.44*10
6
 cd/m

2
) 

of a single LED chip and value measured with the luminance meter (6.97*10
6
 cd/m

2
) 

exists due to aiming problems. It is confirmed with the HDRI experiments. 

 Vignetting effect of the camera/lens combination was tested with 

uniform luminance source. The non-uniformity of ULS is less than 1%.  

The difference between the errors of luminance values due to optical 

vignetting effect for two obtained images with peripheral illumination correction on 

and off is about 9%. Peripheral illumination correction does improve the quality of 

HDRI, but not as it is necessary for the photometric measurements.  Initially camera is 

not developed for luminance measurements, so manufacturer wouldn‟t account for the 

accurate photometric measurements. Visually one can‟t see light fall off towards the 

edges on the photograph. Image sequence used for creating an HDRI is taken with 

enabled peripheral illumination correction in the camera. 

Vignetting effect for EOS7D fitted with CANON zoom lens 16-35 is reduced 

when fully zoomed in (at 35 mm focal length). 
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Vignetting effect depending on different variables should be thoroughly tested 

to accumulate more statistical data. This can be a separate study.  

 Digital images undergo many transformations during their lifetime. 

RAW files bypass the problems of correction manipulations entirely because the 

response is linear. Working with RAW images is a reasonable way to get around most 

of the in-camera processing that undermines absolute CIE color accuracy. 

For the same aperture size vignetting effect is smaller for the HDRI created 

with RAW images compared to the fused with JPEG images (at the aperture size f/4.5 

at 105 mm focal length vignetting effect for the HDRI fused with JPEG 20.0%, with 

RAW 15.3%).  

 HDRI‟s ability to capture an incandescent light source ( RAW images 

are fused with raw2hdr) compared to the luminance meter measurement is within 1.4 

% error at 28 mm and 105 mm focal lengths. The results give confidence in using 

RAW images for the HDRI creation, calibrating and analyzing an image in 

Photosphere afterwards. 

 If only one or few pixels have certain value in a range of (0, 255), RGB 

histograms in Photoshop CS5 show it clearly.  Thus, it allows determining if the 

sequence used for making the HDRI is captured properly. While CANON Digital 

Photo Professional software shows histograms of photos, if only few pixels 

correspond to a specific value of brightness, it cannot be seen on histogram, which 

can lead to photometric mistake. Only general shape of exposures can be seen. 

Photosphere doesn‟t allow viewing histogram for a single JPEG photo. It shows 

statistics for only an HDR image obtained from a sequence.  

 Flare is an issue when a bright light source is captured. When 

calibrating an image, for the correct results calibration should be done in the area 
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where lens flare doesn‟t visually affect the image. The red area on the figure 4-1 is the 

area of the reflectance standard that is affected by the flare. If the image is calibrated 

in that area it would lead to a photometric mistake. 

 

Figure 4-1. Calibrating an image in the zone where flare doesn’t affect 

the image 

 LED is captured with CANON EOS 7D fitted with 28-105 mm at 105 

mm focal length. If to use only one aperture size (for e.g. f/16) while capturing the 

LED chip on the long exposure end (so that there are no RGB values below 20) with a 

ND filter, exposure time has to be too long (more than 5 minutes for one photo). This 

is unacceptable for taking images of fast-changing lighting environments (for e.g. the 

sun and sky).  

Two aperture sizes are used (f/4.5 and f/16). Vignetting effect depends on 

aperture size, so it has to be checked. For the purpose of this research optical 

vignetting effect is not taking into consideration since all the HDRI measurements are 
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taken in the parts of the image, where luminance error due to vignetting effect is less 

than 5%.  

Shutter speeds used are 1/8000-1/15‟‟ at the aperture size f/16, and 1/30-30‟‟ 

at the aperture size f/4.5. Neutral density filter NDA2-703-002 with τ=0.0094 is used. 

Camera is normal to the LED. Image sequence is fused in raw2hdr and calibrated in 

Photosphere at white reflectance standard (ρ = 99%) = 155.3 cd/m
2
. 

Depending on the area within which the measurement is averaged in 

Photosphere, the readings change dramatically.  

Mean value obtained for the selected area smaller than the LED chip is 

20.4*10
6
 cd/m

2
 . The size of the LED chip in the image is 48 pixels x 48 pixels 

(Photosphere).  The area that LS110 luminance meter measures is 23% more than the 

size of the LED chip (section 3.2.2). It corresponds to a size of about 53 pixels x 53 

pixels in the image. 

Aiming at the LED with the luminance meter is very difficult. The inability of 

luminance meter to “fit” into measuring area of the LED gives unreliable results. It is 

confirmed by luminance values obtained from the HDRI when selected area (around 

53 pixels by 53 pixels) is moved around the LED chip. It measures LED with the 

borders outside of the chip. The range of mean values is (7.46-9.85)*10
6
 cd/m

2
.  

Obtained mean luminance value for the LED chip in Photosphere is 19.74*10
6
 

cd/m
2
.   

The error of the calculated average luminance compared to the mean 

luminance of a single LED chip from the HDRI (equation 3.12): 

Error = 
|                           |

                
                   

Error = 
|                 |

        
     =1.5%                     
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The summary of luminance measurements of a single LED chip is showed in 

table 4-1. 

Table 4-1. Luminance values obtained with traditional methods and acquired 

with the HDRI (RAW images are fused in raw2hdr). 

 HDRI luminance, 

cd/m
2
 

Measurements, 

cd/m
2 

Error, % 

Area smaller than a 

single LED chip 
20.4*10

6
 - - 

Area of a single 

LED chip  

(48 pixels x 48 

pixels) 

(1.4mm x 1.4 mm) 

19.74*10
6
 19.44*10

6
 

(Illuminance 

meter and 

calculations) 

1.5 

Standard Deviation (SD) 

2.92*10
6
  

1.96SD   
5.73*10

6
  

95% confidence 

interval  

(19.74+0. 57)*10
6
  

Area 23% bigger 

than a single LED 

chip  

(53 pixels x 53 

pixels) 

(7.46-9.85)*10
6
 

Average 8.58*10
6 

6.97*10
6
 

(Luminance 

meter) 

19 

 

HDRI captured a single LED (CANON EOS 7D fitted with CANON zoom 

lens 28-105 mm at 105 mm, shutter speed 1/8000-1/15‟‟ at the aperture size f/16, and 

1/30-30‟‟ at the aperture size f/4.5; neutral density filter NDA2-703-002 with 

τ=0.0094 and fused with raw2hdr) with an error of about 1.5% compared to the 

calculated average luminance (obtained through illuminance measurements) (figure 4-

2).  
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Figure 4-2. Frequency distribution of luminances within a single LED 

chip obtained from the HDRI; mean luminance from the HDRI; and 

average value from illuminance measurements/calculations  

The illuminance (T10) and luminance (LS110) meters give average 

measurements. The luminance meter gives an average within the measuring circle, 

and the illuminance meter averages the signal over the whole sensor area of the 

receiver, while the HDRI has a capability of high resolution information from many 

pixels within the image. Peak values in HDRI correspond to non-uniformity of a 

single LED chip. Since the smallest measuring size of the luminance meter measures 

LED chip with non-illuminating surroundings, it cannot “catch” non-uniformities with 

higher values that are smaller than the measuring area. The result is low luminance.    

The HDRI technique shows positive results in capturing a bright light source 

with a narrow light distribution (a single LED chip). It gives confidence in using the 

technology in lighting research and to expand its capabilities. Although many 

challenges exist, they can be address in future work.  
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4.2 Future research 

 For the future research more measurements of LED chips under a 

variety of experimental settings should be conducted to acquire more statistical data 

on HDRI‟s ability to accurately capture photometric data.   

 Measuring the whole luminaire that consists of arrays with multiple 

LEDs is an interesting area to investigate. Flare might play a critical role in making an 

HDR image of the LED fixture because of the multiple ghost images. Also, vignetting 

filter has to be applied, since big light fall off is observed towards the edge of the 

image.  

 In the application with LED luminaires installed, camera zoom settings 

might have a significant impact on results of luminance measurements.  

 More detailed research on vignetting effect for different software, 

aperture sizes and other variables should be performed in a future work. Vignetting 

experiments with peripheral correction on/off fused in different software might be a 

part of it.  

 The spectral luminous efficiency function underestimates perceived 

LEDs‟ intensity of wavelengths toward the blue end of the spectrum. It might be 

investigated while obtaining luminance values with the HDRI. 
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Appendix A: Table of experimental settings from studies of HDRI in lighting 
Table A. Experimental settings from studies of HDRI validation in lighting research 

Features 

/Settings 

in papers 

(Inanici 2006) (Anaokar et al. 

2005) 

(Moeck et al. 

2006) 

(Moeck 2007) (Chung et al. 

2010) 

(Cai et al. 

2011) 

(Stumpfel 

et al. 

2004) 

 

(Inanici 2010) 

Camera Nikon Coolpix 

5400 digital 

Nikon Coolpix 5400, 

digital camera with a 

5.2 megapixel CCD 

array 

Nikon Coolpix 

5400; 

Olympus C-5060 

Wide Zoom built 

in 2003 (for 

building) 

Canon Eos 350 

D Digital Rebel 

XT, digital SLR 

camera with 8 

megapixels 

Canon EOS 350D  Canon EOS 

350D  

Canon 

EOS-1Ds 

Canon EOS 

5D 

Lens Fisheye Nikon 

FC-E9  

F2.8-F4.6 4X optical 

zoom lens. Focal 

range of 5.8 - 24 

mm, which is 

equivalent to 28 - 

116 mm for 35 mm 

film 

f2.8 - f/8.0 zoom 

lens (for 

building) 

Canon zoom lens Ultra wide angle 

lens Sigma 10-20 

mm F4-5.6 EX DC 

HSM human vision  

Ultra wide angle 

lens Sigma 10-

20 mm F4-5.6 

EX DC HSM 

human vision  

8mm 

Sigma 

fisheye 

lens 

Sigma 8 mm 

F3.5 EXDG 

Focal 

length  

5.6 mm - 24mm  10 mm 10, 14, 20 mm     

Angle of 

view 

190° - - - 96° horizontal view -  180° angle of 

view and equi-

angle 

projection 

properties 

White 

balance 

Daylight Preset. Matrix Auto 

White Balance with 

TTL control 

Automatic white 

balance 

- Daylight Fluorescent  Daylight 

Auto-

bracketing 

Off - - -  On, Automatic 

Exposure 

Bracketing mode -

4EV to 4EV of the 

metered exposure 

On, 4 ranges of 

exposure values 

Special 

program 

 

Image size 2592x1944 - 2592 x1944 JPEG 3456 by Large/fine Large/fine   
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pixels pixels. HDRI 

1296 x 972 

2304 pixels (JPEG) 

(3456_2304 

pixels, PPI 72) 

Sensitivity ISO 100  - - ISO 100 ISO 100  ISO 100  ISO100 

Exposure 

mode 

Manual exposure 

mode  

Aperture priority - Aperture priority Aperture priority  

 

-  Manual 

exposure mode 

Description 

of settings 

in exposure 

mode 

Aperture is fixed 

f/4.0. 

Shutter speeds 

2s to 1/4000s. 

F-stop 7.9 (no zoom) 

Shutter speed of the 

camera was changed 

in one step 

increments 2s to 

1/4000s 

Building. F-stop 

is f-2.8 

The shutter 

speeds are 1/5, 

1/8, 1/10, 1/15, 

1/20, and 

1/30.  

f-stop 5.6, 

shutter speeds 

1/4000, 1/2500, 

1/1250, 1/800, 

1/400, and 1/200 

Aperture is fixed 

f/8.0. 

Shutter speeds 2s 

to 1/4000s. 

AF one shot, AE 

lock, exposure 

compensation none 

Six apertures 

were 

investigated f/4 

(at fј10mm 

only), f/5.6, f/8, 

f/11, f/16, f/22, 

AF one shot, 

AE lock, 

exposure 

compensation 

none, Shutter 

speed with  in 

sec, with 1 EV 

step 30, 15, 8, 4, 

2, 1, 0.5, 1/4, 

1/8, 1/15, 1/30, 

1/60, 

1/125, 1/250, 

1/500, 1/1000, 

1/2000, 1/4000 

F4, f 16 

Aperture 

Shutter 

speed of 1-

1/8000‟‟, 

3.0 neutral 

density 

filter 

F5.6 for the 

sky, f4 shutter 

speeds 15s to 

1/30 and f16 

for the sun 

shutter speeds 

1/15-1/8000. 

Neutral density 

filter Kodak 

Wratten 2 

Optical Filter 

Software 

used for 

creation 

HDRI 

Photosphere - Photosphere - - Photosphere  Photosphere 

Scene for 

analysis 

Black painted 

room without 

daylight to office 

spaces and 

outdoors 

For dependence of 

error on color – 

Color Munsell 

Chips.  

- Targets outdoors Interior scene with 

very dark, very 

bright, large neutral 

grey and white 

surfaces with 

Target indoors 

with fluorescent 

lighting 

Outdoors Outdoors 
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smooth gradients. 

Color targets 

indoor with 

daylight without 

direct sun 

Light 

sources 

Incandescent,  

fluorescent, 

metal halide 

Fluorescent  

CCT=4100K 

CRI=80 

Metal Halide 

Sylvania 

MP70/U/Med 

CCT=3000K 

CRI=75 

Mercury Vapor GE 

H250WDX 37-5 

CCT=4000; CRI=45 

- Sunny day, 

outdoors 

Stable overcast sky 

conditions 

Fluorescent, low 

and high 

ambient light 

level 

Daylight 

and the 

sun 

Daylight and 

the sun 

Targets Grey targets 

(ρ=4-87%), grey 

28% with white 

surrounding87%, 

and black 4%, 

white-then-

black, black-

then-white. The 

Macbeth 

ColorChecker. 

Grey targets, color 

Munsell chips 

Twelve sized 

patches on a 

white paper for 

assessment of E; 

Application on 

architectural 

elements of a 

building 

Matt grey cards, 

140 color 

checkers 

24 colors X-Rite 

Color Checker 

54 grey, 18 

colored targets, 

light source 

The sun 

and sky 

The sun and 

sky 
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Appendix B: Specification of equipment 
 

Cameras: 

 

CANON EOS 7D 

CANON Rebel T1i 

 

Lenses:  

 

Canon EF 28-105mm f/3.5-4.5 II USM Lens (according to Photo reports websites as 

of October 2011) 

Horizontal viewing angle 65° - 19° 20' 

Diagonal viewing angle75° - 23° 30' 

 

Canon EF 16-35mm f/2.8L II USM 

 

LED luminaire:  

GE lighting. Evolve™ LED Garage Light - Medium Square  

EGMS-0-WL-N-60-P-C-10-white  

0=120-277; 

WL=wide; 

N=N/A distribution orientation; 

60=LED color temperature 6000K; 

P=Polycarbonate; 

C=Clear with Frosted Portion; 

10=Surface Mounted; 

White=Color. 

 

http://en.wikipedia.org/wiki/Angle_of_view
http://en.wikipedia.org/wiki/Angle_of_view
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LEDs used in the luminaire: 

 

CREE LED (CREE LED lighting website)  

First LED in the array was measured (Cool white 6000K). 
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NOTES 

Lumen Maintenance Projections 

Based on internal long-term reliability testing, Cree projects royal blue, blue, green 

and white XLamp XP-E LEDs to maintain an average of 70% lumen maintenance 

after 50,000 hours, provided the LED junction temperature is maintained at or below 

135°C and the LED is operated with a constant current of up to 700 mA. 

Cree currently recommends a maximum drive current of 700 mA for XLamp XP-E 

white in designs seeking the ENERGY STAR* 35,000 hour lifetime rating (≥ 94.1% 

luminous flux @ 6000 hours) or 25,000 hour lifetime rating (≥ 91.8% lu- 

minous flux @ 6000 hours). 

 

Please read the XLamp Long-Term Lumen Maintenance application note for more 

details on Cree‟s lumen maintenance testing and forecasting. Please read the XLamp 

Thermal Management application note for details on how thermal design, ambient 

temperature, and drive current affect the LED junction temperature. 

 

* These lifetime ratings are based on the current ENERGY STAR Solid State 

Lighting Luminaires V1.1 (December 12, 2008) and ENERGY STAR Integral LED 

Lamps V1.0 (December 3, 2009) lumen maintenance criteria.  

 

Moisture Sensitivity 

In testing, Cree has found XLamp XP-C & XP-E LEDs to have unlimited floor life in 

conditions ≤30ºC / 85% relative hu-midity (RH). Moisture testing included a 168 hour 

soak at 85ºC / 85% RH followed by 3 reflow cycles, with visual and electrical 

inspections at each stage. 

 

RoHS Compliance 

The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent 

organic pollutants (POP), or other-wise restricted materials in this product are below 

the maximum concentration values (also referred to as the threshold limits) permitted 

for such substances, or are used in an exempted application, in accordance with EU 

Directive 2002/95/EC on the restriction of the use of certain hazardous substances in 

electrical and electronic equipment (RoHS), as amended through April 21, 2006. 

 

Vision Advisory Claim 

WARNING: Do not look at exposed lamp in operation. Eye injury can result. See 

LED Eye Safety at http://www.cree.com/products/pdf/XLamp_EyeSafety.pdf. 

 

Intellectual Property 

For remote phosphor applications, a separate license to certain Cree patents is 

required. 
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Illuminance meter (body serial number 42921027, measuring head serial number 

62931034: 

 

Minolta T-10 (Konica Minolta website) 

 

Uniform luminance source (ULS): 

 

(Labsphere website) 

 

ULS is a special type of integrating sphere that has two lamps. The primary lamp is 

located outside of the sphere. Power supplies are used to drive the lamps.  As 

specified by the manufacturer lamps should be driven by 20 volts and 5.7 amps (114 

watts). The color temperature is 2856K.  The change in power will alter the color 

temperature of the light source. In order to avoid these effects one has to change the 
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aperture, which will allow more or less light to enter the sphere and to result in 

different luminous levels. Aperture size dictates the amount of light entering the 

sphere. Baffle inside the sphere acts like a diffuser which results in a uniform 

luminance level. The purpose of the second lamp is to increase luminance level if 

necessary, which was not in this case. The source lamps in the uniform light source 

sphere are incandescent lamps. They emit a broadband spectrum to represent all 

wavelengths for calibration. Picoammeter receives a reading from a photometric head 

and shows luminance value of the sphere.  

 

Luminance meter (serial number 79923018): 

 

(Konica Minolta website) 

 

LS-110   

Acceptance area: 1/3   

Field of view: 9    

Focusing distance: 1014mm to infinity (447 minimum with close-up lens) 

Measuring range: Fast: 0.01 to 999900 cd/m
2
 

Accuracy: 0.01-9.99 cd/m
2
 ± 2% ± 2 digits of measured value 

10.00 cd/m
2
 or more ± 2% ± 1 digit of measured value 

(Measuring conditions: Standard Illuminant A, ambient temperature: 20 to 30   C) 

Optical system 85mm f/2.8 lens  

 

Luminance meter was calibrated for 12/8/11-12/8-12 by Konica Minolta 

 

Table B. Close-up lense  

mm 

 

 

 

Close-up 

lens 

(a)Measuring 

diameter at 

minimum 

measuring 

distance 

(b)Measuring 

diameter at 

maximum 

measuring 

distance 

(c)Minimum 

measuring 

distance 

(d)Maximum 

measuring 

distance 

None 𝛷 4.8 - 1014 ∞ 

#135 𝛷1.8 𝛷2.9 447 615 

 

Color-correction factor should be set to 1.05 to adjust the response of the meter to 

compensate for the close-up lens.  
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Figure B. Calibration certificate for LS110 luminance meter  
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Appendix C: LED output measurements depending on line voltage 

over the day-time period 
 

LS110 measured the luminance values of a white reflectance standard (99%) set in the 

room with only single LED chip illuminating it. FLUKE 87 III True RMS Multimeter 

is measuring line voltage. LED was turned on at 10:46am. 

 

Table C. Luminance of reflectance standard (99 %) illuminated by a single LED 

chip depending on line voltage over a day-time period 

Time of the day L, cd/m
2
 (reflectance 

standard 99 % 

illuminated by a single 

LED chip) 

Voltage, V 

10:46 am 15.96 118.4 

10:50 am 15.96 118.4 

10:58 am 16.01 118.1 

11:01 am 15.76 118.1 

11:06 am 15.73 118.2 

11:12 am 15.70 118.1 

11:19 am 15.61 118.1 

11:23 am 15.54 118.2 

1:09 pm 15.15 118.1 

1:27 pm 15.09 118.0 

1:52 pm 15.09 118.2 

2:22 pm 15.11 118.2 

2:47 pm 15.12 118.2 

3:12 pm 15.07 118.5 

3:37 pm 15.1 118.5 

4:01 pm 15.1 118.5 

4:28 pm 15.12 118.5 

4:59 pm 15.9 118.3 

5:27pm 15.1 118.4 

5:49 pm 15.13 118.4 

6 pm 15.1 118.4 
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Appendix D: Excerpt from HDRI Mailing Lists (www.radiance-

online.org)  
 

For more information please refer to the HDRI mailing lists website. 

 

October 2011 

Response curve from Photosphere 

 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Tue Oct 25 15:00:13 PDT 2011 

 

Does anybody know how to get the information on the response curve from 

Photosphere similar to the one that WebHDR would give you? 

 

Thank you, 

Yulia 

 

Gregory J. Ward gregoryjward at gmail.com  

Tue Oct 25 15:46:50 PDT 2011 

 

Hi Yulia, 

 

The camera response functions are stored in the text file 

$HOME/Library/Preferences/Photosphere 

 

Towards the end, you will see a list of camera responses that have been stored by 

make, model, and version.  Each line looks something like this: 

 

“NIKON CORPORATION”|”NIKON D200”|”Ver.2.01”|{-4.765716e-04,1.355876e-

01,-1.269868e-01,9.918758e-01}|{-6.390453e-04,1.371893e-01,-1.224765e-

01,9.859263e-01}|{-9.074065e-04,1.351222e-01,-1.165654e-01,9.823506e-01} 

 

The coefficients enclosed in curly braces are the polynomial camera responses, one 

per color in red, green, and blue order.  The coefficient order is from low to high 

power, so the above line translates to: 

 

red(r) = -4.765716e-04 + 1.355876e-01*r + -1.269868e-01*r^2 + 9.918758e-01*r^3; 

green(g) = -6.390453e-04 + 1.371893e-01*g + -1.224765e-01*g^2 + 9.859263e-

01*g^3; 

blue(b) = -9.074065e-04 + 1.351222e-01*b + -1.165654e-01*b^2 + 9.823506e-

01*b^3 

 

The input (r,g,b) values are camera sensor values normalized in a 0-1 range.  The 

output values are related to world luminance units, sometimes with a calibration 

scaling factor built in. 

I hope this is helpful. 

-Greg 

 

February 2012  

HDRI capture of LED 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20response%20curve%20data%20from%20Photosphere&In-Reply-To=%3CCAJYAbgroxyS8z02UFqFY%2B888tKE-vN3n-zTt%3DTk%3Dme8hStN2fA%40mail.gmail.com%3E
mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20response%20curve%20data%20from%20Photosphere&In-Reply-To=%3CDF65634E-9369-4499-B3DA-D604A35EFCC3%40gmail.com%3E
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Tyukhova, Yulia ytyukhova at unomaha.edu  

Sun Feb 19 21:34:25 PST 2012 

 

Hello everybody! 

 

I‟ll provide the summary of my research and have questions within the summary. I 

would appreciate any of your help! 

 

My research investigates if HDRI technique can precisely capture luminances of 

small bright light sources (e.g. LED garage fixtures) with narrow light distributions. 

 

I was able to figure out luminance values for a single LED, which can be compared to 

the ones from HDR images. But I have a couple of questions/concerns on HDRI 

technique and Photosphere. 

 

At first, I‟ve used “regular” scene to retrieve response curve of the camera (large 

smooth gradients with very dark and bright areas, and had reflectance standards for 

the absolute calibration). 

 

Camera: EOS T1i Rebel with 28-105mm lens, at 28mm Calibrated at the grey 

reflectance standard 186.45 cd/m
2
  

CF=0.957 

I‟ve got the following RC for RGB: 

 

red(r) = -6.434199e-03+ 4.518039e-01*r + 1.291426e+00*r^2 + 1.802896e+00 

*r^3; 

green(g) = -5.804720e-03+ 4.175837e-01*g + 1.176582e+00*g^2 + 1.721643e+00 

*g^3; 

blue(b) = -4.376831e-03+ 3.784418e-01*b + 1.075695e+00*b^2 + 1.658471e+00 

*b^3 

 

If I look at the histogram of the scene, maximum luminance within the scene is 

60,291 cd/m2. 

 

Then I use this RC to analyze HDRI of a captured LED. The value is 230,000 cd/m
2
 

for a single LED, which is low (it‟s has to be around 7*106 cd/m
2
). So, it 

underestimates the luminance. 

 

It seems like calibration point is critical here. I‟ve decided to try to capture a different 

scene for deriving RC with a wider range. It would make sense that camera has to see 

higher luminance values in order to accurately measure them later. The dynamic 

range has to cover measured values. 

 

1. How does Photosphere deals/approximates/calculates the upper end of the curve? I 

assume it gives more weight to mid tone values? But what happens with high 

luminance values? 

 

So, the new brighter scene was picked with the direct sun! But in order to avoid the 

damage of the camera‟s sensor, measurements were taken before the sunset. 

 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20capture%20of%20LED&In-Reply-To=%3CCAJYAbgqVPo9E_SBCPNEkWYr3RyHQEO%3DNzScC33RBkvdZzYtEEA%40mail.gmail.com%3E
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In the new brighter captured scene without the calibration all values for reflectance 

standards were overestimated, while the value for the sun underestimated. Then I 

decided to calibrate my scene at the sun! 

 

But when I apply absolute calibration, it simply multiplies CF to all values. 

 

I assumed when CF is applied, it does not equally change all values, but does it 

proportionally to RC (since it is not linear).  Why does it do it equally for the whole 

range? 

 

Lsun=80*106 cd/m2. And of course CF is very big 391. 

 

New RC: 

 

red(r) = 3.219064e+00+ -2.655078e+01*r + 9.351069e+02*r^2 + -2.115052e+03 

*r^3+1.594538e+03*r^4; 

green(g) = 2.094164e+00+ -1.468109e+00*g + 7.306838e+02*g^2 + -1.720743e+03 

*g^3+1.380693e+03*g^4; 

blue(b) = 1.049078e+00+ 1.591820e+01*b + 5.848958e+02*b^2 + -1.461635e+03 

*b^3+1.251033e+03*b^4 

 

But then something interesting happened. When I analyze LED, it gives a value of 

79*106 cd/m
2
. So, it jumps to this upper limit calibrated with the sun previously. 

 

(I had similar results for EOS 7D with the lens 16-35mm, at 16mm) 

 

Does photosphere compress the response curve, so at the upper end all values above 

certain threshold will have the same number? 

 

Any additional suggestions on properly obtaining and calibrating HDRI for this 

purpose? 

 

Gregory J. Ward gregoryjward at gmail.com  

Mon Feb 20 10:10:40 PST 2012 

Hello Yulia, 

 

Seems your question has spawned quite a bit of interesting discussion… 

My main recommendation is to use camera RAW images for critical photometry, 

especially when there are saturated colors involved.  It is impossible to correct the 

color of JPEG images and undo what the camera maker has done, so you need to start 

from the sensor data. 

 

Photosphere does not accept camera RAW as input, but I have written a Perl script 

that uses dcraw with the command-line HDR image builder hdrgen to overcome this 

limitation.  It also requires the use of another third-party program, exiftool, which I 

have packaged together for you at: 

 

 http://www.anyhere.com/gward/pickup/raw2hdr.tgz 

 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20capture%20of%20LED&In-Reply-To=%3C76975D9C-4971-428F-B69C-BA8563DC25DA%40gmail.com%3E
http://www.anyhere.com/gward/pickup/raw2hdr.tgz
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Unfortunately, I do not have a good set of documentation to go with it.  Typing 

“raw2hdr” by itself shows the basic syntax: 

 

 Usage: raw2hdr [hdrgen opts][-h][-w][-C calib][-c cspace] –o output.hdr 

input1.raw .. 

 

If your images are taken on a tripod (aligned exposures), you can use the default 

settings: 

 

 raw2hdr –o output.hdr expos1.cr2 expos2.cr2 expos3.cr2 … 

 

The hdrgen settings can be found in the included HTML man page, and so can the –h 

and –w option meanings in the included dcraw man page.  The –C option is to provide 

a linear factor to correct the overall exposure based on previous calibrations.  The –c 

option is to specify an output color space.  The default is “sRGB” which is actually 

linear CCIR-709 primaries.  The only other output color space I would recommend is 

AdobeRGB.  There is a CIE XYZ space supported by dcraw, but I have found it to be 

somewhat unreliable, and I do not know where the fault lies in this. 

 

Regarding Axel‟s mention of camera flare, this is less of an issue for sources that are 

brighter than the rest of the scene.  It mostly affects darker, surrounding regions.  The 

–f option will attempt to estimate the camera/lens PSF and remove it, but it cannot be 

relied upon to remove this source of error completely.  Your problem with the 

accuracy of the LED sources is due no doubt (as others have said) to limitations in 

your short exposures combined with the color issues inherent to JPEG processing. 

 

Other responses inline…. 

 

> 1.    How does Photosphere deals/approximates/calculates the upper end of the 

curve? I assume it gives more weight to mid tone values? But what happens with high 

luminance values? 

Photosphere (and hdrgen) use all the brightest pixels from the shortest exposure and 

all the darkest pixels from the longest exposure.  Middle exposures have their 

brightest and darkest pixels downgraded. 

 

I do not think your shortest exposure properly captured the LED, and maybe didn‟t 

capture the sun, either.  

> 3.     Does photosphere compress the response curve, so at the upper end all values 

above certain threshold will have the same number? 

 

Photosphere does not compress the curve. 

> 4.     Any additional suggestions on properly obtaining and calibrating HDRI for 

this purpose? 

 

I would only reiterate others‟ suggestion to use a neutral density filter, and using 

raw2hdr rather than Photosphere. 

 

Best, 

-Greg 
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Tyukhova, Yulia ytyukhova at unomaha.edu  

Mon Feb 20 12:48:37 PST 2012 

Everybody, 

 

Thank you for fast responses/tools and suggestions! 

 

Greg, 

 

Thank you for your suggestions and files! 

I am new to Radiance, and I assume that this is what I need to have 

installed on my computer in order to use suggested Perl scripts. 

If you can provide me with the link/info how to run it, that would be 

really helpful! 

 

Let me restate the question about the compression of the curve in 

Photosphere. 

Do manufactures compress the response curve or maybe it is limited by 

camera/optics/sensor saturation itself on the upper end? 

 

And I‟m still curious, how CF is applied in Photosphere? 

 

I‟ve been using ND filter t=0.0094 on the luminance meter, because 

otherwise it is impossible to measure such high luminances. I assume, you 

suggest to use it on the camera as well. 

 

I‟m looking forward to analyze my images with the suggested 

hdrgen. Luckily, I‟ve been taken them in both formats jpeg and raw. 

Greg, will you recommend to have regular calibration scene calibrated at 

the grey card instead of using brighter scene? 

 

Thank you, 

Yulia 

 

Gregory J. Ward gregoryjward at gmail.com  

Mon Feb 20 13:14:15 PST 2012 

Responses inline… 

 

> I am new to Radiance, and I assume that this is what I need to have installed on my 

computer in order to use suggested Perl scripts.  

  

Actually, you do not need to have Radiance installed.  You just need to move the 

executables (non-HTML files) from the unpacked directory to /usr/bin or 

/usr/local/bin or some other directory in your shell‟s PATH variable.  These are 

command-line tools that must be run from the Terminal application under 

/Applications/Utilities.  I.e., start Terminal and copy the files from your Downloads 

folder with: 

 

 cd Downloads 

 tar xzf raw2hdr.tgz 

 cd raw2hdr 
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 cp raw2hdr dcraw exiftool /usr/bin 

 cd 

 raw2hdr 

 

This should give you the usage message I wrote you earlier if it all goes well.  Some 

basic commands and pointers for Unix are available many places online.  Googling 

“basic unix tutorial” gave this page at the head of the list: 

 

 http://www.ee.surrey.ac.uk/Teaching/Unix/ 

 

> Let me restate the question about the compression of the curve in Photosphere.  

> 1. Do manufactures compress the response curve or maybe it is limited by 

camera/optics/sensor saturation itself on the upper end? 

 

Some camera makers do compress the top end of the response curve, and do funny 

things at the bottom as well.  Photosphere attempts to discover the tone curve and 

correct for these manipulations, but it isn‟t perfect and if the camera is changing the 

tone curve dynamically, it‟s pretty hopeless.  There are settings you can use on a 

DSLR to disable such manipulations, but using RAW files bypasses the problems 

entirely because the data is linear. 

 

> 2. And I’m still curious, how CF is applied in Photosphere? 

 

A calibration factor is applied equally to all coefficients in the polynomial, which is 

exactly the same as applying a linear scale factor after the HDR merge operation. 

 

> I’ve been using ND filter t=0.0094 on the luminance meter, because otherwise it is 

impossible to measure such high luminances. I assume, you suggest to use it on the 

camera as well. 

 

Whatever gives you a short exposure that is past the integration time of your source 

(1/60
th

 second is acceptable) and not saturated is OK.  Specifically, all values in the 

short exposure‟s histogram should be be below 245. 

 

> I’m looking forward to analyze my images with the suggested hdrgen. Luckily, I’ve 

been taken them in both formats jpeg and raw.  

> Greg, will you recommend to have regular calibration scene calibrated at the grey 

card instead of using brighter scene? 

 

The best scene for calibration is a white card in a scene with no bright sources 

directed at the camera.  The calibration should hold in other scenes where lens flare is 

not problematic. 

Certainly, 

-Greg 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Tue Feb 21 13:21:05 PST 2012 

Greg, 

 

Following up your suggestions… 

 

http://www.ee.surrey.ac.uk/Teaching/Unix/
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I was able to run your scripts, but now I have more questions on what‟s 

behind them. 

 

I assume after combining raw images into one, I can analyze obtained hdr 

image in Photosphere. 

 

>> –r *cam.rsp* 

Use the given file for the camera‟s response curves.  If this file exists, 

it must contain the coefficients of three polynomials, one for each color 

primary.  If the file does not exist, hdrgen will use its principal 

algorithm to derive these coefficients and write them out to this file for 

later use. 

 

So, if I will combine my images for the calibration scene, hdrgen will 

derive the coefficients to the file. Is there a way to see those 

coefficients and to know what the response curve looks like? 

 

>>The –C option is to provide a linear factor to correct the overall 

exposure based on previous calibrations. 

 

How do I make the absolute calibration? Usually it is a luminance value 

of a reflectance standard measured with luminance meter applied in 

Photosphere. But how do I do it with the given script? 

 

>>The –c option is to specify an output color space. The default is «sRGB» 

which is actually linear CCIR-709 primaries. The only other output color 

space I would recommend is AdobeRGB. There is a CIE XYZ space supported by 

dcraw, but I have found it to be somewhat unreliable, and I do not know 

where the fault lies in this. 

 

In order to have luminance values Photosphere has an algorithm that does 

color calculations from sRGB to CIE XYZ (standard illuminant D65), where Y 

is the luminance value. Here I can specify an output color space, let‟s say 

sRGB, but how would I get luminance values? 

 

>>–s *stonits* 

5.What is this option about? 

 

Gregory J. Ward gregoryjward at gmail.com  

Tue Feb 21 13:55:58 PST 2012 

Hi Yulia, 

 

Not all of the options of hdrgen are relevant for raw2hdr.  See inline…. 

 

> 1. I assume after combining raw images into one, I can analyze obtained hdr image 

in Photosphere. 

 

Yes, of course. 

 

> >> –r cam.rsp 
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> Use the given file for the camera’s response curves.  If this file exists, it must 

contain the coefficients of three polynomials, one for each color primary.  If the file 

does not exist, hdrgen will use its principal algorithm to derive these coefficients and 

write them out to this file for later use.  

>  

> 2. So, if I will combine my images for the calibration scene, hdrgen will derive the 

coefficients to the file. Is there a way to see those coefficients and to know what the 

response curve looks like? 

 

The raw2hdr script doesn‟t need to derive a response curve, since the sensor data is 

linear.  Instead, it creates an output from dcraw that follows a 2.0 gamma and creates 

an artificial response curve of x^2 to decode it.  This reduces quantization errors from 

the 8-bit intermediate images. 

 

> >>The –C option is to provide a linear factor to correct the overall exposure based 

on previous calibrations.   

>  

> 3. How do I make the absolute calibration? Usually it is a luminance value of a 

reflectance standard measured with luminance meter applied in Photosphere. But 

how do I do it with the given script?  

 

Look at your raw2hdr result in Photosphere and select the measured area.  Divide 

your measurement by the value Photosphere gives you.  This is the calibration factor 

to use with the –C option for conversions for this camera and lens. 

 

> >>The –c option is to specify an output color space.  The default is “sRGB” which 

is actually linear CCIR-709 primaries.  The only other output color space I would 

recommend is AdobeRGB.  There is a CIE XYZ space supported by dcraw, but I have 

found it to be somewhat unreliable, and I do not know where the fault lies in this. 

>  

> 4. In order to have luminance values Photosphere has an algorithm that does color 

calculations from sRGB to CIE XYZ (standard illuminant D65), where Y is the 

luminance value. Here I can specify an output color space, let’s say sRGB, but how 

would I get luminance values? 

 

As I mentioned, the sRGB and AdobeRGB spaces will both work, and Photosphere 

will adjust its Y value calculations accordingly.  The color space is recorded in the 

HDR output. 

> >>–s stonits 

> 5.What is this option about? 

You do not need it – this option is for when the camera doesn‟t record the necessary 

aperture, asa and shutter speed settings in the image file. 

Best, 

-Greg 

 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Wed Feb 22 12:59:45 PST 2012 

Hello Greg! 

 

I was able to compile my images of LED with ND filter with raw2hdr, but I 
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need to clarify a couple of things. 

 

As the intermediate step of combining the images I have the following: 

 

Writing data to standard output … 

Can‟t locate Image/ExifTool.pm in @INC (@INC contains: /usr/bin/lib 

/Library/Perl/5.12/164arwin-thread-multi-2level /Library/Perl/5.12 

/Network/Library/Perl/5.12/164arwin-thread-multi-2level 

/Network/Library/Perl/5.12 /Library/Perl/Updates/5.12.3 

/System/Library/Perl/5.12/164arwin-thread-multi-2level 

/System/Library/Perl/5.12 

/System/Library/Perl/Extras/5.12/164arwin-thread-multi-2level 

/System/Library/Perl/Extras/5.12 .) at /usr/bin/exiftool line 30. 

BEGIN failed–compilation aborted at /usr/bin/exiftool line 30. 

Loading Canon EOS 7D image from IMG_0279.CR2 … 

 

What does it mean? Is there a problem with data input/output? I just 

want to make sure that the data is processed properly. 

 

At first it didn‟t make sense why do I need hdrgen, since it uses tiff 

or jpeg as an input while I‟m combining hdr from raw. But then I‟ve noticed 

that raw2hdr generates temporary tiff photos and then uses them in hdrgen 

function. But if I want to include some additional settings for hdrgen 

(like flare removal) besides the default ones I have to following error: 

raw2hdr hdrgen –f –o output6.hdr IMG_02??.CR2 

Missing –o output file specification 

How do I write my settings? 

 

Thank you! 

Yulia 

 

Gregory J. Ward gregoryjward at gmail.com  

Wed Feb 22 13:50:59 PST 2012 

Yulia, 

 

The error with Exiftool is my fault, I‟m afraid.  I naively thought that the program was 

self-contained, when it is not.  You need to download and install it on your machine 

via the following URL: 

 

 http://www.sno.phy.queensu.ca/~phil/exiftool/install.html 

 

As for your second question, you can use other hdrgen options, but you do not need to 

write “hdrgen” on the command line as you have done.  The raw2hdr script knows 

how to sort out the various options. 

Best, 

-Greg 

 

HDRI LED capture interesting artifacts 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Thu Feb 23 09:10:13 PST 2012 
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Hello! 

 

I‟ve got some interesting artifacts on my images of a single LED, and I‟m 

curious how to interpret and overcome them. 

 

Please see two images at: 

http://www.mediafire.com/?6w6tfmpoqtpipap,c0e69acf1x51ndu 

 

The settings for taking both are the following: 

 

*1 ND filter output7.jpg* 

Range of shutter speed 1/8000 to 1/15‟‟ with aperture f16 

Range 1/30‟‟ to 15‟‟ with aperture f4 

 Luminance of reflectance standards: 

99%   197.2 cd/m^2 

40%     99.3 cd/m^2 

 ND filter t =0.0094 

ND filters output14.jpg* 

Range 1/8000 to 1/15‟‟ with aperture f16 

Range 1/30‟‟ to 15‟‟ with aperture f4 

Ambient light level (illuminance meter) E=667 lx 

Luminance of reflectance standards: 

99%   215 cd/m^2 

40%    106.3 cd/m^2 

ND filter t =0.0094 

2
nd

 ND filter t2=0.4375 

 

Thank you, 

Yulia 

 

Gregory J. Ward gregoryjward at gmail.com  

Thu Feb 23 09:42:59 PST 2012 

Hi Yulia, 

 

There is an occasional issue with dcraw where it doesn‟t quite handle the highlights 

correctly, leaving this pink area near the brightest part of the exposure.  The only fix 

I‟ve found is to set the –b option to a larger value.  You should try this with raw2hdr.  

Try “raw2hdr –b 1.3 …” adding your other options as usual.  If that doesn‟t get rid of 

the pink haloes, keep increasing the value until it does. 

 

If this doesn‟t work, then maybe you need more exposures.  I‟m not really sure unless 

I can play with your original RAW files what else it could be. 

 

Best, 

-Greg 

 

Axel Jacobs jacobs.axel at gmail.com  

Mon Feb 27 15:49:40 PST 2012 

Dear list and Hi Greg, 

 

http://www.mediafire.com/?6w6tfmpoqtpipap,c0e69acf1x51ndu
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In the recent raw2hdr bundle you packaged for Yulia 

http://www.radiance-online.org/pipermail/hdri/2012-February/000363.html 

there's a man page for hdrgen that list some options which do not appear in the man 

page that comes with the LINUX download you have on http://anyhere.com/ 

 

I have just discovered that the -x option does actually exist in the LINUX version of 

hdrgen, which is from around 2006, I think. 

 

In the more recent (MacOS) version, the -x option is described as "-x Toggle over- 

and under-exposed image removal.  Normally “off,” this option causes unnecessary 

exposures that are too light or too dark to contribute useful information to be 

automatically ignored." 

 

I have always lived under the impression that 'useful information' is limited by pixel 

values of 200 in the darkest JPEG, and 20 (out of 255) in the brightest. I really do not 

remember where I took this from, but it must have been a post on the hdri list which I 

am unable to find now. Sorry. 

 

In your message to hdri just recently, 

http://www.radiance-online.org/pipermail/hdri/2012-February/000365.html 

you stated "Specifically, all values in the short exposure's histogram should be  

below 245", which is different to the 200 threshold I mentioned above. 

 

I have been experimenting with HDR photography for glare studies (think UGR), and 

have noticed some discrepancies in the results that one gets if hdrgen is run with and 

without the -x option. I was therefore wondering what hdrgen considers as 

"too light or too dark to contribute useful information". I would think that this is 

decision is made based on the value of the darkest/brightest pixel in the image. Is this 

assumption correct, and if so, what are the threshold values that are used with the -x 

option? 

 

Kind regards 

Axel 

 

Gregory J. Ward gregoryjward at gmail.com  

Mon Feb 27 17:04:46 PST 2012 

Hi Axel, 

 

I tend not to use the -x option for critical work, as it's mostly a time-saver as opposed 

to a way to improve accuracy. 

 

That said, the value range I consider "safe" extends from 27 to 228 in the 8-bit 

domain.  I have found this empirically to be above the noise floor (provided the ISO 

setting is not too high) and below where some cameras introduce highlight roll-off. 

 

I cannot use a strict cut-off for image values.  Up to 0.2% of the pixels below the 

minimum are ignored and 0.05% of pixels above the maximum, likewise.  This avoids 

issues with stuck pixels, which would otherwise make the -x option useless.  This is 

also why it is better not to use -x for critical work, because you may lose the peak 

highlight in your image if it happens to be very small. 

http://www.radiance-online.org/pipermail/hdri/2012-February/000363.html
http://anyhere.com/
http://www.radiance-online.org/pipermail/hdri/2012-February/000365.html
mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20hdrgen%27s%20-x%20option&In-Reply-To=%3C66B88590-1550-4201-8CB2-A53EDDC4A5D6%40gmail.com%3E


167 

 

 

 

 

Note also that hdrgen would never discard an input exposure off the end because it 

was "in range."  Only the exposures shorter than first one below the safe maximum 

and the exposures longer than last one above the safe minimum that are considered 

superfluous. 

 

I have a Lubuntu installation running under VMWare with gcc version 4.6.1-

9ubuntu3.  I could use it to recompile hdrgen if you like, but I'm not sure what 

machines it would run on.... 

 

Cheers, 

-Greg 

 

March 2012 

 

HDRI capture of LED (histograms and range) 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Thu Mar 1 12:46:29 PST 2012 

Hello! 

 

I‟ve been experimenting with the number of photos to include in final HDRI. 

 

I took a sequence of photos of a single LED with reflectance standards 

included in the scene. 

 

EOS7D 28-105mm lens at 28mm 

F16 1/8000-1/15‟‟ 

F4   1/30-5 mins 

With the ND filter t=0.0094 

Images are fused with raw2hdr. 

They were calibrated at white reflectance standard 215 cd/m2. 

I‟ve noticed the following tendency: 

If I fuse different number of photos (cut the number of photos on the 

shortest end), after calibrating at white reflectance standard, I get 

different luminance values for the LED. 

 

*Shortest exposure to fuse             L,cd/m2* 

 

1/125‟‟ f16                                   4.5*106 

1/250‟‟ f16                                   9.06*106 

1/500‟‟ f16                                   18*106 

 

I‟ve seen interesting discussion between Axel and Greg on photos to 

include. But it seems like there are many uncertainties. 

 

In HDRI second edition book it says “The darkest exposure should have no 

RGB values greater than 200 or so, and the lightest exposure should have no 

RGB values less than 20 or so. Do NOT include an excess of exposures beyond 

this range, as it will do nothing to help with the response recovery and 

may hurt.” 
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I assume it is the same for any HDRI sequence, not only for response curve. 

 

I have plenty of photos of dark exposures that have no values greater than 

200, same with the light exposures and 20.If somebody can clarify what 

photos should be included or have any other suggestions that would be great 

 

Thank you, 

*Yulia * 

 

Gregory J. Ward gregoryjward at gmail.com  

Thu Mar 1 17:03:41 PST 2012 

Hi Yulia, 

 

Since your maximum values are tracking the differences in your shorter exposures, it 

seems to indicate that you still haven‟t captured the brightest point on the LED.  What 

are you looking at that makes you think the exposures have nothing over 200? 

 

There is no harm in the newer version of hdrgen in including exposures that are too 

dark or too light.  More naive methods might have trouble with this, but not hdrgen or 

raw2hdr. 

 

Best, 

-Greg 

 

Moeck, Dr. Martin m.moeck at osram.com  

Fri Mar 2 04:04:56 PST 2012 

I suggest to use two parallel approaches, one with your LED, one with an 

incandescent low voltage. The problem with LED luminance measurements from 

HDRI is that a) the color gamut is small and b) the photopic sensitivity curve 

V(lambda) currently used is incorrect. It underestimates blue wavelengths quite a bit. 

Therefore, start with an incandescent first, because LEDs have a strong blue peak 

around 440 or 460 nm, depending on the manufacturer. You are dealing with the 

liumitations of V(lambda) and then with tristimulus values which are just not good 

enough for narrowband LEDs, including white ones with a blue peak. 

 

When you use the incandescent instead use it in a black lab. Place a few white paper 

samples on the walls at different known locations. Place your incandescent at a 

defined location. Derive the geometry, all distances and all angles between those 

white papers and the lamp. Turn the incandescent on and the room lights off. Measure 

the luminance of the white papers at a location that you marked with a soft pencil. 

Make HDR images and determine the luminance and scale. 

 

Based on the luminance values of the papers, you can now derive the luminance of the 

incandescent filament. Make HDR images of the filament as seen from those papers. 

Check if the corresponding illuminance values of the white paper at reflectance 

around 85% corresponds to the luminance values of the filament in that direction. 

 

Repeat several times to give you confidence. 
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Once you are heading in the right direction, you can repeat the whole procedure with 

an LED. But this time your values will be around 20-30% off. You should really use a 

CCD camera with a photopic filter to get better values, and then try to come up with a 

procedure to minimize errors for the HDR approach. 

 

Regards 

Martin Moeck 

Osram 

 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Fri Mar 2 09:14:15 PST 2012 

Hello everybody! 

 

I appreciate your help and responses. 

 

Greg, 

 

I‟ve been checking histograms with CANON Digital Photo Professional. I was 

checking L channel, I guess I need to make sure RGB values are below 200 as 

well. Are there any suggestions on this issue? 

 

Martin, 

 

That is a very interesting suggestion! I guess I can see the difference 

between the measurements of two light sources. 

 

>> ..the photopic sensitivity curve V(lambda) currently used is incorrect. 

It underestimates blue wavelengths quite a bit. 

>> You should really use a CCD camera with a photopic filter to get better 

values.. 

 

You say that V(lambda) underestimates the values. But doesn‟t CCD camera‟s 

photopic filter have the same response curve? So, it would have the same 

mistake. 

 

Lars, 

 

>> Did you derive the response curve of your camera using another setup 

(not the directly visible LED) and reuse that camera response later on your LED 

captures? Or do you take the camera response from the same set of images 

(showing the LED in an otherwise dark room) that you are going to assemble 

into a HDR? 

 

I‟ve tried two approaches. The first one is to derive the response curve 

from the scene with very dark and bright areas with smooth gradients 

and neutral colors. Then fuse them to obtain RC. And then I‟ve used it in 

photosphere for subsequent HDRIs. And the second one is to fuse raw images 

with Greg‟s script raw2hdr, where you do not have to have response curve. 

Greg: “The raw2hdr script doesn‟t need to derive a response curve, since 

the sensor data is linear.  Instead, it creates an output from dcraw that 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20capture%20of%20LED%20%28histograms%20and%20range%29&In-Reply-To=%3CCAJYAbgqzaXeEk6_x0_e%3DEjPkc0iUHbEyM7%2BKBYFWc4k7oyTz9A%40mail.gmail.com%3E
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follows a 2.0 gamma and creates an artificial response curve of x^2 to 

decode it.  This reduces quantization errors from the 8-bit intermediate 

images”. And then I can analyse my hdr image in Photosphere. 

 

Gregory J. Ward gregoryjward at gmail.com  

Fri Mar 2 09:25:58 PST 2012 

Hi Yulia, 

 

> I’ve been checking histograms with CANON Digital Photo Professional. I was 

checking L channel, I guess I need to make sure RGB values are below 200 as well. 

Are there any suggestions on this issue? 

 

Photosphere or Photoshop can give you an RGB histogram (along with max. values) 

from an 8-bit image. 

 

> Martin, 

> That is a very interesting suggestion! I guess I can see the difference between the 

measurements of two light sources. 

> >> ..the photopic sensitivity curve V(lambda) currently used is incorrect. It 

underestimates blue wavelengths quite a bit.  

> >> You should really use a CCD camera with a photopic filter to get better values.. 

> You say that V(lambda) underestimates the values. But doesn’t CCD camera’s 

photopic filter have the same response curve? So, it would have the same mistake. 

 

Typical cameras do not follow the CIE standard observer curves for a number of 

reasons.  Instead, they use red, green and blue bandpass filters and a color matrix 

optimized for color reproduction using some set of patches.  It‟s an under-constrained 

problem, and different makers will optimize their color transform matrix differently.  

This is why dcraw tends to be more reliable – Dave Coffin always derives his CTM 

the same way and doesn‟t bias it towards one set of colors or another. 

 

Even so, Martin is correct that highly saturated colors, such as those produced by 

typical LEDs, will often cause problems for reproduction and luminance estimation.  

There is no easy fix for this, unfortunately. 

 

Best, 

-Greg 

 

HDRI analysis 

Tyukhova, Yulia ytyukhova at unomaha.edu  

Sun Mar 11 22:52:40 PDT 2012 

Hello everybody, 

 

I have a couple of questions on HDR image analysis. 

 

How could I extract the luminance values from image.hdr? 

 

With the pvalue tool I get RGB values. And in August 2007 thread Greg 

mentioned this (to get L): 

% pvalue –h –H –b render.pic \ 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20capture%20of%20LED%20%28histograms%20and%20range%29&In-Reply-To=%3C56135427-7137-42B8-AD80-26C7F0B4A1BB%40gmail.com%3E
mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20analysis&In-Reply-To=%3CCAJYAbgp9B44JaN5pUki-y7p-3xReGmCXCwiNdNEUZES4p0M7xw%40mail.gmail.com%3E
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  | rcalc –e „$1=$1;$2=$2;$3=179*$3‟ 

 

But I would assume this is for .pic files. Is there a way how I can get it 

from .hdr that was already calibrated in Photosphere? 

 

How is a standard deviation calculated in Photosphere? What does 1.1x 

mean? I would expect to see number closer to the luminance value displayed 

in the image. 

 

In June 2009 thread there was a discussion on averaging luminance values 

withing the circular area. From anybody‟s experience, what is the easiest 

way to get average L value from hdr image within the circle area? 

 

Thank you for all your help, 

*Yulia* 

 

Gregory J. Ward gregoryjward at gmail.com  

Sun Mar 11 23:38:49 PDT 2012 

Hi Yulia, 

 

You need the “-o” option to pvalue, and the rest should work.  The “.pic” file is the 

same as the “.hdr” file produced by Photosphere, a.k.a. “Radiance RGBE format” in 

the “Save As…” dialog. 

 

The standard deviation for luminance is computed in the log domain, so what it gives 

you is a multiplier/divisor on the value rather than an absolute deviation.  In other 

words, one standard deviation above is 1.1x the median, and one standard deviation 

below is median/1.1. 

 

Averaging in a circular area is tricky and usually not worth the effort.  There aren‟t 

any luminance meters that are accurate enough about their circles to worry about the 

difference between a circle and a square.  If you must do it, it‟s a long and nasty-

looking pcomb command. 

Best, 

-Greg 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:hdri%40radiance-online.org?Subject=Re%3A%20%5BHDRI%5D%20HDRI%20analysis&In-Reply-To=%3C548C6818-0BD2-4837-A04A-6865E22E5215%40gmail.com%3E
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Appendix E: Radiance tools  

(http://www.radiance-online.org/pipermail/hdri/2012-February/000363.html) 
 

hdrgen 

Create a high dynamic-range image from multiple exposures of a static scene.  The 

input files may be JPEG or TIFF, but must be 24-bit RGB (trichromatic) images.  The 

output  is your choice of a Radiance HDR  picture or a 32-bit LogLuv TIFF 

image.  The syntax of the hdrgen command is: 

hdrgen –o out_file [–r cam.rsp] [–m cachesiz] [–a] [–e] [–s stonits1] image1 [–

s stonits2] image2 … 

As many exposures may be given as necessary, and should ideally be spaced within 

two f–stops of each other.  The brightest exposure should have no black pixels, and 

the darkest exposure should have no white pixels, but there is little point in extending 

beyond these limits, which may cause problems in determining the camera response 

function.  The order of options and input files is unimportant, with the exception of 

the –s option, which must preceed the corresponding exposure.  Following is an 

explanation of the options and their meanings: 

–o out_file 

Write high dynamic-range image to the given file.  If the file has a „.tif‟ suffix, it will 

be written out as a LogLuv TIFF image.  If it has a „.exr‟ suffix, it will be written out 

as an ILM OpenEXR image.  If it has a „.jpg‟ suffix, it will be written out in JPEG-

HDR format.  If it has any other suffix or none at all, it will be written out as an RLE 

RGBE Radiance picture.  If the file exists, it will not be overwritten unless the „-F‟ 

option is specified. 

-F         Toggle output file overwrite switch (defaults to “false”). 

-k var_file 

Write variance image to the given file, using the same format rules as the output 

file.  This image indicates where the input deviates from an ideal exposure sequence, 

and may be useful for diagnostic purposes or further image processing. 

-q quality 

Set output quality to quality (0-100).  This affects the JPEG output compression, and 

potentially the details of the other formats written as well.  (For example, writing out 

a TIFF with –q 100 results in a 96-bit/pixel IEEE floating-point file rather than a 

LogLuv encoding.) 

–r cam.rsp 

Use the given file for the camera‟s response curves.  If this file exists, it must contain 

the coefficients of three polynomials, one for each color primary.  If the file does not 

exist, hdrgen will use its principal algorithm to derive these coefficients and write 

them out to this file for later use.  If a scene contains no low frequency content or 

gradations of intensity, it may be impossible to derive the response curve from the 

exposure sequence.  Thus it is better to create this information once for a given 

camera and reuse it for other sequences. 

-c CS 

Specify the output color space, where CS is one of “sRGB” for standard CCIR709 

primaries (the default), “XYZ” for CIE XYZ space, or “AdobeRGB” for Adobe RGB 

color space.  Note that XYZ output will only be preserved in the TIF LogLuv and 

Radiance output formats. 

–m cachesiz 

Specify the cache size to use in megabytes.  No more than this much memory will be 

allocated to hold image data during processing.  The default value is 100.  Using a 

http://www.radiance-online.org/pipermail/hdri/2012-February/000363.html
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smaller value may require longer processing if many input images are used, since 

some will need to be read in twice rather than once, but specifying a larger value than 

there is memory available will definitely be worse, due to virtual memory swapping. 

–a        Toggle automatic exposure alignment.  The default value is “on,” so giving 

this option one time switches it off.  The alignment algorithm examines neighboring 

exposures and finds the pixel offset in x and y that minimizes the difference in the two 

images.  It may be necessary to switch this option off when dealing with very dark or 

very bright exposures taken in a tripod-stabilized sequence. 

–e        Toggle exposure adjustment.  Normally “on,” exposure adjustment fine-tunes 

the scale difference between adjacent images to account for slight inaccuracies in the 

aperture or speed settings of the camera. 

-x         Toggle over- and under-exposed image removal.  Normally “off,” this option 

causes unnecessary exposures that are too light or too dark to contribute useful 

information to be automatically ignored. 

–f         Toggle lens flare removal.  Normally, “off,” this option is designed to reduce 

the scattered light from a camera‟s lens and aperture, which results in a slightly 

fogged appearance in high dynamic-range images. 

-g         Toggle ghost removal.  Normally “off,” this option attempts to remove 

moving or changing objects in a scene, which cause ghosts in the combined output. 

–s stonits 

Set the sample-to-nits (cd/m
2
) conversion factor for the following image to the 

floating-point value stonits.  This is normally determined automatically by the 

program from camera information stored in the Exif image header.  If the image did 

not come directly from a digital camera, then it will be necessary to use this option for 

each image.  If the absolute conversion is unknown, then simply pick a value for the 

brightest image, and increase it subsequently for each exposure in the sequence.  One 

f-stop requires  doubling this conversion factor, and two f-stops requires quadrupling. 

Diagnostics 

The primary failure mode for this algorithm is the one mentioned in the description of 

the –r option, when the exposures contain too little information to solve for the 

camera response function.  The best solution to this problem is to take off the 

exposures that are very light and very dark, or to use a different sequence of images to 

generate a response file.  This file may then be used to combine the entire set of 

images, since the program no longer needs to solve for the responses. 

Most of the other diagnostics you will encounter are “warnings,” which means that 

the final image will be written, but may have problems.  In particular, when the 

alignment algorithm fails on a hand-held sequence, some ghosting may be visible on 

high contrast edges in the output.  Using the –a option to turn off automatic alignment 

will eliminate the warning, but unless the sequence was taken on a very stable tripod, 

the results will usually be worse rather than better. 

Example 

To combine all JPEG images matching a given wildcard and put into a LogLuv TIFF: 

hdrgen P13351?.JPG –o testimg.tif 

Author 

This software was written by Greg Ward of Exponent Corporation.  Send comments 

or questions to gward@exponent.com or gward@lmi.net. 

References 

Tomoo Mitsunaga and Shree Nayar, “Radiometric Self-Calibration,” Proceedings of 

IEEE Conference on Computer Vision and Pattern Recognition, June, 1999. 

mailto:gward@exponent.com
mailto:gward@lmi.net
http://www.cs.columbia.edu/CAVE/research/publications/high_dynamic_range.html
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Greg Ward, “LogLuv encoding for full-gamut, high-dynamic range images ,” Journal 

of Graphics Tools, 3(1):15-31 1998. 

Greg Ward, High Dynamic Range Images, web page. 

Paul Debevec, web page. 

 

dcraw 

Updated: May 14, 2009 

NAME 

dcraw - command-line decoder for raw digital photos   

SYNOPSIS 

dcraw [OPTION]... [FILE]...   

DESCRIPTION 

dcraw decodes raw photos, displays metadata, and extracts thumbnails.   

GENERAL OPTIONS 

-v 
Print verbose messages, not just warnings and errors. 

-c 
Write decoded images or thumbnails to standard output. 

-e 
Extract the camera-generated thumbnail, not the raw image. You'll get either a JPEG 

or a PPM file, depending on the camera. 

-z 
Change the access and modification times of an AVI, JPEG, TIFF or raw file to when 

the photo was taken, assuming that the camera clock was set to Universal Time. 

-i 
Identify files but do not decode them. Exit status is 0 if dcraw can decode the last file, 

1 if it can't. -i -v shows metadata. 

dcraw cannot decode JPEG files!! 

  

REPAIR OPTIONS 

-P deadpixels.txt 
Read the dead pixel list from this file instead of ".badpixels". See FILES for a 

description of the format. 

-K darkframe.pgm 
Subtract a dark frame from the raw data. To generate a dark frame, shoot a raw photo 

with no light and do dcraw -D -4 -j -t 0. 

-k darkness 
When shadows appear foggy, you need to raise the darkness level. To measure this, 

apply pamsumm -mean to the dark frame generated above. 

-S saturation 
When highlights appear pink, you need to lower the saturation level. To measure this, 

take a picture of something shiny and do dcraw -D -4 -j -c photo.raw | pamsumm -

max 
The default darkness and saturation are usually correct. 

-n noise_threshold 
Use wavelets to erase noise while preserving real detail. The best threshold should be 

somewhere between 100 and 1000. 

-C red_mag blue_mag 
Enlarge the raw red and blue layers by the given factors, typically 0.999 to 1.001, to 

correct chromatic aberration. 

http://viz.cs.berkeley.edu/~gwlarson/papers/jgtpap1.pdf
http://viz.cs.berkeley.edu/~gwlarson/pixformat/index.html
http://www.debevec.org/
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-H 0 
Clip all highlights to solid white (default). 

-H 1 
Leave highlights unclipped in various shades of pink. 

-H 2 
Blend clipped and unclipped values together for a gradual fade to white. 

-H 3+ 
Reconstruct highlights. Low numbers favor whites; high numbers favor colors. Try -

H 5 as a compromise. If that's not good enough, do -H 9, cut out the non-white 

highlights, and paste them into an image generated with -H 3. 

  

COLOR OPTIONS 

By default, dcraw uses a fixed white balance based on a color chart illuminated with 

a standard D65 lamp. 

-w 
Use the white balance specified by the camera. If this is not found, print a warning 

and use another method. 

-a 
Calculate the white balance by averaging the entire image. 

-A left top width height 
Calculate the white balance by averaging a rectangular area. First do dcraw -j -t 0 and 

select an area of neutral grey color. 

-r mul0 mul1 mul2 mul3 
Specify your own raw white balance. These multipliers can be cut and pasted from the 

output of dcraw -v. 

+M or -M 

Use (or do not use) any color matrix from the camera metadata. The default is +M if -

w is set, -M otherwise. This option only affects Olympus, Leaf, and Phase One 

cameras. 

-o [0-5] 
Select the output colorspace when the -p option is not used: 

0   Raw color (unique to each camera)  

1   sRGB D65 (default)  

2   Adobe RGB (1998) D65  

3   Wide Gamut RGB D65  

4   Kodak ProPhoto RGB D65  

5   XYZ 

-p camera.icm [ -o output.icm ] 

Use ICC profiles to define the camera's raw colorspace and the desired output 

colorspace (sRGB by default). 

-p embed 
Use the ICC profile embedded in the raw photo. 

  

INTERPOLATION OPTIONS 

-d 
Show the raw data as a greyscale image with no interpolation. Good for 

photographing black-and-white documents. 

-D 
Same as -d, but totally raw (no color scaling). 

-h 
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Output a half-size color image. Twice as fast as -q 0. 

-q 0 
Use high-speed, low-quality bilinear interpolation. 

-q 1 
Use Variable Number of Gradients (VNG) interpolation. 

-q 2 
Use Patterned Pixel Grouping (PPG) interpolation. 

-q 3 
Use Adaptive Homogeneity-Directed (AHD) interpolation. 

-f 
Interpolate RGB as four colors. Use this if the output shows false 2x2 meshes with 

VNG or mazes with AHD. 

-m number_of_passes 
After interpolation, clean up color artifacts by repeatedly applying a 3x3 median filter 

to the R-G and B-G channels. 

  

OUTPUT OPTIONS 

By default, dcraw writes PGM/PPM/PAM with 8-bit samples, a BT.709 gamma 

curve, a histogram-based white level, and no metadata. 

-W 
Use a fixed white level, ignoring the image histogram. 

-b brightness 
Divide the white level by this number, 1.0 by default. 

-g power toe_slope 
Set the gamma curve, by default BT.709 (-g 2.222 4.5). If you prefer sRGB gamma, 

use -g 2.4 12.92. For a simple power curve, set the toe slope to zero. 

-6 
Write sixteen bits per sample instead of eight. 

-4 
Linear 16-bit, same as -6 -W -g 1 1. 

-T 
Write TIFF with metadata instead of PGM/PPM/PAM. 

-t [0-7,90,180,270] 
Flip the output image. By default, dcraw applies the flip specified by the camera. -t 

0 disables all flipping. 

-j 
For Fuji Super CCD cameras, show the image tilted 45 degrees. For cameras with 

non-square pixels, do not stretch the image to its correct aspect ratio. In any case, this 

option guarantees that each output pixel corresponds to one raw pixel. 

-s [0..N-1] or -s all 

If a file contains N raw images, choose one or "all" to decode. For example, 

Fuji Super CCD SR cameras generate a second image underexposed four stops to 

show detail in the highlights. 

  

FILES 

:./.badpixels, ../.badpixels, ../../.badpixels, ... 

List of your camera's dead pixels, so that dcraw can interpolate around them. Each 

line specifies the column, row, and UNIX time of death for one pixel. For example: 

 962   91 1028350000  # died between August 1 and 4, 2002 

1285 1067 0           # do not know when this pixel died 
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These coordinates are before any cropping or rotation, so use dcraw -j -t 0 to locate 

dead pixels. 

 AUTHOR 

Written by David Coffin, dcoffin a cybercom o net 

 

PVALUE(1)   

 

NAME 

pvalue - convert RADIANCE picture to/from alternate formats 

 

SYNOPSIS 

pvalue [ options ][ file ] 

pvalue -r [ options ][ file1 [ file2 file3 ]] 

 

DESCRIPTION 

Pvalue converts the pixels of a RADIANCE picture to or from another format. In the 

default mode, pixels are sent to the standard output, one per line, in the following ascii 

format: 

xpos  ypos  red green  blue 

If no file is given, the standard input is read. 

The reverse conversion option (-r) may be used with a single input file or when 

reading from the standard input, but if the second form is used with three separate 

input files, the three primaries are presumed to be separated in these files. 

 

-u Print only unique values in the output, skipping runs of equal pixels.  Specifying +u 

turns this option off, which is the default. 

-o Print original values, before exposure compensation. If the input file is in XYZE 

format, the Y (green) channel will correspond to units of cd/m
2
. Otherwise, the RGB 

values should be in spectral W/steradian/m
2
.  Specifying +o uses final exposed values, 

which is the default. 

 

-h Do not print header. Specifying +h causes the header to be printed, which is the 

default. 

 

-H Do not print the resolution string. (See also the -r option below.) Specifying an 

input resolution for reverse conversion also turns this option off.  Specifying +H 

causes the resolution string to be printed, which is the default. 

 

-s nbytes  

Skip the specified number of bytes on the input header. This option is useful for 

skipping unintelligible headers in foreign file formats. (Does not work when reading 

from standard input.) 

-e exposure 

Adjust the exposure by the amount specified. If the exposure is being given as a 

conversion factor, use +e instead, so an EXPOSURE line will not be recorded in the 

header (if any). 

-g gamma  

Set gamma correction for conversion.  When converting from a RADIANCE picture 

to another format, the inverse gamma is applied to correct for monitor response. 

When converting to a RADIANCE picture (-r option), the gamma is applied directly 



178 

 

 

 

to recover the linear values. By default, gamma is set to 1.0, meaning no gamma 

correction is performed. 

 

-d Data only, do not print x and y pixel position. 

-da Same as -d. 

-di Print ascii integer values from 0 to 255+. If+di is given, the integer values will be 

preceded by the x and y pixel locations. 

-db Output binary byte values from 0 to 255. 

-dw Output binary 16-bit words from 0 to 65535. 

-dW Output binary 16-bit words from 0 to 65535, byte-swapped. 

-df Output binary float values. 

-dF Output byte-swapped binary float values. 

-dd Output binary double values. 

-dD Output byte-swapped binary double values. 

-R Reverse ordering of colors so that the output is blue then green then red. The 

default ordering (specified with +R)is red then green then blue. 

-n The RGB values are non-interleaved, meaning that all the red, green and blue data 

are stored together in separate chunks. Interleaving may be turned on with the +n 

option, which is the default. 

-b Print brightness values rather than RGB. Specifying +b turns this option off, which 

is the default. 

-pP Put out only the primary P, where P is one of upper or lower case aRa, aGa or aBa 

for red, green or blue, respectively. This option may be used to separate the Radiance 

primaries into three files with three separate runs of pvalue, or only one file when 

only one primary is needed. Note that there is no space between this option and its 

argument. 

-r Perform reverse conversion.  Input is in the format given by the other options. The 

x and y resolution must be specified on the command line, unless the image file 

contains a Radiance resolution string at the beginning (see -H option above and -y 

option below).  Specifying +r converts from a Radiance picture to other values, which 

is the default. 

-p xr yr xg yg xb yb xw yw 

On reverse conversion, RGB input uses the given set of color primaries. These are 

written into the output header with the PRIMARIES variable. 

-pXYZ On reverse conversion, input is in CIE XYZ coordinates, rather than RGB. 

The Y channel is assumed to be in cd/m
2
. 

-y res Set the output y resolution to res. If +y is specified, then the scanlines are 

assumed to be in increasing order (i.e. bottom to top). The default value for this option 

is 0, which means that the picture size and scanline order must appear as the first line 

after the header (if any) in the input file. Either an upper or lower case aYa may be 

used for this option. Since Radiance files always contain such a line, this option has 

no effect for forward conversions. 

+x res Set the output x resolution to res. If -x is specified, then the scanlines are 

assumed to be in decreasing order (i.e. right to left). The ordering of the -y and +x 

options determines whether the scanlines are sorted along x or along y. Most 

Radiance pictures are sorted top to bottom, then left to right. This corresponds to a 

specification of the form "-y yres +x xres". Either an upper or lower case aXa may be 

used for this option. Like the -y option, -x options have no effect for forward 

conversions. 
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EXAMPLE 

To look at the original, unique pixels in picture: 

pvalue -o -u picture | more 

To convert from a 512x400 8-bit greyscale image in bottom to top, left to right 

scanline ordering: 

pvalue -r -db -b -h +y 400 +x 512 input.im > flipped.hdr 

pdlip -v flipped.hdr > final.hdr 

 

AUTHOR 

Greg Ward 

BUGS 

The -r option does not work with the -u option.  Also, input pixel locations are 

ignored during a reverse conversion, so this information is not used in determining the 

scanline ordering or picture size. 
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Appendix F: HDRI of incandescent lamp 
 

HDRI‟s ability to capture an incandescent light source is tested (RAW images fused 

with raw2hdr). 

  

       
Figure F1. Experimental setting for making HDRI of the incandescent 

light source 

 

Equipment and settings: 

Lamp Sylvania 75W soft white 120V (A19, diameter 2 3/8‟‟ = 60 mm); 

Canon EOS 7D fitted with Canon zoom lens 28-105mm;  

Aperture size f/8;  

Shutter speeds 1/8000-8‟‟; 

Images are fused with raw2hdr Perl script. Luminances of reflectance standards and a 

particular part of the incandescent source are measured with LS110. After calibrating 

at a white reflectance standard (350.2 cd/m
2
), HDRI‟s luminance measurements are 

compared with the luminance meter measurements (table F). 

 

Table F. Luminance value measurements with the luminance meter compared to 

HDRI 

ρ, % 20 40 99 Incandescent 

lamp 

Lmeter, cd/m
2
 64.05 

 

166.2 350.2 32950 

LHDRI 28 mm, 

cd/m
2
 

71.5 170 Calibrated at 

this point 

33400 

 

LHDRI 105 mm, 

cd/m
2
 

- - - 32500 

Error, % 11.6 2 0 Zoom 28mm 

1.4% 

Zoom 105 mm 

1.4 % 
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Figure F2. HDRI of incandescent light source captured with CANON 

EOS 7D fitted with 28-105mm zoom lens at 28 mm 

 
Figure F3. HDRI (pseudo colors) of incandescent light source captured 

with CANON EOS 7D fitted with 28-105mm zoom lens at 28 mm 
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Figure F4. Enlarged HDRI of incandescent light source captured with 

CANON EOS 7D fitted with 28-105mm zoom lens at 28 mm 

 

 
Figure F5. Enlarged HDRI (pseudo colors) of incandescent light source 

captured with CANON EOS 7D fitted with 28-105mm zoom lens at 28 

mm 
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Figure F6. HDRI of incandescent light source captured with CANON 

EOS 7D fitted with 28-105mm zoom lens at 105 mm 

 

 
Figure F7. HDRI (pseudo colors) of incandescent light source captured 

with CANON EOS 7D fitted with 28-105mm zoom lens at 105 mm 
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Figure F8. Enlarged HDRI of incandescent light source captured with 

CANON EOS 7D fitted with 28-105mm zoom lens at 105 mm 

 

 
Figure F9. Enlarged HDRI (pseudo colors) of incandescent light source 

captured with CANON EOS 7D fitted with 28-105mm zoom lens at 105 

mm 

 

Outcome: HDRI‟s luminances of an incandescent lamp are within the acceptable 

ranges (1.4% error). It is tested for a particular camera/lens combination for both 

zoom conditions (28 and 105 mm) compared to the reference luminance measurement 

obtained with LS110. 
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