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Abstract 

The incidence of Clostridium difficile infection (CDI) and associated mortality have increased 

rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In 

this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody 

composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB 

(designated “ABA”) that reverses fulminant CDI in mice infected with an epidemic 027 strain 

after a single injection of the antibody. We demonstrated that ABA bound to both toxins 

simultaneously and displayed a significantly enhanced neutralizing activity both in vitro and in 

vivo. Additionally, ABA was able to broadly neutralize toxins from clinical C. difficile isolates 

that express both TcdA and TcdB but failed to neutralize the toxin from TcdA−TcdB+ C. difficile 

strains. This study thus provides a rationale for the development of multivalent VHHs that target 

both toxins and are broadly neutralizing for treating severe CDI. 

Keywords: Clostridium difficile, toxins, antibody, VHH, immunotherapy 

Clostridium difficile is the most common cause of nosocomial antibiotic-associated diarrhea and 

is the etiologic agent of pseudomembranous colitis [1]. C. difficile infection (CDI) is primarily 

caused by 2 large exotoxins, TcdA and TcdB. It is estimated that >500 000 cases of CDI occur 

annually in the United States, with the yearly mortality rate ranging from 3% to 17%, depending 

on the strains. The incidence of CDI-associated mortality among patients is increasing rapidly 

because of the emergence of hypervirulent and antibiotic-resistant strains [2], and systemic 

complications are the major cause of death in C. difficile–associated disease [3]. 

Primary treatment for CDI involves the use of the antibiotics metronidazole and/or vancomycin. 

However, neither antibiotic is entirely effective, as high rates of recurrence occur despite initial 

successful treatment with these antibiotics [4]. The incidence of recurrence is estimated to be 

20%–35%, after which there is an even greater probability (as high as 50%) of additional 

recurrences [5, 6]. Fidaxomicin, newly approved by the Food and Drug Administration, shows 

an improved efficacy over vancomycin at lowering the relapse rate [7]. Several experimental 

therapies are currently under development, including novel antibiotics [7, 8], probiotic and fecal 

transplant therapies [9, 10], novel vaccines [11, 12], and antibody-based therapies [13–16]. 

Camelidae species, including camels, llamas, and alpacas, produce both conventional 

immunoglobulin G (IgG) antibodies containing a heavy chain and light chain (IgG1) and 

unconventional IgGs (IgG2 and IgG3) that contain only a heavy chain (HCAbs) [17]. HCAbs 

bind antigens only through the variable domain of the heavy chain, thus allowing easy cloning of 
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the DNA encoding this binding domain, which is known as a single-domain antibody or heavy-

chain-only VH (VHH) [17]. Several groups have used VHHs for treating toxin-mediated diseases 

[18, 19]. Recently Hussack et al reported the generation of anti-Tcd VHHs from llamas that target 

the receptor-binding domains of the 2 toxins, some of which possessed toxin-neutralizing 

activity [20, 21]. Here, we report the isolation of panels of VHHs that recognize and neutralize 

either TcdA or TcdB. We further constructed fusion proteins consisting of multiple-antitoxin 

VHHs, which neutralize both TcdA and TcdB and alleviate fulminant disease symptoms in mice 

infected with C. difficile. 

 

MATERIALS AND METHODS 

Immunogens and Immunization 

Two alpacas were immunized with purified full-length recombinant TcdA or TcdB (aTcdA and 

aTcdB) containing point mutations that inactivate the glucosyltransferase activity of these toxins 

[12, 22], as described previously [23, 24]. All animals were handled and cared for according to 

institutional animal care and use committee guidelines and in accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health. The animals were immunized subcutaneously up to 5 times at intervals of ≥3 

weeks with 50–100 µg of aTcdA or aTcdB with alum adjuvant (with CpG in primary 

immunization). Blood samples were collected before each immunization for IgG titer 

determination. Five days following the final boost, peripheral blood lymphocytes (PBLs) were 

harvested as the source of VHH genetic material. 

Construction of VHH Libraries and Screening 

Two VHH phage display libraries were generated to obtain VHHs recognizing TcdA and TcdB. 

The libraries were produced from PBLs obtained from a aTcdA- or aTcdB-immune alpaca 

(described above), using methods previously described [25, 26]. Panning for VHH-displayed 

phage was done as described previously [25, 26] or by pull-down methods, using biotinylated 

TcdA or TcdB. For pull-down selection, the recombinant TcdA and TcdB [22] proteins were 

biotinylated using the Pierce EZ-Link NHS-PEG4 Biotin kit (Pierce Biotechnology, Rockford, 

IL) per the manufacturer's instructions. VHH clones were sequenced, and those with distinctly 

homologous complementarity-determining region sequences were considered to be clonally 

related; only the VHH in each group that had the most potent toxin-neutralizing activity or that 

produced the strongest enzyme-linked immunosorbent assay (ELISA) signal was pursued 

further. Six unique TcdA-binding VHHs and 11 unique TcdB-binding VHHs were identified. 

Selected VHH coding sequences were cloned into the pET32b expression vector (Novagen) for 

cytosolic expression of VHHs fused to thioredoxin in Escherichia coli Rosetta-gami 2 

(DE3)pLacI cells (Novagen). 
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Generation of the VHH Heterotetramer AH3/E3/E3/AA6ABA (ABA) 

VHHs having the most potent neutralizing activity and the highest binding affinity to distinct, 

nonoverlapping epitopes targeting each toxins were chosen for inclusion within a multimeric, 

multivalent antibody. For TcdA, VHHs AH3 and AA6 were selected for their potent neutralizing 

activity. For TcdB, 2 copies of the E3 VHH were selected, because E3 is a potent TcdB-

neutralizing VHH targeting the well-conserved glucosyltransferase domain with particularly high 

affinity. To generate ABA, the coding sequences of individual VHHs were amplified and fused 

under the cytomegalovirus promoter of a pSEC91 plasmid. DNA encoding a flexible linker 

sequence ([G3S]4) was installed between each of the 4 VHH-coding sequences. Both an 

immunoglobulin κ-chain leader (for protein secretion) and a His(6)-tag (for purification) were 

added to the N-terminus of the tetramer. The insert was sequenced to ensure that the proper 

sequence was obtained, and the final construct was transfected into HEK293 cells. ABA purified 

from cell culture supernatants of ABA-secreting stable 293 clones displayed a single dominant 

band during sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) after 

GelBlue (Pierce) staining. The purified ABA showed no toxicity to mice after intravenously 

injection of doses up to 10 mg/kg. 

ELISAs 

Microplates were coated with 0.5 µg/mL recombinant TcdA or 0.5 µg/mL TcdB [22] overnight 

at 4°C and incubated with 50 µL bacterial supernatants or purified VHHs. After washes, 

horseradish peroxidase (HRP)–conjugated anti-E-tag antibody was added to plates, followed by 

analysis by a standard ELISA. For competition ELISA, serial dilutions of VHHs were mixed with 

serial dilutions of ABA before adding to plates coated with TcdA or TcdB. After incubation and 

washes, the binding of monomer VHHs was measured by adding a biotinylated anti-thioredoxin 

VHH generated by us, followed by HRP-conjugated streptavidin. To determine whether ABA is 

capable of binding the 2 toxins simultaneously, plates were coated with TcdA or TcdB before 

adding serial dilutions of ABA. After washes, serial dilutions of TcdB or TcdA, respectively, 

were added to the wells. After extensive washing, mouse monoclonal antibodies against TcdB or 

TcdA (List Biological Laboratories, Campbell, CA), respectively, were added to the wells before 

the addition of HRP-conjugated antimouse antibodies for detection. 

In Vitro Neutralizing Assays 

Mouse colonic epithelial CT26 cells and African green monkey kidney Vero cells (ATCC, 

Manassas, VA) were cultured in Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad, 

CA) with 10% fetal bovine serum, 1 mM sodium pyruvate, 2 mM L-glutamine, 100 U/mL 

penicillin G, and 40 µg/mL streptomycin sulfate. Subconfluent CT26 or Vero cells (2.0 × 104 

cells/well) were seeded in 96-well plates for 24 hours before the addition of toxin and VHH 

agents. Serially diluted VHHs and toxins were premixed using toxin at a concentration of 0.2 

ng/mL for TcdB or 10 ng/mL for TcdA and then added to each well. In some experiments, 10-µL 

bacterial supernatants from 11 C. difficile strains were mixed with ABA (10 µg/mL) before 

addition to the Vero cell monolayer. This panel of strains was kindly provided by Dr Trevor 

Lawley and represent an assortment of genetically and geographically diverse clinical isolates 

[27, 28], Bacterial supernatant added without ABA acted as a control. After incubation for 24 
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hours, cells were observed under a phase-contrast microscope, and the percentage of cells that 

were rounded was assessed. 

Systemic Challenge 

Six-week-old female CD1 mice (Charles River Labs) were maintained in a pathogen-free animal 

biosafety level 2 facility. All mice used in the experiments were housed in groups of 5 per cage 

under the same conditions. Food, water, bedding, and cages were autoclaved. Mice (5 per group) 

were administered VHH monomers or ABA by intraperitoneal injection 1 hour before 

intraperitoneal challenge of a mixture of TcdA and TcdB (25 ng/mouse of each toxin). Mice 

were monitored hourly for signs of illness, including hunched posture, ruffled coat, and rapid 

breathing. Animals that became moribund were euthanized. 

CDI Challenge 

C57BL/6 mice were orally administered 105 C. difficile spores from the UK1 (BI/NAP1/027) 

strain after receiving antibiotic treatment, as previously described [12]. Mice (10 per group) were 

administered with ABA by intraperitoneal injection 24 hours after spore challenge. Mouse 

weights were measured daily, and the development of disease symptoms was monitored twice 

daily. Animals that became moribund or lost >20% of their body weight were euthanized. 

Statistical Analysis 

Data were analyzed by Kaplan–Meier survival analysis with a log-rank test of significance, 

analysis of variance, and 1-way analysis of variance, followed by Bonferroni posttests, using the 

Prism statistic software program. Results are expressed as mean ± standard error of mean. 

 

RESULTS 

Identification and Characterization of Anti-Tcd VHHs 

Six anti-TcdA VHHs and 11 anti-TcdB VHHs were identified and expressed in E. coli and 

purified using nickel affinity chromatography (Supplementary Figure 1A). The domain location 

of the binding epitopes of each VHH in their targeted toxin (Figure (Figure11A) was determined 

using Western blotting and ELISA of the VHHs against recombinant toxin fragments [29] or 

toxin chimeras [30]. The relative affinities of the VHHs for the different toxins was assessed by 

ELISA (Figure (Figure11B), and the KDs for the toxins were determined by surface plasmon 

resonance (SPR) analysis (Supplementary Table 1). We further evaluated the ability of the VHHs 

to neutralize the cytotoxic activities of TcdA or TcdB on cultured cells. Four VHHs against TcdA 

(Figure (Figure22A) and 3 VHHs against TcdB (Figure (Figure22B) had strong neutralizing 

activity, capable of neutralizing toxin-mediated cytopathic effects at nanomolar concentrations.  
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Figure 1.  Binding of specific heavy-chain-only antibody (VHH) to TcdA and TcdB. A, Diagram 

illustrates specific binding of individual VHHs to the glucosyltransferase domain (GTD), cysteine 

protease domain (CPD), translocation domain (TD), or receptor-binding domain (RBD) in TcdA 

or TcdB. B and C, Enzyme-linked immunosorbent assay analysis of serially diluted anti-TcdA 

(B) or anti-TcdB (C) VHHs in microtiter plates coated with 0.5 µg/mL of TcdA or TcdB, 

respectively. 
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Figure 2. Neutralizing activities of anti-Tcd heavy-chain-only antibodies (VHHs). CT26 cells 

were exposed to either 10 ng/mL TcdA (A) or 0.2 ng/mL TcdB (B) premixed with a serial 

dilution of each anti-TcdA or anti-TcdB VHH, respectively, and then added to cells for 24 hours. 

Morphological changes in cells were observed under a phase-contrast microscope, and the 

percentage of cell rounding was assessed. 

 

Generation of a Multivalent VHH Agent That Neutralizes Both TcdA and TcdB 

Since it has been found necessary to neutralize both TcdA and TcdB to achieve optimal 

protection against CDI [15, 30], we generated ABA (Figure (Figure33A). The selection of these 

VHHs was based on their high toxin affinities, their potent toxin neutralizing activities, and their 

binding to more well-conserved regions on these toxins. Purified ABA from stably transfected 

HEK293 cells displayed a 66-kDa band on SDS-PAGE (Supplementary Figure 1B). ABA 

successfully competed for the Tcd binding by its individual component VHHs, AH3, AA6, and 

E3, in a dose-dependent manner but failed to block AC1 binding to TcdA or B12 binding to 

TcdB (Figure (Figure33B), thus indicating that each of the component VHHs in ABA remained 

functional. Additionally, in an ELISA, ABA demonstrated the capacity to bind to both toxins at 

the same time in a dose-dependent fashion, regardless of whether TcdA or TcdB was bound to 

the plate (Figure (Figure44A and and44B). Thus, ABA is able to bind TcdA and TcdB 

simultaneously and is thus bispecific to both toxins. This finding was confirmed by SPR binding 

experiments in which ABA was coupled to a surface onto which TcdA and TcdB were titrated 

(Supplementary Figure 2). The maximal response value of the ABA surface was twice as high 

for both TcdA titrations as for the TcdB titration, suggesting that ABA is trispecific to 3 

distinctive epitopes, with AH3 and AA6 subunits binding simultaneously to TcdA molecules 

along with E3 subunits binding to TcdB.  
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Figure 3.  Generation of bispecific ABA against TcdA and TcdB. A, Diagram of the ABA fusion 

protein. AH3/E3/E3/AA6 heavy-chain-only antibody (VHH) subunits were separated by a 

flexible linker sequence (FS). A His(6)-tag and E-tag were genetically fused at the N-terminal 

and C-terminal, respectively, of the ABA molecule. B, Checkerboard Enzyme-linked 

immunosorbent assay analysis of ABA competition with individual components. Serially diluted 

ABA (ng/mL) was mixed with different serially diluted thioredoxin/VHH fusion proteins 

targeting TcdA (AH3, AA6, or AC1) or TcdB (E3 or B12) and added to microplates coated with 

TcdA and TcdB, respectively. Biotinylated anti-thioredoxin VHH was used for detection. 
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Figure 4.  ABA binds to TcdA and TcdB simultaneously. Serially diluted ABA (ng/mL) was 

added to microplate wells coated with TcdA (A) or TcdB (B). After incubation and washes, 

serially diluted TcdB (A) or TcdA (B) were added to the plates. The binding of toxins was 

determined by detecting TcdB (A) or TcdA (B), respectively, using toxin-specific mouse 

monoclonal antibodies. 

 

ABA Demonstrates Strong Neutralizing Activity 

We next determined the neutralizing activity of ABA to prevent toxin-mediated cytopathic 

effects on cultured cells. ABA had substantially enhanced neutralizing activity against TcdA-

induced cytopathic effects on CT26 cells, with a concentration of half-maximal activity (ED50) of 

around 10 pM, compared with the individual VHHs, which had ED50 values of around 3 nM 

(Figure (Figure55A). The neutralizing activity of ABA against TcdB was comparable to that of 

E3 (Figure (Figure55B). Further experiments demonstrated that ABA was capable of preventing 

the rounding of Vero cells induced by culture supernatants from 11 genetically and 

geographically diverse clinical C. difficile isolates that express both functional TcdA and TcdB 

(Table (Table1)1) [27, 28]. Interesting, ABA failed to neutralize TcdB in the culture supernatants 

from 2 TcdA−TcdB+ strains (ribotype 017), suggesting that the glucosyltransferase domains 

(GTDs) from these strains are significantly different from those from the tested TcdA+TcdB+ 

strains.  
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Table 1. 

ABA Neutralization Against Toxins Secreted From Different Clostridium difficile Strains 

Strain Ribotype 
REA 

Type 

PFGE 

Type 

Place/Date of 

Isolation/Source 

ABA 

Neutralization 

R20291 027 BI NAP1 London/2006/human Yes 

CD196 027 BI NAP1 France/1985/human Yes 

630 012 R  Zurich/1982/human Yes 

M120 078 BK NAP7,8,9 UK/2007/human Yes 

BI-9 001 J NAP2 Gerding collection Yes 

Liv024 001 J NAP2 Liverpool/2009/human Yes 

Liv022 106 DH NAP11 Liverpool/2009/human Yes 

TL178 002 G NAP6 Belfast/2009/human Yes 

TL176 014 Y NAP4 Cambridge, UK/2009/human Yes 

TL174 015 … … Cambridge, UK/2009/human Yes 

CD305 023 … … London/2008/human Yes 

CF5 017 CF NAP9 Belgium/1995/human No 

M68 017 CF NAP9 Dublin/2006/human No 

ABA was mixed with bacterial culture supernatants from 13 C. difficile strains and added to 

Vero cell monolayers. Cell rounding was observed under a light microscope. All supernatants 

alone caused cell rounding, whereas no cell rounding was observed when supernatants were 

mixed with ABA, except for CF5 and M68 strains. 

Abbreviations: PFGE, pulsed-field gel electrophoresis; REA, restriction endonuclease analysis. 
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Figure 5.  In vitro and in vivo neutralization of TcdA and TcdB due to ABA. A and B, CT26 cells 

were exposed to serially diluted E3, AH3, AA6, or ABA together with either 10 ng/mL TcdA (A) 

or 0.2 ng/mL TcdB (B) for 24 hours. Morphological changes in cells were observed under a 

phase-contrast microscope, and the percentage of cell rounding was assessed. C, For in vivo 

neutralization, mice were injected intraperitoneally with the indicated doses of ABA or a mixture 

of the individual heavy-chain-only antibody (VHH) components, followed 1 hour later by 

intraperitoneal inoculation with a mixture of TcdA and TcdB (25 ng each/mouse). Overall mouse 

survival was analyzed by Kaplan–Meier survival curves. Abbreviation: PBS, phosphate-buffered 

saline. 

 

We further assessed the in vivo neutralizing activity of ABA by evaluating its capacity to protect 

mice from systemic toxicity. Mice were completely protected against a lethal challenge of mixed 

TcdA and TcdB (25 ng of each per mouse) after ABA treatment at concentrations as low as 3.2 

µg/kg, whereas the individual component VHH combination failed to show complete protection 

at a dose as high as 1 mg/kg (P = .009; Figure Figure55C). Thus, the in vivo neutralizing activity 

of ABA is at least 300-fold more potent than that of the mixture of the individual components. 
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ABA Treatment Reverses Fulminant Disease Symptoms in Mice With CDI 

Since ABA exhibits potent neutralizing activity against both toxins, we evaluated its therapeutic 

potential against fulminant CDI, to which no effective treatment is available. After oral challenge 

of antibiotic-treated mice with C. difficile spores from the NAP1/027 strain, a single dose of 

ABA (1 mg/kg) or vehicle control was parenterally administered to mice. At the time of ABA 

treatment, a majority of mice had developed severe diarrhea and were experiencing weight loss 

(Figure (Figure66A). Treatment with ABA at a dose of 1 mg/kg significantly prevented the 

severe weight loss associated with CDI (Figure (Figure66A). More importantly, mice treated 

with ABA were significantly protected from mortality induced by C. difficile challenge, 

compared with the phosphate-buffered saline control (Figure (Figure66B). None of the mice in 

the 1 mg/kg or 40 μg/kg groups died, and only 1 mouse in the 200 μg/kg group died, whereas 

60% of the mice in the vehicle control group died (Figure (Figure66B).  
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Figure 6.  Therapeutic efficacy of ABA against Clostridium difficile infection in mice. C57BL/6 

mice were pretreated with antibiotics before being challenged with UK1 spores. Mice were 

injected intraperitoneally with 1 mg/kg of ABA 24 hours after infection. Mouse weight change 

(A) and survival (B) were monitored and are plotted. The experiments were repeated twice with 

similar results (10 mice/experiment). Error bars denote standard errors of the mean. 

Abbreviation: PBS, phosphate-buffered saline. 
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DISCUSSION 

The incidence of CDI-associated mortality has increased rapidly in recent years [3], while 

treatment options against severe and fulminant CDI remain limited [2]. In this study, we 

generated a novel bispecific VHH antibody that is capable of neutralizing both TcdA and TcdB 

and reversing fulminant disease symptoms in mice with CDI. Our study thus provides evidence 

for the usefulness and efficacy of bispecific VHH antibodies in the treatment of fulminant CDI in 

patients. 

The glucosyltransferase-deficient holotoxins aTcdA and aTcdB [12] were used to immunize 

alpacas to induce potent B-cell responses. These atoxic holotoxins both remain soluble and 

appear to maintain native conformations and thus should induce antibody responses that are 

similar to those of wild-type toxins. As expected, the majority of neutralizing anti-TcdA VHHs 

recognize the C-terminal combined repetitive oligopeptides (CROPs), which has been 

established as the immunodominant domain of TcdA [12, 31]. However, a recent study has 

shown that a truncated TcdA protein, without the CROPs, can cause cytotoxicity in cells [32]. 

Our 2 most potent neutralizing anti-TcdA VHHs recognize the N-terminal GTD and the central 

translocation domain (TD), indicating that the toxins can also be effectively neutralized by 

blocking glucosyltransferase or the membrane insertion/cytosolic release of TcdA. 

Unlike the anti-TcdA VHHs, all neutralizing anti-TcdB VHHs recognize the N-terminal GTD; 

none of the 5 VHHs that bind to the CROPs of TcdB demonstrated neutralizing activity, despite 

their high binding affinities. This result is in line with our recent finding that the major 

neutralizing epitopes of TcdB are largely located in the N-terminal portion of the toxin rather 

than in the C-terminal CROP region [12]. The CROP region of TcdB has been the traditional 

immunogen choice for vaccine development and generation of neutralizing antibodies [33–35]. 

This notion now warrants revision because of convincing data that the N-terminal portion of 

TcdB is the most effective domain as an immunogen for vaccines and immunotherapies against 

CDI. Further support for this concept is found in recent studies in which TcdB CROPs failed to 

induce protective titers of neutralizing antibodies [34, 35], while the GTD fragment of TcdB led 

to the generation of highly protective neutralizing antibody responses [36]. 

Because various C. difficile strains expressing different toxin isoforms are isolated from patients 

with CDI, it is important for therapeutic antibodies to target conserved toxin epitopes, thus 

conferring broad protection across clinically relevant isolates. Recent reports have shown that 

TcdA is relatively well conserved between historical and epidemic strains, whereas TcdB shows 

a significant degree of variability [37, 38]. The sequence variability in TcdB from TcdA+TcdB+ 

strains is mainly found within the C-terminal CROPs and the adjacent region (88% identity 

between historical and epidemic strains), whereas the N-terminal GTD is more conserved and 

shows 96% amino acid sequence identity [37]. Unlike the anti-TcdB monoclonal antibody 

undergoing clinical trials [14], which binds to the CROP region [33], E3 binds to the GTD of 

TcdB. In addition, ABA consists of 2 distinct VHHs, AH3 and AA6, that bind to the GTD and 

TD of TcdA, respectively. In fact, ABA was able to neutralize toxins a panel of genotypically 

diverse TcdA+TcdB+ clinical isolates collected from different geographic locations [27, 28], 

including some BI/NAP1/027 strains that are responsible for recent outbreaks of CDI, thus 
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demonstrating the broad efficacy range of this agent against those strains producing both TcdA 

and TcdB. 

Although the majority of pathogenic C. difficile produce both TcdA and TcdB, some clinical 

isolates produce only TcdB [39]. The TcdA−TcdB+ strain infections occur in sporadic form in 

Europe and North America but are more frequent in East Asian countries [40]. Sequence analysis 

of the TcdB gene from TcdA−TcdB+ strains identified multiple point mutations in GTD regions, 

with only 84% homology with that of laboratory strain VPI 10463 [39]. Since E3 binds to the 

GTD of TcdB and neutralizes its activity, we examined the ability of ABA to neutralizing TcdB 

from 2 TcdA−TcdB+ strains. Our data demonstrated that ABA failed to neutralize TcdB from 

these 2 TcdA−TcdB+ NAP9/CF/017 strains (Table (Table1),1), supporting the previous finding 

that the glucosyltransferase of TcdB from the TcdA−TcdB+ strains is significantly different from 

that of the VPI 10463 strain [39, 41]. Although ABA is able to broadly neutralizing toxins from 

TcdA+TcdB+ C. difficile strains, it is unable to neutralize TcdB from the tested TcdA−TcdB+ 

ribotype 017 strains and, thus, is unlikely to be therapeutically effective against CDI caused by 

these strains. Therefore, further improvement via the introduction of VHHs that are able to also 

neutralize TcdB from the 017 strains is desirable. 

CDI causes a wide spectrum of clinical symptoms and outcomes, including mild diarrhea, 

fulminant disease, and death [2, 42]. A single dose of ABA was able to significantly protect mice 

against weight loss and fulminant CDI after C. difficile spore challenge. We have previously 

reported that toxins are released into the bloodstream of animals experimentally infected with C. 

difficile, a feature associated with severe and fulminant CDI in several animal models [43–45]. 

The potent neutralizing activity of ABA may allow for the rapid neutralization of circulating 

toxins liberated from the intestines of mice with fulminant CDI. In fact, a single injection of 

ABA of only 3.2 µg/kg provided full protection against lethal systemic toxin challenge in mice. 

In this study, we effectively used a 1-mg/kg dose of ABA to treat CDI in mice, compared with 

the 50-mg/kg and 10-mg/kg doses of human monoclonal antibodies that have been used in 

hamsters [33] and patients [14], respectively, with CDI. The serum half-life of ABA in its current 

form is likely to be short because of its smaller size and its lack of an Fc domain. Thus, either 

multiple doses of the antibody in its current form or further modifications to increase 

bioavailability may be necessary to treat chronic infections. Multiple doses of VHHs may induce 

an anti-VHH antibody response and reduce the efficacy of subsequent treatments should patients 

develop multiple recurrent CDIs. Although VHHs are not particularly immunogenic, their 

potential immunogenicity can be further reduced via the humanization of the VHH scaffold [46]. 

In addition, a number of approaches are now available to improve the serum half-life of VHHs, 

such as genetic fusion with albumin-binding domains [47, 48] or immunoglobulins [49], as well 

as PEGylation [50], thereby enhancing their therapeutic potential. 

In summary, we report here that a novel bispecific VHH antibody is able to rapidly alleviate 

fulminant CDI in mice. Our study thus demonstrates the feasibility of designing multivalent and 

bispecific VHH antibodies against both toxins with significant enhanced therapeutic efficacy to 

reduce the morbidity and mortality associated with this debilitating disease. 
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