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Cowpea weevil flights to a point source of female sex
pheromone: analyses of flight tracks at three wind
speeds

L . P . S . KU ENEN 1 and H . C . R OWE 2

1USDA, ARS, Crop Protection and Quality, Parlier, California, U.S.A. and 2Department of Vegetable Crops, University of

California, Davis, California, U.S.A.

Abstract. Two-day-old male cowpea weevils, Callosobruchus maculatus, fly
upwind to a point source of female sex pheromone at three wind speeds. All
beetles initiating flight along the pheromone plume make contact with the pher-
omone source. Analysis of digitized flight tracks indicates that C. maculatus males
respond similarly to moths tested at several wind speeds. Beetles’ mean net
upwind speeds and speeds along their track are similar (P > 0.05) across wind
speeds, whereas airspeeds increase (P < 0.01) with increasing wind speed. Beetles
adjust their course angles to fly more directly upwind in higher wind speeds,
whereas track angles are almost identical at each wind speed. The zigzag flight
paths are generally narrow compared with most moth flight tracks and interturn
distances are similar (P > 0.05) at the wind speeds employed. The frequency of
these counterturns across the wind line is almost constant regardless of wind
speed, and there is little variation between individuals. The upwind flight tracks
are more directly upwind than those typically seen for male moths flying upwind
toward sex pheromone sources. Male moths typically produce a bimodal distri-
bution of track angles to the left and right of the windline, whereas C. maculatus
males’ track angles are centred about 0�. Preliminary examination of two other
beetle species indicates that they fly upwind in a similar fashion.

Key words. Callosobruchus maculatus, cowpea weevil, flight, orientation, sex
pheromone, wind speed, wind tunnel.

Introduction

Computer-aided analyses of upwind flight patterns of male

moths toward sex pheromone sources have been in progress
for approximately 20 years, but the flight patterns of bee-
tles to pheromone sources have been largely ignored, even

though sex and aggregation pheromones of several species
have been known for some time. Fadamiro & Wyatt (1995)
determined optimal time and environmental conditions for
flight initiation of adult Prostephanus truncatus (the larger

grain borer); subsequently, Fadamiro (1996, 1997) used
these parameters to establish flight assays for the effects

of wind speed, pheromone concentration and starvation on
the number and duration of male and female P. truncatus
flights to the aggregation pheromone, which had been
identified with the aid of a walking bioassay (Cork et al.,

1991). Choudhury & Kennedy (1980) employed flight
responses of the smaller European elm bark beetle
(Scolytus multistriatus) in a wind tunnel to address

questions of anemotaxis vs. chemotaxis and phototaxis vs.
geotaxis. Bartelt et al. (1990) employed flight response
bioassays during the identification process of aggregation

pheromones of Carpophilus hemipterus comparing the num-
ber of beetle ‘hits’ on a target disk behind which putative
pheromone blends were emitted. Phillips et al. (1996)

employed flight assays (the upwind flight distances and
response numbers in a wind tunnel) in the elucidation the
female sex pheromone of the cowpea weevil, Callosobruchus
maculatus (F.), a cosmopolitan pest of pulses (grain

legumes) (Food & Agriculture Organization, 1970).
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Lextrait et al. (1994) demonstrated male C. maculatus’
upwind walking responses to female sex pheromone in a
glass-tube assay chamber but, to the authors’ knowledge,

there is no analysis of the flight tracks of any beetle species
to determine their actual ground speeds, airspeeds or steer-
ing responses. In the present study, male cowpea weevils fly

upwind in generally zigzag paths along the axes of phero-
mone plumes. Test beetles steer upwind close to the wind-
line, and adjust their course angles and airspeeds to

maintain constant track angles and ground speeds at three
wind speeds.

Materials and methods

Insects

Cowpea weevils, C. maculatus, were reared on cowpeas/
black-eyed peas [Vigna unguiculata (L.) Walp.] in 4-L

culture jars by placing approximately 400 mixed-sex adult
beetles in a clean jar containing 1 kg of organically grown
cowpeas. New peas were infested weekly and were main-

tained in an incubator at 26 � 1 �C, at approximately 60%
relative humidity (RH) under an LD 16 : 8 h photoperiod.
The beetles used to start this culture were collected in

November 2000, from chick peas/garbanzo beans in a sto-
rage facility near Patterson, California (voucher specimens
have been deposited with the insect museum at the

University of Riverside, California). Male beetles used for
flight tests were collected from a culture jar, with emerging
beetles, by screening out all newly-emerged adults at 2-h
intervals, and males were separated from females by the

external markings noted by Raina (1970). Males were held
for 2 days in empty 4-L jars in the incubator described
above.

Pheromone

Female sex pheromone was collected as volatiles from
newly-emerged females. Cowpeas containing C. maculatus

pupae were placed singly in 4-mL shell vials with foam
stoppers and checked daily for emergence of adults. On
the day of their emergence, adult females were transferred

to hexane-rinsed vials containing a fresh cowpea and a
0.5 � 3-cm strip of Whatman #1 filter paper (Whatman
Plc, U.K.) (Phillips et al., 1996; Shu et al., 1996). After

5 days, females and peas were removed and discarded,
vial walls were rinsed three times with high-performance
liquid chromatography grade hexane (approximately 1 mL)
and the filter paper strips were extracted in this rinse

hexane. The vial and filter paper were extracted for
2–3 min and then the hexane extract was decanted into a
holding flask. In this fashion, the female sex pheromone

volatiles (plus cowpea volatiles) were collected from each
vial in increments of 5 female-day equivalents (FDEs). This
procedure continued until approximately 400 FDEs of

extract were accumulated. The total volume of the extract

was reduced, with a gentle stream of helium, to approxi-
mately 0.25 FDE of sex pheromone (plus cowpea volatiles)
per mL of solution.

A pheromone source was prepared by pipetting 25 FDE
(100 mL) onto a 2 � 5-cm piece of Whatman #1 filter
paper, which was air-dried in a fume hood for 1 min. The

filter paper was then inserted into a 100-mL, silanized-glass
odour-delivery jar (Fig. 1). Charcoal-filtered compressed
air carried the pheromone through Teflon tubing to the

odour-release platform (Fig. 1). A 9 � 19-mm rubber sep-
tum was placed 5 cm directly upwind of the pheromone exit
to produce a turbulent plume structure (Marsh et al., 1978);
tests with TiCl4-generated smoke emitted from the odour-

delivery tube indicated no apparent differences in plume
structure at the wind speeds used. The Teflon odour-deliv-
ery tube and the aluminium receiving plate were hexane-

rinsed before each use. The wind tunnel has a
98 � 98 � 240-cm working section, open at the down-
wind end with air pushed through the tunnel by a variable

speed fan (Fig. 2).

Experiments

For tests of male cowpea weevil flight responses in dif-
ferent wind speeds, beetles were tested in winds of 47, 70
and 93 cm s�1 as measured with a Kurz� hot-wire (Kurz

D

E

A

B

C

A) Compressed-air cylinder
B) Charcoal filter for air
C) Flow meter
D) Silanized-glass volatiles jar
E) Upwind end of wind tunnel with odour-release platform (viewed from above)

- denotes location of a 9 × 19 mm rubber septum that induced
a turbulent plume structure at all wind speeds used.
- denotes opening for pheromone-laden air

Fig. 1. Diagrammatic representation of odour-delivery system for

cowpea weevil sex pheromone for wind tunnel tests. Charcoal-

filtered compressed air was metered through the odour-delivery

jar at 360 mL min�1 producing a 70 cm s�1 pheromone-laden air

flow through a Teflon tube (inner diameter 3.3 mm; outer diameter

3.5 mm) that was routed to a 15-cm square aluminium plate with

15 cm-long � 2.5 cm-wide legs; all aluminium surfaces were

0.7 mm in thickness. The stand was axially centred in the tunnel

26 cm from the upwind end with platform surfaces aligned with the

wind to minimize turbulence. A 4.5-mm hole was drilled through

the centre of the aluminium plate through which a 5-mm piece of

4.5-mm outer diameter Teflon tubing was inserted; this tube was

slightly flared on the bottom to receive the Teflon tube carrying the

pheromone-laden air.
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Instruments, Monterey, California) anemometer (model

491; calibrated by timing smoke puffs through a 1.5-m
section of the tunnel). During tests, the flight tunnel room
conditions were maintained at 27–29 �C and 45–60% RH.

Beetles were tested during hours 9–11 of photophase.
Jars containing unfed, 2-day-old males were moved to

the wind tunnel 60 min before flight tests were conducted.

After 30 min, males were placed singly into clean 20 � 50-mm
glass tubes closed at each end with a foam rubber plug and
placed on the tunnel floor for �15 min before male release.
A tube with a quiescent male was opened and then gently

tapped to displace the beetle onto a filter paper disk (9 cm
in diameter) taped to the top of a 12.5 cm-high release
platform (white polyvinyl-chloride plastic cylinder, 5 cm

in diameter) positioned 160 cm straight downwind of the
pheromone platform. Beetles not initiating flight within
3 min were discarded. Each beetle was tested only once.

Flight track recording and analysis

Upwind flight tracks of beetles were recorded in plan
view from above with a Sony DCR-VX2000 digital video

camera/recorder (Sony Corp., Japan). The camera was
orientated vertically above the tunnel, providing a
50 � 80-cm field of view at 15 cm high, with its upwind

end 48 cm from the pheromone source. Flight-track

records were transferred to a Sony Vaio
TM

computer using

Sony DV-gate� software. Beetle flight tracks were subse-
quently digitized on the computer monitor with Mantid32�

software (Synceros Inc., Ithaca, New York). To obtain

mean course angles, track angles, drift angles, airspeeds
and ground speeds, calculations were based on the triangle
of velocities method (Kennedy, 1940; Marsh et al., 1978).

Data files [consecutive (1/30 s) x, y coordinate pairs for
each flight track] were analysed with a computer program
developed by Kuenen & Baker (1982); see also Charlton
et al. (1993); Kuenen & Cardé (1993, 1994) for calculation

of the beetle movement parameters along each flight-track
vector (track segment between consecutive beetle loca-
tions). In the present study, the mean track angle was

calculated for an entire track by calculating the mean ‘x’
and ‘y’ displacements from all the vectors of a given track,
yielding a mean resultant track vector. This procedure was

followed to avoid the error inherent in calculating arith-
metic means directly from angle measurements (Batschelet,
1981), especially when vector lengths are not equal, as is

typical during the dynamic free flight (Willis & Arbas,
1998) of these male beetles. Subsequent calculations and
analyses of movement and steering components of males
along their flight tracks were also based on this resultant

vector and the three wind speed vectors (Kuenen & Cardé,
1993, 1994). A program subroutine was written to deter-
mine the turn apices and calculate interturn reversal

98
 cm

250 cm

98
 cm

F

Fig. 2. Diagrammatic representation of the wind tunnel. The tunnel is constructed of 6-mm thick Plexiglas� panels affixed along their long

edges to 6-mm thick aluminium rails bent 90� in cross section, and to welded box-section aluminium exterior frames at each end. Tunnel

access is through the downwind end or through one side composed of two 130-cm long door panels that slide parallel on closely apposed rails.

Wind is provided by a variable speed DC-motor/fan with a rectified voltage-controller; the fan blades are surrounded by a 30 � 50-cm

diameter aluminium sheet-metal duct. Air is ducted to the upwind end of the tunnel by a flexible, polyethylene-sheeting (0.3 mm in thickness)

tube that is attached to the fan duct and the tunnel’s upwind aluminium frame. Fan-driven air passes through three layers of charcoal-and-

zeolite-impregnated filter material (Quality Filters, Robertsdale, Alabama) that are held in individual aluminium frames (shown here in

expanded view; ‘F’). These filter layers provide air cleaning (Heath & Manukian, 1992) and reduce large-scale air turbulence; air passing

through the tunnel is recirculated through the assay room. Point-source plumes flowed horizontally straight down the tunnel with little

spread, as visualized by smoke plumes. Test insects flew along pheromone plumes that were 15 cm above the tunnel floor, which had a 10-cm

diameter red-dot pattern randomly distributed over a white floor covering (approximately 25% of the floor area comprised red dots).

Lighting in the assay room was from above by two 96-W fluorescent tubes (120 Hz; paired 240-cm long tubes) orientated longitudinally with

respect to the tunnel and positioned directly above the working section. These lights were supplemented by six clear 25-W incandescent bulbs,

three spaced 82 cm apart in parallel rows, 20 cm from both sides of the fluorescent tubes. Light intensity at flight height (15 cm) was

approximately 1.90 W m�2 from above, 0.77 W m�2 from the sides and 0.62 W m�2 from the floor (converted from lux, as measured by a

FisherBrandTM light meter, model 06-662-64 (Fisher Scientific, Friendswood, Texas); Young et al., 1987).
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distances and durations (inverse of turns s�1). Turn apices
were defined as the points where males changed direction
across the wind line (Kuenen & Cardé, 1993, 1994) and

interturn reversal distances were taken as the lateral dis-
placement between the apices of consecutive turns.
Frequency histograms were also constructed of track,

course and drift angles calculated for all individual track
vectors for comparisons among upwind flights at the three
wind speeds tested.

Statistical analysis

Tests were conducted in a randomized complete block

design with one beetle flight per wind-speed treatment per
replicate; tests were conducted over the course of 18 days.
No data transformations were necessary, as indicated by

Bartlett’s test for homogeneity of variances (Sokal & Rohlf,
1981). Analyses of variance and mean separation tests were
conducted with PROC GLM AND Tukey’s test in SAS (SAS,

2001). Replicates (n ¼ 2) that contained beetle flights of
more than 12 s duration were discarded because these
long flights were the result of frequent excursions out of
the pheromone plume, and the beetles’ apparent initiation

of casting (Kennedy, 1983) before recontacting the plume.
Twenty-five replicates of beetle flights were analysed.

Results

All cowpea weevil males initiating flight along the phero-

mone plume made contact with the pheromone source.
These beetles flew along the pheromone plume in a zigzag
manner (Fig. 3A,B) akin to that recorded from male moths
as they fly toward sex pheromone sources (Marsh et al.,

1978; Kuenen & Baker, 1982; Willis & Cardé, 1990;
Charlton et al., 1993; Kuenen & Cardé, 1993, 1994) and

as verbally described for the larger grain borer beetle
(Fadamiro & Wyatt, 1995). However, a small majority (43
of 75) of the cowpea weevil males had flights with relatively

long straight segments orientated nearly directly upwind,
punctuated by fairly rapid (short duration) turns across the
windline (Fig. 3C–F); this is quantitatively manifested by

the high number of track legs that are orientated within 5�

of the wind line (Fig. 5A).
The mean ground speeds and net upwind speeds of the

male beetles were similar (P > 0.05) among the three wind
speeds tested (Fig. 4A); however, at different wind speeds,
the mean air speed of the beetles increased linearly with
increased wind speed (P < 0.01; Fig. 4A). Males’ mean

track angles were the same among the three wind speeds
(P > 0.05; Fig. 4B), and these track angles were centred
about 0� degrees (directly upwind; Fig. 5A) (i.e. the cate-

gory of � 5� from upwind had the highest number of track
vectors at each wind speed). Beetles steered their courses
narrowly upwind and closer to the wind line at higher wind

speeds (P < 0.05; Fig. 4B). As the beetles steered more
upwind at higher wind speeds, their drift angles increased,
although not significantly (P > 0.05; Fig. 4B), in order to
maintain similar (P > 0.05) mean track angles (Fig. 4B).

The lateral extent of the cross-wind flights, as measured
by the mean interturn reversal distances, were <7 cm at all
three wind speeds (P > 0.05; Fig. 4C). Additionally, the

frequency of these turns (turns s�1; Fig. 4C) remained
almost constant at 3.6 turns s�1, regardless of the wind
speed, and the variability among these turn rates was very

low (range of means � 1SE, 3.55–3.65 � 0.18–0.31).

Discussion

This is the first detailed analysis of male beetle flight tracks
to female sex pheromone (plus cowpea volatiles). The

10 cm

WIND

(A) (B)

(C) (D)

(E) (F)
Fig. 3. Representative flight tracks of male

Callosobruchus maculatus flying upwind

toward a sex pheromone source (25 FDE);

wind is from the right at 70 cm s�1. (A,B)

Zigzag tracks similar to those reported for

male moths. (C–F) Tracks showing the more

upwind nature exhibited by the majority of

C. maculatus males in this study.
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maintenance of constant track angles and ground speeds
when flying upwind into three wind speeds indicates that,

similar to the beetle P. truncatus (Fadamiro, 1995, 1997),
C. maculatus males employ an optomotor anemotaxis
(Kennedy, 1940) to fly toward and locate an attractant/

odour source. The cerambycid Phoracantha semipunctata
(Barata & Araujo, 2001) also appears to employ an opto-
motor anemotaxis to fly upwind toward food volatiles.

In wind tunnel assays, the flights of various male moths
(Marsh et al., 1978; Cardé & Hagaman, 1979; Kuenen &
Baker, 1982; Willis & Arbas, 1991; Kuenen et al., 1994;

Mafra-Neto & Cardé, 1994; Vickers & Baker, 1997) or male
and female moths (Haynes & Baker, 1989; Willis & Arbas,
1991) differ only in small detail. The basic flight pattern is

an alternating left–right–left zigzag across the windline
while progressing upwind toward the odour source. These
reversals across the windline are an integral defining part of

the zigzagging flight of these various species as they fly
upwind toward an odour source (Arbas et al., 1993). In
addition, the existence of an apparent endogenous, central

nervous system counter-turn generator driving the fairly
regular cadence of crosswind turns is also an integral defin-
ing part of this flight behaviour (Baker, 1989, 1990).
Callosobruchus maculatus males exhibited very regular

crosswind turn intervals (Figs 3 and 4) when flying upwind
toward a pheromone source and, as in moths, it was inde-
pendent of wind speed (Marsh et al., 1978; Cardé &

Hagaman, 1979; Willis & Arbas, 1991).
The cross-wind nature of the interturn reversals leads to

a distribution of track angles for moths that is typically

bimodal, left and right of 0� (upwind; Willis & Baker, 1987;
Kuenen & Cardé, 1993). Male cowpea weevil flights toward
a source of female sex pheromone are also zigzag paths
along the pheromone plume with adjustments to their

course angles and air speeds while flying upwind in three
wind speeds. However, the distribution of the beetles’ track
angles is distributed about 0� and their course angles are

more narrowly distributed about 0�. This more upwind bias
of the tracks is also evident when the actual flight paths are
examined (Fig. 3C–F). A similar, more upwind orientation

of interturn track-legs is also noted for male and female
A. transitella (Haynes & Baker, 1989); nonetheless, in both
A. transitella and C. maculatus, cross-wind reversals still

occur on a regular basis.
Callosobruchus maculatus’ adjustments to their course

angles and airspeeds are similar to those exhibited by
moths, as measured approximately by Fadamiro (1996).

However, by contrast to synchronous flight muscle systems
in moths, these beetles employ asynchronous flight muscles.
Drosophila hydei, also with asynchronous muscles, rotates

its body to a more horizontal position at higher wind
speeds to maintain a hovering position (David, 1978),
whereas Lymantria dispar and Sparganothis sulphureana

males increase their wing beat frequencies as well as rotat-
ing their bodies more horizontally to fly at higher airspeeds
(Kuenen, unpublished data). Further analyses of the flight

behaviour of C. maculatus (and other insects with asyn-
chronous flight muscles) in response to various pheromone
dosages and plume structures should yield greater insight
into the overall mechanisms employed by insects to fly

upwind toward an odour/attractant source.
Beetles present us with several additional opportunities

to further our understanding of the mechanisms employed

in odour-source location. Some beetle spp., such as
C. maculatus, employ a sex pheromone for mate location,
whereas others, such as Rhyzopertha dominica (the lesser
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Fig. 4. Mean � 1SE (n ¼ 25) of selected parameters of

Callosobruchus maculatus male flight tracks during upwind flight

toward a sex pheromone source at 47, 70 and 93 cm s�1 wind

speeds. (A) Mean air speeds, ground speeds and net upwind speeds.

(B) Mean track angles, drift angles and course angles. (C) Mean

interturn reversal distances and mean turn rates. Means along each

line with no letters in common are significantly different (Tukey’s

test P < 0.05).
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grain borer), employ a male-released aggregation phero-
mone (Williams et al., 1981) that attracts both sexes.

Another variation is presented by Carpophilus hemipterus
(the dried fruit beetle), which employs a male-released
aggregation pheromone (Bartelt et al., 1990) that is active
only in the presence of food volatiles, which in turn are also

strong attractants in their own right. Males and females of
these beetle species also fly upwind in an apparent zigzag
fashion (Kuenen, unpublished data).

In conclusion, cowpea weevil males fly in generally zig-
zag paths upwind along the female sex pheromone plume to
make contact with the pheromone emission source, in a

manner similar to moths flying upwind to sex pheromone
or food odours. The current analysis of C. maculatus’
upwind flight toward a sex pheromone source supports

the general model for odour-mediated optomotor anemo-
taxis that has been demonstrated extensively in moths.
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