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dad: an R Package for Visualisation,
Classification and Discrimination of
Multivariate Groups Modelled by their
Densities
by Rachid Boumaza, Pierre Santagostini, Smail Yousfi and Sabine Demotes-Mainard

Abstract Multidimensional scaling (MDS), hierarchical cluster analysis (HCA), and discriminant
analysis (DA) are classical techniques which deal with data made of n individuals and p variables.
When the individuals are divided into T groups, the R package dad associates with each group a
multivariate probability density function and then carries out these techniques on the densities, which
are estimated by the data under consideration. These techniques are based on distance measures
between densities: chi-square, Hellinger, Jeffreys, Jensen-Shannon, and Lp for discrete densities,
Hellinger , Jeffreys, L2, and 2-Wasserstein for Gaussian densities, and L2 for numeric non-Gaussian
densities estimated by the Gaussian kernel method. Practical methods help the user to give meaning
to the outputs in the context of MDS and HCA and to look for an optimal prediction in the context of
DA based on the one-leave-out misclassification ratio. Some functions for data management or basic
statistics calculations on groups are annexed.

Introduction

Techniques such as multidimensional scaling, hierarchical cluster analysis, and discriminant analysis
are often used for multivariate data analysis to visualize, organize observations into groups, and
model class structure, respectively. These techniques deal with data of the “individuals × variables”
type (Mardia et al., 1979; Krzanowski, 1988), commonly stored in objects of class data frame. These
techniques are available in the R packages stats, MASS (Venables and Ripley, 2002), ade4 (Dray et al.,
2007), FactoMineR (Lê et al., 2008), cluster (Maechler et al., 2019).

In the case where the individuals are organized into occasions or groups, the analyst could be in-
terested in taking into account this data organization by associating with each occasion a mathematical
object and performing multivariate techniques on these objects. In the dad package (Boumaza et al.,
2021), devoted to such data, the objects are probability density functions. These densities are either all
continuous (numeric data with Lebesgue measure as reference measure) or all discrete (categorical
data with counting measure as reference measure) and are subjected to the following analyses:

• Multidimensional scaling (MDS) of probability density functions aims to visualize a set of
densities (or occasions) so that the distances between the densities are preserved as well as
possible;

• Hierarchical cluster analysis (HCA) of probability density functions is used to divide a set of
densities (or occasions) into clusters so that the densities of the same cluster are as similar as
possible and are dissimilar from those of the other clusters;

• Discriminant analysis (DA) of probability density functions deals with the same kind of data,
knowing a partition of the densities (or occasions) into classes. Its first objective is to learn
how the a priori classes can be explained by the distances between these densities. Then, if the
training step is judged satisfactory according to a criterion named misclassification ratio, its
second objective is to classify a new density whose class is unknown (Boumaza, 2004).

These three multivariate techniques constitute the core of this work. Theoretically, the dad package
handles probability density functions and considers multi-group data as samples allowing their
estimation. The densities could be considered as functional data processed by packages like fda
(Ramsay et al., 2020), fda.usc (Febrero-Bande and de la Fuente, 2012), or fdadensity (Petersen et al.,
2019), or as compositional data processed by packages like compositions (Tsagris and Athineou,
2020), Compositional (van den Boogaart et al., 2020), or robCompositions (Filzmoser et al., 2018).
The differences or similarities with these approaches are the subjects of part of the discussion of the
manuscript (Discussion and concluding remarks Section).

These three multivariate techniques are essentially based on distance indices between probability
density functions. Literature abounds with such indices: as an example, the encyclopedia of distances
of Deza and Deza (2013, p. 235–245) lists some forty. The dad package proposes to calculate ten of them
among the most common by considering the case of discrete densities and that of continuous densities.
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The results returned by the three previous multivariate techniques depend on the distance index used.
This is illustrated by simple examples in the context of HCA (Appendix A) or DA (Appendix B), and
criteria of distance choice are proposed in the Practical advice Section.

Thus, for each distance index, the dad package implements:

• its calculation for two densities whose type and parameters are known,

• its estimation for two densities for which there are two samples which allow the estimation of
their parameters,

• the generalization of each previous calculation for T (T > 2) densities taken two by two, the
result of which is a symmetric matrix.

In order to avoid unnecessary redundancies in the entry of data characterizing the groups as these
characteristics are the same for all the individuals of the same group, we considered it useful to
organize the data in a list of data frames (object of class folderh). Also, in order to calculate some
statistics (means, covariance matrices...) per group or distances between each pair of groups, we
considered it useful to store the individuals of each group in one data frame and these data frames in
a list (object of class folder). Appendix C details the rationale for introducing these object classes. The
functions of the package dad implementing the three main techniques (MDS, HCA, DA) apply to such
objects. The functions of data management or elementary calculation (means, variance or correlation
matrices, moments) applying to these objects could have been made invisible in the package without
affecting the presentation of the main techniques. However, to facilitate the work of the analyst
interested in processing multi-group data or in experimenting with other multivariate techniques on
such data, we have kept them visible. Some of them are presented in Appendix C and Appendix D.

So, the presentation of the dad package will begin with a description of the data considered in
the previous techniques (Multi-group data: examples and organization Section). We will then present
functions for the calculation of the distance or divergence measures between discrete densities and
between Gaussian densities. The special case of non-Gaussian densities estimated with the Gaussian
kernel method is also considered (Distance / divergence between densities Section). Then, we will present
the functions implementing the three techniques introduced above for the processing of multi-group
data: multidimensional scaling (MDS of densities Section), hierarchical cluster analysis (HCA of densities
Section), and discriminant analysis (DA of densities Section). Finally, we will give some practical advice
(Practical advice Section) and briefly highlight some similarities with functions of other R packages
(Discussion and concluding remarks Section). A summary and appendices complete this presentation.

Multi-group data: examples and organization

For MDS and HCA, the data X (Table 1a) of interest have three kinds of objects: occasions × individuals
× variables. The occasions define a partition of the individuals on which the variables are measured.
If T denotes the number of occasions, for each t in {1, . . . , T}, the rows of the table Xt correspond to nt
observations xt1 , . . . , xtnt of Xt a random vector with p components.

For DA, the data of interest are similar to the previous ones with the difference that we have
two categories of occasions. The first category consisting of T occasions is partitioned into K subsets
deriving from a factor G defined on occasions (Table 2). The second category consists of occasions,
numbered T + 1, . . . for which we have data of type X but not the value of G.

Datasets

The data of the following examples are available in the dad package as lists of data frames or arrays,
and are loaded by means of the usual data function.

1. Archaeological data: the data are stored in castles.dated, a list of two data frames whose
description is detailed in the subsection Introductory example of Appendix C. The data frame
castles.dated$stones in which for each of T = 68 Alsatian castles (occasions), p = 4 numerical
characteristics are measured on a batch of stones (individuals) used to build the castle. The
objective is to:

• visualize the castles by points in a space of reduced dimension so that the castles having
stones of similar dimensions are close to each other and those having stones of very
different dimensions are distant;

• highlight which characteristics of the stones are at the origin of these small or large
distances.
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Occasion Variables Group
1 . . . p p + 1

x11 1

1
... X1

...
x1n1 1

...
...

...
...

xt1 t

t
... Xt

...

xtnt t

...
...

...
...

xT1 T

T
... XT

...

xTnT T

(a) Data frame

Variables
1 . . . p

X1
. . .

Xt

. . .

XT

(b) Data folder

Table 1: For each occasion t = 1, . . . , T, the same p variables are observed for nt individuals. The data
frame (a) consists of (p + 1) columns, the last one is a factor designating the occasion. The data folder
(b) consists of T data frames each one having the same p column names.

The 68 castles are dated from the period 1140-1650, which is divided into six intervals, numbered
1 to 6, separated by the following cutoff points: 1175, 1210, 1245, 1280, 1350. The building periods
are available in the data frame castles.dated$periods. The first objective is to analyse the
relations between these periods and the previous visualization of the castles. The second
objective is to predict the building period of 67 non-dated castles the data of which are in the
data frame castles.nondated$stones.
This archaeological example (Rudrauf and Boumaza, 2001) was at the origin of the multi-group
techniques presented in this work. It illustrates well the MDS and DA techniques even if, as we
will see when processing the data, from the archeology point of view, the results are not very
satisfactory and have only an indicative value.

2. Agronomic data: the data are stored in the folderh object varietyleaves consisting of two
data frames variety and leaves, and a key rose that is the column name common to the two
data frames which connects them. The first data frame varietyleaves$leaves is made up of
581 rows (leaves of T = 31 rosebushes) and 5 columns corresponding to the number of the
rosebush to which the leaf belongs and p = 4 numerical characteristics: number of its leaflets,
length of its rachis, then the length, and width of its main leaflet. The second data frame
varietyleaves$variety is made up of T rows and two columns: the number of the rosebush
and its variety. There are K = 6 varieties (Table 3). This example will illustrate the DA technique.
The objective of which is to predict the variety of one plant from measures of several leaves of
the plant.

3. Sensory data: the data frame roses in which each of T = 10 photographs of rosebushes
(occasions) was evaluated 3 times, by 14 assessors, for p = 16 numerical characteristics, giving
a table with 16 columns and 42 rows per rosebush, for a total of 420 rows. In this case, an
individual is a couple (assessor, evaluation session). The objective is to visualize the roses and
then create clusters of roses that are as similar as possible. A part of these data will illustrate the
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Occasion G
1 1
...

...
T1 1
T1 + 1 2
...

...
T1 + T2 2

...
T1 + . . . + TK−1 + 1 K
...

...
T = T1 + . . . + TK−1 + TK K
T + 1 Not available
...

...

Table 2: Each occasion t (t = 1, . . . , T) matches a table with nt rows and p columns (see Table 1). The
variable G defined on the occasions takes values {1, . . . , K}. For each k = 1, . . . , K, the value k is taken
Tk times. The G values of the occasions T + 1, . . . are not available and have to be predicted.

techniques MDS and HCA.

4. Surveys – census data over years – : from each census conducted in France (INSEE, 2018)
during T = 7 different years (1968, 1975, 1982, 1990, 2010, and 2015), we extract the population
of active individuals aged 25 to 54 and p = 2 categorical variables: diploma (4 levels) and
socio-professional group (6 levels). From the initial data collected by INSEE, we build a list of
T = 7 arrays of dimension (4, 6), which is stored in dspg object. The objective is to visualize the
years and to highlight, when they exist, the temporal evolutions of the frequencies. The MDS
technique seems suitable to achieve this objective.

5. Surveys – census data 2015 by department – : from the census of the year 2015 (INSEE, 2018), we
consider the same kind of data and organize them in a list of T = 96 arrays, which correspond
to the 96 departments of metropolitan France. This list is available in the dspgd2015 object. As
for the sensory data, the objective is to visualize the departments and then create clusters of
departments that are as similar as possible. In order to give meaning to the clusters, a common
and advisable practice is to couple the techniques HCA and MDS.

In the last two examples, the densities are discrete and are given only for illustration. Their detailed
presentation is in the dad vignette mds-discrete-distributions.

Data management

The previously collected data can be organized into:

• A single data frame (Table 1a), by vertically concatenating the T tables Xt, with p columns and
appending a factor column designating the occasion, or

• A list of T data frames (Table 1b), each having p columns, as an object from an S3 class named
folder (see Appendix C).

Variety Number Number Number of leaves
of plants of leaves per plant

Canary 6 65 = 8 + 14 + 11 + 16 + 8 + 8
Electron 3 42 = 9 + 8 + 25
Lili Marleen 6 65 = 15 + 10 + 5 + 7 + 15 + 13
Pussta 6 200 = 35 + 47 + 29 + 20 + 37 + 32
Starina 5 105 = 18 + 17 + 19 + 33 + 18
White Meillandina 5 104 = 23 + 19 + 16 + 22 + 24

Table 3: Numbers of plants and leaves per variety and number of leaves per plant.
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To carry out discriminant analysis, the training step requires an a priori division of the occasions
into clusters, that is, a factor G with K levels defined from the occasion set (Table 2). The predicting step
is to assign a level for each occasion whose value of the factor G is not available. The data, therefore,
consist of two data frames linked by a hierarchical relationship “1 to N”. Each row of the data frame in
Table 2 is, thus, matched to several rows of the data frame in Table 1a. The list of these two data frames
is an object of S3 class folderh (hierarchical folder) built by the function folderh (see Appendix C).

Notice that in the presentation of the data tables, we arranged them so that the individuals (rows
of Table 1a) of the same occasion are neighbors and so that the occasions (rows of Table 2) of the same
class are neighbors. However, in the dad package, such a layout is obviously not necessary. Only the
factors Group (Table 1a) and G (Table 2) must be given.

Distance/divergence between densities

In the first subsection, we present the indices which operate on discrete densities. In the second
subsection, we consider the indices which operate on Gaussian densities and have an analytical
expression depending on the parameters of the densities: means, variances, and covariances. Therefore,
these indices can easily be estimated from the parameter estimates. In the third subsection, we present
an index based on the estimation of densities on Rp by the Gaussian kernel method. This index offers
the advantage of being easily calculable even for non-Gaussian continuous densities.

The main techniques of the dad package depend on the distance index used (Appendix A and B).
A brief practical guidance on the choice of distance index is provided in Practical advice Section.

Calculation of distances/divergences between discrete densities

Name Expression

Symmetric chi-square ∑
x
(p1(x)− p2(x))2/(p1(x) + p2(x))

Hellinger
(

2 ∑
x
(
√

p1(x)−
√

p2(x) )2
) 1

2

Jeffreys ∑
x
(p1(x)− p2(x)) ln(p1(x)/p2(x))

Jensen-Shannon ∑
x
( p1(x) ln(2p1(x)/(p1(x) + p2(x)))

+ p2(x) ln(2p2(x)/(p1(x) + p2(x))) )

Lp
(

∑
x
|p1(x)− p2(x)|p

) 1
p

Table 4: Distance indices between two discrete densities p1 and p2 on the same finite support the
states of which are denoted x in the formulas. The sums of the formulas are taken over all the
states of the support (Deza and Deza, 2013). The corresponding dad functions are: ddchisqsympar,
ddhellingerpar, ddjeffreyspar, ddjensenpar, and ddlppar.

Table 4 lists the expressions of distance indices of two discrete densities and the dad functions
associated with them. The set of the states of these densities can be either the set of the levels of one
categorical variable or the Cartesian product of the q sets of the levels of q categorical variables as in
the following example with q = 2.

> x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
+ y = factor(c("a", "a", "a", "b", "b", "b")))
> x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
+ y = factor(c("a", "a", "b", "a", "b")))
> p1 <- table(x1)/nrow(x1)
> p1

y
x a b
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A 0.5 0.0
B 0.0 0.5

> p2 <- table(x2)/nrow(x2)
> p2

y
x a b

A 0.4 0.2
B 0.2 0.2

The L1 distance and Jeffreys divergence between the densities p1 and p2 are computed as follows.

> ddlppar(p1, p2)
[1] 0.8
> ddjeffreyspar(p1, p2)
[1] Inf

The Jensen-Shannon index is equal to the entropy or average quantity of information of the
distribution (p1 + p2)/2, from which we subtract the sum of the entropies of p1 and p2. The other
indices are based on the sum of the differences, possibly weighted, between p1 and p2 in each state x,
unlike the Jensen-Shannon index, which is somewhat more global. These indices are compared in the
subsection Simulated discrete data of Appendix B.

Calculation of distances/divergences between Gaussian densities

Table 5 lists the parametric expressions of distance indices of multivariate densities and the dad
functions associated with them. For the univariate case, the expressions are easily deduced.

Name Expression

Hellinger (a)
(

2 − 2
p
2 +1 det(ΣV)

1
4 det(Σ + V)−

1
2 exp(− 1

4∥µ − m∥2
(Σ+V)−1)

) 1
2

Jeffreys(b) 2−1 ∥µ − m∥2
Σ−1+V−1 + 2−1 tr((Σ − V)(V−1 − Σ−1))

L2 (c)
(
(2π)−

p
2 det(2Σ)−

1
2 + (2π)−

p
2 det(2V)−

1
2

−2 (2π)−
p
2 det(Σ + V)−

1
2 exp(− 1

2∥µ − m∥2
(Σ+V)−1)

) 1
2

L2N (d)
(

2 − 2
p
2 +1 det(ΣV)

1
4 det(Σ + V)−

1
2 exp(− 1

2∥µ − m∥2
(Σ+V)−1)

) 1
2

2-Wasserstein (e)
(
∥µ − m∥2

Ip
+ tr(Σ + V − 2(V

1
2 ΣV

1
2 )

1
2 )
) 1

2

Table 5: Distance indices between the multivariate Gaussian densities f ≡ N(µ, Σ) and g ≡ N(m, V).
(a) The corresponding dad function is hellingerpar. It is the L2 distance between the square roots
of the densities f and g. (b) The Jeffreys divergence is the symmetrized Kullback-Leibler divergence.
Its corresponding function is jeffreyspar. (c) The corresponding function of the L2 distance is
distl2dpar. (d) L2N, named also normalized L2 distance, stands for the L2 distance between f /∥ f ∥L2

and g/∥g∥L2 and its value is almost similar to the Hellinger distance. Its corresponding function
is distl2dnormpar. (e) Ip stands for the identity matrix of order p. The corresponding function is
wassersteinpar.

For example, the Jeffreys divergence is respectively carried out with the jeffreyspar or jeffreys
functions depending on whether the calculations are respectively based on parameters or samples.

> m1 <- c(1,1)
> v1 <- matrix(c(4,1,1,9),ncol = 2)
> m2 <- c(0,1)
> v2 <- matrix(c(1,0,0,1),ncol = 2)
> jeffreyspar(m1,v1,m2,v2)
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[1] 5.314286

> library(MASS)
> set.seed(100)
> x1 <- mvrnorm(40, m1, v1)
> x2 <- mvrnorm(30, m2, v2)
> jeffreys(x1, x2)

[1] 6.780999

All these indices are based on a combination of the difference between the means µ and m and the
dissimilarity between the covariance matrices Σ and V. In the case of equal means, the distance index
between Gaussian densities reduces to a dissimilarity between covariance matrices. If the covariance
matrices are equal, all these indices reduce to an index of the distance between these means, this index
being dependent on the common variance matrix, with the exception of the Wasserstein index, which
uses the identity matrix. These indices are also compared in the subsection Simulated Gaussian data of
Appendix B.

Calculation of L2 distances between continuous non-Gaussian densities estimated by the
kernel method

Except for the L2 distances, the extension of the other distance indices of Table 5 to any estimated
densities still requires a lot of work. Indeed, we experimented with calculating distance indices using
numerical integration methods but computation times were so long in the multidimensional case
that we did not implement them in the dad package. The solution we recommend is to estimate the
densities by the Gaussian kernel method and use the L2 distances.

• Density estimation with the Gaussian kernel method. The probability densities ft are esti-
mated by the Gaussian kernel method:

f̂t(z) =
1

nt|ht|1/2
1

(2π)p/2

nt

∑
i=1

exp(−1
2
(z − xti)

⊤h−1
t (z − xti)), (1)

where ht is the non-singular bandwidth matrix and |ht| its determinant. This matrix may be
provided by the user, or calculated directly according to the AMISE criterion, with reference to
the normal distribution (Wand and Jones, 1995), that is:

ht = htV̂1/2
t , (2)

with:

ht =
( 4

nt(p + 2)

) 1
p+4

. (3)

• Calculation of L2 distances between estimated non-Gaussian densities. The calculation of the
inner product is carried out with the l2d function using a sample per density: x1 and x2; the
result derives from the estimation (1) of the densities, the bilinearity of the inner product, and a
formula of integral calculus (Wand and Jones, 1995, p. 101). Then, the L2-distance is directly
deduced. This calculation is carried out with the distl2d function.

> set.seed(40)
> x1 <- c(rnorm(5, mean = 0, sd = 1), rnorm(5, mean = 1, sd = 2))
> x2 <- c(rnorm(10, mean = 2, sd = 3), rnorm(5, mean = 0, sd = 2))
> distl2d(x1, x2, method = "kern")

[1] 0.2562896

The normalized L2 distance between densities is also possible. Although it has the disadvantage of
being time-consuming, it has some similarities to Hellinger’s distance, and in the Gaussian case, the
two distances have almost the same expression (Table 5).

MDS of densities

Since the function of dad package implementing multidimensional scaling of probability density
functions is a direct application of the function cmdscale of R, it is briefly recalled in the case of
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continuous densities. The mathematical aspects of this method have been dealt with in several works
(Delicado (2011) as MDS; Boumaza (1998), Kneip and Utikal (2001), and Yousfi et al. (2015) as functional
PCA). In this section, we will privilege the presentation in MDS form, which offers greater flexibility in
the choice of the distance between densities, while taking inspiration from the method of interpretation
of the results of PCA developed in Boumaza et al. (2015) in order to interpret the scores resulting from
MDS.

Brief presentation of the method

Given T densities and (δts)1≤t,s≤T the distances/divergences between each pair of them, the MDS
technique looks for a representation of the densities by T points in a low dimensional space such
that the distances between these points are as similar as possible to the (δts) (Cox and Cox, 2001). In
R, this multidimensional positioning technique is performed by the cmdscale function, whose main
argument is the symmetric matrix of distances and the main output is the matrix of coordinates.

If the densities are assumed to be Gaussian, we can use the Hellinger distance, the Jeffreys
divergence, the 2-Wasserstein distance, or the L2 distance (Table 5). If they are not expected to be
Gaussian, they are estimated using the Gaussian kernel method, and the only available distance for the
moment is the L2-distance (Calculation of L2 distances between continuous non-Gaussian densities estimated
by the kernel method Section).

The dad package includes functions for all the calculations required to implement such a method
and to interpret its outputs:

• The fmdsd function which performs multidimensional scaling and generates scores;

• The plot function which generates graphics representing the densities on the factorial axes;

• The interpret function which returns other aids to interpretation based on the moments of the
variables.

The fmdsd function

MDS of densities can be carried using the fmdsd function, which applies to an object of the class
folder (Table 1b). The future or to a data frame and a grouping variable (Table 1a). It is built on the
cmdscale function of R. In addition to the add argument of cmdscale, the fmdsd function has three sets
of optional arguments. The first, consisting of gaussiand, windowh, and distance, controls the method
used to estimate the densities and their distances (Distance/divergence between densities Section). The
second consists of the arguments data.scaled, data.centered, controls some data transformations,
and the logical argument common.variance, which, when set to TRUE, considers that all the occasions
have the same covariance matrix. These three arguments are discussed in Appendix E. The third set
consists of optional arguments which control the function outputs.

Interpretation of fmdsd outputs

The fmdsd function returns an object of S3 class fmdsd, consisting of a list of 11 elements, including
the scores, also called principal coordinates, and the moments of the variables per occasion. The
outputs are displayed with the print function, and graphical representations on the principal planes
are generated with the plot function.

The interpretation of outputs is based on the relationships between the principal scores and the
moments of the densities, in particular their means, variances, covariances, and correlations. These
relationships are quantified by correlation coefficients and are represented graphically by plotting the
scores against the moments. These interpretation tools are provided by the interpret function, which
has two optional arguments: nscores indicating the indices of the column scores to be interpreted and
moment whose default value is "mean".

Example

The following example is treated in detail in Boumaza et al. (2015), using PCA of densities. The data
consist of T = 10 rose bushes assessed three times, by a jury of 14 assessors, for p = 3 attributes:
top-sided shape (Sha), foliage thickness (Den), and plant symmetry (Sym). Here, we present the results
obtained with the MDS technique. This presentation is limited to the major steps in the calculation
and the visualization of the results generated by the fmdsd, print, plot, and interpret functions.
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> data("roses")
> rosesf <- as.folder(roses[,c("Sha", "Den", "Sym", "rose")], groups = "rose")
> resultmds <- fmdsd(rosesf, gaussiand = FALSE, distance = "l2")

The function fmdsd displays the barplot of the inertia explained by the first nine principal coordinates
(Figure 1).

> names(resultmds)

[1] "call" "group" "variables" "d" "inertia" "scores"
[7] "means" "variances" "correlations" "skewness" "kurtosis"

By default, the print function applied to resultmds only displays the names of the variables, the
inertia, and the principal coordinates.

> print(resultmds)

group variable: rose
variables: Sha Den Sym
---------------------------------------------------------------
inertia
eigenvalue inertia

1 0.02977 25.3
2 0.02261 19.2
3 0.02028 17.2
4 0.01439 12.2
5 0.00980 8.3
6 0.00930 7.9
7 0.00566 4.8
8 0.00344 2.9
9 0.00262 2.2
---------------------------------------------------------------
coordinates
rose PC.1 PC.2 PC.3

A A 0.055191062 0.022167510 0.02655143
B B -0.004963751 -0.023764758 0.07033084
C C 0.019611171 -0.122241048 -0.06566866
D D -0.091777346 0.041132410 -0.04995275
E E -0.013763431 0.019828288 -0.01341398
F F 0.016470141 -0.024307858 0.07144865
G G -0.088949736 0.005722199 0.01223686
H H -0.025102407 -0.006365474 0.01382440
I I 0.068203593 0.043999532 -0.02735366
J J 0.065080705 0.043829197 -0.03800313

> plot(resultmds)

The output is shown in Figure 2.

> interpret(resultmds)

Pearson correlations between scores and moments
PC.1 PC.2 PC.3

mean.Sha -0.65 0.29 0.69
mean.Den 0.83 -0.42 0.08
mean.Sym -0.01 0.94 -0.04
Spearman correlations between scores and moments

PC.1 PC.2 PC.3
mean.Sha -0.65 -0.26 0.65
mean.Den 0.78 -0.30 0.02
mean.Sym 0.16 0.92 -0.35

The returned plots of the interpret function are not shown. From the correlations between the
principal coordinates (PC) and the means of the variables, we deduce that:
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• The higher PC1, the higher "Den", and the lower "Sha" tends to be;

• The higher PC2, the higher "Sym";

• The higher PC3, the higher "Sha" tends to be.
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Figure 1: MDS of densities on sensory data (part of the roses data frame): inertia explained by the
first ten principal coordinates.
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Figure 2: MDS of densities on sensory data (part of roses data frame): the first three principal
coordinates.

Thus, from this interpretation of the PCs, we can describe the classes of rose bushes that can be
constituted in view of their proximities vs. distances visualized in Figure 2. For example, the roses
of the class {A, I, J} have thick foliage compared to those of the class {D, G}, the rose bush C is very
asymmetrical compared to the other rose bushes, the rose bushes of the class {B, F} have a top sided
shape.

In order to obtain the correlations between the scores and the standard deviations, we set the
optional argument moment to "sd" as in the following example. The other possible values of this
argument include "var" (variances), "skewness", "cor" (correlations for multivariate densities).

> interpret(resultmds, moment = "sd")

Pearson correlations between scores and moments
PC.1 PC.2 PC.3

sd.Sha 0.67 0.21 -0.49
sd.Den -0.01 0.77 0.11
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sd.Sym -0.13 -0.44 0.76
Spearman correlations between scores and moments

PC.1 PC.2 PC.3
sd.Sha 0.50 0.45 -0.58
sd.Den 0.15 0.64 -0.08
sd.Sym -0.26 -0.76 0.75

Some of the correlations between the PCs and the standard deviations of the variables seem high.
Reminding that the PCs are related to means, these correlations are therefore clues of links between
standard deviations and means of the variables. We, therefore, represent roses using their means
and standard deviations (Figure 3). We highlight that the standard deviations/variances used to
assess discordance between assessors tend to be smaller when the products subjected to evaluation
on a nine-level scale were awarded marks at the ends of the scale. This result which is actually quite
intuitive, obtained by the use of MDS on probability density functions, would have been difficult to
demonstrate if the means and standard deviations/variances had been analyzed separately.
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Figure 3: MDS of densities on sensory data (part of roses data frame): relationships between means
and standard deviations of the variables.

HCA of densities

As for MDS, the fhclustd function of the dad package implementing hierarchical cluster analysis of
probability density functions is a direct application of hclust, the corresponding function of R. So it is
briefly recalled, and we put the emphasis on the interest of coupling the implementation of MDS with
HCA in order to interpret more easily the clusters resulting from HCA.
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Brief description of the method and of its outputs

HCA deals with the same kind of data as the MDS technique, namely: T probability density functions
and (δts)1≤t,s≤T the distances/divergences between each pair of them. Its purpose is to build a series
of nested partitions that can be visualized by means of a dendrogram (Figure 4). An agglomerative
building algorithm starts with a partition consisting of T clusters (one density per cluster) then “it
repeats merging the closest pair of clusters according to some similarity criteria until all the data (densities in
our context) are in one cluster” (Gan et al., 2007). The criteria are built on dissimilarities between sets of
densities, which themselves derive from (δts)1≤t,s≤T obtained as follows:

> resulthca <- fhclustd(rosesf, gaussiand = FALSE, distance = "l2")
> round(resulthca$distances, digits = 2)

A B C D E F G H I
B 0.14
C 0.19 0.18
D 0.19 0.18 0.21
E 0.14 0.14 0.18 0.14
F 0.14 0.09 0.18 0.18 0.15
G 0.19 0.15 0.20 0.16 0.17 0.17
H 0.15 0.12 0.17 0.16 0.12 0.14 0.14
I 0.12 0.15 0.18 0.18 0.14 0.15 0.18 0.15
J 0.15 0.16 0.19 0.19 0.15 0.16 0.19 0.15 0.08

The dendrogram (Figure 4 ) is obtained by the following instruction:

plot(resulthca, xlab = "Roses", sub = " ", hang = -1)
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Figure 4: HCA of densities on sensory data (part of roses data frame). The y-axis indicates the distance
at which the clusters are merged: the lower this distance is, the more the rosebushes of the clusters are
similar.

HCA and MDS on the same densities

By cutting the dendrogram (Figure 4 ), a partition of the set of the T roses is deduced. For example,
in four clusters: {D, G}, {C}, {I, J}, and {E, H, A, B, F}. This partition is quite similar to the one
we could visually make on the basis of Figure 2. This is easy to understand since Figure 4 is only an
approximate visualization of the dissimilarities (δts)1≤t,s≤T that served both in MDS and in HCA.

In the Interpretation of fmdsd outputs section, we described the method used to give meaning to the
principal coordinates based on the moments of the variables, from which we deduced the meaning of
the clusters of roses constituted using the scores of MDS.
This illustrates the process we propose to follow in practice:

• Carry out HCA and deduce a partition in HCA-clusters;
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• Carry out MDS and constitute MDS-classes;

• Specify the characteristics of the MDS-classes according to the moments of the variables;

• Describe HCA-clusters which are similar to MDS-classes;

• Describe the other HCA-clusters by using, when possible, the MDS-scores of the groups making
up these clusters.

DA of densities

With the notations introduced at the beginning of the section Multi-group data: examples and organization,
the aim of discriminant analysis of densities (Boumaza, 2004) is to predict the value of G (Table 2) for
the occasion T + 1 represented by the density fT+1, knowing nT+1 observations of the random vector
XT+1, which are stored in XT+1 (Table 1).

For each k = 1, . . . , K, we denote by gk, the density representing the class k of G. The predicted
value is:

k̂ = arg min
1≤k≤K

D( fT+1, gk), (4)

where D is a distance index between densities (Distance/divergence between densities section). The data
corresponding to the density gk are those corresponding to the Tk densities ft belonging to the class k
of G. In Appendix F, we specify the possible procedures for calculating the densities gk and highlight
the link between DA of densities and the linear discriminant analysis (MASS) in the homoscedastic
Gaussian case.

The dad package performs all the calculations required to obtain the predicted value through
the fdiscd.predict function whose first two arguments, x and class.var, control the input data. It
includes the arguments distance and crit, which respectively set the distance and the densities gk
(Appendix F). It also includes the arguments gaussiand and windowh, which control the method of
density estimation. The fdiscd.predict function returns an object of S3 class fdiscd.predict, which
is a list consisting of prior and predicted values corresponding to each ft, a confusion matrix, the
distances (dtk) between the ft’s and the gk’s, and proximities. These are calculated from the inverse of
the distances in such a way that their sum is 1, but they are not probabilities and are useful for a quick
comparison of the distances.

In addition, the package calculates the misclassification ratio for the occasions for which the prior
class of G is known through the fdiscd.misclass function. This ratio is computed by using the leave-
one-out method on the T occasions, and the lower it is, the better the prediction of the variable G by
the data X. This function is based on arguments almost identical to those used by the fdiscd.predict
function. It also generates similar outputs, grouped into an object of the S3 class fdiscd.misclass.
However, these two functions differ in the method used to calculate the distances (dtk): if ft belongs to
the k-th class of G, the data corresponding to ft are not included in the data used to estimate gk. This
function is useful for empirical investigations in order to identify the optimal values of the arguments
minimizing the misclassification ratio. These values are then used by the fdiscd.predict function for
prediction of the G class of an occasion of unknown class.

First example: Castles / Stones

Let us consider the archaeological data (Section Multi-group data: examples and organization, Example 1).
For the sake of clarity, we combine the six classes to yield three final classes, 1140-1175, 1175-1280, and
1280-1550, numbered 1 to 3.

> data("castles.dated")
> levels(castles.dated$periods$period) <- c("1", "2", "2", "2", "3", "3")
> castlesfh <- folderh(castles.dated$periods, "castle", castles.dated$stones)

The fdiscd.misclass function is used to calculate the misclassification ratios (global and per class).

> fdiscd.misclass(castlesfh, class.var = "period", distance = "l2")

misallocation ratio: 0.3382353
predicted.class

prior.class 1 2 3 total misalloc
1 10 3 0 13 0.231
2 5 24 8 37 0.351
3 0 7 11 18 0.389
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total 15 34 19 68
---------------------------------------------------------------
castle prior.class predicted.class misclassed

1 1 1 FALSE
2 1 1 FALSE
3 1 2 TRUE

...

131 2 2 FALSE
133 3 2 TRUE
135 2 3 TRUE
136 2 1 TRUE

In order to empirically calibrate the different arguments of the function, the previous operation is
repeated, choosing other values for the arguments. If the gaussiand argument is set to TRUE, the
smallest global misclassification ratio is 34% (Table 6) and is obtained for crit = 1, the default value
for this argument, and for distance = "l2" or "hellinger".

Estimating the densities by the Gaussian kernel method by setting gaussiand = FALSE, with the
bandwidth defined by (2) and (3), increased the global misclassification ratio to 40%. If we consider
the same proportionality coefficient h in the formula (2), that is

ht = h V̂1/2
t , (5)

by setting the argument windowh of the function fdiscd.misclass, we empirically obtain a value of h
that minimizes the misclassification ratio. For this purpose, we calculate the misclassification ratio for
different values of windowh (Table 7). Note that an optimal empirical value is about windowh = 0.6,
with a misclassification ratio of 32%. One of the best empirical parametrizations of the fdiscd.predict
function would be gaussiand = FALSE, windowh = 0.6, and crit = 1.

crit 1 2 3
Ratio 0.34 0.56 0.40

Table 6: Castles/Stones. Misclassification ratio assuming densities to be Gaussian and parametrically
estimated, depending on the value of the crit argument used to select the type of gk density (Ap-
pendix F).

windowh 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio 0.56 0.44 0.38 0.38 0.37 0.32 0.32 0.35 0.34

Table 7: Castles/Stones. Misclassification ratio for densities estimated by the Gaussian kernel method,
depending on the value of the windowh argument, the proportionality coefficient setting the bandwidth.

The misclassification ratios are disappointing. Thus, the method was used only as an indication to
date the castles and its results were cross-checked with other established facts from other historical
sources (Rudrauf and Boumaza, 2001).

Second example: Rosebushes/Leaves

Let us consider the agronomic data (Section Multi-group data: examples and organization, Example 2).
We consider only the continuous variables characterizing the leaves, that is, leaving out the discrete
variable “number of leaflets”. As in the first example, we carry out discriminant analysis by applying
the fdiscd.misclass function for different parameter values. Table 8 gives the classification error rates
for the three criteria and some values of the proportionality parameter. One of the best combinations
of parameter values would, therefore, be crit = 3 and windowh = 0.2. The error rate is 0.032, which is
clearly better than the result obtained with the archaeological data of the first example. If the same
method is applied to all variables, including “number of leaflets”, the error percentage is zero for crit
= 3 and windowh = 0.3.

In these two previous examples, it should be noted that the search for an optimum value of the
parameter windowh has the disadvantage of being carried out by trial and error and is a time-consuming
procedure.
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windowh crit = 1 crit = 2 crit = 3
0.1 0.742 0.806 0.129
0.2 0.452 0.677 0.032
0.3 0.226 0.452 0.097
0.4 0.129 0.226 0.097
0.5 0.097 0.129 0.161
0.6 0.097 0.129 0.161
0.7 0.065 0.129 0.194
0.8 0.065 0.097 0.226
0.9 0.065 0.097 0.226

Table 8: Rosebushes/Leaves. Misclassification ratio for the three criteria and different values of the
proportionality parameter windowh, the densities being estimated by the Gaussian kernel method.

Practical advice

Data management

The functions folder and as.folder play a central role in the creation of objects handled by the func-
tions fmdsd (MDS on continuous data), mdsdd (MDS on discrete data), fhclustd (HCA on continuous
data), and hclustdd (HCA on discrete data). The functions folderh and as.folderh play the same
role in DA context: fdiscd.misclass and fdiscd.predict in the continuous case, or discdd.misclass
and discdd.predict in the discrete case.

It is advisable for the user to know how to use them, especially as their handling is quick and easy
(Appendix C).

Computation times

The computation times of the functions of dad depend mainly on the computation time of the distances
between groups in MDS and HCA contexts or between groups and classes in the DA context. The
longest times are achieved when the densities are estimated by the kernel method (Calculation of
L2 distances between continuous non-Gaussian densities estimated by the kernel method section). When
applying the function matdisl2 with the option method = "kern" on the archeological data (Example 1
of Appendix G), the computation time is approximately five times greater than when method =
"gaussiand".

Among the main functions of dad, the most time-consuming one is undoubtedly fdiscd.misclass
when its gaussiand argument is set to FALSE. That is, the densities are non parametrically estimated.
For example, applying this function to archaeological data with gaussiand = TRUE takes less than
one second while it takes approximately 30-40 seconds with gaussiand = FALSE (Example 2 of
Appendix G). Thus, we recommend doing tests on small datasets when working on non-Gaussian
continuous data.

Choice of distance

The choice of a distance index depends above all on the modeling hypotheses: discrete or continuous
data. If they are discrete dad proposes five indices (Table 4). If they are continuous, it proposes five
indices in the Gaussian case (Table 5) and only one for non-Gaussian data, which is the L2 distance
combined with the estimation of the densities by the Gaussian kernel method.

The distance indices of discrete or Gaussian densities are compared on particular examples in the
context of HCA (Appendix A) or DA (Appendix B). It is shown that depending on the technique used
and the criterion for measuring the quality of the results, a distance index can be better than another
for a set of data and worse for another set. Thus, in the discrete or Gaussian cases, if there is no a priori
choice of distance index, we suggest an empirical approach. As the computation times are reasonable,
we perform the desired analysis by experimenting with each of the distance indices, then choose the
distance index according to one of the two criteria given by dad.

For DA, it is the misclassification ratio obtained by the one-leave-out procedure by using the func-
tion fdiscd.misclass. We should choose the distance index which gives the lowest misclassification
ratio.

For MDS, it is the interpretation of principal coordinates in terms of marginal distributions (discrete
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densities) or moments (continuous densities) using the function interpret. We should choose the
distance index which gives the highest correlations between principal coordinates and marginal
distributions or moments. For HCA, we combine it with the MDS method (HCA and MDS on the same
densities subsection) and, therefore, we refer to the above to choose the distance index.

Discussion and concluding remarks

The classic statistical methods as multidimensional scaling (MDS), hierarchical clustering analysis
(HCA), and discriminant analysis (DA) operate on data which are rows of a data frame. They
are available in the R packages stats, MASS (Venables and Ripley, 2002), ade4 (Dray et al., 2007),
FactoMineR (Lê et al., 2008), cluster (Maechler et al., 2019). The dad package presented in the
manuscript generalizes them to data that are organized into groups or occasions. The graphics
produced by MDS, the clusters constituted by HCA, or the predicted class provided by DA, concern
the occasions and not the individuals who constitute them.

These methods are multivariate data analysis, but they can also be seen as functional data analysis
since they operate on multivariate functions estimated from multivariate data. They are theoretically
similar to some functional statistical methods implemented in fda.usc, fda, and fdadensity packages.
The main difference is in the type of data processed. The functional statistical methods deal with
functions of only one or two variables, while the main functions of dad can deal with more.

These methods can also be seen as compositional data analysis. Indeed, compositional dataset
provides portions of the total (Aitchison, 1986) and the R packages compositions, Compositional, and
robCompositions are devoted to such data by implementing many descriptive or graphical techniques
and models. Regarding the packages Compositional and robCompositions, their modeling approach
is far enough from our approach to be addressed in this discussion, while the package compositions
presents similarities with our work which we detail in Appendix H. In the case of a univariate
discrete density, the differences concern the method of interpreting the graphical outputs provided by
princomp of compositions and mdsdd of dad even if we get fairly similar graphics (see the example of
Appendix H). In the multivariate case, dad takes into account marginal distributions of orders 1 and 2
(or more), while in the current version of compositions, only marginal distributions of order 1 are
taken into account.

The most recent version of the dad package implements functions which operate on discrete
data. It also extends the three previous methods to a mixture of numerical and categorical data
by transforming the numerical data into categorical data. It is done by dividing the range of each
numerical variable into intervals using the function cut.folder, an extension of the function cut to
several variables of a folder.

In addition, the last versions of functions implementing MDS and HCA apply to data stored in a
data frame and not only to data stored in a folder.

The following development work is also planned:

• Automation of the empirical search for the proposed proportionality coefficient in the for-
mula (5), considered optimal (in at least some ways) in the context of discriminant analysis;

• Automation of the empirical search for a similar coefficient suitable for use in multidimensional
scaling as proposed by Yousfi et al. (2015) in principal component analysis context.

Summary

When we work on multidimensional multi-group data and are interested in the groups and not in
the individuals who make up these groups, we want to have statistical methods and computer tools
making it possible to describe these groups. The dad package is devoted to this.

It mainly provides elaborate functions which implement multivariate techniques such as multidi-
mensional scaling, hierarchical classification analysis, or discriminant analysis on such groups. Moreover, in
order to help users in reading the outputs of these techniques, dad provides functions for interpreting
the results.

It provides datasets which illustrate such data and easy-to-use functions which allow to (i) manage
multi-group data by associating a data frame with each group, (ii) compute the distances between
groups based on the mathematical concept of probability distribution/density, and (iii) secondarily
compute elementary statistics by group as for example frequency distributions and moments.

It defines new data structures called folders (folder, folderh, foldermtg) and provides specific
tools to manage them, such as selecting or deleting columns from a folder, converting numeric
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columns of a folder to factors. The most noticeable among them allows to easily import into R plant
architectures encoded in mtg files and, thus, have R packages available to analyze the imported data.
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Appendix A: HCA and distance index

We compare three distance indices in the HCA context with a small, simple example originating from
an exchange with an anonymous reviewer of a previous version of the manuscript by comparing the
L1 and L2 distances and the symmetrized divergence of Kullback-Leibler. In his review, he made a
severe criticism of the L2 distance, which was the unique distance proposed in the first versions of the
dad package: “Let f a uniform density in the interval [0, 1], and g also uniform in [0, 0.90]. Clearly, from the
point of view of g, it is impossible to reach values in the interval (0.90, 1] and so, these two densities are not
neighbors.” Indeed, the L1 and L2 distances and the symmetrized Kullback-Leibler divergence (KL)
are:

L1( f , g) = 0.20, L2( f , g) = 0.33, KL( f , g) = ∞,

so KL( f , g) reflects this impossibility of reaching all the values of f from g, unlike L1 and L2, which
consider them to be relatively close to each other.

However, if we add the other two densities v and w, uniform on [0, 0.10] and [0, 0.11], and if our
objective is to obtain either a partition of f , g, v, and w in 2 classes, or an approximate representation
on a plane of these 4 densities, the choice of L1 or L2 is more informative than KL (Table 9) because
with the first two distances, we would easily group f and g on one side and v and w on the other
side, whereas with KL all distances are infinite. Our belief is that the choice of a distance between

L1 L2 KL
f g v w f g v w f g v w

f 0 0.20 1.80 1.78 f 0 0.33 3.00 2.84 f 0 ∞ ∞ ∞
g 0 1.78 1.76 g 0 2.98 2.82 g 0 ∞ ∞
v 0 0.18 v 0 0.95 v 0 ∞
w 0 w 0 w 0

Table 9: L1, L2, and symmetrized Kullback-Leibler distance/divergence between the uniform proba-
bility densities f = U([0, 1]), g = U([0, 0.9]), v = U([0, 0.10]), and w = U([0, 0.11]).

groups cannot be made in the absolute. It is better to specify a criterion for choosing the distance,
which makes sense in the context of the method used, such as percentage of inertia explained in MDS
(Delicado (2011)), or in the context of the data analysed. In the Practical advice section, we suggest two
other criteria.

Appendix B: DA and distance index

In the two examples of DA of densities section, the data were not considered plausibly Gaussian and
the distance used is the L2 distance, the only distance computable in dad which is suitable for this
type of data. In this appendix, we are interested in other types of data and in the misclassification
ratios according to the distance index used (Distance/divergence between densities section).

Simulated discrete data

Let p1 = P(λ1) and p2 = P(λ2) be two Poisson distributions with respective parameter λ1 = 1 and
λ2 = 2 and S1 and S2 respective simulated samples of size 30. We simulate a sample S of size 10
according to the distribution p1, we calculate the dissimilarities d1 and d2 between this sample and
each of the samples S1 and S2, then we compare d1 and d2. We would expect d1 to be less than d2 since
the samples S and S1 are from the same population. Thus, if d1 > d2 we consider that the sample S is
misclassified. We repeat the previous scenario 1000 times and then calculate the misclassification ratio.
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The results obtained for the same 1000 samples and each of the distance indices of Table 4 are in
column (a) of Table 10. Then we proceed in the same way with 1000 samples of the distribution p2; the
misclassification ratios are in column (b). We notice that for the Jeffreys divergence, the number of

Distance index (a) (b)
Misclassification ratio Misclassification ratio
of 1000 samples from p1 of 1000 samples from p2

Symmetric chi-square 0.073 0.183
Hellinger 0.064 0.188
Jeffreys 0.049 (600∗) 0.139 (643∗)
Jensen-Shannon 0.139 0.269
Lp 0.079 0.172

(*) number of samples S at infinite distance from samples S1 or S2 .

Table 10: Poisson distributions. Misclassification ratios of 1000 samples from p1 = P1 (a) or from
p2 = P2 (b). The instructions for R allowing the calculation of the ratios corresponding to the
symmetric chi-square index are given in the last subsection. The other ratios are obtained by means of
the corresponding distance while keeping the same simulation seed.

samples S at infinite distances from S1 or S2 is very large, which makes it inefficient at discriminating
between samples.
We carried out several simulations as in the previous procedure to compare the distances. We did not
find any stability in the order of distances according to the misclassification ratios.

Simulated Gaussian data

As for the discrete case, these distance indices are compared in a simplified context of discriminant
analysis using the same procedure. Let p1 and p2 be the two Gaussian distributions N(0, 1) and
N(1, 4). The results are given in Table 11. We notice that for the samples from N(0, 1) (a), the distance

Distance index (a) (b)
Misclassification ratio Misclassification ratio
for 1000 samples from p1 for 1000 samples from p2

Hellinger 0.020 0.051
Jeffreys 0.018 0.043
L2 0.034 0.040
L2N 0.026 0.111
2-Wasserstein 0.007 0.169

Table 11: Gaussian distributions. Misclassification ratios of 1000 samples from p1 = N(0, 1) (a) or
from p2 = N(1, 4) (b). The R instructions are similar to those of Poisson samples. It suffices to change
the function rpoi to rnorm with the appropriate parameters. In these simulations, the seed is set to 123.

giving the best rate is the Wasserstein distance. On the other hand, it is the worst for the samples from
N(1, 4) (b).

We carried out several simulations and the conclusion is word for word the same as that of the
discrete case with the Poisson distributions.

These results lead us to suggest choosing a distance index based on the minimum misclassification
ratio in the subsection Choice of distance of Practical advice Section.

Computation of the misclassification ratios of Table 10 or 11

The following R instructions are used to compute the misclassification ratios in DA context with
samples from Poisson distributions according to the symmetric chi-square distance index of Table 10.
The instructions for computing the other ratios of Table 10 and the ratios of Table 11 are given in
supplementary material.

> n <- 30
> ne <- 10
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> nrep <- 1000
> l1 <- 1
> l2 <- 2
> #
> nmisclass1 <- 0
> set.seed(135)
> e1 <- rpois(n, lambda = l1)
> e2 <- rpois(n, lambda = l2)
> for(index in (1:nrep))
+ { x <- rpois(ne, lambda = l1)
+ d1 <- ddchisqsym(x,e1)
+ d2 <- ddchisqsym(x,e2)
+ if(d1 > d2) nmisclass1 <- nmisclass1 + 1
+ }
> misclassratio1 <- nmisclass1 / nrep
> print(misclassratio1)

[1] 0.073

> nmisclass2 <- 0
> set.seed(135)
> e1 <- rpois(n, lambda = l1)
> e2 <- rpois(n, lambda = l2)
> for(index in (1:nrep))
+ { x <- rpois(ne, lambda = l2)
+ d1 <- ddchisqsym(x,e1)
+ d2 <- ddchisqsym(x,e2)
+ if (d1 < d2) nmisclass2 <- nmisclass2 + 1
+ }
> misclassratio2 <- nmisclass2 / nrep
> print(misclassratio2)

[1] 0.183

Appendix C: some useful functions on data folders

The dad package uses objects of class folder or folderh. These objects are lists of data frames having
particular formats.

Introductory example

Let us consider the archaeological data introduced in Multi-group data: examples and organization section.
The data that Jean Michel Rudrauf (Rudrauf and Boumaza, 2001) submitted to us was in the form of a
paper binder, each sheet of which corresponds to a castle (Figure 5). So for each castle we have:

• a name,

• an identification number,

• a building period (sometimes even a year) if it is known,

• the p = 4 measurements of a sample of stones.

A most natural and least redundant way for entering such data is to create:

• one data frame per castle. This data frame with p columns is named by the identification number
of the castle and contains the measurements of the stones. Its number of rows corresponds to
the number of stones whose all measurements are available.

• a data frame whose rows are the castles and whose columns correspond to the name, the
identifier and the building period.

From there, we choose to suggest suitable data structures for multi-group data and propose manage-
ment and calculation tools adapted to these data structures. This is exemplified below.

The archaeological data are stored in the list castles.dated of two data frames. The data
frame castles.dated$periods consists of T=68 rows (castles) and 2 columns: castle, the castle
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Figure 5: The data patiently collected by Jean Michel Rudrauf corresponds to the castle of Fleckenstein.
Its number identification is 102. It was built around 1470 i.e. in the sixth period. The measurements are
H: height, L: width, l: edging and b: boss. There are 10 stones whose measurements are complete:
7 stones belong to the staircase tower (Tour d’escalier) and 3 stones belong to a wall located near the
entrance of the castle (Pierres dans mur près pont d’entrée). The corner stones designated by the symbol
(a) in column H, are excluded from the study.

identifier, and period, the building period which is a factor with 6 levels. The second data frame
castles.dated$stones consists of 1262 rows (stones) and 5 columns: 4 numeric characteristics of the
stones (height, width, edging, and boss) and 1 factor castle with 68 levels, which gives the identifier
of the castel to which belongs each stone. The implementation of DA requires carrying out calculations
not only on all the stones of each castle but also on all the stones of all the castles of each period. To
do this, we can store the stones in a data frame made up of 6 columns obtained by adding a column
period to the file castles.dated$stones. Thus, all the stones of a castle have the same period value.
In order to avoid this redundancy in data entry and management, we propose to store the two files
castles.dated$stones and castles.dated$periods as well as the key castle which relates them, in
a folderh that is a list of two data frames related by a key. The procedure for doing this is given in the
paragraph First example: Castles/Stones of DA of densities section.

Now consider only the castles.dated$stones file. To implement both DA and MDS, it is necessary
first to calculate and store the vectors of means and the covariance matrices of the p=4 numeric variables
for each castle, then to use the results in the calculation of the distances between each pair of castles.
The calculations of means and covariances by castle can be carried out directly from the five-column
data frame castles.dated$stones using, for example, the following R functions: colMeans, var, and
by. In order to facilitate the extraction of data relating to a particular castle and control the data
entry, or to check pieces of the computer program, we organize the data in a folder that is a list of T
four-column data frames (one data frame per castle), and we extend the mean and var functions so
that they apply to such a data structure and return results as lists. So if x is the name of the folder,
x[[t]] is the data frame which contains the data of the castle t, mean(x)[[t]] is its vector of means
and var(x)[[t]] is its covariance matrix. We find that by doing so, it is also easier to remember the
names and contents of these objects when writing computer programs.
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Objects of class folder

Such objects, lists of data frames which have the same column names, are created by the folder
function, from two (or more) data frames, say x1 and x2, as follows: folder(x1,x2).

Optional argument cols.select defines the way in which the columns of the two data frames are
selected: common columns only (cols.select = "intersect") or all the columns (cols.select =
"union"). For the "union" option, if the data frames do not have exactly the same column names they
are complemented by NA’s.

The functions mean.folder (or simply mean), skewness.folder, and kurtosis.folder applied to
the object x of the class folder, respectively return the list of the vectors of means, skewnesses, and
kurtosises of the numeric columns of the elements of x. The functions var.folder and cor.folder
return the list of the covariance and correlation matrices. If the data frames of x contain non-numeric
columns, these functions exclude these columns from the computation. If they contain only one
numeric column, these functions return lists of numbers. Note that map(x,colMeans), map(x,cor),
and map(x,var) return the same values as before, except in the presence of a factor column whose
levels are numbers: map(x,colMeans) and map(x,cor) return an error while map(x,var) integrates the
factor column in the covariance matrices.

Hence, in folder objects, the observed variables are the same on every occasion, unlike individuals
which can be different from one occasion to the next. The particular case where individuals are the
same on every occasion, corresponds to data defined as three-way data by Kiers (2000) in his essay on
standardization of terminology for multiway analysis. In this particular case, it would be better to
store the data in an object of class array.

Objects of class folderh

Such objects are hierarchical lists of data frames in which two successive data frames from the list are
related by means of a key. We complete the presentation of the introductory example by a case with
more than two data frames. For three data frames, say df1, df2, and df3, there are two keys: the first,
say key1, describes the “1 to N” relationship between df1 and df2, and the second, say key2, describes
the “1 to N” relationship between df2 and df3. The arguments of the folderh function are introduced
in the following order: df1, key1, df2, key2, df3, and so on, if there are more than three data frames.
An example of such object is given in Appendix D.

The function as.data.frame applied to such a hierarchical folder, say fh, whose constituent
elements are listed above, has two main arguments: key (the name of a key of fh) and elt (the name
of a data frame of fh) with the precision that the value of elt is located after the value of key in the list
of arguments defining fh. In the case of two adjacent names, that is key = key1 and elt = df2 or key
= key2 and elt = df3, as.data.frame returns a data frame similar to any viewpoint to that returned
by the merge function. If key = key1 and elt = df3, the data frame returned by the as.data.frame
function, say dfr, has the same rows as df3. The columns of dfr are those of the data frames df3
and df1, and those corresponding to all the keys located between key1 and df3 in the list defining fh,
noticing that the key columns are the first columns of dfr.

Appendix D: Import plant architectures encoded in mtg files

The result of this import procedure consists of an object of class folderh and uses an intermediate
object of class foldermtg. Let us first specify what an mtg file is.

The topological structure of a plant is defined from its decomposition into elementary components
and the connections between them (Godin and Caraglio, 1998). In Figure 6, the plant is composed
of 2 axes (one principal axis, A1, coming from the root and bearing one secondary axis, A2) and each
axis is composed of internodes and peduncles: the principal axis is composed of seven internodes
I1, ..., I7 and one peduncle F1 and the secondary axis is composed of three internodes I8, I9 and
I10. Among the computer file types used to store the topology of a plant, we are interested in mtg
(multiscale tree graph) files which can be opened with a spreadsheet as LibreOffice-Calc, or Excel
(Pradal and Cokelaer, 2010). Breaking a plant into axes and breaking each axis into internodes create
two “1 to N” relationships which can be stored in an object of class folderh. This hierarchical folder,
say fh, is a list of three data frames P (set of 1 plant), A (set of 2 axes), and I (set of 10 internodes), and
two keys P and A. It is the result of the following three R instructions which successively imports an
mtg file into R, creates an object of the S3 class foldermtg, and then creates fh.

> mtgfile <- system.file("extdata/plant2.mtg", package = "dad")
> x2 <- read.mtg(mtgfile)
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> fh <- as.folderh(x2, classes = c("P", "A", "I"))
> print(fh)

$P
P Variety

v01 v01 Starina

$A
P A Length

v02 v01 v02 30
v07 v01 v07 12

$I
A I Leaflet

v03 v02 v03 3
v04 v02 v04 3
v05 v02 v05 5
v06 v02 v06 5
v08 v07 v08 5
v09 v07 v09 5
v10 v07 v10 7
v11 v02 v11 7
v12 v02 v12 5
v13 v02 v13 3

attr(,"class")
[1] "folderh"
attr(,"keys")
"P" "A"

Figure 6: Decomposition of a plant
(P) into axes (A), internodes (I), and
peduncles (F).

Biological component File code
/P1 v01
∧/A1 v02
∧/I1 v03
∧<I2 v04
∧<I3 v05
∧<I4 v06

+A2 v07
∧/I8 v08
∧<I9 v09
∧<I10 v10

∧<I5 v11
∧<I6 v12
∧<I7 v13
∧<F1 v14

Table 12: The first two columns correspond to the plant topol-
ogy stored in an mtg file. The third column corresponds to the
code of each component: the plant (P) is encrypted v01, etc.

An object of class foldermtg is a list of data frames. It is only an intermediary to which the only
function of R which can be applied to it is as.folderh. This, therefore, makes it possible to retrieve a
hierarchical folder which consists of data frames, one data frame per type of biological components,
on which one can operate statistical calculations by means of R functions.

Appendix E: Particular cases of the fmdsd function

We assume that the densities associated with the occasions are Gaussian. For particular values of the
arguments data.centered, data.scaled, and common.variance, the outputs of the fmdsd function are
similar to those returned by other functions.
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common.variance = TRUE

The Gaussian densities are assumed with the same covariance matrix which is estimated using all
data. Thus, the distances between the densities are reduced to the differences between their mean
vectors (Table 5). The Euclidian distances between mean vectors computed by the R function dist are
equal to that computed by the 2-Wasserstein distance between densities. In this case, the R function
cmdscale applied on the mean vectors returns exactly the outputs of the fmdsd function.

data.centered = TRUE

The Gaussian densities are assumed with zero mean vectors. Consequently, the distances between
the densities are reduced to the differences between their covariance matrices (Table 5). With the 2-
Wasserstein distance, the distances between the densities are reduced to the Hilbert-Schmidt distances
between the square root of the covariance matrices while the dual STATIS method (Lavit et al., 1994)
uses Hilbert-Schmidt distances between the covariance matrices. In R, the calculations can partly
be performed with the DSTATIS function of the multigroup package (Eslami et al., 2013, 2020) or the
statis function of the ade4 package (Dray et al., 2007) after some transformation. However, the
outputs of these two functions are completely different from those of the fmdsd function (MDS of
densities Section): fmdsd focuses on the visualization of the occasions, while the other functions focus
more on the visualization of variables or individuals.

data.scaled = TRUE

With the two previous special cases, we have shown that MDS on densities is a way to take into
account globally the means, variances, and covariances of the occasions and, therefore, a form of
generalization of separate analyses either on averages or on variances and covariances. The optional
argument data.scaled is useful when the analyst is interested to focus only on the relationships
between variables.

Appendix F: DA of densities and classic DA

Densities associated to the classes of the factor G defined on the occasions

In the functions fdiscd.misclass and fdiscd.predict, for each k = 1, . . . , K, the density gk represent-
ing the class k of G is estimated using a procedure selected by means of the argument crit. Recalling
that the class k contains Tk densities ft, the three procedures are defined as follows.

1. All samples related to the Tk occasions of class k are pooled and constitute a single sample,
which is then used to estimate gk.

2. If f̂t estimates ft, then gk is estimated by the mean value of the Tk densities pertaining to the
class k: (1/Tk)∑ f̂t.

3. The mean value of the previous Tk densities is calculated by weighting each f̂t by the size of its
corresponding sample: (1/ ∑ nt) ∑ nt f̂t.

The last two procedures are only available if the argument distance is set to "l2". If there is only
one occasion per class that is Tk = 1, ∀k, the three procedures are the same. In this case, the data are
those of the training step of classic DA. However, in the prediction step, we have to assign a group of
individuals not individually but taken as a whole.

Homoscedatic Gaussian case

We assume that:

• the densities ft (t = 1, . . . , T) are Gaussian with the same covariance matrix V. We denote ft by
N(mt, V);

• there is one density ft per class of G. So, there are K = T classes, and the density of the class k is
denoted by fk.

• the density fT+1 is Gaussian N(mT+1, V)

We have to predict the class value of fT+1 using the rule 4 and one of the distances from Table 5. For
distance = "wasserstein", we calculate the distances between the mean vectors ∥mT+1 − mk∥Ip (k =
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1, . . . , T), and for the other distances we calculate the distances ∥mT+1 − mk∥V−1 (k = 1, . . . , T).
In the homoscedastic Gaussian case, this makes DA of densities appear as a form of extension of linear
discriminant analysis where the group of individuals to be predicted is summarized by the mean
vector of the group.

Appendix G: Some computation times

All the following calculations are carried out using a laptop computer equipped with an i5 processor
on the archaeological data. The stone characteristics are stored in the data frame x.df. Then, we create
the corresponding folder x.folder.

> data(castles.dated)
> x.df <- castles.dated$stones
> x.folder <- as.folder(x.df, groups = "castle")

Example 1: Comparison of distance indices in the continuous case

The computation times of the inter-group distances are of the same magnitude when the densities are
supposed Gaussian and parametrically estimated. Computations with the L2 distance take about one
second.

> system.time(matdistl2d(x.folder, method = "gaussiand"))

user system elapsed
1.13 0.06 1.36

When the densities are estimated by the kernel method, the computation time is multiplied by about 5.

> system.time(matdistl2d(x.folder, method = "kern"))

user system elapsed
6.38 0.14 6.53

Example 2: Computation time of the function fdiscd.misclass

We build the hierarchical folder x.fh corresponding to the archeological data. We first apply the
function fdiscd.misclass with the option gaussiand = TRUE then with the option gaussiand =
FALSE.

> x.fh <- folderh(castles.dated$periods, "castle", castles.dated$stones)
> system.time(fdiscd.misclass(x.fh, class.var = "period", distance = "l2", gaussiand = TRUE))

user system elapsed
0.16 0.02 0.17

> system.time(fdiscd.misclass(xfh, class.var = "period", distance = "l2", gaussiand = FALSE))

user system elapsed
38.13 0.17 38.64

Appendix H: MDS on compositional data and compositional data analysis

The discrete densities considered in dad are compositional data as they are made up of positive
numbers whose sums are one. It is possible to apply to them the techniques developed in the package
compositions after an adapted data formatting work. The opposite, i.e., applying dad techniques to
compositional data, is partly true as in the following example illustrating the functions princomp.acomp
of compositions and mdsdd of dad on the same data.
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Figure 7: Compositional data. (a) The two first principal components of princomp.acomp applied on
sa.lognormals data. (b) The two first principal coordinates of mdsdd on the same data. The signs of
the scores are chosen so that the comparison of the two graphs is easier.
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Figure 8: Plots of the scores of the figure 7a and those of the figure 7b. The correlation between comp1
and -PC.1 is 0.98 and between comp2 and -PC.2 is 0.93.

Data loading

The simulated data sa.lognormals of compositions are stored in a matrix 60 × 3 whose columns are
the amounts of Cu, Zn, and Pb present in 60 samples. They are loaded as follows.

> library(compositions)
> data(SimulatedAmounts)
> print(sa.lognormals)

Cu Zn Pb
[1,] 8.8043262 35.1671810 45.895025
...
[60,] 3.9854998 6.1301909 40.579417

These initial data are transformed so that each row is of sum 1 by means of the acomp function.

> acomp(sa.lognormals) -> x1
> print(x1)
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Figure 9: MDS of compositional data considered as discrete densities. Plotting PC.1 against the relative
amounts of Cu, Zn, and Pb.
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Cu Zn Pb
[1,] 0.097971136 0.391326782 0.51070208
...
[60,] 0.078617049 0.120922730 0.80046022
attr(,"class")
[1] acomp

The rows of the object x1 of class acomp (relative amounts of Cu, Zn, and Pb present in 60 samples) are
transformed into tables or arrays. These tables or arrays then are organized in a list to be subjected to
mdsdd. The three levels of the unique categorical variable are denoted dd.Cu, dd.Zn, and dd.Pb.

> x <- as.data.frame(x1)
> nomscol <- colnames(x)
> x2 <- list()
> for(i in 1:60) {x2[[i]] <- as.table(as.numeric(x[i,]));
+ dimnames(x2[[i]]) <- list("dd" = nomscol)}
> names(x2) <- rownames(x)

Outputs of princomp and mdsdd

By applying the princomp.acomp (or simply princomp) function to x1, we obtain the visualization of
the data in a biplot (Fig. 7a).

The mdsdd function (MDS of discrete densities) is applied to x2 which are the rows of x1 considered
as discrete densities. We choose to present the results for the distance argument set to hellinger.
These results are quite similar to those obtained with other distances as chisqsym, jeffreys, or jensen.

r2 = mdsdd(x2, distance = "hellinger")

It provides the figure 7b.

The two figures are almost equivalent: by plotting the coordinates comp1 and comp2 against PC.1
and PC.2 of the two previous graphics we get the figure 8.

Interpretation of the scores

For the interpretation of the axes, the two packages provide quite different tools. With compositions,
the biplot makes it possible to visualize the links between the variables Cu, Zn, and Pb and their
links with the principal components. With dad, the interpretation is done by crossing the scores and
the initial data. The interpretation is based on the strength of the links between the PCs and the
probabilities of occurence of each level. In the compositional data example, almost a single axis would
suffice to explain the general trend: the first principal coordinate PC.1 explains 90% of the inertia.

> interpret(r2, nscore = 1)

Pearson correlations between scores and probability distributions of each variable
...
Spearman correlations between scores and probability distributions of each variable

PC.1
dd.Cu 0.90
dd.Zn 0.96
dd.Pb -1.00

The graphical output is shown in Figure 9. The relative amounts are highly correlated with PC.1,
showing that a low relative amount of the dd.Pb level corresponds to a high relative amount of
the levels dd.Cu or dd.Zn. It is the result suggested by the biplot (Fig. 7a) returned by the function
princomp.acomp of the package compositions.
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