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The efficiency of construction operations is typically determined by comparing 

actual versus historical productivity. This practice is accurate if historical data reflects 

optimal values. Otherwise, this comparison is a gauge of relative rather than absolute 

efficiency. Therefore, in order to determine absolute efficiency, one must compare actual 

versus optimal productivity. Optimal productivity is the highest sustainable productivity 

level achievable under “good management” and “typical field conditions,” while the 

productivity frontier is the theoretical maximum achievable under “perfect conditions.” 

The productivity frontier is an abstraction useful in the estimation of optimal 

productivity of construction operations. This research contributes to the body of 

knowledge by introducing a novel framework to estimate the labor productivity frontier 

and applying it in a pilot study and a detailed study on the installation of lighting fixtures 

and the fabrication of sheet metal ducts activities. 

The pilot study analyzed data on the fluorescent bulb replacement task up to the 

action level, collected from a school in Omaha, Nebraska to estimate the labor 

productivity frontier. Following two approaches–observed durations and estimated 

durations–the productivity frontier computed from this pilot study was found to be 22.32 

stations per hour. The detailed study analyzed both action and movement levels by 



collecting data from a workshop at a mechanical specialty constructor in Omaha, 

Nebraska. The pilot study only analyzed the sequential actions of a single worker. The 

detailed study analyzed the sequential and parallel actions and movements of crews of 

multiple workers involved in the fabrication activity. The productivity frontier for this 

activity computed from the detailed study, following both observed durations and 

estimated durations, was found to be 2.83 ducts per crew-hour. 

Moreover, this research explores advanced automated frameworks using video 

cameras and a Kinect sensor in order to estimate the labor productivity frontier. One of 

the advantages of the proposed framework is that constructors, rather than being 

constrained by historical data, can also estimate the productivity frontier for activities 

they have never performed. Furthermore, scopes of this research–such as virtual 

environment development, recombinant synthetic workers development, and ergonomics 

and safety analysis–are also discussed. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

The construction industry is considered one of the largest industries in the USA 

with the involvement of over 7.3 million workers and generating more than $1.73 trillion 

in annual revenue (Statistic Brain, 2015). As many construction operations are labor-

intensive, the question of labor productivity becomes paramount especially as higher 

productivity levels typically translate into superior profitability, competitiveness, and 

income (Rojas & Aramvareekul, 2003). Labor productivity is becoming the prime factor 

because labor costs generally account for 30% to 50% of overall project costs in 

construction (Harmon & Cole, 2006). Unfortunately, the lack of reliable means for 

evaluating the efficiency of labor-intensive construction operations makes it more 

difficult for the construction industry to improve productivity and ensure a more effective 

development of the vital infrastructure that society demands, creating a problem that 

Drucker (1993) succinctly articulated: “if you can’t measure it, you can’t manage it.” 

A project manager generally compares actual with historical productivity for 

equivalent operations in order to evaluate the efficiency of labor-intensive construction 

operations. But, this approach of examining productivity only provides a relative 

benchmark for efficiency. There is currently no systematic approach for measuring and 

estimating labor productivity (Song & AbouRizk, 2008). The operation may not be 

efficient even though the actual productivity equals average historical productivity 

because the operation’s efficiency may be well below optimal productivity. This idea 
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further raises a concern that many factors involved in the processes of construction 

change overtime–productivity cannot be easily judged by the same data or information 

that was documented a decade or more ago (Liberda, Ruwanpura, & Jergeas, 2003).  

The practice of benchmarking against historical averages will be biased and 

inefficient unless a standard methodology is implemented to evaluate productivity against 

an objective standard. This reality calls for an alternative technique to measure labor 

productivity. In an attempt to achieve this objective, this study introduces the terminology 

“labor productivity frontier” and develops a framework to estimate it. The labor 

productivity frontier is defined as the theoretical maximum productivity that could be 

achieved under “perfect conditions” (Son & Rojas, 2010). The perfect condition is an 

ideal state where all factors affecting labor productivity are at the most favorable levels, 

such as good weather, optimal utilization of materials and equipment, highly motivated 

and productive workers with flawless artisanship, no interference from other trades, no 

design errors, and precise understanding of the design intent, among others. 

Although the labor productivity frontier is an abstraction that represents a 

production level not achievable in actual practice, it proves helpful in analyzing project 

conditions. The concept of productivity frontier can be used as an absolute benchmark 

because it provides a significant input value in order to estimate optimal productivity. 

Optimal productivity is defined as the highest sustainable productivity achievable in the 

field under good management and typical field conditions (Son & Rojas, 2010). By 

comparing actual versus optimal productivity, absolute (unbiased) efficiency can be 

calculated. 
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Several studies have been conducted regarding labor productivity, optimal 

productivity, and overall productivity (Rojas & Aramvareekul, 2003; Son & Rojas, 2010; 

Thomas & Sakarcan, 1994). However, there has been no research conducted regarding 

the estimation of the labor productivity frontier. This dissertation first introduces the 

proposed framework for estimating the labor productivity frontier, its underlying theory, 

and the methodology necessary for successful implementation. In turn, the estimation of 

the labor productivity frontier is the first significant step toward developing a process that 

will allow project managers to determine the efficiency of their labor-intensive 

operations. 

 

1.2 Theoretical Framework 

Figure 1.1 graphically depicts the relationships among several basic labor 

productivity concepts. The productivity achieved in the field is termed “actual 

productivity,” whereas the level achievable under good management in sustainable 

manner and typical field conditions is called “optimal productivity.” The difference 

between optimal and actual productivity is the operational inefficiency. Poor sequencing 

of activities, inadequate equipment or tools, mismatch between skills and task 

complexity, excessive overtime, and poor lighting conditions are examples of factors that 

may combine to form the operational inefficiency. Operational inefficiency can be 

minimized by project managers through pre-evaluation of risk factors and by exhibiting 

unbiased attitude while adopting explicit and systematic methods (Son & Rojas, 2010). 

However, there are also factors that affect productivity which are not under the control of 

project managers, such as high temperatures, high humidity, rainfall, and workers’ poor 
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health conditions. The collective effect of these factors constitutes the system 

inefficiency. If both operational and system inefficiencies are eliminated, then a 

theoretical maximum productivity could be achieved. The ideal theoretical maximum 

productivity achievable under “perfect conditions” is termed as “productivity frontier” 

(Son & Rojas, 2010). The productivity frontier is to be estimated once a construction 

activity has achieved its steady state phase (i.e. once the learning phase is over and 

productivity has leveled out). The point is shown in Figure 1.1 as time T2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out of all the variables shown in Figure 1.1, only actual productivity can be 

directly measured in the field. Therefore, given this limitation and the theoretical 

framework explained herein, the main challenges involved in the estimation of labor 

productivity frontier in labor-intensive construction operations include: 

• Classifying the activity, tasks, actions, and movements 

Learning Phase Steady State Phase 

Productivity Frontier 

Optimal Productivity 

Actual Productivity 

System Inefficiency 

Operational Inefficiency 

Time T1 T2 

Pr
od

uc
tiv

ity
 o

f a
n 

A
ct
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ity

 

Figure 1.1 : Basic Productivity Dynamics 
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• Identifying the contributory and non-contributory actions 

• Measuring shortest observed and estimated durations to complete an activity 

• Developing the framework to estimate productivity frontier 

 

1.3 Research Objectives 

This study proposes the development of a dual approach for estimating the 

productivity frontier in labor-intensive construction operations. The first approach 

involves the estimation of the productivity frontier by using observed durations from a 

time and motion study. The movements of the workers are captured by multiple 

synchronized video cameras. The actions that make up a particular task are identified 

from the video frames and categorized into contributory and non-contributory actions. 

The best sequences of contributory actions are identified, based on the shortest time taken 

to complete a task or an activity, and used to determine the productivity as the sum of the 

shortest durations for each action. 

Subsequently, the second approach involves the estimation of the productivity 

frontier by using estimated durations on the same time and motion study. The probability 

distributions that best represent action durations are identified, and the productivity 

frontier is defined as the sum of the lowest values from each of the distributions at a 95% 

confidence interval. The highest labor productivity value from these two approaches is 

taken as the best estimate of the productivity frontier. 

Building upon the theory, this research specifically established the following 

objectives: 
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1. Evaluate the feasibility of the proposed framework for estimating labor 

productivity frontier for a specific construction activity involving a single 

worker performing a specific task. 

2. Evaluate the feasibility of the proposed framework for estimating labor 

productivity frontier for entire construction activities involving crews of 

multiple workers performing parallel and sequential works. 

3. Determine the impact of collecting data to the action level of hierarchy in the 

initial phase and to the lowest hierarchical level (i.e., the movement). 

4. Explore automation techniques to facilitate data collection and analysis in 

order to estimate labor productivity frontier. 

5. Explore the application of simulation and visualization techniques (for 

example, animation in preliminary phase) in order to evaluate the work flow 

process of a specific task or activity. 

6. Explore the feasibility of creating recombinant synthetic workers by 

aggregating basic movements. 

 

1.4 Significance of Research 

1. If the proposed framework were found to be scalable, practical, and reliable 

for estimating productivity frontier in complex construction activities, then a 

novel and validated tool would be available to project managers to estimate 

optimal labor productivity as well as to evaluate the efficiency of their 

construction operations. 
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2. If the benefits of collecting movement data for the proposed framework were 

to outpace the costs, then the additional effort required to move beyond the 

action level would be justifiable. 

3. If data collection and analysis of the proposed framework could be automated, 

then the cost of implementation would decrease significantly. 

4. If a simulated and animated construction environment could be developed, 

then it would be helpful to project managers or other laborers to understand 

work flow process of a specific task or activity and also helpful to validate the 

working procedures. 

5. If independent movements could be recombined in a simulated environment to 

create synthetic workers and crews, then the productivity frontier of any 

construction activity could be determined. One of the advantages of the 

proposed framework is that constructors, rather than being constrained by 

historical data, can also estimate the productivity frontier for activities they 

have never performed. 

 

1.5 Research Hypothesis 

1. The proposed framework for estimating labor productivity frontier is 

applicable to complex construction operations with crews of single or multiple 

workers performing both sequential and parallel processes. 

2. The costs of collecting movement data for the proposed framework for 

estimating labor productivity frontier outpace the benefits of moving beyond 

the action level. 
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3. Data analysis and collection activities can be automated for the proposed 

framework for estimating the labor productivity frontier. 

4. The simulated and animated work flow process of an activity and a task is 

applicable to validate the working procedure. 

 

1.6 Dissertation Structure 

This dissertation consists of eight chapters. It is a compilation of documents in a 

single report describing the background of the research, the significance of the research, 

methodology followed to conduct the research, a description about the data acquisition, 

pilot study, detailed study, analytical results obtained from time and motion study, as well 

as probability distribution analysis, formation of models and their validation, and a 

discussion about the limitations of the research as well as recommendations for future 

research. The structure of the dissertation with its components is described briefly as 

follows: 

Chapter 1 Introduction: This chapter consists of problem statement, theoretical 

framework, research objectives, significance of this research, and the research 

hypotheses. 

Chapter 2 Literature Review: This chapter covers the foundation and guidelines of 

research. It discusses background of labor productivity by reviewing previously 

published papers and books, before analyzing the labor productivity frontier, such as 

existing definitions of labor productivity, labor productivity benchmarking and metrics, 

critical analysis of various methodologies implemented to evaluate performance of 



9 
 
construction activities, existing techniques to estimate labor productivity, and identified 

impediments to the achievement of high productivity levels.  

Chapter 3 Research Methodology: This chapter first defines the theoretical 

underpinnings of the proposed framework to achieve research objectives. Then it 

thoroughly describes each step of the basic framework of this research, history of data 

collection, and statistical background. Moreover, it briefly discusses advanced framework 

to estimate the labor productivity frontier. 

Chapter 4 Pilot Study: The preliminary study (pilot study) results appear in this 

chapter. The pilot study is conducted in order to determine the feasibility of proposed 

manual framework while estimating the labor productivity frontier considering a simple 

electrical bulb replacement task performed by a single worker. This chapter includes field 

data collection, data analysis, action identification, action classification, model 

development, model validation, and productivity frontier estimation following two 

approaches: observed duration and estimated duration. Finally, limitations of this 

research are also discussed in this chapter. 

Chapter 5 Detailed Study: The detailed study describes extended research on 

labor-intensive manufacturing operations during fabrication of sheet metal duct at a 

workshop of the Waldinger Corporation in Omaha, Nebraska. The evaluation of the 

feasibility of the proposed basic framework (manual framework) for estimating labor 

productivity frontier is conducted for the entire manufacturing activity involving crews of 

multiple workers performing parallel and sequential works. The reason behind selection 

of this activity, working environment, video data collection, data extraction, data 

analysis, action and movement identification and classification, observed and estimated 
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durations determination, labor productivity frontier estimation, comparison between 

performance of multiple crews on the specific task, comparison between hierarchical 

action and movement levels analysis, and limitations of this research are also discussed in 

this chapter.  

Chapter 6 Conceptual Exploration of an Automated Framework: As basic 

framework (manual framework) to estimating labor productivity frontier is more time 

consuming and laborious, this chapter explains an exploration of an automated advanced 

framework with its scope in the construction engineering and management domain. It 

explains two separate frameworks: (a) using multiple video cameras and (b) using a 

Kinect sensor during data collection stage. Various stages involved in this automated 

framework–such as workers pose modeling and tracking, action identification and 

classification, database development, model development and validation, and 

productivity frontier estimation–are discussed in this chapter. Moreover, limitations of 

this framework and possible obstacles are also discussed in this chapter.  

Chapter 7 Conclusions and Recommendations: This chapter discusses a 

comparison between the pilot study and the detailed study. Conclusions and limitations of 

the research are discussed in this section. In addition, potential research areas are also 

recommended in this section. 

Chapter 8 Future Research: This section introduces new terminology, 

“recombinant synthetic workers,” and discusses its possible applications with a brief 

explanation about virtual environments in construction engineering and management 

domain. The usability of the labor productivity frontier for estimating optimal 

productivity is also discussed briefly in this chapter.  



11 
 

CHAPTER 2 

LITERATURE REVIEW 

 

Productivity is generally defined as the ratio of output to input (Rojas & 

Aramvareekul, 2003). It is one of the most frequently discussed topics in the construction 

industry because of its importance to profitability. The Construction Industry Institute 

(2006) mentioned that productivity is one of the most frequently used performance 

indicators to assess the success of a construction project because it is the most crucial and 

flexible resource used in such assessments. 

As many of the operations within the construction industry are decidedly labor-

intensive, labor productivity is considered one of the best indicators of production 

efficiency (Maloney, 1982; Rojas & Aramvareekul, 2003). It is gaining increasing 

attention in construction as the industry faces multiple problems related to its workforce 

(Allmon, Borcherding, & Goodrum, 2000; Rojas & Aramvareekul, 2003; Teicholz, 

2001). Moreover, labor productivity is a fundamental piece of information for estimating 

and scheduling a construction project (Song & AbouRizk, 2008) and becomes a prime 

factor because labor costs generally cover 30% to 50% of overall project costs in 

construction (Harmon & Cole, 2006). 

 

2.1 Labor Productivity 

Labor productivity can be defined as the ratio of output to input in the sense that 

output is usually measured by the production level such as number of columns poured or 

number of cubic yards of soil moved, while input is usually measured in units of time, 
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such as labor hours or labor days. In the construction engineering and management 

domain, productivity is usually taken to mean labor productivity, which means units of 

work placed or produced per labor-hour. However, the inverse of labor productivity, 

labor-hours per unit (unit rate), is also commonly used (Halligan, Demsetz, Brown, & 

Pace, 1994). 

In the manufacturing domain, labor productivity is defined as a measurement of 

economic growth of a country. It measures amount of products manufactured within an 

hour by labor. The U.S. Department of Labor defined labor productivity as the real output 

in national currency per hour worked. Bureau of Labor Statistics (BLS) measures labor 

productivity based on three basic measures–output, total labor hours, and total 

compensation (BLS, 2012). The output measures are real value added, and total labor 

hours refer to hours worked by all employees. The total compensation includes employer 

expenditure for direct pay, employer social security expenditure, and labor-related taxes 

and subsidies (BLS, 2012). 

In the mining domain, the study of productivity in the bituminous coal mining 

industry became important at the macro or industry-wide level because: (a) productivity 

is important because of its relationship to the price of the energy resource, and (b) 

productivity is the key element in forecasting changes in labor demand in the industry as 

a whole and for specific areas to be impacted by regional shifts of production (Hannah, 

1981). Labor productivity is generally defined as an average product of labor and 

expressed as the coal output (in tons) for physical units of labor input (in hours worked) 

(Hannah, 1981). It is simply measured by value added per hour worked (Topp, Soames, 

Parham, & Bloch, 2008). 
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In the agriculture domain, labor productivity is measured based on the agricultural 

output per labor force or worker (Lee, Craig, & Weiss, 1993; Shafi, 1984). As labor 

productivity indices in the agricultural sector are generally used for the description of 

economic performance, Dorward (2013) proposed an indicator relevant to agricultural 

workers for agricultural development and its wider contribution to the economics, terms 

as “Cereal Equivalent Productivity of Agricultural Labor (CEPAL).” It is defined as the 

ratio of the agricultural value added to the product of agricultural workers and cereal 

prices. When measuring labor productivity in the USA, the labor productivity in non-

agriculture is considered higher than in agriculture, which creates a condition of “labor 

productivity gap” and is defined as the ratio of labor productivity in agriculture and non-

agriculture (Herrendorf & Schoellman, 2011). 

Several research projects were conducted regarding “production frontier” in the 

agricultural domain. The production frontier is considered as a bounding function and is 

defined as the maximum output obtained from a given set of inputs (Coelli, 1995; 

Kumbhakar, Ghosh, & McGuckin, 1991) in which cost function acts as an input 

parameter and profit function acts as an output parameter. The lower the cost function 

and the higher the profit function means the production frontier is higher (Coelli, 1995). 

The production frontier provides information regarding technologies that are used by the 

best performing firms and best practice technology against which the efficiency of the 

firm is measured (Coelli, 1995). 
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2.2 Existing Definitions of Productivity and Labor Productivity 

There is no standard definition of productivity because each business defines it 

differently (Park, Thomas, & Tucker, 2005). However, productivity is defined in many 

ways because different measures of productivity serve different purposes. It is broadly 

defined as a terminology for the measurement of the effectiveness on employing the 

management skills, workers, materials, equipment, tools, and working space in order to 

produce a finished building, plant, structure, or other fixed facility at the lowest feasible 

cost (Liu & Song, 2005; Oglesby, Parker, & Howell, 1989). 

Total factor productivity and partial factor productivity are two measures of 

construction productivity discussed by Talhouni (1990) and Rakhra (1991). Total factor 

productivity deals with the outputs and all inputs, whereas partial factor productivity 

deals with outputs and single or selected inputs. Thomas et al. (1990) defined 

productivity in terms of the total factor productivity, which is usually adopted by the 

Department of Commerce, Congress, and other governmental agencies as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑇𝑇𝑇𝑇𝑇𝑇) =

=
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑟𝑟 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
… … … (2.1) 

In an economic model, total factor productivity is measured in terms of dollars 

because dollars are the only measure common to both inputs and outputs (Thomas et al., 

1990). 

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

… … … (2.2) 

Based on requirement, productivity is defined differently. The Federal Highway 

Administration defines it as (Thomas et al., 1990): 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤
… … … (2.3) 

In an economic model, productivity is defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
… … … (2.4) 

Since labor is the dominant input in the labor-intensive construction operation, 

construction productivity is primarily dependent on human effort and performance 

(Jarkas, 2010). Thus, the definition of productivity is modified in terms of labor as an 

input as per requirement.  

In general, productivity is measured in three different levels (Chapman & Butry, 

2008): task or activity level (deals with specific construction activities), project level 

(deals with construction of a new facility or renovation of an existing facility), and 

industry level (deals with total portfolio of the projects). Based on these levels of studies, 

three different productivity measurement models are determined, which are: (a) 

multifactor productivity model, (b) project-specific model, and (c) activity-oriented 

model (Liu & Song, 2005). According to the multifactor productivity model, productivity 

is defined as the ratio between total outputs and total inputs and is generally applicable to 

evaluate the efficiency of use of resources in the construction industry level (Liu & Song, 

2005).  

The project specific model defines productivity as the ratio between the outputs 

expressed in a physical unit and inputs expressed in labor, equipment, and materials 

(Thomas et al., 1990) as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
… … … (2.5) 
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This approach is adopted by governmental agencies or private sectors for 

conceptual estimates on individual projects. The designers use historical productivity data 

in order to estimate and design the specific project. In an economic model, the 

productivity is defined as (Thomas et al., 1990): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
… … … (2.6) 

In an activity-oriented model, the productivity is generally expressed in units of 

output per labor cost (in dollar) or per work-hour (Thomas & Kramer, 1987). The 

productivity at the activity level is frequently referred to as labor productivity because 

construction activities are generally labor intensive and measure the input as labor hours 

or labor cost and output as installed quantities (Thomas & Mathews, 1985), as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
… … … (2.7) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
… … … (2.8) 

If there are various related activities, such as formwork, steel reinforcement, and 

concrete placement, then those are combined following the earned-value concept 

(Thomas et al., 1990). Some constructors use the performance factor in order to measure 

the productivity as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
… … … (2.9) 

In other words, labor productivity is expressed as the ratio of physical output to 

work-hours, in which the productivity ratio is measured as the ratio of actual work-hours 

to the estimated work-hours (GoodRum, Zhai, & Yasin, 2009). The actual work-hours is 

collected from the field, and estimated work-hours (also called earned work-hours) is 
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calculated based on the quantity of a task and productivity performance provided by 

construction estimation manuals or a company’s productivity databases. Performance 

factor is a ratio rather than absolute value, which makes it possible to compare across 

different projects or companies, and the impact of unique project characteristics is 

adjusted. 

The Construction Management Research Unit at Dundee University measures 

labor productivity in three different approaches (Horner & Talhouni, 1998). The first 

approach deals with total time, also called total paid time (input). The second approach 

deals with available time, estimated as total time minus unavoidable delays, meal breaks, 

and weather. The third approach deals with the productive time, which is obtained by 

subtracting avoidable delays from available time. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
… … … (2.10) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
… … … (2.11) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
… … … (2.12) 

In existing practice, hourly outputs are widely used to measure labor productivity 

in construction research (Hanna, Chang, Sullivan, & Lackney, 2008; Sonmez & Rowings, 

1998; Thomas & Yiakoumis, 1987), considering a labor hour as the input unit and the 

physical quantity of the completed work as the output. This implies that the labor 

productivity consists of the number of actual work-hours required to perform the 

appropriate units of work. Moreover, defining the term “hours” as the hours actually 

worked, the labor productivity in the U.S. is defined by the BLS (2006), as real output per 



18 
 
hour worked. This approach excludes vacation, holidays, and sick leave, but includes 

paid and unpaid overtime. 

According to Eastman and Sacks (2008), this approach of measurement of labor 

productivity by hourly output avoids many external factors that cause cost variance when 

comparing with cost-based output measures. This implies that the hourly output is the 

most reliable approach for the measurement of productivity for construction activities (Yi 

& Chan, 2014). Thus, based on the simple input and output concept, labor productivity 

for construction operational activities is defined by: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑦𝑦
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=  
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ℎ𝑜𝑜𝑜𝑜𝑜𝑜
… … … (2.13)  

 

2.3 Labor Productivity as Gauging Construction Process Efficiency 

On the basis of construction activity, the unit of measurement may vary while 

measuring productivity at the project level. For example, Yi and Chan (2014) found the 

average production rate for pouring columns lower than that for pouring walls because of 

job characteristics. The labor productivity is a measure of work process efficiency, which 

is defined as the ratio of the value labor produced to the value invested in labor. Thus, the 

American Association of Cost Engineers (AACE) (2011) defines productivity as a 

“relative measure of labor efficiency, either good or bad, when compared to an 

established base or norm” (p. 27). Moreover, this relative measure creates great difficulty 

in tracing it as an absolute value over time, and there is a possibility of gathering 

information on the movements of the established base or benchmark values (Allmon et 

al., 2000). In an attempt to overcome such a condition, labor productivity is redefined as 
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a ratio of actual over expected productivity. The performance ratio is thus, defined for, 

“m” activity in project and “i” workday under consideration (Yi & Chan, 2014), as 

follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
… … … (2.14) 

The expected productivity is determined from the work-hours and quantities 

installed on days when no changes or rework, disruptions, or bad weather were reported. 

The performance ratio is a dimension-less measure that is determined by dividing actual 

productivity by baseline productivity. It defines a basis for comparing productivity data 

for different job types, eliminating the differences between production rate levels (Yi & 

Chan, 2014). The main feature of this approach is that the progress of work is based on 

the installed work, not the work hours consumed, and progress and performance can be 

determined regardless of the type of work performed.  

In order to gauge construction process efficiency, benchmarking is necessary to 

compare observed value with the standard value (Bernold & AbouRizk, 2010). There are 

some process indicators to measure efficiency of construction operations. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
… … … (2.15) 

𝑂𝑂𝑂𝑂, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
… … … (2.16) 

 

2.4 Productivity Benchmarking 

Benchmarking is an important continuous improvement process that enables 

companies to enhance their performance by identifying, adapting, and implementing the 

best practice identified within a participating group of companies (CBPP, 2002; CII, 
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2002; Knuf, 2001; Smith, 1997). It is generally defined as a systematic and continuous 

measuring process comparing the output of one organization to the output of another 

organization anywhere in the world to acquire information that will help the organization 

to take action to improve its performance (Bernold & AbouRizk, 2010; Idiake & Bala, 

2012; Thomas & Sudhakumar, 2013). In short, comparison and improvement are the keys 

behind the process of benchmarking for any topic. 

According to Thomas (2012), the labor productivity benchmarking study can be 

conducted by using three key performance indicators–productivity variability, baseline 

productivity, and project waste index (PWI). Baseline productivity is generally calculated 

implementing Thomas’s (2000) baseline productivity method. But, there are several 

methods to calculate baseline productivity, such as Thomas’s Baseline Productivity 

Method (Thomas, Riley, & Sanvido, 1999), Measured Mile Analysis (Ibbs & Liu, 2005; 

Zink, 1986), Control Chart Method (Gulezian & Samelian, 2003), Data Envelopment 

Analysis (DEA) Method (Lin & Huang, 2010), and K-Means Clustering Method (Ibbs & 

Liu, 2005). Measured Mile Analysis gives “productivity factor” by comparing the 

cumulative actual work-hours with the earned work-hours. Considering baseline 

productivity as a norm level, a productivity control chart is developed with a center line 

and control limits, in which the center line value gives the arithmetic mean of the daily 

labor productivity and the control limits are represented by plotting with three standard 

deviations of the labor productivity population from the center line (Gulezian & 

Samelian, 2003). 

Baseline productivity is considered as the best productivity when there are no or 

few disruptions that adversely affect labor productivity (Thomas, 2000). Thomas’s 
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baseline productivity is determined with respect to 10% of the total workdays that have 

the highest daily output or production, the number of days in the baseline set being not 

less than five (Thomas & Zavrski, 1999). Since this baseline productivity is subjective in 

nature, it cannot be verified that 10% of the whole daily productivity is a reasonable or 

well-accepted percentage to represent the best performance a contractor could achieve 

(Ibbs & Liu, 2005). 

According to Ibbs and Liu (2005): 

Every project is different. This 10% sample is presumably 10% of the time 

that similar work is being performed, not 10% of the total project, which 

may consist of a series of quite dissimilar work categories. However, 

Thomas (2000) is unclear on this. This procedure selects contents of the 

baseline subset as n workdays that have the highest daily production or 

output. Daily output might be maximized by crew size. Therefore, certain 

days could be selected as the baseline, which are not truly indicative of the 

achieved productivity (p. 1251). 

In order to overcome this weakness, Ibbs and Liu (2005) presented K-Means 

Clustering Methods for baseline productivity calculation. Meanwhile, data envelopment 

analysis (DEA) was introduced by Lin and Huang (2010) for deriving baseline 

productivity, which compared with the other four baseline productivity deriving 

methods–measured mile baseline, Thomas baseline, control chart baseline, and K-means 

clustering. This DEA method was found to be the best method in terms of objectivity, 

effectiveness, and consistency to find baseline productivity that represents the best 

performance a contractor can possibly achieve. This DEA method was capable of 
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deriving productivity of multi-input and multi-output activities, and able to raise the scale 

of labor productivity from the level of single factor productivity to total factor 

productivity. 

Variability in productivity is a determinant of performance of a construction 

project. Poorly performing projects exhibit higher variability in productivity when 

compared to projects that perform well (Thomas & Sudhakumar, 2013). The project 

waste index (PWI) or the project management index (PMI) is a dimensionless measure of 

the amount of labor waste associated with an activity/project (Thomas & Sudhakumar, 

2013). If the data are not affected by the work environment and are affected primarily by 

the work content or design complexity, the project parameter has limited usefulness 

unless it can be compared to similar parameters computed from other projects or other 

activities on the same project, which demands the condition for PMI (Thomas, 2000). A 

lower value of PWI indicates better performance of the project. The value of PMI should 

not be a negative. 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
… … … (2.17) 

Where, cumulative productivity is defined as a ratio of combination of all the 

work hours charged to an activity to the total quantities installed to date. This approach 

predicts the final productivity rate upon completion of the activity and shows how the 

work is progressing as a whole (Thomas, 2000). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
… … … (2.18) 

Meanwhile, the concept of measured mile is also applicable for a continuous 

period of time when the labor productivity is unimpacted, which compares the impacted 
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period with the unimpacted periods if both have the same resources and are from the 

same project, but have different working conditions and are impacted due to the owner 

(Thomas, 2010). 

Moreover, while considering a variety of work in a single workday by the crew, 

there can be problems in analyzing the performance (Thomas, 2000). For example, a 

concrete formwork crew works on wall formwork, column, and slab formwork 

simultaneously; a sheet metal crew erects several sizes of ducts plus louvers, dampers, 

and vents. During this condition, a weighted average approach is used to combine the 

quantities into an equivalent amount of one type or size unit (called the standard item). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 =
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗
… … … (2.19) 

Where, i is the item number and j is the manual number 

 

2.5 Productivity Metrics 

Metrics are essential terminologies while determining productivity benchmarking. 

Metrics are defined as standards of measurement to provide assessment of the 

measurement of efficiency, performance, progress, or quality of a plan, process, or 

product. Cost, schedule, safety, changes, and rework are performance metrics for 

construction activities (Park et al., 2005). The CII benchmarking research has revealed 

that construction performance has been impacted by best practice use (CII, 2002). Park et 

al. (2005) described the construction productivity metrics for seven categories, which are 

concrete, structural steel, electrical, piping, instrumentation, equipment, and insulation. 

Moreover, labor and equipment productivity metrics are also key factors for the 
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improvement of construction productivity. R.S. Means (2009) and the CII (2003) 

published task level metrics. Most task-level metrics are single factor measures and focus 

on labor productivity (Huang, Chapman, & Butry, 2009). Huang et al. (2009) stated that 

“CII fixes the output (e.g. cubic yards of concrete put in place) and measures the labor 

hours required to produce that output” (p. 32). If labor and equipment both come under 

productivity estimation, this measure is termed multifactor productivity. 

There are many factors that affect construction labor productivity, such as mental 

fatigue, physical fatigue, stress fatigue, boredom, overtime, morale and attitude, stacking 

of trades, joint occupancy, beneficial occupancy, concurrent operations, absenteeism and 

turnover, mobilize/demobilize, errors and omissions, start/stop, reassignment of 

manpower, late crew build-up, crew size inefficiency, site access, logistics, security 

check, learning curve, ripple effect, confined space, hazardous work area, dilution of 

supervision, holidays, shorter daylight hours, weather and season changes, rain, shift 

work, working in operating area, over-manning, tool and equipment shortage, area 

practices, proximity of work, alternating, staggered, and rotating work schedules 

(Borcherding & Garner, 1981; Intergraph, 2012; Oglesby et al., 1989). The typical labor 

factors that affect labor productivity can be considered while developing labor 

productivity metrics. Thus, the labor productivity metrics are determined based on type of 

activity or task, output, and input functions. 

There are key performance indicators (KPI) for overall labor effectiveness (OLE) 

that measures the utilization, performance, and quality of the workforce and its impact on 

productivity (Takim & Akintoye, 2002). It allows managers to make operational 

decisions by giving them the ability to analyze the cumulative effect of these three 
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workforce factors on productivity output, while considering the impact of both direct and 

indirect labor. It supports lean and sigma methodologies and applies them to workforce 

processes, allowing managers to make labor-related activities more efficient, repeatable, 

and impactful.  

However, there are not sufficient materials available to illustrate the labor 

productivity metrics because those metrics are identified and quantified based on project 

characteristics and requirements. For example, when the labor productivity is measured 

in terms of physical output for labor cost as an input parameter, the output per labor cost 

can be considered as one labor productivity metric. Similarly, if time is a major function 

during evaluation of labor productivity, then output per labor work-hour can be 

considered as another example of labor productivity metrics. Thus, number of laborers 

employed, labor working hours, and labor costs are the main elements of labor 

productivity metrics. In reality, labor and equipment generally come together during 

analysis of productivity of construction operations. But, there are differences in labor and 

equipment productivity metrics in the sense of understanding, which are discussed in the 

following section. 

 

2.5.1 Labor and Equipment Productivity Metrics 

There are various factors that significantly influence equipment productivity. 

Based on these, equipment productivity metrics are designated. Vorster (2014) 

categorized construction equipment metrics into three broad groups, which are activity 

metrics, input metrics, and output metrics. For simplicity, the difference between labor 

and equipment productivity metrics can be discussed under these broad groups. 
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2.5.1.1 Activity metrics 

These metrics are designated based on involvement of the equipment in the 

construction activity. Deployment, utilization, and net utilization of the equipment are 

three different sub metrics under this activity metric (Vorster, 2014). Deployment of 

equipment is defined as the percentage of time the machine is actually deployed on site 

and required to work relative to the total ownership period. Utilization of equipment is 

quantified by defining it as the percentage of time the machine is actually used relative to 

the time it is on site and able to work. Specifically, it is necessary to estimate the net 

utilization of equipment, which is defined as the percentage of time the machine is 

actually used relative to the time it is deployed on site.  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑇𝑇ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
=

𝑇𝑇
𝐸𝐸

… … … (2.20) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
=  

𝑊𝑊
𝑇𝑇 − 𝐷𝐷

… … … (2.21) 

Labor productivity has a significant contribution in the activity or task level of 

work, generally in the labor-intensive construction operation. But, it is not suitable to 

present labor productivity metrics similar to deployment or utilization activity metrics for 

the equipment. However, it is possible to measure labor mobilization time to site or time 

utilized by labor in actual work completion. 

 

2.5.1.2 Input metrics 

Metrics, which are designated based on input provided to equipment, are called 

input metrics. These are sub classified into labor factor and repair cost. The labor factor is 

the ratio of repair and maintenance labor hours spent on the equipment to the hours 
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worked by the equipment (Vorster, 2014). The repair cost is defined as the direct cost of 

repair parts and labor per hour worked by the equipment.  

Let RMh be the repair and maintenance labor hours spent on the equipment, Rpl 

be the direct cost of repair parts and labor spent on the equipment in the period and W be 

the actual hours the equipment worked during the period. Then, labor factor and repair 

cost are quantified by using the following relations: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅ℎ

𝑊𝑊
… … … (2.22) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑅𝑅𝑅𝑅𝑅𝑅
𝑊𝑊

… … … (2.23) 

Meanwhile, the labor factor presented here for equipment input metrics is due to 

the involvement of labor in operating the equipment. Similarly, in labor productivity 

metrics, equipment factor can be considered. The labor cost may be another input metric 

for labor productivity metrics, which has a significant effect on labor productivity. The 

labor cost metric may be defined as the direct cost spent in labor for actual hours the 

labor worked. 

 

2.5.1.3 Output metrics 

These metrics are designated based on output given by the equipment, which are 

sub classified into availability, down ratio, and reliability (Vorster, 2014). The 

availability is defined as the percentage of time the equipment is able to work relative to 

time on site. The down ratio is defined as the ratio of the equipment’s down duration per 

hour worked by the equipment. The frequency with which the equipment breaks down 
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and disrupts production is termed as reliability. The loss in availability may be due to 

setup time and breakdown of equipment. 

Let T be time the equipment is on site and required to work, D be the time the 

equipment is down and incapable of working when it is required to work, W be the actual 

hours the equipment worked during the period, and V be the number of times a machine 

breaks down and disrupts production. Then, these metrics are quantified by the following 

relations: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇 − 𝐷𝐷

𝑇𝑇
… … … (2.24) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐷𝐷
𝑊𝑊

… … … (2.25) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑉𝑉 𝑥𝑥 100

𝑊𝑊
… … … (2.26) 

Similar to equipment availability, the labor availability hours metric may be 

defined as the ratio of actual time spent to contributory work (total time – time spent in 

non-contributory work) to the total time. Other equipment metrics are not suitable in the 

context of labor productivity metrics. However, the time spent in labor rest may be 

synonymous to the time the equipment is down. 

The performance rate is the quantity produced during the running time versus the 

potential quantity given the designed speed of the equipment. A low performance rate 

reflects speed losses, such as idling, minor stoppages, and reduced speed operation. In the 

context of labor productivity metrics, the performance rate may be simply defined as the 

actual output achieved for labor hours input. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
… … … (2.27) 
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2.6 Research Methodologies to Evaluate Performance of Construction Activities 

For simplicity, the research methodologies for evaluating the performance of 

construction activities are primarily categorized into three broad groups: (a) qualitative, 

(b) quantitative, and (c) mixed-method (combined method) (Panas & Pantouvakis, 2010). 

Furthermore, three major fields or approaches are identified based on each study’s 

research focus, which are archival studies (historical record) approach, empirical 

approach, and simulation approach (Panas & Pantouvakis, 2010). 

 

2.6.1 Qualitative Research Method 

Qualitative research methods focus on discovering, understanding the 

experiences, perspectives, and thoughts of participants that is, qualitative research 

explores meaning, purpose, or reality (Hiatt, 1986). It is usually conducted by allowing a 

detailed exploration of a topic of interest in which information is collected by a 

researcher through case studies, ethnographic work, and interviews.  

A conceptual framework was developed utilizing the historical data and expert 

experience to measure productivity (Crawford & Vogl, 2006). Similar techniques were 

implemented to determine the factors that influence on-site performance (Park, 2006) and 

to formulate construction productivity related to general principles (Thomas & Horman, 

2006).  

The questionnaire surveys technique is implemented while performing qualitative 

empirical research in order to explore the role and significance of specific factors that 

affect productivity. For example, by surveying a variety of project actors, such as owner, 

consultant, and constructor, Rojas and Aramvareekul (2003) determined personal 
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management skills and manpower issues as the two main improvements by focusing 

“people” to the center of focus while conducting research on labor productivity drivers 

and productivity within the US construction industry. Similarly, Chan and Kaka (2007) 

conducted a questionnaire survey combining in-depth interviews by targeting both white-

collar managers and blue-collar workers in order to determine the construction 

productivity factors in the UK. The relative impacts of 83 productivity factors, such as 

behavioral issues, communication skills, project management, and safety, were 

determined by investigating the opinions of the craft workers following a “bottom-up” 

approach (Dai, Goodrum, & Maloney, 2009). 

  

2.6.2 Quantitative Research Method 

The quantitative research method attempts to maximize objectivity, replicability, 

and generalizability of findings and is typically interested in prediction (Harwell, 2011). 

It is frequently described as deductive in nature, in the sense that inferences from tests of 

statistical hypotheses lead to general inferences about characteristics of a population. It 

can also be sub classified based on three approaches: empirical, simulated, and historical 

records (Panas & Pantouvakis, 2010).  

 

2.6.2.1 Historical record approach 

Historical record approach deals with the retrospective study of historical data for 

identifying the critical factors that affect the on-site productivity by implementing the 

quantitative research methodology. This approach is applicable to verify the construction 

management community’s predilection towards the establishment of an objective 
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conception of reality through the application of natural science methods (Panas & 

Pantouvakis, 2010). For example, Song and AbouRizk (2005) developed an empirical 

framework termed as “Quantitative Engineering Project Scope Definition (QEPSD),” in 

order to predict productivity quantitatively based on available historical data. Similarly, 

Graham and Smith (2004) collected historical productivity data regarding the concrete 

supply and on-site delivery. Based on this historical data, they developed a predictive 

model by applying Case Based Reasoning (CBR) principles.  

 

2.6.2.2 Empirical approach 

In this approach, the effects of a pre-selected set of variables or factors on 

productivity are analyzed by developing mathematical models (Panas & Pantouvakis, 

2010). Multiple regression techniques (Thomas, Riley, & Sanvido, 1999), artificial neural 

networks (Schabowicz & Hola, 2007), and quantitative surveys (Ng, Skitmore, Lam, & 

Poon, 2004) are usually implemented in order to assess empirical research for 

quantitative analysis. For example, Thomas et al. (1999) proposed a generic analytical 

framework while determining the impact of weather and materials delivery methods on 

labor-intensive productivity for three steel erection projects. In this study, the differences 

in labor productivity are quantified using the multiple regression technique because 

workdays often have multiple events occurring that are of interest. In general, the 

constant term in the regression model must be defaulted to zero for the model to be valid. 

It demands the conversion factors while performing comparative analyses because the 

data from multiple projects need to be combined or compared together, which requires 

that the work output be the same for all projects (Thomas et al., 1999).  
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2.6.2.3 Simulation approach 

The simulation approach is basically dependent upon knowledge of mathematics, 

probability, and statistics (Panas & Pantouvakis, 2010). The quantitative modeling 

methods, such as probabilistic analysis (Huang & Hsieh, 2005) and stochastic data 

modeling (Rustom & Yahia, 2007) implement the positivist epistemological aspect of a 

simulation’s relationship (Panas & Pantouvakis, 2010). 

Based on the literature, simulation models are classified into general purpose 

simulation platforms and special purpose simulation tools. CYCLONE, 

MicroCYCLONE, STROBOSCOPE, or EZStrobe (Marzouk & Moselhi, 2003; Zhang, 

Hammad, Zayed, Wainer, & Pang, 2007) are categorized into general purpose simulation, 

which are not domain specific and applicable to model any operational scenario 

(Martinez & Ioannou, 1999). SIMPHONY is categorized into a special purpose 

simulation (Mohamed & AbouRizk, 2005). The special purpose simulators are applicable 

to model a project even though the operator is not expert in simulation (Hajjar & 

AbouRizk, 2002). The developed models in both general purpose simulation and special 

purpose simulation studies represent an abstraction of the actual system, isolated from its 

general context when objectivism dominates in simulation research (Panas & 

Pantouvakis, 2010). 

 

2.6.3 Combined Research Method 

Sometimes the research objectives are both qualitative and quantitative in nature. 

In order to address such research objectives, a combined research method is 

implemented, which can bridge the difference in the properties of both qualitative and 
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quantitative methods. This method involves historical record, empirical work, and 

simulation tools while formulating the mathematical models (Panas & Pantouvakis, 

2010).  

 

2.6.3.1 Historical record approach 

The combined method includes unobtrusive research methods, such as document 

analysis, historical data of existing organizations or companies, and a combination of the 

prior statistical regression or artificial neural networks modeling techniques. Song and 

AbouRizk (2008) conducted research by taking the historical database of productivity 

data in order to extract datasets, which were used to train an artificial neural network 

(ANN) and develop productivity models for steel drafting projects. In a similar fashion, 

Thomas and Zarvski (1999) investigated the research by analyzing the historical project 

databases on labor productivity measurement for masonry, concrete formwork, and 

structural steel activities from 42 construction projects and also performed statistical 

analysis to compute specific productivity metrics to identify the best and worst 

performing projects. 

Based on historical company-specific data of construction projects, Mosehli, 

Assem, and El-Rayes (2005) implemented the ANN technique for modeling labor 

intensive operations. Chao (2001) utilized the ANN technique combining it with a 

simulation technique to estimate the cycle time and work zone width of excavators. An 

expert system (WEATHER) was created based on the climatic historical database, 

combining knowledge-based rules and estimating the lost productivity due to rainfall on 

highway construction (El-Rayes & Mosehli, 2001). These developed models were 
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validated with the actual data obtained from different agencies, such as contractor, 

consultant, and public authorities. 

In order to evaluate the significance of the learning curve effects on construction 

operations, Thomas (2009) adopted statistical analysis methods to conduct cause-effect 

analysis on historical cumulative productivity measurements. Doloi (2008) used a 

structured questionnaire to investigate the effect of planning, incentives, and job 

satisfaction on productivity. In an attempt to prioritize the solutions for improving 

productivity in construction projects, questionnaires and the analytical hierarchy process 

(AHP) method was implemented (Doloi, 2008). Based on the existing linear model, 

Hanna, Lotfallah, and Lee (2002) analyzed the effect of the quantitative, qualitative input 

variables, and change orders on labor productivity implemented with an integrated 

method based on regression analysis combined with fuzzy logic. Similar methodology 

was developed by Mohamed and Srinavin (2005) based on statistical regression analysis 

methods while determining the effect of thermal comfort and representing the influence 

of the external environment on productivity of labor intensive operations.  

 

2.6.3.2 Empirical approach 

From the principles of a methodological point of view, there are not substantial 

applications of empirical approaches in the combined research method. The primary 

differences are found in the data elicitation techniques in which questionnaire surveys are 

mainly used instead of meta-data or document analysis (Panas & Pantouvakis, 2010).  

In an empirical research approach, the variety of methods–such as field 

experiments or laboratory tests, controlled experiments, comparative evaluations, and 
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generic productivity measurement models–are implemented in order to develop an 

experimental framework (Panas & Pantouvakis, 2010). Utilizing the concept of statistical 

analysis, Zhao, Zhu, and Lu (2009) evaluated the significance of the thermal environment 

on labor productivity. A benchmark for masonry labor productivity was established based 

on a generic statistical methodology (Enshassi, Mohamed, Mayer, & Abed, 2007), which 

compared actual project data to accepted industry standards. A generic measurement 

model was presented by Hanna, Taylor, and Sullivan (2005) by defining a statistical 

productivity measurement framework based on the comparison of the budgeted work 

hours to the actual work hours spent to reach completion. This framework was helpful to 

investigate the relationship between extended overtime and productivity. Not only 

statistical models but also simulation frameworks have been utilized in defining 

productivity measurement framework for construction activities. For example, Zayed and 

Halpin (2004) applied this approach in pile construction operations, whereas Huang et al. 

(2005) utilized this technique to estimate the productivity of gang formwork operations. 

A continuous observation method, such as time studies (Dunlop & Smith, 2004), 

time-lapse visual techniques (Tam, Tong, & Tse, 2004), and image analysis (Zou & Kim, 

2007), and intermittent observation methods, such as passive observation (Bernold & 

Lee, 2010), application of structured data elicitation protocols, deployment of specialized 

data elicitation instruments, are two different data collection techniques employed during 

research following the empirical approach. When the researcher does not actively 

participate in the data collection process, passive observation is implemented by 

declaring site personnel for time study and participation as a passive observer (Bernold & 
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Lee, 2010).  Lee, Lee, and Ibbs (2007) implemented a similar approach to monitor and 

compare the production rates of freeway rehabilitation projects in California.  

Various techniques are implemented during data collection and validation stages, 

such as a structured questionnaire survey (Proverbs, Holt, & Olomolayie, 1999) to collect 

and validate data; personal and phone interviews to gather additional data (AbouRizk, 

Knowles, & Hermann, 2001); and development of a Construction Productivity Metrics 

System (CPMS) in order to compare and set industry norms and benchmark construction 

productivity (Park et al., 2005). In an empirical approach, statistical regression (Hanna 

1999a; 1999b), linear and non-linear mathematical models, probabilistic modeling, fuzzy 

set theory (Yang, Edwards, & Love, 2003), and the artificial neural networks techniques 

(Zayed & Halpin, 2001) are frequently used for processing the collected data during 

research conducted relating to labor productivity and efficiency.  

 

2.6.3.3 Simulation approach 

The combined research approach was conducted and developed simulation 

models based on data collected from on-site field observation (Al-Sudairi, 2007) or time 

studies (Anson, Tang, & Ying, 2002). A discrete-event simulation (DES) method is 

employed in multiple purposes, such as studying experimental framework (Martinez, 

2010) and analyzing the concrete paving operations (Hassan & Gruber, 2008) because it 

provides the modeling flexibility by combining with other techniques and methods to 

enhance modeling capabilities. In the data collection phase, this simulation modeling can 

be implemented for either empirical or historical record. Rustom and Yahia (2007) 

conducted time studies where standardized time data sheets were completed by field 
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personnel and the data was fed into a simulation model of an embankment construction 

project in Gaza Beach. Several research projects were conducted to improve the 

capability of general purpose simulation techniques. 

  

2.7 Existing Methods or Techniques to Measure Labor Productivity 

There are numerous methods available to evaluate and measure construction 

operations performance. Selection of the appropriate method for a particular project is 

another challenging task. Selection criteria was established to determine the suitable 

method for the measurement of construction productivity (Song & AbouRizk, 2008), 

which are: (a) The output should be quantifiable and highly correlated with the labor 

hours; (b) The output measurement should be independent from factors that have 

influence on the productivity, such as site conditions and labor skills; and (c) the 

measurement procedure should be cost effective and easy to track. Based on project 

characteristics, different techniques of measurement are implemented. For example, some 

techniques require continuous observation and some require intermittent observation of a 

worker or a crew involved in a task. 

 

2.7.1 Time and Motion Study 

Time and motion study is a terminology derived from industrial engineering, 

which is comprised of both time study and motion study together. It was developed by 

Frederick W. Taylor in 1880. A time study is also called a stopwatch study in which the 

time required by a skilled, well-trained operator working at a normal pace doing a 

specific task is measured. The main objective of time studies is to set time standards in 
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the production area and to record the incremental times of the various steps or tasks that 

make up an operation (Meyers, 1992; Oglesby et al., 1989).  

Two observation studies are generally implemented during labor productivity 

measurement for the standard times of activities, which are direct observation and work 

study. In the first method, “the period of observation is continuous throughout the 

workday by a trained observer in order to record to the nearest minute the time that the 

workers spent on direct work, indirect work, and ineffective work” (Chui, 2010, p. 21). In 

the second method, the observation does not span the complete length of the workday 

with no continuous observation. Noor (1998) stated that the work study measurement is 

suitable for those operations having the definite cyclic period, and the length of the 

periods of observation corresponds to the work cycle of the operation monitored; thus, it 

can be used in order to determine the most appropriate working method and possible 

alternative working methods. There are several limitations of time and motion studies 

(Chui, 2010; Oglesby et al., 1989), which are: 

• There will be deficiency or differences in identifying the starting and ending 

points of cycles. This limitation can be addressed by employing a single 

observer or several trained observers. 

• Geary (1962) recommended a maximum of five workers in a crew per 

observer to achieve accurate observation. More than one observer or 

employing another method of recording would assist in collecting data in such 

a complex situation. 

• Time and motion studies are based on information gathered by the observers 

and detailed notes, which precisely recorded each activity and site condition. 
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• Studying complex operations or recording a large amount of data in a limited 

time, can result in the observer’s objectivity due to physical limitations or 

biases. In order to avoid such a natural scenario, the observer must follow the 

rule with no re-evaluation, hindsight, or second thoughts once the observation 

has been made. 

This complex process can be simplified by employing video cameras and 

recording the performance of workers. By reviewing the video recorded data, the 

observer can conduct the time and motion study without missing any step. 

 

2.7.2 Work Sampling Method 

Work sampling is a statistical technique employed to conduct periodic 

observations of workers and is a key tool to establish crew size or to determine the 

effectiveness of a specific crew size at the workplace (Adrian, 2004). In essence, work 

sampling is a useful technique in determining the proportion of the direct work from 

indirect work and ineffective work, analyzing factors that cause indirect and ineffective 

work, and identifying opportunities to reduce indirect and ineffective work (Chui, 2010; 

Picard, 2004).  

Allmon et al. (2000) defined the direct work as productive tasks or actions, such 

as picking up tools at the area and measurement on the area where the work is taking 

place, holding materials in place, inspecting for proper fit, putting on safety equipment, 

and all clean-up. Indirect work is defined as supervision, planning, travel with handling 

materials or tools, and walking empty-handed to get materials or tools (Allmon et al., 

2000; Chui, 2010). Ineffective work is defined as waiting for other trade, standing, 
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sitting, working unrelated actions, personal time, late starts, and early quits (Allmon et 

al., 2000). 

Noor (1998) mentioned two modified work sampling techniques, which are group 

timing technique (GTT) and the five-minute rating technique. The group timing 

technique is suitable for operations with repetitive actions and short cycle time ranging 

from 30 seconds to three minutes (Thomas & Daily, 1983). The five-minute rating 

technique is employed to monitor each crew member with a minimum of five-minutes or 

duration in minutes equal to the size of the crew, whichever is greater. It is generally 

recommended to be applied between four to eight times a day and can be used to evaluate 

the effectiveness of a crew without depending on whether the operations are cyclic or 

acyclic (Noor, 1998; Sprinkle, 1972; Thomas & Daily, 1983). 

 

2.7.3 Activity Sampling 

While considering a typical activity of a project, work sampling can be considered 

as activity sampling. According to Oglesby et al. (1989), activity sampling is suitable to 

apply for crews or projects of any size because it depends upon the number of individual 

observations, which is not related to sample size. The recommended sample observation 

size is at least 384, which can be made by either a crew of 100 workers and four times, or 

a crew of 10 workers and 39 times, and confidence limit of 95%, such that there is an 

error plus or minus 5% (Oglesby et al., 1989). There must be an equal likelihood of the 

observed workers. Those observations must have no sequential relationship. They should 

be consistent in the work situation characteristics during observation. The sampling rating 
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should start with the first seen person and should be conducted for each worker. Types of 

tasks or an activity should also be recorded during the observation period. 

 

2.7.4 Delay Survey Method 

Delay survey methods, such as “worker delay survey/craftsmen’s questionnaire 

surveys” and “foreman delay survey,” are conducted by first line supervisors of the 

project to identify the sources of problems from the workers’ viewpoints and monitor the 

workers’ performance (Noor, 1998). The total amount of time lost by each crew in each 

day is recorded with reasons of delay. The magnitude of problems causing delays are 

evaluated by the management team and multiplied by the number of workers while 

considering a crew of more than one worker. This method demands a high cost and is 

very challenging to maintain confidentiality and anonymity for the workers because of 

disturbance during work (Chui, 2010; Noor, 1998). It is also necessary to avoid the game 

of blaming each other and maintain consistency during data collection and report 

preparation in order to make this delay survey method effective. In addition, a 

combination of time study and productivity measurement techniques are employed to 

develop a method productivity delay model (MPDM) in which five possible types of 

delay, such as environment, equipment, labor, material, and management are determined 

(Adrian & Boyer, 1976).  

 

2.7.5 Audio-visual Methods 

The construction field operations are recorded using audio-visual methods like 

time-lapse film with one to five seconds intervals and time-lapse video with various time 
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intervals. The recorded audio-visuals can be used to analyze the productivity 

improvement of construction operations, train workers, and present evidence for 

construction claims and contract disputes (Everett, Halkali, & Schlaff, 1998; Noor, 1998).  

The data may loss due to equipment failure, technical incompetence, weak 

illumination, and human error (Noor, 1998). It requires high initial costs and technical 

competence in order to get quality pictures of the workers’ movements and an entire 

construction process. This technique of capturing visual data is widely accepted 

nowadays. It can be utilized to visualize the actual status of the project (Everett et al., 

1998) at distant office locations by transmitting high-resolution, full-motion live pictures 

or videos from construction sites through the Internet. 

 

2.7.6 Secondary Data / Historical Data 

Productivity data analyses are generally conducted by using historical projects’ 

data and published productivity data as a secondary source. R.S. Means Company 

publishes annual construction cost and productivity data that are collected from 

constructors and trade organizations. Those published data consist of average 

productivity rates of the industry but not the performance of any particular contractor 

(R.S. Means, 2007). In general, R.S. Means Building Construction Cost Data is taken as 

the reference, which provides unit labor costs, unit equipment costs, and physical output 

data based on the most used, quoted, and respected unit price guide available to the 

construction industry for the purpose of cost estimating, budgeting, and scheduling (Chui, 

2010; RS Means, 2007).  



43 
 

There are several sources to collect productivity data, which are contract 

documents, progress reports, project databases, and time studies (Song & AbouRizk, 

2008). Secondary data is suitable when: (a) research scope demands a large volume of 

historical data; (b) there are limitations of cost, time, and accessibility for data collection; 

and (c) there are available reliable sources for secondary data. 

 

2.7.7 Automated Methods 

Measuring productivity of construction operations is a challenging task because 

the activity measurement manual methods are time consuming and laborious. This 

scenario demands an automated framework to measure productivity. With the 

advancement of technology, video cameras as well as the Kinect sensor are employed to 

acquire data of labor-intensive construction operations. 

 

2.7.7.1 Using video cameras 

A Wireless Real-time Productivity Measurement system was developed to 

overcome limitations of the existing on-site audio-visual methods (Kim, Bai, & Huan, 

2009), which includes a digital camera, a video camera, a data processor, an AC 

transformer, a computer, and wireless modems. This research proved statistically 

significant that the developed system generates the identical productivity measurements 

compared to the results from the stopwatch method (Kim et al., 2009). The WRITE 

system has specific features: (a) not disrupting the construction operations, (b) 

determining the real-time on-site construction productivity, and (c) sharing collected data 

by all parties via the Internet at any time (Kim et al., 2009). It helps to enhance the 
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capability of the project owner, project manager, architect, or engineer to manage the 

project. 

Peddi (2008) proposed a framework to determine the construction labor 

productivity in real-time by developing human poses analyzing algorithms. With the 

implementation of computer vision concepts and artificial intelligence, Peddi (2008) 

developed an automated on-site productivity measurement system, in which a sequence 

of construction activity images is acquired and sent to a laboratory to generate human 

poses associated with construction activities. The labor productivity is determined in real-

time by classifying the human poses into effective, ineffective, and contributory works 

and compared with in coming images using the built-in neural network algorithms. As 

this approach is based on real-time data and does not rely on historical data, a project 

manager can implement the corrective actions if there is lower labor productivity. 

Yang, Arif, Vela, Teizer, and Shi (2010) proposed algorithms to track multiple 

workers on construction sites in order to optimize construction operations. A semi-

automated video interpretation method was proposed by Gong and Caldas (2011) to 

interpret productivity information, working processes, cycle times, and delays. This 

method deals with vision-based construction object recognition and tracking methods. 

 

2.7.7.2 Using the Kinect sensor 

Escorcia, Davila, Golparvar-Fard, and Niebles (2012) developed an automated 

method for vision-based recognition of construction worker’s actions for building interior 

construction operations using color and depth data from a Microsoft Kinect sensor. With 

the vision-based approach and machine learning techniques, the body poses of workers 
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are estimated by identifying the actions and movement of workers, which assesses labor 

productivity, safety, and occupational health at indoor environments. 

Weerasinghe (2013) developed a framework to determine location information of 

workers, construction workers’ tool-time, site related information, construction activities, 

and productivity data in order to assist project managers and planners to develop effective 

strategies for the improvement of labor productivity. 

Considering the limitation of RGB-D sensors, Starbuck, Seo, Han, and Lee (2014) 

proposed a stereo vision-based marker-less motion capture approach utilizing optical 

images and depth data obtained from stereo vision cameras in order to develop kinematic 

models of construction workers’ tasks. This is also helpful to evaluate productivity, 

safety, and workplace design of labor-intensive operations. 

Khosrowpour, Niebles, and Golparvar-Fard (2014) proposed a method for the 

activity analysis of construction workers to identify the factors affecting labor 

productivity using RGB-D sensors. Khosrowpour et al. (2014) developed algorithms to 

detect body postures in real-time. Then, a kennel density estimation model is trained to 

model classification scores from discriminatively trained bag-of-poses action classifiers. 

Most discriminative sequences of actions are labeled with a hidden Markov model 

(HMM) and tested for construction operations.  

Blommestein (2014) proposed an automatic labor performance measurement and 

risk assessment framework using range imaging from the Kinect camera. This framework 

measures the performance of a worker by continuous sampling, employing a work 

sampling technique. The states (busy, static, idle, or out of frame) of workers are 
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identified by classifying poses of a worker based on the speed of a worker’s hand 

movement. 

 

2.8 Identified Impediments to the Achievement of High Productivity Levels 

After thorough investigation of the literature, it can be concluded that there are 

numerous methods applied in the evaluation and measurement of construction operations 

performance. The most commonly used techniques for measuring construction labor 

productivity are the activity sampling technique, foreman delay surveys technique, time 

study technique, motion analysis technique, and group timing technique (Shehata & El-

Gohary, 2011). The work study technique and time and motion study are the systematic 

study of work systems for the purposes of finding and standardizing the least-cost 

method, determining the standard times, and assisting in training in the preferred method 

(Barnes, 1980). Video photography, stopwatch timing, and work sampling are the 

common data collection techniques used for the work study (Oglesby et al., 1989). It 

helps to suggest a way to improve the productivity. But, the amount of work done during 

short intervals may be inaccurate because no proper account is taken of the start-up 

(preparation) and shutdown (cleanup) components of an activity. There may be 

interruptions in the work, which cause further fragmentation of the work process. 

Moreover, the work measured during short periods is unlikely to be representative of the 

work as a whole. Thomas et al. (1990) stated that “productivity measurement does not 

involve characterizing the way in which inputs are converted to outputs, although it is 

clearly influenced by methods, skills, the environment, and many other factors” (p. 709). 

In addition, there are some limitations; for example, (a) measure outputs whose 
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characteristics may change over time, (b) define and measure real capital strokes and 

inputs as well as labor inputs when the characteristics of both factors are diverse and 

changing, (c) change in general level of prices, (d) change in supply and demand 

equilibrium for a given resource, and (e) change in the quality of the output (Shehata & 

El-Gohary, 2011).  

A questionnaire survey is a widely applicable method for collecting data. If there 

are gaps of information or inconsistency in data, then it leads to the misinterpretation of 

the results of productivity. When adopting a questionnaire survey technique, there may be 

some questions regarding the validity of collected data because: 

• there is no way to tell how truthful a respondent is being; 

• there is no way of telling how much thought a respondent has put in; 

• a respondent may be forgetful or not thinking within the full context of the 

situation; and 

• there may be an inadequacy of understanding that may vary because of 

changes in emotions, behavior, and feeling. 

Several research projects were conducted following the ANN method because it is 

applicable to solve linear and nonlinear programming tasks. But, it is similar to black box 

and requires training to operate it. There is a greater computational burden. Sometimes, it 

shows proneness to over fitting. If the data do not represent or are not correlated well 

enough to the information sought, then it may impact the evaluation of the productivity. 

However, a simulation approach provides a large amount of modeling flexibility to the 

researcher. There may be chances of error in the evaluation of productivity because of 

improper handling, error in feeding training data, misinterpretation, etc. Moreover, it is 
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essential to ensure the quality of the work in every stage of the methodology and 

interpretation of the results through appropriate validation techniques, which are 

challenging tasks as well as opportunities in the construction engineering and 

management domain (Lucko & Rojas, 2010).  

In the qualitative approach, it is critical to establish the theoretical framework 

prior to presenting the research results because productivity factors can be considered 

multidimensional and can have a different impact or meaning depending on the subjects 

being investigated (Panas & Pantouvakis, 2010). There should be clarification of the 

experimental framework, such as the types of project, collected data, and choice of 

modeling technique while incorporating theoretically driven,  quantitative, and empirical 

work in order to understand the research limitations, thus, protecting practitioners from 

implementing productivity estimation models that do not suit a typical project’s situation. 

The forms or questionnaires used for the collection of productivity data should be fully 

explained and excerpts should be provided while following the combined research 

approach. The data modeling should be clear whether it is related to daily or hourly 

productivity data or even cumulative productivity metrics. That means the framework’s 

structure should be clear, as well as its content be based on the inferences emerging from 

the investigated sample. 

The research conducted based on historical data may create problems for reasons 

stated by Liberda et al. (2003) that many factors involved in the process of construction 

change over time and productivity cannot be easily judged by the same data or 

information that was documented a decade or month ago. In practice, efficiency of 

construction operations is usually determined by comparing actual versus historical 
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productivity. However, this comparison only provides a relative (biased) measure of 

efficiency. For example, if actual productivity is 95% of average historical productivity, 

the resulting productivity rate does not necessarily mean that the operation is efficient, 

but only that the efficiency of the operation is in line with historical averages (Mani, Kisi, 

& Rojas, 2014). Indeed, the operation now and then could be significantly inefficient if it 

is well below optimal productivity (Kisi, Mani, & Rojas, 2014; Mani et al., 2014). Hence, 

the common practice is to estimate productivity based upon historical data or an 

individual’s experience, which may lack a systematic approach. The lack of consistency 

in the productivity measurement system and the low quality of historical data may 

prevent meaningful analysis (Song & AbouRizk, 2008). This could make construction 

operations significantly inefficient. It is obvious that the higher the inefficiency, the lower 

the productivity is. This scenario generates the need for research to identify alternative 

techniques to measure productivity. 

 

2.9 Actual versus Optimal Productivity: An Innovative Approach to 

Productivity Analysis 

The efficiency of construction operations is generally determined by comparing 

actual versus historical labor productivity in existing approaches. This practice is accurate 

if historical data reflects optimal values. Otherwise, this comparison is a gauge of relative 

rather than absolute efficiency. Therefore, in order to determine absolute efficiency, one 

must compare actual versus optimal labor productivity.  

This scenario demands an alternative technique to measure labor productivity in 

which an accurate estimation of optimal labor productivity would allow project managers 
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to determine the efficiency of their labor-intensive construction operations by comparing 

actual versus optimal rather than actual versus historical productivity. To date, no 

substantive model for estimating optimal productivity has been proposed in the 

construction domain (Kisi et al., 2014). This research proposed a framework to estimate a 

labor productivity frontier, which is used as an input value to estimate the optimal 

productivity. The optimal productivity is necessary to calculate the efficiency of 

construction operations. 

 

2.10 Productivity Frontier Estimation 

Several studies have been conducted regarding labor productivity, optimal 

productivity, and overall productivity (Rojas & Aramvareekul, 2003; Son & Rojas, 2010; 

Thomas & Sakarcan, 1994). However, there is no research conducted regarding the 

estimation of a construction labor productivity frontier. In order to estimate the 

productivity frontier, one must be able to determine a production level that, by definition, 

is never achieved in the field on a sustainable basis and, therefore, not directly 

measurable. This research defines productivity frontier, shows how to estimate it 

implementing existing research methodology or techniques, and proposes innovative 

ideas or techniques. 

 

2.10.1 Productivity Frontier Definition 

The productivity frontier is a theoretical productivity or maximum ideal 

productivity that could be achieved under perfect conditions (Son & Rojas, 2010). The 

term “perfect conditions” explains the case of ideal productivity values, which implies an 
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ideal state where all factors affecting labor productivity are at the most favorable levels, 

such as good weather, highly motivated and productive workers with flawless artisanship, 

optimal utilization of materials and equipment, no interference from other trades, no 

design errors, and precise understanding of the design intent, among others. 

 

2.10.2 Research Methods to Estimate Productivity Frontier 

Among three major research methods: qualitative, quantitative, and combined, 

this research adopts the combined research method because research objectives are both 

qualitative (Hiatt, 1986) and quantitative (Harwell, 2011) in nature. But, this research 

does not use historical data for analysis. Indeed, actual data is collected from construction 

sites using multiple video cameras. According to site conditions, single or multiple 

cameras are used to capture the movements of workers adopting either dynamic 

background or fixed background techniques (Bai, Huan, & Peddi, 2008; John, Ivekovic, 

& Trucco, 2009; Sigal, Balan, & Black, 2010).  

An activity is broken down into four-level hierarchical structures, such as activity, 

task, action, and movement. These hierarchical structures are identified from the video 

data by converting it into individual images by applying the frame separation algorithm 

in Matlab (Cai & Aggarwal, 1996; Cai, Mitiche, & Aggarwal, 1995). After identifying 

actions from visual inspection (Wang, Weiming, & Tan, 2003), actions are classified into 

contributory and non-contributory actions (Shahidul & Shazali, 2011). There are several 

techniques available for data collection, such as time and motion study (Meyers, 1992; 

Oglesby et al., 1989), work sampling method (Adrian, 2004; Noor, 1998), activity 
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sampling (Oglesby et al., 1989), delay survey method (Noor, 1998), and audio-visual 

methods (Everett et al., 1998). 

As this research is mainly focused on the movement of workers, the researcher 

implements combined application of audio-visual methods and time and motion study. 

The duration for performing contributory actions for each worker is recorded analyzing 

time and motion study by reviewing the video data using the hierarchical structure. 

Techniques of simulation and visualization are employed during model development and 

validation phases (Loannou & Martinez, 1996). In addition, various techniques, such as 

literature review, expert review, and evaluation of models are employed for validation 

purposes (Carvalho et al., 2011). Thus, this research employs simulation and 

visualization approaches in the combined research method.  

Labor productivity can be expressed in many ways, such as output per labor cost 

and output per labor hour. This research adopts output per labor hour or output per crew-

hour as a metric to measure labor productivity. Moreover, the labor hour considered for 

labor productivity frontier is the shortest duration because minimum value of duration 

means the highest productivity. Ideally, the labor productivity frontier is infinity when 

duration is zero. Practically, this is not possible. Thus, the shortest possible duration for 

each movement is added to get the shortest possible duration for an action. Similarly, the 

shortest possible duration for each action is added to get the shortest possible duration for 

a task and so forth. A statistical approach is employed to validate the concept of the 

shortest observed duration where this duration is obtained from time and motion study as 

discussed in Chapter 3. 
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A concept of goodness-of-fit and probability distribution is implemented to 

determine an estimated duration. Estimated duration is determined because it is almost 

impossible to conduct time and motion study for all project activities from the start to the 

end of the project. The shortest estimated duration is obtained by estimating the threshold 

parameter or shifted parameter (Aristizabal, 2012) of the plotted best-fitted probability 

distribution curve for a given set of data. The equivalent productivity is estimated by 

dividing the number of units produced (output) by the estimated shortest duration. The 

labor productivity frontier is the theoretical maximum productivity; thus, estimated value 

of this frontier is obtained by choosing the highest productivity from these two 

approaches–observed durations and estimated durations. 

Besides the manual approach, this research presents an automated framework to 

estimate productivity frontier, which is described in Chapter 6. 
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CHAPTER 3 

METHODOLOGY 

 

This research presents an innovative technique for labor productivity analysis by 

defining the labor productivity frontier and optimal labor productivity. The labor 

productivity frontier is an important input to estimate optimal labor productivity. In order 

to estimate the labor productivity frontier, one must be able to determine a production 

level that, by definition, is never achieved in the field on a sustainable basis and, 

therefore, not directly measurable. In an attempt to achieve the objectives of this research, 

the theoretical underpinnings of the proposed framework, conceptual analysis of the 

proposed basic framework with discussions, and brief illustration of the proposed 

advanced framework are explained in this chapter. 

 

3.1 Theoretical Underpinnings 

Actual labor productivity is measured based on the performance of workers at the 

construction site. Optimal labor productivity is the highest sustainable productivity level 

achievable under “good management” and “typical working conditions” while the labor 

productivity frontier is the theoretical maximum productivity achievable under “perfect 

conditions” (Son & Rojas, 2010). The actual productivity is typically below optimal 

productivity with a few instances when they can be identical. However, the difference 

between the optimal and actual productivity is the operational inefficiency. Poor 

sequencing of activities, inadequate equipment or tools, mismatch between skills, task 

complexity, excessive overtime, and poor lighting conditions are some factors that may 
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combine to form the operational inefficiency. The factors that affect productivity which 

are not under the control of project managers, such as high humidity, high temperature, 

rainfall, etc., result the system inefficiency. 

In general, when the estimated values are higher than the optimal productivity, 

productivity is optimistically forecasted. If the estimated values are lower than the 

optimal productivity, then productivity is conservatively forecasted (Mani et al., 2014). In 

reality, project managers just assume that these levels are reasonably attainable in the 

field based upon historical averages and personal judgment. Son and Rojas (2010) argue 

that both optimistic and conservative assumptions end up negatively affecting actual 

productivity in the field.  

Although the productivity frontier is an abstraction that represents a production 

level not achievable in actual practice, it proves helpful in analyzing project conditions. 

The concept of the productivity frontier can be used to identify system inefficiency 

factors, as well as to estimate optimal productivity. In turn, optimal productivity is 

necessary to calculate the efficiency of construction operations. The advantages of the 

proposed frameworks are that the constructors, rather than being constrained by historical 

data, can also estimate the labor productivity frontier and optimal labor productivity for 

activities they have never performed. 

The theoretical underpinnings of the proposed framework to achieve such 

objectives are inverse mean-variance optimization, hierarchical analysis, and probability 

distribution theory, as explained in the following sections. 
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3.1.1 Inverse Mean-variance Optimization 

Mean-variance optimization (MVO) has been widely applied in modern portfolio 

theory. For a better understanding of MVO, some relevant terminologies are described 

below: 

 

3.1.1.1 Portfolio 

Based upon an investment point of view, it is defined as a grouping of financial 

assets, which are held directly by investors and managed by a financial professional 

(Huang, 2008). 

 

3.1.1.2 Optimization 

The term “optimization” is the selection of a best element from the alternatives 

available, which consists of maximizing or minimizing a real function by systematically 

selecting input values within an allowed set and computing the value of the function (Cai, 

Teo, Yang, & Zhou, 2000). 

 

3.1.1.3 Modern portfolio theory 

Modern Portfolio Theory (MPT) is defined as a theory on how risk-averse 

investors can construct portfolios to optimize or maximize expected return based upon a 

given level of risk (variability) (French, 2010). MVO is a part of Markowitz’s Modern 

Portfolio Theory (MPT), which assumes that investors will optimize their investment 

portfolio through diversifying their investments on a balanced risk-return basis. 

  

http://www.investopedia.com/
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3.1.1.4 Mean variance optimization 

It is a quantitative tool used to spread investment across different assets within a 

portfolio by assessing the trade-off between risk and return in order to maximize the 

return while minimizing any risks (Idzorek, 2006). Fabozzi, Kolm, Pachamanova, and 

Focardi (2002) explained that the application of a mean-variance analysis for a portfolio 

construction requires a significantly greater number of inputs to be estimated for the 

expected return of each security, variance of returns for each security, and either 

covariance or correction of returns between each pair of securities. According to Karl 

Sigman (unpublished notes on portfolio mean and variance, 2005), investing in more than 

one asset (diversification) may reduce a possible risk. Even if one of the assets has a 

disastrous (very low) payoff due to its variability, there are chances for others by sharing 

resources among several different assets. 

Thus, the basic principle of MVO is that the variability (risk) of a portfolio of 

assets is reduced as the number of assets increases, assuming the assets are not perfectly 

correlated (well-diversified). Therefore, in a sense MVO “hides” the variability of its 

constituting assets by looking only at the variability of the combined portfolio. Inverse 

MVO, on the other hand, would make visible previously “hidden” variability when a 

process is broken down into its elemental components and the variability of each 

component is analyzed. Looking at the variability of elemental components is relevant to 

the proposed framework as a means to identify those occurrences when productivity is at 

its highest. By definition, these productivity levels are not sustainable and represent 

outliers in the data. 
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3.2 Hierarchical Analysis 

Hierarchical analysis is used to break up construction activities into a multi-level 

hierarchy of subsystems–its elemental components. The difference between a traditional 

work breakdown structure (WBS) used in construction and the hierarchical analysis used 

in the proposed framework is the level of detail. For example, Tucker and Guo (1993) 

classified construction activities into area, activity, and task. Ahmad, Scott, and Bradley 

(1995) proposed five levels: project, division, activity, basic task, and elemental motion 

as shown in Table 3.1. 

 
Table 3.1: Construction Operational Taxonomy 

 
Tucker and Guo 

(1993) 
Everett and 

Slocum (1994) 
Ahmad et 
al. (1995) 

Proposed 
Framework 

Area Project Project Activity 
Activity Division Division Task 

Task Activity Activity Action 
 Task Basic Task Movement 
 Elemental 

Motion 
Elemental 

Motion 
 

 Orthopedics   
 Cell   

 

Everett and Slocum (1994) classified construction field operations into seven 

hierarchical taxonomies, which are: project, division, activity, basic task, elemental 

motion, orthopedics, and cell. The project is interrelated with non-routine, unique 

activities, having limited time, budget, and resources allocated (Frankel, 1990). However, 

Everett and Slocum (1994) defined the hierarchy level into the level of cell, which is 

related to the study of muscle tissues and nerves, which may be suitable during the study 

of Ergonomics analysis but not suitable for this study. The proposed framework goes two 

levels deeper than Tucker and Guo (1993) and one level deeper than Ahmad et al. (1995) 
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since it uses four levels beginning at the activity: activity, task, action, and movement. 

Tucker and Guo (1993) defined a task as the lowest and simplest level, whereas the 

proposed framework defined a movement as the lowest level. Hence, only four hierarchy 

levels are defined in this proposed framework. 

• An activity is defined as the collections of tasks, which represent the specific 

units of work with spatial limits and/or dimensions (Tucker & Guo, 1993). For 

example, lighting replacement and sanitary fixing. 

• A task is defined as the lowest recognizable work-related characteristic. A 

combination of integrated tasks makes up an activity (Ahmad et al., 1995). 

For example, site preparation, bulb replacement, and waste management. 

• An action is defined as a unitary level of task. This means it is a combination 

of integrated action made up of a task. For example, frame opening, bulb 

removal, and ballast removal. 

• A movement is the lowest level of the construction operational taxonomy. A 

combination of an integrated movement makes up an action. For example, 

moving a hand to grab materials, turn right, turn left, etc. 

The proposed hierarchy only includes a value added work (i.e., direct and 

contributory work), excluding non-contributory work. Contributory work is typically 

defined as the necessary work to accomplish a definite job. Non-contributory work is 

considered non-productive work, such as unscheduled breaks, time spent attending to 

personal matters, and idle time. 
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3.3 Probability Distribution Theory 

The lowest possible duration for a task, action, or movement may not be observed 

during a particular experiment. Therefore, to uncover the lowest possible duration even if 

not observed, the proposed framework uses the probability distribution theory to fit the 

observed data at the lowest hierarchical level to a probability distribution using standard 

goodness-of-fit approaches to calculate the lowest value possible for each distribution.  

These values are then used when reassembling the elemental components into the activity 

to determine its overall duration. The statistical terminologies behind these approaches 

are described as follows: 

 

3.3.1 Maximum Likelihood Estimation 

It is a method to seek the probability distribution that makes the observed data 

most likely, which means that one must seek the value of the parameter vector that 

maximizes the likelihood of the function (Myung, 2003). In other words, it provides 

estimation for the model’s parameters while applying to a data set and gives a statistical 

model. The maximization of the likelihood function increases the agreement of the 

selected model with the observed data. Once data have been collected and the likelihood 

function of a model given the data is determined, one is in a position to make statistical 

inferences about the population, that is, the probability distribution that underlies the 

data. Given that there are different parameter values for different probability 

distributions, it is useful to find the parameter value that corresponds to the desired 

probability distribution. The method of maximum likelihood is often the estimation 
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method that mathematical statisticians prefer because it is usually easy to use and 

produces estimators with good statistical properties. 

 

3.3.2 Shifted Probability Distribution 

There are certain limitations in the standard distribution curves, which invite 

complexity or no solution while estimating the shortest possible duration using goodness 

of fit techniques. For example, standard exponential distribution has a range from zero to 

infinity. If the best-fit curve for a certain data set is an exponential distribution, then it 

gives the estimated shortest possible duration equivalent to zero because the lowest value 

for the exponential distribution is zero. This value is not realistic because no action can 

be accomplished in zero or negative time. In order to overcome this limitation, a concept 

of shifted probability distribution is adopted. Based on this concept, the exponential 

distribution curve is shifted by a “𝛳𝛳” value, the threshold parameter or shifted parameter 

(Aristizabal, 2012). This shifted value gives the shortest possible estimated duration for 

the determination of the productivity frontier. 

 

3.3.2.1 Mathematical explanation 

The probability distributions have their own probability distribution function 

(PDF) and cumulative distribution function (CDF), which characterize their properties. 

For example, the standard exponential distribution has a PDF as follows: 

𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝜆𝜆−𝜆𝜆𝜆𝜆 … … … (3.1) 

The PDF and CDF for this exponential distribution start at x = 0. But in general, 

the distribution can start at any positive value of x; the resulting distribution is called the 
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shifted exponential distribution (Ang & Tang, 2006), having a starting value of x = 𝛳𝛳 

with a PDF as follows.  

𝑓𝑓(𝑥𝑥) = 𝜆𝜆𝜆𝜆−𝜆𝜆(𝑥𝑥−𝛳𝛳)      𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 >  𝛳𝛳 … … … (3.2)   

Both “𝛳𝛳” and "λ" are unknown and need to be estimated. The parameter “𝛳𝛳” is 

also called a threshold parameter or a shifted parameter (Aristizabal, 2012). According to 

the SAS 9.2 documentation, the threshold parameter “𝛳𝛳” must be less than or equal to the 

observed minimum value. Statistically, the value of “𝛳𝛳” can be estimated by assuming 

the observed values are reasonably distributed over the exponential distribution so that 

the observed minimum value is approximately equal to the 100/(n+1) percentile of the 

distribution, where n is the number of observations.  

Mathematically,  

𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ) =  
1

𝑛𝑛 + 1
… … … (3.3) 

An alternate equation is: 

𝑃𝑃(𝑋𝑋 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ) =  
𝑛𝑛

𝑛𝑛 + 1
… … … (3.4) 

The maximum likelihood estimation technique is used to estimate the parameters 

of the distribution (Ang & Tang, 2006).  

As we know the distribution of X, we have: 

𝑃𝑃(𝑋𝑋 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ) = ∫ 𝜆𝜆𝑒𝑒−𝜆𝜆(𝑥𝑥−𝛳𝛳)∞
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 dx = 𝑒𝑒−𝜆𝜆(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝛳𝛳) 

Thus, 𝑒𝑒−𝜆𝜆(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝛳𝛳) = 𝑛𝑛
𝑛𝑛+1

 

Taking the log of both sides: -λ (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚– 𝛳𝛳) = 𝑙𝑙𝑙𝑙 ( 𝑛𝑛
𝑛𝑛+1

) 

or, 𝛳𝛳 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚+ 1
𝜆𝜆
 𝑙𝑙𝑙𝑙 � 𝑛𝑛

𝑛𝑛+1
� … … … (3.5) 



63 
 

Now, we have 𝛳𝛳 as a function of λ, so if we can estimate λ, we can obtain an 

estimate for 𝛳𝛳. Using maximum likelihood estimate (MLE) to get an estimate for λ: 

𝐿𝐿(𝜆𝜆) =  ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ) = ∏ 𝜆𝜆𝑒𝑒−𝜆𝜆(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝛳𝛳)𝑛𝑛

𝑖𝑖=1   

                   = ∏ 𝜆𝜆𝑒𝑒−𝜆𝜆(𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−1
𝜆𝜆𝑙𝑙𝑙𝑙( 𝑛𝑛

𝑛𝑛+1))𝑛𝑛
𝑖𝑖=1  = 𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆 ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−1

𝜆𝜆𝑙𝑙𝑙𝑙( 𝑛𝑛
𝑛𝑛+1))𝑛𝑛

𝑖𝑖=1  

Taking the logs, then differentiating with respect to λ and setting the equation 

equal to zero results in:  

or,  𝑛𝑛
𝜆𝜆

− ∑ 𝑥𝑥𝑖𝑖 
𝑛𝑛
𝑖𝑖=1 −  𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 0 

Thus, the MLE estimator of λ is:  λ� = 𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 )𝑛𝑛

𝑖𝑖=1
… … … (3.6)  

Hence, the estimator of 𝛳𝛳 is: 𝛳𝛳�  = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚+ ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 )𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 𝑙𝑙𝑙𝑙 � 𝑛𝑛

𝑛𝑛+1
� … … … (3.7) 

The shifted exponential distribution has only two parameters (𝛳𝛳 and λ) to 

estimate; they are comparatively easy to estimate by manual calculation. But, for other 

distributions, such as gamma, Weibull, lognormal, and beta distribution, it is very 

difficult to conduct manual computations. Therefore, “Base SAS® 9.2” is used to estimate 

the parameters of the best-fit probability distributions considering the shifted PDF.  

But, “Base SAS® 9.2” takes the standard PDF during the estimation of parameters 

for the normal distribution because it has a range from negative infinity to positive 

infinity, and it is not possible to estimate the threshold parameter (lowest estimated value) 

for the shifted condition. Similarly, it does not estimate this threshold parameter for the 

Erlang distribution. In such a scenario, the next best-fit distribution curve is considered 

based on square error value and p-value for the particular test in order to estimate the 

threshold parameter. 
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3.3.3 Software for Probability Distribution Fitting and Analysis 

It is a very time-consuming task to fit a significant number of observed data sets 

to theoretical distributions. Moreover, it is very difficult to fit the observed data to some 

of the more exotic probability distributions. Because of these reasons, “Arena Input 

Analyzer” (Takus & Profozich, 1997; Ungureanu, Sisak, Kristaly, & Moraru, 2005) and 

“Base SAS® 9.2” (Cox, Chu, Schneider, & Munoz, 2007; Schlain et al., 2010) are utilized 

during this research. The best-fit probability distribution for each action is plotted for the 

observed data from time and motion study using the “Input Analyzer” tool in Arena 

simulation software. This tool fits the distribution function based on the square error 

value. It shows the top 10 ranked distribution functions on the basis of the square error. In 

addition to the square error value, it also gives p-value for that particular test. The test 

shows that the lower the p-value when compared with the level of significance (α = 0.05), 

the poorer the fit in the probability distribution is (Kelton, Sadowski, & Swets, 2010; 

Rockwell Automation, 2013). Based on observed data, this tool performs various tests, 

such as Chi-Square Test (Ungureanu et al., 2005), Kolmogorov-Smirnov Test (Massey, 

1951), and Anderson-Darling Test (Stephens 1974) in order to analyze data and obtain 

results. For example, “gamma distribution” is plotted for a “ballast cover closure” action 

after conducting Chi-Square and Kolmogorov-Smirnov Test. However, the Arena 

software does not estimate the minimum value of the distribution (i.e. threshold 

parameter). It gives the best-fit probability distributions, adopting the concept of the 

“goodness-of-fit.” This best-fit distribution is mentioned in the statement of the “Base 

SAS® 9.2” software tool to estimate the threshold parameter “𝛳𝛳”, scale parameter “σ,” 

and shape parameter “α” as shown in the following statement.  
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proc univariate data = gamma; 

 histogram / gamma (theta = est sigma = est alpha = est); 

run; 

This statement fits the data in the gamma distribution and estimates the threshold 

parameter, the scale parameter, and the shape parameter using the concept of maximum 

likelihood estimation and moment method. The threshold parameter reflects the 

minimum value for this gamma distribution for the “ballast cover closure” action, which 

is lower than the minimum observed value. It provides true value for 95% of the 

confidence interval (0.05 significance value).  

Similarly, the minimum duration to accomplish each action is estimated from the 

probability distribution analysis using the “Base SAS® 9.2” software. The sum of the 

estimated lowest durations for contributory actions gives the total shortest duration to 

complete a task. 

 

3.4 Conceptual Analysis of Framework 

Conceptually, the proposed framework can be categorized into a basic framework 

and an advanced framework. The basic framework follows manual steps beginning from 

data collection to the estimation of the labor productivity frontier through analysis of the 

data, whereas the advanced framework includes the generation of the new synthetic 

activities based upon the information gathered from the existing data. This explains that 

advanced framework follows partially automated methodological steps. The detail 

methodology of the basic framework is explained in Section 3.5 and its implementation 

for estimating the labor productivity frontier involving a single worker’s performance is 



66 
 
described in Chapter 4 (Pilot Study). The basic framework is also tested for multiple 

workers’ performances including parallel and sequential actions, as described in Chapter 

5 (Detailed Study). The main objective of analyzing the framework considering different 

activities is to validate this framework for those labor-intensive operations ranging from 

simple to complex activities. The proposed explored automated framework for estimating 

the productivity frontier is a part of the advanced framework and is described in Chapter 

6. The explorations of two different automated frameworks are discussed: (a) using 

multiple video cameras for collecting video data and (b) using the Kinect sensor for 

collecting data with skeletal views. Another part of the advanced framework is to develop 

“recombinant synthetic workers,” which is discussed in Chapter 8. 

 

3.4.1 Proposed Basic Framework 

According to inverse MVO, as the lower one moves in a hierarchy, the more the 

variability will be exposed. Greater variability is sought because it allows for the 

identification of the lowest theoretical durations. For example, one can assume that after 

many observations, the lowest recorded duration for an activity in the field is X. The 

activity “lighting installation,” if considered, would be divided into several tasks, such as 

site preparation, fluorescent bulb replacement, waste management, and documentation. 

The minimum durations to accomplish these tasks would be X1
’, X2

’, X3
’, and X4

’. Then 

the total duration of the activity calculated by reassembling these tasks would be X’ (sum 

of X1
’, X2

’, X3
’, and X4

’), where X’ < X.  Analogously, if each task were broken down 

into its constituent actions and the minimum duration for each action measured, then the 
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total duration for the activity calculated after reassembling actions into tasks and tasks 

into the activity would be X”, where X” < X’ < X.   

Applying the same logic, if one goes to the movement level, then X”’ < X” < X’ < 

X. This reduction in durations is due to two different effects. The first one is the exposure 

of higher variability explained by the inverse MVO. The second effect is the fact that 

non-contributory tasks, actions, and movements are eliminated from the analysis as lower 

levels of the hierarchy are employed. For example, if one measures the duration of an 

activity from beginning to end, non-contributory tasks could be embedded in such a 

measure. However, if one calculates the duration of an activity by aggregating the 

durations of its constituent’s tasks, only direct and contributory work would be 

considered as all non-contributory tasks are eliminated because they do not form part of 

the value-added hierarchy. Even though X”’ would be based upon actual observations, it 

should not be interpreted as an actual duration associated with the actual productivity; 

rather, X”’ should be interpreted as a synthetic measurement of a theoretical duration 

associated with a theoretical productivity (Mani et al., 2014).  

However, more importantly, should this theoretical productivity be considered as 

the optimal productivity or as the productivity frontier? This dissertation argues that the 

answer depends on the circumstances. This research examines the productivity frontier as 

the productivity under “good management” and in “normal field conditions.” Therefore, 

if the recorded durations occurred in a project where no management issues were present 

and under normal operations, then they would represent at least optimal productivity. In 

order for these durations to represent the productivity frontier, one would have to 

eliminate all system inefficiencies that could have been present during the data collection 
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period. Even though this elimination is impossible in practice, if a concerted effort is 

made to minimize system inefficiencies, then the theoretical productivity calculated 

following these procedures would be somewhere in between the optimal productivity and 

the productivity frontier. Given that the probability of actually observing this level of 

theoretical productivity in the field is infinitesimal, this research proposes that this value 

should be taken as an estimate of the productivity frontier. For example, if (a) 100 

observations are recorded during a construction task, (b) the task includes five actions, (c) 

the lowest duration recorded for each action occurs only once, and (d) the duration of 

each action is independent from the duration of all others, then the probability of 

observing the duration of the task being equal to the sum of the shortest duration of the 

actions would be one in 10 billion. Part of the adopted definition for optimal productivity 

included “on a sustainable basis,” which dismisses a productivity level that happens once 

in 10 billion observations. 

Productivity is then calculated by dividing the production rate by the observed 

shortest duration for the activity. However, since observed durations may not include the 

lowest possible duration for each action, probability distributions are fitted to the data to 

obtain the estimated shortest durations. Productivity is again calculated by dividing the 

production rate by the estimated shortest duration for the activity. This dissertation 

recommends taking the highest productivity from these two techniques–observed 

durations and estimated durations–as the value for the labor productivity frontier. 
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3.4.2 Proposed Advanced Framework 

The proposed basic framework allows estimation of the productivity frontier for 

activities for which one has or can gather data from direct observations. However, from 

time to time constructors are faced with activities they have never performed. 

Nonetheless, estimating the productivity frontier and the optimal productivity of such 

activities could actually be more critical than for those for which at least historical 

averages are available. Furthermore, even if constructors were to work on the same 

activities time and again, capturing data from direct observations of all activities 

performed on typical projects would be a staggering undertaking. Therefore, the basic 

framework needs to be expanded to include the generation of new synthetic activities 

based upon information gathered from existing data. In order to accomplish this 

objective, we propose the creation of a database of activities, tasks, actions, and 

movements, and the implementation of a visually guided simulation system.  

The visually guided simulation system would serve as the environment to 

generate the virtual representation of the construction activity under consideration. In 

such an environment, constructors would have access to a library of basic movements, 

actions, and tasks presented in a visual form using animations of human figures. By 

visually combining basic movements into actions, actions into tasks, and tasks into 

activities, constructors would be able to create synthetic activities and virtually perform 

the work at hand. The virtual environment must be robust enough to also simulate, if 

even at a very basic level, the surroundings, materials, and equipment used in the activity 

as decontextualized movements of human figures is not sufficient for building the 

synthetic activity.   
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The library of basic movements should include animations of each movement in a 

searchable database with parametric variables when necessary. For example, some 

actions, such as walking or climbing a ladder are dependent on the distance traveled. 

Therefore, the pace of such actions rather than their durations should be included in the 

database with the distance to be walked or climbed as a parameter. 

 

3.5 Basic Framework (Manual Framework) 

The basic framework typically consists of seven steps to estimating the labor 

productivity frontier, which is shown in Figure 3.1. Those steps are: field data collection, 

data analysis, action identification, action classification, model development, model 

validation, and productivity frontier estimation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: Block Diagram for Proposed Basic Framework 
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3.5.1 Field Data Collection 

Construction and manufacturing sites involving labor-intensive operations are 

selected collaborating with local companies, such as the Commonwealth Electric 

Company and the Waldinger Corporation. Multiple cameras are synchronized based upon 

a mode, frames per second, and initial time (Caillette & Howard, 2004; Delamarre & 

Faugeras, 1999). Those cameras are set up identifying appropriate positions in such a 

way that movements of the concerned workers are visible from different angles. 

Depending upon site conditions, single or multiple cameras are employed (Bai et al., 

2008; John et al., 2009; Sigal et al., 2010). Movements of workers are captured as video 

data, adopting either dynamic background or fixed background techniques. 

A pilot study is conducted focusing on the activities performed by an electrical 

worker of the Commonwealth Electric Company in Omaha, which is explained in 

Chapter 4. Similarly, this framework is tested for a detailed study involving activities 

performed by crews of multiple workers consisting of parallel and sequential labor-

intensive manufacturing operations. The detailed study explains “Fabrication of Sheet 

Metal Ducts” activity at the workshop of the Waldinger Corporation in Omaha, which is 

described in Chapter 5. 

 

3.5.2 Data Analysis 

Each activity is selected to analyze the data separately because of its homogeneity 

across the construction project. Each activity is broken down into the four-level 

hierarchy, such as activity, task, action, and movement similar to Figure 3.2. The activity, 

task, action, and movements are identified from the video data by converting it into 
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individual images applying the frame separation algorithm in Matlab (Cai et al., 1995; 

Cai & Aggarwal, 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.5.3 Action and Movement Identification 

It is difficult to identify any action only looking at workers’ movements while not 

arranged in sequence and without detail inspection of environment in which action 

performed. Vallacher and Wegner (1985) explained the action identification theory; the 

essence of this theory is that the identification of one’s action, though highly variable in 

principle, is ultimately constrained by reality. Vallacher and Wegner (1987) categorized 

action into lower level and higher level identities explaining with examples, such as 

“pushing a doorbell” as the higher level action and “moving a finger” as the lower level 

action.  
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Figure 3.2: Hierarchical Breakdown of a Sample Activity 
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Similarly, this proposed framework categorizes the “glass frame opening” as the 

action and the “moving hands” while performing that action, are considered as the 

movement. The proposed framework only considers goal-directed physical movements 

(James, 1890) but it is preceded by a mental representation of such movement. Indeed, it 

may be a challenging job for an observer without detail knowledge, to determine whether 

the worker is maintaining a particular course of action over time or, instead, is doing 

different things (Vallacher & Wegner, 1987).  

Each type of activity is analyzed separately as illustrated in Chapters 4 and 5. The 

action of workers’ tasks is identified manually from the image frame analysis by the 

visual inspection (Wang et al., 2003). It is easy to identify and record actions for an 

activity involving a single worker’s movement, whereas this job is complex and time 

consuming for an activity involving multiple workers performing parallel and sequential 

tasks. 

 

3.5.4 Action and Movement Classification 

Visual inspection technique is used to classify actions into contributory and non-

contributory actions (Bai et al., 2008; Wang et al., 2003). Contributory actions for each 

type of activity are those necessary to accomplish the activity. Non-contributory actions 

include any other actions that do not directly contribute to accomplish the activity, such 

as unscheduled breaks, time spent attending personal matters (texting, talking), idle time, 

etc. A time and motion study (Finkler, Knickman, Hendrickson, Lipkin, & Thompson, 

1993; Shahidul & Shazali, 2011) is conducted observing the video data and time is 
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recorded for each contributory action based on the hierarchical structure as shown in 

Figure 3.2.  

 

3.5.5 Model Development 

Modeling and animating human figures is particularly difficult because of the 

complexity of the articulated human body (Calvert et al., 1993). The major difficulties are 

design of a realistic body model and the specification of realistic movement. One of the 

first attempts at computer human body modeling was made by Badler, O’Rourke, & 

Toltzis (1979). They presented a three-dimensional human body model designed by 

overlapping spheres, yielding a realistically formed and shaded body image on a raster 

graphics display. Sengupta and Das (1997) developed a low-cost 3D human modeling 

program in AutoCAD in order to support variable sizes and to provide the flexibility of a 

professional CAD system.  

Chong (2008) stated that standard animation is “the technique of filming 

successive drawings or positions of models to create an illusion of the movement when 

the film is shown as a sequence” (p. 1). The main principles of animation (Thomas & 

Tufano, 2009): (a) uses the technique of producing a series of still images–each capturing 

incremental changes in the scene–before converting this series of images into a film 

sequence, (b) plays on the viewer’s “persistence of vision” (Webster, 2005, 2012), and 

(c) requires an excellent observation of the reality to analyze movements and the 

sequences of movements for any particular motion to be converted into hundreds of tiny 

minute steps. 
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For a pilot study, a simplified skeleton view of a worker is used to visualize 

worker’s movements. Even though this model does not show the level of detail of the 

Sengupta and Das (1997) model, it is accurate enough for the purposes of identifying and 

classifying actions according to the proposed basic framework.  

 

3.5.6 Model Validation 

It is a fact that the decision makers often do not have the training and time to 

check the validity of the animated models because the animation is an increasingly 

popular technique that can be used to verify, debug, and validate models (Loannou & 

Martinez, 1996). There are various techniques to validate models, such as by literature 

review, by expert review, and by evaluation of 3D character animations (Carvalho et al., 

2011). For the pilot study, an expert team is formed to evaluate the movement of workers 

in the animation and to validate the process workflow.  

 

3.5.7 Productivity Frontier Estimation 

The productivity frontier is to be estimated once an activity has achieved its 

steady state phase. Time and motion studies (Oglesby et al., 1989) are generally 

conducted to collect and analyze the site data (Shahidul & Shazali, 2011). They are useful 

in determining the time required to accomplish a specific task (Oglesby et al., 1989) by a 

qualified and a well-trained person working at a normal pace. Information acquired 

through these studies includes the actual time worked by laborers, the actual volume of 

production, and the rates of output over the course of a shift (Finkler et al., 1993). 
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Two approaches are established to compute the labor productivity frontier for the 

activity under study, which are: (a) observed durations and (b) estimated durations. The 

minimum durations obtained between two approaches is selected to compute the 

productivity frontier. 

 

3.5.7.1 Approach 1: Observed durations  

Observing movements of workers, the time and motion study is conducted by 

thoroughly reviewing the video data and durations of the contributory actions for the 

specific task or activity is recorded in an Excel spreadsheet as shown in Figure 3.3.  

 

 
 

Figure 3.3: Observed Duration from Time and Motion Study 
 

In the pilot study, movements of a single worker are observed as explained in 

Chapter 4. For example: A, B, C, D, E, F, G, and H are eight sets of actions for a task. 

Let, A1, A2, ……… AN, be durations to accomplish Action A. Similarly, B1, B2, ……… 

BN, are durations to accomplish Action B and so on. The shortest possible observed 

duration for each action is identified. If frequency of this observed shortest duration for 
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each action is k, then the probability of occurrence of this event is k/N. If all events are 

independent, then the probability of occurrence of the event will be: 

Probability of occurrence of the event = (Number of actions) x [(Probability of occurrence 

of A) x (Probability of occurrence of B) ……… x (Probability of occurrence of H) … … … (3.8) 

The shortest possible duration is estimated by adding up the shortest durations 

observed for each action because the task is made up of actions in a sequence. The 

number of quantity produced or number of output is divided by this observed shortest 

duration in order to compute the equivalent productivity. 

Similarly, for the detailed study, movements of the multiple workers are observed 

and are recorded in an Excel spreadsheet as described in Chapter 5. For a complete 

activity, the shortest possible duration for each task is again added because the activity is 

made up of tasks in a sequence. For each task, the shortest possible duration for each 

action is added, and for each action, the shortest possible duration for each movement is 

added because task is made up of actions, and action is made up of movements in 

sequence or parallel fashion. As there are multiple workers involved to accomplish the 

activity, the interactions between them are precisely analyzed. Upon dividing the output 

produced by the observed shortest duration, the equivalent productivity can be achieved. 

 

3.5.7.2 Approach 2: Estimated durations  

It is impossible to study and analyze all time data from the start to the end of the 

project because of various constraints, such as lack of workers to record data, limited 

space in video camera, lack of other tools, and the presence of all seen or unseen 

problems. Since observed durations may not include the shortest possible duration for a 
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task, action, or movement, the best-fit probability distributions are proposed to obtain the 

estimated shortest durations. The best-fit probability distributions are plotted adopting the 

concept of the “Goodness of Fit” with the application of the “Input Analyzer” tool in 

Arena Simulation Software similar to Figure 3.4. Based on the best-fit probability 

distribution for each action obtained from “Arena Input Analyzer,” the threshold 

parameter (shortest duration value) for that distribution is estimated using the “Base 

SAS® 9.2.” The shortest duration of the contributory actions for this task or activity are 

estimated from the distribution, which are evaluated at a 95% confidence interval, and 

values are recorded in the Excel spreadsheet. The shortest total estimated duration is 

computed by adding up the shortest possible durations estimated for each action. The 

equivalent productivity is estimated by dividing the number of units produced (output) by 

the estimated shortest duration.  

 

 
 

Figure 3.4: Sample Distribution Curve 
 

During the pilot study, the lowest duration of the contributory actions for each 

action are estimated from the best-fit probability distribution for each action as described 
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in Chapter 4. Similarly, during a detailed study as explained in Chapter 5, the lowest 

duration of the contributory movements for each action are estimated from the best-fit 

probability distribution for each movement. Finally, the estimated value of the labor 

productivity frontier is obtained by choosing the highest productivity from these two 

approaches–observed and estimated durations. 

 

3.5.8 Discussion 

Although the productivity frontier is not achievable in practice, it has significant 

importance while estimating optimal productivity of labor-intensive operations. Since 

actual productivity is compared against an objective measure rather than historical values, 

optimal productivity is necessary to develop an unbiased means of calculating the 

efficiency of construction operations. 

There may be a question regarding the validity of the theoretical productivity 

estimated using this framework as the productivity frontier because the productivity 

frontier is an abstraction that cannot be measured in the actual working scenario. Thus, it 

seems counterintuitive while using the actual field data to estimate its value. In order to 

justify this issue, a deductive logic can be used (Mani et al., 2014). First, this research 

defines the productivity frontier as the theoretical maximum productivity under the 

“perfect conditions,” and optimal productivity as the productivity under “good 

management” and “normal field conditions.” Therefore, if the recorded durations 

occurred in a project without negative management issues and under normal operations, 

then they would represent at least optimal productivity (Mani et al., 2014). Second, one 

would have to eliminate all system and operational inefficiencies in order to determine 



80 
 
the durations to estimate the productivity frontier, which could be done during the data 

collection period. However, this is impossible in real practice. If a concerted effort is 

made to minimize system inefficiencies, then the theoretical productivity calculated 

following these procedures would be somewhere in between the optimal productivity and 

the productivity frontier (Mani et al., 2014). Third, this research focuses on the 

instantaneous highest values of the labor productivity recorded, which is obtained from 

the shortest observed duration conducting the time and motion study. The probability of 

actually observing this level of theoretical productivity in the field is infinitesimal. For 

example, if (a) 100 observations are recorded during a construction task, (b) the task 

includes five actions, (c) the lowest duration recorded for each action occurs only once, 

and (d) the duration of each action is independent from the duration of all others, then the 

probability of observing the duration of the task being equal to the sum of the shortest 

durations of the actions would be one in 10 billion assuming actions are independent with 

each other. Fourth, part of the adopted definition for the optimal productivity included on 

a “sustainable basis,” which dismisses a productivity level that happens once in 10 billion 

observations (Mani et al., 2014). Therefore, this value can be taken as an estimate of the 

productivity frontier. 

 

3.6 Advanced Framework 

The basic framework discussed above is more time consuming and laborious in 

nature. This framework should be automated in order to quickly implement for the same 

project by collecting preliminary data and analyzing them in an automated fashion. The 

advanced framework involves an automated framework to estimate the labor productivity 
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frontier as well as a study of “recombinant synthetic workers.” With the implementation 

of this framework, a project manager would have access to a library of basic movements, 

actions, and tasks presented in a visual form using animations of a human figure. The 

project manager would be able to create synthetic activities and virtually perform the 

work at hand, which helps to analyze workflow in order to improve productivity. 

The proposed automated framework explores the automated techniques to 

facilitate data collection and analysis. It discusses the applications of video cameras and 

the Kinect sensor during collection of data. The detailed steps are discussed in Chapter 6. 

In addition, it explores the feasibility of creating the recombinant synthetic workers by 

aggregating basic movements as discussed in Chapter 8. 
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CHAPTER 4 

PILOT STUDY 

 

A pilot study was conducted in order to test the proposed basic framework 

(manual framework) and to examine the feasibility of estimating the labor productivity 

frontier in labor-intensive operation. Figure 4.1 shows the different stages of the pilot 

study (rectangular boxes) as well as the various methods adopted to implement each stage 

(legends with arrows). A description of each stage is as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.1 Field Data Collection 

Three Canon XF100 professional camcorders were used to collect video data. 

These cameras were calibrated using the “Camera Calibration Toolbox” in Matlab (Bai et 
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Figure 4.1: Basic Framework for Pilot Study 
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al., 2008). Prior to data collection, cameras were synchronized based upon a mode, 

frames per second, and initial time (Caillette & Howard, 2004; Delamarre & Faugeras, 

1999). Data were captured on the replacement of electrical lighting fixtures at Omaha 

South High Magnet School. The scope of this electrical lighting replacement project 

included the replacement of old T12 with new T8 fluorescent bulbs and ballasts. Data 

captured included different tasks involved in the bulb replacement, such as opening a 

glass frame cover, removal of the old T12 fluorescent bulbs, removal of the old ballast, 

installation of a new ballast, installation of T8 fluorescent bulbs, and closure of the of 

glass frame cover.  

Depending upon site conditions, single or multiple cameras were used (Bai et al., 

2008; John et al., 2009; Sigal et al., 2010). One moving camera was used to capture 

materials and equipment delivery activities (dynamic background). Two or three fixed 

cameras were used to capture electrical lighting installation processes depending upon 

space availability at the site of installation (fixed background). For small rooms, only two 

fixed cameras were used whereas for the larger rooms, three cameras captured 

movements of workers from different angles. 

Two electrical workers from the Commonwealth Electric Company, a veteran and 

a novice, participated in the project. However, this pilot study focused exclusively on 

capturing the activities performed by the veteran worker because the veteran was 

experienced and performed better in similar operations than the novice. Video was 

recorded in five different school zones: classrooms, lockers, corridor/hallway, weight 

room/training room, and family consumer science room. The veteran worker completed 

the installation of 62 Type 2 ballasts with two T8 bulbs each. 
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4.2 Data Analysis 

For the purposes of this study, the four-level hierarchy of activity, task, action, 

and movement was implemented as shown in Figure 4.2.   

 

 

 

 

 

 

 

 

 
 
 
 

The activity “lighting replacement” was selected to analyze the data because of its 

homogeneity across the construction project. The reasons behind choosing the 

“fluorescent bulb replacement” task are: (a) availability of enough data for the pilot 

study, (b) involvement of repetitive actions, and (c) fixed background while capturing 

data, which made identification of actions and movements easier. The activity was 

broken down into four different tasks: site preparation, fluorescent bulb replacement, 

waste management, and documentation. Each task was further broken down into actions 

as shown in Figure 4.2. All these tasks and actions were identified from the video data by 

converting it into individual images by applying the frame separation algorithm in Matlab 
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(Cai et al., 1995; Cai & Aggarwal, 1996). Sixty-two data points for the “fluorescent bulb 

replacement” task were analyzed at the actions level during this study. During the pilot 

study, the researcher did not continue to the movement level in the hierarchy because of 

time and resource constraints. 

 

4.3 Action Identification 

During this research, the action of the worker for each task was identified and 

classified from the image frame analysis by visual inspection (Wang et al., 2003). Wang 

et al. analyzed the image sequences involving a human motion analysis for the detection, 

tracking, and recognition purpose and developed algorithms for automated identification. 

This framework is just for the pilot study; thus, action identification was done manually. 

Figure 4.3 shows the eight different actions of the worker for the fluorescent bulb 

replacement task in four different video frames. Figure 4.3 (a), (b), (c), (d), (e), (f), (g), 

and (h) show the actions during glass frame opening, old bulb removal and storage, 

ballast cover removal, old ballast removal, new ballast installation, ballast cover closure, 

new bulb installation, and glass frame closure. 
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         (a)                              (b)                              (c)                             (d) 

       

(e)                                (f)                                (g)                              (h) 

 
Figure 4.3: Action Identification by Visual Inspection in Video Frames 

 

4.4 Action Classification 

Visual inspection (Bai et al., 2008; Wang et al., 2003) was used to classify each 

action of the “Lighting Replacement” activity into either contributory or non-

contributory, based upon their impact to work completion. A time and `motion study 

(Finkler et al., 1993; Shahidul & Shazali, 2011) was conducted from the video data, and 
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time was recorded for each contributory and non-contributory action. The contributory 

actions are those necessary to accomplish the different tasks as listed in Figure 4.2. Non-

contributory actions include any other action not listed in Figure 4.2. Non-contributory 

actions are considered non-productive and include actions, such as unscheduled breaks, 

time spent attending personal matters (texting, or talking), and idle time. The time 

required for each action was recorded from the video data using the hierarchical structure 

as shown in Figure 4.2. 

 

4.5 Model Development 

Modeling and animating human figures is particularly difficult because of the 

complexity of the articulated human body (Calvert et al., 1993). The major difficulties are 

design of realistic body models and specification of realistic movement. One of the first 

attempts at computer human body modeling was made by Badler et al. (1979). They 

presented a three-dimensional human body model designed by overlapping spheres, 

yielding a realistically formed and shaded body image on a raster graphics display. 

Sengupta & Das (1997) developed a low-cost 3D human modeling program in AutoCAD 

in order to support variable sizes and to provide the flexibility of a professional CAD 

system.  

For a pilot study, a simplified skeleton view of a worker is used to visualize 

worker’s movements. Even though this model does not show the level of detail of the 

Sengupta and Das model, it is accurate enough for the purposes of identifying and 

classifying actions according to the proposed basic framework. 
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(1) (2)     (3)        (4)                 (5)        (6)                (7)          (8) 

 
Figure 4.4: Skeleton View of Worker Performing Actions 

 

This is just a pilot study; thus, a simplified skeleton view of a worker is enough 

for the purposes of identifying and classifying actions according to this proposed 

framework. Figure 4.4 shows an instance of the model in skeleton view developed using 

AutoCAD in which each frame shows a specific action as follows and frame numbers are 

shown in parenthesis. 

1. Glass Frame Opening (7106) 

2. Old Bulb Removal and Storage (7255) 

3. Ballast Cover Removal (7653) 

4. Old Ballast Removal (8507) 

5. New Ballast Installation (9442) 

6. Ballast Cover Closure (10427) 

7. New Bulb Installation (10966) 

8. Glass Frame Closure (11646) 

In order to create a realistic representation, the surroundings of the working site 

were added and the process was animated using standard animation techniques (Aeluri, 

Bojan, Richie, & Weeks, 2004; Burtnyk & Wein, 1976; Lasseter et al., 1987) in both 
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FlipBook and Windows Movie Maker. These animated frames help to validate the 

process workflow. 

 

4.6 Model Validation 

It is a fact that the decision makers often do not have the training or time to check 

the validity of animated models, but the animation is an increasingly popular technique 

that can be used to verify, debug, and validate models (Loannou & Martinez, 1996). 

There are various techniques to validate the model, such as by literature review, by expert 

review, and by evaluation of 3D character animations (Carvalho et al., 2011). 

An expert team was formed, which consisted of five individuals: three of them 

were researchers themselves, one was a veteran and another was a novice electrical 

worker from the Commonwealth Electric Company. The team evaluated the movement of 

labor in the animation, in the real video footage, as well as output of the time and motion 

study. In addition, the team thoroughly analyzed the animated video frames developed in 

Windows Movie Maker and FlipBook in order to validate the process workflow.  

Developing any idea or product is a major stage, but analyzing its usability and 

quality is also. In order to evaluate the quality of this research, an evaluation process was 

conducted similar to Karat (1997). Experts’ feedback was collected by developing sample 

questionnaires as follows. 

• Is the quality of animation good enough to understand and validate the process 

workflow? 

• Is the information provided by animation understandable? 
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• How useful would this animation be in the context of the labor productivity 

analysis? 

• Are these models useful in the estimation of productivity frontier? 

In order to quantify the feedback, three leveled measurement scales were 

developed. For example, the responses: (1) poor, (2) average, and (3) good represent the 

feedback of experts. Although these responses were collected only from the team of five 

experts, they had critically evaluated this animation product and everyone responded to it 

as a “good” product. The team agreed that this animation validates the process workflow 

and is useful in the estimation of the productivity frontier in the understandable manner.  

 

4.7 Productivity Frontier Estimation 

During this study, two approaches were established to compute the productivity 

frontier for the “Fluorescent Bulb Replacement” task, which are (a) observed durations 

and (b) estimated durations. For both approaches, data was collected using time and 

motion study. The minimum durations obtained between approaches was selected in 

order to compute the productivity frontier.  

 

4.7.1 Approach 1: Observed Durations  

Focusing on the movements of a veteran worker, the time and motion study was 

conducted by thoroughly reviewing the video data and the durations of the contributory 

actions for the “Fluorescent Bulb Replacement” task, which were recorded in an Excel 

spreadsheet. The shortest possible duration was estimated by adding up the shortest 

durations observed for each action because the task was made up of actions in a 
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sequence. The shortest total observed duration was found to be 166 seconds. The number 

of units installed was divided by this observed shortest duration in order to compute the 

equivalent productivity. The resulting equivalent productivity was found to be 21.69 

stations per hour. 

 

4.7.2 Approach 2: Estimated Durations 

The probability distribution for each action involved in the “Fluorescent Bulb 

Replacement” task was obtained with the application of the “Input Analyzer” tool in the 

“Arena Simulation Software.” Based on the best-fit probability distribution for each 

action obtained from the “Arena Input Analyzer,” the threshold parameter (lowest 

duration) for that distribution was estimated using “Base SAS® 9.2.” The lowest duration 

of the contributory actions for this task was estimated from the distributions, which were 

evaluated at a 95% confidence interval, and values were recorded in an Excel 

spreadsheet. The shortest total estimated duration was found to be 161.29 seconds, which 

was estimated by adding up the shortest possible durations estimated for each action as 

shown in Table 4.1. Its equivalent productivity was estimated by dividing the number of 

units installed by the estimated shortest duration, which results in 22.32 stations per hour. 

The estimated value of the labor productivity frontier was obtained by choosing 

the highest productivity from these two approaches–observed and estimated durations. 

For the “Fluorescent Bulb Replacement” task, the productivity frontier was computed 

from this pilot study; thus, found to be 22.32 stations per hour.  
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Table 4.1: “Fluorescent Bulb Replacement” Action Durations in Seconds 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

Glass Frame Opening 3 2.97 Exponential 
Old Bulb Removal and 
Storage 

10 9.99 Weibull 

Ballast Cover Removal 5 4.15 Weibull 
Old Ballast Removal 70 69.49 Weibull 
New Ballast Installation 52 52 Weibull 
Ballast Cover Closure 10 7.68 Gamma 
New Bulb Installation 13 12.02 Gamma 
Glass Frame Closure 3 2.99 Weibull 
Total Lowest Durations 

for Task 
166 161.29  

 

4.8 Limitations and Discussion 

Although this pilot study examines data from a simple electrical activity, this 

methodology can be implemented in more complex operations. The shortest duration 

from two different approaches–one from observed and another from estimated–was 

considered while estimating the productivity frontier. The estimated duration was 

obtained by estimating the threshold parameter of each probability distribution in the 

“Base SAS® 9.2” software. Sometimes, it is difficult to plot best-fit probability 

distribution in this tool. For example, the SAS cannot plot the Erlang distribution. In this 

case, the second ranked distribution (from Input Analyzer in Arena) based on square error 

and p-value was fitted. The test shows that the lower the p-value when compared with the 

level of significance (α = 0.05), the poorer the fit in the probability distribution is (Kelton 

et al., 2010; Rockwell Automation, 2013). However, most of the manual steps used in the 

pilot study would have to be automated in a more complex activity in order to determine 

the productivity frontier.  
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The pilot study provided valuable lessons. The time and motion study was found 

to be effective in measuring the observed shortest duration to complete the task. The 

probability distribution was found effective in computing the estimated shortest duration. 

Therefore, this pilot study demonstrates that the proposed framework for estimating the 

productivity frontier is adequate when applied to a simple construction operation. 

However, more research is required to: 

• Determine the adequacy of the proposed approach when dealing with more 

complex construction operations. The pilot study focused on a simple 

operation performed by a single worker in a highly controlled environment. 

• Determine the adequacy of the proposed approach when dealing with an entire 

activity. The pilot study focused only on the “Fluorescent Bulb Replacement” 

task. Data was not collected for the other three tasks that make up the 

“Lighting Replacement” activity.  

• Determine the potential benefits of collecting more detailed information. The 

pilot study collected data up to the action level only. 

• Explore innovative ways of automating data collection and analysis. The 

proposed approach, as applied in the pilot study, was labor intensive.  
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CHAPTER 5 

DETAILED STUDY 

 

The pilot study discussed in Chapter 4 estimates the labor productivity frontier 

using a basic framework for sequential actions performed by a single worker. It is quite 

simple to understand the process and estimate the labor productivity frontier because of 

less complexity. When multiple workers are involved in the parallel and sequential 

actions, it increases complexities during analysis. To examine the basic framework for 

such a complex scenario, a detailed study was conducted. This chapter describes an 

extended research on labor-intensive fabrication operations during the “Fabrication of 

Sheet Metal Ducts” at the workshop of the Waldinger Corporation in Omaha, Nebraska. 

In addition, this detailed study illustrates the analysis of this activity up to the movement 

level of hierarchy. A detail description of each stage is explained below. 

 

5.1 Field Data Collection 

A similar approach to the pilot study was implemented to collect data from the 

site. Depending upon site conditions, single or multiple Canon XF100 professional 

camcorders were used to collect video data and calibrated using the “Camera Calibration 

Toolbox” in Matlab (Bai et al., 2008; John et al., 2009; Sigal et al., 2010). Prior to data 

collection, cameras were synchronized based upon a mode, frames per second, and initial 

time (Caillette & Howard, 2004; Delamarre & Faugeras, 1999). Data were captured on 

the fabrication of sheet metal ducts at the Waldinger Corporation’s workshop. These 

ducts were manufactured to install an exhaust system in a newly constructed building at 
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the University of Nebraska Medical Center (UNMC) in Omaha, Nebraska. The scope of 

this fabrication of sheet metal ducts included the complete labor-intensive operations of 

the formation of sheet metal ducts from plain metal sheets of standard sizes. The reasons 

behind the selection of this activity and working environment are illustrated in the 

following sections. 

 

5.1.1 Reason Behind Selection of This Activity 

The fabrication of sheet metal duct activity is selected because of the following 

reasons. 

• It is a controlled indoor environment, which makes it easy to collect data. It 

would be difficult and challenging to collect data from the outdoor 

environment because of unpredictable weather in Omaha. Also, there is more 

concern about the safety of data recording tools, such as video cameras from 

rainfall. 

• This research is for estimating the labor productivity frontier, which can be 

considered as an absolute benchmark for labor productivity analysis. Since it 

deals with the benchmarking and efficiency of labor-intensive operations, it 

demands more repetitive labor-intensive operations for precise results during 

analysis. It is difficult to collect more repetitive construction activities in the 

limited time-frame. Moreover, there will be less chance of getting a large 

number of repetitive activities in the same construction project. Also, it is not 

possible to get consistent constraints and working environments throughout 
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the data collection period, which is a more important factor for this research to 

estimate precise efficiency of labor-intensive operations. 

• This selected fabrication activity consists of almost a consistent working 

environment in terms of work approach, materials used for fabrication, and 

quality of output. For example, there were almost similar temperatures in the 

workstation, same sized plain metal sheets, same sets of equipment and tools, 

same sets of crews, and similar ducts fabricated throughout the data collection 

stage. 

• Video cameras are set closer to the workstation in order to capture minor 

movements of workers. 

 

5.1.2 Working Environment 

The fabrication of sheet metal ducts activity was performed at the fabrication 

workshop of the Waldinger Corporation in Omaha, Nebraska. Each duct is assembled 

with two pieces of plain metal sheets. Each plain metal sheet has a dimension of 80.25 

inches x 60 inches x 0.0336 inches. The required sizes of plain sheets are already 

delivered to the workshop in this ready-to-assemble condition. This activity involves 

eight different tasks: (a) roll bending, (b) lock forming, (c) lock setting, (d) tie rod 

installing, (e) flange screwing, (f) sealing, (g) packing, and (h) delivering. Eight workers 

were designated to complete this activity. Based on the nature of the tasks, separate crews 

of multiple workers were assigned. The first and second crews (Crew 1 and Crew 2) were 

involved in the roll bending task. The second crew was also involved in lock forming, 

lock setting, tie rod installing, and flange screwing tasks. The third crew (Crew 3) was 
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involved in the sealing and packing tasks. The fourth crew (Crew 4) was involved in the 

delivering task. The first and second crews consist of two workers each. The third crew 

consists of three workers. One worker was in the fourth crew. According to crew sets, 

data collection and analysis was done separately for each task.  

 

Roll Bending Task: The standard-sized (80.25 inches x 60 inches x 0.0336 

inches) metal sheets are rolled and bended in a designated shape and size in order to form 

a duct. A roll bending task was performed by two separate crews. The first crew 

completed the roll bending task for 148 plain sheets. The second crew accomplished the 

roll bending task for the remaining 86 metal sheets. Figures 5.1 and 5.2 show the roll 

bending task performed by the first and second crews, respectively. 

 

 
 

Figure 5.1: Roll Bending Task Performed By Crew 1 
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Figure 5.2: Roll Bending Task Performed By Crew 2 
 

Lock Forming Task: The objective of lock forming on both edges of the roll-

bended sheets is to assemble one sheet tightly over another in order to form a rigid duct. 

This task was started by the second crew after completing the roll bending task for all 

sheets. The lock forming task performed by the second crew is shown in Figure 5.3. 

 

 
 

Figure 5.3: Lock Forming Task Performed By Crew 2 
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Lock Setting Task: The second crew started the lock setting task after all sheets 

were lock-formed. This is an actual stage in which two lock-formed sheets are assembled 

to form a duct. Figure 5.4 shows the lock setting task performed by the second crew.  

 

 
 

Figure 5.4: Lock Setting Task Performed By Crew 2 
 

Tie-Rod Installing Task: The second crew installed tie-rods at the same 

workstation, where the lock-setting task was performed. Just after performing a lock-

setting task, the tie-rods were installed on one edge of the duct and again on the other. 

Each duct consists of five tie-rods, which embraces the duct at the middle such that it can 

bear loads. Figure 5.5 shows the working environment and the performance of the second 

crew for the tie-rod installation task. 
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Figure 5.5: Tie-Rod Installing Task Performed By Crew 2 
 

Flange Screwing Task: After the lock setting and the tie-rod installing task were 

completed, the designated flanges were screwed at each edge of the duct by the second 

crew as shown in Figure 5.6. The flanges were of definite sizes and delivered to the 

workstation in ready-made form. The flanges were screwed on one end of the duct and 

again to the next end of the duct in order to protect the duct’s ends from unwanted 

damage when delivering to or installing in the HVAC exhaust facilities. This flange is 

strong enough to take three times the required design loads of each duct.  

 

 
 

Figure 5.6: Flange Screwing Task Performed By Crew 2 
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Sealing Task: The third crew was assigned a sealing task as shown in Figure 5.7. 

The sealing was done on a duct’s edges where two sheets were joined around tie-rods 

installed position and around flanges of ducts in order to protect from air leakage, and 

prevent from weather or corrosion. However, three workers were involved in the sealing 

task; an individual worker was responsible for an individual duct. 

 

 
 

Figure 5.7: Sealing Task Performed By Crew 3 
 

Packing Task: After sealing, two workers from the third crew were involved in 

performing the packing task as shown in Figure 5.8. The main job of this task was to 

cover plastic (plasticking off) on both edges of the duct, where flanges were screwed in 

order to prevent from weather corrosion or peeling out of fresh sealer materials from 

joints due to rain water. The same workers were assigned to palletize and draw bending 

jobs in order to make the ducts ready for delivery. 
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Figure 5.8: Packing Task Performed By Crew 3 
 

Delivering Task: The fourth crew was assigned to load the ducts contained on a 

cart onto the vehicle and move them out from the workstation, termed as a delivery task. 

The delivery task was performed only after packing ducts in a set of three or six. 

However, this worker was also engaged with other activities in the workshop and was not 

continuously involved in this task. Altogether, eight workers were employed to complete 

this activity.  

 

 
 

Figure 5.9: Delivering Task Performed By Crew 4 
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Since the site is a fabrication workshop of the Waldinger Corporation, there was a 

problem of capturing movements of all workers involved in multiple simultaneous tasks 

because of the presence of various machines, materials, and other workers. Two or three 

fixed cameras were used to capture the fabrication activity of sheet metal ducts 

depending upon the space availability at the site of installation (fixed background). Only 

two fixed cameras were used to capture Tasks 1 and 2. One or two fixed cameras were 

used to capture Tasks 3, 4, and 5. One fixed camera was used to capture Tasks 6, 7, and 

8.  

 

5.2 Data Analysis 

In order to achieve the purpose of this study, the four-level hierarchy of activity, 

task, action, and movement was implemented as shown in Figure 5.10.  The “Fabrication 

of Sheet Metal Ducts” activity was selected to analyze the data because of its 

homogeneity across the project. The activity was broken down into eight different tasks: 

(a) roll bending, (b) lock forming, (c) lock setting, (d) tie rod installing, (e) flange 

screwing, (f) sealing, (g) packing, and (h) delivering. Each task was further broken down 

into actions and each action was broken down into movements. 

Since the lock setting and the tie-rod installing tasks were repeated one after 

another for both sides of the duct, these tasks are analyzed together as Sides I and II as 

shown in Figure 5.10. All these tasks and actions were identified from the video data by 

converting it into individual images by applying the frame separation algorithm in Matlab 

(Cai et al., 1995; Cai & Aggarwal, 1996). 
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Figure 5 10: Hierarchical Breakdown of Fabrication of Sheet Metal Ducts 
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One hundred and seventeen data points for the “Fabrication of Sheet Metal Ducts” 

activity were analyzed at the action level, as well as the movement level during this 

detailed study. This activity consists of eight different tasks, 45 different actions, and 

more than 255 different movements. In the task level study, there were 936 (8 x 117 = 

936) data points for analysis. In the action level study, there were 5,265 (45 x 117 = 

5,265) data points for analysis. There were at least 29,835 (255 x 117 = 29,835) data 

points for the movement level analysis. 

 The roll bending and the lock forming tasks were performed on the first and 

second workstations, respectively. The lock setting and tie-rod installing tasks were 

performed on the third workstation. The flange screwing task was performed on the 

fourth workstation. The sealing, packing, and delivering tasks were performed on the 

fifth, sixth, and seventh workstations, respectively. The lock setting and tie-rod installing 

tasks were performed by the same crew and at the same workstation; it is combined for 

Sides I and II during the data extraction phase in order to minimize level of complexity. 

Moreover, the objective of this detailed study is to determine the feasibility of the basic 

framework up to the movement level in the hierarchy. The researcher analyzed data to the 

movement level in the hierarchy for the second task (lock forming) only because of time 

and resource constraints.  

 

5.3 Actions and Movements Identification 

During this research, the action and movement of each worker was identified and 

classified from the image frame analysis by the visual inspection (Wang et al., 2003). 

Since this is just a basic framework, actions and movements were identified manually. 
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Identified actions and movements for the “Fabrication of Sheet Metal Ducts” activity are 

described below. 

 

5.3.1 Roll Bending Task 

Following the hierarchical structure, this task is broken down into six different 

actions as shown in Table 5.1, which are: (a) laying plain sheet on roll bending table, (b) 

marking dimension, (c) setting plain sheet, (d) bending sheet on the roller, (e) checking 

dimension, and (f) stacking of roll bended sheet.  

Since this task was performed by two sets of crews, they performed different 

sequential sets of actions as shown in Figures 5.1 and 5.2. In an attempt to lay the plain 

sheet on the roll bending table, workers have to approach the stacks of plain sheets in 

order to hold, move, and finally, place the plain sheet on the roll bending table, which are 

movements of the workers as shown in Table 5.1. Similarly, other movements involved 

in each action are listed in Table 5.1. 
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Table 5.1: Actions and Movements Involved in Roll Bending Task 
 

Task 1 Actions Movements 

Roll 
Bending 

Laying a plain 
sheet on the roll 
bending table 

• Approach to the plain sheet metal stacks 
• Hold the plain sheet metal 
• Move the plain sheet onto the roll bending table 
• Place the plain sheet on the roll bending table 

Marking 
dimension 

• Hold a marker 
• Hold a measuring tape 
• Measure a dimension of radius of curvature 
• Mark on the plain sheet by marker 
• Keep measuring tape back to the original place 

Setting the plain 
sheet 

• Move the plain sheet towards roller 
• Check edges of the sheet along the line of roller 

Bending sheet on 
the roller 

• Switch roller machine on forward direction 
• Bend the sheet metal onto forward direction 
• Switch roller machine off 
• Switch roller machine on backward direction 
• Bend the sheet metal onto backward direction 
• Switch roller machine off 

Checking 
dimension 

• Hold a measuring tape 
• Hold edge of the roll bended sheet 
• Measure a dimension of radius of curvature 
• Keep measuring tape back to original place 

Stacking of the 
roll-bended sheet 

• Lift the roll-bended sheet 
• Move the sheet towards stacks 
• Place the sheet on the stack 
• Move back to workstation 

 

5.3.2 Lock Forming Task 

This task involves three different actions, such as (a) laying the roll bended sheet 

on the lock machine table, (b) locking, and (c) stacking as shown in Table 5.2. Four 

different movements for the laying action, seven different movements for the locking 

action, and three different movements for the stacking action are identified as listed in 

Table 5.2.  
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Table 5.2: Actions and Movements Involved in Lock Forming Task 
 

Task 2 Actions Movements 

Lock 
Forming 
Task 

Laying the 
roll-bended 
sheet on lock 
machine table 

• Approach to the roll-bended sheet stacks 
• Hold the roll-bended sheet 
• Move the roll-bended sheet onto the lock forming table 
• Place the roll-bended sheet on the lock forming table 

Locking  

• Set one edge of the roll-bended sheet on lock machine 
• Slide the sheet for locking  
• Switch another edge of the sheet 
• Place another edge of the sheet on lock machine 
• Set another edge of the sheet on lock machine 
• Slide the sheet for locking 
• Hold the sheet before moving for stacking 

Stacking 
• Move the lock-formed sheet towards stacks 
• Place the lock-formed sheet at stacks 
• Move back to workstation 

 

5.3.3 Lock Setting Task 

Table 5.3 shows seven different actions involved in the lock setting task, which 

are: (a) laying the lock-formed sheet on the lock setting table, (b) clamping edges of the 

lock setting setup, (c) hooking the second sheet over the first sheet on the lock setting 

machine, (d) hammering for lock-down on the both edges, (e) pinning for lock-down on 

the both edges, (f) hammering along the edge, and (g) air-hammering to set the lock. 

There are about 34 movements identified in order to complete this task, which are listed 

in Table 5.3. Four movements for the laying action, six movements for the clamping 

action, four movements for the hooking action, six movements for the hammering action 

on both edges action, six movements for the pinning action, three movements for the 

hammering action along the edge, and five actions for the air-hammering action are 

identified as shown in Table 5.3. 
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Table 5.3: Actions and Movements for Lock Setting Task 
 

Task 3 Actions Movements 

Lock 
Setting 
Task 

Laying the lock-
formed sheet on 
lock setting 
table 

• Approach to the lock-formed sheet stacks 
• Hold the lock-formed sheet 
• Move the lock-formed sheet onto the lock setting table 
• Place the lock-formed sheet on the lock setting table 

Clamping edges 
of the lock 
setting setup 

• Hold a clamp 
• Lift and move a clamp 
• Clamp Edge 1 on the lock setting setup 
• Hold another clamp 
• Lift and move the clamp 
• Clamp Edge 2 on lock setting setup 

Hooking the 
second sheet 
over the first 
sheet on the lock 
setting machine 

• Approach to the lock-formed sheet stacks 
• Hold the lock-formed sheet 
• Move the lock-formed sheet onto the lock setting table 
• Place and hook the lock-formed sheet over first sheet 

Hammering for 
lock-down on 
the both edges 

• Hold a hammer 
• Lift the hammer 
• Punch onto the sheet Edge 1 
• Hold the hammer 
• Lift the hammer 
• Punch onto the sheet Edge 2 

Pinning for 
lock-down on 
the both edges 

• Hold a pin rod 
• Lift the pin rod 
• Punch onto the sheet Edge 1 by hammering 
• Hold a pin rod 
• Lift the pin rod 
• Punch onto the sheet Edge 2 by hammering 

Hammering 
along the edge 

• Hold a hammer 
• Lift the hammer 
• Punch along the locked-down sheet edges  

Air-hammering 
to set the lock 

• Hold and move the air-hammer towards the lock setting 
setup 

• Switch air-hammer on 
• Air-hammering along the locked sheet 
• Switch air-hammer off 
• Place air-hammer back to the original place 

 

5.3.4 Tie-Rod Installing Task 

According to the hierarchical structure, the tie-rod installing task was broken 

down into four different actions, such as (a) marking out the tie-rods locations on the 
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sheet, (b) drilling for tie-rods installation, (c) installing the tie-rods, and (d) screwing the 

tie-rods as shown in Table 5.4.  

 
Table 5.4: Actions and Movements for Tie-Rod Installing Task 

 
Task 4 Actions Movements 

Tie-Rod 
Installing 
Task  

Marking 
out tie-rods 
locations on 
the sheet 

• Approach to marking key-sheet 
• Hold and move the marking key-sheet 
• Place the marking key-sheet on the lock setting sheet 
• Hold markers 
• Mark positions for tie-rods on the lock setting sheet 
• Hold and move back the marking key-sheet 
• Move back to the workstation 

Drilling for 
tie-rods 
installation 

• Approach to drilling machine location 
• Hold a drilling machine 
• Switch the drilling machine on 
• Drill the sheet metal 
• Switch the drilling machine off 
• Place the drilling machine on the original table 
• Move back to the workstation 

Installing 
tie-rods 

• Approach toward tie-rods storing box 
• Hold a tie-rod 
• Hold screws 
• Place a tie-rod on the drilled position 

Screwing 
tie-rods 

• Approach to screwing machine location 
• Hold and move the screwing machine 
• Attach screw on the tip of screwing machine 
• Switch the screwing machine on 
• Screw to fix the tie-rod 
• Switch the screwing machine off 
• Place the screwing machine on the original table 
• Move back to the workstation 

 

Since the lock setting and tie-rod installing tasks were performed on both sides of 

a duct, one after another, these two tasks were analyzed together for Side I and Side II. 

Table 5.4 shows that there are seven movements for action 1, seven movements for action 

2, four movements for action 3, and eight movements for action 4. 
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5.3.5 Flange Screwing Task 

Six actions and 31 movements are identified for the flange screwing task as 

shown in Table 5.5. Those actions are: (a) taking the duct out from the lock setting, (b) 

installing a flange on one end of the duct, (c) screwing the flange on the duct, (d) 

installing the flange on another end of the duct, (e) screwing the flange on the duct, and 

(f) stacking the duct.  

Table 5.5: Actions and Movements for Flange Screwing Task 
 

Task 5 Actions Movements 

Flange 
Screwing 
Task 

Taking the duct 
out from the 
lock setting  

• Hold the duct 
• Move the duct out from the lock setting setup 
• Place the duct in the erected position to install a flange 

Installing a 
flange on one 
end of the duct 

• Approach to the bucket containing flanges 
• Hold a flange 
• Lift and move the flange towards the duct 
• Install by pushing the flange into the duct 

Screwing the 
flange on the 
duct 

• Approach to screwing machine location 
• Hold and move the screwing machine 
• Attach screw on the tip of the screwing machine 
• Switch the screwing machine on 
• Screw the flange on the duct 
• Switch the screwing machine off 
• Place the screwing machine on the original table 
• Move back to the workstation 

Installing the 
flange on 
another end of 
the duct 

• Turning the duct upright 
• Approach to a bucket containing flanges 
• Hold a flange 
• Lift and move the flange towards the duct 
• Install by pushing the flange into the duct 

Screwing the 
flange on the 
duct 

• Approach to screwing machine location 
• Hold and move the screwing machine 
• Attach screw on the tip of the screwing machine 
• Switch the screwing machine on 
• Screw the flange on the duct 
• Switch the screwing machine off 
• Place the screwing machine on the original table 
• Move back to the workstation 

Stacking the 
duct 

• Move by pushing the duct towards stacks 
• Place the duct at stacks 
• Move back to the workstation 
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5.3.6 Sealing Task 

This sealing task is the sixth task of the activity and is broken down into three 

actions and eight movements following the hierarchical structure as listed in Table 5.6, 

Three different actions are: (a) laying the duct for sealing, (b) filling sealer at joints of the 

duct and flanges, and (c) stacking the ducts. 

 
Table 5.6: Actions and Movements for Sealing Task 

 
Task 6 Actions Movements 

Sealing 
Task 

Laying the duct 
for sealing  

• Lift and move the duct from stacks 
• Lay the duct on the ground for sealing 

Filling sealer at 
joints of the duct 
and flanges 

• Hold a bucket containing sealer 
• Hold a paint brush 
• Fill sealer on the duct joints and flanges 

Stacking the duct 
• Move the duct towards stacks 
• Place the duct at stacks 
• Move back to the workstation 

 

5.3.7 Packing Task 

After the sealing task is done, the duct is made ready for packing. The packing 

task consists of four actions and 18 movements as listed in Table 5.7. The actions are: (a) 

plasticking off the duct at one edge in order to prevent sealer material from weathering, 

(b) plasticking off the duct at another edge, (c) stacking on the cart, and (d) palletizing 

and draw bending to prepare for delivery. 
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Table 5.7: Actions and Movements for Packing Task 
 

Task 7 Actions Movements 

Packing 
Task 

Plasticking off 
the duct at one 
edge 

• Turn the duct upright from stacks 
• Lay the plastic covering on one end of the duct 
• Cut edge of the plastic 
• Affix the plastic on the duct 

Plasticking off 
the duct at 
another edge 

• Turn the duct upright from stacks 
• Lay the plastic covering on one end of the duct 
• Cut edge of the plastic 
• Affix the plastic on the duct 

Stacking on the 
cart to make 
ready for 
delivering 

• Lay a cart on the ground at delivery location 
• Lift the duct 
• Move the duct on the cart to deliver 
• Stack the duct on the cart 
• Move back to the workstation 

Palletizing and 
draw bending 

• Move a wire-wheeler to the cart 
• Take out a wire and rounding about one edge 
• Draw bending 
• Make wires tight and lock-down 
• Move back to the workstation 

 

5.3.8 Delivering Task 

The delivering task is the last task of the activity. One worker of Crew 4 was 

assigned to upload the cart to the vehicle and move it out for delivery. The delivery task 

was performed only after packing ducts into sets of three or six. A loader (carrier 

equipment) was used for delivery, which is not in the scope of this research. Therefore, 

there is no further breakdown of this task into action and movement. However, the 

duration to upload the cart and leave the loader from the station was recorded. 

 

5.4 Action and Movement Classification 

Visual inspection (Bai et al., 2008; Wang et al., 2003) was used to classify each 

action and movement of the “Fabrication of Sheet Metal Ducts” activity into either 
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contributory or non-contributory, based upon their impact upon work completion. A time 

and motion study (Finkler et al., 1993; Shahidul & Shazali, 2011) was conducted from 

the video data, and time was recorded for each contributory and non-contributory action 

and movement. The contributory actions and movements are those necessary jobs to 

accomplish the different tasks as listed in Figure 5.10. Non-contributory actions or 

movements include any other action or movement not listed in Figure 5.10. Non-

contributory actions or movements are considered non-productive and include actions or 

movement, such as unscheduled breaks, time spent on attending personal matters 

(texting, or talking), disturbance by other workers, leaving the workstation for non-

related work, and standing for a long time without doing nothing (idle time). The time 

required for each action was recorded from the video data using the hierarchical structure 

as shown in Figure 5.10.  

When analyzing the movement level, it is almost impossible to record the 

duration of the movement by observing video data because duration of movement may be 

smaller than a second. Therefore, the video data was converted into individual images (30 

frames per second) by applying the frame separation algorithm in Matlab (Cai et al., 

1995; Cai & Aggarwal, 1996). The time and motion study was conducted by counting the 

number of frames to complete each movement and then converting those frames into 

duration in seconds scale, which were recorded into the Excel spreadsheet. 

 

5.5 Productivity Frontier Estimation 

During this study, two approaches were established to compute the productivity 

frontier for the “Fabrication of Sheet Metal Ducts” activity, which are: (a) observed 
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durations and (b) estimated durations. For both approaches, data was extracted using the 

time and motion study. The shortest durations obtained between two approaches was 

selected in order to compute the productivity frontier.  

 

5.5.1 Approach 1: Observed Durations 

During the hierarchical action level analysis, the time and motion study was 

conducted by thoroughly reviewing the video data and the durations of the contributory 

actions for each task of the “Fabrication of Sheet Metal Ducts” activity, and they were 

recorded in the Excel spreadsheet. Since multiple workers were involved in each task, the 

durations for individual and combined involvement of the workers for each task were 

separately recorded in the Excel spreadsheet as shown in Table A-1. The shortest possible 

duration for individual and combined involvement of workers were separately estimated 

by conducting a sequence set analysis. 

A sequence set analysis is defined as a process of analysis of data in different 

groups according to the characteristics of data set. In other words, it is an analysis process 

of data following the similar sequence set of actions performed by an individual worker 

or a crew of multiple workers for the same task. For example, an action may be 

accomplished by an individual worker or by the combined effort of multiple workers for 

the same task. According to similar sequential sets of data, a group of datasets is 

prepared.  

The minimum duration taken to accomplish an action is determined for each 

sequential dataset. The shortest possible duration for a task was estimated by adding up 

the shortest durations observed for each action because the task was made up of actions 
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in the specific set of sequence. Among available shortest durations for each sequential set 

of task, the shortest of the shortest duration is considered as the shortest observed 

duration for that task.  

Some tasks were performed in parallel fashion by workers. For example, one 

worker was involved in one action, and simultaneously, another worker was involved in 

another action for the same activity. Therefore, there is a complexity while estimating the 

shortest observed duration, especially in that task involving parallel and sequential 

actions. In order to address such a complexity, some assumptions are developed as 

described below. 

 

5.5.1.1 Assumptions 

Some reasonable assumptions are developed in order to make the analysis process 

simple and easy. 

• During action level analysis, the time taken to complete each action is 

measured using the time and motion study in a sequential fashion, if actions 

are performed by an individual worker to complete a task.  

• When actions are performed by two workers in a parallel fashion, the time 

taken to complete each action is recorded individually in the Excel 

spreadsheet. When they interactively perform together, the higher time taken 

between them is taken into account because maximum time is required to 

complete that task. For example, in a task consisting of four actions, Actions 1 

and 4 are done by the first and second workers in a parallel fashion while 

Actions 2 and 3 are performed together in a sequential fashion. To start Action 
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2 together, either the first or second worker must wait for their coworker. That 

means if successive actions have to be performed together, then a worker has 

to wait for his coworker until he has finished his action. This is similar to 

critical path concept (longest duration is counted) in which without 

considering the longest duration for the action following through the critical 

path, the task would not be complete. But, it generates an issue of wait time 

(idle time) because wait time is considered as a non-contributory action. 

• The wait time spent by a worker is evaluated before categorizing it as a 

contributory or non-contributory action. If the wait time is reasonably small, 

say 15% of the total time of the task, then it is included in the contributory 

action. For example, if the wait time is just 6 seconds in 60 seconds’ total time 

for a task, then it is about 10% of the total time. It is considered a contributory 

time because no one can perform another action between this insignificant 

time-frame (6 seconds in this example). 

• After completing an action, if the second worker joins with the first worker for 

the next action in the middle of the work, then the total time to complete that 

action is determined by measuring time spent by the first worker because he 

spent his whole time to complete that action. For example, the first worker 

completes Action 1 and starts Action 2 while the second worker is still 

working on Action 4. In the middle of Action 2, the second worker joins with 

the first worker to complete Action 2 after completing Action 4. Then, they 

together perform the remaining jobs of Action 2 and Action 3. In this case, the 

time taken to complete Actions 1 and 4 are measured based on the time spent 
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by the first and second workers, respectively. But, the time taken to complete 

Action 2 is measured based on the time spent by the first worker because he is 

involved for the entire Action 2. For Action 3, either time spent by the first 

worker or the second worker is considered because both durations are equal. 

 

5.5.1.2 Formulation for the sequential datasets 

Since four crews of multiple workers were assigned for different tasks, it is better 

to analyze and estimate the shortest observed duration for each task separately. 

 

5.5.1.2.1 Task 1: Roll bending task 

Two crews performed the roll bending task (T1), among which the first crew 

accomplished the task for 148 plain sheets and the remaining 86 plain sheets were 

completed by the second crew.  

Performance of the first crew: Let, W2 and W12 represent work performed by 

Worker 1, Worker 2, and both workers for Task 1, respectively. The task performed by 

the first crew (C1) involved seven different actions, which are represented by A1, A2, A3, 

A4, A5, A6, and A7, respectively, as shown in Table 5.8.  

 
Table 5.8: Sequence of Actions and Corresponding Symbol for Task 1 – Crew 1 

 
Task-Crew Actions Description Symbol 

Task 1-
Crew1 

Marking dimension T1-A1 
Laying a plain sheet on the roll bending table T1-A2 
Setting the plain sheet T1-A3 
Bending sheet on the roller T1-A4 
Checking dimension T1-A5 
Stacking of the roll-bended sheet T1-A6 
Stacking the plain sheets off from piles T1-A7 
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Based on the sequence of actions performed, two sequential datasets are 

classified. The first and second datasets consist of 104 and 44 data points, respectively. 

Among them, 15 sample data items for each set are listed in Table A.9. Since W1 

performed the marking dimension action (A1) for more than one sheet at once, the time 

taken to conduct the marking dimension action for each sheet is computed by dividing 

total time by number of sheets. 

According to the first sequential dataset, Actions A1, A2, and A7 were performed 

by W1 while W2 was engaged in the Action A6 in the parallel fashion. The remaining 

Actions: A3, A4, and A5 were performed by both workers together in the sequential 

fashion. Therefore, the highest duration between the time spent by W1 for Actions A1, A2, 

and A7 and that by W2 for Action A6 was taken because they performed them 

simultaneously. This duration was added with the shortest durations spent by both 

workers for remaining Actions A3, A4, and A5 sequentially in order to determine the 

shortest observed duration for this task as shown in Equation 5.1. The shortest observed 

duration was found to be 57 seconds after computing Equation 5.1. 

Highest of [(T1-A1- W1 + T1-A2- W1 + T1-A7- W1) or T1-A6- W2] + T1-A3- W12 + T1-A4- W12 + 

T1-A5- W12  … … … (5.1) 

For the second sequential dataset, only Actions A1, A7, and A6 were performed 

simultaneously by W1 and W2, and remaining actions were completed together. Equation 

5.2 was employed to determine the shortest observed duration for this task, and duration 

was found to be 62 seconds. The shortest of the shortest observed duration for Task 1 was 

determined by taking the minimum value between these two sequential datasets. Thus, 
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the shortest observed duration for Crew 1 for accomplishing Task 1 was found to be 57 

seconds.  

Highest of [(T1-A1- W1 + T1-A7- W1) or T1-A6- W2] + T1-A2- W12 + T1-A3- W12 + T1-A4- W12 + 

T1-A5- W12 … … … (5.2) 

Performance of second crew: Task 1 was also performed by the second crew for 

remaining 86 sheets. Among which, 15 data sample are listed in Table A.10. The roll 

bending task involved six different actions as shown in Table 5.9. The second crew 

conducted the “marking dimension” action (A2) only after performing the “laying the 

plain sheet on the roll bending table” action (A1) for each plain sheet, which is an 

opposite sequence of action performed by the first crew. In addition, the second crew did 

not perform the action “stacking plain sheet off from piles” that was performed by Crew 

1. 

 
Table 5.9: Sequence of Actions and Corresponding Symbol for Task 1 – Crew 2 

 
Task-Crew Actions Description Symbol 

Task 1-Crew 
2 

Laying a plain sheet on the roll bending table  T1-A1 
Marking dimension T1-A2 
Setting the plain sheet T1-A3 
Bending sheet on the roller T1-A4 
Checking dimension  T1-A5 
Stacking of the roll-bended sheet T1-A6 

 

According to the sequential dataset, all six actions were performed by Crew 2 in 

sequential order. Therefore, the shortest observed duration to accomplish Task 1 was 

computed by employing Equation 5.3. Thus, the shortest observed duration for Crew 2 to 

complete Task 2 was found to be 54 seconds. Furthermore, the minimum duration value 
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was taken to complete Task 1 by comparing the shortest observed durations between 

crews 1 and 2; thus, the shortest observed duration for task 1 was found to be 54 seconds. 

T1-A1- W12 + T1-A2- W1 + T1-A3- W12+ T1-A4- W12 + T1-A5- W12 + T1-A6- W12 … … … (5.3) 

 

5.5.1.2.2 Task 2: Lock forming task 

The lock forming task (T2) was performed by the second crew for 234 metal 

sheets, which involved three different actions as shown in Table 5.10. Tables A.1 shows 

seven sample data representing data-extraction process employing time and motion study 

by observing video data for the lock forming task. Based on the sequence of actions 

performed by the crew, three sequential datasets were classified. The number of data 

points for the first, second, and third sequential datasets are 98, 15, and 121, respectively. 

Among them, Tables A.2, A.3, and A.4 show 15 sample data for the first, second, and 

third sequential dataset for lock forming task. 

 
Table 5.10: Sequence of Actions and Corresponding Symbol for Task 2 – Crew 2 

 
Task-Crew Actions Description Symbol 

Task 2-Crew 
2 

Laying the roll bended sheet on the lock machine table  T2-A1 
Locking  T2-A2 
Stacking  T2-A3 

 

The sequence of actions performed in the first dataset includes parallel actions A1 

and A3 performed by Workers 1 and 2, respectively. After completing Action A3, the 

second worker (W2) joined with the first worker (W1) to complete the remaining job of 

Actions A1 and A2. The minimum duration of each action was determined for this dataset. 

Then, Equation 5.4 was employed to determine the shortest observed duration for this 
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task. Since the first worker was involved in Action A1 from start to finish, the total time 

to complete Action A1 was determined by measuring the time spent by that worker. The 

highest duration spent by both workers in Actions A1 and A3 were taken into account 

because they were performed simultaneously. This duration was added with the duration 

they spent together to perform Action A2 in order to get the total duration for Task T2. 

The shortest observed duration to complete this task for this dataset was found to be 44 

seconds. 

Highest of [T2-A1- W1 OR T2-A3- W2] + T2-A2- W12  … … … (5.4) 

Similarly, the shortest observed duration for the second sequential dataset was 

determined based on their sequence of actions performed by employing Equation 5.5 and 

the value was found to be 59 seconds. 

T2-A1- W12 + T2-A2- W12 + T2-A3- W12  … … … (5.5) 

The third sequential dataset represents a sequence of actions in which the second 

worker and the first worker performed Actions A1 and A3 simultaneously. After the 

stacking action was done, the first worker again joined Action A1 and performed the 

remaining actions together as shown in Equation 5.6. The shortest observed duration to 

complete this task for this dataset was found to be 44 seconds. 

Highest of [T2-A1- W2OR T2-A3- W1] + T2-A2- W12  … … … (5.6) 

Furthermore, the minimum duration value was taken to complete the lock forming 

task (Task 2) by comparing the shortest observed durations among three sequential 

datasets; thus, the shortest observed duration for Task 2 was found to be 44 seconds.  
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5.5.1.2.3 Tasks 3/4/5: Lock setting/ tie-rods installing/ flanges screwing tasks 

Tasks T3, T4, and T5 were performed by the second crew (C2) at the same time in 

a sequential and parallel fashion. Therefore, these tasks are analyzed together. A total of 

117 ducts were fabricated, which means there were 117 data points to analyze these tasks. 

Among them, 15 sample data are listed in Tables A.11 and A.12. Just after performing a 

lock-setting task, the tie-rods were installed on one edge of the duct and again on the 

other. Therefore, the lock-setting task and the tie-rods installing tasks were completed in 

two stages for Sides I and II as shown in Table 5.11. 

One sequential dataset was identified based on the sequence of actions performed 

by the second crew. When the second worker was engaged in Actions T3I-A1, T3I-A2, and 

T3I-A3, the first worker was performing Actions T5-A3 and T5-A6 in the parallel fashion. 

Therefore, the highest duration between them is taken into account as shown in Equation 

5.7. Actions T3I-A4 and T3I-A5 were completed by both workers simultaneously. 

Similarly, Actions T3I-A6, T3I-A7, and T3I-A8 were completed by the second worker while 

the first worker was engaged on Actions T4I-A1, T4I-A2, and so on. The minimum 

durations taken to perform the sequential actions and the parallel actions were separately 

computed. The highest duration between the durations taken to complete parallel actions 

was computed and added with durations spent for the sequential actions as shown in 

Equation 5.7. Thus, the shortest observed duration to complete Tasks T3, T4, and T5 was 

found to be 376 seconds. 
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Table 5.11: Sequence of Actions and Corresponding Symbol for Task 3/4/5 – Crew 2 
 

Task-Crew Actions Description Symbol 

Task 3I-
Crew 2 

Laying the lock-formed sheet on lock setting table T3I-A1 
Clamping edges of the lock setting setup T3I-A2 
Hooking the second sheet over the first sheet on the lock 
setting machine 

T3I-A3 

Holding clamps edges of the lock setting setup T3I-A4 
Hammering for lock-down on the both edges T3I-A5 
Pinning for lock-down on the both edges T3I-A6 
Hammering along the edge T3I-A7 
Air-hammering to set the lock T3I-A8 

Task 4I-
Crew 2 

Marking out tie-rods locations on the sheet T4I-A1 
Drilling for tie-rods installation T4I-A2 
Installing tie-rods T4I-A3 
Screwing tie-rods T4I-A4 

   

Task 3II-
Crew 2 

Laying the lock-formed sheet on lock setting table T3II-A1 
Clamping edges of the lock setting setup T3II-A2 
Hooking the second sheet over the first sheet on the lock 
setting machine 

T3II-A3 

Holding clamps edges of the lock setting setup T3II-A4 
Hammering for lock-down on the both edges T3II-A5 
Pinning for lock-down on the both edges T3II-A6 
Hammering along the edge T3II-A7 
Air-hammering to set the lock T3II-A8 

Task 4II-
Crew 2 

Marking out tie-rods locations on the sheet T4II-A1 
Drilling for tie-rods installation T4II-A2 
Installing tie-rods T4II-A3 
Screwing tie-rods T4II-A4 

   

Task 5-Crew 
2 

Taking the duct out from the lock setting T5-A1 
Installing a flange on one end of the duct T5-A2 
Screwing the flange on the duct T5-A3 
Installing the flange on another end of the duct T5-A4 
Screwing the flange on the duct T5-A5 
Stacking the duct T5-A6 
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Highest of [(T3I-A1- W2 + T3I-A2- W2  + T3I-A3- W2) or (T5-A3- W1 + T5-A6- W1)] + Highest of 

(T3I-A4- W1 or T3I-A5- W2) + Highest of [(T3I-A6- W2 + T3I-A7- W2 + T3I-A8- W2) or (T4I-A1- W1 

+ T4I-A2- W1)] + T4I-A4- W12 + T3II-A1- W12 + T3II-A2- W12 + T3II-A3- W12 + Highest of (T3II-A4- 

W1 or T3II-A5- W2) + Highest of [(T3II-A6- W2 +T3II-A7- W2 + T3II-A8- W2) or (T4II-A1- W1  +T4II-

A2- W1  )] + T4I-A3- W12  +T4II-A3- W12 + T4II-A4- W12 + T5-A1- W12 + T5-A2- W12  + T5-A4- W12 

+ T5-A5- W12 … … … (5.7) 

 

5.5.1.2.4 Task 6: Sealing task 

The sealing task (T6) consists of three different actions, which were performed by 

three workers of Crew 3 as shown in Table 5.12. They individually performed this task in 

sequential order. Therefore, three separate sequential datasets were classified, which 

consisted of 44, 22, and 51 data points in the first, second, and third datasets, 

respectively. Among them, 15 sample data for each dataset are listed in Table A.13. The 

minimum duration for each action was determined for each dataset.  

 
Table 5.12: Sequence of Actions and Corresponding Symbol for Task 6 – Crew 3 

 
Task-
Crew 

Actions Description Symbol 

Task 6-
Crew 3 

Laying the duct for sealing  T6-A1 
Filling sealer at joints of the duct and flanges T6-A2 
Stacking the duct T6-A3 

 

The shortest duration to complete the sealing task was computed for each dataset 

using Equations 5.8, 5.9, and 5.10. The shortest duration for the first, second, and third 

dataset were 601 seconds, 608 seconds, and 563 seconds for Workers W1, W2, and W3, 

respectively. The minimum value among three sets was taken as the shortest observed 
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duration to complete the sealing task (T6). Thus, the shortest observed duration to 

complete Task T6 was found to be 563 seconds. 

T6-A1- W1+ T6-A2- W1 + T6-A3- W1  … … … (5.8) 

T6-A1- W2 + T6-A2- W2 + T6-A3- W2 … … … (5.9) 

T6-A1- W3+ T6-A2- W3 + T6-A3- W3  … … … (5.10) 

 

5.5.1.2.5 Task 7: Packing task 

The packing task consisted of four different actions as shown in Table 5.13. Two 

workers of Crew 3 were involved to perform this task in a sequential fashion. Based on 

available data, two sequential datasets were classified. The first dataset represents the 

performance of Workers W1 and W2 together; whereas the second dataset represents the 

Workers W3 and W1 together. The number of data points available for the first and 

second datasets were 45 and 72, respectively. Among them, 15 sample data are tabulated 

in Table A.14. 

 
Table 5.13: Sequence of Actions and Corresponding Symbol for Task 7 – Crew 3 

 
Task-
Crew 

Actions Description Symbol 

Task 7-
Crew 3 

Plasticking off the duct at one edge T7-A1 
Plasticking off the duct at another edge T7-A2 
Stacking on the cart to make ready for delivering T7-A3 
Palletizing and draw bending T7-A4 

 

The minimum duration for each action for each dataset was determined. 

Equations 5.11 and 5.12 were used to compute the shortest observed duration to complete 

the packing task for the first and second datasets, which are 348 and 341 seconds, 

respectively. The lowest value obtained between both equations was taken into account 
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as the shortest observed duration to complete the packing task; thus, found to be 341 

seconds. 

T7-A1- W12+ T7-A2- W12 + T7-A3- W12 … … … (5.11) 

T7-A1- W31+ T7-A2- W31+ T7-A3- W31 … … … (5.12) 

 

5.5.1.2.6 Task 8: Delivering task 

One worker of Crew 4 was involved in uploading the cart containing three or six 

sets of ducts and then moving out for delivery. Since there is no further breakdown of this 

task into actions and movements, the duration to complete this task was recorded in an 

Excel spreadsheet. Among 31 data points recorded in the spreadsheet, 15 sample data are 

listed in Table A.15. The lowest time to accomplish this task was 14 seconds, which is 

the shortest observed duration to complete the delivering task (T8). 

Therefore, the shortest observed duration for the “Fabrication of Sheet Metal 

Ducts” activity was estimated by adding the shortest observed duration of each task 

because the activity was made up of tasks in a sequence. The shortest total observed 

duration was found to be 1,392 seconds. The number of ducts fabricated was divided by 

this observed shortest duration in order to compute the equivalent productivity. The 

resulting equivalent productivity was found to be 2.59 ducts per crew-hour.  
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5.5.2 Approach 2: Estimated Durations  

The probability distribution for each action involved in the “Fabrication of Sheet 

Metal Ducts” activity was obtained with the application of the “Input Analyzer” tool in 

the “Arena Simulation Software.” Based on the best-fit probability distribution for each 

action obtained from the “Arena Input Analyzer,” the threshold parameter (lowest 

duration) for that distribution was estimated using the “Base SAS® 9.2.” The lowest 

duration of the contributory actions for this task were estimated from the distribution, 

which were evaluated at a 95% confidence interval, and values were recorded in an Excel 

spreadsheet. The shortest estimated duration for each action was estimated for each task. 

When estimating the shortest total duration for each task, the concept of the sequence set 

analysis was again implemented similar to the method employed to estimate the observed 

shortest duration for each task. 

 

5.5.2.1 Task 1: Roll bending task 

Based on the sequential analysis, the roll bending task performed by the first crew 

was classified into two datasets. Employing the “Arena Input Analyzer” and the “Base 

SAS® 9.2” software, the lowest threshold parameter for each action of each dataset was 

estimated based on the best-fit probability distribution. Tables 5.14 and 5.15 show the 

lowest estimated durations with the corresponding best-fit probability distributions for the 

roll bending task for the sequential datasets 1 and 2 (C1-S1 and C1-S2), respectively. The 

shortest estimated duration of Task 1 for the first dataset (C1-S1) was computed using 

Equation 5.1 and was found to be 53 seconds. Similarly, the lowest estimated duration for 

the second dataset (C1-S2) was found to be 61 seconds when computed using Equation 
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5.2. The lowest value among them was found to be 53 seconds, which is the shortest 

estimated duration to complete Task 1.  

 
Table 5.14: “Roll Bending Task” Action Durations in Seconds for C1-S1 

 
Actions Lowest Observed 

Durations 
Lowest Estimated 

Durations 
Distribution 

T1-A1 5 4.08 Weibull 
T1-A2 7 4.49 Lognormal 
T1-A3 9 8.75 Gamma 
T1-A4 26 24.06 Gamma 
T1-A5 6 5.73 Lognormal 
T1-A6 15 14.12 Lognormal 
T1-A7 4 3.62 Weibull 

Total Lowest Durations 
for Task T1 

57 53  

 

Table 5.15: “Roll Bending Task” Action Durations in Seconds for C1-S2 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T1-A1 5 5.00 Beta 
T1-A2 6 5.73 Lognormal 
T1-A3 8 7.84 Weibull 
T1-A4 27 27 Gamma 
T1-A5 6 5.78 Lognormal 
T1-A6 15 14.60 Exponential 
T1-A7 5 2.40 Weibull 

Total Lowest Durations 
for Task T1 

62 61  

 

When considering the performance of Crew 2, a similar approach was employed 

to estimate the lowest estimated duration for each action of the third sequential dataset 

(C2-S3). The lowest observed durations and lowest estimated durations with 

corresponding best-fit distributions are listed in Table 5.16. Equation 5.3 was used to 

estimate the shortest observed duration for T1-C2 and was found to be 49 seconds. As the 

main objective of this study is to determine the possible shortest durations for each task, 
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therefore, the shortest estimated durations obtained from Equations 5.1, 5.2, and 5.3 were 

compared and the lowest value was taken as the shortest estimated durations for Task 1. 

Thus, the shortest estimated duration for the roll bending task was found to be 49 

seconds. 

 
Table 5.16: “Roll Bending Task” Action Durations in Seconds for C2-S3 

 
Actions Lowest Observed 

Durations 
Lowest Estimated 

Durations 
Distribution 

T1-A1 4 2.46 Gamma 
T1-A2 10 9.71 Beta 
T1-A3 6 5.58 Gamma 
T1-A4 26 23.79 Lognormal 
T1-A5 1 0.97 Exponential 
T1-A6 7 6.45 Lognormal 

Total Lowest Durations 
for Task T1 

54 49  

 

5.5.2.2 Task 2: Lock forming task 

Similar to the observed duration approach, three sequential datasets were 

identified based on the pattern of actions performed by the second crew. Table 5.17 

shows the first dataset in which the lowest observed durations and the lowest estimated 

durations with the corresponding best-fit probability distributions for each action are 

listed. The lowest duration value for this dataset to complete the lock forming task was 

estimated by using Equation 5.4 and was found to be 42 seconds.  

Table 5.18 shows the lowest observed durations and the lowest estimated 

durations with the corresponding best-fit probability distributions for each action of the 

second dataset (C2-S2). For this dataset, the lowest estimated duration to complete the 

lock forming task was estimated using Equation 5.5 and found to be 54 seconds.  
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Table 5.17: “Lock Forming Task” Action Durations in Seconds for C2-S1 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T1-A1 15 13.96 Weibull 
T1-A2 29 28.24 Lognormal 
T1-A3 9 7.41 Lognormal 

Total Lowest Durations 
for Task T2 

44 42  

 

Table 5.18: “Lock Forming Task” Action Durations in Seconds for C2-S2 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T1-A1 18 17.49 Lognormal 
T1-A2 32 32 Gamma 
T1-A3 9 4.5 Weibull 

Total Lowest Durations 
for Task T2 

59 54  

 

The lowest estimated durations of the third dataset (C2-S3) were estimated based 

on the best-fit probability distribution analysis for each action involved in the lock 

forming task and tabulated in Table 5.19. It shows the lowest observed as well as the 

lowest estimated duration for each action and the corresponding probability distribution. 

Equation 5.6 was employed to determine the shortest estimated duration for this task for 

the third dataset (C2-S3).  

Since the objective of this research was to determine the lowest of the lowest 

values, the lowest estimated durations from these three datasets were compared and the 

smallest value was taken as the shortest estimated duration to complete the lock forming 

task. Therefore, from this estimation, the shortest estimated duration was found to be 42 

seconds in order to complete Task 2.  
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Table 5.19: “Lock Forming Task” Action Durations in Seconds for C2-S3 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T1-A1 15 14 Weibull 
T1-A2 29 27.66 Lognormal 
T1-A3 9 8.88 Gamma 

Total Lowest Durations 
for Task T2 

44 42  

 

5.5.2.3 Tasks 3/4/5: Lock setting / tie-rods installing / flanges screwing tasks 

The lock setting, tie-rods installing, and flanges screwing tasks were performed 

by the second crew in the sequential and the parallel fashions at the same workstation. 

Therefore, these tasks were analyzed together. Only one sequential dataset was formed 

based on the sequence of actions performed. At first, the data of each action was analyzed 

using the “Arena Input Analyzer” in order to determine the best-fit probability 

distribution. Then, the same data was employed into the “Base SAS® 9.2” in order to 

determine the lowest threshold value of that probability distribution, which was 

considered as the lowest duration to complete that action. A similar procedure was 

conducted for each action of each task, and the lowest estimated duration for each action 

was tabulated in Table 5.20. This table shows the lowest observed durations and the 

lowest estimated durations with the corresponding best-fit probability distributions. 

Equation 5.7 was used to estimate the shortest estimated duration for Tasks 3, 4, and 5 

and the value was found to be 341 seconds. 
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Table 5.20: “Lock Setting, Tie-Rods Installing, and Flange Screwing Tasks” Action 
Durations in Seconds for C2 

 

Tasks Actions Lowest Observed 
Durations 

Lowest 
Estimated 
Durations 

Distribution 

T3I 

T3I-A1 11 10 Gamma 
T3I-A2 11 10.56 Gamma 
T3I-A3 11 9.91 Weibull 
T3I-A4 11 9.91 Weibull 
T3I-A5 17 16.09 Weibull 
T3I-A6 7 5.54 Lognormal 
T3I-A7 13 12.66 Gamma 
T3I-A8 14 12.47 Gamma 

     

T4I 

T4I-A1 18 16.61 Weibull 
T4I-A2 29 20.71 Beta 
T4I-A3 9 5.67 Gamma 
T4I-A4 28 27.66 Weibull 

     

T3II 

T3II-A1 21 19.56 Lognormal 
T3II-A2 6 5.90 Exponential 
T3II-A3 5 4.26 Lognormal 
T3II-A4 18 17.83 Weibull 
T3II-A5 18 17.95 Weibull 
T3II-A6 8 7.95 Exponential 
T3II-A7 12 10.89 Lognormal 
T3II-A8 20 19.04 Gamma 

     

T4II 

T4II-A1 9 5.85 Gamma 
T4II-A2 32 31 Weibull 
T4II-A3 8 7.07 Gamma 
T4II-A4 23 22.03 Gamma 

     

T5 

T5-A1 6 5.89 Gamma 
T5-A2 9 8.72 Exponential 
T5-A3 74 72.57 Weibull 
T5-A4 12 5.85 Gamma 
T5-A5 44 39.08 Weibull 
T5-A6 8 7.03 Gamma 

 Total Lowest Durations 
for Tasks T3/4/5 

376 341  
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5.5.2.4 Task 6: Sealing task 

Since three workers of the third crew were performing each action of the sealing 

task individually, the duration to complete this task was evaluated based on the 

performance of an individual worker. Therefore, three sequential datasets were classified 

and analyzed separately for each action. The lowest estimated duration for each action for 

each dataset was determined based on the best-fit probability distribution and tabulated in 

Table 5.21. Using Equations 5.8, 5.9, and 5.10, the shortest duration to complete the 

sealing task was computed for each dataset. The shortest estimated durations for the first, 

second, and third datasets were 591.58 seconds, 523.25 seconds, and 547.99 seconds for 

Workers W1, W2, and W3, respectively. The minimum value among these three sets was 

taken as the shortest estimated duration to complete the sealing task (T6). Therefore, the 

shortest estimated duration was found to be 523 seconds.  

 
Table 5.21: “Sealing Task” Action Durations in Seconds for C3 

 
Tasks-
Worker 

Actions Lowest Observed 
Durations 

Lowest 
Estimated 
Durations  

Distribution 

T6-W1 
T6-A1 7 7 Gamma 
T6-A2 590 580.99 Exponential 
T6-A3 4 3.59 Gamma 

     

T6-W2 
T6-A1 9 8.84 Lognormal 
T6-A2 591 506.41 Weibull 
T6-A3 8 8 Weibull 

     

T6-W3 
T6-A1 10 9.52 Gamma 
T6-A2 546 531.76 Weibull 
T6-A3 7 6.70 Gamma 

 Total Lowest Durations 
for Task T6 

563 523  
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5.5.2.5 Task 7: Packing Task 

Three workers of Crew 3 were involved to accomplish the packing task (T7). 

Based on the available data, two sequential datasets were classified. The lowest estimated 

duration for each action for each dataset was determined based on the best-fit probability 

distribution and tabulated in Table 5.22. This table also shows the lowest observed 

durations and the best-fit probability distribution for each action. Using Equations 5.11 

and 5.12, the shortest estimated duration for each dataset was computed. The lowest 

value obtained between both equations was taken into account as the shortest estimated 

duration to complete the packing task, and the value was found to be 308 seconds.  

 
Table 5.22: “Packing Task” Action Durations in Seconds for C3 

 
Tasks-
Worker 

Actions Lowest 
Observed 
Durations 

Lowest 
Estimated 
Durations  

Distribution 

T7-W12 

T7-A1 27 27 Beta 
T7-A2 46 44.53 Exponential 
T7-A3 14 13.70 Weibull 
T7-A1 261 230 Weibull 

     

T7-W31 

T7-A1 25 23.65 Gamma 
T7-A2 41 40.76 Weibull 
T7-A3 14 13.55 Weibull 
T7-A1 261 230 Weibull 

 Total Lowest 
Durations for Task T7 

341 308  

 

5.5.2.6 Task 8: Delivering Task 

Since only one worker of Crew 4 was involved to perform the delivering task, 

only one dataset was identified. The shortest estimated duration to complete this task was 

estimated based on the best-fit probability distribution similar to previous tasks. The 
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shortest estimated duration to accomplish the delivering task was found to be 10 seconds 

for its best-fit “Weibull Distribution Curve.” 

After obtaining the shortest estimated duration for each task, the shortest 

estimated duration for the “Fabrication of Sheet Metal Ducts” activity was computed by 

adding the shortest observed duration of each task because the activity was made up of 

tasks in a sequence. The shortest estimated duration for the activity was found to be 1,273 

seconds. The number of ducts fabricated was divided by this observed shortest duration 

in order to compute the equivalent productivity. The resulting equivalent productivity 

was found to be 2.83 ducts per crew-hour. 

The estimated value of the labor productivity frontier was obtained by choosing 

the highest productivity from these two approaches–observed and estimated durations. 

For the “Fabrication of Sheet Metal Ducts” activity, the productivity frontier computed 

from this detailed study was found to be 2.83 ducts per crew-hour. 

 

5.6 Comparison Between Performances of Crew 1 and Crew 2 

A roll bending task was performed by two crews. The first crew accomplished the 

roll bending task for 148 plain metal sheets while the second crew completed the 

remaining 86 sheets. Based on their performances and results, the following differences 

were identified during the analysis: 

• The first crew completed 63.25% of the total work of the roll bending task 

(148 out of 234 sheets), whereas the second crew accomplished only 36.75% 

of the total work of that task (86 out of 234 sheets). 
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• For Crew 1, two datasets were classified based on their sequence of actions 

performed. But, only one dataset was identified for Crew 2 because they 

performed almost a similar pattern. 

• There were seven actions involved in the task performed by Crew 1 as shown 

in Table 5.8. Whereas, only six actions were performed by Crew 2 to 

complete the same task as shown in Table 5.9. The “stacking plain sheets off 

from piles” action was not performed by Crew 2.  

• Crew 1 conducted the “marking dimension” action as a first action and 

performed for multiple sheets at once. But, Crew 2 performed this task as a 

second action and for each sheet. 

• Crew 1 conducted the “laying a plain sheet on the roll bending table” action 

only after the “marking dimension.” On the other hand, Crew 2 performed the 

“marking dimension” action for each sheet after laying a plain sheet on the 

roll bending table.   

• The remaining actions–such as “setting the plain sheet,” “bending sheet on the 

roller,” “checking dimension,” and “stacking the roll-bended sheet,”–were 

performed by both crews in the sequence of Actions 3, 4, 5, and 6, 

respectively.  

• The plain sheet was laid on the roll bending table (Action 2) either by Worker 

1 or both workers of Crew 1 as shown in Equations 5.1 and 5.2, respectively. 

But this action was accomplished by both workers of Crew 2 as shown in 

Equation 5.3. 
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• Only Worker 2 of Crew 1 was involved to perform the “stacking of the roll-

bended sheet” action, but in the case of Crew 2, both workers were involved 

to complete this action. 

• Crew 1 performed Actions 3, 4, and 5 sequentially. But, Actions 1, 2, and 7 

were performed by Worker 1 while Worker 2 was engaged in Action 6 for the 

first sequential dataset. But, according to the second set of data, Worker 1 

completed Actions 1 and 7 when Worker 2 was performing Action 6. On the 

contrary, Crew 2 accomplished all actions together in a sequential order as 

shown in Equation 5.3. 

• The lowest observed duration taken to complete Task 1 by Crew 1 was 

computed using Equations 5.1 and 5.2 and was found to be 57 seconds and 62 

seconds, respectively. The lowest value between them, such as 57 seconds in 

this case was considered as the shortest observed duration to complete this 

task for Crew 1. Meanwhile, the lowest observed duration to accomplish Task 

1 by Crew 2 was computed using Equation 5.3 and the value was found to be 

54 seconds.  

• Similarly, the lowest estimated durations for each action for each dataset were 

estimated based on the best-fit probability distribution analysis as described in 

the previous section. The shortest estimated durations for Task 1 were 53, 61, 

and 49 seconds and are tabulated in Tables 5.14, 5.15, and 5.16 for Crew 1 

and Crew 2, respectively.  
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• The maximum theoretical productivity values were computed for the roll 

bending task and values were found to be 67.92 sheets per crew-hour and 

73.47 sheets per crew-hour for Crew 1 and Crew 2, respectively.  

 

5.7 Movement Level Analysis for the Lock Forming Task (Task 2) 

One of the objectives of this research is to determine the impact of collecting data 

to the action level of hierarchy in the initial phase and to the lowest hierarchical level, i.e. 

the movement. Previous sections explained the estimation of the labor productivity 

frontier in the action level of hierarchy for the “Fabrication of Sheet Metal Ducts” 

activity. It is very challenging to study the movement level because of the lack of time 

and resources. Therefore, a hierarchical movement level analysis was conducted only for 

Task 2. 

The lock forming task (T2) was performed by the second crew, which involved 

two workers. Consistency of workers’ performance is the reason behind the selection of 

this task for the movement level analysis because both workers were involved from the 

beginning of this task to the end. Three different actions were identified during the action 

level of the hierarchical analysis, which are: laying the roll bended sheet on the lock 

machine table, locking, and stacking. For the movement level of the hierarchical analysis, 

14 different movements were identified by observing video data frames, which are: (a) 

approach to the roll-bended sheet stacks (M1), (b) hold the roll-bended sheet (M2), (c) 

move the roll-bended sheet onto the lock forming table (M3), (d) place the roll-bended 

sheet on the lock forming table (M4), (e) set one edge of the roll-bended sheet on the lock 

machine (M5), (f) slide the sheet for locking (M6), (g) switch another edge of the sheet 



140 
 
(M7), (h) place another edge of the sheet on the lock machine (M8), (i) set another edge of 

the sheet on the lock machine (M9), (j) slide the sheet for locking (M10), (k) hold the sheet 

before moving for stacking (M11), (l) move the lock-formed sheet toward stacks (M12), 

(m) place the lock-formed sheet in stacks (M13), and (n) move back to workstation (M14) 

as shown in Table 5.2 and Figures B.1 to B.14. 

A time and motion study was conducted to measure duration to complete each 

movement by observing video data and durations were recorded in the Excel spreadsheet. 

Table A.5 shows typical example representing data-extraction process for Action 1 of the 

lock forming task. Since the duration for accomplishing each movement is less than a 

second scale, the video data was converted into individual image frames (30 frames per 

second) by applying the frame separation algorithm in Matlab (Cai et al., 1995). Then, 

duration for accomplishing each movement was measured by counting the number of 

frames to complete that movement and converting it into a second scale.  

Data were grouped based on the sequence set analysis of movements performed 

by the crew. Three different datasets were identified. The first, second, and third datasets 

consist of 98, 15, and 121 data points, respectively. Among them, 15 sample data for each 

dataset are listed in Tables A.6, A.7, and A.8. 

According to the first sequential dataset, Worker 1 was involved in Movements 1, 

2, and 3 while Worker 2 was engaged in Movements 12, 13, and 14. They performed 

these movements simultaneously. After completing Movement 14, Worker 2 again joined 

with Worker 1 to complete Movement 3. Then, they performed the remaining 

Movements 4, 5, 6, 7, 8, 9, 10, and 11 together. These movements are performed 

sequentially. The lowest observed duration for each movement was determined for this 
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dataset as arranged in Table 5.23. Then, Equation 5.13 was used to compute the shortest 

observed duration to complete the lock forming task based on this dataset (S1) and the 

value was found to be 38 seconds.  

The best-fit probability distribution for each movement involved in the “lock 

forming task” was obtained with the application of the “Arena Input Analyzer.” Then, the 

threshold parameter (the lowest duration) for that distribution was estimated using the 

“Base SAS® 9.2.” The lowest duration of the contributory movements for this task were 

estimated from the distribution, which were evaluated at a 95% confidence interval and 

values were recorded in the Excel spreadsheet similar to Table 5.23. The shortest 

estimated duration was computed using Equation 5.23. Thus, the shortest estimated 

duration to complete this task for this dataset (S1) was found to be 34.35 seconds. 

 

Highest of (T2-M1- W1 + T2-M2- W1 + T2-M3- W1 OR T2-M12- W2 + T2-M13- W2 + T2-M14- W2) + 

T2-M4- W12  +T2-M5- W12  + T2-M6- W12  +T2-M7- W12  + T2-M8- W12  +T2-M9- W12  + T2-M10- 

W12  + T2-M11- W12  … … … (5.13) 
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Table 5.23: “Lock Forming Task” Movement Durations in Seconds for C2-S1 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T2-M1 1.63 0.86 Weibull 
T2-M2 1.00 0.94 Weibull 
T2-M3 8.02 7.97 Gamma 
T2-M4 0.70 0.65 Gamma 
T2-M5 0.80 0.8 Exponential 
T2-M6 8.80 6.75 Lognormal 
T2-M7 3.33 2.91 Gamma 
T2-M8 0.47 0.32 Gamma 
T2-M9 0.80 0.79 Exponential 
T2-M10 9.97 9.92 Lognormal 
T2-M11 2.47 2.44 Lognormal 
T2-M12 3.47 2.98 Weibull 
T2-M13 1.40 1.13 Gamma 
T2-M14 0.90 0.79 Gamma 

Total Lowest 
Durations for Task T2 

38 34.35  

 

Similar procedures were implemented to determine the shortest observed duration 

and the shortest estimated duration for the second and third sequential datasets. Tables 

5.24 and 5.25 show the lowest observed durations and the lowest estimated durations 

with the corresponding best-fit probability distributions for the second (S2) and third (S3) 

datasets. After getting the lowest observed durations for each movement, Equations 5.14 

and 5.15 were used to compute the shortest observed duration for Task 2 for the second 

and third sequential datasets, respectively. Similar to this, the shortest estimated duration 

to complete Task 2 for the second and third datasets was computed using Equations 5.14 

and 5.15, respectively. 
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T2-M1- W12  + T2-M2- W1+T2-M3- W12  + T2-M4- W12  +T2-M5- W12  + T2-M6- W12  +T2-M7- W12  

+ T2-M8- W12  +T2-M9- W12  + T2-M10- W12  + T2-M11- W12  + T2-M12- W2 + T2-M13- W2 + T2-

M14- W2  … … … (5.14) 

 

Table 5.24: “Lock Forming Task” Movement Durations in Seconds for C2-S2 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T2-M1 3.27 2.76 Weibull 
T2-M2 1.50 1.50 Beta 
T2-A3 8.70 8.13 Weibull 
T2-M4 0.73 0.71 Weibull 
T2-M5 0.80 0.80 Weibull 
T2-A6 10.13 10.02 Lognormal 
T2-M7 3.57 3.15 Lognormal 
T2-M8 0.80 0.69 Weibull 
T2-A9 0.80 0.73 Weibull 
T2-M10 10.05 10.02 Exponential 
T2-A11 2.63 2.60 Exponential 
T2-M12 3.47 2.90 Gamma 
T2-M13 2.13 1.99 Gamma 
T2-A14 1.50 0.96 Weibull 

Total Lowest Durations 
for Task T2 

50.08 46.96  

  

For the second sequential dataset, the shortest observed and the shortest estimated 

durations were found to be 50.08 and 46.96 seconds, respectively. Similarly, for the third 

sequential dataset, the shortest observed and the shortest estimated durations were found 

to be 39.85 and 38.09 seconds, respectively. 

 

Highest of (T2-M1- W2 + T2-M2- W2+ T2-M3- W2 OR T2-M12- W1 + T2-M13- W1 + T2-M14- W1) 

+T2-M3- W12  + T2-M4- W12  +T2-M5- W12  + T2-M6- W12  +T2-M7- W12  + T2-M8- W12  +T2-M9- 

W12  + T2-M10- W12  + T2-M11- W12  … … … (5.15)  
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Table 5.25: “Lock Forming Task” Movement Durations in Seconds for C2-S3 
 

Actions Lowest Observed 
Durations 

Lowest Estimated 
Durations 

Distribution 

T2-M1 2.67 2.28 Weibull 
T2-M2 1.00 0.98 Weibull 
T2-A3 8.27 7.77 Lognormal 
T2-M4 0.70 0.66 Gamma 
T2-M5 0.80 0.80 Weibull 
T2-A6 9.97 9.85 Lognormal 
T2-M7 3.33 3.22 Weibull 
T2-M8 0.47 0.40 Gamma 
T2-A9 0.80 0.60 Lognormal 
T2-M10 9.37 9.11 Lognormal 
T2-A11 2.47 2.42 Lognormal 
T2-M12 3.47 3.22 Weibull 
T2-M13 1.40 1.15 Gamma 
T2-A14 0.90 0.69 Gamma 

Total Lowest Durations 
for Task T2 

39.85 38.09  

 

The minimum value of durations computed among three equations is considered 

as the shortest observed duration. The shortest observed duration to complete the “lock 

forming task” was found to be 38 seconds. The number of sheets lock-formed was 

divided by this observed shortest duration in order to compute the equivalent 

productivity. The resulting equivalent productivity was found to be 94.74 sheets per 

crew-hour. 

The lowest estimated duration for each dataset was taken as the shortest estimated 

duration to complete this task. The shortest estimated duration was found to be 34.35 

seconds. Its equivalent productivity was estimated by dividing the number of metal sheets 

lock-formed by the estimated shortest duration, which results in 104.80 sheets per crew-

hour. 
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The estimated value of the labor productivity frontier was obtained by choosing 

the highest productivity from these two approaches–observed and estimated durations. 

For the “lock forming” task, the productivity frontier computed from this study, was 

found to be 104.80 sheets per crew-hour.  

 

5.8 Comparison Between Action and Movement Levels Analysis 

The detailed study was conducted for the “Fabrication of Sheet Metal Ducts” 

activity in order to justify the proposed basic framework (manual framework) following 

dual approaches: (a) observed duration and (b) estimated duration. However, the stages of 

data collection and analysis are almost similar in nature. There are slight differences in 

the data extraction phase. During action-level analysis, a time and motion study was 

conducted by directly observing video data. But for movement-level analysis, it was not 

feasible because duration of each movement was less than a second, which is almost 

impossible to measure by directly visualizing the video data. Therefore, the video data 

were converted into individual images by applying the frame separation algorithm in 

Matlab (Cai & Aggarwal, 1996). Besides this, there are some other features that 

differentiate the action level analysis with the movement-level analysis, which is 

described below. 

• A movement level is a lower level than the action level in the hierarchical 

structure. Therefore, there are more complexities present during analysis of 

the movement level.  
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• During this detailed study, the action-level analysis was performed for a 

whole activity, whereas the movement-level analysis was just performed for 

the “lock forming task.” 

• During action-level analysis, the time taken to extract video data was two to 

three times more than the actual time-length of the video clip. But for the 

movement-level analysis, such time was five to six times more than the actual 

time-length of the video clip. Such variations were due to increased 

complexity and methods implemented for the data extraction. It indicates that 

if there are more movements involved in the task, then more time is needed 

for the analysis and the data extraction. 

• The movement-level analysis was found to be more time consuming and 

complex than the action-level analysis. 

• The shortest observed and the estimated durations for the “lock forming task” 

were found to be 44 seconds and 42 seconds during the action-level analysis. 

But, for movement-level analysis, that durations were found to be 38 seconds 

and 34.35 seconds. The estimated value of the labor productivity frontier was 

obtained by choosing the highest productivity from these two approaches–

observed and estimated durations. The productivity frontiers computed from 

the action level and the movement level analyses were found to be 85.71 

sheets per crew-hour and 104.80 sheets per crew-hour, respectively. 

• In action-level analysis, the duration required to complete an action was found 

to be different than the duration required to complete the similar action for the 

movement level of analysis in some cases. The main reason behind this 
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deviation was the complexity of the study in each level. For example, in the 

action level analysis, the duration for an action was recorded in the second 

scale in moving video data. On the other hand, the duration for a movement 

was recorded by counting the number of video frames to complete the 

movement because the duration was sometimes less than a second. Therefore, 

the movement-level analysis provides a more precise duration value than the 

action-level analysis. 

• The result showed that the movement-level analysis is more consistent and 

uniform than the action-level analysis. The duration to complete contributory 

movements for the specific task was found lower in the movement-level 

analysis than the action-level analysis because of a minor level of study 

between workers in the same crew. Moreover, the reduction in durations is 

due to two different effects. The first one is the exposure of higher variability 

explained by the inverse mean variance optimization. The second effect is the 

fact that non-contributory tasks, actions, and movements are eliminated from 

the analysis as lower levels of the hierarchy are employed. It satisfies the 

concept of inverse mean variance optimization. 

  

5.9 Limitations and Discussion 

The shorter duration from two different approaches, one from observed and 

another from estimated, was considered while estimating the productivity frontier. The 

estimated duration was obtained by estimating the threshold parameter of each 

probability distribution in the “Base SAS® 9.2” software. Sometime, it is difficult to plot 
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the best-fit probability distribution in this tool. For example, the SAS cannot plot the 

Erlang distribution. In such a scenario, the second best-fit distribution obtained from the 

“Arena Input Analyzer” was taken into account on the basis of a square error and p-value. 

During goodness-of-fit test, the “Arena Input Analyzer” conducts suitable test, 

such as Chi-Square test and Kolmogorov-Smirnov test. In addition to the square error 

value, it also gives p-value for that particular test. The test shows that the lower the p-

value when compared with the level of significance (α = 0.05), the poorer the fit in the 

probability distribution is (Kelton et al., 2010; Rockwell Automation, 2013). During this 

analysis, only the best-fit curve having higher p-value is considered. Then, the threshold 

parameter is estimated for that probability distribution in the “Base SAS ® 9.2” software. 

This software not only tests the best-fit probability distribution, but also shows its 

parameters including the lower threshold parameter with corresponding p-value for each 

test.  

However, most of the manual steps used in the detailed study would have to be 

automated in a more complex activity in order to determine the productivity frontier. The 

detailed study provided valuable lessons. The time and motion study was found to be 

effective while measuring the shortest observed duration to complete the activity. The 

probability distribution was found effective in computing the estimated shortest duration. 

Therefore, this detailed study demonstrates that the proposed framework for estimating 

the productivity frontier is adequate when applied to a simple construction operation. 

However, more research is required to address the following limitations: 

• During data collection, multiple portable cameras were used but it would be 

better to use fixed surveillance cameras nearer to the workstation and installed 
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in such a manner that it can capture all workers’ actions and movements. It 

helps to minimize the necessity of the manpower in order to record on-site 

data. Thus, it reduces resource allocation costs. It also avoids human error 

while capturing video data. 

• The proposed approach, as applied in the detailed study, was labor intensive 

and time consuming. It is necessary to explore innovative ways of automating 

data collection and analysis. An effective automated tool is expected to 

estimate the productivity frontier in an efficient manner.  
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CHAPTER 6 

CONCEPTUAL EXPLORATION OF AN AUTOMATED FRAMEWORK 

 
The methodology discussed in the pilot study (Chapter 4) for a single worker and 

the detailed study (Chapter 5) for multiple workers is a manual framework, which is 

time-consuming and laborious. If a project manager wants to quickly implement this 

methodology for a similar project or an identical project by collecting and analyzing 

preliminary data, then this methodology has to be modified in an automated fashion. But, 

it is a challenging task to develop a fully automated framework in the sense there has not 

been a perfect automated tool developed for tracking multiple workers’ movements, 

contributory activities recognition, human poses estimation, observed duration, and 

estimated duration measurement for contributory actions that are defined in the manual 

framework. Therefore, the level of difficulty to estimate the labor productivity frontier 

using the automated framework is high. This chapter explains a conceptual framework to 

estimate the labor productivity frontier in an automated fashion. 

The proposed automated framework explores the automated techniques to 

facilitate data collection and analysis. Based on the application of video cameras and the 

Kinect sensor during collection of data, two separate automated frameworks are 

discussed. The basic concept behind these frameworks is similar. However, these 

frameworks are slightly varied in field data collection, data analysis, and workers’ pose 

modeling and tracking stages. These frameworks determine the impact of collecting data 

to the lowest hierarchical level–the movement. These frameworks evaluate the feasibility 
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of the proposed framework for estimating the labor productivity frontier of the entire 

activity. 

 

6.1 Proposed Framework Using Video Cameras 

Figure 6.1 shows the different stages of the proposed research methodology 

(rectangular boxes), as well as the various methods adopted to implement each stage 

(legends with arrows) using video cameras as the equipment for the data collection.  

 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

No 

Yes 

Acceptable 
Deviation 

Field Data Collection 

Data Analysis 

Workers’ Pose 
Modeling & Tracking 

Region Growing Technique 

Model Validation 
Simulation & Visualization 

Productivity Frontier 
Estimation 

Expert Review 

Artificial Neural Network Algorithms 

Thinning Algorithm 
Pattern Recognition Algorithm 

Pre-processing 
Background Subtraction 
Motion Segmentation Algorithm 

Action Identification 

Time & Motion Study 
Pattern Recognition Algorithm Action Classification 

Database 
Development Entity Relationship 

Model Development Virtual Environment 
Simulation 

Model Adjustment Simulation & Visualization 
Expert Review 

Video Camera 

Figure 6.1: Proposed Research Methodology for an Automated Framework 



152 
 
6.1.1 Field Data Collection 

Data collection is performed similar to the pilot study. Three Canon XF100 

professional camcorders are used to collect video data, which are calibrated using the 

“Camera Calibration Toolbox” in the Matlab (Bai et al., 2008). Prior to data collection, 

multiple cameras are synchronized based upon a mode, frames per second, and initial 

time (Caillette & Howard, 2004; Delamarre & Faugeras, 1999). The application of 

multiple cameras eliminates the problems of the self-occlusion and the kinematic 

singularities that are usually suffered in the monocular technique (Morris & Rehg, 1998; 

Sundaresan & Chellappa, 2009). This also helps in minimizing errors while working with 

tracking tools and human pose estimation (automation techniques).  

Camera setups follow the methodology described in Bai et al. (2008), John et al. 

(2009), and Sigal et al. (2010). Three fixed cameras are used to capture movements of 

workers performing a specific activity from three different angles, depending upon space 

availability at the site of installation (fixed background).  

 

6.1.2 Data Analysis 

The collected video data are pre-processed and converted into frames (Cai et al., 

1995; Cai & Aggarwal, 1996) in order to conduct foreground/background subtraction and 

are stored in the database dynamically on the basis of the hierarchical structure of the 

activity. The four-level hierarchy of activity, task, action, and movement is implemented 

similar to the pilot study as shown in Figure 4.2.  
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6.1.3 Workers Pose Modeling and Tracking 

First, a motion segmentation algorithm (Lin, Yang, Xia, & Kang, 2006) is 

developed to identify all moving objects in the images. Second, a filtering algorithm is 

used to eliminate unwanted moving objects because when applying a motion 

segmentation algorithm (Bai et al., 2008; Lin et al., 2006), it also captures unwanted 

moving objects. These unwanted objects are filtered by employing the pattern-matching 

of workers’ uniforms, assuming that all workers have distinguishable uniforms (Peddi, 

2008). For noiseless environments, a method involving pixel-to-pixel subtraction holding 

a fixed threshold may be suitable. But for an environment having noises, a background is 

computed following a moving average model similar to Peddi (2008), in which a mask-

level background is subtracted from the current frame in order to extract the workers. 

Third, for identification purposes, an identity is assigned to each worker.  

Finally, the worker’s silhouettes are created by clustering the pixels around the 

shape of each identified worker while applying the region growing technique (Adams & 

Bischof, 1994), a technique in which similar pixels are grouped together to form a single 

region and given a distinct color. The attributes of silhouettes are computed and stored in 

the database dynamically. 

 

6.1.3.1 Workers’ tracking approach 

In an attempt to track a worker, the video frames are analyzed starting from the 

first frame similar to Peddi (2008). If any new worker is identified, he or she is declared 

“new” and is assigned an identification number. For the next subsequent frames, the 

search algorithm finds matching blobs of that worker, then the tracks are updated, or 
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otherwise, the worker is declared as “lost.” If the tracking finds the matching blobs for 

that lost worker, then it is regained. If the worker is not found for a long time limit (say 

lost time limit) for consecutive frames, then the worker is deleted. If the new consecutive 

frames are not matched with the previous matched track, then a new track is generated for 

it and declared as a “new,” and the same process repeats.  

There is a less likely chance of a blob occlusion because multiple synchronized 

cameras are employed. If the tracking process is obstructed and lost due to blob 

occlusion, then there is still a chance to regain it in the subsequent frames. 

A distance based match matrix (Narayana & Haverkamp, 2007) is implemented in 

order to assess the matching blobs between current and previous frames. The track with 

the minimum distance is updated with the blob, if criterion t ≤ T satisfies, where T 

represents a global distance threshold and t represents a track distance. Since the speeds 

and directions of the movements of workers are varied on the real site, this tracking 

method should be modified in such a manner that the next position of a track is predicted 

based on its current speed and direction. Bai et al.’s (2008) approach is suitable as it uses 

a global value for distance threshold while considering the different motion speeds of the 

workers. 

 

6.1.3.2 Workers’ pose extraction approach 

A fast parallel algorithm similar to Zhang and Suen’s (1984) is employed to 

extract workers’ poses in the skeleton form from each image. This algorithm performs the 

iterative processes of deleting one from the northwest corner points and the southeast 

boundary points and then deleting the southeast corner points and northwest boundary 
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points. These processes continue until a smooth skeleton is obtained, preserving the end 

points and the pixel connectivity.  

Detailed articulated models are then developed to represent human body 

movements; these models initialize and track poses in an automatic manner (Sundaresan 

& Chellappa, 2009). The human body model consists of rigid segments, such as head, 

neck, arm, forearm, palm, upper trunk, lower trunk, thigh, leg, and foot. Each rigid 

segment has three degrees of freedom for translation and three for rotation. In addition, a 

thinning algorithm is employed to develop a worker’s skeleton movement tracking tool 

(Kannan & Ramakrishnan, 2012; Park, Palinginis, & Brilakis, 2012; Zhang & Suen, 

1984). Figure 6.2 shows skeleton views with images of two different actions performed 

by an electrical worker: (a) moving from one workstation to another workstation and (b) 

glass frame opening performed by an electrical worker.  

 

      
 

Figure 6.2: Sample Skeleton View of Actions Performed by an Electrical Worker 
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6.1.5 Action Identification and Classification 

Besides manual identification and classification of workers’ actions similar to the 

pilot study, an automated tool is developed for the analysis of the workers’ poses in the 

silhouette models, the complete articulated models, and the skeleton models using the 

detailed pattern recognition algorithms and the Artificial Neural Network (ANN) 

algorithms developed following the methodology employed by Peddi (2008). Those 

poses are categorized into the contributory and non-contributory based on their impact to 

work completion. The contributory poses are those actions necessary to accomplish the 

tasks, whereas the non-contributory actions are considered non-productive and include 

actions, such as unscheduled breaks, time spent attending personal matters, and idle time. 

The objective of this process is to determine the capabilities and limitations of ANN 

algorithms to automatically recognize the multiple tasks that make up an activity and the 

multiple actions that make up a task. 

During this research, a back propagation learning algorithm having a feed forward 

neural network is used similar to Peddi (2008) and Amin and Shekhar (1994). There are 

two work phases–the learning phase and execution phase–which are employed in neural 

networks. Training data sets are manually annotated during the learning phase in order to 

train networks using the back propagation learning algorithm. These trained neural 

networks are utilized to analyze and classify similar poses in the execution phase. Since 

there are variations in the shape, size, and location/orientation of workers, an image 

scaling phenomena is implemented to keep consistency in the sizes of these poses, such 

that all the poses are scaled to fixed size as described in Bai et al. (2008). 
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An instance algorithm for a pose classification is employed after scaled poses are 

obtained, which has the learning and execution phase–identifying and classifying 

contributory and non-contributory poses or movements (Bai et al., 2008).  

There are still some challenges in the interpretation of the contributory work for 

different types of activities because a movement or an action in one instance may be 

contributory for one type of task, whereas it may be non-contributory for another type of 

task in another instance. Therefore, a metric should be defined in order to identify the 

contributory movements or actions for a specific type of activity. It is better to conduct a 

manual study for each type of activity, and then define suitable metrics in the form of the 

contributory movements or actions, before employing in the automated framework. For 

example, types of poses can be defined manually, such as bending, walking, or standing 

as contributory actions and talking with co-workers and standing idle while doing nothing 

as non-contributory. For simplicity, the contributory actions can be represented by 

positive actions and the non-contributory actions can be represented by negative actions 

when converting manually defined actions into actions for the automated framework. 

 

6.1.6 Database Development 

A digital database is developed including all kinds of data, such as video data, 

images of classified actions, animated action models, skeleton tracking images, human 

body models, necessary information in text/pdf format, and software developed during 

the research. 
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6.1.7 Model Development, Validation, and Adjustment  

In addition to a simplified skeleton view of a worker developed using AutoCAD 

as shown in Figure 4. 4, the proposed framework conducted a feasibility analysis of the 

“recombinant synthetic workers and crew” as described in Chapter 8.  A synthetic crew is 

modeled acquiring the relevant workers’ poses from the digital database and by detail 

analyzing the interaction between workers, and workers with equipment and materials in 

the virtually developed environment of the sequential as well as in parallel operations. 

Advanced techniques of simulation and visualization are employed. 

As an extension to the pilot study, the developed model is validated not only by 

expert reviews but also by simulation and visualization techniques in the automated 

fashion. The adjustment of the model is performed in order to make it more precise.  

 

6.1.8 Productivity Frontier Estimation 

A time and motion study is conducted to measure the observed duration for each 

contributory movement of the worker under observation in the video data, developing a 

partially automated time and motion study tool. 

An algorithm is developed to link the result of partially automated time and 

motion study with the “Arena Simulation Software” and the “Base SAS® 9.2” software to 

determine the shortest estimated durations dynamically. The labor productivity frontier is 

then obtained by choosing the highest productivity value from the two methods–observed 

and estimated durations. The resulting automated observations and estimates are 

compared to the traditional approach to assess the feasibility of automating data 

collection.  



159 
 
6.2 Proposed Framework Using the Kinect Sensor 

The Kinect is a useful sensor for 3D reconstruction of a scene with point clouds 

and for 3D skeleton extraction of human subjects combined with the motion capture 

solutions (Han, Shao, Xu, & Shotton, 2013). It is applicable to building 3D human 

models through 2D pose estimation and also the direct inference of 3D poses by 

integrating the depth into the pose estimation process. But there are some limitations of 

the Kinect sensor. For example, the Kinect sensor provides unreliable motion capture 

outcomes in an outdoor environment because of interaction of infra-red (IR) light and 

sunlight. It has limited operating ranges for motion capture ranges of 0.8 m to 4 m, 

depending upon tolerance of error (Han et al., 2013; Weerasinghe et al., 2012). It does 

not provide a precise segment length of the human body during motion (Bonnechere et 

al., 2012). The range of viewing angle is 43 degrees vertical by 57 degrees horizontal, 

and 1280 x 960 resolution at 12 frames per second or 640 x 480 resolution at 30 frames 

per second (Shingade & Ghotkar, 2014). It cannot track more than six people and cannot 

track skeleton views of more than two people. It is suitable to capture data only for 

indoor construction activities. Thus, a suitable construction site needs to be selected 

considering these limitations of the Kinect sensor. 

When the Kinect camera (sensor) is employed for data collection, the previous 

framework using a video camera is slightly modified. Figure 6.3 shows the different 

stages of the proposed research methodology (rectangular boxes), as well as the various 

methods adopted to implement each stage (legends with arrows).  
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Instead of multiple video cameras, a single Kinect camera sensor is setup at 

appropriate locations of the indoor construction site. With the help of depth information 
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information is obtained from the Kinect camera, such as depth information from the IR 

camera, texture information (RGB color map of the scene) from the RGB camera, and 
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user information from binary images (including people detection) (Shingade & Ghotkar, 

2014). Upon use of MS Kinect SDK, it automatically tracks the human skeleton and 

provides the skeleton information of people in the scene in real time. All these data are 

stored in the database dynamically. In addition, the four-level hierarchy of activity, task, 

action, and movement is implemented similar to the pilot study as shown in Figure 4.2.  

 

6.2.2 Workers’ Pose Modeling and Tracking 

This involves various stages, such as workers’ skeleton recognition, workers’ 

skeleton tracking, 3D human model development, and skeleton and human model rigging 

as shown in Figure 6.4. Using MS Kinect SDK, the skeleton joint positions of people 

seen in the scene are obtained. After observing skeleton joints, those skeletons are 

extracted from input data. Such a process is called skeleton recognition. This process 

involves several stages, such as separating foreground from background, separating the 

human body out from foreground, segmenting the human body into different regions, and 

obtaining skeleton joints from the analysis similar to Shotton et al. (2011). The 

movement of each joint position is captured from each frame using MS Kinect SDK 

framework, also known as skeleton tracking. 

Using Autodesk Maya software, the 3D human model is created, which involves 

different stages, such as creation of a mesh model, application of texture on the mesh, and 

application of clothing on the human model (Shingade & Ghotkar, 2014). Following an 

algorithm similar to Baran & Popovic’s (2007), rigging of the 3D human model and 

skeleton is performed in such a way that each joint of the skeleton is placed at 

corresponding positions on the created human model. This process maps rigs character 
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skeleton with the captured Kinect skeleton, and the skeleton is attached to the human 

model. 
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location/orientation of workers, an image scaling phenomena is implemented to keep 

consistency in the sizes of these poses, such that all the poses are scaled to the fixed size 

as described in Bai et al. (2008). 

An instance algorithm for a pose classification is employed after scaled poses are 

obtained, which has the learning and execution phase, identifying and classifying 

contributory and non-contributory poses or movements (Bai et al., 2008).  

A time and motion study is conducted to measure the observed duration for each 

contributory movement of the worker under observation in the Kinect data, developing a 

partially automated time and motion study tool. All data are stored in the database 

dynamically. 

 

6.2.4 Database Development 

Similar to the previous framework, a digital database is developed. It includes all 

kinds of data, such as the Kinect data, skeleton data, human body models, images, 

necessary information in text/pdf format, and software developed during the research. 

 

6.2.5 Model Development, Validation, and Adjustment 

An animated model is developed using Unity 3D software, in which the motion 

data obtained from the skeleton tracking phase is applied into the rigged model 

(character) as shown in Figure 6.5. If the skeleton tracking phase data is not suitable to 

map the positions of joints because of incorrect sizes, the rotations data are extracted 

from the skeleton tracking phase to the rig character, adopting the concept of rotation 

transformation matrix similar to Shingade and Ghotkar (2014).  
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These animated models are developed only considering the contributory actions 

for that specific task or activity. These models can represent a synthetic crew similar to 

the “recombinant synthetic workers and crew” as described in Chapter 8. The synthetic 

crews are modeled acquiring the relevant workers’ contributory poses from the digital 

database and by detail analyzing the interaction between workers, and workers with 

equipment and materials in the virtually developed environment of the activity. These 

models are validated not only by expert reviews but also by the simulation and 

visualization technique in the automated fashion. The adjustments of the models are 

performed in order to make them more precise. 

 

6.2.6 Productivity Frontier Estimation 

A time and motion study is conducted to measure the observed duration for each 

contributory movement of the worker under observation in the Kinect data, developing a 

partially automated time and motion study tool. An algorithm is developed to link the 

partially automated time and motion study with the “Arena Simulation Software” and the 
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“Base SAS® 9.2” software to determine the shortest estimated durations dynamically. 

The labor productivity frontier is then obtained by choosing the highest productivity 

value from the two methods—observed and estimated durations. The resulting automated 

observations and estimates are compared to the traditional approach to assess the 

feasibility of automating data collection. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

This dissertation presents an innovative framework to estimate the labor 

productivity frontier by conducting a pilot study as well as a detailed study. The pilot 

study justifies the proposed basic framework by examining the data from a simple 

electrical activity. It focused exclusively on capturing the activities performed by a single 

worker for the “Lighting Replacement” activity. The detailed study also justifies the 

proposed basic framework for both sequential and parallel actions and movements 

performed by crews of multiple workers on labor-intensive fabrication operations during 

the “Fabrication of Sheet Metal Ducts” at the Waldinger Corporation’s workshop in 

Omaha, Nebraska. The comparison between the pilot study and the detailed study, 

conclusions and recommendations, intellectual merits, and broader impacts of this 

research are explained in this chapter. 

 

7.1 Comparison Between a Pilot Study and a Detailed Study 

At first, this dissertation introduces a framework to estimate the productivity 

frontier conducting a pilot study for a lighting replacement activity. Then, it extends 

research and justifies the framework by conducting a detailed study for the fabrication of 

sheet metal ducts activity. Both studies justify the proposed basic framework by 

illustrating dual approaches: (a) observed duration and (b) estimated duration-and 

confirms that this study has a significant importance for the future. Typical characteristics 

of both studies are described below. 



167 
 

Types of Work: The pilot study was conducted by capturing data on the 

replacement of electrical lighting fixtures at Omaha South High Magnet School. It is 

typically related to the labor-intensive regular maintenance and installation activity. The 

scope of this electrical lighting replacement project included the replacement of old T12 

with new T8 fluorescent bulbs and ballasts. The detailed study was conducted by 

capturing data on the fabrication of sheet metal ducts at the workshop of the Waldinger 

Corporation in Omaha, Nebraska. It is related to labor-intensive manufacturing activity. 

 

Working Environment: Both studies were conducted in a controlled indoor 

environment. But, there are some constraints that are out of control for data collectors. 

For example, high noise level due to the movements of students around the workstation, 

space congestion due to the presence of chairs and desks, high humidity, low luminance, 

and low temperatures are some uncontrollable constraints identified during collecting 

data for the pilot study. In the detailed study, similar uncontrollable constraints are 

identified, such as high noise due to operation of machines in the workshop, disturbances 

by other coworkers, high humidity, high temperature, frequent change of high and low 

luminance due to frequent opening and closing of doors, space congestion, and 

disturbances in setting up video cameras due to the presence of multiple machines and 

manufactured products around the workstation. 

 

Single Versus Multiple Workers: However, two electrical workers from the 

Commonwealth Electric Company–a veteran and a novice–participated in the project. 

The pilot study focused exclusively on capturing the activities performed by the veteran 
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worker because the veteran was experienced and performed better in similar operations 

than the novice. Thus, the pilot study only focused on the performance of a single worker. 

But, the detailed study was conducted by analyzing the performance of multiple workers. 

There were four crews (eight workers in total) involved to complete the “Fabrication of 

Sheet Metal Ducts” activity. Crew 1 and Crew 2 consisted of two workers each, who 

performed the roll bending task. Crew 2 was also involved in the lock forming, lock 

setting, tie-rods installing, and flange screwing tasks. Crew 3 consisted of three workers 

who performed the sealing and packing tasks. Crew 4, which had one worker, was 

involved in the delivering task. 

 

Number of Data for Study: Sixty-two data points for the “Fluorescent Bulb 

Replacement” task were analyzed at the action level during the pilot study. During the 

detailed study, 117 data points for the “Fabrication of Sheet Metal Ducts” activity were 

analyzed at the action and the movement level of the hierarchical structure. Each activity 

consists of eight different tasks, 45 different actions, and more than 255 different 

movements. In the task-level study, there were 936 (8 x 117 = 936) data points for 

analysis. In the action-level study, there were 5,265 (45 x 117 = 5,265) data points for 

analysis. In the movement-level study, there were at least 29,835 (255 x 117 = 29,835) 

data points for analysis. 

 

Sequential and Parallel Tasks, Actions, and Movements: During the pilot 

study, it was found that all actions are accomplished by a worker sequentially. No further 

analysis to the movement level in the hierarchy was continued in the pilot study. During 
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the detailed study, both sequential and parallel tasks, actions, and movements were 

identified for the “Fabrication of Sheet Metal Ducts” activity. 

 

Data Analysis: Only the fluorescent bulb replacement task was analyzed at the 

action level during the pilot study. During the detailed study, multiple crews were 

assigned multiple tasks of the “Fabrication of Sheet Metal Ducts” activity. Therefore, 

Task 1 and Task 2 were analyzed separately. As Tasks 3, 4, and 5 were accomplished by 

Crew 2 sequentially and simultaneously, these tasks were combined and analyzed. Tasks 

6, 7, and 8 were analyzed separately. Because of time and resource constraints, the 

detailed analysis for the movement level of hierarchy was only conducted for the lock 

forming task. The time spent in the extraction of data during the detailed study was about 

500 hours, whereas only 20 hours were spent for the extraction of data during the pilot 

study. 

 

Observed Shortest Duration Estimation: During the pilot study, the time and 

motion study was conducted by thoroughly reviewing the video data and duration of the 

contributory actions for the “Fluorescent Bulb Replacement” task and they were recorded 

in the Excel spreadsheet. Since it dealt only with the movements of a veteran worker for 

the sequential actions of only one task, it was simple to analyze. The shortest possible 

duration was estimated by adding up the shortest durations observed for each action 

because the task was made up of actions in a sequence. But, the scenario was complicated 

in the detailed study. However, a similar time and motion study was conducted by 

reviewing video data in the detailed study. Because of the involvement of multiple 
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workers in each task, the durations of the individual and combined involvement of the 

workers for each task were recorded separately in the Excel spreadsheet. A sequence set 

analysis was conducted in which multiple sets of data were grouped based on the similar 

sequence of actions performed by individual workers or crews of multiple workers for the 

same task. The minimum duration taken to accomplish an action was determined for each 

sequential dataset. Among the shortest durations available from the sequential datasets of 

each task, the shortest of the shortest duration were considered as the shortest observed 

duration for that task. Some assumptions were developed in order to address complexities 

as described in Section 5.5.1.1. 

 

Estimated Shortest Duration Estimation: During the pilot study, the best-fit 

probability distribution for each action included in the “Fluorescent Bulb Replacement” 

task was obtained with the application of the “Arena Input Analyzer” tool in the “Arena 

Simulation Software.” Based on the best-fit probability distribution for each action 

obtained from the “Arena Input Analyzer,” the threshold parameter (lowest duration) for 

that distribution was estimated using the “Base SAS® 9.2.” The lowest duration of the 

contributory actions for this task were estimated from the distribution, which were 

evaluated at a 95% confidence interval. Similar approaches were implemented in the 

detailed study to estimate the shortest estimated duration for each action of each task. 

When estimating the shortest total duration for each task, the concept of the sequence set 

analysis was again implemented similar to the method employed to estimate the observed 

shortest duration for each task. In addition, the detailed study was also extended up to the 

movement level of the hierarchical structure for the second task, the “lock forming task.” 
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Productivity Frontier Estimation: During the pilot study, the unit of 

productivity was expressed in the number of stations accomplished in an hour by a 

worker. In the detailed study, the productivity value was expressed in the number of ducts 

fabricated by the crews in an hour. 

  

Results: The productivity frontier computed from this pilot study for the 

“Fluorescent Bulb Replacement” task is 22.32 stations per hour. The pilot study was only 

conducted up to the action level. On the other hand, the detailed study was conducted up 

to the movement level. From the action level analysis of the detailed study, the 

productivity frontier for the “Fabrication of Sheet Metal Ducts” activity is 2.83 ducts per 

crew-hour. The hierarchical movement level analysis was conducted only for Task 2 

because of the lack of time and resources. From the movement level analysis of the 

detailed study, the productivity frontier for the “lock forming task” is 104.80 sheets per 

crew-hour.   

 

7.2 Conclusions 

The existing practice of estimating the labor productivity based upon historical 

data or an individual’s experience may lack a systematic approach. The low quality of 

historical data and inconsistency in the productivity measurement system may prevent 

meaningful analysis (Song & AbouRizk, 2008). This could make construction operations 

significantly inefficient. This scenario generates a space for research to identify the 

alternative techniques to measure labor productivity. This research presents an innovative 
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technique by defining a theoretical maximum productivity termed as the productivity 

frontier. 

However, the productivity frontier is not achievable in actual practice. The 

findings of this research shed some light on how important the concept of the 

productivity frontier is in order to estimate optimal productivity of labor-intensive 

operations. Intuitively, estimating the accurate labor productivity frontier is the first step 

toward allowing project managers to determine the absolute efficiency (unbiased) of their 

labor-intensive construction operations by comparing actual versus optimal rather than 

the actual versus historical productivity.  

This dissertation introduces a framework to estimate the productivity frontier by 

conducting a pilot study for a lighting replacement activity and a detailed study for the 

fabrication of sheet metal ducts. Both studies justify the proposed basic framework by 

illustrating dual approaches: (a) observed duration and (b) estimated duration. It confirms 

that these studies had significant importance in the future. It also explains various 

theoretical backgrounds, technologies, and statistical tools pertinent to this research.  

The concept of inverse mean-variance optimization was implemented to describe 

the importance of breaking down elements to their components because it would make 

visible previously “hidden” variables. Thus, four levels of the hierarchical taxonomy 

(activity, task, action, and movement) for construction operations were illustrated in this 

dissertation. The methodology of time and motion study was adopted to collect and 

analyze site data so that it can be used to exactly tally the number of minutes spent on 

each type of task and that are typically used in the analysis of body motions employed in 

doing work in order to find the most efficient method in terms of time and effort.     
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There may be a question regarding the validity of the theoretical productivity 

estimated using this framework as the productivity frontier because the productivity 

frontier is an abstraction that cannot be measured in the actual working scenario. Thus, it 

seems counterintuitive while using the actual field data to estimate its value. To justify 

this issue, a deductive logic can be used, which is described below. 

• This research defines the productivity frontier as the theoretical maximum 

productivity under the “perfect conditions,” and optimal productivity as the 

level of productivity under “good management” and “typical field conditions.” 

If the project is executed under these conditions, then they would represent at 

least optimal productivity. After eliminating all system inefficiencies from this 

optimal productivity that could have been present during the data collection 

period, the productivity frontier could be achieved. However, this is 

impossible in real practice. If a concerted effort is made to minimize system 

inefficiencies, then the calculated theoretical productivity following this 

method would be somewhere in between optimal productivity and the 

productivity frontier. 

• This research focuses on the instantaneous highest values of labor 

productivity, which is obtained from the shortest observed duration 

conducting the time and motion study. The probability of actually observing 

this level of theoretical productivity in the field is infinitesimal. For example, 

if (a) 100 observations are recorded during a construction task, (b) the task 

includes eight actions, (c) the lowest duration recorded for each action occurs 

only once, and (d) the duration of each action is independent from the duration 
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of all others, then the probability of observing the duration of the task being 

equal to the sum of the shortest durations of the actions would be 1 in 10 

billion assuming actions are independent with each other. 

• This research also presents the second approach in which the estimated 

shortest durations are computed from the best-fit probability distributions for 

the data by considering that the observed durations may not include the lowest 

possible duration for a task, action, or movement. 

Moreover, this research defines optimal productivity as a sustainable highest 

productivity, which dismisses a productivity level that happens once in 10 billion 

observations. Therefore, this value can be taken as an estimate of the productivity 

frontier. 

Furthermore, this research examined the research hypotheses and yielded the 

following outcomes: 

1. The proposed research framework was found applicable and capable to 

estimate the labor productivity frontier in simple, as well as complex 

construction and manufacturing labor-intensive operations with crews of 

single or multiple workers performing both sequential and parallel processes.  

2. It determined the value of collecting data at the lowest hierarchical level–

movement–when estimating the productivity frontier. Extending the research 

up to the movement level provides high theoretical productivity values. For 

example, the duration to complete contributory movements for the lock 

forming task was found lower in the movement-level analysis than the action-

level analysis because of a minor level of study between workers in the same 
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crew. Moreover, the reduction in durations is due to two different effects. The 

first one is the exposure of higher variability explained by the inverse mean 

variance optimization. The second effect is the fact that non-contributory 

tasks, actions, and movements are eliminated from the analysis as lower levels 

of the hierarchy are employed. It satisfies the concept of inverse mean 

variance optimization. 

3. However, the movement level analysis was found to be more time consuming 

and complex than the action level analysis. 

4. It explored the automated framework to estimate the productivity frontier 

using multiple video cameras and the Kinect sensors. It discussed the 

development of an automated action-recognition tool, partially automated 

time and motion study tool, and the recombinant synthetic workers. It also 

provided an understanding of what further research is necessary to allow this 

type of data collection to achieve full automation. 

5. It described the possibility of implementation of simulation and visualization 

techniques in order to validate the working procedure. In addition, an 

animated model was developed in order to validate the work flow process of 

the “Fluorescent Bulb Replacement” task during the pilot study.  

 

7.3 Recommendations 

Although this research examines data from an “Electrical Lamp Replacement” 

activity and the “Fabrication of Sheet Metal Ducts” activity following the basic 

framework, it also explores the advanced framework consisting of an automated 
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framework in order to estimate the productivity frontier. This research recommends 

further investigation in order to develop a complete package, including an automated 

action-recognition tool, automated time and motion study tool, and the recombinant 

synthetic workers models employing the suggested automated framework.  

 

7.4 Intellectual Merits 

This research enhances the body of knowledge about productivity by: (a) 

developing conceptual innovations and creative approaches for examining productivity, 

(b) replacing status quo productivity metrics by introducing a novel approach for 

assessing the efficiency of labor-intensive construction processes, and (c) exploring the 

automated framework and using primitive actions to create the recombinant synthetic 

workers. 

 

7.5 Broader Impacts 

The research of this dissertation impacts research in broader areas. These areas 

include: (a) improvements in profitability, competitiveness, and salaries for labor-

intensive industries, (b) advancement of understanding and discovery in labor-intensive 

domains outside construction, and (c) enhancement of research infrastructure. 
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CHAPTER 8 

FUTURE RESEARCH 

 

The concept of the productivity frontier is a novel concept, which helps to 

establish a theoretical framework for developing a better benchmarking system for 

evaluating the efficiency of labor-intensive operations. These conceptual advancements 

echo the advancements found in the practice of estimating productivity frontiers by 

refining field activities into distilled constituent tasks, actions, and movements–novel 

processes developed for this research. Moreover, this research will be extended in the 

future by identifying typical scopes, which are discussed below. 

 

8.1 Scope Identification 

An accurate estimate of the labor productivity frontier is the first step toward 

developing a valuable concept for estimating optimal productivity of labor-intensive 

operations. This research provides an absolute value of the labor productivity frontier in 

order to estimate the upper threshold of optimal productivity by determining the 

physiological and systematic limits that affect the maximum productivity for labor-

intensive operations. The precise estimation of optimal labor productivity would allow 

project managers to determine the efficiency of their labor-intensive construction 

operations by comparing actual versus optimal rather than actual versus historical 

productivity. Determining absolute value of the labor productivity frontier in order to 

estimate optimal labor productivity is the primary scope of this research. 



178 
 

In addition, various actions and movements of workers to accomplish specific 

activities are identified during this research. This valuable information helps to conduct 

further research in multiple sectors, such as (a) development of virtual environments 

representing labor-intensive construction and manufacturing operations, (b) recombinant 

synthetic workers analysis, and (c) ergonomics and safety analysis. These topics are 

briefly discussed in the following sections.  

 

8.1.1 Virtual Environments 

A virtual environment is an effective form of human-computer interaction. The 

virtual world technologies provide a better understanding of three-dimensional shapes 

and spaces through perceptual phenomena (Mine, 1995). It helps to visualize the real site 

scenario through its virtual prototype and also allows the creation of dynamic scenes 

using virtual computer generated resources, thereby providing an environment where 

experimentation can be done without committing real resources or endangering 

operational safety (Behzadan & Kamat, 2011). Considering such benefits, this research 

will be extended towards the development of the virtual environment related to 

construction and manufacturing labor-intensive operations. 

The “Unity 3D” platform will be used to develop a virtual environment because it 

has a default software development kit (SDK). It supports multiple platforms, such as 

BlackBerry 10, Windows Phone 8, Windows, OS X, Linux, Android, iOS, Unity Web 

Player, Adobe Flash, PlayStation 3, PlayStation 4, PlayStation Vita, Xbox 360, Xbox 

One, Wii U, and Wii. It consists of an asset server and “Nvidia’s PhysX” physics engine 

(Blackman, 2011). From simulation and graphical aspects, it is comfortable and user-
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friendly. The 3D human body models will be created using the “Autodesk Maya” 

software because it involves different stages, such as a creation of a mesh model, 

application of texture on the mesh, and application of clothing on the human model 

(Shingade & Ghotkar, 2014). Various algorithms as discussed in Chapter 6, such as 

motion segmentation, growing technique, pattern recognition, and ANN, are also 

employed during this research. 

A simplified virtual environment (similar to Figure 8.1) representing the specific 

activity will be developed to simulate conditions similar to those at one of the jobsites 

used to gather the source data. It will consist of basic movements of human models that 

could be searchable and synthesized to formulate any number of activities.      

 

 
 

Figure 8.1: Virtual Environment a Specific Construction Activity  
(Adapted from Lin, Son, & Rojas, 2011) 

 

8.1.2 Recombinant Synthetic Workers 

In order to estimate the productivity frontier of construction activities for different 

operations, managers must first have source data relevant to determine the productivity 
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frontier, a fact that may diminish the usefulness of this proposed framework. However, it 

is conceivable that a construction activity could be synthetically recreated from a finite 

number of elemental parametric movements, termed “primitives.” Once a comprehensive 

collection of primitives is gathered over time, construction activities could be simulated 

to estimate an operation’s productivity frontier without the need to collect further field 

data. To evaluate the feasibility of this concept, the framework proposes recombining the 

distilled movement data gathered in this research to create synthetic workers and crews 

who would perform new operations in a simulated environment. If such recombinant 

synthetic workers are possible, the calculation of the productivity frontier for new 

operations would be much easier, a fact that would allow project managers to focus more 

time on improving their operational efficiency. 

While this segment of the research foreseeably could be expanded to develop a 

library of basic movements that could be searchable and synthesized to formulate any 

number of activities, the current research seeks merely to evaluate the feasibility of such 

an approach. The proposed framework will create a simplified virtual environment 

(similar to Figure 8.1) to simulate conditions similar to those at one of the jobsites used to 

gather the source data. A simple construction activity that used similar movements from 

the reference activities will be chosen for the experiment, and field experts will be used to 

recombine the basic movements into actions, actions into tasks, and tasks into activities. 

The chosen activity will have a single worker or multiple workers performing work 

sequentially and simultaneously. Heuristic assessments will be used to determine the 

usefulness, preferability, and receptiveness of such an approach by the field experts. 
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Since the benefits of the proposed framework are decidedly tied to the ability of 

project managers to easily process the relevant data, and since the productivity frontier is 

a data point that is inherently unvarying (it is only possible to have one maximum 

productivity level), the success of this proposed objective would lay the foundation for 

the wide spread dissemination of this approach–successfully creating recombinant 

synthetic workers would facilitate the calculation of the productivity frontier for any 

variety of construction operations without the demands of recording new field data. 

Because the preliminary data that would be necessary for documenting movement 

durations are an inherent part of this proposal, testing the feasibility of creating such 

synthetic workers is a viable part of this investigation and a valuable first step for any 

subsequent research pursuits. 

 

 
 

Figure 8.2: Semi-Autonomous Robots Performing Different Activities  
(Adapted from DARPA Robotics Challenge, 2014; Loudon, 2013) 

 

Moreover, the research on the “Recombinant Synthetic Workers” serves as an 

entrée into robotics research for the development of semi-autonomous robots (similar to 

Figure 8.2) to support construction field operations in hazardous environments. The first 

picture of Figure 8.2 shows brick laying operation performed by the semi-automated 
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mason (SAM) robot that is developed by Victor Company (Loudon, 2013). The second 

picture of Figure 8.2 shows the “Tactical Hazardous Operation Robot (THOR),” which is 

a bipedal humanoid robot used for rescue operations (DARPA Robotics Challenge, 

2014). 

 

8.1.3 Ergonomics and Safety Analysis 

This research will be extended on the ergonomics and occupational health and 

safety analysis. During movement and action level analysis, this research will perform the 

“Ergonomics Job Hazard Analysis.” It involves identification and classification of actions 

and movements, measurement and quantification of the ergonomic risk factors inherent in 

the elements, and identification conditions that contribute to risk factors. Finally, it 

determines its corrective measurements. Various platforms will be developed during the 

analysis in order to determine the best possible movements or poses, which are 

ergonomically safe and productive in the jobsite.    
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Table A.1: Action Level Analysis: 7 Sample Data Representing Data-Extraction Process 
Employing Time and Motion Study by Observing Video Data for the Lock Forming Task 

(Durations in Seconds) (N = 234) 
 

S
N 

Worker 
ID 

Laying Sheet on Lock 
Machine (T2-A1) 

Locking (T2-A2) Stacking (T2-A3) 

Start End Duration Start End Duration Start End Duratio
n 

1 
W1 0:00 0:10 10       
W2       1:07 1:18 11 
W12 0:10 0:18 8 0:18 1:06 48    

           

2 

W1 1:07 1:18 11       

W2       2:03 2:16 13 

W12 1:18 1:24 6 1:24 2:03 39    
           

3 

W1 2:03 2:16 13       

W2       3:01 3:14 13 

W12 2:16 2:26 10 2:26 3:01 35    

           

4 

W1 3:01 3:14 13       

W2       3:53 4:06 13 

W12 3:15 3:21 6 3:21 3:53 32    
           

5 

W1 3:53 4:06 13       

W2          

W12 4:06 4:13 7 4:13 4:45 32 4:45 4:56 11 

           

6 

W1 5:03 5:13 10       

W2       0:41 0:51 10 

W12 0:00 0:09 9 0:09 0:41 32    

           

7 

W1 0:41 0:51 10       

W2       1:30 1:41 11 

W12 0:51 0:57 6 0:57 1:30 33    
  



211 
 

Table A.2: Action Level Analysis: 15 Sample Data Representing the First Sequential 
Dataset for the Lock Forming Task (Durations in Seconds) (N = 98) 

 
SN T2-A1 T2-A2 T2-A3 
1 18 48 11 
2 17 39 13 
3 23 35 13 
4 19 32 13 
5 20 32 11 
6 19 32 10 
7 16 33 11 
8 19 32 13 
9 24 31 11 

10 17 32 11 
11 18 31 10 
12 18 35 15 
13 22 33 11 
14 21 33 11 
15 18 32 13 

 
 

Table A.3: Action Level Analysis: Sample Data Representing the Second Sequential 
Dataset for the Lock Forming Task (Durations in Seconds) (N = 15) 

 
SN T2-A1 T2-A2 T2-A3 
1 21 33 14 
2 21 34 12 
3 19 34 13 
4 24 32 12 
5 22 32 15 
6 19 33 17 
7 20 32 15 
8 20 32 12 
9 19 34 13 

10 18 34 16 
11 20 40 9 
12 19 33 17 
13 26 32 14 
14 19 33 13 
15 20 33 14 
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Table A.4: Action Level Analysis: 15 Sample Data Representing the Third Sequential 
Dataset for the Lock Forming Task (Durations in Seconds) (N = 121) 

 
SN T2-A1 T2-A2 T2-A3 
1 21 34 11 
2 26 33 18 
3 23 33 15 
4 22 34 13 
5 26 36 15 
6 19 35 14 
7 25 34 11 
8 24 33 13 
9 20 32 12 

10 19 32 14 
11 28 35 11 
12 22 32 11 
13 21 32 16 
14 23 32 16 
15 21 32 11 
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Table A.5: Movement Level Analysis: Sample Data Representing Data-Extraction Process Employing Time and Motion Study by 
Observing Video Data for Action 1 of the Lock Forming Task (Durations in Seconds) (N = 234) 

 
SN Worker 

ID 
Approach to Sheet Stacks 

(T2-M1) 
Hold the Sheet (T2-M2) Move the Sheet (T2-M3) Place the Sheet on the Lock 

Forming table (T2-M4) 

S E Frame 
Diff 

D S E Fra
me 
Diff 

D S E Frame 
Diff 

D S E Frame 
Diff 

D 

1 
W1 1 50 49 1.63 51 132 81 2.70 133 275 142 4.73     

W2                 

W12         276 514 238 7.93 515 540 25 0.83 
                  

2 

W1 1495 1637 142 4.73 1638 1695 57 1.90 1696 1800 104 3.47     

W2                 

W12         1801 1983 182 6.07 1984 2010 26 0.87 

                  

3 

W1 3071 3207 136 4.53 3208 3295 87 2.90 3296 3505 209 6.97     

W2                 

W12         3506 3740 234 7.80 3741 3768 27 0.90 
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Table A.6: Movement Level Analysis: 15 Sample Data Representing the First Sequential Dataset for the Lock Forming Task 
(Durations in Seconds) (N = 98) 

 
SN T2-M1 T2-M2 T2-M3 T2-M4 T2-M5 T2-M6 T2-M7 T2-M8 T2-M9 T2-M10 T2-M11 T2-M12 T2-M13 T2-M14 
1 1.63 2.70 12.67 0.83 1.13 12.07 3.87 0.83 1.13 10.20 19.00 5.17 3.13 1.80 
2 4.73 1.90 9.53 0.87 1.30 11.47 3.97 1.03 1.77 11.63 6.93 5.37 2.57 3.47 
3 4.53 2.90 14.77 0.90 1.37 11.00 4.97 1.10 2.00 10.50 3.93 6.23 3.07 3.03 
4 5.30 2.30 10.60 0.83 1.30 11.13 3.80 0.47 0.80 11.13 3.13 5.47 5.27 1.50 
5 5.47 1.97 11.60 1.13 1.13 10.87 4.57 0.63 0.80 10.30 3.13 5.80 2.13 2.30 
6 4.63 2.97 10.27 1.27 1.80 10.47 3.63 0.63 1.83 10.43 2.97 5.33 2.27 1.67 
7 4.63 1.63 8.80 0.77 1.23 11.00 3.83 0.97 2.20 10.17 2.70 4.73 2.17 3.13 
8 5.97 1.63 10.23 1.00 1.17 10.40 3.33 0.97 1.63 10.43 3.50 6.30 2.43 4.07 
9 6.47 5.13 10.87 1.10 1.57 9.97 3.93 0.80 0.80 10.83 2.63 5.70 3.87 1.17 

10 5.53 1.40 8.93 0.97 2.13 10.63 3.63 1.10 1.50 10.30 2.57 4.93 1.40 3.97 
11 4.93 1.57 9.60 1.00 0.80 10.27 4.27 0.90 1.63 10.17 3.10 4.97 4.47 1.20 
12 4.70 2.73 9.07 1.13 0.80 10.43 4.67 1.63 4.13 10.97 2.47 4.83 7.13 1.80 
13 4.83 3.63 12.47 0.97 1.13 11.07 4.23 1.10 1.30 10.80 2.97 5.30 3.63 1.87 
14 4.63 3.13 10.43 1.97 1.30 10.63 3.97 0.80 1.13 11.13 3.80 4.63 3.87 2.07 
15 5.30 1.97 9.93 0.70 1.07 11.07 3.97 0.87 1.47 10.63 2.50 5.17 5.90 1.60 
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Table A.7: Movement Level Analysis: 15 Sample Data Representing the Second Sequential Dataset for the Lock Forming Task 
(Durations in Seconds) (N = 15) 

 
SN T2-M1 T2-M2 T2-M3 T2-M4 T2-M5 T2-M6 T2-M7 T2-M8 T2-M9 T2-M10 T2-M11 T2-M12 T2-M13 T2-M14 
1 4.00 5.00 10.10 0.80 0.97 10.37 4.23 1.13 2.63 10.13 3.30 4.67 2.93 6.13 
2 6.97 1.50 9.97 1.30 1.63 11.10 4.33 1.30 1.80 10.07 3.20 5.30 2.13 3.63 
3 6.47 1.80 8.70 1.23 0.80 13.13 4.13 1.13 1.83 10.10 2.80 4.63 3.97 3.63 
4 5.53 5.13 11.37 1.73 1.03 10.57 4.17 0.83 1.37 10.07 3.30 4.17 3.30 4.50 
5 5.17 2.03 13.00 1.23 0.97 10.13 4.63 0.97 1.10 10.67 2.83 7.60 3.47 3.63 
6 4.30 2.63 10.63 1.10 1.13 10.83 4.77 1.13 1.67 10.30 2.73 4.53 4.30 7.47 
7 5.10 4.30 9.13 0.93 0.80 10.80 3.57 0.87 1.63 10.63 2.63 5.80 3.93 5.00 
8 6.03 2.63 10.33 0.73 0.80 10.33 4.60 0.80 0.97 10.30 3.47 4.43 3.10 3.83 
9 6.47 1.80 8.70 1.23 0.80 13.13 4.13 1.13 1.83 10.10 2.80 4.63 3.97 3.63 

10 3.63 1.63 11.43 0.97 0.80 11.63 4.47 1.30 1.63 10.13 3.97 3.50 9.63 2.30 
11 3.27 3.83 11.53 1.13 1.47 13.20 6.07 1.47 1.13 12.80 3.30 3.47 2.93 2.37 
12 4.30 2.63 10.63 1.10 1.13 10.83 4.77 1.13 1.67 10.30 2.73 4.53 4.30 7.47 
13 5.87 5.80 12.46 1.09 1.04 11.34 4.07 1.02 1.06 10.05 2.65 5.07 3.63 4.53 
14 5.30 2.30 10.60 0.83 1.30 11.13 3.80 1.10 0.80 11.13 3.13 5.47 5.27 1.50 
15 4.00 5.00 10.10 0.80 0.97 10.37 4.23 1.13 2.63 10.13 3.30 4.67 2.93 6.13 
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Table A.8: Movement Level Analysis: 15 Sample Data Representing the Third Sequential Dataset for the Lock Forming Task 
(Durations in Seconds) (N = 121) 

 
SN T2-M1 T2-M2 T2-M3 T2-M4 T2-M5 T2-M6 T2-M7 T2-M8 T2-M9 T2-M10 T2-M11 T2-M12 T2-M13 T2-M14 
1 6.97 1.50 9.97 1.30 1.63 11.10 4.33 1.30 1.80 10.07 3.20 5.30 2.13 3.63 
2 4.97 9.47 9.80 1.10 0.97 10.90 4.53 0.80 2.63 9.97 2.63 5.30 9.97 1.80 
3 6.13 2.63 12.80 0.97 1.10 10.43 3.97 1.00 1.37 10.10 4.10 3.47 2.80 8.47 
4 3.47 7.13 10.07 1.00 0.80 10.30 4.10 0.83 1.63 10.03 5.63 4.30 5.47 3.13 
5 7.23 4.97 10.60 1.63 0.97 12.17 5.27 1.13 0.97 11.90 2.83 5.33 7.90 0.90 
6 5.13 2.20 9.67 1.17 1.83 10.50 4.57 1.10 1.97 10.80 3.63 4.97 2.80 5.63 
7 4.67 5.03 14.03 0.80 1.57 10.60 4.57 1.00 1.10 11.70 3.37 4.63 1.97 3.97 
8 5.47 1.13 15.57 0.93 0.83 11.03 4.07 0.87 1.07 10.30 4.63 4.80 4.13 3.47 
9 4.80 4.13 9.26 0.92 1.04 11.34 4.07 1.02 1.06 10.05 3.17 4.63 4.07 3.37 

10 5.60 2.80 9.43 0.97 0.83 10.63 4.77 0.87 0.90 10.80 2.80 4.97 4.47 4.13 
11 4.20 12.60 10.27 0.87 0.87 12.20 4.80 0.83 2.43 10.00 2.93 4.83 3.63 1.80 
12 5.13 3.83 10.67 0.87 0.83 10.10 4.83 1.13 2.13 10.30 2.77 3.70 4.87 1.93 
13 3.83 5.50 10.20 0.80 0.83 10.60 4.83 1.10 1.77 10.10 2.63 5.47 3.13 7.13 
14 6.80 4.97 9.60 0.97 0.83 10.07 4.27 1.03 1.30 10.50 2.77 4.67 3.77 6.83 
15 5.47 1.97 11.60 1.13 1.13 10.87 4.57 0.47 0.80 10.30 3.13 5.80 2.13 2.30 
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Table A.9: Action Level Analysis: 15 Sample Data Representing for the Roll Bending Task Performed by the First Crew  
(Durations in Seconds)  

 

SN 
First Sequential Dataset (N = 104) Second Sequential Dataset (N = 44) 

T1-A1 T1-A2 T1-A3 T1-A4 T1-A5 T1-A6 T1-A7 T1-A1 T1-A2 T1-A3 T1-A4 T1-A5 T1-A6 T1-A7 
1 6 13 11 29 8 18 5 12 18 20 29 21 18 27 
2 6 10 12 30 6 15 7 11 6 13 28 8 29 5 
3 6 10 9 30 21 18 16 10 31 9 12 30 7 19 
4 13 24 19 38 18 25 16 10 10 24 31 7 21 18 
5 11 13 11 29 7 23 15 9 10 13 29 7 21 21 
6 11 13 17 29 9 18 11 9 7 8 30 9 21 18 
7 11 13 17 29 7 20 12 11 10 14 29 7 22 12 
8 9 17 11 29 7 31 4 5 8 12 29 9 19 13 
9 9 11 12 29 10 27 25 10 8 9 28 7 21 15 

10 9 15 12 30 7 17 10 9 7 8 29 6 21 20 
11 11 12 12 28 8 20 9 5 8 16 30 11 22 13 
12 5 13 10 30 7 21 6 6 9 16 30 7 20 13 
13 14 36 30 32 20 37 10 6 20 24 30 6 21 27 
14 5 13 12 29 10 43 13 12 11 13 30 9 19 18 
15 5 11 39 35 19 26 32 12 8 19 38 7 25 15 
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Table A.10: Action Level Analysis: 15 Sample Data Representing for the Roll Bending 
Task Performed by the Second Crew (Durations in Seconds) (N = 86) 

 
SN T1-A1 T1-A2 T1-A3 T1-A4 T1-A5 T1-A6 
1 4 16 13 29 13 15 
2 7 14 9 29 11 8 
3 5 21 14 27 3 9 
4 6 14 9 28 2 7 
5 6 22 6 27 1 8 
6 6 25 9 28 2 8 
7 6 15 7 27 3 9 
8 7 18 10 26 2 9 
9 9 18 8 29 2 9 
10 8 20 6 28 1 9 
11 7 19 10 27 2 11 
12 7 21 8 28 2 9 
13 9 19 8 29 3 9 
14 6 15 9 28 1 12 
15 6 17 19 28 5 19 
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Table A.11: Action Level Analysis: 15 Sample Data Representing for the Lock Setting & Tie-rods Installing Tasks Performed by the 
Second Crew (Durations in Seconds) (N = 117) 

 

SN 
Task 3I Task 4I Task 3II Task 4II 

A1 A2 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 A1 A2 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 
1 20 74 30 18 17 11 33 28 24 47 10 38 31 13 9 20 20 12 32 28 21 61 8 127 
2 58 43 44 22 22 19 35 35 36 59 19 44 30 164 11 27 27 12 31 29 20 61 18 69 
3 19 19 22 33 33 14 23 28 28 65 35 51 38 16 7 27 27 16 19 30 32 60 9 140 
4 22 19 26 34 34 11 35 29 32 77 15 35 31 37 11 41 41 11 23 41 28 86 12 58 
5 24 24 31 40 40 16 41 38 31 74 27 82 60 17 5 38 24 11 15 46 22 76 9 38 
6 30 42 27 47 17 10 26 28 23 66 10 44 42 20 9 48 48 15 26 26 34 94 40 55 
7 25 51 20 35 25 10 40 49 27 100 9 68 38 27 9 32 32 8 35 28 12 96 31 42 
8 28 33 11 26 26 8 24 59 23 64 19 76 30 10 10 40 40 11 22 32 27 70 14 51 
9 26 27 34 27 27 11 22 33 30 69 18 68 24 33 9 27 27 18 23 37 36 53 18 45 

10 21 51 20 48 36 11 28 28 30 57 45 84 37 18 10 32 32 18 24 25 33 72 21 82 
11 18 20 58 37 37 13 21 35 32 71 37 56 25 16 9 27 27 11 23 35 38 59 16 91 
12 19 47 30 40 40 13 28 36 44 74 22 52 36 21 12 25 25 18 28 33 30 83 20 44 
13 15 40 31 33 27 8 20 24 34 73 62 55 43 13 14 23 23 10 21 26 28 59 29 65 
14 66 23 33 21 21 11 18 33 33 61 42 54 34 6 10 26 26 22 26 44 45 71 28 47 
15 18 23 35 29 29 15 26 24 31 55 38 48 28 9 10 26 26 15 25 35 35 54 25 53 
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Table A.12: Action Level Analysis: 15 Sample Data Representing for the Flanges 
Screwing Task Performed by the Second Crew (Durations in Seconds) (N = 117) 

 
SN T5-A1 T5-A2 T5-A3 T5-A4 T5-A5 T5-A6 
1 9 22 135 12 141 24 
2 7 22 145 43 128 8 
3 54 15 144 44 147 21 
4 11 18 136 41 178 20 
5 18 24 123 48 169 20 
6 10 19 122 38 150 28 
7 10 20 110 41 124 37 
8 7 16 111 46 178 11 
9 7 14 127 39 153 30 
10 9 22 201 46 133 15 
11 8 19 122 57 137 21 
12 10 27 145 53 163 17 
13 8 25 141 58 171 15 
14 8 24 127 78 178 13 
15 17 19 125 52 120 10 
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Table A.13: Action Level Analysis: 15 Sample Data Representing for the Sealing Task 
Performed by the Third Crew (Durations in Seconds) (N = 117) 

 

SN Worker 1 Worker 2 Worker 3 
A1 A2 A3 A1 A2 A3 A1 A2 A3 

1 22 977 10 12 1655 11 12 2094 7 
2 11 671 4 10 1923 8 12 1114 10 
3 11 874 8 9 1488 10 14 2066 11 
4 12 788 5 13 1286 11 14 1381 8 
5 12 681 6 10 1109 9 36 1159 45 
6 11 1268 25 13 960 10 37 1375 12 
7 33 868 15 10 1077 11 33 1272 23 
8 15 1556 11 10 1848 8 55 1162 78 
9 20 1371 9 10 728 12 50 712 22 

10 8 1661 16 12 1128 14 39 612 21 
11 15 1880 15 10 750 37 34 729 34 
12 10 2243 7 29 1276 20 19 1043 25 
13 9 1620 11 46 1014 15 21 740 20 
14 13 1386 9 19 1043 24 136 920 22 
15 10 1340 22 24 1032 18 21 803 17 
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Table A.14: Action Level Analysis: 15 Sample Data Representing for the Packing Task 

Performed by the Third Crew (Durations in Seconds) (N = 117) 
 

SN Workers 1 & 2 (W12) Workers 3 & 1 (W31) Workers 1, 2, & 3 (W123) 
A1 A2 A3 A1 A2 A3 A4 

1 27 66 18 125 104 21 328 
2 47 69 19 25 105 53 437 
3 42 55 26 103 70 19 434 
4 36 53 26 43 46 37 434 
5 54 46 31 45 46 54 515 
6 51 49 17 175 297 55 418 
7 85 109 17 216 301 62 502 
8 133 110 14 239 74 34 464 
9 156 108 37 190 58 27 428 
10 122 109 38 180 280 31 441 
11 80 153 50 111 92 39 469 
12 90 147 39 149 94 22 354 
13 42 137 26 36 96 24 421 
14 68 188 25 146 245 64 455 
15 88 130 32 140 84 30 403 
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Table A.15: Action Level Analysis: 15 Sample Data Representing for the Delivering 
Task Performed by the fourth Crew (Durations in Seconds) (N = 31) 

 
SN T8 

1 42 
2 35 
3 29 
4 20 
5 40 
6 35 
7 30 
8 22 
9 35 

10 25 
11 43 
12 41 
13 29 
14 28 
15 14 

 
  

 



224 
 

APPENDIX B 

ADDITIONAL LIST OF FIGURES 

 
Figure B.1: Approach to the Roll-Bended Sheet Stacks (M1) ..................................................... 225 

Figure B.2: Hold the Roll-Bended Sheet (M2) ............................................................................. 225 

Figure B.3: Move the Roll-Bended Sheet to the Lock Forming Table (M3) ............................... 226 

Figure B.4: Place the Roll-Bended Sheet on the Lock Forming Table (M4) ............................... 226 

Figure B.5: Set One Edge of the Roll-Bended Sheet on Lock Machine (M5) ............................. 227 

Figure B.6: Slide the Sheet for Locking (M6) .............................................................................. 227 

Figure B.7: Switch Another Edge of the Sheet (M7) ................................................................... 228 

Figure B.8: Place Another Edge of the Sheet on Lock Machine (M8) ......................................... 228 

Figure B.9: Set Another Edge of the Sheet on Lock Machine (M9) ............................................ 229 

Figure B.10: Slide the Sheet for Locking (M10) ........................................................................... 229 

Figure B.11: Hold the Sheet Before Moving for Stacking (M11) ................................................. 230 

Figure B.12: Move the Lock-Formed Sheet Towards Stacks (M12) ............................................ 230 

Figure B.13: Place the Lock Formed Sheet at Stacks (M13) ........................................................ 231 

Figure B.14: Move Back to Workstation (M14) ........................................................................... 231 

 

  

 



225 
 

 
 

Figure B.1: Approach to the Roll-Bended Sheet Stacks (M1) 

 

 

 
 

Figure B.2: Hold the Roll-Bended Sheet (M2) 
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Figure B.3: Move the Roll-Bended Sheet to the Lock Forming Table (M3) 
 

 

 
 

Figure B.4: Place the Roll-Bended Sheet on the Lock Forming Table (M4) 
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Figure B.5: Set One Edge of the Roll-Bended Sheet on Lock Machine (M5) 
 

 

 
 

Figure B.6: Slide the Sheet for Locking (M6) 
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Figure B.7: Switch Another Edge of the Sheet (M7) 
 

 

 
 

Figure B.8: Place Another Edge of the Sheet on Lock Machine (M8) 
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Figure B.9: Set Another Edge of the Sheet on Lock Machine (M9) 
 

 

 
 

Figure B.10: Slide the Sheet for Locking (M10) 
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Figure B.11: Hold the Sheet Before Moving for Stacking (M11) 
 

 

 
 

Figure B.12: Move the Lock-Formed Sheet Towards Stacks (M12) 
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Figure B.13: Place the Lock Formed Sheet at Stacks (M13) 
 

 

 
 

Figure B.14: Move Back to Workstation (M14) 
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