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Cerium oxide (ceria, CeO2-x where x is 0 to 0.5) has been one of the most widely 

used heterogeneous catalysts particularly in three way catalytic converters. Most of the 

catalytic traits can be attributed to two properties of ceria: first, the high mobility and 

storage capacity of oxygen within the lattice; second, the ease with which cerium changes 

between Ce
3+

 and Ce
4+

 states. These properties, combined with the abundance of cerium 

on earth, make ceria a low-cost highly effective alternative to noble metal catalysts. 

Recent research has been focused on the nanoscale properties of ceria.  

The effect on the catalytic activity of cerium oxide caused by varying the density 

of oxygen vacancy defects (OVD) has not been previously studied experimentally. This 

is due to the perceived inability to engineer stable defects not attributed to the presence of 

dopant atoms. It was found that the number of stable OVDs on cerium oxide 

nanoparticles and nanorods can be increased with annealing at elevated temperatures 

under low pressure. The oxidative catalytic activity of these nanostructured catalysts was 

evaluated. Samples with higher densities of OVD were found to have much lower light-

off temperatures when compared to that of their bulk counterpart. The chemical 

equilibrium reactions on the catalysts surface under low pressure were hypothesized to 

explain the unusual increase in the OVD density of the reported cerium oxide 

nanostructured catalysts. 



Cerium oxide is well known to exfoliate from the surface of cerium metal in the 

same way that rust exfoliates from iron or steel. A two-step process to fabricate 

nanoporous ceria membranes via anodization and subsequent calcinations is reported. 

These membranes have the potential to be used in solid oxide fuel cells and solid-state 

oxygen sensors. Cerium metal foil was first anodized into adherent porous cerium 

hydroxide film, followed by calcination for conversion into ceria membranes. These 

membranes are composed of ribbon-like structures that form the backbone of the porous 

framework. A proposed anodization model for the growth of the nanoribbons is 

discussed.  
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Chapter 1 – Introduction 

Today, the world faces a variety of challenges in reducing dependence on 

petroleum reserves, reducing harmful by-products in manufacturing and transportation, 

remediating environmental issues, preventing future pollution, and creating safe 

pharmaceuticals.
7
 Catalysts are needed to meet these challenges, but their complexity and 

diversity demand a revolution in the way catalysts are designed and used.
8
 There is a 

need to move beyond simple improvements to existing catalytic materials and begin to 

understand the underlying principles so that it becomes possible to predict and then create 

catalysts for a given set of reactants and products. New opportunities in catalyst design 

and development are being made possible by breakthroughs in atomic scale 

measurement, atomic resolution microscopy, and computational modeling. By utilizing 

these breakthroughs, the challenges of today will be met and those yet to come will be 

resolved.  

1.1 Cerium and Cerium Oxide 

Included in the rare earths are the fourteen lanthanides along with scandium and 

yttrium. Of the rare earths, cerium is arguably the most exciting for researchers in the 

field of catalysis. Cerium is far more abundant in the upper crust, 64 ppm, than any other 

rare earth elements it is more abundant than copper, 60 ppm, or tin, 2.3 ppm.
9
 Its high 

abundance, combined with excellent catalytic activity for a variety of reactions, makes 

cerium the element of choice for the automotive industry enabling the catalytic 

conversion of the exhaust system of automobiles.  
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The electron configuration of cerium is [Xe] 4f
2 

6s
2
 with two common valence 

state cerium (III) and cerium (IV). Cerium has 30 isotopes whose half-lives are known, 

with mass numbers 123 to 152. Three stable isotopes: 
136

Ce, 
138

Ce and 
140

Ce. The most 

abundant isotope is 
140

Ce at 88.5%. Cerium has a very large liquid range with a melting 

point of 795 °C to the boiling point of 3443 °C under 1 atmosphere argon.  

Cerium metal is tin-like in appearance, soft and ductile. The metal oxidizes easily 

and rapidly in air with tarnishing being apparent within an hour and the formation of 

yellow cerium oxide, which easily flakes off of the surface, within 36 hours of exposure 

to air.  

1.1.2 Production and Application of Cerium Metal 

Rare earth minerals occur in a variety of geological environments. Concentrations 

exist in igneous and sedimentary rocks. Over 160 minerals are rare earth bearing, but 

only a few are recovered for commercial production.
15

 Bastnasite, carbonatite, loparite, 

monazite, xenotime and rare earth bearing clays are the major ores mined today. The 

most important deposits occur in California, Wyoming and Nebraska, United States; 

Australia, Mongolia and China. Once mined, the ore is subjected to flotation. The rare 

earth fraction is attracted to surfactants and floats on the surface where it is collected to 

produce a concentrate.
15

 The concentrate is then subjected to a lengthy process involving 

batch roasting followed by reactions to form an oxide precipitate. Treatments such as 

liquid-liquid solvent extractions, selective precipitation, ion exchange, and electroplating 

are used to produce rare earth metals in purity greater than 99.999%.
12, 15

 Once refined, 

cerium metal must be stored in an inert environment to prevent rapid oxidation.  
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Cerium metal is most commonly used in the ferrocerium firesteel metal alloy used 

in lighter flints. Metallic cerium is also added in micro-quantities to various alloys as an 

oxygen and sulfur scavenger. The addition of cerium metal to these alloys can confer a 

longer operating life by significantly improving their oxidative resistance. 

1.1.3 Production of Cerium Oxide  

Cerium oxide (CeO2-x : x = 0 to 0.5), also known as ceria, is produced by various 

methods chosen by the desired properties of the product. For bulk materials, to be used 

without purification, the oxide is collected during the refining process after adding the 

oxalate to nitric acid. For other materials, a range of precursors are used with a variety of 

synthetic methods. Common precursors are cerium sulfate (Ce2(SO4)3), cerium nitrate 

(Ce(NO3)3) ammonium cerium nitrate (NH4Ce(NO3)4) and cerium chloride (CeCl3). 

Cerium hydroxide is a common intermediate of many solvothermal and hydrothermal 

synthetic processes of cerium oxide.
16

 Synthetic methods currently in use are: 

precipitation, milling, hydrothermal synthesis, sol-gel, surfactant assisted, and spray 

pyrolysis.
2, 4-5, 10, 14, 17-20

  

1.1.4 Applications of Cerium Oxide in the Glass Industry 

Cerium oxide is used significantly by the glass industry as an efficient polishing 

agent for most glass compositions and also to prevent the decolorization of glass. These 

applications consume a significant portion of the cerium oxide products produced 

annually. The addition of cerium (IV) oxide to the glass melt helps to convert iron to the 

low visible absorption ion iron (II). The photo stability of pigments is also enhanced by 

the addition of cerium as it provides the pigments with color fastness and prevents clear 
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polymers from darkening in the sun. Cerium oxide enhances stability because it has low 

absorption in the visible light but is nearly opaque in the UV range. This protects the 

pigments used in glass coloration as most of the damage induced is due to UV light 

exposure.
14

  

1.1.5 Applications of Cerium Oxide as a Catalyst 

As much as forty percent by weight of the catalyst used for cracking crude oil in 

refinery operations is cerium and other rare earths. Cerium also has minor uses in other 

commercial catalysis, such as the production of styrene from ethyl benzene, catalyzed by 

mixed iron and cerium oxide.
21

 Self-cleaning ovens utilize cerium oxide for its self-

cleaning properties. The ceria is embedded in the walls and bottom of the oven and acts 

as an oxidative catalyst when the oven is heated. Cerium oxide is being increasingly used 

to clean vehicle exhaust streams through direct addition to diesel fuels to reduce sulfur 

emissions.
14

 

1.1.6 Applications of Cerium Oxide in the Textile Industry 

Cerium compounds can be grafted onto cellulose, wool, starch, and cotton to 

initiate polarization of vinyl on their surfaces. This improves the mechanical strength, 

adds resistance to moisture and microorganism attack. These materials are then used in 

the manufacture of rain gear and similar products.
9, 12, 14

  

1.2 Catalysis  

1.2.1 Importance of Catalysis  

In the century since Fritz Haber discovered that the introduction of an iron 

catalyst would accelerate the production of ammonia from nitrogen and hydrogen gases, 
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research in the area of heterogeneous catalysts has been very active. It is estimated that 

more than 90% of industrial manufacturing processes worldwide utilize catalysis in one 

form or another. According to the Food and Agriculture Organization of the United 

Nations the worldwide demand for nitrogen-based fertilizer will be 154,199 thousand 

tons in 2011 an increase of 7.3 million tons annually. Virtually all nitrogen fertilizer is 

produced as ammonia utilizing the Haber-Bosch process, leading to this process being 

named the “invention of the century.”
22

  

Catalysis provides a means of changing the rates and of controlling the yields of 

chemical reactions to increase the amounts of desirable products from these reactions and 

reduce the amounts of undesirable ones. The reduced emissions of automobiles, and the 

abundance of fresh food, are made possible by chemical reactions controlled by catalysts. 

Catalysis is also essential to a healthy economy; the petroleum, chemical, and 

pharmaceutical industries, contributors of $500 billion to the gross national product of the 

United States, rely on catalysts to produce everything from fuels and “wonder drugs” to 

paints and cosmetics.
6, 8

 

1.2.2 Definitions  

Students of chemistry often feel so ingrained that there seems little need to define 

the terms of the concepts behind catalysis. To avoid any misunderstanding, catalysis will 

be defined as an increase in the rate at which equilibrium is achieved through the addition 

of a substance that, once the reaction is at equilibrium, is indistinguishable from its 

original form. Heterogeneous catalysis involves at least one of the reactants being in a 

distinct phase from the catalyst. This thesis focuses on reactions in which the catalyst is 

in the solid phase and the reactants are fluid, either gas or liquid. 
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1.2.3 Heterogeneous Catalytic Mechanisms 

1.2.3.1 General Heterogeneous Catalytic Mechanisms  

Typically, when catalysis occurs on a solid surface and the reactants are fluid, the 

reaction can be broken into several basic steps: diffusion of the reactants to the catalytic 

surface, adsorption, diffusion along the surface, formation and breaking of bonds, and 

desorption.
23-28

  

In a metal substrate catalyzed CO oxidation situation (Figure 1), when both 

carbon monoxide and oxygen are adsorbed onto the surface of the catalyst (a) and (b). 

The molecules diffuse across the surface (c) until a properly oriented collision, facilitated 

by the catalyst, occurs. The bond between the oxygen atoms is weakened and a reaction 

between the oxygen and carbon monoxide occurs (d) and the carbon dioxide diffuses 

away. The remaining oxygen atom remains adsorbed on the surface of the metal until a 

properly oriented carbon monoxide molecule adsorbs on the surface of the metal, diffuses 

to the location of the oxygen, reacts (e), and then diffuses away from the surface (f).
29-30

  

1.2.3.2 Catalytic Mechanisms of Ceria  

The mechanism of catalytic activity on ceria is a subject of much debate. The 

cited reasons tend to revolve the oxygen storage capacity (OSC) which is largely due to 

the multivalent nature of cerium and the high mobility of the oxygen vacancies at the 

surface of the materials. The change in energy for any heterogeneous catalyst is largely a 

surface effect. The shift between the Ce
3+

 to Ce
4+

 states leads to a high oxygen mobility 

in ceria lattice, which in turn can lead to a strong catalytic potential.
31-32

 Recently the 

controlled synthesis of functional nano-sized ceria has become almost commonplace.  
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Figure 1 Schematic of CO oxidation mechanism on a metal catalyst 
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However, many of these materials show very distinct catalytic activity, even from 

other materials which have similar structures; this is attributed to the effect of defect sites 

and which crystal facet is exposed.
31, 33-37

 These phenomena can be explained by the 

synthetic method and conditions and by post processing methods used to deliberately 

introduce defects into the crystal structure (Figure 2). Literature often attributes the 

catalytic activity of cerium oxide to its high oxygen storage capacity (OSC) which is 

largely due to the multi-valence nature of cerium. The shift between the cerium(III) 

(Ce
3+

) to cerium(IV) (Ce
4+

) states leads to a high oxygen mobility in the ceria lattice that 

in turn leads to a strong catalytic potential.
14, 38-41

 Research is focused on the intentional 

introduction of defects into the lattice through controlling the preferred crystal orientation 

through controlling synthetic and postproduction parameters. There are many types of 

lattice defects, all of which can affect the reactivity of the surface of the crystal greatly. 

These defects, shown in (Figure 2), include vacancies such as OVD (a), self-interstitials 

(b), interstitial impurity atoms (c) and (d), and edge dislocations (e) and (f).
42

  

The degree of oxygen mobility in the ceria lattice can be attributed to the size, 

dispersion, and quantity of oxygen vacancy defects (OVD).
43-46

 The localization of 

electrons in the empty 4f states of the cerium surrounding a vacancy in the ceria support 

lattice has been demonstrated to form defect sites.
3, 26, 28, 47-48

 These only occur around 

cerium (III) ions and are interpreted to be mobile, as would be expected with the high 

oxygen mobility. Once subsurface vacancies are introduced into the lattice, the mobility 

of the vacancies, and thus the defects, is greatly decreased. Vacancy clusters tend to form 

in the three or six surrounding cerium ions of the materials’ surface.  
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Figure 2 Types of lattice defects 
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The formation of an oxygen vacancy defect under low partial pressure of oxygen 

follows the basic steps of the diffusion of oxygen through the lattice. Once the oxygen 

encounters another favorable oxygen, a bond is formed and the oxygen molecule is able 

to diffuse away from the surface of the crystal. Each O2 molecule that forms and diffuses 

away from the surface leaves behind two electrons to be shared between three cerium 

atoms. This leads to the partial reduction of those cerium atoms to a valency between the 

3+ and 4+ states. This usually happens in such a way as to leave behind triads of 

vacancies with the surrounding nine cerium atoms sharing eight electrons. (Figure 3) 

The effect of lattice strain has been shown by several groups to increase the activity of 

metal and metal oxide surfaces.
30, 49-51

 One of the most significant proposed reasons for 

the change in activity of a surface with lattice strain is due to the change in the adsorption 

energy with respect to carbon monoxide and oxygen. It is notable that the same studies 

show little increase in the adsorption energy with respect to carbon dioxide.
28, 52

 The 

increase in adsorption energy with respect to oxygen is about five times greater than the 

increase for carbon monoxide. Additionally, the activation barriers for the dissociation of 

oxygen and for the formation of carbon dioxide are greatly lowered.  

The oxidation of carbon monoxide on a ceria surface is similar to standard 

heterogeneous catalysis on metal. However, the ease of formation of the oxygen 

vacancies facilitates the reaction, making this reaction different. (Figure 4) A carbon 

monoxide molecule adsorbs on the surface of the ceria (a) and readily reacts with surface 

oxygen then diffuses away as carbon dioxide leaving an oxygen vacancy (b). The 

presence of an oxygen vacancy (c) allows an adsorbed oxygen molecule to react with the 
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surface resulting in a weakened bond between the oxygen atoms. A carbon monoxide 

diffuses across the surface of the catalyst (d) until it encounters the excess oxygen (e) and 

diffuses away from the surface.
21, 45, 53-56

   



12 

 

 

 
 

Figure 3 Formation of an oxygen vacancy defect (OVD) in ceria 
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Figure 4 Schematic of CO oxidation mechanism on cerium oxide 
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1.3 Bulk Materials Compared to Nano Materials 

In 1959 Richard Feynman gave a groundbreaking talk in which he described what 

was to become the nano-revolution.
57

 In this talk, he stated that it would soon be possible 

to “arrange atoms the way we want”. At the time, few could imagine that this was much 

more than a thought experiment or a doorway to mere curiosity. In the 40 intervening 

years, materials designed on the nanoscale have gone from theoretical, to revolutionary, 

to commonplace in our daily lives. Indeed nanomaterials differ so greatly from their bulk 

counterparts of identical chemical composition that they have become a field of study on 

their own.
58

  

1.3.1 Size Effects on Structure and Morphology  

For a 1 cm
3
 cube of gold, the number of atoms on the surface can be calculated 

and is very low compared to the total number of atoms in the bulk of the material. When 

the cube is divided into ever-smaller cubes until there are 10
21

 cubes of 1 nm
3
 all of the 

gold atoms are on the surface of the cube. Surface atoms possess fewer nearest neighbors 

and therefore have unsatisfied bonds exposed on the surface. Due to these unsatisfied 

bonds, they are under an inwardly directed force that leads to the shortening of bond 

distances between the surface atoms and the bulk atoms. This bond shortening becomes 

more significant as the ratio of surface atoms to interior atoms increases. This extra 

energy possessed by the surface atoms leads to changed properties of the materials 

including morphology, band gap, reactivity, and catalytic potential.  

1.3.3 Reactivity of Nanoparticles  
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The reactivity of nanoparticles is closely related to the radius of the curvature of 

the surface. Imagine taking an atom from the surface of an infinitely flat solid and 

transfer it to a spherical solid particle of radius R. This transfer results in a change in the 

volume of the particle (dV). The change in volume of the particle is equal to the atomic 

volume (Ω) times the number of atoms transferred (dn): 

24dV R dR dn   (1.1) 

The work per atom transferred (Δµ) is equal to the change in chemical potential 

(µc-µ∞) also equal to the surface energy (γ) times the change in surface area (dA) per the 

change in the number of atoms transferred: 

8c

dA
RdR

dn dV
     


    

 (1.2) 

Combining this with equation (1.1) gives us:  

2
R

 


 
 (1.3) 

which is known as the Young-Laplace equation that describes the chemical potential of 

an atom in a spherical surface with respect to a flat reference surface. As the radius of the 

particle decrease the chemical potential increases. This leads to a more reactive surface. 

This is one of the most significant ways in which nanomaterials differ from bulk 

materials.  

1.4 Defect Engineering in Catalysts 

Engineering of catalysts is typically focused on the shape, size, and components 

of the catalysts. Though it is commonly accepted that defects are very important to the 

activity of a catalyst, little experimental data has been presented about the use of 
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engineering oxygen vacancies to enhance the catalytic activity of the ceria.
31, 33-34, 36-37, 59-

62
 This lack of discussion has been primarily due to the inability to engineer in or 

qualitatively and quantitatively define the OVD sites. Much effort has been spent on 

engineering the size, structure, and exposed facets for ceria based catalysts.  

Cerium oxide (CeO2 and Ce2O3) has been shown to be a very important material 

in three-way catalysis as well as in the catalysis of other reactions; additionally the 

relative abundance of cerium makes it an economically exciting alternative to noble metal 

catalysts. In the oxidative catalysis of carbon monoxide the presence of OVDs and other 

lattice defects play a very important role in the reactivity of the surface. Scanning 

tunneling microscopy (STM) studies have shown both surface and subsurface OVD sites 

play an important role in the enhancement of the oxidation of CO by ceria. Additionally 

Ce
3+

 atoms located near the OVD sites appear to actively participate in the reaction by 

lowering the binding energy of the products and reactants.  

Nanoscale catalysts which have been engineered with one or more dimensions in 

the nanometer size range are an emerging area of study for the advancement of catalyst 

design. While other groups have engineered ceria down to the nanoscale with great 

success, little research has been published on engineering defects into nanoscale ceria. 

For example, dendritic, engineered multi-faceted, and well defined structured ceria have 

all been shown to drastically affect the oxidative catalytic activity compared to bulk ceria. 

The enhanced catalytic activity of these nanoscaled materials is often attributed to the 

specific facets that are exposed. Other reported advantages of nanoscale materials are: 

increased surface area, and enhanced surface to volume ratios. While much effort has 

been aimed at creating selected facets and shapes, little effort has been spent on creating, 
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quantifying, and determining the effect of engineered OVDs and other defects at the 

nanoscale.  

1.5 Thesis Overview 

In this thesis, two synthetic methods for the preparation of cerium oxide with 

nanoscale features will be presented. In Chapter 2, a method for the preparation of cerium 

oxide membranes from cerium foil utilizing anodization will be presented and discussed. 

In Chapter 3, a method for the preparation of cerium oxide nanorods using hydrothermal 

synthesis will be presented and discussed. A method of modulating the density and 

stability of OVD sites on nanoscale cerium oxide will be proposed in the latter part of 

Chapter 2. The principles associated with the stabilization of these sites will be discussed 

especially in relation to the catalytic oxidation of carbon monoxide will be presented in 

Chapter 4. Finally, future work will be proposed in Chapter 5. 
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Chapter 2 Nanoporous Ceria Membranes  

2.1 Introduction 

A method of efficiently producing membranes of exfoliating oxides has been 

sought for many years.
63-64

 These membranes can be used in a variety of catalytic 

applications. The most interesting, given current energy concerns, is as the catalytic 

membrane in fuel cells. 

2.1.1 Solid Oxide Fuel Cells  

Solid oxide fuel cells (SOFC) (Figure 5) are being actively studied due to their 

promising future in large-scale high power applications including: centralized electricity 

generation, and automotive power plants as an alternative method for extracting the 

energy from stored hydrogen.
64-65

 SOFC are particularly appealing when produced to 

generate between 2kW and 20 MW. An operating temperature of 1000 °C can be utilized 

with a catalyst to convert natural gas into a very clean fuel stream for the SOFCs. Ideally, 

an SOFC membrane will have several characteristics: efficiently catalyze the reaction of 

interest, they should be hydrophobic to rapidly shed the water produced and return to a 

state of readiness, a very large surface area, and should be resistant to fouling when 

introduced to an impure fuel stream. SOFC membranes made from cerium oxide are of 

interest due to their ability to act as a three-way catalyst. The primary function of 

converting hydrogen and oxygen to water and electricity can be accomplished readily. If 

the fuel stream contains hydrocarbons which need to be oxidized, or excess carbon 

monoxide which needs to be combusted, these contaminants are also converted without 

fouling the membrane.  
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Figure 5 Solid oxide fuel cell schematic 
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Two major obstacles lie in the path of utilizing cerium oxide as a SOFC 

membrane. First, it is a high-κ material which is inefficient at transporting electrons away 

from the reaction site to the conductors. The lack of conductivity can be circumvented by 

applying a conductive material to the surface of the membrane. Second, CeO2-x is an 

exfoliating oxide. The need to make a membrane that does not exfoliate will be dealt with 

in this chapter.  

2.1.2 Formation of Porous Membranes by Anodization  

The creation of a membrane consisting only of ceria has been hampered by the 

difficulty of anodizing metals with exfoliating oxides. Since the 1920’s, anodization has 

been commonly used to synthesize a wide variety of porous films on metal surfaces.
35

 

For example, anodization is frequently used to form a protective oxide layer directly on 

aluminum and titanium surfaces (Figure 6). Anodization of the metal foil has also been 

used as a method to make metal oxide membranes with nanostructures on the surface of 

or throughout the materials. The anodization of metals whose oxides exfoliate has been 

problematic when it comes to generating protective layers. Cerium is such a metal and 

has not been previously reported to form a useful protective anodized layer or membrane. 

The two existing models for anodization are the aluminum model in which a metal foil is 

converted directly to the oxide; and the zinc model in which the foil is converted to either 

a phosphate or a sulfate.  

In this chapter an anodization model, different from either that of aluminum or 

zinc, is proposed. In this model, the metal cerium is converted to a hydroxide polymer 

(Figure 7) that incorporates both the ions from the polymer and the reduced metal atoms 

at the interface. The adhesion of the membrane formed to the metal surface allows for the   
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Figure 6 Anodized TiO2 
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Figure 7 Cerium hydroxide inorganic polymer 
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buildup of said membrane. This strategy has the potential to lead to huge scientific and 

commercial progress and applications in the fields of protective coatings and the 

manufacture of oxide membranes.  

2.2 Materials and Methods 

Cerium metal foil (0.25mm thick, 99.9% Alfa Aesar, Ward Hill, MA) was first 

cut into 1 cm x 1cm squares and polished with 1 µm diamond grit (BUEHLER, Lake 

Bluff, IL)until a mirror-like finish was achieved. The samples were sonicated in acetone 

for 15 min to remove any remaining diamond grit particles and then are dried with 

nitrogen. The samples were then anodized in a two-electrode cell with the cerium foil as 

the anode and a 1 cm × 1 cm platinum foil as the cathode. The electrolyte solution was 

composed of ethylene glycol (99.5% Sigma Aldrich, Milwaukee, WI), ammonium 

hydroxide (29.56% aqueous solution, Fisher Scientific, Fair Lawn, NJ) and water. All 

water used in this experiment was Ultrapure water of >18 MΩ resistance and filtered with 

0.22 µm membranes. The anodization was accomplished by applying a constant current 

of 100 µA with a source meter (Keithley 2410, Keithley Instruments Inc. Cleveland, OH) 

for 160 h. The membrane was considered fully anodized once the applied potential at 100 

µA reached the limit of the source meter (1100 V). The membrane was then rinsed 

thoroughly with ethanol, dried under a nitrogen stream and immersed in a 100 mL 

ethanol bath for 12 h. The ethanol bath was gently stirred to facilitate the removal of 

remaining traces of electrolyte from the membrane structures. Afterwards, the sample 

was dried with a gentle stream of dry nitrogen. Conversion of the samples into cerium 

(IV) oxide was achieved by calcination at 400 °C for 2 h under a flow of 100 standard 

cubic centimeters per minute (SCCM) dry air inside a 1” quartz tube furnace under partial 
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vacuum at an operating pressure of 0.12 Torr. The temperature of the furnace was 

increased at a rate of 0.5 °C/min to control the calcination rate of the structures and to aid 

in the gentle evaporation of any remaining solvent. 

The optimal conditions under which the anodization of the cerium foil created a 

self-adherent membrane with ribbon-like structures were constant current of 100 µA, 

0.15 M NH4OH in a mixture of 10 % v/v water in ethylene glycol at room temperature. 

The anodization process took about 160 h until the cerium foil was fully anodized and 

clearly showed two distinct membranes had formed back to back of approximately one 

half of the thickness (100 µm) of the original cerium foil each. While constant potential 

conditions and higher constant current conditions were attempted, these conditions failed 

to achieve results of greater than a few tens of nanometers. Once the foil had been 

anodized and the solvent exchanged with ethanol, the membrane was calcined at 400 °C 

(ramp rate of 0.5 C/min) for 12 hours under 100 SCCM flowing dry air at 0.1 bar this 

assisted in the final conversion of the membrane to cerium (IV) oxide as demonstrated by 

XRD data, shown in Figure 8. Additionally, this allowed the sample time to anneal and 

become more uniformly crystalline.  

In a typical experiment, a cerium metal foil (1 cm
2
, 0.25mm thick, 99.9% Alfa 

Aesar, Ward Hill, MA) was anodized at constant current of 100 µA in a two-electrode 

cell configuration with a platinum cathode to create a porous membrane. The optimal 

electrolyte solution was composed of 0.15 M ammonium hydroxide (NH4OH) in a 

mixture of 10 % v/v water in ethylene glycol. The sample was considered to be fully 

anodized once the potential reached 1000 V. Formation of vapor filled “bubbles” 

(cavities) was observed on the surface of the foil during the entire anodization process. 
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Typically, 160 hours were required to fully anodize the foil sample. The as-anodized 

sample was bathed in stirring 200-proof ethanol overnight to remove the ethylene glycol 

inside the pores. The sample was then calcined in a 1”-tube furnace at 400 °C in a stream 

of 100 SCCM dry air at 0.1 Torr for 15 h. 

During the process of anodization, the cerium metal is anodized to Ce
3+

 ions and 

the Ce
3+

 ions react with hydroxide ions in the solution to form a cerium (III) hydroxide 

(Ce(OH)3) polymer, at the same time Ce2O3 is also forming on the surface of the foil. The 

ammonia and water in the electrolyte will also react with the cerium hydroxide and the 

cerium (III) oxide to form Ce-NH3-H2O complex and the complex will dissolute into the 

electrolyte and this dissolution process will help the growth of the nanoribbon structure. 

The formation of the ribbon-like structure is likely due to the formation of the Ce-NH3- 

H2O complex and the oxygen bubbles at the anode (Figure 13).The formation of Ce-NH3-

H2O complex causes the dissolution of the cerium hydroxide-cerium (III) oxide layer. A 

multi-stage formation mechanism for the porous anodized cerium foil structures with 

“ribbon-like” backbone framework can be deduced from the experimental observations 

and possible electrochemical reaction scheme (Scheme 1). In the initial stage of the 

anodization, cerium metal was electrochemically oxidized to cerium (III) ions (Ce
3+

). At 

the metal surface, the formation of soluble complexes ([Ce(NH3)12-x](OH)x)
14

 led to 

pitting of the metal foil surface. Electric fields enhanced by the high curvatures of the pits 

possibly caused an increase in the pit size. The Ce
3+

 ions reacted with hydroxide ions to 

form Ce(OH)3 polymers. The ammonium cations likely complexed with Ce
3+

 ions to form 

Ce-NH3-H2O soluble chemical species. The formation of this complex possibly caused 

the dissolution of the cerium (III) hydroxide.  
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Figure 8 XRD patterns showing the transition of as-anodized cerium foils  

From simple hexagonal cerium (III) hydroxide (Ce(OH)3) to fluorite-

structured ceria (CeO2-x) as the calcination temperature increases 50, 275 to 400 ˚C. 

(Bottom) Vertical lines showing peak indexes of CeO2, Ce(OH)3, Ce2O3 and -Ce 

from the corresponding JCPDS data. 
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An increase in the ammonia concentration of the electrolyte was found to produce 

a decrease in the density and thickness of the “ribbon-like” structures. The cerium anode 

simply appeared to dissolve into the electrolyte solution. This was likely caused by the 

increased formation rate of the soluble ammonia complexes which competed with the 

precipitation and formation of the cerium hydroxide framework. However, if the 

concentration of ammonium ions was very low or the ammonium ions were replaced by 

sodium ions, the cerium oxide was observed to form, and then exfoliate from the cerium 

foil. Therefore, the concentration of NH
4+

 ions is critical to the proper formation of the 

membrane. 

At the surface of the cerium foil, oxygen was produced in the oxidation reaction 

and cavities (vapor filled bubbles) were observed trapped in the porous matrix during the 

anodization process. The radius (r) of a cavity before it left the surface of a solid is a 

function of the buoyancy of the trapped vapor (Pin) being resisted by the pressure of the 

liquid (Pout) and the surface tension (γ) causing the adhesion of the cavity to the solid. 

The use of an electrolyte with a surface tension much less than that of water favored the 

formation of smaller cavities as indicated by the Young-Laplace relationship.
15

  

   

The formation of the low-solubility Ce(OH)3 precipitated around the cavities, 

leading to the growth of the thin “ribbon-like” structures of the porous framework. As the 

cavities of trapped gas increased in size, they eventually escaped, leaving voids adjacent 

2

in out

r
P P





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to bare metal and allowing the continuation of the anodization process. Therefore it was 

necessary to reduce the surface tension of the electrolyte to reduce the pore size to the 

desired scale. 

Current density appears to affect the growth rate of the “ribbons-like” structures. 

At a fixed current, the thickness of the cerium hydroxide porous structures increased at a 

constant rate. An increase or decrease in applied current was found to change the film 

growth rate of growth proportionally. The pore size was observed to increase with an 

increase in current density (Data not shown). Similar to the case of anodizing porous 

silicon, once a threshold current level was reached, the pore diameters of the anodized 

structures became too large that a smooth surface was obtained instead.
16

 

 

2.3 Membrane Characterization: Morphology, Water Contact Angle, and Chemical 

Composition 

2.3.1 Surface Morphology 

The morphology of the processed samples was investigated by field emission 

scanning electron microscopy (FE-SEM, Hitachi S4700, Hitachi High Technologies 

America, Inc., Pleasanton, CA). The crystal structures of the samples were studied by 

Rigaku D/Max-B diffractometer equipped with Cu Kα X-ray source of average 

wavelength 1.544 Å (Rigaku America, The Woodlands, TX). Confocal Raman 

microscopy on the samples was performed with a HR800 confocal Raman microscope 

(Horiba Scientific, Kyoto Japan, LabRAM) using a 20 mW 632.8 nm He-Ne laser.  

2.3.2 Water Contact Angle  
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Contact angle measurements were performed on an AST VCA Optima (AST 

Products Inc., Billerica, MA) using a 0.25 µL drop size and utilizing the AST software to 

perform angle measurements. The AST software was used for the contact angle 

measurements in the recorded optical images. The surface morphology of the anodized 

CeO2 membrane was studied using field emission scanning electron microscopy (FE-

SEM), transmission electron microscopy (TEM) and high-resolution transmission 

electron microscopy (HRTEM). Figure 9 shows the typical surface and cross-section 

morphology of the anodized and calcined CeO2 membrane. From the SEM images, 

ribbon-like structures are demonstrated to have grown on the surface of the membranes. 

These ribbon-like structures were shown by HRTEM to be slightly polycrystalline with 

the (111) lattice spacing being the most prominent.  

The contact angle is measured to determine the surface structure of the anodized 

CeO2 membrane. By using Cassie and Baxter's theory, as further studied by Yoshimitsu 

et al
66-67

, the area fraction of the solid-liquid interface could be determined indicating the 

aspect ratio of the CeO2 membrane structure. The equation describing the contact angle θ' 

of a rough hydrophobic surface trapping air in the hollows of the rough surface is as 

follows: (Cassie-Baxter model) 

cos ' cos (1 )cos180f f     (2.1) 

where f is the area fraction of the solid-liquid interface and (1 )f is that of the solid-air 

interface. From the result, (Figure 10) the anodized CeO2 membrane with nanostructure 

after calcination has a contact angle θ' of 113° and the membrane without nanostructure 

on it has a contact angle θ' of 39°. By using these data, the area fraction f is 0.62.  
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The calculation of the surface area fractions from top view SEM images of the 

porous ceria membranes was accomplished using the NIH software package Image-J.
68

 

For a typical top view SEM image of a porous ceria membrane (Figure SI-4a), the ridges 

between the pores are shown as the light shaded areas whereas the pores (cavities) are 

shown as the dark shaded areas. When a water droplet is dispensed on the porous 

membrane, the portion of surface area in contact with the water is composed of the ridges 

and upper portions of the pore structures. The Image-J software allows setting of a 

relative threshold brightness ratio between the structures with different shades in the 

SEM images (Figure 11) and converts all the apparent pore area to appear as white and 

the rest as black. The process was automated using Image-J’s built in scripting language 

as illustrated in Program 1 for our contact surface area estimation (See below). Following 

the conversion of the image into white areas (non-contact pore) and black areas (possible 

water contact surface area), Image-J calculates and reports these two apparent surface 

areas. The mean surface area fraction which describes the fraction of apparent surface 

area possibly in contact with a water droplet is estimated to be 0.51 ± 0.03. Owing to the 

irregularity of the ceria membrane surface structures, this mean surface area fraction is 

likely to be underestimated using this apparent surface area estimation method. 

Nonetheless, visual inspection appears to match this estimated value. 
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2.3.3 XRD 

 

 

Schematic 1 Proposed mechanism for the formation of the porous anodized 

structures from a cerium metal foil. Gray is cerium metal and black is the anodized 

complex. The cerium metal acts as the anode in the electrochemical cell. As a complex 

layer begins to form, vapor filled voids (cavities) or “bubbles” form on the surface and 

create pathways to the metal, allowing the diffusion of reactants to the metal surface. 

Pores are formed from volume changes due to the formation of the cerium hydroxide. 

The formation of gas cavities allow the reaction to continue to completion. Small 

deposits of unoxidized metal may be left as shown in the final stage of the anodization. 
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The crystal structures of the anodized cerium foil and their transformation by 

calcination were characterized by x-ray diffraction (XRD) (Figure 2) and indexed against 

JCPDS data.
*
 The XRD pattern of a fully anodized cerium foil suggests that the 

anodization process transforms the cerium metal foil into P63/m hexagonal cerium (III) 

hydroxide (Ce(OH)3) which oxidizes to 3 1P m hexagonal Ce2O3. The pattern also indicates 

the presence of a trace amount of α-Ce metal which implies that some cerium metal may 

be preserved between the pores (figure 13-c). Small deposits of metal are likely located in 

areas where the hydroxide thickness of the pores limits the oxidation at the applied 

potential. The XRD patterns of anodized samples calcined at 50, 275 and 400 ˚C were 

also collected to verify the transformation of the anodized samples into cubic 3Fm m ceria. 

Compared to the XRD pattern of the as-anodized sample, the relative intensities of 

diffraction peaks belonging to the cerium hydroxide and metal in the XRD pattern of the 

sample calcined at 50 ℃ decreases significantly. For samples calcined at higher 

temperatures, diffraction peaks of the cubic fluorite structure are dominant in the 

corresponding XRD patterns. There were no indications of metallic cerium in these 

patterns. Only the XRD pattern of the sample calcined at 400 ℃ shows no satellite peaks 

belonging to Ce(OH)3 and hexagonal Ce2O3, indicating a complete conversion of the 

sample into fluorite ceria. 

Raman scattering spectrum (Figure 12) of the porous CeO2-x membrane displays a 

peak near 462 cm
-1

, which is typically assigned to the T2g (F2g in some tables
10

) mode of 

the Ce-O vibrational unit with Oh symmetry.
11

 No other significant peaks are found in 

this spectrum, indicating that the annealed membrane does not have a significant number 

of lattice related defects.
12  
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Figure 9 Microscopic images of anodized cerium membrane 
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Figure 10 Water contact angle on anodized cerium membrane 
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Figure 11 Microscopic images of anodized cerium membrane 
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Figure 12 Microscopic images of anodized cerium membrane 



37 

converted to CeO2. The calcination process consists of several steps. The components of 

the anodized membrane before calcination are Ce(OH)3 and Ce2O3 (according to the 

Ce(OH)3 (101) (201) peaks and Ce2O3 (101) (110) peaks). After drying at 50 ℃ for 15h, 

the intensity of the Ce(OH)3 peaks decrease but the (101) peak of Ce2O3 remain and the 

(111) (220) and (311) peaks of CeO2 become the major ones. All of that indicated most 

of the Ce(OH)3 is converted into Ce2O3 and CeO2.  

2.4 Mechanism 

According to the experimental results one possible mechanism for the formation 

of the nanoribbon-like structures ( 

 

Figure 13) involves the formation of a complex polymer incorporating the surface 

atoms of the cerium foil with the hydroxide produced through electrolysis and the 

ammonium cation. The Ce atom serves as the center atom and OH
-
, NH3 (NH

4+
) and H2O 

serve as the ligands to form a CeX6 complex ([Ce(NH3)6-x](OH)x). These complexes 

dissolve into the electrolyte digging holes or grooves on the Ce2O3 and Ce(OH)3 surface 

making the nanoribbon structure grow. As this polymer forms it branches as the 

ammonium ligands are replaced by water ligands. The formation of gas bubbles on the 

reaction surface increases the size of the pores between the sheets where the polymer 

branches. The oxygen gas bubbles formed at the anode do not only react with the Ce 

metal foil to form the Ce2O3, but also serve as the template during the anodization 

process. The size of these bubbles was expected to influence the pore size.  

During anodization, the voltage increased due to 3 factors: the increasing 

thickness of the oxide layer, the decrease in the amount of electrolyte in solution and the  



38 

 
 

 

Figure 13 Proposed mechanism for the formation of the porous anodized 

structures from a cerium metal foil.  

Gray is cerium metal and black is the anodized complex. The cerium metal acts as 

the anode in the electrochemical cell. As a complex layer begins to form, vapor filled 

voids (cavities) or “bubbles” form on the surface and create pathways to the metal, 

allowing the diffusion of reactants to the metal surface. Pores are formed from volume 

changes due to the formation of the cerium hydroxide. The formation of gas cavities 

allow the reaction to continue to completion. Small deposits of unoxidized metal may be 

left as shown in the final stage of the anodization 
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increase in the number and size of O2 bubbles forming on the surface of the cerium, all of 

which increase the resistance.  

Table 1 lists our proposed series of reactions for the formation of the polymeric 

substrate. As we can see reactions (5) and (6) predict that an increase in the ammonium 

concentration will increase the rate of dissolution of Ce(OH)3 and Ce2O3, also higher 

ammonium concentration will provide lower resistance causing a lower anodization 

potential. If the rate of dissolution is greater than the rate of the formation of the 

nanoribbon structures then the structures will not form. On the other hand, if the 

concentration is too low the formation of the [Ce(NH3)10-x]
3+

 complex is present, leading 

to the formation of CeO2-x,which simply exfoliates from the surface. The morphology of 

the anodized cerium oxide membrane is determined by a variety of factors; however, the 

thickness of the membrane thickness is solely a function of time. FESEM showed that 

typically an as-fabricated anodized ceria membrane surface is composed of ribbon-like 

structure. The average ribbon thickness is 20 to 30 nm and the size of the pores between 

the ribbons is about 150 nm. However, the ribbons’ thickness of the calcined samples 

increases to ca. 50 nm while the average pore size of the film remained almost the same 

(160-170 nm). The slow temperature ramping rate in the calcination process apparently 

promotes the growth of the ribbon structures after calcination. Cross-sectional FESEM 

images of completely anodized membranes illustrates that the thickness of the membrane 

is ca. 100 µm.  

Current density determines the growth rate of the structure; with increased 

current, the growth rate of the nanoribbons is increased leading to larger pore diameters 

of the structure. A higher anodization current causes the aspect ratio of the ribbon   
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        (1) 

      (2) 

      (3) 

       (4) 

    (5) 

   (6) 

 

Table 1 Proposed series of reactions for the formation of the polymeric substrate 
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structure to be decreased. Other factors which affect the growth of nanoribbon structure 

are: the distance between the electrodes, electrode shape, and active vs. passive mixing of 

the electrolyte solution however the major factors are the ones discussed above. 

2.4.1 Image-J program for determining surface area 

Program 1 – Calculate the area on nanoribbons  

// "Calculate the area on Nanoribbons" 

// 

// This script will batch process the .tif images in a given folder and subfolders  

// and will calculate the ratio of the area of the ribbon edges to the area of the pore. 

// This is accomplished by converting the image to binary (black and white) and reporting 

// the percentage of the area that is above the threshold for conversion to black. 

// the threshold level can be set manually if the contrast of the original image is too low. 

// 

// This macro batch processes all the files in a folder and any 

// subfolders in that folder.  

 

  requires("1.33s");  

  dir = getDirectory("Choose a Directory "); 

  sav = getDirectory("Choose a Save Directory "); 

  setBatchMode(true); 

  count = 0; 

  countFiles(dir); 

  n = 0; 

  processFiles(dir); 

  print(count+" files processed"); 

   

  function countFiles(dir) { 

   list = getFileList(dir); 

   for (i=0; i<list.length; i++) { 

     if (endsWith(list[i], "/")) 

       countFiles(""+dir+list[i]); 

     else 

       count++; 

   } 

 } 

  function processFiles(dir) { 

   list = getFileList(dir); 

   for (i=0; i<list.length; i++) { 
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     if (endsWith(list[i], "/")) 

       processFiles(""+dir+list[i]); 

     else { 

       showProgress(n++, count); 

       path = dir+list[i]; 

       processFile(path); 

     } 

   } 

 } 

 function processFile(path) { 

    if (endsWith(path, ".tif")) { 

//main function  

     open(path); 

  run("Make Binary"); 

  run("Analyze Particles...", "size=0-Infinity circularity=0.00-1.00 

show=Masks display clear summarize"); 

  done = sav+"done_"+list[i]; 

  saveAs("Tiff", done); 

   } 

 } 

 

2.6 Conclusions 

Nanoporous cerium (IV) oxide membrane was synthesized by anodization of 

cerium metal foil followed by calcination of the membrane formed. The anodized cerium 

formed a porous membrane, which indicates a useful technique for a variety of 

applications including catalysis, fuel cells, and self-cleaning surfaces. The mechanism of 

the Ce anodization is proposed to be a balance of cerium oxide formation and dissolution 

on the cerium foil surface. 
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Chapter 3 – Cerium Oxide Nanorods  

3.1 Introduction 

Nanomaterials of the same compound can vary greatly in their properties. The 

synthetic method and treatment of the materials can create a wide variety of structures, 

each with distinct properties. It was determined that a rod like structure could provide a 

very large surface area that could withstand agglomeration. In addition the rods can be 

engineered with large areas of single lattice planes. The large surface area could then be 

engineered to have a wide variety of defects with an emphasis on oxygen vacancy 

defects. Several methods of creating cerium oxide nanorods were investigated and one 

was found to reproducibly create rods with the desired properties.
1-2, 11, 17, 69-71

 

3.2 Materials and Methods 

3.2.1 General Materials 

All water used in this experiment was Ultrapure water of >18 MΩ resistivity and 

filtered through 0.22 nm pore-sized filters. All chemicals were used as purchased unless 

otherwise noted. Bulk cerium oxide powder with 300 mesh size (Sigma-Aldrich, St. 

Louis, MO) and cerium oxide nanoparticles with 7-nm average diameter (Nanoscale, 

Manhattan, KS) were used for catalytic activity evaluations and comparisons with cerium 

oxide nanorods. The cerium oxide nanoparticle samples have aggregate particle size ≤ 9 

µm. 

3.2.2 Synthesis of Cerium Oxide Nanorods 
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Cerium oxide nanorods were synthesized using a modified method developed by 

Zhou et al. (Scheme 1) A sample of 0.5 g cerium(III) sulfate hydrate (Ce2(SO4)3· X H2O, 

Sigma-Aldrich, St. Louis, MO) was first dissolved into 40 mL of 10 M sodium hydroxide 

aqueous solution (NaOH (aq), Sigma-Aldrich, St. Louis, MO) solution. The solution was 

transferred to a 45 mL total volume Parr autoclave (Parr Instrument Company, Moline, 

Illinois). The convection oven in which the autoclaves were placed ramped from room 

temperature (25 °C) to the reaction temperature of 120 °C where it maintained 

temperature for 15 hours while the samples reacted. The convection oven and the 

autoclaves returned to room temperature in approximately 3 hours after the end of the 

timer cycle. The cooled sample was filtered using 0.8 µm membranes (Millipore, 

Billerica, MA) and rinsed with 3 aliquots of 50 mL water. After rinsing, the sample was 

placed in a convection oven at 50 °C for 1 hour. The samples were then gently powdered 

using a spatula and heated at 50 °C for an additional hour for this partial oxidation step. 

The resulting samples were mixed with 50 mL of water, and 50 mL of ~15% hydrogen 

peroxide (H2O2, Sigma-Aldrich, St. Louis, MO), immediately followed by sonication for 

30 minutes. Following sonication the samples were left in the H2O2 solution for an 

additional 60 minutes for their oxidative transformation into tubular structures. Lastly, 

the material was filtered using a 0.8 µm membrane, rinsed with three aliquots of water 

and dried in a convection oven at 50 °C. 
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Figure 14 Plot of length of ceria nanowires vs. reaction time of non-hydrogen 

peroxide treated samples 
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3.2.3 Activation Treatment of Cerium Oxide Samples 

Typically, 100 mg of cerium oxide sample (nanoparticles, nanorods or bulk 

materials) was activated by heating the sample in a 1 inch quartz tube furnace with a 100 

SCCM flow of a nitrogen-oxygen mixture (80% N2 and 20% O2) for 1 hour at 350 °C 

under vacuum with an operating pressure of 0.1 Torr. Control samples were activated 

using similar experimental condition but with 1 atmosphere operation pressure. 

3.3 Nanorod Growth Mechanism  

Evidence presented by TEM studies of nanorods indicates nanorod/tube growth is 

anisotropic and likely due to screw dislocations.
42, 72-74

 The diameter of the nanorods are 

consistently 20 nm, but the length prior to sonication increases with time (Figure 14) that 

the reaction mixture is maintained at reaction temperature. After 2 hours the nanorods are 

only a few tens of nm long, after 6 hours the nanorods are becoming more wire-like and 

are up to 100 nm long, after the full 15 hours the nanowires are as long as one µm. After 

15 hours there is little evidence of continued lengthening.  

Dislocation-driven anisotropic crystal growth is the preferred growth due to 

self-perpetuating spirals of axial screw dislocations under conditions of low super 

saturation. According to the Burton-Cabrera-Frank (BCF) theory, as super saturation 

increases the growth mechanism changes from dislocation growth, to layer-by-layer 

growth (LBL), and dendritic growth.
75

 Therefore, based on the very low super saturation 

of Ce2(SO4)3, it is likely that the growth mechanism is by screw dislocation. 
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3.4 Formation of a High Density of Defects on the Nanorods  

The formation of highly defective nanorods was desired for this research. A series 

of rapid oxidation steps, and Kirkendall diffusion with hydrogen peroxide was used to 

increase the density of grain and lattice defects present on the surface (Figure 15). The 

as-synthesized cerium (III) hydroxide (Ce(OH)3) nanorods and nanowires were subjected 

to rapid oxidation at 50 °C in a convection oven. This rapid oxidation led to the formation 

of a core-shell material with cerium oxide (CeO2-x) forming a hard outer shell of the 

cubic fluorite structure and the core remains Ce(OH)3 in the simple hexagonal structure. 

The rapid conversion between the two crystalline structures led to myriad defects on the 

surface. This material was then sonicated in hydrogen peroxide (H2O2) leading to the 

cracking of the materials and the more rapid diffusion of the Ce(OH)3 away from the core 

rather than CeO2-x away from the shell.  
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Figure 15 Schematic mechanism for the formation of nanorods by Kirkendall 

diffusion 
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The H2O2 acts as oxidant for Ce
3+

. The Ce
3+

 ions present in the Ce(OH)3 nanorods 

can be converted to a Ce
4+

 complex, 
2

2( )Ce OH 
, by hydroxyl free radicals in the 

hydrogen peroxide solution: 

 
3 2

( ) 2 2 22 2 2 ( )SCe OH H O Ce OH      (1.1) 

thus, the 
2

2( )Ce OH 
 transfer into the solution. As the concentration of the 

2

2( )Ce OH 
increases, ceria can be formed easily under the following reaction: 

 
2

2( ) 2( ) 2( ) 2 2aq sCe OH OH CeO H O     (1.2) 

3.5 Nanorods Characterization Chemical Composition, Surface, and Valency 

3.5.1 Composition  

Testing with both energy dispersive X-ray spectroscopy (EDX), Figure 16 and 

with X-ray photoelectron spectroscopy (XPS) (Figure 18, Figure 19, Figure 20 and 

Figure 21) demonstrate that cerium oxide materials were all of the formula CeO2-x where 

x accounts for the ratio of Ce
3+

 in the lattice. All samples tested were found to have and 

to retain the cubic fluorite structure of CeO2 [space group Fm3m (No. 225); joint 

committee on powder diffraction standards JCPDS card 34-0394] leading to the initial 

conclusion that any Ce
3+

 found must be at or near the surface, as this is the most common 

location for the formation of OVDs. After calcination no evidence of Ce(OH)3 (JCPDS 

card 74-0665) remained in the XRD spectra. 
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Figure 16 EDX spectrum of CeO2-x nanorods 
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3.5.2 Surface Area 

The surface areas of the three types of cerium oxide catalysts (bulk powder, 

nanoparticles, and nanorods) was determined via the Braunauer Emmet Teller (BET) 

extension of the Langmuir isotherm with a Micromeritics ASAP 2010 (Micromeritics, 

City, ST).
76

 Nitrogen was used as the adsorbent gas in these experiments. 

3.5.3 Surface Defects 

The structural morphology of the cerium oxide samples was examined with a field 

emission scanning electron microscope (FE-SEM, Hitachi S4700, Hitachi High 

Technologies America, Inc. Pleasanton, CA) operated at 15keV. Detailed structures of 

nanomaterials were investigated by high resolution transmission electron microscopy 

(HRTEM) with a Tecnai G2 F20 S-Twin operated at 200keV (FEI, Hillsboro OR). 

Selected area electron diffraction (SAED) was used to determine the local structures of 

the materials. Each TEM sample was prepared by drop-casting a solution of sample 

sonicated, for no more than 5 seconds, in methanol onto a holey carbon film on a copper 

grid support. X-ray diffraction (XRD) of the samples was performed with a Bruker AXS 

D8 Discover equipped with a GADDS area (Bruker AXS Inc. Madison, WI) to examine 

the crystallinity and crystal structure of the samples in bulk form. The weighted average 

wavelength of the Cu Kα x-ray sourcewas1.5417 Å. (Figure 17) 
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Figure 17 Microscopic images of (11-2) focal plane surface defects 

on an activated CeO2-x nanorod. Showing a) nanorod with enlarged 

area highlighted and showing rod growth direction. Inset is SAED of 

this area. b) enlargement of the highlighted area for easier viewing of 

the defective surface. And c) a map highlighting some of the surface, 

subsurface and linear defects. Finally d) is a simulation of the focal 

plane from which this image was taken to show (111) lattice fring 

spacing and (3-11) growth direction. 
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Figure 18 Curve fix of XPS spectra of bulk CeO2 before activation showing sum of 

peaks 
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Figure 19 XPS spectra of bulk CeO2 before and after activation showing  
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Figure 20 XPS spectra of CeO2 nanoparticle before and after activation  



56 

 

 
 

 

 

 
 

Figure 21 XPS spectra of nanorod CeO2 before and after activation  
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3.5.4 Valency of Cerium 

The Ce
3+

/Ce
4+

 ratio for each sample was quantified by XPS (VersaProbe™ 

Scanning XPS Microprobe) according to recent literature. XPSpeak 4.1 for Win 95/98 
77

 

was used to subtract a fitted base line using the Shirley algorithm from the data, no 

linearization was assumed and the baseline was expected to encompass the entire 

spectrum. The Shirley algorithm is used as a least incorrect baseline method optimized to 

remove as much asymmetry as possible from the baseline data. Semi-Voigt functions 

(convolved Gaussian-Lorentzian line shapes) were then fitted to the resulting spectrum to 

determine the area of each of the ten peaks corresponding to the signals from Ce
3+

 and 

Ce
4+

. The peaks were fitted in a series of iterations, which allowed the areas and their full 

width at half maximum to vary throughout all steps. The percentage of Gaussian 

contribution for each line shape was allowed to vary between 80 and 100% after the 

initial fit. The peak location was allowed to vary up to 0.2 eV due to the nanoscale nature 

of the materials during the last iteration.
78-79

 The ratio of the integrated peak area was 

then calculated as indicated in eq. (1.3) by comparing the peak areas for Ce
3+

 to the total 

area calculated for both Ce
3+

 and Ce
4+

 according to the reported literature.
48, 79

  

 3 0 ' 0 '

0 ' " '" 0 ' " '"

[ ]
% *100%
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    
  

         
 (1.3) 

There are two concerns about the XPS data method of analysis. First, the x-ray 

source creates a core hole in the 3d band which in turn leads to a rearrangement of the 

electron energy leading to a change in the hybridization of the oxygen 2p and the cerium 

4f, making it appear that the cerium is in the 4f 
1
 state rather than the 4f 

0
, which will add 

to the complexity of the analysis of the peaks. As long as all ten peaks are integrated, this 
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problem can be overcome.
80-81

 Second, XPS is necessarily done under high vacuum 

conditions; it has been shown that under low pressure conditions CeO2 will reduce to 

form Ce2O3. Therefore if the spectra are not recorded quickly the ratio of Ce
3+

 to Ce
4+

 

will have changed. However, careful studies have been done with good results being 

reported of natural ratios between 17 and 25 at.% which corresponds well to the increase 

of OVD sites due to increased surface energy.
48, 79, 82-83

 This naturally calls into question 

the stability (Table 2) of the materials when they are in an artificially high ratio of Ce
3+

 to 

Ce
4+

. 

3.6 Effects of Catalyst Activation by Thermal Annealing 

3.6.1 Changes in Ce
3+

 to Ce
4+

 Valence Ratio 

By utilizing XPS the atomic ratio for the as-synthesized nanorods was found to be 

16% Ce
3+

 while the ratio for the nanoparticles and bulk ceria were found to be 25% for 

both. The high percentage of Ce
3+

 found in the bulk material is likely accounted for by 

the micron scale of the powder particulates. The atomic ratio of Ce
3+

 did not change for 

any of the samples when activated under standard pressure at 400 °C. When the samples 

were activated at 400 °C and 0.1 Torr, the atomic ratio of Ce
3+

 increased for both the 

nanorods and the nanoparticles to 39 and 36 % respectively, but did not change for the 

bulk material. The increase in Ce
3+

 is likely due to a change in the partial pressure of the 

system, Figure 3 encouraging the desorption of oxygen from the surface of the materials. 

In the bulk material, the oxygen storage capacity of the cerium oxide was probably able 

to buffer the small amount of oxygen desorbing from the surface. Additionally the total 

surface area exposed to the low pressure is certain to be a factor in the amount of change 
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in the Ce
3+

 ratio as demonstrated by the more significant change experienced by the 

nanorods over the nanoparticles.  

Both of the nanoscale materials (nanorods and nanoparticles) were found to have 

significantly elevated ratios of Ce
3+

. The elevated ratios of Ce
3+

 were stable for more than 

a week, as demonstrated by XPS, and long term catalytic data presented in chapter four. 

There must be a stabilizing effect that is occurring at or near the surface of the 

nanomaterials, since the materials have demonstrated to be pure by EDX Figure 16. Since 

they have no significant amounts of impurities we can begin to look at the activation 

process. It is suspected that during calcination OVD are formed due to the low partial 

pressure leading to the equilibrium driven formation of O2. These defects are of higher 

energy than the well-defined sites and therefore are more likely to form initially near 

locations where they can be stabilized. These stabilization locations are likely to be 

surface defects of the lattice since at these points the energy is much higher and therefore 

would be able to stabilize the OVDs, lowering the energy of the surface defect.
21, 56, 84

 

The surface defects, once exposed to atmospheric conditions, are then likely to react with 

CO2 to form trace amounts of cerium carbonates (Ce2(CO3)3 and Ce2(CO3)4) below the 

detection limits of our equipment. Cerium carbonate is a very stable compound with little 

catalytic activity. However the presence of a very small amount of cerium carbonate on 

the surface of the nanomaterials is likely enough to stabilize the Ce
3+

 that are a part of 

OVD sites. 
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CeO2-x 

Sample 

Ce
3+

/Ce
4+

 at.% 

Activation 

Before  After 

TON @250 °C 

µmol*g
-1

*sec
-1

 

Surface 

Area 

m
2
/g 

nanorod 16 39 2.21 113 

Nanoparticle 25 36 0.22 50 

Area adj.   .993  

Bulk 25 25 0.01 8 

 

Table 2 comparison of valence ratio and surface area of CeO2-x materials activated at 

ambient and low pressure 
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3.6.2 Changes in Defect Sites 

Utilizing HRTEM we were able to identify a variety of defects.
37, 61

 Most 

interestingly we were able to identify the formation and increase in density of oxygen 

vacancy defects (OVD). (Figure 17) The presence of increased OVD after activation and 

the subsequent stability of the OVD after a reaction lead us to the conclusion that the low 

pressure activation is creating these defect sites. 

3.7 Conclusions 

During activation, various vacancy cluster defects were added to the surface and 

subsurface of the materials. The addition of these defects to the ceria nanorods led to 

enhanced catalytic activity of the nanorods with respect to other nanoparticles 

synthesized in a similar fashion, or of similar structure. This increases our understanding 

of the importance of both types of defects for the studied materials.  

The identification of vacancy clusters using HRTEM proved promising, as many 

of these types of defects were identifiable utilizing this method. The ability to identify 

OVDs using HRTEM rather than STEM makes the identification of these defects 

accessible to more research groups. Step edge and grain boundary defects were 

introduced into the ceria nanorods during synthesis. 
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Chapter 4 - Catalytic Oxidation of Carbon Monoxide  

4.1 Introduction 

The invention and subsequent popularity of the automobile lead to a need to 

convert the emissions to more benign substances.
14, 21, 85-87

 This was the impetus behind 

the three way catalyst. As the name implies three way catalysis is the catalytic conversion 

of three different materials simultaneously. First, any carbon monoxide CO must be fully 

combusted into carbon dioxide CO2. Second, any unburned hydrocarbons CxHy must be 

oxidized to CO2 and water. Third any oxides of nitrogen NOx need to be reduced to 

nitrogen gas N2. It seems intuitive that the combustion of CO and hydrocarbons can be 

done under the same conditions; however, the reduction of NOx at first appears to require 

its own set of conditions and possibly a separate catalyst. When it is considered that NOx 

needs to be reduced and that CO is a very good reducing agent the solution becomes 

clear: a location is needed to store excess oxygen from the NOx while awaiting CO. This 

location is on the surface of the cerium oxide. 

4.2 Catalytic Oxidation 

Combustion, when it occurs on a cerium oxide catalyst, has two major advantages 

over flame combustion. First, the radicals, which are produced as an intermediate in the 

reaction, are constrained to the surface of the cerium oxide and maintained there until 

needed for further reaction. The reaction is limited by kinetics rather than the mass 

transport limitations of flame combustion.
88-91

 This allows the reaction to occur at much 

lower temperatures than exist in a flame (between 1100 and 1800 °C), which in many 

cases is desirable. Second, the formation of byproducts is greatly reduced due to the 
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alternative reaction path provided by the cerium oxide surface. This leads to very 

predictable products and therefore a cleaner effluent.  

4.3 Lite Off Number and Turn Over Number 

Currently the state of the art in the production of heterogeneous catalysts is 

measured through two primary numbers. First the turn over number (TON), also called 

the turn over frequency (TOF), is a measure of the number of micromoles of carbon 

monoxide per second per gram of catalyst (µmol*g
-1

*sec
-1

) reported at a given 

temperature that is oxidized to carbon dioxide.
92

 This is a measure of the rate of reaction.  

The second number is the light-off number (T50), the temperature at which a given 

amount of catalyst can oxidize fifty percent of the carbon monoxide flowing through it. 

The T50 is a measure of the reduction in the activation energy of the reaction by a given 

catalyst. (Figure 23) 

4.3.1 Energy of Activation 

The apparent change in the energy of activation (Ea) can be approximated using 

the Arrhenius equation  

/( ) Ea RTk T ve  

 where k is the rate constant, T is the temperature in Kelvin, v is the pre-exponential 

factor, and R is the ideal gas constant. The equation is rearranged giving  

1
ln ( ) ln

Ea
k T v

R T
   
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According to this equation the slope of the plot yields the activation energy and the 

intercept yields the pre-exponential factor. The plot must be at the temperatures nearest to 

the lite off temperature in order to have physical meaning.
7
  

 Several assumptions must be made when using this technique to calculate the 

apparent change in Ea. It is assumed that the rate limiting elementary reaction is first 

order, and one of the reactants is limiting. In a catalytic reaction, it is assumed that the 

substrates are in great excess to the reaction sites on the catalyst. It was also assumed that 

the apparent Ea is valid throughout the entire range plotted. Finally, it is assumed that 

k(T) can be written as 
/( ) Ea RTk T ve . When graphing the Arrhenius plots for these 

reactions (Figure 22), the chosen temperature range was selected from onset to T50. 
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Figure 22 Arrhenius plots for ln(k) vs 1/T  
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4.4 Materials and Methods 

4.4.1 Materials 

Quantified mixtures of CO (1.08 % v/v) O2 (20.1% v/v) with the balance He 

(Linweld, Lincoln NE) was used for the reaction precursors. CO2 (1.98% v/v) in He 

(Linweld, Lincoln NE) was used to calibrate the GC and column under a variety of 

conditions.  

4.4.2 Reactor Design 

A stationary catalyst bed was selected due to the volume of catalyst and reactants 

that were to be tested. Thirty SCCM CO and O2 in a He balance were flowed from 

storage through a mass flow controller (MFC), into a 1 cm diamater U shaped reactor 

with a coarse-grained quartz frit sample platform located in one of the legs of the reactor 

also known as a plug flow reactor. The system was designed such that a quartz sheathed 

thermocouple was in contact with the frit and the reactor bed. The U micro-reactor was 

located in an open ended furnace capable of temperature control from room temperature 

to 500 °C. Downstream from the micro-reactor the gases entered a GC through a 6 port 

valve to allow for continuous filling of the sample loop. Exhaust gasses were expelled 

through a bubbler to allow for monitoring of gas flow in the system. All connectors were 

either Swagelok® or Ultra-Torr®. To provide for a gas tight configuration, Ultra-Torr® 

fittings were used wherever regular disconnections were needed. Tubing bends and bend 

angles were kept to a minimum to prevent changes to the conductance of the gas. 1/8” 

Stainless steel tubing was chosen as the primary tubing for the system. He carrier gas for 

the GC was conducted through 1/4” copper tubing.   
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4.4.3 Reactor Conditions 

Typically, in each catalysis test, a mixture of 79 % He, 20 % O2 and 1 % CO was 

flowed continuously throughout the reaction at a rate of 30 SCCM through a 100-mg 

CeO2-x sample, completely covering the frit. For our reaction gas mixture of 1.08 % CO 

this equates to 2.21 µmol*g
-1

*sec
-1

, assuming 25 °C and 1atm pressure at the MFC, 

giving us an upper bound for our conversion rate  

 

21  * 0.030  /
1.226*10 204.3    

 
0.082057  *298

 

pV atm L min mol mol
n total gas

LatmRT min sec
K

mol K

   

  

 
2

204.3    
 

1.08% 2.1  
0.1    *

mol
total gas

mol COsec CO
g CeO g sec




 
 

 
 
 

 (1.1) 

The reaction chamber was warmed in 5 ⁰C increments from room temperature to 

300 ⁰C or until at least 20 ⁰C past the 100% conversion temperature.  

A 1 mL sample of process gas obtained at each reaction temperature was analyzed 

using a gas chromatography instrument (Gow-Mac, Bethlehem, PA), equipped with an 

eight foot porapak Q column (Waters Corp., Milford, MA) and a thermo conductivity 

detector (TCD). The percentage of CO conversion was determined by quantifying the 

carbon dioxide concentration in the processed gas compared to a known concentration of 

CO2 in helium. The GC conditions were originally set to those specified by the column 

manufacturer and were modified slightly to enhance performance. The original 

conditions were: inlet temperature of 100 ⁰C, oven temperature of 60 ⁰C, detector 

temperature of 100 ⁰C, detector current of 100 mV and a carrier gas flow of 20 SCCM. 

These were modified to an oven temperature of 80 ⁰C, detector temperature of 110 ⁰C 
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and detector current of 150 mV. The increased oven temperature increased the elution 

time through the column, which given the purity of our mixture still allowed for baseline 

separation. The increased detector temperature and current allowed us to increase the 

sensitivity of the detector.  

4.5 Results and Discussion 

4.5.1 Change in the energy of activation 

The light off temperature (T50) was used as a comparison of the catalytic activity 

of each of the cerium oxide materials tested. A comparison of the tested materials along 

with various literature values is reported in Table 3. As controls, materials were activated 

at 400 °C at ambient pressure. The T50 for nanorods, nanoparticles and bulk cerium oxide 

were found to be 205, 285, and 350 °C respectively. The T50 showed that both the 

nanorods and the nanoparticles were more active after activation at 0.1 Torr than when 

activated at ambient pressure, additionally the nanorods were more active than the 

nanoparticles with a T50 of 175 and 260 °C respectively. The turn over number (TON) at 

250 °C for low pressure activated nanorods, nanoparticles, and bulk cerium oxide (Table 

3) were 1.77 µmol*g
-1

*sec
-1

, 0.22 µmol*g
-1

*sec
-1

, and 0.01 µmol*g
-1

*sec
-1

 respectively.  

When the natural log of the rate was plotted versus 1/T (Figure 22) for the bulk 

cerium oxide the pre-exponential factor was determined to be 10.3 and the apparent 

energy of activation over R (
Ea

R


) was calculated to be 6.577 J/mol. The calculated pre-

exponential value for low pressure activated nanorods was determined to be 10.0 with an 

apparent energy of activation over R calculated to be 4.567 J/mol. The units of the pre-

exponential factor and apparent energy of activation are arbitrary without further 
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investigation into the order of the reaction. However even without an exact knowledge of 

the units, it is apparent that there is a distinct lowering of the apparent energy of 

activation for the reaction when it is catalyzed by low pressure activated nanorods vs. low 

pressure activated bulk cerium oxide powder.  

4.5.2 Comparison to Literature Data 

The reported values of T50 for pure ceria range from 175 to 350 °C, our material 

T50 is reported at 175 °C. The reported TON for pure ceria ranges from 0.01 to 3.2 

µmol*g
-1

*sec
-1

 @ 250 °C with our material being reported at 2.21 µmol*g
-1

*sec
-1

 @ 250 

°C. See Table 3 for a detailed comparison. 

4.5.3 Long term catalytic stability 

It was determined that after 96 hours of continuous reaction at 170 °C there was 

no change in the catalytic activity of the low pressure activated nanorods. The long term 

stability of the reduced state of the cerium oxide was unexpected; we anticipated that 

after a catalytic run, especially a week long run, the majority of the cerium would have 

returned to the Ce
4+

 state. There must be a stabilizing effect that is occurring at or near 

the surface of the nanomaterials. The materials have demonstrated via EDX to be pure 

and since they have no significant amounts of impurities therefore the difference must be 

related to the activation process. 

4.5.4 Increased Ce
3+

/Ce
4+

 ratio 

All samples tested were found to have and to retain the cubic fluorite structure of 

CeO2 this leads us to the initial conclusion that any Ce
3+

 found must be at or near the 

surface as this is the most common location for the formation of OVDs. The relatively 
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low surface area for the nanoparticles was due to tightly agglomerated micron sized 

particles.  

Both of the nanoscale materials (nanorods and nanoparticles) were found to have 

significantly elevated ratios of Ce
3+ 

after activation. Because the samples are activated at 

low pressure under flowing nitrogen and oxygen rather than compressed air, it is 

suspected that during calcination the oxygen vacancy defects are formed. These defects 

are of higher energy than the well-defined sites and therefore are more likely to form 

initially near locations where they can be stabilized. These stabilization locations are 

likely to be surface defects of the lattice. At these points the energy is much higher and 

therefore would be able to stabilize the OVDs lowering the energy of the surface defect. 

The surface defects, once exposed to atmospheric conditions, are likely to react with CO2 

to form trace amounts of carbonates of cerium (Ce2(CO3)3 and Ce2(CO3)4) below the 

detection limits of our equipment. Cerium carbonate is a very stable compound with little 

catalytic activity; however the presence of a very small amount of cerium carbonate on 

the surface of the nanomaterials is likely to stabilize the Ce
3+

 in the oxygen vacancy 

defects.  
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Figure 23 Comparison of changes in T50 for nanorods, nanoparticles, and bulk 

powder ceria 
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4.6 Conclusions 

During activation various vacancy cluster defects were created on the surface and 

subsurface of the materials. The addition of these defects to the ceria nanorods led to 

enhanced catalytic activity of the nanorods with respect to other nanoparticles 

synthesized in a similar fashion, or of similar structure. This increases our understanding 

of the importance of both types of defects for the studied materials.  

The identification of vacancy clusters with HRTEM proved promising as many of 

these types of defects were identifiable utilizing this method. The ability to identify OVD 

clusters using HRTEM rather than STEM makes the identification of these defects 

accessible to more research groups. 
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Shape TON  

(µmol g-1 sec -1) 

T50  

(°C) 

Reference 

Bulk 0.01 350 This thesis 

 Not reported 290 
1

 

Nano rod 2.21 175 This thesis 

 2.21 205 This thesis 

 1.81 223 
2

 

 2.272 250 
3
 

 1.79 224 
2
 

 1.13 290 
4

 

Nano cube 0.655 315 
2
 

 0.055 375 
5
 

Nano wire 1.63 245 
2

 

Shuttle 3.181 160 
4, 6

 

Flower like 0.409 325 
5

 

 0.341 350 
5

 

Nano active™ 

  

0.993 260 This thesis 

 0.860 285 This thesis 

Nano cube 

(hollow) 

Not reported 265 
10

 

Nano tube Not reported 200 
11-13

 

Nano tube Not reported 200 
11

 

Nano tube (L) Not reported 270 
1, 14

 

Nano tube (T) Not reported 270 
1

 

    

 

Table 3 Comparison of reported data for cerium oxide similar in size and shape to 

those tested in this thesis.  

When not reported or reported at temperatures other than 250 °C every attempt was 

made to calculate the information from the reported data. 
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Chapter 5 – Future Work  

There is much work left to be done to understand the scientific principles behind 

multivalent metal oxide catalysis. Ceria will likely be increasingly used for its catalytic 

properties in a variety of applications and conditions. It is important to remember that 

there is no “one size fits all” approach to catalysis. For some applications, a lower T50 

may be required, while others a thermal stability may be of higher priority. To this end 

we need to be able to correctly model and synthesize catalysts that have very exacting 

properties.  

Using different sample preparations and the interaction of metal atoms with the 

mixed valency ceria cleverly designed catalysts will soon be more readily available. 

Ceria catalysts decorated with gold or other noble metal atoms can greatly increase the 

turn over number. Also, binary metal oxides have been shown to have very interesting 

catalytic properties while enhancing stability. Finally multilayer catalysts may be able to 

catalyze a series of reactions. Some work has been done to progress the goal of designer 

catalysts, but little work has focused on the principles behind the enhancements until the 

work presented here.  

5.1 Porous Cerium Oxide Membranes 

The ceria membranes should be tested in prototype solid oxide fuel cells. These 

can be created utilizing off-the-shelf test cells and inserting our membrane into the 

reaction chamber. The conditions for the reaction are likely between 600 and 1000°C. 

These conditions should be able to be modulated through the use of gold or other metal 

clusters on the membrane.  



75 

Though important in its own right, the anodization of cerium to form cerium 

oxide may be dwarfed by utilizing the same principles to apply a protective anodization 

layer to iron or steel. Just as we discovered that we could control reaction conditions to 

create cerium oxide that does not exfoliate from the underlying metal, we have 

preliminary research that indicates that iron can be polymerized utilizing phosphoric acid. 

In addition to phosphoric acid, iron has the potential to be polymerized with a variety of 

organic molecules including oxalate, and poly vinyl alcohol. This research must be 

followed up as it could lead to a great boon to society.  

5.2 Cerium Oxide Nanorods 

While cerium oxide nanorods show greatly improved catalytic activity over bulk 

cerium oxide, there is still much to be learned about the effect of defects on catalytic 

activity. New ways of introducing defect points into the ceria need to be explored 

towards the end of developing designer catalysts. These defects may be introduced 

through further refining of the low pressure calcination process. Or more likely, these 

defects will be produced through the introduction of other metals into the matrix. These 

metals may be other rare earth compounds, or they may be noble metals. In the case of 

other rare earth compounds the introduction of atoms into the lattice that are of a greatly 

different size than the cerium will cause strain. This strain should affect the lattice in a 

very predictable manner. The strain should be directly proportional to the atomic radius 

of the dopant atoms, and to the atomic percentage of the dopant atoms. Hypothetically a 

periodic trend will emerge that will hold true for any monovalent rare earth or transition 

metal atom. As the majority of rare earth metals are monovalent this should lead to a 

clear picture of the trend, though violations of any trend are expected and hoped for as 
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they present opportunities to test previously formed hypothesis and mechanisms. 

Additionally the periodic trend should lead us closer to understanding the role of 

multivalency in dopant atoms.  

Once the periodic trend is established, the interaction of multiple dopants in the 

lattice of the cerium oxide should be addressed. Binary dopants will lead to a better 

understanding of the principles of lattice growth and crystal design. By observing the 

clustering effects of the dopants the interatomic interactions will become clearer.  

Finally it is well accepted that gold clusters below 5nm in size are much more 

catalytically active than bulk gold.
93

 It is therefore possible to hypothesize that very small 

gold clusters ranging from a single atom to a cluster less than 1 nm will have very good 

activity. It has been calculated that gold tends to wet the surface of ceria, and form very 

small clusters based on the amount of gold present. Therefore, it is likely that very small 

atomic percentages of gold will be able to change the catalytic activity of ceria nanorods. 

It is also possible that less expensive and more abundant metals than gold will have a 

significant effect on the catalytic activity of the nanorods. Such metals include copper, 

tin, and nickel.
27, 86, 94-96

  

5.3 Summary  

The research presented in this thesis merely scratches the surface of 

understanding the principles behind the catalytic properties of cerium oxide. It could 

easily take a lifetime to understand this material. However within two to three years there 

will be a much greater understanding of the role of defects caused by adding dopant 

atoms to the lattice or decorating the surface of the ceria with atoms or clusters of noble 

metals, transitions metals, alloys, metal oxides or even non-metals. The range of reaction 
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which can be catalyzed will only be limited by our understanding of the fundamentals of 

the catalytic mechanism and the changes to the physical, chemical and electronic 

properties of the catalyst.  
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