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also shifted (Figure 9c), revealing its sensibility to the first group of 
intra-class variability (shifted vegetation indices temporal profile). Ad-
ditionally, the wavelet spectrum is also sensible to the third group of 
intra-class variability (different combinations of diverse crops or veg-
etation types). 

Similarly, an excellent feature selection and classification process 
should be robust to intra-class variability but very sensible to inter-
class variability. The feature selection and classification process of CI-
IWS method is robust to both the first and third groups of intra-class 
variability. The number of strong bright centers generally remained un-
touched with shifted vegetation phenology (Figure 9), suggesting its 
robustness to the first group of intraclass variability of vegetation in-
dices temporal profile. As regards to its robustness to the third group 
of intra-class variability of vegetation indices temporal profile, it is ex-
plained as follows. For vegetation with single growth cycle, it is ob-
vious that only one strong bright center is always obtained from their 
wavelet spectra. For double crops, the typical features (numbers of 
strong bright centers) obtained are fairly complicated, as introduced 
by the third group of intra-class variability. In general, the wavelet 
spectra of double-cropping croplands can be divided into two modes. 
The first mode is a roughly equal strong combination of two agricul-
tural crop production cycles (Figure 5c). Its wavelet spectrum is char-
acterized as with three obvious positive bright centers: (1) a dominant 
one at considerably lower frequency (around scale 100) representing 
the center of the relatively dense period separated by the two skeleton 
lines; and (2) another two at considerably higher frequency (around 
scale 30) denoting the center of those two agricultural cycles. The sec-
ond mode is a combination of one relatively weak and one significantly 
strong agricultural cycle (Figure 10, pixel selected at 115°00′03.631′′E, 
34°20′47.209′′N). Its wavelet spectrum is illustrated with one weak 
and one strong bright center: the weak one at considerably higher fre-
quency (around scale 30) denoting the considerably weak agricultural 

cycle, and the strong one representing the relatively strong agricultural 
cycle (Figure 10). Only two strong bright centers are observed; the one 
at the relatively higher frequency is merged into the dominant one at 
lower frequency. From these above two modes of double crops, more 
than one strong bright center could always be obtained. 

Through an efficient original-characteristic transferring, feature se-
lection and classification process, the proposed CIIWS method are ro-
bust to those three typical groups of intra-class variability of vegeta-
tion indices temporal profiles. The proposed CIIWS method is capable 
of deriving cropping intensity efficiently and automatically. It does not 
require a large amount of input from field surveys or other training da-
tasets. The criteria quantification process of the CIIWS method is ob-
jective and significant, compared with some other classifiers such as 
the nearest neighbor classifier or the artificial neural network (Chen et 
al., 2012a; Nguyen et al., 2012) which are unable to provide any form 
of explanation (Maletzke et al., 2014). 

6.2. Comparison with the DCCWT and other methods 

Qiu et al. (2014b) proposed a new methodology to map double-crop-
ping croplands based on continuous wavelet transform (DCCWT). 
Similarly, the DCCWT method also attempted to deal with the intra-
class variability of vegetation index temporal profile through contin-
uous wavelet transform. Results obtained through DCCWT methods 
(Qiu et al., 2014b) are also visually conformed to HJ-1 image derived 
datasets (Figure 7b), revealing the efficiency of both methods in de-
riving CI. The biggest difference is located in these small patches in 
the middle and eastern portion of the study area. These small patches 
were identified as double-cropping croplands by the DCCWT method 
(Qiu et al., 2014b), but were correctly classified as natural vegeta-
tion by the CIIWS method which is confirmed by HJ-1 derived data-
sets (Figure 7b). 

Figure 9. The original, strengthened, shifted MODIS EVI time series signal and its wavelet spectra. Notes: WCT: wavelet coefficients intensity. 

Figure 10. The EVI temporal profile, wavelet spectra and corresponding isolines of the second modes of double-cropping croplands. 
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The original MODIS EVI temporal profiles of these small patches 
in the middle and eastern portion are characterized as slightly reduced 
during their relatively higher EVI periods (Figure 11). Wavelet iso-
lines with weak wavelet coefficients at relatively lower scales are eas-
ier to be introduced by slight fluctuations. Through deriving a feature 
selection process based on zero wavelet isolines, the feature peak ob-
tained by the DCCWT method (Qiu et al., 2014b) might be very sen-
sible to this kind of fluctuation, which might be caused by summer 
drought or other reasons. 

Besides its relative higher accuracy compared with the DCCWT 
method (Qiu et al., 2014b), the CIIWS algorithm is also highly auto-
matic and efficient. Instead of developing criteria based on the thresh-
old of feature peak which relies on local distribution or ground survey 
data (Qiu et al., 2014b), the CIIWS algorithm proposes a meaningful 
cropping intensity classification standard which is robust to complex 
intra-class variability. Universal value could be utilized for this param-
eter required in the CIIWS method, guaranteeing great consistency and 
generality. This paper is expected to make significant contributions to 
global mapping efforts of land use intensity through developing an au-
tomatic cropping intensity mapping method (Kuemmerle et al., 2013). 

6.3. Possible reasons for misclassifications 

The MODIS-derived results estimated by CIIWS algorithm are consis-
tent with in-situ observation data (over 85% agreement). When com-
pared with the HJ-1 image derived distribution map, four mismatched 
areas (labeled as A, B, C, and D) are identified (Figure 7). There are at 
least two kinds of mismatch. The first kind of mismatch is due to veg-
etable cultivation. According to ground survey data and statistical da-
tasets, area A is predominantly cultivated with vegetables (e.g., garlic, 
watermelon, or yam). Vegetable cultivation is generally different from 
other agricultural crops in the following two aspects. First, different 
vegetables might have very diverse growth cycles (very long or short). 
For example, some vegetables could be harvested within two months 
(leaf-eating vegetables), but some vegetables such as yam have more 
than a six month growing period (planted February, harvested in No-
vember, with a cropping index of 1). Therefore, vegetables might be 
harvested earlier or later than ordinary crops in autumn. Second, dif-
ferent vegetables would more likely be intercropped (e.g., garlic plus 
watermelon). Even if vegetables are not intercropped, an area of 250 
m × 250 m would be easily planted with different species of vegetables 
with different harvesting dates. Consequently, crop shifting between 
different vegetables is less obvious than corn crop rotation. Therefore, 
vegetable cultivation could easily be misclassified as vegetation with 
single growth cycles. Area A is mainly identified as single crop or natu-
ral vegetation by the CIIWS method, since only one strong bright cen-
ter could be obtained from its wavelet spectra of area A. 

The second kind of mismatch might be the limitation of the 250 m 
resolution MODIS-based algorithm in identifying small patches of ag-
ricultural field sizes (Biradar and Xiao, 2011). Areas B, C, and D, lo-
cated between plains and mountains or hills, are easily covered by a 
mixture of crops and natural vegetation (pictures in Figure 1, HJ-1 de-
rived data in Figure 7). The mismatched sites with survey data are also 
generally located around the city (or town) surroundings or near moun-
tains/hills, which posed more challenges in identification due to frag-
mentation and sub-pixel proportion of different vegetation/land cover 
classes (Pouliot et al., 2014; Qiu et al., 2014b; Setiawan et al., 2014b). 

Until now, time series classification of vegetable cultivation is 
rarely reported and needed further investigations. Further field survey 
and investigation should be conducted to in order to define the com-
plex intra-class variability of vegetable cultivation. Time series images 
with better spatial resolution should be utilized. The second kind of 
mismatching information could also be eliminated through applying 
the CIIWS method to higher spatial resolution images. 

6.4. Future applications 

The CIIWS method could also be applied in identifying triple-cropping 
croplands. Similar to double-cropping croplands, the wavelet spectra 
of triple crops could also be divided into two kinds of modes (Figure 
12). The first mode is characterized with four obvious positive bright 
centers: one at relatively lower frequency (around scale 100) and the 
other three at considerably higher frequency (around scale 30), denot-
ing the center of those three agricultural growth cycles. The second 
mode of triple crops is similar to the first mode of double crops, since 
both have three strong positive bright centers. However their relative 
locations of strong positive bright centers observed from these two 
modes are totally different. Criteria quantification of triple-cropping 
croplands is therefore provided as follows (Figure 3): if four groups of 
closed positive wavelet isolines are examined from their wavelet spec-
tra, they are identified as triple-cropping croplands; if only three groups 
of closed positive wavelet isolines are observed and the intersection 
of the scale interval of these three derived wavelet isolines from each 
groups is empty, they are also classified as triple-cropping croplands. 

The uniqueness of the CIIWS method is the ability to automat-
ically compute cropping intensity across various regions on differ-
ent years with time series images from diverse platforms. Besides the 
MODIS time series images, the proposed CIIWS method could also be 
applied to time series datasets of relatively higher-resolution images 
(e.g., Landsat TM, QuickBird, Rapid Eye and IKONOS). With eas-
ier accessibility and availability of remote sensing images, these time 
series classification methods hold great potential for various applica-
tions. The CIIWS method could easily be applied to other regions. Fur-
ther investigations should be carried out to evaluate and determine the 

Figure 11. The EVI temporal profile, wavelet spectra and corresponding isolines of mismatched area with the DCCWT method. 
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proper threshold from which to derive those positive wavelet isolines. 
There should always be a balance between classification accuracy and 
noise reduction. At relatively higher scales, wavelet isolines with much 
stronger wavelet coefficients are hardly sensible to noise. Therefore, 
the CIIWS method would be more robust for noise disturbance when 
the threshold of wavelet isolines increases. In that case, those identi-
fied multiple cropping croplands would be more typical, and the prob-
ability of misclassification of non-multiple crops or a mixture of mul-
tiple crops would be reduced. However, if the threshold is too large, 
the second mode of double-cropping croplands might not be correctly 
identified. On the other hand, if the threshold is relatively small, the 
mixed pixels and even totally non multiple crops could be classified as 
multiple crops. Particularly, if wavelet isolines are derived with a very 
small wavelet coefficient (e.g., 0.2), those wavelet isolines with very 
small wavelet coefficient are prone to noise disturbance at very small 
scales. Field surveys and other reference data could be applied to iden-
tify the proper threshold. Further investigations could be conducted in 
order to cope with this problem as regards to the relationships between 
the strength of wavelet coefficients and proportions of mixed pixels. 

7. Conclusions 

An innovative approach for accurately mapping cropping intensity is 
proposed in this paper. An automatic classification process is devel-
oped to smoothly derive indicators from isolines of wavelet spectra. 
The skeleton width and number of strong bright centers are applied as 
the primary metric to map cropping intensity. Its criteria quantification 
process is objective and meaningful. Its ability to compute cropping 
intensity automatically and accurately is verified through its applica-
tions in Henan province, China. This method is efficient in extracting 
cropping intensity through a robust feature selection process which 
could efficiently deal with complex intra-class variability. As an ob-
jective and automatic methodology, the CIIWS method could easily 
be utilized to other time series images of either coarse or high spatial 

resolution. Therefore, the CIIWS method has great potential of guar-
anteeing significant generality, comparability and consistency from lo-
cal, regional to global scales. It is particularly suitable for developing 
countries, where rapidly changing ecosystems require updated infor-
mation quickly. This paper is expected to make significant contribu-
tion to global, national and local earth observation efforts, such as the 
Group on Earth Observation Global Agricultural Monitoring (GEO 
GLAM) and National Agricultural Census of China.    

Acknowledgments — The authors would like to thank NASA LP DAAC 
for making MODIS data publicly available online. This work is supported by 
the National Natural Science Foundation of China (Grant Nos. 41471362 and 
41071267). We also appreciate the anonymous reviewers from Computers and 
Electronics in Agriculture for their constructive comments.  

References 

Atkinson, P.M., Jeganathan, C., Dash, J., Atzberger, C., 2012. Inter-comparison of four 
models for smoothing satellite sensor time-series data to estimate vegetation phe-
nology. Remote Sens. Environ. 123, 400–417. 

Böttcher, K., Aurela, M., Kervinen, M., Markkanen, T., Mattila, O.-P., Kolari, P., 
Metsämäki, S., Aalto, T., Arslan, A.N., Pulliainen, J., 2014. MODIS time-series-
derived indicators for the beginning of the growing season in boreal coniferous 
forest- comparison with CO2 flux measurements and phenological observations 
in Finland. Remote Sens. Environ. 140, 625–638. 

Biradar, C.M., Xiao, X., 2011. Quantifying the area and spatial distribution of double- 
and triple-cropping croplands in India with multi-temporal MODIS imagery in 
2005. Int. J. Remote Sens. 32, 367–386. 

Chen, C.F., Chen, C.R., Son, N.T., Chang, L.Y., 2012a. Delineating rice cropping ac-
tivities from MODIS data using wavelet transform and artificial neural networks 
in the Lower Mekong countries. Agric. Ecosyst. Environ. 162, 127–137. 

Chen, C.F., Son, N.T., Chang, L.Y., 2012b. Monitoring of rice cropping intensity in 
the upper Mekong Delta, Vietnam using time-series MODIS data. Adv. Space 
Res. 49, 292–301. 

Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., Schwartz, M.D., 2007. Shifting 
plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365. 

Daubechies, I., 1990. The wavelet transform, time–frequency localization and signal 
analysis. IEEE Trans. Inf. Theory 36, 961–1005. 

Figure 12. The wavelet scalogram and its corresponding isolines of the first (a) and the second (b) modes of triple-cropping croplands.  



Automate d  cropp ing  intens i ty  extract ion  from  i sol ine s  of  wavelet  s pectra    11

Davison, J.E., Breshears, D.D., Van Leeuwen, W.J.D., Casady, G.M., 2011. Remotely 
sensed vegetation phenology and productivity along a climatic gradient: on the 
value of incorporating the dimension of woody plant cover. Glob. Ecol. Bio-
geogr. 20, 101–113. 

Douzal-Chouakria, A., Amblard, C., 2012. Classification trees for time series. Pattern 
Recogn. 45, 1076–1091. 

Du, P., Kibbe, W.A., Lin, S.M., 2006. Improved peak detection in mass spectrum by 
incorporating continuous wavelet transform-based pattern matching. Bioinfor-
matics 22, 2059–2065. 

Estel, S., Kuemmerle, T., Levers, C., Baumann, M., Hostert, P., 2016. Mapping crop-
land-use intensity across Europe using MODIS NDVI time series. Environ. Res. 
Lett. 11, 024015. 

Fana, C., Zhenga, B., Myinta, S.W., Aggarwalb, R., 2014. Characterizing changes in 
cropping patterns using sequential Landsat imagery: an adaptive threshold ap-
proach and application to Phoenix, Arizona. Int. J. Remote Sens. 35, 7263– 7278. 

Foerster, S., Kaden, K., Foerster, M., Itzerott, S., 2012. Crop type mapping using 
spectral–temporal profiles and phenological information. Comput. Electron. Ag-
ric. 89, 30–40. 

Galford, G.L., Mustard, J.F., Melillo, J., Gendrin, A., Cerri, C.C., Cerri, C.E.P., 2008. 
Wavelet analysis of MODIS time series to detect expansion and intensification of 
row-crop agriculture in Brazil. Remote Sens. Environ. 112, 576–587. 

Gaucherel, C., 2002. Use of wavelet transform for temporal characterisation of remote 
watersheds. J. Hydrol. 269, 101–121. 

Ghamisi, P., Benediktsson, J.A., Sveinsson, J.R., 2014. Automatic spectral–spatial clas-
sification framework based on attribute profiles and supervised feature extraction. 
IEEE Trans. Geosci. Remote 52, 5771–5782. 

Gray, J., Friedl, M., Frolking, S., Ramankutty, N., Nelson, A., Gumma, M., 2014. Map-
ping Asian cropping intensity with MODIS. IEEE J. Sel. Top. Appl. Earth Ob-
serv. Remote Sens. 7, 3373–3379. 

Gumma, M.K., Mohanty, S., Nelson, A., Arnel, R., Mohammed, I.A., Das, S.R., 2015. 
Remote sensing based change analysis of rice environments in Odisha, India. J. 
Environ. Manage., 31–41 

Henan, T.p.s.g.o., 2010. Henan Yearbook. The People Publisher of Fujian, Zhengzhou. 
Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., Vogelmann, J.E., 2010. 

An automated approach for reconstructing recent forest disturbance history using 
dense Landsat time series stacks. Remote Sens. Environ. 114, 183–198. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Over-
view of the radiometric and biophysical performance of the MODIS vegetation 
indices. Remote Sens. Environ. 83, 195–213. 

Jain, M., Mondal, P., DeFries, R.S., Small, C., Galford, G.L., 2013. Mapping cropping 
intensity of smallholder farms: a comparison of methods using multiple sensors. 
Remote Sens. Environ. 134, 210–223. 

Jeong, S.-J., Ho, C.-H., Gim, H.-J., Brown, M.E., 2011. Phenology shifts at start vs. 
end of growing season in temperate vegetation over the Northern Hemisphere for 
the period 1982–2008. Glob. Change Biol. 17, 2385–2399. 

Jia, K., Wu, B., Li, Q., 2013. Crop classification using HJ satellite multispectral data in 
the North China Plain. J. Appl. Remote Sens. 7, 073576-073571-073512. 

Kennedy, R.E., Cohen, W.B., Schroeder, T.A., 2007. Trajectory-based change detec-
tion for automated characterization of forest disturbance dynamics. Remote Sens. 
Environ. 110, 370–386. 

Kuemmerle, T., Erb, K., Meyfroidt, P., Müller, D., Verburg, P.H., Estel, S., Haberl, H., 
Hostert, P., Jepsen, M.R., Kastner, T., Levers, C., Lindner, M., Plutzar, C., Verkerk, 
P.J., van der Zanden, E.H., Reenberg, A., 2013. Challenges and opportunities in 
mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5, 484–493. 

Liu, J.H., Zhu, W., Cui, X., 2012. A Shape-matching Cropping Index (CI) mapping 
method to determine agricultural cropland intensities in China using MODIS time-
series data. Photogramm. Eng. Remote Sens. 78, 829–837. 

Lunetta, R.S., Shao, Y., Ediriwickrema, J., Lyon, J.G., 2010. Monitoring agricultural 
cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI 
data. Int. J. Appl. Earth Observ. Geoinf. 12, 81–88. 

Lv, T., Liu, C., 2010. Study on extraction of crop information using time-series MO-
DIS data in the Chao Phraya Basin of Thailand. Adv. Space Res. 45, 775–784. 

Maletzke, A.G., Lee, H.D., Enrique, G., Batista, A.P.A., Coy, C.S.R., Fagundes, J.J., 
Chung, W.F., 2014. Time series classification with Motifs and characteristics. In: 
Espin, R., Pérez, R.B., Cobo, A., Marx, J., Valdés, A.R. (Eds.), Soft Computing 
for Business Intelligence. Springer, pp. 125–138. 

Matson, P.A., Parton, W.J., Power, A., Swift, M., 1997. Agricultural intensification and 
ecosystem properties. Science 277, 504–509. 

Nguyen, T.T.H., De Bie, C., Ali, A., Smaling, E.M.A., Chu, T.H., 2012. Mapping the 
irrigated rice cropping patterns of the Mekong delta, Vietnam, through hypertem-
poral SPOT NDVI image analysis. Int. J. Remote Sens. 33, 415–434. 

Peng, D., Huete, A.R., Huang, J., Wang, F., Sun, H., 2011. Detection and estimation 
of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Ob-
serv. Geoinf. 13, 13–23. 

Pouliot, D., Latifovic, R., Zabcic, N., Guindon, L., Olthof, I., 2014. Development and 
assessment of a 250 m spatial resolution MODIS annual land cover time series 
(2000–2011) for the forest region of Canada derived from change-based updat-
ing. Remote Sens. Environ. 140, 731–743. 

Qiu, B., Feng, M., Tang, Z., 2016. A simple smoother based on continuous wavelet 
transform: comparative evaluation based on the fidelity, smoothness and effi-
ciency in phenological estimation. Int. J. Appl. Earth Observ. Geoinf. 47, 91– 101. 

Qiu, B.W., Fan, Z.L., Zhong, M., Tang, Z.H., Chen, C.C., 2014a. A new approach for 
crop identification with wavelet variance and JM distance. Environ. Monit. As-
sess. 186, 7929–7940. 

Qiu, B.W., Zeng, C.Y., Tang, Z.H., Li, W.J., Hirsh, A., 2013a. Identifying scale-lo-
cation specific control on vegetation distribution in mountain-hill region. J. Mt. 
Sci.- Engl. 10, 541–552. 

Qiu, B.W., Zhong, M., Tang, Z.H., Chen, C.C., 2013b. Spatiotemporal variability of 
vegetation phenology with reference to altitude and climate in the subtropical 
mountain and hill region, China. Chin. Sci. Bull. 58, 2883–2892. 

Qiu, B.W., Zhong, M., Tang, Z.H., Wang, C.Y., 2014b. A new methodology to map 
double-cropping croplands based on continuous wavelet transform. Int. J. Appl. 
Earth Observ. Geoinf. 26, 97–104. 

Quin, G., Pinel-Puyssegur, B., Nicolas, J.-M., Loreaux, P., 2014. MIMOSA: an au-
tomatic change detection method for SAR time series. IEEE Trans. Geosci. Re-
mote Sens. 

Ray, D.K., Foley, J.A., 2013. Increasing global crop harvest frequency: recent trends 
and future directions. Environ. Res. Lett. 8, 44041–44050. 

Sakamoto, T., Van Nguyen, N., Ohno, H., Ishitsuka, N., Yokozawa, M., 2006. Spa-
tiotemporal distribution of rice phenology and cropping systems in the Mekong 
Delta with special reference to the seasonal water flow of the Mekong and Bas-
sac rivers. Remote Sens. Environ. 100, 1–16. 

Sakamoto, T., Van Phung, C., Kotera, A., Nguyen, K.D., Yokozawa, M., 2009. Anal-
ysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a 
coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. 
Landscape Urban Plann. 92, 34–46. 

Setiawan, Y., Rustiadi, E., Yoshino, K., Effendi, H., 2014a. Assessing the seasonal dy-
namics of the Java’s Paddy field Using MODIS satellite images. ISPRS Int. J. 
Geo-Inf. 3, 110–129. 

Setiawan, Y., Yoshino, K., Prasetyo, L.B., 2014b. Characterizing the dynamics change 
of vegetation cover on tropical forestlands using 250 m multi-temporal MODIS 
EVI. Int. J. Appl. Earth Observ. Geoinf. 26, 132–144. 

Siebert, S., Ewert, F., 2012. Spatio-temporal patterns of phenological development in 
Germany in relation to temperature and day length. Agric. For. Meteorol. 152, 
44–57. 

Stueve, K.M., Housman, I.W., Zimmerman, P.L., Nelson, M.D., Webb, J.B., Perry, 
C.H., Chastain, R.A., Gormanson, D.D., Huang, C., Healey, S.P., Cohen, W.B., 
2011. Snow-covered Landsat time series stacks improve automated distur-
bance mapping accuracy in forested landscapes. Remote Sens. Environ. 115, 
3203– 3219. 

Terletzky, P., Ramsey, R.D., 2014. A semi-automated single day image differencing 
technique to identify animals in aerial imagery. PLoS One 9, e85239. 

Thenkabail, P.S., Wu, Z., 2012. An automated cropland classification algorithm 
(ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Re-
mote Sens. 4, 2890–2918. 

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am. Me-
teorol. Soc. 79, 61–78. 

Tseng, Y.-H., Wang, C.-K., Chu, H.-J., Hung, Y.-C., 2015. Waveform-based point cloud 
classification in land-cover identification. Int. J. Appl. Earth Observ. Geoinf. 34, 
78–88. 

Waldner, F., Canto, G.S., Defourny, P., 2015. Automated annual cropland mapping 
using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 
110, 1–13. 

Wardlow, B.D., Egbert, S.L., Kastens, J.H., 2007. Analysis of time-series MODIS 250 
m vegetation index data for crop classification in the US Central Great Plains. Re-
mote Sens. Environ. 108, 290–310. 

Wu, Z., Thenkabail, P.S., Verdin, J.P., 2014. Automated Cropland Classification Algo-
rithm (ACCA) for California using multi-sensor remote sensing. Photogramm. 
Eng. Remote Sens. 80, 81–90. 

Yan, L., Roy, D.P., 2014. Automated crop field extraction from multi-temporal Web 
Enabled Landsat Data. Remote Sens. Environ. 144, 42–64. 

Zhang, J., Pu, R., Loraamm, R.W., Yang, G., Wang, J., 2014. Comparison between 
wavelet spectral features and conventional spectral features in detecting yellow 
rust for winter wheat. Comput. Electron. Agric. 100, 79–87. 

Zhang, M., Zhou, Q., Chen, Z., Liu, J., Zhou, Y., Cai, C., 2008. Crop discrimination 
in Northern China with double cropping systems using Fourier analysis of time-
series MODIS data. Int. J. Appl. Earth Observ. Geoinf. 10, 476–485. 


